WO2021132410A1 - スパンボンド不織布、集塵機プリーツフィルター用濾材、集塵機プリーツフィルターおよび大風量パルスジェットタイプ集塵機 - Google Patents

スパンボンド不織布、集塵機プリーツフィルター用濾材、集塵機プリーツフィルターおよび大風量パルスジェットタイプ集塵機 Download PDF

Info

Publication number
WO2021132410A1
WO2021132410A1 PCT/JP2020/048313 JP2020048313W WO2021132410A1 WO 2021132410 A1 WO2021132410 A1 WO 2021132410A1 JP 2020048313 W JP2020048313 W JP 2020048313W WO 2021132410 A1 WO2021132410 A1 WO 2021132410A1
Authority
WO
WIPO (PCT)
Prior art keywords
woven fabric
dust collector
fused
spunbonded
filter
Prior art date
Application number
PCT/JP2020/048313
Other languages
English (en)
French (fr)
Inventor
仁 溝上
吉田 潤
幸司 北村
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2021506353A priority Critical patent/JP6962496B1/ja
Priority to CA3165603A priority patent/CA3165603A1/en
Priority to US17/787,646 priority patent/US20220410046A1/en
Priority to KR1020227019082A priority patent/KR20220110210A/ko
Priority to CN202080088950.8A priority patent/CN114846189B/zh
Priority to EP20905205.9A priority patent/EP4083294A4/en
Publication of WO2021132410A1 publication Critical patent/WO2021132410A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • B01D39/163Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin sintered or bonded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/10Particle separators, e.g. dust precipitators, using filter plates, sheets or pads having plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/52Particle separators, e.g. dust precipitators, using filters embodying folded corrugated or wound sheet material
    • B01D46/521Particle separators, e.g. dust precipitators, using filters embodying folded corrugated or wound sheet material using folded, pleated material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/66Regeneration of the filtering material or filter elements inside the filter
    • B01D46/70Regeneration of the filtering material or filter elements inside the filter by acting counter-currently on the filtering surface, e.g. by flushing on the non-cake side of the filter
    • B01D46/71Regeneration of the filtering material or filter elements inside the filter by acting counter-currently on the filtering surface, e.g. by flushing on the non-cake side of the filter with pressurised gas, e.g. pulsed air
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers
    • D04H3/011Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
    • D04H3/147Composite yarns or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/02Types of fibres, filaments or particles, self-supporting or supported materials
    • B01D2239/0216Bicomponent or multicomponent fibres
    • B01D2239/0233Island-in-sea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0442Antimicrobial, antibacterial, antifungal additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/0604Arrangement of the fibres in the filtering material
    • B01D2239/0618Non-woven
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/0604Arrangement of the fibres in the filtering material
    • B01D2239/0627Spun-bonded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/065More than one layer present in the filtering material
    • B01D2239/0677More than one layer present in the filtering material by spot-welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1233Fibre diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1258Permeability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1275Stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1291Other parameters
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/04Filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • Y02A50/2351Atmospheric particulate matter [PM], e.g. carbon smoke microparticles, smog, aerosol particles, dust

Definitions

  • the present invention relates to a spunbonded non-woven fabric having excellent rigidity and breathability, a filter medium for a dust collector pleated filter, a dust collector pleated filter, and a large air volume pulse jet type dust collector.
  • a dust collector for the purpose of removing and collecting dust has been used in a work environment where dust is generated, and among them, a pulse jet type dust collector that can reduce the frequency of filter replacement is known.
  • the outside of the filter serves as a filtration surface, and this filter is mounted on a filter gauge for operation.
  • the pulse jet type dust collector has a mechanism that can perform backwashing by sending compressed air to the inside of the filter when the filter reaches a certain pressure, and dust accumulated on the outer surface of the filter by backwashing is removed. It is paid off and used repeatedly.
  • the filter of this dust collector is used in a pleated shape, and the pleated shape greatly improves the filtration area, reduces the pressure loss, and improves the collection efficiency. It is possible to do it.
  • spunbonded non-woven fabrics have excellent lint-free properties and excellent strength performance with respect to short-fiber non-woven fabrics, so that it is easy to obtain them for home use and office work. It is used as a filter for necessary air conditioners and industrial dust collectors.
  • Patent Document 1 and Patent Document 2 disclose a non-woven fabric in which thermoplastic continuous filaments are previously heat-sealed with a pair of flat rolls and then partially fused with a pair of engraved embossed rolls. .. Further, Patent Document 3 describes a non-woven fabric in which a thermoplastic continuous filament having a high melting point component and a thermoplastic continuous filament having a low melting point component are mixed, and a multi-leaf composite fiber composed of a high melting point component and a low melting point component. Non-woven fabric is disclosed.
  • a large air volume pulse jet type dust collector in a place such as a chemical factory where a large amount of air containing fine powder dust needs to be treated at 300 to 1500 L per minute, a large air volume pulse jet type dust collector is used. It is used. Since the filter used in such a large air volume pulse jet type dust collector is repeatedly passed through a large amount of air (gas) and backwashed, a base material such as a PTFE film, which may cause peeling, is attached. The spunbonded non-woven fabric alone is used as the spunbonded non-woven fabric for the filter. Further, the spunbonded non-woven fabric for a filter used is required to have rigidity having pleated shape retention to withstand dust collection under a large air volume and repeated backwashing.
  • the conventional spunbonded non-woven fabric for filters used for dust collection has a good balance between dust collection performance and air permeability, and has sufficient rigidity for pleating shape retention and pleating workability under a large air volume. No one has been obtained. That is, in order to improve the collection performance, if the fusion between the fibers is strengthened, the opening becomes smaller, which leads to a decrease in air permeability. On the other hand, if the fusion between the fibers is loosened in order to improve the air permeability. Not only does the opening become larger and the dust collection performance deteriorates, but the pleated shape cannot be maintained under a large air volume due to the reduced rigidity, and fluffing occurs, which poses a problem in terms of appearance. was there.
  • Patent Document 3 the fusion between fibers is weak, the rigidity of the non-woven fabric is lowered due to the breakage of the fused portion during pleating, and when used as a filter, the shape of the pleats cannot be maintained under a large air volume, and the pleats are breathable. There was a problem that
  • an object of the present invention is to have both dust collecting performance and air permeability, and high rigidity excellent in pleated shape retention and pleated workability under a large air volume. It is an object of the present invention to provide a spunbonded non-woven fabric, a filter medium for a dust collector pleated filter, a dust collector pleated filter, and a large air volume pulse jet type dust collector.
  • the present inventors have conducted diligent studies, and as a result, the air permeability CV value of the non-woven fabric composed of partially fused thermoplastic continuous filaments and the thickness and concave portion of the convex portion obtained from the cross section of the non-woven fabric.
  • the ratio of the thickness of the non-woven fabric and the ratio of the distance from the surface of the convex part to the surface of the concave part are in the range of a specific value. It was found that a spunbonded non-woven fabric having sufficient rigidity can be obtained.
  • the spunbonded nonwoven fabric of the present invention is a spunbonded nonwoven fabric composed of a thermoplastic continuous filament composed of a high melting point component and a low melting point component and partially fused, and the air permeability of the spunbonded nonwoven fabric. It has a CV value of 15% or less, a rigidity in the MD direction of 40 mN or more and 80 mN or less, has a non-fused convex portion and a fused concave portion, and has one surface of the convex portion in the cross section of the non-woven fabric.
  • the thickness t A from one surface to the other surface, the thickness t B from one surface of the concave portion to the other surface, and the distance from one surface of the convex portion to one surface of the concave portion are t C and t D (respectively).
  • t C ⁇ t D The thickness t C ⁇ t D ), and the relationship is expressed by the following equations (1) and (2). 0.5 ⁇ 1-t B / t A ⁇ 1.0 ... (1) 0.65 ⁇ t C / t D ⁇ 1.0 ... (2)
  • the ratio of the fused area of the recess is 5% or more and 20% or less.
  • the average single fiber diameter of the thermoplastic continuous filaments constituting the spunbonded nonwoven fabric is 12.0 ⁇ m or more and 26.0 ⁇ m or less.
  • the spunbonded non-woven fabric of the present invention is used as a filter medium for a dust collector pleated filter.
  • the filter medium for the dust collector pleated filter of the present invention is used for the dust collector pleated filter.
  • the dust collector pleated filter of the present invention is used in a large air volume pulse jet type dust collector.
  • a spunbonded non-woven fabric having an excellent balance between dust collection performance and air permeability, and having high rigidity with excellent pleated shape retention under a large air volume and pleated processability can be obtained.
  • FIG. 1 is a cross-sectional photograph of a spunbonded nonwoven fabric according to an embodiment of the present invention.
  • FIG. 2 is a schematic perspective view showing an example of a filter medium for a dust collector pleated filter of the present invention.
  • FIG. 3 is a diagram for explaining a configuration of a test system for carrying out a collection performance test according to an embodiment of the present invention.
  • FIG. 4 is a diagram for explaining a configuration of a test system for carrying out a pleated shape retention test according to an embodiment of the present invention.
  • FIG. 5 is a diagram for explaining a measurement unit in a pleated shape retention test according to an embodiment of the present invention.
  • the spunbonded non-woven fabric of the present invention is a non-woven fabric made of a thermoplastic continuous filament.
  • the thermoplastic continuous filament is composed of a high melting point component and a low melting point component.
  • FIG. 1 is a cross-sectional photograph of a spunbonded nonwoven fabric according to an embodiment of the present invention.
  • the spunbonded non-woven fabric shown in FIG. 1 is ventilated from top to bottom during use.
  • the spunbonded non-woven fabric is a partially fused non-woven fabric, and the air permeability CV value of the non-woven fabric is 15% or less, and the rigidity in the MD direction is 40 mN or more and 80 mN or less.
  • the spunbonded non-woven fabric has a non-fused convex portion 11 (non-fused portion) and a fused concave portion 12 (fused portion), and in the cross section of the non-woven fabric, from one surface of the convex portion to the other surface.
  • T A the thickness from one surface of the concave portion to the other surface
  • t C the distance from one surface of the convex portion to one surface of the concave portion
  • T D which is a spunbonded non-woven fabric having the following formula. 0.50 ⁇ 1-t B / t A ⁇ 1.0 ... (1) 0.65 ⁇ t C / t D ⁇ 1.0 ...
  • the MD direction refers to the sheet transport direction at the time of manufacturing the spunbonded nonwoven fabric, that is, the winding direction in the nonwoven fabric roll
  • the CD direction described later is the sheet conveying direction, that is, the winding direction in the nonwoven fabric roll. It points in a direction that intersects perpendicularly to.
  • the MD direction and the CD direction are determined by the following procedure.
  • test piece having a length of 38.1 mm and a width of 25.4 mm is collected in the directions rotated by 30, 60, and 90 degrees from the collecting direction.
  • C The rigidity and softness of each test piece is measured based on the method for measuring the rigidity and softness of the spunbonded non-woven fabric described later for the test pieces in each direction.
  • D The direction in which the value obtained by the measurement is the highest is the MD direction of the spunbonded non-woven fabric, and the direction orthogonal to this is the CD direction.
  • FIG. 2 is a schematic perspective view showing an example of a filter medium for a dust collector pleated filter of the present invention.
  • the filter medium 21 for a dust collector pleated filter shown in FIG. 2 has a peak portion 22 and a valley portion 23 formed by folding back a spunbonded non-woven fabric.
  • polyester As the thermoplastic resin used as a raw material for the thermoplastic continuous filament constituting the spunbonded nonwoven fabric of the present invention, polyester is particularly preferably used.
  • Polyester is a polymer polymer having an acid component and an alcohol component as monomers.
  • aromatic carboxylic acids such as phthalic acid (ortho), isophthalic acid and terephthalic acid, aliphatic dicarboxylic acids such as adipic acid and sebacic acid, and alicyclic dicarboxylic acids such as cyclohexanecarboxylic acid are used. be able to.
  • the alcohol component ethylene glycol, diethylene glycol, polyethylene glycol and the like can be used.
  • polyester examples include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polyethylene naphthalate, polylactic acid and polybutylene succinate.
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PTT polytrimethylene terephthalate
  • polyethylene naphthalate polylactic acid and polybutylene succinate.
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PET polytrimethylene terephthalate
  • polyethylene naphthalate polylactic acid and polybutylene succinate.
  • polyester raw materials include crystal nucleating agents, matting agents, pigments, fungicides, antibacterial agents, flame retardants, metal oxides, aliphatic bisamides and / or fats as long as the effects of the present invention are not impaired.
  • Additives such as group monoamides and hydrophilic agents can be added.
  • metal oxides such as titanium oxide improve spinnability by reducing surface friction of fibers and preventing fusion between fibers, and also increase thermal conductivity during fusion molding by a thermal roll of a non-woven fabric. This has the effect of improving the meltability of the non-woven fabric.
  • aliphatic bisamides such as ethylene bisstearic acid amide and / or alkyl-substituted aliphatic monoamides have the effect of enhancing the releasability between the thermal roll and the non-woven fabric web and improving the transportability.
  • thermoplastic continuous filament constituting the spunbonded nonwoven fabric of the present invention is composed of a high melting point component and a low melting point component.
  • the thermoplastic continuous filament is a polyester which is a low melting point component having a melting point of 10 ° C. or more and 140 ° C. or less lower than the melting point of the polyester-based high melting point polymer around the polyester-based high melting point polymer which is a high melting point component.
  • the filament is a composite filament in which a low melting point polymer is arranged.
  • the melting point of the thermoplastic resin is a differential scanning calorimeter (for example, "DSC-2" type manufactured by Perkin Elmer Japan Co., Ltd.), a temperature rise rate of 20 ° C./min, and a measurement temperature range of 30.
  • the melting point of the thermoplastic resin is defined as the temperature at which an extreme value is given in the obtained melting heat absorption curve measured under the conditions of ° C. to 300 ° C. Further, for a resin whose melting endothermic curve does not show an extreme value in a differential scanning calorimeter, it is heated on a hot plate and the temperature at which the resin is melted by microscopic observation is defined as the melting point.
  • polyester-based high-melting-melting polymer / polyester-based low-melting-melting polymer examples include combinations of PET / PBT, PET / PTT, PET / polylactic acid, PET / copolymerized PET, and the like.
  • PET / copolymerized PET has excellent spinnability.
  • the combination is preferably used.
  • isophthalic acid copolymerized PET is preferably used because it is particularly excellent in spinnability.
  • Examples of the composite form of the composite filament include a concentric sheath type, an eccentric sheath type, and a sea island type. Among them, the concentric sheath type can be used because the filaments can be fused uniformly and firmly. Is preferable.
  • examples of the cross-sectional shape of the composite filament include a circular cross section, a flat cross section, a polygonal cross section, a multi-leaf cross section, and a hollow cross section. Among them, it is preferable to use a filament having a circular cross section as the cross-sectional shape.
  • the composite filament for example, there is a method of mixing a fiber made of a polyester-based high melting point polymer and a fiber made of a polyester-based low melting point polymer. Uniform fusion is difficult. For example, where fibers made of a polyester-based high melting point polymer are densely packed, the fusion is weakened, and the mechanical strength and rigidity are inferior, which makes it unsuitable as a spunbonded non-woven fabric.
  • the melting point of the polyester-based low melting point polymer in the present invention is preferably 10 ° C. or higher and 140 ° C. or lower lower than the melting point of the polyester-based high melting point polymer.
  • the melting point of the polyester-based low melting point polymer is 140 ° C. or lower, preferably 120 ° C. or lower, more preferably 100 ° C. or lower than the melting point of the polyester-based high melting point polymer, whereby the heat resistance of the spunbonded nonwoven fabric is lowered. Can be suppressed.
  • the melting point of the polyester-based high melting point polymer is preferably in the range of 200 ° C. or higher and 320 ° C. or lower.
  • the melting point of the polyester-based high melting point polymer is preferably 200 ° C. or higher, more preferably 210 ° C. or higher, and further preferably 220 ° C. or higher.
  • a filter having excellent heat resistance can be obtained.
  • the melting point of the polyester-based high melting point polymer to preferably 320 ° C. or lower, more preferably 300 ° C. or lower, and further preferably 280 ° C. or lower, a large amount of thermal energy for melting during the production of the non-woven fabric is consumed for production. It is possible to suppress the deterioration of the sex.
  • the melting point of the polyester-based low melting point polymer is preferably in the range of 160 ° C. or higher and 250 ° C. or lower.
  • the melting point of the polyester-based low melting point polymer is preferably 160 ° C. or higher, more preferably 170 ° C. or higher, and further preferably 180 ° C. or higher.
  • a step of applying heat during pleating filter manufacturing is performed. Excellent shape retention even after passing.
  • the melting point of the polyester-based low melting point polymer is preferably 250 ° C. or lower, more preferably 240 ° C. or lower, a filter having excellent meltability during the production of a non-woven fabric and excellent mechanical strength can be obtained.
  • the content ratio of the polyester-based high melting point polymer to the polyester-based low melting point polymer is preferably in the range of 90:10 to 60:40 in terms of mass ratio, and more preferably in the range of 85:15 to 70:30. This is a preferred embodiment.
  • the polyester-based refractory polymer By setting the polyester-based refractory polymer to 60% by mass or more and 90% by mass or less, the rigidity and heat resistance of the spunbonded non-woven fabric can be improved.
  • the low melting point polyester to 10% by mass or more and 40% by mass or less, when a spunbonded nonwoven fabric is formed by fusion and used, the composite polyester fibers (filaments) constituting the spunbonded nonwoven fabric are firmly fused to each other. It can be worn, has excellent mechanical strength, and can withstand dust collection under a large air volume.
  • Examples of the composite form of the composite polyester fiber include a concentric sheath type, an eccentric core sheath type, and a sea-island type. Among them, the composite form is capable of uniformly and firmly fusing the filaments to each other. A concentric sheath type is preferable.
  • examples of the cross-sectional shape of the filament (single fiber) include a circular cross section, a flat cross section, a polygonal cross section, a multi-leaf cross section, and a hollow cross section. Among them, it is preferable to use a filament (single fiber) having a circular cross section as the cross-sectional shape.
  • the average single fiber diameter of the thermoplastic continuous filament constituting the spunbonded nonwoven fabric of the present invention is preferably in the range of 12.0 ⁇ m or more and 26.0 ⁇ m or less.
  • the average single fiber diameter of the thermoplastic continuous filament is preferably 13.0 ⁇ m or more, more preferably 14.0 ⁇ m or more.
  • the air permeability of the spunbonded non-woven fabric is improved and the pressure loss is reduced. Can be done. It is also possible to reduce the number of yarn breaks when forming the thermoplastic continuous filament and improve the stability during production.
  • the average single fiber diameter of the thermoplastic continuous filament is 26.0 ⁇ m or less, preferably 25.0 ⁇ m or less, more preferably 24.0 ⁇ m or less, the uniformity of the spunbonded non-woven fabric is improved and the surface of the non-woven fabric is made dense. It is possible to improve the collection performance, such as making it easier to filter dust on the surface layer.
  • the average single fiber diameter ( ⁇ m) of the spunbonded nonwoven fabric is a value obtained by the following method.
  • (I) Randomly collect 10 small piece samples from the spunbonded non-woven fabric.
  • (Ii) Take a photograph of the surface of the collected small piece sample with a scanning electron microscope or the like capable of measuring the fiber thickness in the range of 500 to 2000 times.
  • (Iii) A total of 100 fibers, 10 fibers each, are arbitrarily selected from each sample, and their thickness is measured. The fiber is assumed to have a circular cross section, and the thickness is the single fiber diameter.
  • (Iv) The arithmetic mean value was calculated by rounding off the second decimal place to obtain the average single fiber diameter.
  • the spunbonded nonwoven fabric of the present invention is produced by sequentially performing the following steps (a) to (c).
  • (A) A step of melt-extruding a thermoplastic polymer from a spinneret, and then pulling and drawing the thermoplastic polymer by air soccer to obtain a thermoplastic continuous filament.
  • (B) A step of opening the obtained filament and forming a fiber web by regulating and depositing the fiber arrangement with a fiber opening plate on a moving net conveyor.
  • C A step of partially fusing the obtained fiber web. The details of each step will be described below.
  • thermoplastic continuous filament forming step the thermoplastic polymer is melt-extruded from the spinneret.
  • thermoplastic continuous filament a composite filament in which a polyester-based low-melting-melting polymer having a melting point lower than the melting point of the polyester-based high-melting-melting polymer is arranged around the polyester-based high-melting-melting polymer is used as the thermoplastic continuous filament, there is no case.
  • a polyester-based high-melting-melter polymer and a polyester-based low-melting-melting polymer are each melted at a melting point of more than the melting point and + 70 ° C.
  • the spun mouthpiece has a base temperature of 10 ° C. or higher and a melting point of + 70 ° C. or lower.
  • a filament having a circular cross section is spun by pulling and stretching at 4000 m / min or more and 6000 m / min or less.
  • the non-woven fabric of the present invention is a so-called spunbonded non-woven fabric, and the spun thermoplastic continuous filament is sucked by an ejector and ejected from an open fiber plate having a slit shape at the lower part of the ejector to move. It has a step of depositing on a net conveyor to obtain a fiber web.
  • the spunbonded non-woven fabric is made of the filaments (long fibers). By doing so, the rigidity and mechanical strength can be increased as compared with the case of the short fiber non-woven fabric composed of discontinuous fibers, and the spunbonded non-woven fabric can be made preferable.
  • the method for producing a spunbonded non-woven fabric of the present invention it is also a preferable embodiment to temporarily fuse the fiber webs collected on the net conveyor.
  • a method of fusing the collected fiber webs with a pair of flat rolls or installing a flat roll on a net conveyor and fusing between the net conveyor and the flat roll is preferably used. Be done.
  • the temperature of fusion for temporary fusion is preferably 70 ° C. or higher and 120 ° C. or lower lower than the melting point of the polyester-based low melting point polymer.
  • the linear pressure for temporary fusion is preferably 30 kg / cm or more and 70 kg / cm or less.
  • the linear pressure for temporary fusion is preferably 30 kg / cm or more and 70 kg / cm or less.
  • the spunbonded nonwoven fabric of the present invention is partially fused, but the method of partial fusion is not particularly limited.
  • the fused portion of the spunbonded nonwoven fabric is referred to as a fused portion
  • the other non-fused portion is referred to as a non-fused portion.
  • Fusion by a thermal emboss roll or fusion by a combination of an ultrasonic oscillator and an emboss roll is preferable.
  • fusion by heat embossing roll is most preferable from the viewpoint of improving the strength of the non-woven fabric.
  • the partial fusion step is preferably processed continuously from the web forming step.
  • the temperature of fusion by the thermal embossing roll is preferably 5 ° C. or higher and 60 ° C. or lower lower than the melting point of the polymer having the lowest melting point existing on the fiber surface of the non-woven fabric, and more preferably 10 ° C. or higher and 50 ° C. or lower. Excessive fusion can be prevented by setting the temperature difference of the melting points of the polymer having the lowest melting point existing on the fiber surface of the non-woven fabric by thermal embossing to 5 ° C. or higher, more preferably 10 ° C. or higher. On the other hand, by setting the temperature difference of the melting points to 60 ° C. or lower, more preferably 50 ° C. or lower, uniform fusion can be performed in the non-woven fabric.
  • the linear pressure for fusion is preferably 30 kg / cm or more and 90 kg / cm or less.
  • the strength required for pleating processability can be imparted to the non-woven fabric when used as a spunbonded non-woven fabric. Excessive fusion can be prevented by setting the linear pressure for fusion to 90 kg / cm or less, more preferably 80 kg / cm or less.
  • the fusion area ratio of the partial fusion of the spunbonded nonwoven fabric of the present invention is the ratio of the fused portion (recess) to the total area of the nonwoven fabric, and is 5% or more and 20% or less with respect to the total area of the nonwoven fabric. Is a preferable range.
  • the fused area ratio is 5% or more, more preferably 6% or more, still more preferably 8% or more, sufficient mechanical strength of the non-woven fabric can be obtained, and the surface does not easily fluff.
  • the fused area ratio is 20% or less, more preferably 18% or less, still more preferably 16% or less, the voids between the fibers are reduced, the pressure loss is increased, and the collection performance may be lowered. Absent.
  • a digital microscope for example, "VHX-5000" manufactured by Keyence Co., Ltd.
  • VHX-5000 manufactured by Keyence Co., Ltd.
  • the fused area ratio (%) is calculated by rounding off the first digit after the decimal point as a percentage.
  • the area (cm 2 ) of the fused portion in the rectangular frame is divided by 1.0 cm 2 , which is the area of the rectangular frame, and then the third decimal place is rounded off.
  • the landing area ratio can be calculated.
  • the fused portion forms a recess, and the thermoplastic continuous filaments constituting the non-woven fabric are fused by heat and pressure. That is, the portion where the thermoplastic continuous filaments are fused and aggregated as compared with the other portions is the fused portion.
  • the portion where the thermoplastic continuous filaments are fused and aggregated as compared with the other portions is the fused portion.
  • the portion where the thermoplastic continuous filament is fused and aggregated by the convex portion of the emboss roll becomes the fusion portion.
  • the fused portion is a convex portion of the roll having unevenness and a flat roll.
  • the portion where the thermoplastic continuous filaments of the non-woven fabric are aggregated by being fused with and is composed of a pair of upper rolls and lower rolls in which a plurality of linear grooves arranged in parallel are formed on the surface, and the groove of the upper roll and the groove of the lower roll thereof are at an angle.
  • the fused portion means a portion where the thermoplastic continuous filaments of the non-woven fabric are aggregated by being fused by the convex portion of the upper roll and the convex portion of the lower roll. ..
  • the portion fused between the upper convex portion and the lower concave portion or the upper concave portion and the lower convex portion is not included in the fusion portion referred to here.
  • the area of each fused portion is preferably 0.3 mm 2 or more and 5.0 mm 2 or less.
  • the thickness is preferably 0.3 mm 2 or more and 5.0 mm 2 or less.
  • the shape of the fused portion in the spunbonded non-woven fabric of the present invention is not particularly specified, and a roll having a predetermined pattern of unevenness is used only on the upper side or the lower side, and a flat roll having no unevenness is used as the other roll. It consists of a pair of upper rolls and lower rolls in which a plurality of linear grooves arranged in parallel are formed on a case or a surface, and the groove of the upper roll and the groove of the lower roll intersect at a certain angle. Even when the convex portion of the upper roll and the convex portion of the lower roll are fused, the shape of the fused portion is circular, triangular, quadrangular, parallelogram, or elliptical. It may be shaped or diamond-shaped.
  • the arrangement of these fused portions is not particularly specified, and may be regularly arranged at equal intervals, randomly arranged, or a mixture of different shapes. Among them, from the viewpoint of uniformity of the non-woven fabric, it is preferable that the fused portions are arranged at equal intervals. Further, in that the non-woven fabric is partially fused without peeling, it is composed of a pair of upper rolls and lower rolls in which a plurality of linear grooves arranged in parallel are formed on the surface of the upper roll. A parallelogram formed by fusing the convex portion of the upper roll and the convex portion of the lower roll using an embossed roll provided so that the groove and the groove of the lower roll intersect at a certain angle. The fused portion is preferable.
  • the air permeability of the spunbonded non-woven fabric in the present invention is preferably 10 (cm 3 / (cm 2 ⁇ sec)) or more and 130 (cm 3 / (cm 2 ⁇ sec)) or less.
  • the air volume is 10 (cm 3 / (cm 2 ⁇ sec)) or more, preferably 13 (cm 3 / (cm 2 ⁇ sec)) or more, it is possible to suppress an increase in pressure loss.
  • the air volume is 130 (cm 3 / (cm 2 ⁇ sec)) or less, preferably 105 (cm 3 / (cm 2 ⁇ sec)) or less, dust does not easily stay inside, so that it can be used as a filter. Good collection performance.
  • the air permeability (cm 3 / (cm 2 ⁇ sec)) of the spunbonded non-woven fabric is as follows in JIS L1913: 2010 “General non-woven fabric test method” 6.8 “Breathability (JIS method)”. 6.8.1 Values measured based on the "Frazil method” shall be adopted.
  • the spunbonded non-woven fabric of the present invention has a ventilation amount CV value of 15% or less.
  • the air volume CV value is 15% or less, preferably 14% or less, more preferably 13% or less, the uniformity of the air volume is improved, and when a spunbonded non-woven fabric is used as a filter, dust leakage from the filter is prevented. It can be suppressed and the collection efficiency can be improved.
  • the airflow amount CV value is 1% or more.
  • the air volume CV value (%) of the spunbonded nonwoven fabric a value obtained by measuring as follows is adopted.
  • the air volume CV value (%) is calculated by the following formula, and the first decimal place is rounded off.
  • Air volume CV value (%) (Asdv) / (A ave ) ⁇ 100
  • the spunbonded non-woven fabric of the present invention has a rigidity of 40 mN or more and 80 mN or less in the MD direction of the non-woven fabric.
  • the rigidity is 40 mN or more, more preferably 45 mN or more, and further preferably 50 mN or more
  • pleating can be performed while maintaining the strength and shape retention of the non-woven fabric.
  • 80 mN or less, more preferably 75 mN or less, and further preferably 70 mN or less the folding resistance during pleating is relaxed, and the pleated mountain valley shape is sharply finished.
  • the rigidity in the present invention is in accordance with JIS L1913: 2010 "General non-woven fabric test method” 6.7 “Rigidity and softness (JIS method and ISO method)” 6.7.4 “Gare method (JIS method)”. , The value obtained by doing as follows.
  • the longitudinal direction of the non-woven fabric is the vertical direction of the sample.
  • Attach the collected test pieces to the chucks, and fix the chucks according to the scale 1-1 / 2 "(1.5 inches 38.1 mm) on the movable arm A.
  • appropriate weights Wa, Wb, and Wc (g) are attached to the lower weight mounting holes a, b, and c (mm) from the fulcrum of the pendulum B, and the movable arm A is rotated at a constant speed. Read the scale RG (mgf) when leaving the pendulum B.
  • the weight to be attached to the weight mounting hole can be appropriately selected, but it is preferable to set the scale RG to be 4 to 6.
  • the measurement is carried out 5 times on the front and back sides for 5 points of the test piece, for a total of 50 times.
  • V From the obtained scale RG value, the value of rigidity and softness is rounded off to the second decimal place using the following formula (3). The value calculated by rounding off the first decimal place from the average value of 50 measurements is taken as the flexibility in the MD direction.
  • the spunbonded nonwoven fabric in the present invention has the thickness (t A ) from one surface of the convex portion to the other surface and the thickness (t B ) from one surface of the concave portion to the other surface in the cross section of the nonwoven fabric according to the above equation (1). It is a related spunbonded non-woven fabric.
  • the value of the above formula (1) is 0.50 or more, more preferably 0.53 or more, still more preferably 0.55 or more, the fusion between the fibers becomes strong, and when used as a dust collector pleated filter. Excellent shape retention can be obtained even under a large air volume.
  • the value of the above formula (1) is 1.00 or less, more preferably 0.90 or less, still more preferably 0.80 or less, the fusion between the fibers becomes loose and excellent air permeability can be obtained. ..
  • the distances from one surface of the convex portion to one surface of the concave portion in the cross section of the nonwoven fabric are (t C ) and (t D ) (t C ⁇ t D ), respectively, and the relationship of the above equation (2). It is a spunbonded non-woven fabric in.
  • the value of the above equation (2) is 0.65 or more, more preferably 0.66 or more, and further preferably 0.67 or more, the unevenness of the non-woven fabric becomes small, and the mountain valley shape of the pleats becomes sharp during pleating. Finished.
  • the fused portion and the non-fused portion coexist in the non-woven fabric.
  • a non-woven fabric having a good balance between breathability and rigidity can be obtained.
  • the distances from one surface of the convex portion to one surface of the concave portion (t C ), (t D ) (t C ⁇ t D ) and the values of the above equation (2) are obtained as follows. The value will be adopted.
  • the intersection of the center line in the MD direction and the center line in the CD direction is set as the center point of the fusion portion (recess).
  • t A Distance between the tops of non-fused parts (convex parts) from one surface to the other surface
  • t B Distance between the tops of fused parts (concave parts) from one surface to the other surface
  • t D One surface Distance between the top of the non-fused part (convex part) and the top of the fused part (concave part) (t C ⁇ t D )
  • Viii The ratio of t B / t A and t C / t D is calculated from the measurement result.
  • Ix The arithmetic mean values of t B / t A and t C / t D obtained from each measurement sample are calculated.
  • the basis weight of the spunbonded non-woven fabric in the present invention is preferably in the range of 150 g / m 2 or more and 300 g / m 2 or less.
  • the basis weight is 150 g / m 2 or more, the rigidity required for pleats can be obtained, which is preferable.
  • the basis weight is 300 g / m 2 or less, preferably 270 g / m 2 or less, more preferably 260 g / m 2 or less, it is possible to suppress an increase in pressure loss, which is also preferable in terms of cost.
  • the basis weight referred to here is to collect three samples with a size of 50 cm in length and 50 cm in width, measure each mass, and convert the average value (g) of the obtained values into (1 m 2) per unit area. , Obtained by rounding off the first decimal place.
  • the thickness of the spunbonded nonwoven fabric in the present invention is preferably 0.50 mm or more and 0.80 mm or less, and more preferably 0.51 mm or more and 0.78 mm or less.
  • the thickness is preferably 0.50 mm or more and 0.80 mm or less, and more preferably 0.51 mm or more and 0.78 mm or less.
  • the thickness (mm) of the spunbonded non-woven fabric shall be a value obtained by measuring by the following method.
  • a thickness gauge for example, "TECLOCK” (registered trademark) SM-114 manufactured by Teclock Co., Ltd.
  • the thickness of the non-woven fabric is measured at 10 points at equal intervals in the CD direction.
  • the thickness of the non-woven fabric (mm) is obtained by rounding off the third decimal place from the above arithmetic mean value.
  • the apparent density of the spunbonded nonwoven fabric in the present invention is preferably 0.25 g / cm 3 or more and 0.40 g / cm 3 or less.
  • the apparent density is 0.25 g / cm 3 or more and 0.40 g / cm 3 or less, the spunbonded non-woven fabric has a dense structure, and dust does not easily enter the inside, and the dust removal property is excellent.
  • a more preferable range of apparent density is 0.26 g / cm 3 or more and 0.38 g / cm 3 or less.
  • the apparent density (g / cm 3 ) of the spunbonded non-woven fabric is rounded off to the third decimal place of the value obtained by the following formula from the basis weight and thickness values of the spunbonded nonwoven fabric. The value will be adopted.
  • Apparent density (g / cm 3 ) basis weight (g / m 2 ) / thickness (mm) / 1000
  • the spunbonded non-woven fabric of the present invention is suitable as a filter medium for a dust collector pleated filter and a dust collector pleated filter because it has both a balance between dust collecting performance and air permeability, and is excellent in rigidity and pleated workability. Can be used for. Above all, pleats for large air volume pulse jet type dust collectors that require pleated shape retention that can withstand dust collection and repeated backwashing under large air volume such that the flow rate exceeds 300 L / min with the non-woven fabric alone. It can be particularly preferably used as a filter medium for a filter and a filter for a large air volume pulse jet type dust collector.
  • Such a filter medium for a dust collector pleated filter can be obtained, for example, by forming the spunbonded non-woven fabric into a pleated shape.
  • this filter medium for a dust collector pleated filter is a cylindrical dust collector filter in which the upper end and the lower end of the cylinder are fixed after the entire body is made into a cylinder, or a square type made of a metal material or a polymer resin material. It can be a panel type dust collector filter in which the end of the filter medium for the dust collector pleated filter is fixed to the inner wall of the frame material such as a round shape.
  • the pulse jet type dust collector of the present invention uses the pleated filter for the dust collector described above, and in particular, collects dust under a large air volume such that the flow rate exceeds 300 L / min and repeatedly backwashes the dust with a large air volume. It is a pulse jet type dust collector.
  • the above-mentioned dust collector filter has a flow rate of 3.0 L / min or more and 5.0 L / min or less per dust collector filter, and the pressure of the processing air applied to one dust collector filter is 0. It is used in an atmosphere of 5 MPa or more and 0.7 MPa or less.
  • the pulse jet type dust collector of the present invention includes at least one dust collector filter that filters dust collected from the dust collector target equipment, and injects compressed air into a pulse shape on the inner surface of the dust collector filter and adheres to the outer surface of the filter. It is equipped with a pulse jet mechanism that removes dust.
  • the pulse jet mechanism may be an online pulse type mechanism that can be operated while the blower motor of the dust collector is operating, or can be operated while the dust collection is interrupted. It may be an offline pulse type mechanism.
  • is the viscosity of the polymer solution
  • ⁇ 0 is the viscosity of orthochlorophenol
  • t is the falling time of the solution (seconds)
  • d is the density of the solution (g / cm 3 )
  • t 0 is the falling of orthochlorophenol.
  • Time (seconds) and d 0 represent the density of orthochlorophenol (g / cm 3 ), respectively.
  • Intrinsic viscosity (IV) 0.0242 ⁇ r +0.2634
  • ⁇ T A Distance between the tops of non-fused parts (convex parts) from one surface to the other surface
  • ⁇ t B Distance between the tops of fused parts (concave parts) from one surface to the other surface
  • ⁇ t C Distance between the top of the non-fused part (convex part) on one surface and the top of the fused part (concave part) (tC ⁇ tD)
  • Thickness of spunbonded non-woven fabric As the thickness gauge, "TECLOCK” (registered trademark) SM-114 manufactured by Teklock Co., Ltd. was used.
  • Aeration rate of spunbonded non-woven fabric (cm 3 / (cm 2 seconds)) The air volume was measured using a breathability tester "FX3300-III” manufactured by Swiss Textest.
  • Air volume CV value (%) of spunbonded non-woven fabric The air permeability CV value of the spunbonded non-woven fabric was calculated by the above method using a breathability tester "FX3300-III" manufactured by Swiss Textest Co., Ltd.
  • Pleat workability (points) of spunbonded non-woven fabric (1) The spunbonded nonwoven fabric is cut to a width of 240 mm, and while the spunbonded nonwoven fabric is heated to 150 ° C. and compressed, the distance from the ridgeline of the apex of the pleated molded product to the ridgeline of the next apex becomes 35 mm. It was pleated in this way to obtain a pleated molded product.
  • This pleated molded product is wound around a porous cylindrical core made of polypropylene by 45 threads, the ends of the pleated molded product are heat-sealed, and then caps made by injection molding are adhered to both ends of the cylindrical shape to pleat. A filter was made.
  • the total score judged by each panelist was used to evaluate the hair standing property of the spunbonded non-woven fabric. Therefore, the total score increased from a minimum of 0 to a maximum of 100, and a score of 80 or higher was judged to be acceptable.
  • FIG. 3 is a diagram for explaining a configuration of a test system for carrying out a collection performance test according to an embodiment of the present invention.
  • the test system 31 shown in FIG. 3 includes a sample holder 32 for setting the test sample M, a flow meter 33, a flow rate adjusting valve 34, a blower 35, a dust supply device 36, a switching cock 37, and a particle counter 38. Be prepared.
  • the flow meter 33, the flow rate adjusting valve 34, the blower 35, and the dust supply device 36 are connected to the sample holder 32.
  • the flow meter 33 is connected to the blower 35 via the flow rate adjusting valve 34.
  • Dust is supplied to the sample holder 32 from the dust supply device 36 by the intake air of the blower 35.
  • a particle counter 38 is connected to the sample holder 32, and the number of dusts on the upstream side and the number of dusts on the downstream side of the test sample M can be measured via the switching cock 37, respectively.
  • three 15 cm ⁇ 15 cm samples are collected from an arbitrary part of the non-woven fabric, and the collected test sample M is set in the sample holder 32.
  • the evaluation area of the test sample was 115 cm 2 .
  • a polystyrene 0.309U 10 wt% solution manufactured by Nacalai Tesque, Inc.
  • the air volume is adjusted by the flow rate adjusting valve 9 so that the filter passing speed is 3.0 m / min, and the dust concentration is 20,000 to 70,000 / (2.83 ⁇ 10 -4 m 3 (0.01 ft 3 )).
  • the number of dust upstream and the number of dust downstream of the test sample M were measured with a particle counter 38 (manufactured by Rion Co., Ltd., KC-01D) in the range of dust particle size of 0.3 to 0.5 ⁇ m. ..
  • the obtained value was substituted into the following formula, and the first decimal place of the calculated value was rounded off to obtain the collection performance (%).
  • Collection performance (%) [1- (D1 / D2)] x 100
  • D1 the number of dusts downstream (total of 3 times)
  • D2 the number of dusts upstream (total of 3 times).
  • FIG. 4 is a diagram for explaining a configuration of a test system for carrying out a pleated shape retention test according to an embodiment of the present invention.
  • the test system 41 shown in FIG. 4 includes a sample holder 42 for setting a test sample, a pressure gauge 43, a flow meter 44, a flow rate adjusting valve 45, and a blower 46.
  • the flow meter 44, the flow rate adjusting valve 45, and the blower 46 are connected to the sample holder 42.
  • air is sent by the blower 46, and air is discharged from the air outlet 47 in the direction of arrow 48.
  • the spunbonded non-woven fabric is pleated so that the mountain height is 48 mm.
  • FIG. 1 Pleated shape retention property
  • the unit vertical length 52 is 30 cm
  • the unit horizontal length 53 is 30 cm
  • the unit height 54 is set so that the pleated base material has a mountain pitch 51 of 1.3 mm and a mountain number of 23.
  • the frame material 55 is not particularly designated as long as it is a material that does not leak air from the frame material 55 at the time of measurement.
  • the created evaluation unit U is set in the sample holder 42.
  • the air volume was adjusted by the flow rate adjusting valve 45 so as to be 2.0, 4.0, 5.0, 6.0, 7.0 m 3 / min (5 points in total), and the pressure loss at each flow rate was measured.
  • the pleats do not deform and the filtration area does not decrease even under a large air volume, so that the pressure loss increases linearly as the air volume increases. Therefore, the coefficient of determination (R 2 ) is close to 1.
  • the pleats are crushed by the wind pressure as the air volume increases, the effective filtration area decreases, and the pressure loss increases, so that the coefficient of determination (R 2 ) decreases without linear increase.
  • -Polyester resin A Polyethylene terephthalate (PET) dried to a moisture content of 50 mass ppm or less, having an intrinsic viscosity (IV) of 0.65 and a melting point of 260 ° C.
  • Polyester resin B Copolymerized polyethylene terephthalate (CO-PET) dried to a moisture content of 50 mass ppm or less, having an intrinsic viscosity (IV) of 0.64, an isophthalic acid copolymerization rate of 11 mol%, and a melting point of 230 ° C.
  • a filament having a circular cross-sectional shape was spun at 4900 m / min, and the fiber arrangement was regulated and deposited on a moving net conveyor by a fiber-spreading plate, and a fiber web composed of fibers having an average single fiber diameter of 14.8 ⁇ m was collected.
  • the collected fiber webs were tentatively fused to the collected fiber webs by a calendar roll composed of a pair of flat rolls under the conditions of a temperature of 140 ° C. and a linear pressure of 50 kg / cm.
  • a calendar roll composed of a pair of flat rolls under the conditions of a temperature of 140 ° C. and a linear pressure of 50 kg / cm.
  • an embossed roll composed of a pair of engraving rolls having a fused area ratio of 10% and an area of 1.6 mm 2 per fused portion is used, and the temperatures of the upper and lower embossed rolls are both set to 200 ° C.
  • the linear pressure applied to the web was 70 kg / cm
  • a spunbonded non-woven fabric having a grain size of 260 g / m 2 was obtained.
  • Example 2 A spunbonded nonwoven fabric having a basis weight of 260 g / m 2 was obtained under the same conditions as in Example 1 except that the temperatures of the upper and lower embossed rolls were both changed from 200 ° C. to 180 ° C. and fused.
  • Example 3 The temperatures of the upper and lower embossed rolls were both changed from 200 ° C. to 180 and 210 ° C., respectively, and spunbonded non-woven fabric having a basis weight of 260 g / m 2 was obtained under the same conditions as in Example 1 except that they were fused.
  • the 1-t B / t A and t C / t D of the sheet cross-sectional thickness of the obtained spunbonded non-woven fabric were 0.70 and 0.82, respectively, the air flow rate CV value was 7.5%, and the sheet thickness was 0.
  • the rigidity in the MD direction was 61 mN at .93 mm. The results are shown in Table 1.
  • Example 4 The upper and lower embossed rolls have a fusion area ratio of 6% and an area of 1 per fusion portion from a pair of engraving rolls having a fusion area ratio of 10% and an area of 1.6 mm 2 per fusion portion.
  • a spunbonded non-woven fabric having a texture of 260 g / m2 was obtained under the same conditions as in Example 1 except that it was used in place of the embossed roll composed of a pair of engraving rolls having a size of .6 mm 2.
  • Example 5 The upper and lower embossing rolls, fused area ratio of 10%, the fusion area ratio of 18% from a pair of engraved rolls area per fused portion is 1.6 mm 2, the area per fused portion 1 A spunbonded non-woven fabric having a grain size of 260 g / m 2 was obtained under the same conditions as in Example 1 except that the embossed roll composed of a pair of engraving rolls having a size of .6 mm 2 was used.
  • Example 6 Under the same conditions as in Example 1 except that the discharge rate and spinning speed were changed so that the average single fiber diameter was 24.6 ⁇ m, while the speed of the net conveyor was changed to make the basis weight the same as in Example 1. , A spunbonded non-woven fabric having a basis weight of 260 g / m 2 was obtained. The sheet cross-sectional thicknesses of the obtained spunbonded non-woven fabric, 1-t B / t A and t C / t D , were 0.52 and 0.69, respectively, the air flow rate CV value was 10.8%, and the sheet thickness was The rigidity in the MD direction was 0.96 mm and was 53 mN. The results are shown in Table 1.
  • the characteristics of the obtained spunbonded non-woven fabric are as shown in Table 1. All of the spunbonded non-woven fabrics of Examples 1 to 6 have a rigidity of 41 mN or more in the MD direction and a ventilation amount CV value of 11.0%. Hereinafter, the collection efficiency was 50% or more, the rigidity, the air volume uniformity, and the collection efficiency were excellent, and the spunbonded non-woven fabric exhibited good characteristics.
  • the results of pleating workability, pleated shape retention, pressure loss and fluffing property were as follows: pleated workability was 87 points or more, pleated shape retention was B or more, pressure loss was 50 Pa or less, and fluffing property was 87 points or more. Both were good.
  • Example 1 In the manufacturing process of Example 1, after the sheet obtained in the temporary fusion step is wound once between the step of temporarily fusing the collected fiber web and the step of fusing using the embossed roll. Examples except that the step of cooling to room temperature and feeding this sheet to the embossed roll is provided, that is, the step of fusing using the embossed roll is not performed following the temporary fusing step. Under the same conditions as in No. 1, a spunbonded non-woven fabric having a grain size of 260 g / m 2 was obtained.
  • the upper and lower embossed rolls are made from a pair of engraving rolls having a fusion area ratio of 10% and an area of 1.6 mm 2 per fusion portion, and a fusion area ratio of 15% and one fusion portion.
  • a spunbonded non-woven fabric having a grain size of 260 g / m 2 was obtained under the same conditions as in Example 1 except that the embossed roll was replaced with an embossed roll having an area of 0.5 mm 2 and a flat roll. It was.
  • the upper and lower embossed rolls are made from a pair of engraving rolls having a fused area ratio of 10% and an area of 1.6 mm 2 per fused portion, and the fused area ratio is 3% and one fused portion.
  • a spunbonded non-woven fabric having a grain size of 260 g / m 2 was obtained under the same conditions as in Example 1 except that the embossed roll was replaced with an embossed roll composed of a pair of engraving rolls having an area of 1.6 mm 2. ..
  • the upper and lower embossed rolls are made from a pair of engraving rolls having a fused area ratio of 10% and an area of 1.6 mm 2 per fused portion, and the fused area ratio is 24% and one fused portion.
  • a spunbonded non-woven fabric having a grain size of 260 g / m 2 was obtained under the same conditions as in Example 1 except that the embossed roll was replaced with an embossed roll composed of a pair of engraving rolls having an area of 1.6 mm 2. ..
  • the sheet cross-sectional thicknesses of the obtained spunbonded non-woven fabric, 1-t B / t A and t C / t D were 0.65 and 0.55, respectively, the air flow rate CV value was 15.2%, and the sheet thickness was The rigidity and softness in the MD direction was 0.62 mm and 21 mN. The results are shown in Table 2.
  • Example 5 Under the same conditions as in Example 1 except that the discharge rate and spinning speed were changed so that the average single fiber diameter was 29.2 ⁇ m, while the speed of the net conveyor was changed to make the basis weight the same as in Example 1. , A spunbonded non-woven fabric having a basis weight of 260 g / m 2 was obtained. The sheet cross-sectional thicknesses of the obtained spunbonded non-woven fabric, 1-t B / t A and t C / t D , were 0.45 and 0.68, respectively, the air flow rate CV value was 15.6%, and the sheet thickness was It was 1.01 mm and the rigidity in the MD direction was 81 mN. The results are shown in Table 2.
  • Example 6 Under the same conditions as in Example 1 except that the discharge rate and spinning speed were changed so that the average single fiber diameter was 11.2 ⁇ m, while the speed of the net conveyor was changed to make the basis weight the same as in Example 1. , A spunbonded non-woven fabric having a basis weight of 260 g / m 2 was obtained. The sheet cross-sectional thicknesses of the obtained spunbonded non-woven fabric, 1-t B / t A and t C / t D , were 0.70 and 0.69, respectively, the air flow rate CV value was 7.0%, and the sheet thickness was The rigidity in the MD direction was 0.53 mm and 36 mN. The results are shown in Table 2.
  • polyester-based resin A and the polyester-based resin B were melted at temperatures of 295 ° C. and 280 ° C., respectively.
  • polyester resin A is used as a core component
  • polyester resin B is used as a sheath component
  • the base temperature is 300 ° C.
  • a filament having a circular cross section is spun at a speed of 4400 m / min, the filament is made to collide with a metal collision plate installed at an air soccer outlet, and the fiber is charged and opened by friction charging, and the average single fiber diameter is 14.8 ⁇ m.
  • a fiber web of fibers was collected on a moving net conveyor.
  • the temperature of the upper and lower embossed rolls was set to 205 ° C. by the embossed roll consisting of a pair of engraving rolls having a fused area ratio of 18% and an area of 0.7 mm 2 per fused portion, and the fiber web was formed.
  • the fibers were fused under the condition that the linear pressure was 70 kg / cm to obtain a spunbonded non-woven fabric having a grain size of 260 g / m 2.
  • Comparative Example 2 The characteristics of the obtained non-woven fabric are as shown in Table 2, but in Comparative Example 1, the sheet cross-sectional thickness (1-t B / t A ) was low, and the fluffing property and the pleated shape retention property were inferior. It was. In Comparative Examples 2, 3, 4, and 7, the sheet cross-sectional thickness (t C / t D ) was low and the pleating workability was inferior, and in Comparative Examples 2, 3, and 7, the pleated shape retention was also inferior. .. Comparative Examples 2, 4, 5 and 7 had a high air volume CV value, and Comparative Examples 4, 5 and 7 had a poor collection efficiency. In the case where fusion was performed with the single-sided engraving roll of Comparative Example 2, the rigidity and softness were low, and the pleating workability was inferior.
  • the spunbonded non-woven fabric, the filter medium for the dust collector pleated filter, the dust collector pleated filter, and the large air volume pulse jet type dust collector of the present invention balance the dust collecting performance and the air permeability, and retain the pleated shape under a large air volume. It can be preferably applied as having high rigidity with excellent pleating workability, but the applicable range is not limited to this.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Filtering Materials (AREA)
  • Nonwoven Fabrics (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

本発明のスパンボンド不織布は、高融点成分と低融点成分とからなる熱可塑性連続フィラメントから構成されるスパンボンド不織布であって、当該スパンボンド不織布の通気量CV値が15%以下、MD方向の剛軟度が40mN以上80mN以下であり、不織布断面において、非融着の凸部の一表面から他表面までの厚さtと、融着されてなる凹部の一表面から他表面までの厚さtと、凸部の一表面から凹部の一表面までの距離をそれぞれt、t(t<t)とし、下記式(1)、(2)で表される関係にある。 0.5≦1-t/t<1.0 ・・・(1) 0.65<t/t<1.0 ・・・(2)

Description

スパンボンド不織布、集塵機プリーツフィルター用濾材、集塵機プリーツフィルターおよび大風量パルスジェットタイプ集塵機
 本発明は、剛性と通気性に優れたスパンボンド不織布、集塵機プリーツフィルター用濾材、集塵機プリーツフィルターおよび大風量パルスジェットタイプ集塵機に関するものである。
 従来、粉塵の発生する作業環境に対し、粉塵の除去および回収を目的とする集塵機が用いられており、中でもフィルターの交換頻度を低減できるパルスジェットタイプの集塵機が知られている。このパルスジェットタイプの集塵機ではフィルターの外側が濾過面となり、このフィルターがフィルターゲージに装着されて運転される。パルスジェットタイプの集塵機は、フィルターが一定圧力に達した際にフィルター内部に圧縮空気を送る、逆洗を行うことが出来る機構を有しており、逆洗によってフィルターの外側表面に堆積した粉塵を払い落とし、繰り返し使用される。この集塵機のフィルターは、プリーツ状に折りたたまれた形状で使用されることが知られており、プリーツ形状とすることにより濾過面積を大幅に向上させ、圧力損失を低減させたり、捕集効率を高めたりすることを可能としている。
 このような集塵機のフィルター用の材料として使用される不織布の中でも、特にスパンボンド不織布は、短繊維不織布に対してリントフリー性に優れ、強度的性能も優れたものを得やすいため、家庭や事務所用の空調機や産業用の粉塵捕集機等のフィルターとして使用されている。
 集塵機のフィルターに使用されるスパンボンド不織布には粉塵の捕集性能と通気性を両立させる必要があり、これまでに種々の不織布が提案されている。例えば、特許文献1や特許文献2には、熱可塑性連続フィラメントをあらかじめ一対のフラットロールで加熱融着した後に一対の彫刻が施されたエンボスロールで部分的に融着した不織布が開示されている。また、特許文献3には、高融点成分の熱可塑性連続フィラメントと低融点成分の熱可塑性連続フィラメントとを混繊させた不織布や、高融点成分と低融点成分とからなる多葉型複合繊維からなる不織布が開示されている。
特許第5422874号公報 特許第5298803号公報 特許第4522671号公報
 前記のパルスジェットタイプの集塵機で、化学工場のように微粉体の粉塵を含んだ大量の空気を1分間あたり300~1500Lで処理をする必要があるような場所では、大風量パルスジェットタイプ集塵機が使用されている。このような大風量パルスジェットタイプ集塵機に使用されるフィルターには大風量の空気(気体)の通過と、逆洗とが繰り返し行われるため、剥離等の懸念があるPTFE膜などの基材は貼り合わせず、スパンボンド不織布単体がフィルター用スパンボンド不織布として使用されている。また、使用されるフィルター用スパンボンド不織布には大風量下での粉塵捕集と、繰り返し行われる逆洗とに耐えるためのプリーツ形状保持性を有した剛性が必要である。ところが、従来の集塵除去に使用されるフィルター用スパンボンド不織布では、粉塵捕集性能と通気性のバランスを両立しながら、大風量下でのプリーツ形状保持性とプリーツ加工性に十分な剛性とを有するものが得られていない。すなわち捕集性能を向上させようと、繊維同士の融着を強固にすると目開きが小さくなり、通気性の低下につながり、一方で通気性を向上させようと、繊維同士の融着を緩くすると目開きが大きくなり、粉塵の捕集性能が低下してしまうだけでなく、剛性の低下により大風量下ではプリーツ形状が保持できなくなるともに、毛羽が発生し、外観上も問題となる、という課題があった。
 例えば、特許文献1や2に開示された技術では十分な通気性と剛性とを両立することが困難であった。
 一方、特許文献3では繊維同士の融着が弱く、プリーツ加工時に融着部の破断により不織布の剛性が低下し、フィルターとして使用した場合に大風量下ではプリーツの形状が保持できず、通気性が低下するという課題があった。
 そこで本発明の目的は、上記課題を鑑み、粉塵の捕集性能と通気性のバランスを両立しながら、かつ大風量下でのプリーツ形状保持性とプリーツ加工性に優れた高い剛性とを有したスパンボンド不織布、集塵機プリーツフィルター用濾材、集塵機プリーツフィルターおよび大風量パルスジェットタイプ集塵機を提供することにある。
 本発明者らは、上記目的を達成するべく鋭意検討を重ねた結果、部分的に融着した熱可塑性連続フィラメントからなる不織布の通気量CV値および不織布の断面より得られる凸部の厚さと凹部の厚さの比、凸部の表面から凹部の表面までの距離の比が特定の値の範囲である不織布により、粉塵の捕集性能と通気性のバランスを両立しつつ、プリーツ加工するのに十分な剛性を有するスパンボンド不織布が得られるという知見を得た。
 本発明は、これら知見に基づいて完成に至ったものであり、本発明によれば、以下の発明が提供される。
 すなわち、本発明のスパンボンド不織布は、高融点成分と低融点成分とからなる熱可塑性連続フィラメントから構成され、部分的に融着されてなるスパンボンド不織布であって、当該スパンボンド不織布の通気量CV値が15%以下、MD方向の剛軟度が40mN以上80mN以下であり、非融着の凸部と、融着されてなる凹部とを有し、不織布断面において、前記凸部の一表面から他表面までの厚さtと、前記凹部の一表面から他表面までの厚さtと、前記凸部の一表面から前記凹部の一表面までの距離をそれぞれt、t(t<t)とし、下記式(1)、(2)で表される関係にある。
 0.5≦1-t/t<1.0   ・・・(1)
 0.65<t/t<1.0    ・・・(2)
 本発明のスパンボンド不織布の好ましい態様によれば、前記凹部の融着面積の割合が5%以上20%以下である。
 本発明のスパンボンド不織布の好ましい態様によれば、当該スパンボンド不織布を構成する熱可塑性連続フィラメントの平均単繊維直径が12.0μm以上26.0μm以下である。
 本発明のスパンボンド不織布は集塵機プリーツフィルター用濾材に使用される。
 本発明の集塵機プリーツフィルター用濾材は集塵機プリーツフィルターに使用される。
 本発明の集塵機プリーツフィルターは大風量パルスジェットタイプ集塵機に使用される。
 本発明によれば、粉塵の捕集性能と通気性とのバランスに優れ、大風量下でのプリーツ形状保持性とプリーツ加工性に優れた高い剛性とを有するスパンボンド不織布が得られる。
図1は、本発明の一実施の形態にかかるスパンボンド不織布の断面写真である。 図2は、本発明の集塵機プリーツフィルター用濾材の一例を示す概要斜視図である。 図3は、本発明の実施例にかかる捕集性能試験を実施する試験システムの構成を説明するための図である。 図4は、本発明の実施例にかかるプリーツ形状保持性試験を実施する試験システムの構成を説明するための図である。 図5は、本発明の実施例にかかるプリーツ形状保持性試験における測定ユニットを説明するための図である。
 以下、本発明を実施するための形態を詳細に説明する。なお、以下の実施の形態により本発明が限定されるものではない。
 本発明のスパンボンド不織布は、熱可塑性連続フィラメントからなる不織布である。熱可塑性連続フィラメントは、高融点成分と低融点成分とからなる。図1は、本発明の一実施の形態にかかるスパンボンド不織布の断面写真である。なお、図1に示すスパンボンド不織布は、使用時、上から下に向かって通気する。スパンボンド不織布は、部分的に融着されたものであって、前記不織布の通気量CV値が15%以下、MD方向の剛軟度が40mN以上80mN以下である。スパンボンド不織布は、非融着の凸部11(非融着部)と、融着されてなる凹部12(融着部)とを有し、不織布断面において、凸部の一表面から他表面までの厚さ(t)と、凹部の一表面から他表面までの厚さ(t)と、凸部の一表面から凹部の一表面までの距離をそれぞれ(t)、(t)(t<t)とし、下記式の関係にあるスパンボンド不織布である。
 0.50≦1-t/t<1.0   ・・・(1)
 0.65<t/t<1.0     ・・・(2)
 ここで、本発明において、MD方向とはスパンボンド不織布製造時のシート搬送方向、すなわち不織布ロールにおける巻き取り方向を指すものであり、後述するCD方向はシート搬送方向、すなわち不織布ロールにおける巻き取り方向に対して垂直に交差する方向を指すものである。スパンボンド不織布が切断された場合などでロール状態にない場合は、以下の手順によってMD方向、CD方向を決定することとする。
(a) スパンボンド不織布の面内において、任意の1方向を定め、その方向に沿って、長さ38.1mm、幅25.4mmの試験片を採取する。
(b) 採取した方向から30度、60度、90度回転させた方向においても、同様に長さ38.1mm、幅25.4mmの試験片を採取する。
(c) 各方向の試験片について後述するスパンボンド不織布の剛軟度の測定方法に基づいて、各試験片の剛軟度を測定する。
(d) 測定により得られた値が最も高い方向をそのスパンボンド不織布のMD方向とし、これに直交する方向をCD方向とする。
 また、本発明のスパンボンド不織布は、フィルター、例えば集塵機プリーツフィルター用濾材に使用される。図2は、本発明の集塵機プリーツフィルター用濾材の一例を示す概要斜視図である。図2に示す集塵機プリーツフィルター用濾材21は、スパンボンド不織布を折り返してなる山部22および谷部23を有する。集塵機プリーツフィルター用濾材などからMD方向、CD方向を決定するときにおいて、図2に例示するような集塵機プリーツフィルター用濾材21の場合には、山部22の稜線と平行な方向(破線矢印25)がCD方向、CD方向と直交する方向(破線矢印24)がMD方向であるとする。
 (熱可塑性連続フィラメント)
 本発明のスパンボンド不織布を構成する熱可塑性連続フィラメントの原料となる熱可塑性樹脂としては、特に、ポリエステルが好ましく用いられる。ポリエステルは、酸成分とアルコール成分とをモノマーとしてなる高分子重合体である。酸成分としては、フタル酸(オルト体)、イソフタル酸、テレフタル酸等の芳香族カルボン酸、アジピン酸やセバシン酸等の脂肪族ジカルボン酸、およびシクロヘキサンカルボン酸等の脂環族ジカルボン酸等を用いることができる。また、アルコール成分としては、エチレングリコール、ジエチレングリコールおよびポリエチレングリコール等を用いることができる。
 また、ポリエステルの例としては、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンナフタレート、ポリ乳酸およびポリブチレンサクシネート等が挙げられる。後述する高融点重合体として用いられるポリエステルとしては、融点が高く耐熱性に優れ、かつ剛性にも優れたPETが最も好ましく用いられる。
 また、これらのポリエステル原料には、本発明の効果を損なわない範囲で、結晶核剤、艶消し剤、顔料、防カビ剤、抗菌剤、難燃剤、金属酸化物、脂肪族ビスアミドおよび/または脂肪族モノアミド、ならびに親水剤等の添加材を添加することができる。中でも、酸化チタン等の金属酸化物は、繊維の表面摩擦を低減し繊維同士の融着を防ぐことにより紡糸性を向上し、また不織布の熱ロールによる融着成形の際、熱伝導性を増すことにより不織布の融着性を向上させる効果がある。また、エチレンビスステアリン酸アミド等の脂肪族ビスアミドおよび/またはアルキル置換型の脂肪族モノアミドは、熱ロールと不織布ウェブ間の離型性を高め、搬送性を向上させる効果がある。
 次に、本発明のスパンボンド不織布を構成する熱可塑性連続フィラメントは、高融点成分と低融点成分からなる。熱可塑性連続フィラメントは、高融点成分であるポリエステル系高融点重合体の周りに、そのポリエステル系高融点重合体の融点に対して、10℃以上140℃以下低い融点を有する低融点成分であるポリエステル系低融点重合体を配した複合型フィラメントである態様が好ましい。このようにすることで、融着によりスパンボンド不織布を形成し使用した際、スパンボンド不織布を構成する複合型ポリエステル繊維(フィラメント)同士が強固に融着するため、スパンボンド不織布は機械的強度に優れ、大風量下での粉塵処理にも十分耐えることができる。
 なお、本発明において、熱可塑性樹脂の融点は、示差走査型熱量計(例えば、株式会社パーキンエルマージャパン社製「DSC-2」型)を用い、昇温速度20℃/分、測定温度範囲30℃から300℃の条件で測定し、得られた融解吸熱曲線において極値を与える温度を当該熱可塑性樹脂の融点とする。また、示差走査型熱量計において融解吸熱曲線が極値を示さない樹脂については、ホットプレート上で加熱し、顕微鏡観察により樹脂が溶融した温度を融点とする。
 熱可塑性樹脂がポリエステルの場合、対となるポリエステル系高融点重合体とポリエステル系低融点重合体との組み合わせ(以下、ポリエステル系高融点重合体/ポリエステル系低融点重合体の順に記載することがある)としては、例えば、PET/PBT、PET/PTT、PET/ポリ乳酸、およびPET/共重合PET等の組み合わせを挙げることができ、これらの中でも、紡糸性に優れることからPET/共重合PETの組み合わせが好ましく用いられる。また、共重合PETの共重合成分としては、特に紡糸性に優れることから、イソフタル酸共重合PETが好ましく用いられる。
 複合型フィラメントの複合形態については、例えば、同心芯鞘型、偏心芯鞘型および海島型等が挙げられ、なかでも、フィラメント同士を均一かつ強固に融着させることができることから同心芯鞘型のものが好ましい。さらにその複合型フィラメントの断面形状としては、円形断面、扁平断面、多角形断面、多葉断面および中空断面等の形状が挙げられる。なかでも、フィラメントの断面形状としては円形断面の形状のものを用いることが好ましい態様である。
 ところで、前記の複合型フィラメントの形態には、例えば、ポリエステル系高融点重合体からなる繊維とポリエステル系低融点重合体からなる繊維とを混繊させる方法もあるが、混繊させる方法の場合、均一な融着が難しく、例えば、ポリエステル系高融点重合体からなる繊維が密集しているところでは融着が弱くなり、機械的強度や剛性が劣り、スパンボンド不織布として適さないものとなる。一方、ポリエステル系高融点重合体からなる繊維に対し、低融点重合体を浸漬やスプレー等で付与する方法もあるが、いずれも表層や厚さ方向で均一な付与が難しく、機械的強度や剛性が劣り、スパンボンド不織布として好ましくないものとなる。
 本発明におけるポリエステル系低融点重合体の融点は、ポリエステル系高融点重合体の融点に対し、10℃以上140℃以下低いことが好ましい。10℃以上、好ましくは20℃以上、より好ましくは30℃以上低くすることで、スパンボンド不織布において適度な融着性を得ることができる。一方、ポリエステル系低融点重合体の融点は、ポリエステル系高融点重合体の融点より140℃以下、好ましくは120℃以下、より好ましくは100℃以下低くすることで、スパンボンド不織布の耐熱性の低下を抑制することができる。
 なお、ポリエステル系高融点重合体の融点は、200℃以上320℃以下の範囲であることが好ましい。ポリエステル系高融点重合体の融点を好ましくは200℃以上、より好ましくは210℃以上、さらに好ましくは220℃以上とすることにより、耐熱性に優れるフィルターを得ることができる。一方、ポリエステル系高融点重合体の融点を好ましくは320℃以下、より好ましくは300℃以下、さらに好ましくは280℃以下とすることにより、不織布製造時に溶融するための熱エネルギーを多大に消費し生産性が低下することを抑制することができる。
 また、ポリエステル系低融点重合体の融点は、160℃以上250℃以下の範囲であることが好ましい。ポリエステル系低融点重合体の融点を好ましくは160℃以上、より好ましくは170℃以上、さらに好ましくは180℃以上とすることにより、プリーツ加工時の熱セット等、プリーツフィルター製造時に熱が加わる工程を通過しても形状保持性に優れる。一方、ポリエステル系低融点重合体の融点を好ましくは250℃以下、より好ましくは240℃以下とすることにより、不織布製造時の融着性に優れ、機械的強度に優れるフィルターを得ることができる。
 また、ポリエステル系高融点重合体とポリエステル系低融点重合体との含有比率は、質量比で90:10~60:40の範囲であることが好ましく、85:15~70:30の範囲がより好ましい態様である。ポリエステル系高融点重合体を60質量%以上90質量%以下とすることにより、スパンボンド不織布の剛性と耐熱性を優れたものとすることができる。一方、低融点ポリエステルを10質量%以上40質量%以下とすることにより、融着によりスパンボンド不織布を形成し使用した際、スパンボンド不織布を構成する複合型ポリエステル繊維(フィラメント)同士を強固に融着でき、機械強度に優れ、大風量下での粉塵捕集に十分耐えることができる。
 複合型ポリエステル繊維の複合形態についても、例えば、同心芯鞘型、偏心芯鞘型および海島型等が挙げられ、なかでも、フィラメント同士を均一かつ強固に融着させることができることから複合形態については同心芯鞘型のものが好ましい。さらにそのフィラメント(単繊維)の断面形状としては、円形断面、扁平断面、多角形断面、多葉断面および中空断面等の形状が挙げられる。なかでも、フィラメント(単繊維)の断面形状としては円形断面の形状のものを用いることが好ましい態様である。
 本発明のスパンボンド不織布を構成する熱可塑性連続フィラメントの平均単繊維直径は、12.0μm以上26.0μm以下の範囲であることが好ましい。熱可塑性連続フィラメントの平均単繊維直径を12.0μm以上、好ましくは13.0μm以上、より好ましくは14.0μm以上とすることで、スパンボンド不織布の通気性を向上させ、圧力損失を低減させることができる。また、熱可塑性連続フィラメントを形成する際に糸切れ回数を低下させ、生産時の安定性を向上させることもできる。一方、熱可塑性連続フィラメントの平均単繊維直径が26.0μm以下、好ましくは25.0μm以下、より好ましくは24.0μm以下とすることで、スパンボンド不織布の均一性を向上させ、不織布表面を緻密なものとすることができ、ダストを表層で濾過しやすくするなど、捕集性能を向上させることができる。
 なお、本発明において、スパンボンド不織布の平均単繊維直径(μm)は、以下の方法によって求められる値を採用することとする。
(i)スパンボンド不織布からランダムに小片サンプル10個を採取する。
(ii)採取した小片サンプルの表面を走査型電子顕微鏡等で500~2000倍の範囲で繊維の太さを計測することが可能な写真を撮影する。
(iii)各サンプルから10本ずつ、計100本の繊維を任意に選び出して、その太さを測定する。繊維は断面が円形と仮定し、太さを単繊維直径とする。
(iv)それらの算術平均値の小数点以下第二位を四捨五入して算出し、平均単繊維直径とした。
 (スパンボンド不織布の製造方法)
 次に、本発明のスパンボンド不織布の製造方法について説明する。本発明のスパンボンド不織布は、下記(a)~(c)の工程を順次施すことによって製造される。
(a)熱可塑性重合体を紡糸口金から溶融押出した後、これをエアサッカーにより牽引、延伸して熱可塑性連続フィラメントを得る工程。
(b)得られたフィラメントを開繊し、移動するネットコンベアー上に開繊板により繊維配列を規制し堆積させ繊維ウェブを形成する工程。
(c)得られた繊維ウェブに部分的融着を施す工程。
 以下に、各工程について、さらに詳細を説明する。
 (a)熱可塑性連続フィラメント形成工程
 まず、熱可塑性重合体を紡糸口金から溶融押出する。特に、熱可塑性連続フィラメントとして、ポリエステル系高融点重合体の周りに当該ポリエステル系高融点重合体の融点よりも低い融点を有するポリエステル系低融点重合体を配した複合型フィラメントを用いる場合には、ポリエステル系高融点重合体と、ポリエステル系低融点重合体を、それぞれ融点以上融点+70℃以下で溶融し、ポリエステル系高融点重合体の周りに、そのポリエステル系高融点重合体の融点に対して、10℃以上140℃以下低い融点を有するポリエステル系低融点重合体を配した複合型フィラメントとして、口金温度が融点以上融点+70℃以下の紡糸口金で細孔から紡出した後、エアサッカーにより紡糸速度4000m/分以上6000m/分以下で牽引、延伸して円形断面形状のフィラメントを紡糸する。
 (b)繊維ウェブ形成工程
 本発明の不織布は、いわゆるスパンボンド不織布であり、紡糸した熱可塑性連続フィラメントをエジェクターにて吸引し、エジェクターの下部にスリット状を有する開繊板から噴射して移動するネットコンベアー上に堆積させ繊維ウェブを得る工程を有する。
 なお、複合型ポリエステル繊維を用いた場合であっても、前記のフィラメント(長繊維)からなるスパンボンド不織布であることが重要である。このようにすることで、非連続の繊維で構成された短繊維不織布の場合に比べて、剛性や機械的強度を高めることができ、スパンボンド不織布として好ましいものとすることができる。
 本発明のスパンボンド不織布の製造方法では、ネットコンベアー上に捕集した繊維ウェブを、仮融着することも好ましい態様である。仮融着は、捕集した繊維ウェブを一対のフラットロールにより融着したり、ネットコンベアー上にフラットロールを設置し、ネットコンベアーと当該フラットロールとの間で融着したりする方法が好ましく用いられる。
 仮融着するための融着の温度は、ポリエステル系低融点重合体の融点に対して70℃以上120℃以下低い温度であることが好ましい。このように温度設定することにより、繊維同士を過度に融着させることなく、搬送性を改善することができる。
 また、仮融着するための線圧は30kg/cm以上70kg/cm以下であることが好ましい。仮融着するための線圧は30kg/cm以上、より好ましくは40kg/cm以上とすることで、繊維ウェブを次工程に搬送する上で必要な機械的強度を付与することができる。仮融着するための線圧は70kg/cm以下、より好ましくは60kg/cm以下とすることで、繊維同士の過度な融着を防ぐことができる。
 (c)部分的融着工程
 本発明のスパンボンド不織布は部分的に融着されたものであるが、部分的に融着する方法は特に限定されるものではない。ここで、スパンボンド不織布の融着されている部分を融着部、それ以外の融着されていない部分を非融着部と称する。熱エンボスロールによる融着、あるいは超音波発振装置とエンボスロールとの組み合わせによる融着が好ましいものである。特に熱エンボスロールによる融着は、不織布の強度を向上させる点から最も好ましいものである。部分的融着工程は前記ウェブ形成工程から続けて加工されることが好ましい。前記ウェブ形成工程から続けて加工することで、融着部の密度を高くし、スパンボンド不織布としてプリーツ成形性に優れた強度の不織布を得ることができる。熱エンボスロールによる融着の温度は、不織布の繊維表面に存在する最も融点の低いポリマーの融点に対して5℃以上60℃以下低いことが好ましく、10℃以上50℃以下低いことがより好ましい。熱エンボスロールによる不織布の繊維表面に存在する最も融点の低いポリマーの融点の温度差を5℃以上、より好ましくは10℃以上とすることで、過度の融着を防ぐことができる。一方、融点の温度差を60℃以下、より好ましくは50℃以下とすることによって、不織布内において均一な融着を行うことができる。
 また、融着するための線圧は30kg/cm以上90kg/cm以下であることが好ましい。融着するための線圧を30kg/cm以上、より好ましくは40kg/cm以上とすることでスパンボンド不織布として用いた際にプリーツ加工性に必要な強度を不織布に付与することができる。融着するための線圧を90kg/cm以下、より好ましくは80kg/cm以下とすることで、過度の融着を防ぐことができる。
 本発明のスパンボンド不織布の部分的な融着の融着面積率は、融着部(凹部)の不織布全体の面積に占める割合のことであり、不織布全面積に対して5%以上20%以下が好ましい範囲である。前記融着面積率が5%以上、より好ましくは6%以上、さらに好ましくは8%以上であれば、不織布の機械的強度が十分に得られ、さらに表面が毛羽立ちやすくなることがない。一方、融着面積率が20%以下、より好ましくは18%以下、さらに好ましくは16%以下であれば、繊維間の空隙が少なくなって圧力損失が上昇し、捕集性能が低下することもない。
 なお、スパンボンド不織布の融着面積率の測定には、デジタルマイクロスコープ(例えば、株式会社キーエンス製「VHX-5000」)を用い、スパンボンド不織布の任意の部分から、マイクロスコープの倍率20倍で不織布のMD方向およびCD方向に平行な1.0cm×1.0cmの矩形枠を100箇所とり、100箇所それぞれについて当該面積に対する矩形枠内の融着部の面積を測定して平均値をとり、百分率にして小数点以下第一位を四捨五入したものを融着面積率(%)とする。なお、百分率として表記しない場合は、前記矩形枠内の融着部の面積(cm)を矩形枠の面積である1.0cmで除した後、小数点以下第三位を四捨五入することで融着面積率を算出することができる。
 融着部はくぼみを形成しており、不織布を構成する熱可塑性連続フィラメント同士が熱と圧力とによって融着して形成されている。すなわち、他の部分に比べて熱可塑性連続フィラメントが融着して凝集している部分が融着部である。融着する方法として熱エンボスロールによる融着を採用した場合には、エンボスロールの凸部により熱可塑性連続フィラメントが融着して凝集している部分が融着部となる。例えば、上側または下側のみに所定のパターンの凹凸を有するロールを用いて、他のロールは凹凸の無いフラットロールを用いる場合においては、融着部とは凹凸を有するロールの凸部とフラットロールとで融着されて不織布の熱可塑性連続フィラメントが凝集された部分をいう。また、例えば、表面に複数の平行に配置された直線的溝が形成されている一対の上側ロールと下側ロールとからなり、その上側ロールの溝とその下側ロールの溝とがある角度で交叉するように設けられているエンボスロールを用いる場合、融着部とは上側ロールの凸部と下側ロールの凸部とで融着されて不織布の熱可塑性連続フィラメントが凝集された部分をいう。この場合、上側の凸部と下側の凹部あるいは上側の凹部と下側の凸部とで融着される部分はここでいう融着部には含まれない。
 融着部の1個あたりの面積としては、0.3mm以上5.0mm以下が好ましい。0.3mm以上とすることで、スパンボンド不織布として十分な機械的強度が得られ、さらに不織布表面の毛羽立ちを押さえることができる。5.0mm以下とすることで、スパンボンド不織布としての機械的強度に加え通気性が保持することができ、十分な捕集性能が得られる。
 本発明のスパンボンド不織布における融着部の形状は特に規定されるものではなく、上側または下側のみに所定のパターンの凹凸を有するロールを用いて、他のロールは凹凸の無いフラットロールを用いる場合や表面に複数の平行に配置された直線的溝が形成されている一対の上側ロールと下側ロールとからなり、その上側ロールの溝とその下側ロールの溝とがある角度で交叉するように設けられているエンボスロールにおいて、上側ロールの凸部と下側ロールの凸部とで融着された場合においても、その融着部の形状は円形、三角形、四角形、平行四辺形、楕円形、菱形などでもよい。これらの融着部分の配列は、特に規定されるものではなく、等間隔に規則的に配されたもの、ランダムに配されたもの、異なる形状が混在したものでもよい。なかでも、不織布の均一性の点から、融着部分が等間隔に配されるものが好ましい。さらに不織布を剥離することなく部分的な融着をする点で、表面に複数の平行に配置された直線的溝が形成されている一対の上側ロールと下側ロールとからなり、その上側ロールの溝とその下側ロールの溝とがある角度で交叉するように設けられているエンボスロールを用い、上側ロールの凸部と下側ロールの凸部とで融着され形成される平行四辺形の融着部が好ましい。
 (スパンボンド不織布)
 本発明におけるスパンボンド不織布の通気量は、10(cm/(cm・秒))以上130(cm/(cm・秒))以下であることが好ましい。通気量が10(cm/(cm・秒))以上、好ましくは、13(cm/(cm・秒))以上であると、圧力損失が上昇するのを抑制できる。また、通気量が130(cm/(cm・秒))以下、好ましくは、105(cm/(cm・秒))以下であると、ダストが内部に滞留しにくいことによりフィルターとして捕集性能が良好である。
 なお、本発明において、スパンボンド不織布の通気量(cm/(cm・秒))は、以下のとおりJIS L1913:2010「一般不織布試験方法」6.8「通気性(JIS法)」の6.8.1「フラジール形法」に基づいて測定される値を採用することとする。
(i)スパンボンド不織布のCD方向で等間隔に縦150mm×横150mmの試験片を10枚採取する。
(ii)試験機の円筒の一端に試験片を取り付けた後、下限抵抗器によって傾斜型気圧計が125Paの圧力を示すように、吸込みファン及び空気孔を調整し、その時の垂直型気圧計の示す圧力を測る。
(iii)測定した圧力と使用した空気孔の種類とから、試験機に付属の換算表によって試験片を通過する空気量(cm/(cm・秒))を求める。
(iv)得られた10点の試験片の通気量の算術平均値を、小数点以下第一位を四捨五入して、スパンボンド不織布の通気量(cm/(cm・秒))を算出する。
 本発明のスパンボンド不織布は、通気量CV値が15%以下である。通気量CV値が15%以下、好ましくは14%以下、さらに好ましくは13%以下であれば、通気量の均一性向上し、スパンボンド不織布をフィルターとして使用した場合に、フィルターからの粉塵漏れを抑制することができ、捕集効率を向上させることができる。一方、スパンボンド不織布の通気量を一定量確保し、圧力損失を小さくすることでフィルターの寿命を長くしやすくするため、通気量CV値が1%以上であることがより好ましい。
 本発明において、スパンボンド不織布の通気量CV値(%)は、次のようにして測定されて得られる値を採用することとする。
(i)スパンボンド不織布からMD方向、CD方向に150mm×150mmの小片をそれぞれ10個ずつ、合計50個採取する。
(ii)各小片の通気量(cm/(cm・秒))をそれぞれ測定する。
(iii)(ii)で得られた値から平均値(Aave)と標準偏差(Asdv)を求める。
(iv)(i)~(iii)の結果を基に、以下の式により通気量CV値(%)を計算し、小数点以下第一位を四捨五入する。
 通気量CV値(%)=(Asdv)/(Aave)×100
 本発明のスパンボンド不織布は、不織布のMD方向で40mN以上80mN以下の剛軟度を有する。剛軟度が40mN以上、より好ましくは45mN以上、さらに好ましくは50mN以上であれば、不織布の強度や形態保持性を保ちつつプリーツ加工ができる。一方、80mN以下、より好ましくは75mN以下、さらに好ましくは70mN以下であれば、プリーツ加工時の折たたみ抵抗を緩和し、プリーツの山谷型形状がシャープに仕上がる。
 本発明における剛軟度は、JIS L1913:2010「一般不織布試験方法」6.7「剛軟度(JIS法及びISO法)」の6.7.4「ガーレ法(JIS法)」に準じて、以下のようにされて得られた値とする。
(i)試料から長さ38.1mm(有効試料長L=25.4mm)、幅d=25.4mmの試験片を試料の任意の5点から採取する。ここで本発明においては、不織布の長手方向を試料のたて方向とする。
(ii)採取した試験片をそれぞれチャックに取り付け、可動アームA上の目盛り1-1/2”(1.5インチ=38.1mm)に合わせてチャックを固定する。この場合、試料長の1/2”(0.5インチ=12.7mm)はチャックに1/4”(0.25インチ=6.35mm)、試料の自由端にて振子の先端に1/4”(0.25インチ=6.35mm)がかかるため測定にかかる有効試料長Lは試験片長さから1/2”(0.5インチ=12.7mm)差し引いたものとなる。
(iii)次に振り子Bの支点から下部のおもり取付孔a、b、c(mm)に適当なおもりWa、Wb、Wc(g)を取り付けて可動アームAを定速回転させ、試験片が振り子Bから離れるときの目盛りRG(mgf)を読む。目盛りは小数点以下第一位の桁で読む。ここでおもり取付孔に取り付けるおもりは適宜選択できるものであるが、目盛りRGが4~6になるよう設定するのが好ましい。
(iv)測定は試験片5点につき表裏各5回、合計50回実施する。
(v)得られた目盛りRGの値から下記式(3)を用いて剛軟度の値を小数点以下第二位で四捨五入してそれぞれ求める。50回の測定の平均値を、小数点以下第一位を四捨五入して算出した値をMD方向の剛軟度とする。
Figure JPOXMLDOC01-appb-M000001
 本発明におけるスパンボンド不織布は不織布断面における凸部の一表面から他表面までの厚さ(t)と、凹部の一表面から他表面までの厚さ(t)が上式(1)の関係にあるスパンボンド不織布である。上式(1)の値が0.50以上、より好ましくは0.53以上、さらに好ましくは0.55以上であれば、繊維同士の融着が強固になり、集塵機プリーツフィルターとして使用した場合に大風量下でも優れた形状保持性が得られる。一方、上式(1)の値が1.00以下、より好ましくは0.90以下、さらに好ましくは0.80以下であれば、繊維同士の融着が緩くなり、優れた通気性が得られる。
 本発明におけるスパンボンド不織布は不織布断面における凸部の一表面から凹部の一表面までの距離をそれぞれ(t)、(t)(t<t)とし、上式(2)の関係にあるスパンボンド不織布である。上式(2)の値が0.65以上、より好ましくは0.66以上、さらに好ましくは0.67以上あれば、不織布の凹凸が小さくなり、プリーツ加工時、プリーツの山谷型形状がシャープに仕上がる。一方、上式(2)の値が1.00以下、より好ましくは0.90以下、さらに好ましくは0.80以下であれば、不織布内に融着部と非融着部とが共存し、通気性と剛性とのバランスがとれた不織布が得られる。
 ここで本発明における、本発明における凸部の一表面から他表面までの厚さ(t)と、凹部の一表面から他表面までの厚さ(t)と上式(1)の値、ならびに、凸部の一表面から凹部の一表面までの距離をそれぞれ(t)、(t)(t<t)と上式(2)の値とは以下のようにして求めた値を採用することとする。
(i)任意の融着部(凹部)において、MD方向の中心線とCD方向の中心線との交点を融着部(凹部)の中心点とする。
(ii)前記の融着部(凹部)の中心点を通り、CD方向と平行な直線を引く。
(iii)前記の融着部(凹部)の中心点から0.5cm離れた当該直線上の2点を起点として、MD方向に沿って直線を1.0cm引き、その端点同士を結ぶ直線を引く。
(iv)(i)~(iii)で形成された1.0cm×1.0cmの正方形によって囲まれた領域をカミソリ刃で切り取る。
(v)同様にして、スパンボンド不織布内の任意の場所から1.0cm×1.0cmの測定サンプルを計100個採取する。
(vi)走査型電子顕微鏡(SEM)(例えば、キーエンス社製「VHX-D500))を用いて、測定サンプル内の融着部を中心として、断面を倍率100倍に調節して観察し撮影する。
(vii)隣接する非融着部(凸部)の最頂部2点より接線を引き、その接線に対する平行線間の距離より、下記のスパンボンド不織布の断面厚さt~tの長さ(t<t)を測定する。
 t:一表面から他表面までの非融着部(凸部)最頂部間距離
 t:一表面から他表面までの融着部(凹部)最頂部間距離
 t、t:一表面の非融着部(凸部)最頂部-融着部(凹部)最頂部間距離(t<t
(viii)測定結果からt/t、t/tの比率を算出する。
(ix)各測定サンプルから得られるt/t、t/tの算術平均値を算出する。
 本発明におけるスパンボンド不織布の目付は、150g/m以上300g/m以下の範囲であることが好ましい。目付が150g/m以上であれば、プリーツに必要な剛性を得ることができ好ましい。一方、目付が300g/m以下、好ましくは270g/m以下、より好ましくは260g/m以下であれば、圧力損失が上昇するのを抑制でき、さらにはコスト面でも好ましい。
 ここでいう目付は、縦50cm×横50cmのサイズの試料を、3個採取して各質量をそれぞれ測定し、得られた値の平均値(g)を単位面積当たり(1m)に換算し、小数点以下第一位を四捨五入することにより求められる。
 本発明におけるスパンボンド不織布の厚さは、0.50mm以上0.80mm以下であることが好ましく、より好ましくは0.51mm以上0.78mm以下である。厚さを0.50mm以上とすることにより、剛性を向上させ、フィルターとしての使用に適した不織布とすることができる。また、厚さを0.80mm以下とすることにより、フィルターとしてのハンドリング性や加工性に優れたスパンボンド不織布とすることができる。
 なお、本発明において、スパンボンド不織布の厚さ(mm)は、以下の方法によって測定されて得られる値を採用することとする。
(i)厚さ計(例えば、株式会社テクロック製“TECLOCK”(登録商標)SM-114等)を使用して、不織布の厚さをCD方向で等間隔に10点測定する。
(ii)上記算術平均値から小数点以下第三位を四捨五入し、不織布の厚さ(mm)とする。
 本発明におけるスパンボンド不織布の見かけ密度は、0.25g/cm以上0.40g/cm以下であることが好ましい。見かけ密度が0.25g/cm以上0.40g/cm以下であると、スパンボンド不織布は緻密な構造となりダストが内部に入りにくく、ダスト払い落とし性に優れる。より好ましい見かけ密度の範囲は、0.26g/cm以上0.38g/cm以下の範囲である。
 なお、本発明において、スパンボンド不織布の見かけ密度(g/cm)は、前記のスパンボンド不織布の目付、厚さの値から以下の式によって求められた値の小数点以下第三位を四捨五入した値を採用することとする。
 見かけ密度(g/cm)=目付(g/m)/厚さ(mm)/1000
 以上説明したように、本発明のスパンボンド不織布は、粉塵の捕集性能と通気性のバランスを両立し、かつ剛性、およびプリーツ加工性に優れるため、集塵機プリーツフィルター用濾材、集塵機プリーツフィルターとして好適に用いることができる。中でも、不織布単体で、流量が300L/分を超えるような大風量下での粉塵捕集と繰り返しの逆洗とに耐えうるプリーツ形状保持性が必要とされる、大風量パルスジェットタイプ集塵機用プリーツフィルター用濾材、大風量パルスジェットタイプ集塵機用フィルターとして、特に好適に用いることができる。このような集塵機プリーツフィルター用濾材は、例えば、前記のスパンボンド不織布をプリーツ形状とすることで得られる。また、この集塵機プリーツフィルター用濾材は、その全体を円筒状にした後に、円筒の上端と下端とが固定されてなる、円筒型集塵機フィルター、または、金属材料や高分子樹脂材料からなる角型や丸型といった枠材の内壁に集塵機プリーツフィルター用濾材の端部が固定されてなる、パネル型集塵機フィルターとすることができる。
 本発明のパルスジェットタイプ集塵機は、前記の集塵機用プリーツフィルターを使用したものであり、特に、流量300L/分を超えるような大風量下での粉塵捕集と繰り返しの逆洗を行う、大風量パルスジェットタイプ集塵機である。この大風量パルスジェットタイプの集塵機において前記の前記の集塵機フィルターは1つの集塵機フィルターあたりの流量が3.0L/分以上5.0L/分以下、1つの集塵機フィルターにかかる処理空気の圧力が0.5MPa以上0.7MPa以下の雰囲気下で用いられる。
 本発明のパルスジェットタイプ集塵機は、集塵対象設備からの集塵を濾過する少なくとも1つの集塵機フィルターを備え、集塵機フィルターの内側面に圧縮空気をパルス状に噴射してフィルターの外側面に付着した粉塵を払い落とすパルスジェット機構を備えている。なお、このパルスジェット機構は、集塵機の送風機用モーターが運転している間に稼働することができる、オンラインパルス方式の機構としてもよいし、集塵を中断した状態の間稼働することができる、オフラインパルス方式の機構としてもよい。
 以下、実施例によって、さらに本発明の詳細を説明する。なお、本実施例により本発明が限定して解釈されるわけではない。
 [測定方法]
 下記の実施例における各特性値は、次の方法で測定したものである。ただし、各物性の測定において、特段の記載がないものは、前記の方法に基づいて測定を行ったものである。
 (1)ポリエステルの融点(℃)
 示差走査型熱量計として、株式会社パーキンエルマージャパン製「DSC-2型」を用いた。
 (2)ポリエステルの固有粘度(IV)
 ポリエステルの固有粘度(IV)は、次の方法で測定した。
 オルソクロロフェノール100mLに対し試料8gを溶解し、温度25℃においてオストワルド粘度計を用いて相対粘度ηを、下記式により求めた。
 η=η/η=(t×d)/(t×d
(ここで、ηはポリマー溶液の粘度、ηはオルソクロロフェノールの粘度、tは溶液の落下時間(秒)、dは溶液の密度(g/cm)、tはオルソクロロフェノールの落下時間(秒)、dはオルソクロロフェノールの密度(g/cm)を、それぞれ表す。)次いで、相対粘度ηrから、下記式により固有粘度(IV)を算出した。
 固有粘度(IV)=0.0242η+0.2634
 (3)スパンボンド不織布の断面の厚さ(mm)
 スパンボンド不織布を構成する繊維横断面を融着部(凹部)の中心点を通るよう断面を剃刀刃により切断し、その断面を株式会社キーエンス製走査型電子顕微鏡(型番:VHX-950F)により撮影し、隣接する非融着部(凸部)の最頂部2点より接線を引き、その接線に対する平行線間の距離より不織布シート断面厚さt~tの長さ(t<t)を測定し、t/t、t/tの比率を算出した。この比率における各種線分の測定は、画像撮影に使用した顕微鏡ソフトウエア付属の計測機能を使用して算出した。本算出は不織布の異なる位置5箇所から採取したシートに対して測定し、その平均を求めた。
・t:一表面から他表面までの非融着部(凸部)最頂部間距離
・t:一表面から他表面までの融着部(凹部)最頂部間距離
・t、t:一表面の非融着部(凸部)最頂部-融着部(凹部)最頂部間距離(tC<tD)
 (4)スパンボンド不織布の目付(g/m
 スパンボンド不織布の目付は、前記の方法で算出した。
 (5)スパンボンド不織布の厚さ(mm)
 厚さ計として、株式会社テクロック製“TECLOCK”(登録商標)SM-114を使用した。
 (6)スパンボンド不織布の見かけ密度(g/cm
 スパンボンド不織布の見かけ密度は「(4)スパンボンド不織布の目付(g/m)」で得られたスパンボンド不織布の目付と「(5)スパンボンド不織布の厚さ(μm)」で得られたスパンボンド不織布の厚さより前記の方法で算出した。
 (7)スパンボンド不織布の通気量(cm/(cm・秒))
 通気量の測定には、スイス・テクステスト社製通気性試験機「FX3300-III」を用いて測定した。
 (8)スパンボンド不織布の通気量CV値(%)
 スパンボンド不織布の通気量CV値の測定には、スイス・テクステスト社製通気性試験機「FX3300-III」を用いて前記の方法で算出した。
 (9)スパンボンド不織布のMD方向の剛軟度(mN)
 スパンボンド不織布のMD方向の剛軟度は、株式会社大栄精機製作所製ガーレ・柔軟度試験機「GAS-10」を用いて測定した。
 (10)スパンボンド不織布のプリーツ加工性(点)
(1)スパンボンド不織布を240mm幅にカットし、このスパンボンド不織布を150℃に加熱して圧縮しながら、プリーツ成形体の頂点部の稜線から次の頂点部の稜線までの距離が35mmとなるようにプリーツ加工し、プリーツ成形体を得た。
(2)このプリーツ成形体をポリプロピレン製の多孔性円筒形コアに45山巻き、プリーツ成形体の端同士を加熱シールした後、円筒形上の両端に射出成型で作ったキャップを接着させ、プリーツフィルターを作製した。
(3)パネラー20人が作製したプリーツフィルターの外観を目視で確認し、不織布のプリーツ加工性を下記基準の5段階評価で判断した。したがって合計点数は、最低0点から最高100点となり、80点以上を合格と判断した。
5点:非常に良い
(プリーツ成形体の山同士の接触やプリーツ形状に歪みがなく、隣り合う山が平行に直線に並んでいる。)
4点:良い
(5点と3点の中間)
3点
(プリーツ成形体の山同士の接触はないが、プリーツ形状に歪みがある。)
2点
(3点と1点の中間)
1点
(プリーツ形状に歪みがあり、プリーツ成形体の山同士が接触している。)
 (11)スパンボンド不織布の毛羽立ち(点)
(1)スパンボンド不織布よりMD方向250mm×CD方向25mmの試料をスパンボンド不織布のCD方向等間隔で5点、スパンボンド不織布の表裏各1枚の計10枚切り取る。
(2)学振型染色物摩耗堅牢度試験機を用いて、荷重300gf、摩耗回数200往復にて摩耗させる。
(3)パネラー20人が試験後のスパンボンド不織布を目視および指で触れた時の風合いで、スパンボンド不織布表面の毛羽立ちを下記基準の5段階評価で判断した。それぞれのパネラーの判断した合計の点数で、スパンボンド不織布の毛部立ち性を評価した。したがって合計点数は、最低0点から最高100点となり、80点以上を合格と判断した。
5点:非常にいい
(スパンボンド不織布表面に毛羽が発生しておらず、指で触れた際にスパンボンド不織布表面がさらさらした触感であり、指に抵抗を感じない。)
4点:良い
(5点と3点の中間)
3点:普通
(スパンボンド不織布表面に毛羽が発生していないが、指で触れた際にスパンボンド不織布表面にざらざらしたような触感があり、指に抵抗を感じる。)
2点:悪い
(3点と1点の中間)
1点:非常に悪い
(スパンボンド不織布表面に毛羽が発生し、指で触れた際にスパンボンド不織布表面にざらざらしたような触感があり、指に抵抗を感じる。)
 (12)スパンボンド不織布の捕集性能(%)
 図3は本発明の実施例にかかる捕集性能試験を実施する試験システムの構成を説明するための図である。図3に示す試験システム31は、試験サンプルMをセットするサンプルホルダー32と、流量計33と、流量調整バルブ34と、ブロワ35と、ダスト供給装置36と、切替コック37と、パーティクルカウンター38を備える。流量計33、流量調整バルブ34、ブロワ35およびダスト供給装置36は、サンプルホルダー32と連結している。流量計33は、流量調整バルブ34を介してブロワ35に接続している。サンプルホルダー32には、ブロワ35の吸気によって、ダスト供給装置36からダストが供給される。サンプルホルダー32にパーティクルカウンター38を接続し、切替コック37を介して、試験サンプルMの上流側のダスト個数と下流側のダスト個数とをそれぞれ測定することができる。まず、不織布の任意の部分から、15cm×15cmのサンプルを3個採取し、採取した試験サンプルMをサンプルホルダー32にセットする。試験サンプルの評価面積は、115cmとした。捕集性能の測定にあたっては、ポリスチレン0.309U 10重量%溶液(ナカライテスク株式会社製)を蒸留水で200倍まで希釈し、ダスト供給装置36に充填した。風量をフィルター通過速度が3.0m/minになるように流量調整バルブ9で調整し、ダスト濃度を2万~7万個/(2.83×10-4(0.01ft))の範囲で安定させ、試験サンプルMの上流のダスト個数および下流のダスト個数をパーティクルカウンター38(リオン株式会社製、KC-01D)でダスト粒径0.3~0.5μmの範囲についてそれぞれ測定した。得られた値を下記計算式に代入して求めた数値の小数点以下第一位を四捨五入し捕集性能(%)を求めた。
 捕集性能(%)=〔1-(D1/D2)〕×100
ここで、D1:下流のダスト個数(3回の合計)、D2:上流のダスト個数(3回の合計)である。
 (13)プリーツ形状保持性
 図4は本発明の実施例にかかるプリーツ形状保持性試験を実施する試験システムの構成を説明するための図である。図4に示す試験システム41は、試験サンプルをセットするサンプルホルダー42と、圧力計43と、流量計44と、流量調整バルブ45と、ブロワ46とを備える。流量計44、流量調整バルブ45、およびブロワ46は、サンプルホルダー42と連結している。この試験システム41では、ブロワ46によりエアーが送られ、エアー吹出口47より矢印48の方向にエアーが排出される。
 まず、スパンボンド不織布を山高さが48mmとなるようにプリーツ加工する。次に、図5のように、プリーツ基材を山ピッチ51が1.3mm、山数が23個となるように、ユニット縦長さ52を30cm、ユニット横長さ53を30cm、ユニット高さ54を48mmとなるような枠材55で囲った評価用ユニットUを3個作成する。枠材55は、測定時に当該枠材55からのエアー漏れが無い素材であれば、特段指定はされない。次に、作成した評価用ユニットUをサンプルホルダー42にセットする。風量を2.0、4.0、5.0、6.0、7.0m/min(計5点)となるように流量調整バルブ45で調整し、各流量における圧力損失を測定した。評価用ユニットU3個の圧力損失測定結果の平均値を算出し、風速を横軸、圧力損失を縦軸にとったグラフを作成し線形二乗近似にて決定係数(R)を算出し、以下の基準にて判定した。
・プリーツ形状保持性 A: R>0.995
・プリーツ形状保持性 B: 0.990≦R≦0.995
・プリーツ形状保持性 C: R<0.990
 プリーツ形状保持性の評価は、Aを良好、BをAに次いで良好、Cを不良とした。なお、表1、表2において、A・B・Cの評価の後のカッコ内の数字は、上記の決定係数(R)の値である。
 プリーツ形状保持性の高い不織布では、大風量下においても、プリーツが変形せず濾過面積が減少しないため、圧力損失は風量増加に伴い線形的に増加する。そのため、決定係数(R)は1に近くなる。一方、プリーツ形状保持性の低い不織布では、大風量になるに伴いプリーツが風圧によって潰れ有効濾過面積が減少し、圧力損失が上昇するため、線形上昇せず決定係数(R)が低くなる。
 (14)圧力損失(Pa)
 上記捕集性能測定時の試験サンプルMの上流と下流との静圧差を圧力計39で読み取り、3サンプルから得られた値の平均値の小数点以下第1位を四捨五入して算出した。
 [使用した樹脂]
 次に、実施例・比較例において使用した樹脂について、その詳細を記載する。
・ポリエステル系樹脂A:水分率50質量ppm以下に乾燥した、固有粘度(IV)が0.65で融点が260℃の、ポリエチレンテレフタレート(PET)
・ポリエステル系樹脂B:水分率50質量ppm以下に乾燥した、固有粘度(IV)が0.64、イソフタル酸共重合率が11mol%で融点が230℃の、共重合ポリエチレンテレフタレート(CO-PET)
 [実施例1]
 前記のポリエステル系樹脂Aと前記のポリエステル系樹脂Bとを、それぞれ295℃と280℃の温度で溶融させた。その後、ポリエステル系樹脂Aを芯成分、ポリエステル系樹脂Bを鞘成分として、口金温度が295℃で、芯:鞘=80:20の質量比率で細孔から紡出した後、エアサッカーにより紡糸速度4900m/分で円形断面形状のフィラメントを紡糸し、移動するネットコンベアー上に開繊板により繊維配列を規制し堆積させ、平均単繊維直径が14.8μmの繊維からなる繊維ウェブを捕集した。捕集した繊維ウェブに、一対のフラットロールからなるカレンダーロールによって、温度が140℃で、線圧が50kg/cmの条件で仮融着した。さらに引き続いて、融着面積率10%、融着部1個あたりの面積が1.6mmとなる一対の彫刻ロールからなるエンボスロールを用い、上下のエンボスロールの温度をともに200℃として、繊維ウェブにかかる線圧が70kg/cmとなる条件で融着させて、目付が260g/mのスパンボンド不織布を得た。得られたスパンボンド不織布のシート断面厚さの1-t/tとt/tとはそれぞれ0.67、0.68、通気量CV値は7.3%、シート厚さは0.74mm、MD方向の剛軟度は53mNであった。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002
 [実施例2]
 上下のエンボスロールの温度を、ともに200℃から180℃に変更し、融着したこと以外は、実施例1と同じ条件として、目付が260g/mのスパンボンド不織布を得た。得られたスパンボンド不織布のシート断面厚さの1-t/tとt/tとはそれぞれ0.53、0.66、通気量CV値は7.6%、シート厚さは1.02mm、MD方向の剛軟度は57mNであった。結果を表1に示す。
 [実施例3]
 上下のエンボスロールの温度を、ともに200℃からそれぞれ180、210℃に変更し、融着したこと以外は、実施例1と同じ条件として、目付が260g/mのスパンボンド不織布を得た。得られたスパンボンド不織布のシート断面厚さの1-t/tとt/tはそれぞれ0.70、0.82、通気量CV値は7.5%、シート厚さは0.93mm、MD方向の剛軟度は61mNであった。結果を表1に示す。
 [実施例4]
 上下のエンボスロールを、融着面積率10%、融着部1個あたりの面積が1.6mmとなる一対の彫刻ロールから融着面積率6%、融着部1個あたりの面積が1.6mmとなる一対の彫刻ロールからなるエンボスロールに替えて用いたこと以外は、実施例1と同じ条件として、目付が260g/m2のスパンボンド不織布を得た。得られたスパンボンド不織布のシート断面厚さの1-t/tとt/tとはそれぞれ0.79、0.66、通気量CV値は7.2%、シート厚さは1.21mm、MD方向の剛軟度は73mNであった。結果を表1に示す。
 [実施例5]
 上下のエンボスロールを、融着面積率10%、融着部1個あたりの面積が1.6mmとなる一対の彫刻ロールから融着面積率18%、融着部1個あたりの面積が1.6mmとなる一対の彫刻ロールからなるエンボスロール替えて用いたこと以外は、実施例1と同じ条件として、目付が260g/mのスパンボンド不織布を得た。得られたスパンボンド不織布のシート断面厚さの1-t/tとt/tとはそれぞれ0.68、0.73、通気量CV値は8.7%、シート厚さは0.73mm、MD方向の剛軟度は41mNであった。結果を表1に示す。
 [実施例6]
 平均単繊維直径が24.6μmとなるよう吐出量、紡出速度を変更した一方、目付を実施例1と同じにするためネットコンベアーの速度を変更したこと以外は、実施例1と同じ条件で、目付が260g/mのスパンボンド不織布を得た。得られたスパンボンド不織布のシート断面厚さの1-t/tとt/tとはそれぞれ0.52、0.69、通気量CV値は10.8%、シート厚さは0.96mm、MD方向の剛軟度は53mNであった。結果を表1に示す。
 得られたスパンボンド不織布の特性は表1に示したとおりであり、実施例1~6のスパンボンド不織布は、いずれもMD方向の剛軟度が41mN以上、通気量CV値が11.0%以下、捕集効率が50%以上であり、剛性や通気量均一性、捕集効率に優れており、スパンボンド不織布として良好な特性を示したものであった。また、プリーツ加工性、プリーツ形状保持性、圧力損失および毛羽立ち性の結果も、プリーツ加工性は87点以上、プリーツ形状保持性はB以上、圧力損失は50Pa以下、毛羽立ち性も87点以上と、いずれも良好であった。
 [比較例1]
 実施例1の製造工程において、捕集した繊維ウェブを仮融着する工程とエンボスロールを用いて融着する工程との間に、仮融着する工程で得られたシートを一度巻き取った後に室温まで冷却させ、このシートをエンボスロールに送る工程を設けるように変えたこと、すなわち、エンボスロールを用い融着する工程を仮融着工程に引き続いて行わないようにしたこと以外は、実施例1と同じ条件として、目付が260g/mのスパンボンド不織布を得た。得られたスパンボンド不織布のシート断面厚さの1-t/tとt/tとはそれぞれ0.40、0.69、通気量CV値は10.5%、シート厚さは0.72mm、MD方向の剛軟度は37mNであった。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000003
 [比較例2]
 上下のエンボスロールを、融着面積率10%、融着部1個あたりの面積が1.6mmとなる一対の彫刻ロールからなるエンボスロールから、融着面積率15%、融着部1個あたりの面積が0.5mmとなる彫刻ロールとフラットロールからなるエンボスロールに替えて、融着したこと以外は、実施例1と同じ条件として、目付が260g/mのスパンボンド不織布を得た。得られたスパンボンド不織布のシート断面厚さの1-t/tとt/tとはそれぞれ0.61、0.45、通気量CV値は16.9%、シート厚さは0.61mm、MD方向の剛軟度は25mNであった。結果を表2に示す。
 [比較例3]
 上下のエンボスロールを、融着面積率10%、融着部1個あたりの面積が1.6mmとなる一対の彫刻ロールからなるエンボスロールから、融着面積率3%、融着部1個あたりの面積が1.6mmとなる一対の彫刻ロールからなるエンボスロールに替えて、融着したこと以外は、実施例1と同じ条件として、目付が260g/mのスパンボンド不織布を得た。得られたスパンボンド不織布のシート断面厚さの1-t/tとt/tとはそれぞれ0.79、0.62、通気量CV値は8.9%、シート厚さは1.13mm、MD方向の剛軟度は85mNであった。結果を表2に示す。
 [比較例4]
 上下のエンボスロールを、融着面積率10%、融着部1個あたりの面積が1.6mmとなる一対の彫刻ロールからなるエンボスロールから、融着面積率24%、融着部1個あたりの面積が1.6mmとなる一対の彫刻ロールからなるエンボスロールに替えて、融着したこと以外は、実施例1と同じ条件として、目付が260g/mのスパンボンド不織布を得た。得られたスパンボンド不織布のシート断面厚さの1-t/tとt/tとはそれぞれ0.65、0.55、通気量CV値は15.2%、シート厚さは0.62mm、MD方向の剛軟度は21mNであった。結果を表2に示す。
 [比較例5]
 平均単繊維直径が29.2μmとなるよう吐出量、紡出速度を変更した一方、目付を実施例1と同じにするためネットコンベアーの速度を変更したこと以外は、実施例1と同じ条件で、目付が260g/mのスパンボンド不織布を得た。得られたスパンボンド不織布のシート断面厚さの1-t/tとt/tとはそれぞれ0.45、0.68、通気量CV値は15.6%、シート厚さは1.01mm、MD方向の剛軟度は81mNであった。結果を表2に示す。
 [比較例6]
 平均単繊維直径が11.2μmとなるよう吐出量、紡出速度を変更した一方、目付を実施例1と同じにするためネットコンベアーの速度を変更したこと以外は、実施例1と同じ条件で、目付が260g/mのスパンボンド不織布を得た。得られたスパンボンド不織布のシート断面厚さの1-t/tとt/tとはそれぞれ0.70、0.69、通気量CV値は7.0%、シート厚さは0.53mm、MD方向の剛軟度は36mNであった。結果を表2に示す。
 [比較例7]
 前記のポリエステル系樹脂Aと前記のポリエステル系樹脂Bとを、それぞれ295℃と280℃の温度で溶融させた。その後、ポリエステル系樹脂Aを芯成分とし、ポリエステル系樹脂Bを鞘成分として、口金温度が300℃で、芯:鞘=80:20の質量比率で細孔から紡出した後、エアサッカーにより紡糸速度4400m/分で円形断面形状のフィラメントを紡糸し、エアサッカー出口に設置された金属衝突板へフィラメントを衝突させ、摩擦帯電により繊維を帯電して開繊させ、平均単繊維直径が14.8μmの繊維からなる繊維ウェブを移動するネットコンベアー上に捕集した。さらに引き続いて、融着面積率18%、融着部1個あたりの面積が0.7mmとなる一対の彫刻ロールからなるエンボスロールによって、上下のエンボスロールの温度を205℃とし、繊維ウェブにかかる線圧が70kg/cmとなる条件で融着し、目付が260g/mのスパンボンド不織布を得た。得られたスパンボンド不織布のシート断面厚さの1-t/tとt/tとはそれぞれ0.61、0.57、通気量CV値は17.4%、シート厚さは0.51mm、MD方向の剛軟度は25mNであった。結果を表2に示す。
 得られた不織布の特性は、表2に示したとおりであるが、比較例1は、シート断面厚さ(1-t/t)が低く、毛羽立ち性、プリーツ形状保持性が劣位であった。比較例2、3、4、7はシート断面厚さ(t/t)が低く、プリーツ加工性が劣位であり、比較例2、3、7においてはプリーツ形状保持性も劣位であった。比較例2、4、5、7は通気量CV値が高く、比較例4、5、7においては捕集効率も劣位であった。比較例2の片面彫刻ロールにより融着を実施したものでは、剛軟度が低くなり、プリーツ加工性が劣位であった。比較例3の融着面積率3%のエンボスロールで融着を実施したものでは、厚さが厚くなり、MD方向の剛軟度が高くなりすぎ、プリーツ加工性が劣位であった。比較例4の融着面積率24%のエンボスロールで融着を実施したものでは、厚さが薄いため、MD方向の剛軟度が低く、プリーツ加工性が劣位であった。比較例5の実施例1と同条件で平均単繊維直径を太くしたものでは、厚さが厚くなり、MD方向の剛軟度が高く、プリーツ加工性が劣位であった。比較例6の実施例1と同条件で平均単繊維直径を細くしたものでは、厚さが薄いため、剛軟度が低く、プリーツ加工性が劣位であった。
 本発明のスパンボンド不織布、集塵機プリーツフィルター用濾材、集塵機プリーツフィルターおよび大風量パルスジェットタイプ集塵機は、粉塵の捕集性能と通気性のバランスを両立しながら、かつ大風量下でのプリーツ形状保持性とプリーツ加工性に優れた高い剛性とを有するものとして好ましく適用できるが、適用範囲はこれに限られない。
 11 凸部(非融着部)
 12 凹部(融着部)
 21 集塵機プリーツフィルター用濾材
 22 山部
 23 谷部
 24 MD方向を示す矢印(破線矢印)
 25 CD方向を示す矢印(破線矢印)
 31、41 試験システム
 M 試験サンプル
 32 サンプルホルダー
 33 流量計
 34 流量調整バルブ
 35 ブロワ
 36 ダスト供給装置
 37 切替コック
 38 パーティクルカウンター
 39 圧力計
 42 サンプルホルダー
 43 圧力計
 44 流量計
 45 流量調整バルブ
 46 ブロワ
 47 エアー吹出口
 48 エアー吹出方向を示す矢印
 U  評価用ユニット
 51 山ピッチ
 52 ユニット縦長さ
 53 ユニット横長さ
 54 ユニット高さ
 55 枠材

Claims (6)

  1.  高融点成分と低融点成分とからなる熱可塑性連続フィラメントから構成され、部分的に融着されてなるスパンボンド不織布であって、
     当該スパンボンド不織布の通気量CV値が15%以下、MD方向の剛軟度が40mN以上80mN以下であり、
     非融着の凸部と、融着されてなる凹部とを有し、
     不織布断面において、前記凸部の一表面から他表面までの厚さtと、前記凹部の一表面から他表面までの厚さtと、前記凸部の一表面から前記凹部の一表面までの距離をそれぞれt、t(t<t)とし、下記式(1)、(2)で表される関係にある、スパンボンド不織布。
     0.5≦1-t/t<1.0   ・・・(1)
     0.65<t/t<1.0    ・・・(2)
  2.  前記凹部の融着面積の割合が5%以上20%以下である、請求項1に記載のスパンボンド不織布。
  3.  前記熱可塑性連続フィラメントの平均単繊維直径が12.0μm以上26.0μm以下である、請求項1または2に記載のスパンボンド不織布。
  4.  請求項1~3のいずれかに記載のスパンボンド不織布を用いてなる、集塵機プリーツフィルター用濾材。
  5.  請求項4に記載の集塵機プリーツフィルター用濾材を用いてなる、集塵機プリーツフィルター。
  6.  請求項5に記載の集塵機プリーツフィルターを使用した大風量パルスジェットタイプ集塵機。
PCT/JP2020/048313 2019-12-23 2020-12-23 スパンボンド不織布、集塵機プリーツフィルター用濾材、集塵機プリーツフィルターおよび大風量パルスジェットタイプ集塵機 WO2021132410A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2021506353A JP6962496B1 (ja) 2019-12-23 2020-12-23 スパンボンド不織布、集塵機プリーツフィルター用濾材、集塵機プリーツフィルターおよび大風量パルスジェットタイプ集塵機
CA3165603A CA3165603A1 (en) 2019-12-23 2020-12-23 Spunbond non-woven fabric, filter material for pleated filter for dust collector, pleated filter for dust collector, and large air volume pulse-jet type dust collector
US17/787,646 US20220410046A1 (en) 2019-12-23 2020-12-23 Spunbond non-woven fabric, filter material for pleated filter for dust collector, pleated filter for dust collector, and large air volume pulse-jet type dust collector
KR1020227019082A KR20220110210A (ko) 2019-12-23 2020-12-23 스펀본드 부직포, 집진기 플리츠 필터용 여과재, 집진기 플리츠 필터 및 대풍량 펄스제트 타입 집진기
CN202080088950.8A CN114846189B (zh) 2019-12-23 2020-12-23 纺粘无纺布、集尘器褶皱过滤器用滤材、集尘器褶皱过滤器及大风量脉冲喷射式集尘器
EP20905205.9A EP4083294A4 (en) 2019-12-23 2020-12-23 SPONNONWOVEN FABRIC, FILTER MEDIUM FOR DUST COLLECTORS, PLEATED FILTERS, DUST COLLECTOR PLEATED FILTERS AND LARGE AIR VOLUME PULS-JET TYPE DUST COLLECTORS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019231586 2019-12-23
JP2019-231586 2019-12-23

Publications (1)

Publication Number Publication Date
WO2021132410A1 true WO2021132410A1 (ja) 2021-07-01

Family

ID=76574309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/048313 WO2021132410A1 (ja) 2019-12-23 2020-12-23 スパンボンド不織布、集塵機プリーツフィルター用濾材、集塵機プリーツフィルターおよび大風量パルスジェットタイプ集塵機

Country Status (7)

Country Link
US (1) US20220410046A1 (ja)
EP (1) EP4083294A4 (ja)
JP (1) JP6962496B1 (ja)
KR (1) KR20220110210A (ja)
CN (1) CN114846189B (ja)
CA (1) CA3165603A1 (ja)
WO (1) WO2021132410A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6962495B1 (ja) * 2019-12-23 2021-11-05 東レ株式会社 スパンボンド不織布、集塵機プリーツフィルター用濾材、集塵機プリーツフィルターおよび大風量パルスジェットタイプ集塵機

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5422874B2 (ja) 1972-08-30 1979-08-09
JPH09192426A (ja) * 1996-01-19 1997-07-29 Toray Ind Inc エアーフィルター用不織布およびそれを用いてなるエアーフィルター装置
WO1997037071A1 (fr) * 1994-09-28 1997-10-09 Toray Industries, Inc. Textile non-tisse pour filtre plisse et procede de fabrication
JP4522671B2 (ja) 2003-06-18 2010-08-11 ユニチカ株式会社 フィルター用不織布及びその製造方法
JP5298803B2 (ja) 2008-11-20 2013-09-25 東レ株式会社 フィルター用不織布

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19628184A1 (de) * 1996-07-12 1998-01-15 Irema Filter Gmbh Partikelfilter in Form eines plissierten schichtförmigen Vliesmaterials
DE69833493T2 (de) * 1997-09-11 2006-09-28 Toray Industries, Inc. Gewebe
JPH11293555A (ja) * 1998-04-14 1999-10-26 Unitika Ltd 通気性に優れた不織布およびその製造方法ならびにその不織布からなるフィルター材
US8308833B2 (en) * 2005-10-04 2012-11-13 Toray Industries, Inc. Nonwoven fabric for filters
KR101441593B1 (ko) * 2006-02-01 2014-09-19 도레이 카부시키가이샤 필터용 부직포 및 그 제조 방법
JP5422874B2 (ja) 2006-02-01 2014-02-19 東レ株式会社 フィルター用不織布およびその製造方法
US20100180558A1 (en) * 2007-05-31 2010-07-22 Toray Industries, Inc Nonwoven fabric for cylindrical bag filter, process for producing the same, and cylindrical bag filter therefrom
KR101012401B1 (ko) * 2008-06-04 2011-02-09 (주) 신우피앤씨 고통기성 단섬유 부직포 지지체를 포함하는 공기필터 및 그제조방법
CN107923095B (zh) * 2015-09-03 2020-04-03 东丽株式会社 纺粘无纺布的制造方法及制造装置
JP2017127832A (ja) * 2016-01-22 2017-07-27 東レ株式会社 フィルター用不織布
CN110494201A (zh) * 2017-05-30 2019-11-22 东丽株式会社 过滤器用纺粘无纺布及其制造方法
JP6669315B1 (ja) * 2018-06-25 2020-03-18 東レ株式会社 フィルター用スパンボンド不織布およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5422874B2 (ja) 1972-08-30 1979-08-09
WO1997037071A1 (fr) * 1994-09-28 1997-10-09 Toray Industries, Inc. Textile non-tisse pour filtre plisse et procede de fabrication
JPH09192426A (ja) * 1996-01-19 1997-07-29 Toray Ind Inc エアーフィルター用不織布およびそれを用いてなるエアーフィルター装置
JP4522671B2 (ja) 2003-06-18 2010-08-11 ユニチカ株式会社 フィルター用不織布及びその製造方法
JP5298803B2 (ja) 2008-11-20 2013-09-25 東レ株式会社 フィルター用不織布

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4083294A4

Also Published As

Publication number Publication date
JPWO2021132410A1 (ja) 2021-12-23
CA3165603A1 (en) 2021-07-01
US20220410046A1 (en) 2022-12-29
CN114846189A (zh) 2022-08-02
KR20220110210A (ko) 2022-08-05
EP4083294A1 (en) 2022-11-02
JP6962496B1 (ja) 2021-11-05
CN114846189B (zh) 2023-03-28
EP4083294A4 (en) 2023-06-14

Similar Documents

Publication Publication Date Title
US8308833B2 (en) Nonwoven fabric for filters
WO2021132402A1 (ja) スパンボンド不織布、フィルター積層濾材、集塵機プリーツフィルター用濾材、集塵機プリーツフィルターおよび中風量パルスジェットタイプ集塵機
JP7180376B2 (ja) フィルター用スパンボンド不織布の製造方法
JP6669315B1 (ja) フィルター用スパンボンド不織布およびその製造方法
WO2021132410A1 (ja) スパンボンド不織布、集塵機プリーツフィルター用濾材、集塵機プリーツフィルターおよび大風量パルスジェットタイプ集塵機
WO2021132403A1 (ja) スパンボンド不織布、集塵機プリーツフィルター用濾材、集塵機プリーツフィルターおよび大風量パルスジェットタイプ集塵機
JP2021098928A (ja) スパンボンド不織布、フィルター積層濾材、集塵機プリーツフィルター用濾材、集塵機プリーツフィルターおよび中風量パルスジェットタイプ集塵機
WO2021132409A1 (ja) フィルター用スパンボンド不織布、粉体塗装フィルター用濾材および粉体塗装フィルター
WO2021132411A1 (ja) スパンボンド不織布、フィルター積層濾材、プリーツフィルター用濾材およびプリーツフィルター
JP2021098927A (ja) スパンボンド不織布、集塵機プリーツフィルター用濾材、集塵機プリーツフィルターおよび大風量パルスジェットタイプ集塵機
JP2021098929A (ja) スパンボンド不織布、集塵機プリーツフィルター用濾材、集塵機プリーツフィルターおよび大風量パルスジェットタイプ集塵機
JP2021098195A (ja) フィルター用スパンボンド不織布、粉体塗装フィルター用濾材および粉体塗装フィルター
JP2021098925A (ja) プリーツ成形体、集塵機フィルターおよび大風量パルスジェットタイプ集塵機
JP7552346B2 (ja) 自動車オイルフィルター用スパンボンド不織布、自動車オイルフィルター用濾材および自動車オイルフィルター
JP2021098926A (ja) プリーツ成形体、集塵機プリーツフィルターおよび大風量パルスジェットタイプ集塵機
JP2021098924A (ja) スパンボンド不織布、プリーツ成形体、集塵機フィルターおよび大風量パルスジェットタイプ集塵機
JP7552345B2 (ja) フィルター用スパンボンド不織布、自動車オイルフィルター用濾材および自動車オイルフィルター
JP2021098930A (ja) スパンボンド不織布、集塵機プリーツフィルター用濾材、集塵機プリーツフィルターおよび大風量パルスジェットタイプ集塵機
JP7395949B2 (ja) 積層濾材
JP2022132085A (ja) 積層不織布、フィルター用濾材、集塵機用プリーツフィルター、ならびに、パルスジェットタイプ集塵機

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021506353

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20905205

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227019082

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3165603

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020905205

Country of ref document: EP

Effective date: 20220725