WO2021132095A1 - Production method for silver nanowire dispersion - Google Patents

Production method for silver nanowire dispersion Download PDF

Info

Publication number
WO2021132095A1
WO2021132095A1 PCT/JP2020/047484 JP2020047484W WO2021132095A1 WO 2021132095 A1 WO2021132095 A1 WO 2021132095A1 JP 2020047484 W JP2020047484 W JP 2020047484W WO 2021132095 A1 WO2021132095 A1 WO 2021132095A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
silver nanowire
dispersion liquid
filtration
dispersion
Prior art date
Application number
PCT/JP2020/047484
Other languages
French (fr)
Japanese (ja)
Inventor
真尚 原
英樹 大籏
山木 繁
正彦 鳥羽
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to CN202080061617.8A priority Critical patent/CN114302778A/en
Priority to JP2021567407A priority patent/JPWO2021132095A1/ja
Priority to KR1020227006522A priority patent/KR20220038762A/en
Publication of WO2021132095A1 publication Critical patent/WO2021132095A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0547Nanofibres or nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the present invention relates to a method for producing a silver nanowire dispersion liquid.
  • Silver nanowires are conductive materials made of wire-like (linear) silver with a diameter on the order of nanometers. Since the conductive layer (thin film) formed of silver nanowires has high conductivity and light transmission, it is used as a transparent electrode material for a touch panel, for example.
  • Non-Patent Document 1 As a method for producing such silver nanowires, for example, as described in Non-Patent Document 1 below, there is a method of reducing a silver salt in a polyol (glycol solvent) (polyol reduction method).
  • Patent Documents 1 to 7 below disclose a technique for filtering and purifying a dispersion liquid in which silver nanowires are dispersed by a batch method using cross-flow filtration. When cross-flow filtration is used, agglomeration of silver nanowires can be suppressed.
  • Patent Document 1 discloses a method for removing a morphological control agent, which is a hydrophilic polymer or an amphipathic molecule, from a silver nanowire dispersion liquid by a membrane separation method using an ultrafiltration membrane.
  • Patent Documents 2 to 5 disclose a method for purifying a dispersion having a dilute silver concentration of 0.4% or less by using cross-flow filtration.
  • Patent Documents 6 and 7 an excess amount of organic protective agent and silver nanoparticles are removed to some extent by repeating a method (washing step) of adding 20 times the amount of acetone to the reaction solution and decanting after allowing it to stand.
  • a method of further removing a wire having a length of about 1 to 5 ⁇ m by performing cross-flow filtration is disclosed.
  • JP-A-2009-129732 International Publication No. WO2009 / 107694 JP-A-2010-84173 Japanese Unexamined Patent Publication No. 2013-199690 US Publication No. 2018-354039 Japanese Unexamined Patent Publication No. 2017-220453 Japanese Unexamined Patent Publication No. 2016-55283
  • Patent Document 1 In the method described in Patent Document 1, a synthetic solution having a dilute silver concentration (about 0.35%) is concentrated until the amount of the solution reaches 15% (silver concentration is about 2.3%), and ethanol is added. This is a method of returning to the initial amount, and the amount of silver that can be purified in one batch is very small, about 1 g. Therefore, in order to increase the yield of silver nanowires, it is necessary to repeat a series of batches a plurality of times, which has a problem of inefficiency. Similarly, Patent Documents 2 to 7 are methods for purifying a dispersion having a dilute silver concentration of 0.4% or less by using cross-flow filtration, and have a problem that the production amount per batch is small.
  • Patent Documents 6 and 7 although a dispersion having a silver concentration of 0.8% by mass is obtained as a concentrate after the washing step, the silver concentration becomes 0.08% by mass during cross-flow purification. It is diluted with pure water as described above. It is considered that this is because when the dispersion liquid of 0.8% by mass is cross-flow filtered, the yield is lower than that under the dilute condition of 0.08% by mass. Even if cross-flow filtration is performed under dilute conditions, the isolated yield calculated from the amount of silver charged at the time of synthesis is 34%, which is not a sufficient value for the manufacturing process.
  • An object of the present invention is to purify a crude silver nanowire dispersion liquid containing silver nanowires and a structure-determining agent and having a silver concentration of 1.0% by mass or more by using a cross-flow filtration method to obtain high yield and high purity. It is an object of the present invention to provide a method for producing a silver nanowire dispersion liquid.
  • the present inventor purifies a crude dispersion of silver nanoparticles having a silver concentration of 1.0% by mass or more by using a cross-flow filtration method, as a structure-defining agent and silver. It was clarified that the removal of nanoparticles did not proceed. After investigating the cause, it was found that the filtration filter was blocked by silver nanoparticles, which are by-products of silver nanowires.
  • the dispersion liquid to be added to the cross-flow filtration step contains a structure-defining agent, and the number of silver nanowires / total number of particles (number of nanowires + number of nanoparticles)> 90%.
  • the structure defining agent can be efficiently removed from the silver nanowire coarse dispersion liquid containing silver nanowires and the structure defining agent and having a silver concentration of 1.0% by mass or more, and the silver nanowires can be obtained in high yield.
  • the present invention includes the following embodiments.
  • a method for producing a silver nanowire dispersion which comprises a cross-flow filtration step of purifying the crude dispersion by a circulating cross-flow filtration method.
  • the step of preparing the silver nanowire coarse dispersion liquid includes a silver nanowire coarse dispersion liquid production step of producing a silver nanowire coarse dispersion liquid in which silver nanowires are synthesized and dispersed in a reaction solvent [1] to [4]. ] The method for producing a silver nanowire dispersion liquid according to any one of.
  • the steps of preparing the silver nanowire coarse dispersion liquid include a sedimentation step of adding a sedimentation solvent to the silver nanowire coarse dispersion liquid in which the silver nanowires are dispersed in the reaction solvent to precipitate the silver nanowires, and by-product nanoparticles.
  • a sedimentation step of adding a sedimentation solvent to the silver nanowire coarse dispersion liquid in which the silver nanowires are dispersed in the reaction solvent to precipitate the silver nanowires, and by-product nanoparticles.
  • the amount of the crude silver nanowire dispersion liquid is before filtration by adding a washing solvent so as to supplement the solvent discharged as the filtrate during or after the concentration of the coarse dispersion liquid of silver nanowires.
  • a crude silver nanowire dispersion liquid containing silver nanowires and a structure-determining agent and having a silver concentration of 1.0% by mass or more is purified by a cross-flow filtration method to obtain a high yield and high yield.
  • a pure silver nanowire dispersion can be produced.
  • FIG. 1 shows a process diagram of a method for producing a silver nanowire dispersion liquid according to an embodiment of the present invention.
  • S1 silver nanowire coarse dispersion liquid production step.
  • synthesis of silver nanowires by a conventionally known method or the like can be applied.
  • the crude dispersion obtained by synthesizing silver nanowires contains by-produced silver nanoparticles in addition to the silver nanowires produced by the synthesis, the ionic derivative used in the synthesis, the structure defining agent, and the solvent.
  • the structure-determining agent is contained in the synthetic solvent and adheres to the surface of the generated silver nanowires.
  • the by-produced silver nanoparticles are removed, and in the cross-flow filtration step.
  • the structure defining agent adhering to the surface of the silver nanowire is washed.
  • the synthetically obtained silver nanowires used herein are metallic silver with a diameter on the order of nanometers and are conductive materials having a linear (including hollow tubular silver nanotubes) shape. .. Further, the metallic silver of the silver nanowires preferably does not contain a metal oxide from the viewpoint of conductive performance, but if air oxidation is unavoidable, a silver oxide may be contained in a part (at least a part of the surface).
  • the length (diameter) of the silver nanowire in the minor axis direction is 10 nm or more and 90 nm or less on average, preferably 10 nm or more and 85 nm or less on average, and the length in the major axis direction is 1 ⁇ m or more and 100 ⁇ m or less on average, preferably 5 ⁇ m or more and 100 ⁇ m or less on average. More preferably, the average is 10 ⁇ m or more and 80 ⁇ m or less. That is, in the present specification, when the length in the major axis direction is a and the length (diameter) in the minor axis direction is b, the aspect ratio represented by a / b exceeds 5. Means things. Further, in the present specification, the “silver nanoparticles” means particles having an aspect ratio of 5 or less, which are by-produced by synthesis, excluding the above-mentioned “silver nanowires”.
  • the above-mentioned ionic derivative is a component that contributes to the growth of silver wire, and can be applied as long as it is a compound that can be dissolved in a solvent to dissociate halogen ions, and a metal halide is preferable.
  • the halogen ion is preferably at least one of chloride ion, bromine ion, and iodine ion, and more preferably contains a compound capable of dissociating chloride ion.
  • metal halide compound examples include alkali metal halides, alkaline earth metal halides, and metal halides of Groups 3 to 12 of the Long Periodic Table.
  • alkali metal halides include alkali metal chlorides such as lithium chloride, sodium chloride and potassium chloride, alkali metal bromides such as lithium bromide, sodium bromide and potassium bromide, lithium iodide, sodium iodide and potassium iodide. Such as alkali metal iodide and the like.
  • alkaline earth metal halide include magnesium chloride and calcium chloride.
  • Group 3 to Group 12 metal halides in the Long Periodic Table include ferric chloride, ferric chloride, ferric bromide, and cupric bromide. Any one of these may be used alone, or two or more thereof may be used in combination.
  • a compound that dissociates chloride ions for wire formation.
  • a compound that dissociates chloride ions and at least one of a compound that dissociates bromine ions and a compound that dissociates iodine ions in combination it is preferable to contain a compound that dissociates chloride ions for wire formation.
  • the molar ratio of A) / (B) is preferably 2 to 8, and more preferably 3 to 6.
  • the structure-determining agent used in the synthesis is a compound having a function of one-dimensionally defining the growth direction of silver particles at the time of synthesis, and by using the structure-determining agent, the ratio of silver nanowires formed in the particle forming step can be determined. Can be enhanced. In many cases, the structure-determining agent preferentially or selectively adsorbs to a specific crystal plane of the target particle to control the growth direction by suppressing the growth of the adsorption plane. This growth direction can be controlled by adding a structure-determining agent to the polyols described later and adsorbing it on the surface of the silver nanowires to be produced.
  • the structure-determining agent a structure-determining agent having a weight average molecular weight of more than 1000 is preferable, a structure-determining agent of 2000 or more is more preferable, and a structure-determining agent of 10,000 or more is further preferable.
  • the weight average molecular weight of the structure defining agent is preferably 1.5 million or less, more preferably 1 million or less, and even more preferably 500,000 or less.
  • Examples of the type of the structure-determining agent include poly-N-vinylpyrrolidone (PVP), poly-N-vinylacetamide (PNVA), gelatin, polyvinyl alcohol (PVA), partial alkyl ester of polyacrylic acid, methyl cellulose, and hydroxypropyl. Examples thereof include methyl cellulose, polyalkylene amine, cellulose acetate, acetal resin and the like.
  • the structure-determining agent has the effect of controlling the wire-like growth of silver nanowires during the synthesis of silver nanowires and preventing the agglomeration of the produced silver nanowires.
  • the structure defining agent is preferably contained in the crude silver nanowire dispersion liquid in an amount of 0.5% by mass or more, more preferably 0.7 to 7% by mass, and further preferably 1.0 to 5% by mass.
  • the content By setting the content to 0.5% by mass or more, agglutination does not occur even when a high-concentration dispersion having a silver concentration of 1.0% or more is handled. Further, if the concentration of the structure-defining agent is too high, the subsequent purification process becomes long and the productivity decreases.
  • silver nanowires As a method for synthesizing silver nanowires (or silver nanotubes), a known synthesis method can be used.
  • silver nanowires can be synthesized by reducing silver nitrate in the presence of poly-N-vinylpyrrolidone using the Poly-ol method (see Chem. Mater., 2002, 14, 4736). ..
  • the reaction solvent used in the above polyol method is polyols used as reducing agents, for example, ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, diethylene glycol, triethylene glycol, dipropylene glycol, 1, Examples thereof include 2-butanediol, 1,3-butanediol, 1,4-butanediol, 2-methyl-1,3-propanediol, glycerin and the like, and at least one selected from the group consisting of these. preferable.
  • the silver nanowire coarse dispersion liquid contains impurities such as silver nanoparticles generated during the synthesis together with the target silver nanowires.
  • the polyol may be distilled off to concentrate the silver nanowires to some extent (S2 :). Concentration step). However, if it is distilled off at an excessively high temperature, it may aggregate, so it is preferable to distill off at a pressure of 100 mmHg or less and a temperature of 150 ° C. or less. In this case, it is preferable to reduce the amount of the silver nanowire coarse dispersion liquid from 20% by mass to 80% by mass of the original amount.
  • the step S2 is not essential and may be omitted.
  • a sedimentation solvent is added to the silver nanowire coarse dispersion liquid (if necessary, the silver nanowire coarse dispersion liquid concentrated in S2 above) to precipitate the silver nanowires (S3: sedimentation step).
  • the precipitation solvent is a poor solvent having low solubility of the structure-determining agent, and examples thereof include a ketone solvent and an ester solvent.
  • the ketone solvent include acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, benzophenone and the like.
  • the ester solvent include ethyl acetate, -n-propyl acetate, isopropyl acetate, allyl acetate, -n-butyl acetate, ethyl propionate, propylene glycol monomethyl ether acetate and the like.
  • the precipitation property of silver nanowires and polyols From the viewpoint of solubility in, acetone, ethyl acetate, acetic acid-n-propyl acetate, isopropyl acetate, acetic acid-n-butyl, and propylene glycol monomethyl ether acetate are preferable.
  • the amount used is preferably 50 parts by mass to 2000 parts by mass, and more preferably 70 parts by mass to 600 parts by mass with respect to 100 parts by mass of the used polyols (after concentration in S2 above). ..
  • a dispersant (a dispersant that dissolves in the poor solvent among the polymer dispersants) may be added to the poor solvent.
  • the dispersant is added not only to the initial silver nanowire dispersion liquid but also to the poor solvent, so that the aggregation of silver nanowires can be further suppressed.
  • the mixture of the reaction solvent and the precipitation solvent which is the supernatant containing the silver nanoparticles produced as a by-product during the synthesis of the silver nanowires, is removed (S4: supernatant removing step).
  • the method for removing the supernatant is not particularly limited. For example, it can be removed by decantation treatment, or it can be removed by suction with a pump.
  • a dispersion solvent different from the reaction solvent is added to the residual liquid containing the precipitate of the silver nanowires from which the reaction solvent and the sedimentation solvent have been removed as the supernatant, and then the sedimentation solvent is added again to precipitate the silver nanowires ( S5: Re-sediment cleaning step).
  • the structure defining agent is equal to or less than the threshold value, the silver nanoparticles are well dispersed in the supernatant even after the precipitation solvent is added, so that the silver nanoparticles and the silver nanowires can be separated.
  • the dispersion solvent used in the reprecipitation washing step is a good solvent having a solubility of the structure defining agent, and examples thereof include water, an alcohol solvent, a nitrile solvent, and a lactone solvent. Of these, water, acetonitrile, and ⁇ -butyrolactone are preferable from the viewpoint of sedimentation of silver nanowires and dispersibility of silver nanoparticles.
  • the amount used is 25 to 400 parts by mass, preferably 30 to 300 parts by mass, and 50 to 200 parts by mass with respect to 1 part by mass of silver in the residual liquid containing the precipitated silver nanowires. More preferred. If it is less than 25 parts by mass, the concentration of silver nanowires is too high and it is difficult to uniformly redisperse it. If it exceeds 400 parts by mass, the amount of solvent required for sedimentation becomes very large. Is required.
  • the precipitation solvent may be any of the poor solvents mentioned in the precipitation step (S3).
  • the amount used is preferably 50 parts by mass to 500 parts by mass, and more preferably 70 parts by mass to 300 parts by mass with respect to 100 parts by mass of the good solvent used.
  • the filtration solvent used for the cross-flow filtration in the next step is added to the residual liquid containing the sediment of the silver nanowires from which the silver nanoparticles and the sedimentation solvent have been removed as the supernatant, and the silver nanowires are redispersed (S6: Redispersion process).
  • the amount of the filtration solvent added is 10 to 100 parts by mass, preferably 25 to 100 parts by mass, and 50 to 100 parts by mass with respect to 1 part by mass of silver in the residual liquid containing the precipitated silver nanowires. Is more preferable. If it is less than 10 parts by mass, the concentration of silver nanowires is too high and it is difficult to uniformly redistribute it. If it exceeds 100 parts by mass, the concentration of silver nanowires is low. Will be performed multiple times, which requires a great deal of labor.
  • the filtration solvent it can be used without particular limitation as long as the silver nanowires do not aggregate.
  • the solvent is a solvent in which the silver nanoparticles to be removed, the inorganic impurities, the structure defining agent, the silver nanowire manufacturing process, and the excess dispersant added in the sedimentation step are dissolved.
  • the filtering solvent in addition to water, alcohols such as methanol, ethanol, isopropyl alcohol and n-propyl alcohol and a mixture of water and alcohol can be used, but water is used from the viewpoint of handleability (safety). It is preferable to use it.
  • the silver nanowire redispersion liquid (coarse dispersion liquid) obtained in S6 was poured into a filter to perform cross-flow filtration, and the silver nanoparticles and sedimentation solvent coexisting without being completely removed in the reprecipitation cleaning step (S5).
  • the polyol and inorganic impurities present in the synthetic solution of silver nanowires and the structure defining agent used to generate the silver nanowires are removed, and the silver nanowires are purified to obtain a purified silver nanowire aqueous dispersion (S7: Purification step). ).
  • the concentration of silver (including silver nanowires and silver nanoparticles) in the redispersion liquid (coarse dispersion liquid) to be cross-flow filtered is 1.0% by mass or more, and 1.1 to 10.0% by mass. Is preferable, and more preferably 1.2% by mass to 5.0% by mass.
  • the silver nanowire ratio is preferably 92% or more, more preferably 95% or more, still more preferably 97% or more.
  • the filtration rate per unit filter area and unit time supply rate of coarse dispersion liquid
  • the higher the silver concentration in the crude dispersion the more the filtration filter is blocked by silver nanoparticles, which are by-products of the silver nanowires, and the silver nanos. Problems that prevent the removal of particles from progressing are likely to occur.
  • the filtration speed is increased, a metallic silver film is formed on the filter due to the aggregation of silver nanowires, and a problem that the removal of the polymer (structure-determining agent) does not proceed easily occurs.
  • the occurrence of these problems can be remarkably suppressed. Since the productivity is low when the filtration rate is slow, the more preferable filtration rate is 1.0 to 16.0 kg / m 2 ⁇ h, and the more preferable filtration rate is 2.0 to 15.0 kg / m 2 ⁇ h. Is.
  • the pressure difference between the front and back of the filter is preferably in the range of 0.01 MPa to 1.0 MPa, more preferably 0.015 to 0.9 MPa, and even more preferably 0.02 to 0.8 MPa.
  • the silver is added to the storage tank from an additional line in an amount equivalent to the total amount of the solvent (redispersion liquid) discharged as a filtrate to the outside of the filter.
  • the amount of the coarse dispersion liquid of the nanowire may be maintained at 60% or more of the amount of the coarse dispersion liquid before filtration, and the silver nanowire redispersion liquid may be purified.
  • the cleaning solvent can be used without particular limitation as long as the silver nanowires do not aggregate.
  • the cleaning solvent dissolves the silver nanoparticles to be removed, the inorganic impurities, the structure defining agent, the surplus dispersant added in the manufacturing process of the silver nanowires, and the sedimentation step.
  • the cleaning solvent in addition to water, alcohols such as methanol, ethanol, isopropyl alcohol and n-propyl alcohol and a mixture of water and alcohol can be used, but water is used from the viewpoint of handleability (safety). It is preferable to use it.
  • the cross-flow temperature is not particularly limited, but the time required for filtration can be shortened when the solvent is carried out at a high temperature because the viscosity of the solvent is lowered. It is usually in the range of 10 to 80 ° C, preferably 15 to 70 ° C, and more preferably 20 to 60 ° C.
  • the material of the filter is not limited as long as it can perform cross-flow filtration, but for example, a ceramic film, a hollow fiber membrane, or the like can be used.
  • a ceramic film a polymer material selected from cellulosic type, polyether sulfonic acid type, PTFE (polytetrafluoroethylene) and the like can be used.
  • PTFE polytetrafluoroethylene
  • the ceramic film a porous ceramic material can be used as the ceramic film.
  • the average pore size of the ceramic film is preferably 0.01 to 5.0 ⁇ m in order to improve the separation efficiency between the solvent and the silver nanowires.
  • the pore size of the ceramic film is too small, the filtration time will be too long, and if it is too large, not only silver nanoparticles but also a part of silver nanowires will pass through. More preferably, the average is 1.0 to 3.0 ⁇ m.
  • the end timing of purification in the above purification step (S7) can be determined without particular limitation.
  • concentration ratio of silver nanowires to the structure-determining agent is 10 or more, preferably 15 or more, more preferably 20 or more, or cleaning in a circulating filtrate.
  • the end point may be when the solvent concentration reaches 95% or more, preferably 98% or more.
  • the masses of the structure-defining agent, silver nanowires, and solvent may be simply measured using an analytical method such as thermogravimetric analysis or gas chromatography.
  • the dispersion medium of the silver nanowire dispersion liquid obtained by the above method is used as it is, or if necessary, the solvent is replaced with a solvent suitable for printing, and then a binder resin or the like is added as necessary to add silver nanowires.
  • Ink (hereinafter, may be referred to as ink) can be produced.
  • the binder component can be easily added as a subsequent step, and the silver nanowire ink can be easily produced.
  • a new viscosity adjusting solvent may be added to the silver nanowire ink to adjust the viscosity.
  • viscosity adjusting solvents include water, alcohols, ketones, esters, ethers, aliphatic hydrocarbon solvents and aromatic hydrocarbon solvents.
  • Binder resin can be further added to the silver nanowire ink.
  • the binder resin include polyacryloyl compounds such as polymethylmethacrylate, polyacrylate and polyacrylonitrile; polyvinyl alcohol; polyesters such as polyethylene terephthalate and polyethylene naphthalate; polycarbonates; highly conjugated polymers such as novolak; polyimides, polyamideimides and polyethers.
  • Iimides such as imide; polysulfide; polysulfone; polyphenylene; polyphenyl ether; polyurethane; epoxy; aromatic polyolefin such as polystyrene, polyvinyltoluene and polyvinylxylene; aliphatic polyolefin such as polypropylene and polymethylpentene; alicyclic such as polynorbornene
  • Poly-N-vinyl compounds such as olefin, poly-N-vinylpyrrolidone, poly-N-vinylcaprolactam, poly-N-vinylacetamide; acrylonitrile-butadiene-styrene copolymer polymer (ABS); hydroxypropylmethylcellulose (HPMC) , Nitrocellulose and other celluloses; Silicone resin; Polyacetate; Synthetic rubber; Polyvinyl chloride, Chlorinated polyethylene, Chlorinated polypropylene and other chlorinated polymers; Polyfluoroviny
  • conductive ink in addition to the above components, known optional components contained in the conductive ink, such as corrosion inhibitors, adhesion promoters, and surfactants, may be contained.
  • corrosion inhibitor include benzotriazole and the like
  • adhesion accelerator includes 2-hydroxymethyl cellulose and the like
  • surfactant includes the trade name F-472SF (manufactured by DIC Corporation).
  • the transparent conductive ink can be produced by appropriately selecting the above-mentioned components by a known method such as stirring, mixing, heating, cooling, dissolving, and dispersing.
  • Example 1 Manufacturing of crude silver nanowire dispersion> Weigh 667 g of propylene glycol (manufactured by AGC Inc.) in a 1 L plastic container, add 22.5 g (0.13 mol) of silver nitrate (manufactured by Toyo Kagaku Kogyo Co., Ltd.) as a silver salt, and stir for 2 hours under room temperature shading. A silver nitrate solution (second solution) was prepared.
  • the silver nitrate solution (second solution) prepared above is connected to a metering pump and added dropwise to the first solution at a temperature of 150 ° C. over 2.5 hours to synthesize silver nanowires, and another 30 minutes after the completion of the dropping.
  • the reaction was completed by continuing heating and stirring to obtain a crude silver nanowire dispersion.
  • the silver concentration of the obtained crude silver nanowire dispersion was measured by the titration method and found to be 0.4% by mass. Further, the shape of the contained silver nanowires was arbitrarily observed at 100 points using SEM (JSM-7000F manufactured by JEOL Ltd.), and the average diameter was 26 nm and the average length was 13 ⁇ m.
  • the silver concentration of the obtained silver nanowire / water dispersion was measured by the titration method and found to be 1.2% by mass. Moreover, when the concentration of PVP was measured by GPC, it was 1.8% by mass.
  • the method of measuring the silver concentration is as follows.
  • the silver concentration is determined using the Forhard method. Weigh about 1 g of the sample into a beaker and add 4 mL of nitric acid (1 + 1) and 20 mL of pure water. Cover the beaker with a watch glass and heat on a hot plate to 150 ° C. to dissolve the solids. After confirming the dissolution, stop heating and allow to cool, and wash the inner surface of the watch glass and the wall surface of the beaker with pure water to make the amount of liquid about 50 mL.
  • Silver concentration (wt%) ⁇ (V ⁇ c) ⁇ 107.9 / 1000 ⁇ / m m: Sample weight (g) V: Amount of ammonium thiocyanate aqueous solution consumed for titration to the end point (mL) c: Concentration of aqueous ammonium thiocyanate solution (0.01 mol / L) Nitric acid (1 + 1), ammonium iron (III) sulfate, and ammonium thiocyanate (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) all used reagents manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.
  • ammonium iron (III) sulfate 3% nitric acid acidity
  • a mixture of 5.17 g of ammonium iron (III) sulfate, 170 g of pure water and 2.00 g of nitric acid was used.
  • As the 0.01 mol / L ammonium thiocyanate aqueous solution pure water was added to 38.06 mg of ammonium thiocyanate to prepare a total volume of 50 mL.
  • the PVP concentration measurement by GPC is as follows.
  • GPC Gel permeation chromatography
  • the obtained silver nanowire / aqueous dispersion was diluted 300-fold with methanol to prepare a dilute silver nanowire solution.
  • a drop of the silver nanowire dilute solution was dropped on a clean glass plate and dried on a hot plate at 90 ° C.
  • the glass plate was observed using a laser microscope (Keyence VK-X200) at a magnification of 3000 (measurement field of view: 260 ⁇ m ⁇ 200 ⁇ m), and the number of silver nanowires and the number of silver nanoparticles were measured.
  • the ratio of silver nanowires in the dispersion (number of silver nanowires / (number of silver nanowires + number of silver nanoparticles)) was calculated to be 97%.
  • ⁇ Cross flow filtration> Pour 2.1 kg of the obtained silver nanowire / water dispersion into a small desktop testing machine (manufactured by Nippon Gaishi Co., Ltd., using ceramic membrane filter Sepilt, membrane area 0.06 m 2 , pore diameter 2.0 ⁇ m, size ⁇ 30 mm ⁇ 250 mm).
  • Cross-flow filtration (corresponding to the first filtration in Examples 6, 11, 12, 15 and 16 performed up to the second filtration) at a circulation flow velocity of 4 L / min, a dispersion liquid temperature of 25 ° C., and a filtration differential pressure of 0.02 MPa. Carried out.
  • the opening and closing of the permeation valve was adjusted so that the permeation rate of the filtrate was 10 g / min, and 100 g of ion-exchanged water was added to the system by backwashing every 100 g of the filtrate (solvent retention rate 95%). Washing pressure 0.15 MPa).
  • Cross-flow filtration was completed when a total of 8400 g of filtrate was obtained.
  • the total filtration time was 18.6 hours, and the filtration rate per unit time and unit filtration area was 7.5 kg / m 2 ⁇ h.
  • 1.6 kg of silver nanowire purified liquid was obtained by passing the dispersion liquid after cross-flow filtration through a 355 mesh nylon filter to remove aggregates.
  • the weight change of the nylon filter was measured before and after passing the dispersion liquid, the increase was 0.1 g, and the agglomerates generated by the cross-flow filtration were very small.
  • the silver concentration of the silver nanowire purified solution passed through the nylon filter was measured by the titration method and found to be 1.2% by mass (yield 76%). Moreover, when the concentration of PVP was measured by GPC, it was 0.07% by mass.
  • Example 2 The same synthesis method as in Example 1 was repeated three times to obtain 9.7 kg of a crude dispersion liquid containing 0.4% by mass of silver nanowires.
  • the obtained crude dispersion was placed in a 25 L PFA-coated SUS container, and 10.2 kg of butyl acetate was added over 10 minutes while stirring at 150 rpm using a mechanical stirrer. After continuing the stirring for 10 minutes, the stirring was stopped and the mixture was allowed to stand for 10 minutes to separate the supernatant and the precipitate. Then, 13.9 kg of the supernatant was removed by a decantation operation.
  • the silver concentration of the obtained silver nanowire / aqueous dispersion was measured by the titration method and found to be 1.8% by mass. Moreover, when the concentration of PVP was measured by GPC, it was 2.7% by mass.
  • the obtained silver nanowire / aqueous dispersion was diluted 500-fold with methanol to prepare a dilute silver nanowire solution.
  • a drop of the silver nanowire dilute solution was dropped on a clean glass plate and dried on a hot plate at 90 ° C.
  • the glass plate was observed with a laser microscope (VK-X200 manufactured by KEYENCE CORPORATION) at a magnification of 3000 times, and the number of silver nanowires and the number of silver nanoparticles were measured.
  • the ratio of silver nanowires in the dispersion (number of silver nanowires / (number of silver nanowires + number of silver nanoparticles)) was calculated to be 97%.
  • the obtained silver nanowire / aqueous dispersion was purified by cross-flow filtration in the same manner as in Example 1.
  • the total filtration time was 29.1 hours, and the filtration rate per unit time and unit filtration area was 4.8 kg / m 2 ⁇ h.
  • the dispersion liquid after cross-flow filtration was passed through a 355 mesh nylon filter to remove aggregates, thereby obtaining 1.4 kg of a silver nanowire purified liquid.
  • the weight change of the nylon filter was measured before and after passing the dispersion liquid, the increase was 0.02 g, and there was almost no agglomerate generated by the cross-flow filtration.
  • the silver concentration of the silver nanowire purified liquid passed through the nylon filter was measured by the titration method and found to be 1.8% by mass (yield 69%). Moreover, when the concentration of PVP was measured by GPC, it was 0.09% by mass.
  • Example 3 2.1 kg of silver nanowire / water dispersion was obtained in the same manner as in Example 2.
  • the silver concentration of the obtained silver nanowire / aqueous dispersion was measured by a titration method and found to be 1.8% by mass.
  • the concentration of PVP was measured by GPC, it was 2.7% by mass.
  • the ratio of silver nanowires in the dispersion was calculated by the same method as in Example 2 and found to be 97%.
  • the opening and closing of the permeation valve was adjusted so that the permeation rate of the filtrate was about 10 g / min, and 200 g of ion-exchanged water was added to the system by backwashing every time 200 g of the filtrate was obtained (solvent retention rate 90%). Backwash pressure 0.15 MPa).
  • Cross-flow filtration was completed when a total of 8400 g of filtrate was obtained.
  • the total filtration time was 24.7 hours, and the filtration rate per unit time and unit filtration area was 5.7 kg / m 2 ⁇ h.
  • the silver concentration of the silver nanowire purified solution passed through the nylon filter was measured by the titration method and found to be 1.7% by mass (yield 66%). Moreover, when the concentration of PVP was measured by GPC, it was 0.07% by mass.
  • Example 4 2.1 kg of silver nanowire / water dispersion was obtained in the same manner as in Example 2.
  • the silver concentration of the obtained silver nanowire / aqueous dispersion was measured by a titration method and found to be 1.8% by mass.
  • the concentration of PVP was measured by GPC, it was 2.2% by mass.
  • the ratio of silver nanowires in the dispersion was calculated by the same method as in Example 2 and found to be 95%.
  • the opening and closing of the permeation valve was adjusted so that the permeation rate of the filtrate was about 10 g / min, and 400 g of ion-exchanged water was added to the system by backwash every time 400 g of the filtrate was obtained (solvent retention rate 80%). Backwash pressure 0.15 MPa).
  • Cross-flow filtration was completed when a total of 8400 g of filtrate was obtained.
  • the total filtration time was 24.2 hours, and the filtration rate per unit time and unit filtration area was 5.8 kg / m 2 ⁇ h.
  • 1.5 kg of silver nanowire purified liquid was obtained by passing the dispersion liquid after cross-flow filtration through a 355 mesh nylon filter to remove aggregates.
  • the weight change of the nylon filter was measured before and after passing the dispersion liquid, the increase was 0.01 g, and there was almost no agglomerate generated by the cross-flow filtration.
  • the silver concentration of the silver nanowire purified solution passed through the nylon filter was measured by the titration method and found to be 1.8% by mass (yield 72%). Moreover, when the concentration of PVP was measured by GPC, it was 0.06% by mass.
  • Example 5 2.1 kg of silver nanowire / water dispersion was obtained in the same manner as in Example 2.
  • the silver concentration of the obtained silver nanowire / aqueous dispersion was measured by a titration method and found to be 1.8% by mass.
  • the concentration of PVP was measured by GPC, it was 2.0% by mass.
  • the ratio of silver nanowires in the dispersion was calculated by the same method as in Example 2 and found to be 95%.
  • the opening and closing of the permeation valve was adjusted so that the permeation rate of the filtrate was about 10 g / min, and 700 g of ion-exchanged water was added to the system by backwashing every 700 g of the filtrate (solvent retention rate 67%). Backwash pressure 0.15 MPa).
  • Cross-flow filtration was completed when a total of 8400 g of filtrate was obtained.
  • the total filtration time was 24.8 hours, and the filtration rate per unit time and unit filtration area was 5.7 kg / m 2 ⁇ h.
  • the silver concentration of the silver nanowire purified solution passed through the nylon filter was measured by the titration method and found to be 1.8% by mass (yield 88%). Moreover, when the concentration of PVP was measured by GPC, it was 0.04% by mass.
  • Example 6 2.1 kg of silver nanowire / water dispersion was obtained in the same manner as in Example 2.
  • the silver concentration of the obtained silver nanowire / aqueous dispersion was measured by a titration method and found to be 1.8% by mass.
  • the concentration of PVP was measured by GPC, it was 2.7% by mass.
  • the ratio of silver nanowires in the dispersion was calculated by the same method as in Example 2 and found to be 97%.
  • the opening and closing of the permeation valve was adjusted so that the permeation rate of the filtrate was about 10 g / min, and 100 g of ion-exchanged water was added to the system by backwashing every 100 g of the filtrate (solvent retention rate 95%). Backwash pressure 0.15 MPa).
  • the solvent added to the system by backwashing was changed from ion-exchanged water to ethanol, and cross-flow filtration (second filtration) was continued at a filtration differential pressure of 0.03 MPa.
  • Cross-flow filtration was terminated when an additional 2800 g of filtrate was obtained.
  • the total first filtration time using ion-exchanged water was 20.9 hours, and the filtration rate per unit time and unit filtration area was 4.6 kg / m 2 ⁇ h.
  • the total second filtration time using ethanol was 11.7 hours, and the filtration rate per unit time and unit filtration area was 4.0 kg / m 2 ⁇ h.
  • the silver concentration of the silver nanowire purified liquid passed through the nylon filter was measured by the titration method and found to be 1.8% by mass (yield 70%). Moreover, when the concentration of PVP was measured by GPC, it was 0.12% by mass.
  • Example 7 The same synthesis method as in Example 1 was repeated 4 times to obtain 14.4 kg of a crude silver nanowire dispersion. 13.2 kg of the obtained crude dispersion was placed in a 35 L ETFE (ethylene-tetrafluoroethylene copolymer) coated SUS container, and 13.8 kg of butyl acetate was added for 10 minutes while stirring at 150 rpm using a mechanical stirrer. It was added over. After continuing the stirring for 10 minutes, the stirring was stopped and the mixture was allowed to stand for 10 minutes to separate the supernatant and the precipitate. Then, 18.8 kg of the supernatant was removed by a decantation operation.
  • ETFE ethylene-tetrafluoroethylene copolymer
  • the silver concentration of the obtained silver nanowire / aqueous dispersion was measured by the titration method and found to be 2.5% by mass. Moreover, when the concentration of PVP was measured by GPC, it was 3.8% by mass.
  • the obtained silver nanowire / aqueous dispersion was diluted 700-fold with methanol to prepare a dilute silver nanowire solution.
  • a drop of the silver nanowire dilute solution was dropped on a clean glass plate and dried on a hot plate at 90 ° C.
  • the glass plate was observed with a laser microscope (Keyence VK-X200) at a magnification of 3000 times, and the number of silver nanowires and the number of silver nanoparticles were measured.
  • the ratio of silver nanowires in the dispersion (number of silver nanowires / (number of silver nanowires + number of silver nanoparticles)) was calculated to be 95%.
  • the silver nanowire / water dispersion was purified by cross-flow filtration in the same manner as in Example 1 except that the filtration differential pressure was 0.04 MPa.
  • the total filtration time was 35.0 hours, and the filtration rate per unit time and unit filtration area was 4.0 kg / m 2 ⁇ h.
  • the dispersion liquid after cross-flow filtration was passed through a 355 mesh nylon filter to remove aggregates, thereby obtaining 1.4 kg of a silver nanowire purified liquid.
  • the weight change of the nylon filter was measured before and after passing the dispersion liquid, the increase was 0.1 g, and there was almost no agglomerate generated by the cross-flow filtration.
  • the silver concentration of the silver nanowire purified solution passed through the nylon filter was measured by the titration method and found to be 2.5% by mass (yield 72%). Moreover, when the concentration of PVP was measured by GPC, it was 0.18% by mass.
  • Example 8 The same synthesis method as in Example 1 was repeated twice to obtain 7.2 kg of a crude silver nanowire dispersion. 5.3 kg of the obtained crude dispersion was placed in a 15 L PFA-coated SUS container, and 5.6 kg of butyl acetate was added over 10 minutes while stirring at 150 rpm using a mechanical stirrer. After continuing the stirring for 10 minutes, the stirring was stopped and the mixture was allowed to stand for 10 minutes to separate the supernatant and the precipitate. Then, 7.6 kg of the supernatant was removed by a decantation operation.
  • the silver concentration of the obtained silver nanowire / methanol dispersion was measured by the titration method and found to be 1.0% by mass. Moreover, when the concentration of PVP was measured by GPC, it was 1.4% by mass.
  • the obtained silver nanowire / methanol dispersion was diluted 300-fold with methanol to prepare a dilute silver nanowire solution.
  • a drop of the silver nanowire dilute solution was dropped on a clean glass plate and dried on a hot plate at 90 ° C.
  • the glass plate was observed with a laser microscope (Keyence VK-X200) at a magnification of 3000 times, and the number of silver nanowires and the number of silver nanoparticles were measured.
  • the ratio of silver nanowires in the dispersion (number of silver nanowires / (number of silver nanowires + number of silver nanoparticles)) was calculated to be 92%.
  • the opening and closing of the permeation valve was adjusted so that the permeation rate of the filtrate was 12 g / min, and 100 g of methanol was added to the system by backwash every time 100 g of the filtrate was obtained (solvent retention rate 95%) (backwash pressure). 0.15 MPa).
  • Cross-flow filtration was completed when a total of 8400 g of filtrate was obtained.
  • the total filtration time was 12.7 hours, and the filtration rate per unit time and unit filtration area was 11.0 kg / m 2 ⁇ h.
  • 1.5 kg of silver nanowire purified liquid was obtained by passing the dispersion liquid after cross-flow filtration through a 355 mesh nylon filter to remove aggregates.
  • the weight change of the nylon filter was measured before and after passing the dispersion liquid, the increase was 0.04 g, and there was almost no agglomerate generated by the cross-flow filtration.
  • the silver concentration of the silver nanowire purified liquid passed through the nylon filter was measured by the titration method and found to be 1.0% by mass (yield 75%). Moreover, when the concentration of PVP was measured by GPC, it was 0.07% by mass.
  • Example 9 2.1 kg of silver nanowire / methanol dispersion was obtained in the same manner as in Example 8. The silver concentration of the obtained silver nanowire / methanol dispersion was measured by a titration method and found to be 1.0% by mass. Moreover, when the concentration of PVP was measured by GPC, it was 1.2% by mass.
  • the ratio of silver nanowires in the dispersion was calculated by the same method as in Example 8 and found to be 95%.
  • the opening and closing of the permeation valve was adjusted so that the permeation rate of the filtrate was 17 g / min, and 100 g of methanol was added to the system by backwash every time 100 g of the filtrate was obtained (solvent retention rate 95%) (backwash pressure). 0.15 MPa).
  • Cross-flow filtration was completed when a total of 8400 g of filtrate was obtained.
  • the total filtration time was 8.8 hours, and the filtration rate per unit time and unit filtration area was 16.0 kg / m 2 ⁇ h.
  • the silver concentration of the silver nanowire purified liquid passed through the nylon filter was measured by the titration method and found to be 1.0% by mass (yield 65%). Moreover, when the concentration of PVP was measured by GPC, it was 0.09% by mass.
  • Example 10 2.1 kg of silver nanowire / methanol dispersion was obtained in the same manner as in Example 8. The silver concentration of the obtained silver nanowire / methanol dispersion was measured by a titration method and found to be 1.0% by mass. Moreover, when the concentration of PVP was measured by GPC, it was 1.5% by mass.
  • the ratio of silver nanowires in the dispersion was calculated by the same method as in Example 8 and found to be 97%.
  • the opening and closing of the permeation valve was adjusted so that the permeation rate of the filtrate was 17 g / min, and 100 g of methanol was added to the system by backwash every time 100 g of the filtrate was obtained (solvent retention rate 95%) (backwash pressure). 0.15 MPa).
  • Cross-flow filtration was completed when a total of 8400 g of filtrate was obtained.
  • the total filtration time was 7.0 hours, and the filtration rate per unit time and unit filtration area was 20.0 kg / m 2 ⁇ h.
  • the silver concentration of the silver nanowire purified solution passed through the nylon filter was measured by the titration method and found to be 0.9% by mass (yield 61%). Moreover, when the concentration of PVP was measured by GPC, it was 0.18% by mass.
  • Example 11 The same operation as in Example 1 was repeated twice to obtain 7.2 kg of a crude silver nanowire dispersion liquid. 6.3 kg of the obtained crude dispersion was placed in a 15 L PFA-coated SUS container, and 6.6 kg of butyl acetate was added over 10 minutes while stirring at 150 rpm using a mechanical stirrer. After continuing the stirring for 10 minutes, the stirring was stopped and the mixture was allowed to stand for 10 minutes to separate the supernatant and the precipitate. Then, 9.0 kg of the supernatant was removed by a decantation operation.
  • the silver concentration of the obtained silver nanowire / methanol dispersion was measured by the titration method and found to be 1.2% by mass. Moreover, when the concentration of PVP was measured by GPC, it was 1.1% by mass.
  • the ratio of silver nanowires in the dispersion was calculated by the same method as in the examples, and it was 96%.
  • the opening and closing of the permeation valve was adjusted so that the permeation rate of the filtrate was 10 g / min, and 100 g of methanol was added to the system by backwash every time 100 g of the filtrate was obtained (solvent retention rate 95%) (backwash pressure). 0.15 MPa).
  • solvent retention rate 98%
  • backwash pressure 0.15 MPa.
  • the solvent added to the system by backwashing was changed from methanol to ethanol, and cross-flow filtration (second filtration) was continued at a filtration differential pressure of 0.02 MPa.
  • Cross-flow filtration was completed when 1400 g of the filtrate was obtained.
  • the total first filtration time using methanol was 16.7 hours, and the filtration rate per unit time and unit filtration area was 7.0 kg / m 2 ⁇ h.
  • the total second filtration time using ethanol was 3.0 hours, and the filtration rate per unit time and unit filtration area was 7.8 g / m 2 ⁇ h.
  • 1.5 kg of silver nanowire purified liquid was obtained by passing the dispersion liquid after cross-flow filtration through a 355 mesh nylon filter to remove aggregates.
  • the weight change of the nylon filter was measured before and after passing the dispersion liquid, the increase was 0.17 g, and the agglomerates generated by the cross-flow filtration were very small.
  • the silver concentration of the silver nanowire purified solution passed through the nylon filter was measured by the titration method and found to be 1.2% by mass (yield 76%). Moreover, when the concentration of PVP was measured by GPC, it was 0.10% by mass.
  • Example 12 2.1 kg of silver nanowire / methanol dispersion was obtained in the same manner as in Example 11. The silver concentration of the obtained silver nanowire dispersion was measured by the titration method and found to be 1.2% by mass. Moreover, when the concentration of PVP was measured by GPC, it was 1.4% by mass.
  • the ratio of silver nanowires in the dispersion was calculated by the same method as in Example 11 and found to be 96%.
  • the opening and closing of the permeation valve was adjusted so that the permeation rate of the filtrate was 10 g / min, and 100 g of methanol was added to the system by backwash every time 100 g of the filtrate was obtained (solvent retention rate 95%) (backwash pressure). 0.15 MPa).
  • solvent retention rate 98%
  • backwash pressure 0.15 MPa.
  • the solvent added to the system by backwashing was changed from methanol to ethanol, and cross-flow filtration (second filtration) was continued at a filtration differential pressure of 0.02 MPa.
  • Cross-flow filtration was terminated when an additional 2100 g of filtrate was obtained.
  • the total first filtration time using methanol was 21.2 hours, and the filtration rate per unit time and unit filtration area was 5.0 kg / m 2 ⁇ h.
  • the total second filtration time using ethanol was 4.2 hours, and the filtration rate per unit time and unit filtration area was 8.3 kg / m 2 ⁇ h.
  • the silver concentration of the silver nanowire purified liquid passed through the nylon filter was measured by the titration method and found to be 1.2% by mass (yield 71%). Moreover, when the concentration of PVP was measured by GPC, it was 0.11% by mass.
  • Example 13 2.1 kg of silver nanowire / methanol dispersion was obtained in the same manner as in Example 2 except that methanol was used instead of ion-exchanged water.
  • the silver concentration of the obtained silver nanowire / methanol dispersion was measured by a titration method and found to be 1.8% by mass. Moreover, when the concentration of PVP was measured by GPC, it was 2.6% by mass.
  • the ratio of silver nanowires in the dispersion was calculated by the same method as in Example 2 and found to be 95%.
  • the opening and closing of the permeation valve was adjusted so that the permeation rate of the filtrate was 10 g / min, and 100 g of methanol was added to the system by backwash every time 100 g of the filtrate was obtained (solvent retention rate 95%) (backwash pressure). 0.15 MPa).
  • Cross-flow filtration was completed when a total of 8400 g of filtrate was obtained.
  • the total filtration time was 15.4 hours, and the filtration rate per unit time and unit filtration area was 9.1 kg / m 2 ⁇ h.
  • 1.5 kg of silver nanowire purified liquid was obtained by passing the dispersion liquid after cross-flow filtration through a 355 mesh nylon filter to remove aggregates.
  • the weight change of the nylon filter was measured before and after passing the dispersion liquid, the increase was 0.2 g, and the agglomerates generated by the cross-flow filtration were very small.
  • the silver concentration of the silver nanowire purified liquid passed through the nylon filter was measured by the titration method and found to be 1.8% by mass (yield 75%). Moreover, when the concentration of PVP was measured by GPC, it was 0.06% by mass.
  • Example 14 2.1 kg of silver nanowire / ethanol dispersion was obtained in the same manner as in Example 2 except that ethanol was used instead of the ion-exchanged water.
  • the silver concentration of the obtained silver nanowire / ethanol dispersion was measured by a titration method and found to be 1.8% by mass. Moreover, when the concentration of PVP was measured by GPC, it was 2.7% by mass.
  • the ratio of silver nanowires in the dispersion was calculated by the same method as in Example 13 and found to be 92%.
  • the opening and closing of the permeation valve was adjusted so that the permeation rate of the filtrate was about 5 g / min, and 100 g of ethanol was added to the system by backwash every time 100 g of the filtrate was obtained (solvent retention rate 95%). Pressure 0.15 MPa).
  • Cross-flow filtration was completed when a total of 8400 g of filtrate was obtained.
  • the total filtration time was 40.1 hours, and the filtration rate was calculated to be 3.5 kg / m 2 ⁇ h.
  • the silver concentration of the silver nanowire purified liquid passed through the nylon filter was measured by the titration method and found to be 1.8% by mass (yield 71%). Moreover, when the concentration of PVP was measured by GPC, it was 0.11% by mass.
  • Example 15 The same synthesis method as in Example 1 was repeated 27 times to obtain 97.2 kg of a crude silver nanowire dispersion.
  • the silver concentration of the obtained silver nanowire / aqueous dispersion was measured by the titration method and found to be 1.8% by mass. Moreover, when the concentration of PVP was measured by GPC, it was 2.7% by mass.
  • the ratio of silver nanowires in the dispersion was calculated by the same method as in Example 2 and found to be 93%.
  • Cross-flow filtration (first filtration) was performed at a flow velocity of 7 L / min, a dispersion temperature of 25 ° C., and a filtration differential pressure of 0.07 MPa.
  • the opening and closing of the permeation valve is adjusted so that the permeation rate of the filtrate is about 40 g / min, and 1.0 kg of ion-exchanged water is backwashed every time 1.0 kg of filtrate is obtained (solvent retention rate 95%). (Backwash pressure 0.15 MPa).
  • the solvent added to the system by backwashing was changed from ion-exchanged water to ethanol, and cross-flow filtration (second filtration) was continued at a filtration differential pressure of 0.07 MPa.
  • Cross-flow filtration was terminated when an additional 10 kg of filtrate was obtained.
  • the total first filtration time using ion-exchanged water was 82.9 hours, and the filtration rate per unit time and unit filtration area was 7.0 kg / m 2 ⁇ h.
  • the total second filtration time using ethanol was 7.1 hours, and the filtration rate per unit time and unit filtration area was 5.9 kg / m 2 ⁇ h.
  • 16.4 kg of silver nanowire purified liquid was obtained by passing the dispersion liquid after cross-flow filtration through a 30 ⁇ m depth filter to remove aggregates.
  • the weight change of the depth filter was measured before and after passing through the dispersion liquid, the increase was 1.6 g, and the agglomerates generated by the cross-flow filtration were very small with respect to the theoretical yield (378 g) of the silver nanowires.
  • the silver concentration of the silver nanowire purified solution passed through the depth filter was measured by the titration method and found to be 1.8% by mass (yield 78%). Moreover, when the concentration of PVP was measured by GPC, it was 0.09% by mass.
  • Example 16 The same synthesis method as in Example 1 was repeated 27 times to obtain 97.2 kg of a crude dispersion liquid containing 0.4% by mass of silver nanowires.
  • the silver concentration of the obtained silver nanowire / aqueous dispersion was measured by the titration method and found to be 1.8% by mass. Moreover, when the concentration of PVP was measured by GPC, it was 2.5% by mass.
  • the ratio of silver nanowires in the dispersion was calculated by the same method as in Example 2 and found to be 95%.
  • Cross-flow filtration (first filtration) was performed at a flow velocity of 7 L / min, a dispersion temperature of 25 ° C., and a filtration differential pressure of 0.08 MPa.
  • the opening and closing of the permeation valve is adjusted so that the permeation rate of the filtrate is about 40 g / min, and 2.0 kg of ion-exchanged water is backwashed every time 2.0 kg of filtrate is obtained (solvent retention rate 90%). (Backwash pressure 0.15 MPa).
  • solvent added to the system by backwashing was changed from ion-exchanged water to ethanol, and cross-flow filtration (second filtration) was continued with a filtration differential pressure of 0.08 MPa.
  • Cross-flow filtration was terminated when an additional 14 kg of filtrate was obtained.
  • the total first filtration time using ion-exchanged water was 96.4 hours, and the filtration rate per unit time and unit filtration area was 7.3 kg / m 2 ⁇ h.
  • the total second filtration time using ethanol was 8.3 hours, and the filtration rate per unit time and unit filtration area was 5.0 kg / m 2 ⁇ h.
  • 14.7 kg of silver nanowire purified liquid was obtained by passing the dispersion liquid after cross-flow filtration through a 30 ⁇ m depth filter to remove aggregates.
  • the weight change of the depth filter was measured before and after passing through the dispersion liquid, and the increase was 1.3 g, and the agglomerates generated by the cross-flow filtration were very small with respect to the theoretical yield (378 g) of the silver nanowires.
  • the silver concentration of the silver nanowire purified solution passed through the depth filter was measured by the titration method and found to be 1.8% by mass (yield 70%). Moreover, when the concentration of PVP was measured by GPC, it was 0.15% by mass.
  • Example 17 The same synthesis method as in Example 1 was repeated three times to obtain 9.7 kg of a crude dispersion liquid containing 0.4% by mass of silver nanowires.
  • the obtained crude dispersion was placed in a 25 L PFA-coated SUS container, and 10.2 kg of butyl acetate was added over 10 minutes while stirring at 150 rpm using a mechanical stirrer. After continuing the stirring for 10 minutes, the stirring was stopped and the mixture was allowed to stand for 10 minutes to separate the supernatant and the precipitate. Then, 13.9 kg of the supernatant was removed by a decantation operation.
  • the silver concentration of the obtained silver nanowire / aqueous dispersion was measured by the titration method and found to be 1.7% by mass. Moreover, when the concentration of PVP was measured by GPC, it was 1.8% by mass.
  • the obtained silver nanowire / aqueous dispersion was diluted 500-fold with methanol to prepare a dilute silver nanowire solution.
  • a drop of the silver nanowire dilute solution was dropped on a clean glass plate and dried on a hot plate at 90 ° C.
  • the glass plate was observed with a laser microscope (Keyence VK-X200) at a magnification of 3000 times, and the number of silver nanowires and the number of silver nanoparticles were measured.
  • the ratio of silver nanowires in the dispersion (number of silver nanowires / (number of silver nanowires + number of silver nanoparticles)) was calculated to be 92%.
  • the obtained silver nanowire / aqueous dispersion was purified by cross-flow filtration in the same manner as in Example 1.
  • the total filtration time was 18.8 hours, and the filtration rate per unit time and unit filtration area was 7.4 kg / m 2 ⁇ h.
  • the dispersion liquid after cross-flow filtration was passed through a 355 mesh nylon filter to remove aggregates, thereby obtaining 1.4 kg of a silver nanowire purified liquid.
  • the weight change of the nylon filter was measured before and after passing the dispersion liquid, the increase was 0.15 g, and there was almost no agglomerate generated by the cross-flow filtration.
  • the silver concentration of the silver nanowire purified solution passed through the nylon filter was measured by the titration method and found to be 1.7% by mass (yield 68%). Moreover, when the concentration of PVP was measured by GPC, it was 0.06% by mass.
  • Comparative Example 1 The same synthesis method as in Example 1 was repeated three times to obtain 9.7 kg of a crude silver nanowire dispersion.
  • the obtained crude dispersion was placed in a 25 L PFA-coated SUS container, and 10.2 kg of butyl acetate was added over 10 minutes while stirring at 150 rpm using a mechanical stirrer. After continuing the stirring for 10 minutes, the stirring was stopped and the mixture was allowed to stand for 10 minutes to separate the supernatant and the precipitate. Then, 13.9 kg of the supernatant was removed by a decantation operation.
  • the silver concentration of the obtained silver nanowire / aqueous dispersion was measured by the titration method and found to be 1.8% by mass. Moreover, when the concentration of PVP was measured by GPC, it was 5.9% by mass.
  • the ratio of silver nanowires in the dispersion was calculated by the same method as in Example 2 and found to be 26%.
  • the silver nanowire concentrate was purified by cross-flow filtration in the same manner as in Example 2.
  • the total filtration time was 40.0 hours, and the filtration rate per unit time and unit filtration area was 3.5 kg / m 2 ⁇ h.
  • the dispersion liquid after cross-flow filtration was passed through a 355 mesh nylon filter to remove aggregates, thereby obtaining 1.5 kg of a silver nanowire purified liquid.
  • the weight change of the nylon filter was measured before and after passing the dispersion liquid, the increase was 0.1 g, and the agglomerates generated by the cross-flow filtration were very small.
  • the silver concentration of the silver nanowire purified solution passed through the nylon filter was measured by the titration method and found to be 1.8% by mass (yield 74%). Moreover, when the concentration of PVP was measured by GPC, it was 0.22% by mass.
  • Comparative Example 2 The same synthesis method as in Example 1 was repeated three times to obtain 9.7 kg of a crude silver nanowire dispersion.
  • the obtained crude dispersion was placed in a 25 L PFA-coated SUS container, and 10.2 kg of butyl acetate was added over 10 minutes while stirring at 150 rpm using a mechanical stirrer. After continuing the stirring for 10 minutes, the stirring was stopped and the mixture was allowed to stand for 10 minutes to separate the supernatant and the precipitate. Then, 13.9 kg of the supernatant was removed by a decantation operation.
  • the silver concentration of the obtained silver nanowire / aqueous dispersion was measured by the titration method and found to be 1.8% by mass. Moreover, when the concentration of PVP was measured by GPC, it was 2.7% by mass.
  • the ratio of silver nanowires in the dispersion was calculated by the same method as in Example 2 and found to be 78%.
  • the silver nanowire concentrate was purified in the same manner as in Example 2 except that cross-flow filtration was continued until a total of 14 kg of filtrate was obtained.
  • the total filtration time was 38.4 hours, and the filtration rate per unit time and unit filtration area was 6.1 kg / m 2 ⁇ h.
  • the dispersion liquid after cross-flow filtration was passed through a 355 mesh nylon filter to remove aggregates, thereby obtaining 1.4 kg of a silver nanowire purified liquid.
  • the weight change of the nylon filter was measured before and after passing the dispersion liquid, the increase was 0.2 g, and the agglomerates generated by the cross-flow filtration were very small.
  • the silver concentration of the silver nanowire purified liquid passed through the nylon filter was measured by the titration method and found to be 1.8% by mass (yield 67%). Moreover, when the concentration of PVP was measured by GPC, it was 0.15% by mass.
  • Comparative Example 3 The same synthesis method as in Example 1 was repeated three times to obtain 9.7 kg of a crude silver nanowire dispersion.
  • the obtained crude dispersion was placed in a 25 L PFA-coated SUS container, and 10.2 kg of butyl acetate was added over 10 minutes while stirring at 150 rpm using a mechanical stirrer. After continuing the stirring for 10 minutes, the stirring was stopped and the mixture was allowed to stand for 10 minutes to separate the supernatant and the precipitate. Then, 13.9 kg of the supernatant was removed by a decantation operation.
  • the silver concentration of the obtained silver nanowire / aqueous dispersion was measured by the titration method and found to be 1.8% by mass. Moreover, when the concentration of PVP was measured by GPC, it was 2.7% by mass.
  • the ratio of silver nanowires in the dispersion was calculated by the same method as in Example 2 and found to be 85%.
  • the silver nanowire concentrate was purified in the same manner as in Example 2 except that cross-flow filtration was continued until a total of 14 kg of filtrate was obtained.
  • the total filtration time was 35.0 hours, and the filtration rate per unit time and unit filtration area was 5.0 kg / m 2 ⁇ h.
  • the dispersion liquid after cross-flow filtration was passed through a 355 mesh nylon filter to remove aggregates, thereby obtaining 1.3 kg of a silver nanowire purified liquid.
  • the weight change of the nylon filter was measured before and after passing the dispersion liquid, the increase was 0.2 g, and the agglomerates generated by the cross-flow filtration were very small.
  • the silver concentration of the silver nanowire purified liquid passed through the nylon filter was measured by the titration method and found to be 1.8% by mass (yield 65%). Moreover, when the concentration of PVP was measured by GPC, it was 0.18% by mass.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

[Problem] To use cross-flow filtration to purify a crude silver nanowire dispersion that includes silver nanowires and a structure-directing agent and has a silver density of at least 1.0 mass% and produce a high-purity silver nanowire dispersion at high yield. [Solution] A production method for a silver nanowire dispersion that includes: steps (S1–S6) for preparing a crude silver nanowire dispersion that includes silver nanowires that satisfy silver nanowire count/total particle count>90% and a structure-directing agent and has a silver density of at least 1.0 mass%; and a cross-flow filtration step (S7) for purifying the crude silver nanowire dispersion by circulating cross-flow filtration.

Description

銀ナノワイヤ分散液の製造方法Manufacturing method of silver nanowire dispersion liquid
 本発明は、銀ナノワイヤ分散液の製造方法に関する。 The present invention relates to a method for producing a silver nanowire dispersion liquid.
 銀ナノワイヤは、径がナノメーターオーダーのワイヤ状(線状)の銀よりなる導電性材料である。銀ナノワイヤにより形成した導電層(薄膜)は、導電性及び光透過性が高いので、例えばタッチパネルの透明電極材料等に使用されている。 Silver nanowires are conductive materials made of wire-like (linear) silver with a diameter on the order of nanometers. Since the conductive layer (thin film) formed of silver nanowires has high conductivity and light transmission, it is used as a transparent electrode material for a touch panel, for example.
 このような銀ナノワイヤの製造方法としては、例えば下記非特許文献1に記載されたように、ポリオール(グリコール溶媒)中で銀塩を還元する方法(ポリオール還元法)がある。 As a method for producing such silver nanowires, for example, as described in Non-Patent Document 1 below, there is a method of reducing a silver salt in a polyol (glycol solvent) (polyol reduction method).
 ポリオール還元法で銀ナノワイヤを製造した場合、合成液中には銀ナノワイヤ以外に、ポリオール(グリコール)溶媒、保護剤として用いるポリマー、副生する銀ナノ粒子などが混在するため、銀ナノワイヤの分散液をろ過(全量ろ過)や遠心沈降することにより不要物を除去し、銀ナノワイヤのみを単離する必要がある。しかし、この方法では単離時に銀ナノワイヤに応力がかかるために、大スケールでの製造になるほど銀ナノワイヤが凝集しやすく再分散が困難になるという問題があった。 When silver nanowires are produced by the polyol reduction method, in addition to silver nanowires, a polyol (glycol) solvent, a polymer used as a protective agent, silver nanoparticles produced as by-products, etc. are mixed in the synthetic solution. It is necessary to remove unnecessary substances by filtering (total filtration) or centrifuging, and to isolate only silver nanowires. However, this method has a problem that since the silver nanowires are stressed at the time of isolation, the silver nanowires tend to aggregate and redisperse becomes difficult as the scale of production increases.
 そこで、下記特許文献1から7には、クロスフロー濾過を使用してバッチ式にて銀ナノワイヤが分散した分散液を濾過、精製する技術が開示されている。クロスフロー濾過を使用した場合、銀ナノワイヤの凝集を抑制することができる。 Therefore, Patent Documents 1 to 7 below disclose a technique for filtering and purifying a dispersion liquid in which silver nanowires are dispersed by a batch method using cross-flow filtration. When cross-flow filtration is used, agglomeration of silver nanowires can be suppressed.
 特許文献1には、限外ろ過膜を用いた膜分離法によって、銀ナノワイヤ分散液から親水性高分子または両親媒性分子である形態制御剤を除去する方法が開示されている。特許文献2から5には、0.4%以下の希薄な銀濃度の分散液をクロスフロー濾過を用いて精製する方法が開示されている。特許文献6,7には、反応液にアセトンを20倍量添加し、静置後デカンテーションする方法(洗浄工程)を繰り返すことで、過剰な有機保護剤や銀ナノ粒子をある程度除去した後、クロスフローろ過をおこなうことでさらに長さ1~5μm程度のワイヤを除去する方法が開示されている。 Patent Document 1 discloses a method for removing a morphological control agent, which is a hydrophilic polymer or an amphipathic molecule, from a silver nanowire dispersion liquid by a membrane separation method using an ultrafiltration membrane. Patent Documents 2 to 5 disclose a method for purifying a dispersion having a dilute silver concentration of 0.4% or less by using cross-flow filtration. In Patent Documents 6 and 7, an excess amount of organic protective agent and silver nanoparticles are removed to some extent by repeating a method (washing step) of adding 20 times the amount of acetone to the reaction solution and decanting after allowing it to stand. A method of further removing a wire having a length of about 1 to 5 μm by performing cross-flow filtration is disclosed.
特開2009-129732号公報JP-A-2009-129732 国際公開第WO2009/107694号公報International Publication No. WO2009 / 107694 特開2010-84173号公報JP-A-2010-84173 特開2013-199690号公報Japanese Unexamined Patent Publication No. 2013-199690 US公開2018-354039号公報US Publication No. 2018-354039 特開2017-220453号公報Japanese Unexamined Patent Publication No. 2017-220453 特開2016-55283号公報Japanese Unexamined Patent Publication No. 2016-55283
 特許文献1に記載の方法は、銀濃度の希薄な合成液(約0.35%)を、液量が15%となるまで濃縮(銀濃度約2.3%)し、エタノールを添加して初期量に戻す方法であり、一バッチにて精製可能な銀量は約1gと非常に少ない。そのため銀ナノワイヤの収量を増やすには、一連のバッチを複数回繰り返す必要があり、効率が悪いという課題があった。特許文献2から7も同様に、0.4%以下の希薄な銀濃度の分散液をクロスフロー濾過を用いて精製する方法であり、バッチあたりの生産量が少ないという課題があった。 In the method described in Patent Document 1, a synthetic solution having a dilute silver concentration (about 0.35%) is concentrated until the amount of the solution reaches 15% (silver concentration is about 2.3%), and ethanol is added. This is a method of returning to the initial amount, and the amount of silver that can be purified in one batch is very small, about 1 g. Therefore, in order to increase the yield of silver nanowires, it is necessary to repeat a series of batches a plurality of times, which has a problem of inefficiency. Similarly, Patent Documents 2 to 7 are methods for purifying a dispersion having a dilute silver concentration of 0.4% or less by using cross-flow filtration, and have a problem that the production amount per batch is small.
 バッチあたりの生産量を向上させるには、クロスフローろ過に投入する銀ナノワイヤ分散液の銀濃度を高くして収量を増やす方法が考えられる。しかし高い銀濃度の銀ナノワイヤ分散液を連続的にクロスフローろ過により精製した場合、フィルター上に堆積する銀ナノワイヤ量が増えるため、クロスフローろ過法を用いてもワイヤの凝集を防ぐことが難しい。そのため収率が低くなりやすいという問題が存在した。 In order to improve the production volume per batch, it is conceivable to increase the silver concentration of the silver nanowire dispersion liquid to be added to the cross-flow filtration to increase the yield. However, when a silver nanowire dispersion having a high silver concentration is continuously purified by cross-flow filtration, the amount of silver nanowires deposited on the filter increases, so that it is difficult to prevent wire agglomeration even by using the cross-flow filtration method. Therefore, there is a problem that the yield tends to be low.
 特許文献6,7では、洗浄工程後の濃縮物としては銀濃度が0.8質量%の分散液が得られているにもかかわらず、クロスフロー精製に際して銀濃度が0.08質量%となるように純水で希釈している。これは0.8質量%の分散液をクロスフローろ過した場合、0.08質量%の希薄条件と比べて収率が低下するためであると考えられる。さらに希薄条件でクロスフローろ過を実施したとしても、合成時の仕込みの銀量から算出した単離収率は34%であり、製造工程としては十分な値ではない。 In Patent Documents 6 and 7, although a dispersion having a silver concentration of 0.8% by mass is obtained as a concentrate after the washing step, the silver concentration becomes 0.08% by mass during cross-flow purification. It is diluted with pure water as described above. It is considered that this is because when the dispersion liquid of 0.8% by mass is cross-flow filtered, the yield is lower than that under the dilute condition of 0.08% by mass. Even if cross-flow filtration is performed under dilute conditions, the isolated yield calculated from the amount of silver charged at the time of synthesis is 34%, which is not a sufficient value for the manufacturing process.
 以上に示した通り、クロスフローろ過法を用いて、高い銀濃度の分散液を高収率で精製することは非常に困難であり、今まで達成された前例は全く存在しない。 As shown above, it is extremely difficult to purify a dispersion with a high silver concentration in high yield using the cross-flow filtration method, and there is no precedent achieved so far.
 本発明の目的は、銀ナノワイヤおよび構造規定剤を含み、銀濃度が1.0質量%以上である銀ナノワイヤ粗分散液を、クロスフローろ過法を用いて精製し、高収率で高純度の銀ナノワイヤ分散液を製造する方法を提供することにある。 An object of the present invention is to purify a crude silver nanowire dispersion liquid containing silver nanowires and a structure-determining agent and having a silver concentration of 1.0% by mass or more by using a cross-flow filtration method to obtain high yield and high purity. It is an object of the present invention to provide a method for producing a silver nanowire dispersion liquid.
 本発明者は上記課題を解決すべく鋭意研究を重ねた結果、銀濃度が1.0質量%以上の銀ナノワイヤの粗分散液をクロスフローろ過法を用いて精製した場合、構造規定剤および銀ナノ粒子の除去が進まないことを明らかとした。その原因を検討したところ、銀ナノワイヤの副生物である銀ナノ粒子によりろ過フィルターが閉塞しているためであることを見出した。 As a result of diligent research to solve the above problems, the present inventor purifies a crude dispersion of silver nanoparticles having a silver concentration of 1.0% by mass or more by using a cross-flow filtration method, as a structure-defining agent and silver. It was clarified that the removal of nanoparticles did not proceed. After investigating the cause, it was found that the filtration filter was blocked by silver nanoparticles, which are by-products of silver nanowires.
 これらの知見を基にさらなる検討を進めた結果、クロスフローろ過工程に投入する分散液として、構造規定剤を含み、銀ナノワイヤ数/全粒子数(ナノワイヤ数+ナノ粒子数)>90%である銀ナノワイヤ分散液を用いることで、銀ナノワイヤおよび構造規定剤を含み、銀濃度が1.0質量%以上である銀ナノワイヤ粗分散液から構造規定剤を効率よく除去でき、高収率で銀ナノワイヤを単離することができることを見出し、本発明に至った。 As a result of further studies based on these findings, the dispersion liquid to be added to the cross-flow filtration step contains a structure-defining agent, and the number of silver nanowires / total number of particles (number of nanowires + number of nanoparticles)> 90%. By using the silver nanowire dispersion liquid, the structure defining agent can be efficiently removed from the silver nanowire coarse dispersion liquid containing silver nanowires and the structure defining agent and having a silver concentration of 1.0% by mass or more, and the silver nanowires can be obtained in high yield. We have found that can be isolated, and have arrived at the present invention.
 本発明は、以下の実施態様を含む。 The present invention includes the following embodiments.
 [1]銀ナノワイヤ数/全粒子数>90%の銀ナノワイヤと、構造規定剤とを含み、銀濃度が1.0質量%以上である銀ナノワイヤ粗分散液を準備する工程と、前記銀ナノワイヤ粗分散液を循環式のクロスフローろ過法により精製するクロスフローろ過工程と、を含む、銀ナノワイヤ分散液の製造方法。 [1] A step of preparing a crude silver nanowire dispersion liquid containing a silver nanowire having a number of silver nanowires / total number of particles> 90% and a structure defining agent and having a silver concentration of 1.0% by mass or more, and the silver nanowire. A method for producing a silver nanowire dispersion, which comprises a cross-flow filtration step of purifying the crude dispersion by a circulating cross-flow filtration method.
 [2]前記クロスフローろ過工程において、単位フィルター面積・単位時間あたりのろ過速度を16.0kg/m・h以下に制御する[1]に記載の銀ナノワイヤ分散液の製造方法。 [2] The method for producing a silver nanowire dispersion liquid according to [1], wherein in the cross-flow filtration step, the filtration rate per unit filter area and unit time is controlled to 16.0 kg / m 2 · h or less.
 [3]前記ろ過速度が1.0kg/m・h以上である、[2]に記載の銀ナノワイヤ分散液の製造方法。 [3] The method for producing a silver nanowire dispersion liquid according to [2], wherein the filtration rate is 1.0 kg / m 2 · h or more.
 [4]銀ナノワイヤ粗分散液中に構造規定剤を0.5質量%以上含む 、[1]~[3]のいずれか一に記載の銀ナノワイヤ分散液の製造方法。 [4] The method for producing a silver nanowire dispersion liquid according to any one of [1] to [3], wherein the silver nanowire coarse dispersion liquid contains 0.5% by mass or more of a structure-determining agent.
 [5]前記銀ナノワイヤ粗分散液を準備する工程が、銀ナノワイヤが合成により反応溶媒に分散された銀ナノワイヤ粗分散液を製造する銀ナノワイヤ粗分散液製造工程を含む、[1]~[4]のいずれか一に記載の銀ナノワイヤ分散液の製造方法。 [5] The step of preparing the silver nanowire coarse dispersion liquid includes a silver nanowire coarse dispersion liquid production step of producing a silver nanowire coarse dispersion liquid in which silver nanowires are synthesized and dispersed in a reaction solvent [1] to [4]. ] The method for producing a silver nanowire dispersion liquid according to any one of.
 [6]前記銀ナノワイヤ粗分散液を準備する工程が、前記銀ナノワイヤが前記反応溶媒に分散された銀ナノワイヤ粗分散液に沈降溶媒を加えて銀ナノワイヤを沈降させる沈降工程と、副生ナノ粒子を含む前記反応溶媒と沈降溶媒の混合物の上澄みの一部を除去する上澄み除去工程と、沈降工程を複数回繰り返すことで副生ナノ粒子を除去し、分散液中の銀ナノワイヤ数/全粒子数>90%である分散液を得る再沈洗浄工程と、を銀ナノワイヤ粗分散液製造工程後にさらに含む、[5]に記載の銀ナノワイヤ分散液の製造方法。 [6] The steps of preparing the silver nanowire coarse dispersion liquid include a sedimentation step of adding a sedimentation solvent to the silver nanowire coarse dispersion liquid in which the silver nanowires are dispersed in the reaction solvent to precipitate the silver nanowires, and by-product nanoparticles. By repeating the supernatant removing step of removing a part of the supernatant of the mixture of the reaction solvent and the settling solvent containing the above and the settling step a plurality of times, by-product nanoparticles are removed, and the number of silver nanowires / total number of particles in the dispersion liquid. The method for producing a silver nanowire dispersion according to [5], further comprising a reprecipitation cleaning step of obtaining a dispersion of> 90% after the silver nanowire coarse dispersion production step.
 [7]前記クロスフローろ過工程において、銀ナノワイヤ粗分散液の濃縮中または濃縮後に、濾液として排出された溶媒を補足するように洗浄溶媒を添加することにより、銀ナノワイヤ粗分散液量をろ過前の粗分散液量の60%以上に維持する、[1]~[6]のいずれか一に記載の銀ナノワイヤ分散液の製造方法。 [7] In the cross-flow filtration step, the amount of the crude silver nanowire dispersion liquid is before filtration by adding a washing solvent so as to supplement the solvent discharged as the filtrate during or after the concentration of the coarse dispersion liquid of silver nanowires. The method for producing a silver nanowire dispersion liquid according to any one of [1] to [6], which maintains 60% or more of the amount of the crude dispersion liquid.
 本発明によれば、銀ナノワイヤおよび構造規定剤を含み、銀濃度が1.0質量%以上である銀ナノワイヤ粗分散液を、クロスフローろ過法を用いて精製することにより、高収率で高純度の銀ナノワイヤ分散液を製造することができる。 According to the present invention, a crude silver nanowire dispersion liquid containing silver nanowires and a structure-determining agent and having a silver concentration of 1.0% by mass or more is purified by a cross-flow filtration method to obtain a high yield and high yield. A pure silver nanowire dispersion can be produced.
本発明の実施形態に係る銀ナノワイヤ分散液の製造方法の工程図である。It is a process drawing of the manufacturing method of the silver nanowire dispersion liquid which concerns on embodiment of this invention.
 以下、本発明を実施するための形態(以下、実施形態という)を、図面に従って説明する。 Hereinafter, embodiments for carrying out the present invention (hereinafter referred to as embodiments) will be described with reference to the drawings.
 図1には、本発明の実施形態にかかる銀ナノワイヤ分散液の製造方法の工程図が示される。まず、銀ナノワイヤが合成により反応溶媒に分散されたままの銀ナノワイヤ粗分散液を準備する(S1:銀ナノワイヤ粗分散液製造工程)。本工程としては、従来公知の方法による銀ナノワイヤの合成等が適用できる。銀ナノワイヤの合成により得られる粗分散液中には、合成により生成した銀ナノワイヤ、合成に使用したイオン性誘導体、構造規定剤、溶媒以外に、副生した銀ナノ粒子が含まれる。なお、構造規定剤は合成溶媒中に含まれるとともに生成した銀ナノワイヤの表面にも付着しており、後述の沈降工程にて、副生した銀ナノ粒子の除去が、またクロスフローろ過工程にて、銀ナノワイヤ表面に付着した構造規定剤の洗浄が行われる。 FIG. 1 shows a process diagram of a method for producing a silver nanowire dispersion liquid according to an embodiment of the present invention. First, a silver nanowire coarse dispersion liquid in which the silver nanowires are still dispersed in the reaction solvent by synthesis is prepared (S1: silver nanowire coarse dispersion liquid production step). As this step, synthesis of silver nanowires by a conventionally known method or the like can be applied. The crude dispersion obtained by synthesizing silver nanowires contains by-produced silver nanoparticles in addition to the silver nanowires produced by the synthesis, the ionic derivative used in the synthesis, the structure defining agent, and the solvent. The structure-determining agent is contained in the synthetic solvent and adheres to the surface of the generated silver nanowires. In the sedimentation step described later, the by-produced silver nanoparticles are removed, and in the cross-flow filtration step. , The structure defining agent adhering to the surface of the silver nanowire is washed.
 ここで使用される合成で得られる銀ナノワイヤは、径がナノメーターオーダーのサイズを有する金属銀であり、線状(中空のチューブ状である銀ナノチューブを含む)の形状を有する導電性材料である。また、銀ナノワイヤの金属銀は導電性能の点では金属酸化物を含まないほうが好ましいが、空気酸化が避けられない場合には一部(表面の少なくとも一部)に銀酸化物を含んでもよい。上記銀ナノワイヤの短軸方向の長さ(径)は平均10nm以上90nm以下、好ましくは平均10nm以上85nm以下、かつ長軸方向の長さは平均1μm以上100μm以下、好ましくは平均5μm以上100μm以下、より好ましくは平均10μm以上80μm以下である。すなわち、本明細書において「銀ナノワイヤ」とは、長軸方向の長さをa、短軸方向の長さ(径)をbとするとき、a/bで表されるアスペクト比が5を超えるものを意味する。また、本明細書において「銀ナノ粒子」とは、アスペクト比が5以下である、合成により副生する、上記「銀ナノワイヤ」を除いた粒子状のものを意味する。 The synthetically obtained silver nanowires used herein are metallic silver with a diameter on the order of nanometers and are conductive materials having a linear (including hollow tubular silver nanotubes) shape. .. Further, the metallic silver of the silver nanowires preferably does not contain a metal oxide from the viewpoint of conductive performance, but if air oxidation is unavoidable, a silver oxide may be contained in a part (at least a part of the surface). The length (diameter) of the silver nanowire in the minor axis direction is 10 nm or more and 90 nm or less on average, preferably 10 nm or more and 85 nm or less on average, and the length in the major axis direction is 1 μm or more and 100 μm or less on average, preferably 5 μm or more and 100 μm or less on average. More preferably, the average is 10 μm or more and 80 μm or less. That is, in the present specification, when the length in the major axis direction is a and the length (diameter) in the minor axis direction is b, the aspect ratio represented by a / b exceeds 5. Means things. Further, in the present specification, the “silver nanoparticles” means particles having an aspect ratio of 5 or less, which are by-produced by synthesis, excluding the above-mentioned “silver nanowires”.
 上記イオン性誘導体は、銀のワイヤの生長に寄与する成分であり、溶媒に溶解してハロゲンイオンを解離できる化合物であれば適用でき、金属ハロゲン化物が好適である。ハロゲンイオンとしては塩素イオン、臭素イオン、ヨウ素イオンの少なくとも一つであることが好ましく、塩素イオンを解離できる化合物を含むことがより好ましい。 The above-mentioned ionic derivative is a component that contributes to the growth of silver wire, and can be applied as long as it is a compound that can be dissolved in a solvent to dissociate halogen ions, and a metal halide is preferable. The halogen ion is preferably at least one of chloride ion, bromine ion, and iodine ion, and more preferably contains a compound capable of dissociating chloride ion.
 金属ハロゲン化合物としては、アルカリ金属ハロゲン化物、アルカリ土類金属ハロゲン化物、長周期律表の第3族から第12族の金属ハロゲン化物が挙げられる。 Examples of the metal halide compound include alkali metal halides, alkaline earth metal halides, and metal halides of Groups 3 to 12 of the Long Periodic Table.
 アルカリ金属ハロゲン化物としては、塩化リチウム、塩化ナトリウム、塩化カリウムなどのアルカリ金属塩化物、臭化リチウム、臭化ナトリウム、臭化カリウムなどのアルカリ金属臭化物、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化カリウムなどのアルカリ金属ヨウ化物などが挙げられる。アルカリ土類金属ハロゲン化物としては、塩化マグネシウム、塩化カルシウムが挙げられる。長周期律表の第3族から第12族の金属ハロゲン化物としては、塩化第二鉄、塩化第二銅、臭化第二鉄、臭化第二銅が挙げられる。これらのいずれかを単独で使用しても2種類以上を組み合わせて使用してもよい。 Examples of alkali metal halides include alkali metal chlorides such as lithium chloride, sodium chloride and potassium chloride, alkali metal bromides such as lithium bromide, sodium bromide and potassium bromide, lithium iodide, sodium iodide and potassium iodide. Such as alkali metal iodide and the like. Examples of the alkaline earth metal halide include magnesium chloride and calcium chloride. Examples of Group 3 to Group 12 metal halides in the Long Periodic Table include ferric chloride, ferric chloride, ferric bromide, and cupric bromide. Any one of these may be used alone, or two or more thereof may be used in combination.
 これらの中でも塩素イオンを解離する化合物を含むことが特にワイヤの生成に好ましい。また、細い径のワイヤを得るためには塩素イオンを解離する化合物と、臭素イオンを解離する化合物及びヨウ素イオンを解離する化合物の少なくとも一方と、を併用することが好ましい。塩素イオンを解離する化合物の塩素原子の総モル数を(A)、臭素イオンを解離する化合物の臭素原子及びヨウ素イオンを解離する化合物のヨウ素原子の総モル数を(B)とした場合、(A)/(B)のモル比が大きくなるとワイヤ径が太くなり、小さくなるとワイヤ径は細くなるものの小さくなり過ぎると球状粉の副生率が高くなる傾向がある。したがって、(A)/(B)のモル比は、2~8が好ましく、3~6がより好ましい。 Among these, it is particularly preferable to contain a compound that dissociates chloride ions for wire formation. Further, in order to obtain a wire having a small diameter, it is preferable to use a compound that dissociates chloride ions and at least one of a compound that dissociates bromine ions and a compound that dissociates iodine ions in combination. When the total number of moles of chlorine atoms of the compound that dissociates chlorine ions is (A) and the total number of moles of bromine atoms of the compound that dissociates bromine ions and the number of iodine atoms of the compound that dissociates iodine ions is (B), When the molar ratio of A) / (B) becomes large, the wire diameter becomes large, and when it becomes small, the wire diameter becomes small, but when it becomes too small, the by-product rate of spherical powder tends to increase. Therefore, the molar ratio of (A) / (B) is preferably 2 to 8, and more preferably 3 to 6.
 合成に使用される構造規定剤は、合成時に銀粒子の成長方向を一次元に規定する機能を有する化合物であり、構造規定剤を用いることによって、粒子形成工程において形成される銀ナノワイヤの比率を高めることができる。多くの場合、構造規定剤は、対象となる粒子の特定の結晶面に優先的あるいは選択的に吸着して、吸着面の成長を抑制することによって成長方位を制御する。この成長方位の制御は、後述のポリオール類中に構造規定剤を添加しておき、生成する銀ナノワイヤの表面に吸着させることにより行うことができる。この構造規定剤としては、重量平均分子量が1000より大きい構造規定剤が好ましく、2000以上の構造規定剤がより好ましく、10000以上の構造規定剤がさらに好ましい。一方、構造規定剤の重量平均分子量が大きすぎると、銀ナノワイヤが凝集する可能性が高くなる。従って、上記構造規定剤の重量平均分子量は150万以下が好ましく、100万以下がより好ましく、50万以下が更に好ましい。上記構造規定剤の種類としては、例えばポリ-N-ビニルピロリドン(PVP)、ポリ-N-ビニルアセトアミド(PNVA)、ゼラチン、ポリビニルアルコール(PVA)、ポリアクリル酸の部分アルキルエステル、メチルセルロース、ヒドロキシプロピルメチルセルロース、ポリアルキレンアミン、セルロースアセテート、アセタール樹脂等を挙げることができる。 The structure-determining agent used in the synthesis is a compound having a function of one-dimensionally defining the growth direction of silver particles at the time of synthesis, and by using the structure-determining agent, the ratio of silver nanowires formed in the particle forming step can be determined. Can be enhanced. In many cases, the structure-determining agent preferentially or selectively adsorbs to a specific crystal plane of the target particle to control the growth direction by suppressing the growth of the adsorption plane. This growth direction can be controlled by adding a structure-determining agent to the polyols described later and adsorbing it on the surface of the silver nanowires to be produced. As the structure-determining agent, a structure-determining agent having a weight average molecular weight of more than 1000 is preferable, a structure-determining agent of 2000 or more is more preferable, and a structure-determining agent of 10,000 or more is further preferable. On the other hand, if the weight average molecular weight of the structure defining agent is too large, there is a high possibility that silver nanowires will aggregate. Therefore, the weight average molecular weight of the structure defining agent is preferably 1.5 million or less, more preferably 1 million or less, and even more preferably 500,000 or less. Examples of the type of the structure-determining agent include poly-N-vinylpyrrolidone (PVP), poly-N-vinylacetamide (PNVA), gelatin, polyvinyl alcohol (PVA), partial alkyl ester of polyacrylic acid, methyl cellulose, and hydroxypropyl. Examples thereof include methyl cellulose, polyalkylene amine, cellulose acetate, acetal resin and the like.
 構造規定剤は、上記の通り銀ナノワイヤ合成時の銀ナノワイヤのワイヤ状の成長を制御するとともに、生成した銀ナノワイヤ同士の凝集を防止する作用も有する。 As described above, the structure-determining agent has the effect of controlling the wire-like growth of silver nanowires during the synthesis of silver nanowires and preventing the agglomeration of the produced silver nanowires.
 構造規定剤は、銀ナノワイヤ粗分散液中に0.5質量%以上含むことが好ましく、より好ましくは0.7~7質量%、さらに好ましくは1.0~5質量%である。0.5質量%以上とすることで、銀濃度1.0%以上のような高濃度分散液を取り扱っても凝集することがない。また構造規定剤の濃度が高すぎると、後の精製工程が長くなり生産性が低下する。 The structure defining agent is preferably contained in the crude silver nanowire dispersion liquid in an amount of 0.5% by mass or more, more preferably 0.7 to 7% by mass, and further preferably 1.0 to 5% by mass. By setting the content to 0.5% by mass or more, agglutination does not occur even when a high-concentration dispersion having a silver concentration of 1.0% or more is handled. Further, if the concentration of the structure-defining agent is too high, the subsequent purification process becomes long and the productivity decreases.
 銀ナノワイヤ(または銀ナノチューブ)の合成方法としては、公知の合成方法を用いることができる。例えば、銀ナノワイヤは、ポリオール(Poly-ol)法を用いて、ポリ-N-ビニルピロリドン存在下で硝酸銀を還元することによって合成することができる(Chem.Mater.,2002,14,4736参照)。 As a method for synthesizing silver nanowires (or silver nanotubes), a known synthesis method can be used. For example, silver nanowires can be synthesized by reducing silver nitrate in the presence of poly-N-vinylpyrrolidone using the Poly-ol method (see Chem. Mater., 2002, 14, 4736). ..
 上記ポリオール法で使用される反応溶媒は、還元剤として使用されるポリオール類、例えばエチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2-メチル-1,3-プロパンジオール、グリセリン等が挙げられ、これらからなる群より選択される少なくとも一種であることが好ましい。合成反応後は、目的とする銀ナノワイヤとともに合成時に生成した銀ナノ粒子等の不純物も含まれる銀ナノワイヤ粗分散液となっている。 The reaction solvent used in the above polyol method is polyols used as reducing agents, for example, ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, diethylene glycol, triethylene glycol, dipropylene glycol, 1, Examples thereof include 2-butanediol, 1,3-butanediol, 1,4-butanediol, 2-methyl-1,3-propanediol, glycerin and the like, and at least one selected from the group consisting of these. preferable. After the synthesis reaction, the silver nanowire coarse dispersion liquid contains impurities such as silver nanoparticles generated during the synthesis together with the target silver nanowires.
 銀ナノワイヤ粗分散液中のポリオールがあまりに多いと、後述する貧溶媒の使用量が多くなるので、必要に応じてポリオールを蒸留により留去して、銀ナノワイヤをある程度濃縮してもよい(S2:濃縮工程)。ただし、あまりに高温で留去すると凝集するおそれがあるので、100mmHg以下の圧力で、150℃以下の温度で留出させることが好ましい。この場合、銀ナノワイヤ粗分散液の量を元の量の20質量%から80質量%の範囲まで減容を行うことが好ましい。なお、S2の工程は必須ではなく、省略してもよい。 If the amount of the polyol in the crude silver nanowire dispersion is too large, the amount of the poor solvent to be described later increases. Therefore, if necessary, the polyol may be distilled off to concentrate the silver nanowires to some extent (S2 :). Concentration step). However, if it is distilled off at an excessively high temperature, it may aggregate, so it is preferable to distill off at a pressure of 100 mmHg or less and a temperature of 150 ° C. or less. In this case, it is preferable to reduce the amount of the silver nanowire coarse dispersion liquid from 20% by mass to 80% by mass of the original amount. The step S2 is not essential and may be omitted.
 次に、上記銀ナノワイヤ粗分散液(必要に応じて上記S2で濃縮後の銀ナノワイヤ粗分散液)に沈降溶媒を加えて銀ナノワイヤを沈降させる(S3:沈降工程)。 Next, a sedimentation solvent is added to the silver nanowire coarse dispersion liquid (if necessary, the silver nanowire coarse dispersion liquid concentrated in S2 above) to precipitate the silver nanowires (S3: sedimentation step).
 沈降溶媒は、構造規定剤の溶解性の低い貧溶媒であり、例えばケトン系溶媒またはエステル系溶媒が挙げられる。ケトン系溶媒としてはアセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ベンゾフェノン等が挙げられる。エステル系溶媒としては酢酸エチル、酢酸-n-プロピル、酢酸イソプロピル、酢酸アリル、酢酸-n-ブチル、プロピオン酸エチル、酢酸プロピレングリコールモノメチルエーテル等が挙げられ、この中でも銀ナノワイヤの沈降性とポリオール類に対する溶解性の観点からアセトン、酢酸エチル、酢酸-n-プロピル、酢酸イソプロピル、酢酸-n-ブチル、酢酸プロピレングリコールモノメチルエーテルが好ましい。使用量としては使用したポリオール類(上記S2で濃縮した場合は濃縮後)100質量部に対して50質量部から2000質量部であることが好ましく、より好ましくは70質量部から600質量部である。 The precipitation solvent is a poor solvent having low solubility of the structure-determining agent, and examples thereof include a ketone solvent and an ester solvent. Examples of the ketone solvent include acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, benzophenone and the like. Examples of the ester solvent include ethyl acetate, -n-propyl acetate, isopropyl acetate, allyl acetate, -n-butyl acetate, ethyl propionate, propylene glycol monomethyl ether acetate and the like. Among them, the precipitation property of silver nanowires and polyols From the viewpoint of solubility in, acetone, ethyl acetate, acetic acid-n-propyl acetate, isopropyl acetate, acetic acid-n-butyl, and propylene glycol monomethyl ether acetate are preferable. The amount used is preferably 50 parts by mass to 2000 parts by mass, and more preferably 70 parts by mass to 600 parts by mass with respect to 100 parts by mass of the used polyols (after concentration in S2 above). ..
 貧溶媒には、分散剤(高分子分散剤のうち貧溶媒に溶解する分散剤)を添加してもよい。これにより、当初の銀ナノワイヤ分散液だけでなく、貧溶媒にも分散剤を添加することになるので、銀ナノワイヤの凝集をより抑制することができる。 A dispersant (a dispersant that dissolves in the poor solvent among the polymer dispersants) may be added to the poor solvent. As a result, the dispersant is added not only to the initial silver nanowire dispersion liquid but also to the poor solvent, so that the aggregation of silver nanowires can be further suppressed.
 貧溶媒添加により銀ナノワイヤを沈降(S3)させた後、銀ナノワイヤ合成時に副生した銀ナノ粒子を含む上澄みである反応溶媒及び沈降溶媒の混合物を除去する(S4:上澄み除去工程)。上澄み除去方法は特に限定されない。例えばデカンテーション処理により除去することもできるし、ポンプにより吸引除去することもできる。 After the silver nanowires are precipitated (S3) by adding a poor solvent, the mixture of the reaction solvent and the precipitation solvent, which is the supernatant containing the silver nanoparticles produced as a by-product during the synthesis of the silver nanowires, is removed (S4: supernatant removing step). The method for removing the supernatant is not particularly limited. For example, it can be removed by decantation treatment, or it can be removed by suction with a pump.
 以上のようにして、反応溶媒および沈降溶媒を上澄みとして除去した銀ナノワイヤの沈降物を含む残液に、反応溶媒とは異なる分散溶媒を添加後、再度沈降溶媒を加えて銀ナノワイヤを沈降させる(S5:再沈洗浄工程)。このとき、構造規定剤が閾値以下となると、沈降溶媒を加えた後も銀ナノ粒子は上澄み中に良好に分散するようになるため、銀ナノ粒子と銀ナノワイヤを分離することができる。 As described above, a dispersion solvent different from the reaction solvent is added to the residual liquid containing the precipitate of the silver nanowires from which the reaction solvent and the sedimentation solvent have been removed as the supernatant, and then the sedimentation solvent is added again to precipitate the silver nanowires ( S5: Re-sediment cleaning step). At this time, when the structure defining agent is equal to or less than the threshold value, the silver nanoparticles are well dispersed in the supernatant even after the precipitation solvent is added, so that the silver nanoparticles and the silver nanowires can be separated.
 再沈洗浄工程で用いる分散溶媒は、構造規定剤の溶解性のある良溶媒であり、例えば水、アルコール系溶媒、ニトリル系溶媒、ラクトン系溶媒などが挙げられる。この中でも銀ナノワイヤの沈降性と銀ナノ粒子の分散性の観点から水、アセトニトリル、γ-ブチロラクトンが好ましい。使用量としては、沈降した銀ナノワイヤを含む残液中の銀1質量部に対して25~400質量部であり、30~300質量部であることが好ましく、50~200質量部であることがより好ましい。25質量部未満であると銀ナノワイヤの濃度が高すぎるため均一に再分散させることが難しく、400質量部を超えると沈降に必要な溶媒量が非常に多くなるため、再沈洗浄に多大な労力が必要となる。 The dispersion solvent used in the reprecipitation washing step is a good solvent having a solubility of the structure defining agent, and examples thereof include water, an alcohol solvent, a nitrile solvent, and a lactone solvent. Of these, water, acetonitrile, and γ-butyrolactone are preferable from the viewpoint of sedimentation of silver nanowires and dispersibility of silver nanoparticles. The amount used is 25 to 400 parts by mass, preferably 30 to 300 parts by mass, and 50 to 200 parts by mass with respect to 1 part by mass of silver in the residual liquid containing the precipitated silver nanowires. More preferred. If it is less than 25 parts by mass, the concentration of silver nanowires is too high and it is difficult to uniformly redisperse it. If it exceeds 400 parts by mass, the amount of solvent required for sedimentation becomes very large. Is required.
 沈降溶媒は、沈降工程(S3)で挙げた貧溶媒であれば何でもよい。使用量としては使用した良溶媒100質量部に対して50質量部から500質量部であることが好ましく、より好ましくは70質量部から300質量部である。 The precipitation solvent may be any of the poor solvents mentioned in the precipitation step (S3). The amount used is preferably 50 parts by mass to 500 parts by mass, and more preferably 70 parts by mass to 300 parts by mass with respect to 100 parts by mass of the good solvent used.
 再沈洗浄工程(S5)は、複数回繰り返すことにより、より効果的に銀ナノ粒子と銀ナノワイヤを分離することが可能である。後述の精製工程に有利となるように、分散液中に含まれる銀ナノワイヤ比、すなわち、銀ナノワイヤ数/(全粒子数(=銀ナノワイヤ数+銀ナノ粒子数))>90%となるまで繰り返す。 By repeating the reprecipitation cleaning step (S5) a plurality of times, it is possible to more effectively separate the silver nanoparticles and the silver nanowires. Repeat until the ratio of silver nanowires contained in the dispersion, that is, the number of silver nanowires / (total number of particles (= number of silver nanowires + number of silver nanoparticles))> 90%, which is advantageous for the purification step described later. ..
 以上のようにして、銀ナノ粒子および沈降溶媒を上澄みとして除去した銀ナノワイヤの沈降物を含む残液に次工程のクロスフロー濾過に使用するろ過溶媒を加え、銀ナノワイヤを再分散させる(S6:再分散工程)。ろ過溶媒の添加量は沈降した銀ナノワイヤを含む残液中の銀1質量部に対して10~100質量部であり、25~100質量部であることが好ましく、50~100質量部であることがより好ましい。10質量部未満であると銀ナノワイヤの濃度が高すぎるため均一に再分散させることが難しく、100質量部を超えると銀ナノワイヤ濃度が低いため、生産量を上げるためには次工程のクロスフロー濾過を複数回おこなうことになり多大な労力が必要となる。 As described above, the filtration solvent used for the cross-flow filtration in the next step is added to the residual liquid containing the sediment of the silver nanowires from which the silver nanoparticles and the sedimentation solvent have been removed as the supernatant, and the silver nanowires are redispersed (S6: Redispersion process). The amount of the filtration solvent added is 10 to 100 parts by mass, preferably 25 to 100 parts by mass, and 50 to 100 parts by mass with respect to 1 part by mass of silver in the residual liquid containing the precipitated silver nanowires. Is more preferable. If it is less than 10 parts by mass, the concentration of silver nanowires is too high and it is difficult to uniformly redistribute it. If it exceeds 100 parts by mass, the concentration of silver nanowires is low. Will be performed multiple times, which requires a great deal of labor.
 ろ過溶媒としては、銀ナノワイヤが凝集しなければ特に制限無く用いることができる。特に、除去したい銀ナノ粒子、無機系不純物、構造規定剤、銀ナノワイヤの製造工程、沈降工程で添加した余剰の分散剤が溶解する溶媒であることが好ましい。ろ過溶媒としては、水の他にメタノール、エタノール、イソプロピルアルコールやn-プロピルアルコールのようなアルコール類や水とアルコールとの混合物も使用可能ではあるが、取扱い性(安全性)の点から水を使用することが好ましい。 As the filtration solvent, it can be used without particular limitation as long as the silver nanowires do not aggregate. In particular, it is preferable that the solvent is a solvent in which the silver nanoparticles to be removed, the inorganic impurities, the structure defining agent, the silver nanowire manufacturing process, and the excess dispersant added in the sedimentation step are dissolved. As the filtering solvent, in addition to water, alcohols such as methanol, ethanol, isopropyl alcohol and n-propyl alcohol and a mixture of water and alcohol can be used, but water is used from the viewpoint of handleability (safety). It is preferable to use it.
 上記S1からS6の工程により、後述する精製工程(S7)においてクロスフロー濾過される銀ナノワイヤ粗分散液が準備される。 By the steps S1 to S6 above, a silver nanowire coarse dispersion liquid to be cross-flow filtered in the purification step (S7) described later is prepared.
 次に、S6で得た銀ナノワイヤ再分散液(粗分散液)をフィルターに流し入れてクロスフロー濾過を行い、前記再沈洗浄工程(S5)で除去しきれずに共存する銀ナノ粒子、沈降溶媒、銀ナノワイヤの合成液に存在するポリオールや無機系不純物、銀ナノワイヤを生成させるために用いた構造規定剤を除去し、上記銀ナノワイヤを精製して精製銀ナノワイヤ水分散液を得る(S7:精製工程)。ここで、クロスフロー濾過を行う再分散液(粗分散液)中の銀(銀ナノワイヤ、銀ナノ粒子を含む)濃度としては1.0質量%以上であり、1.1~10.0質量%であることが好ましく、より好ましくは1.2質量%~5.0質量%である。また、再分散液(粗分散液)中に含まれる銀ナノワイヤ比、すなわち、銀ナノワイヤ数/(全粒子数(=銀ナノワイヤ数+銀ナノ粒子数)) >90% である銀ナノワイヤ分散液を用いる。銀ナノワイヤ比は、好ましくは92%以上、より好ましくは95%以上、さらに好ましくは97%以上である。また、クロスフローろ過工程において、単位フィルター面積・単位時間あたりのろ過速度(粗分散液の供給速度)を16.0kg/m・h以下に制御することが好ましい。銀ナノワイヤの粗分散液をクロスフローろ過法を用いて精製する場合、粗分散液中の銀濃度が高濃度であるほど銀ナノワイヤの副生物である銀ナノ粒子によりろ過フィルターが閉塞し、銀ナノ粒子の除去が進まなくなる不具合が発生しやすくなる。また、ろ過の速度を速くした場合、銀ナノワイヤの凝集によりフィルター上に金属銀膜が形成され、ポリマー(構造規定剤)の除去が進まなくなる不具合が発生しやすい。上記ろ過速度に制御することによりこれらの不具合の発生を顕著に抑制できる。なお、ろ過速度が遅いと生産性が低いため、より好ましいろ過速度は1.0~16.0kg/m・hであり、さらに好ましいろ過速度は2.0~15.0kg/m・hである。また、フィルターの前後にかかる圧力差は0.01MPa~1.0MPaの範囲であることが好ましく、より好ましくは0.015~0.9MPa、さらに好ましくは0.02~0.8MPaである。上記条件下でクロスフローろ過することにより、ろ過中のワイヤ凝集を抑制しつつ構造規定剤を効率良く除去でき、高収率で銀ナノワイヤを単離することができる。 Next, the silver nanowire redispersion liquid (coarse dispersion liquid) obtained in S6 was poured into a filter to perform cross-flow filtration, and the silver nanoparticles and sedimentation solvent coexisting without being completely removed in the reprecipitation cleaning step (S5). The polyol and inorganic impurities present in the synthetic solution of silver nanowires and the structure defining agent used to generate the silver nanowires are removed, and the silver nanowires are purified to obtain a purified silver nanowire aqueous dispersion (S7: Purification step). ). Here, the concentration of silver (including silver nanowires and silver nanoparticles) in the redispersion liquid (coarse dispersion liquid) to be cross-flow filtered is 1.0% by mass or more, and 1.1 to 10.0% by mass. Is preferable, and more preferably 1.2% by mass to 5.0% by mass. Further, a silver nanowire dispersion liquid in which the ratio of silver nanowires contained in the redispersion liquid (coarse dispersion liquid), that is, the number of silver nanowires / (total number of particles (= number of silver nanowires + number of silver nanoparticles))> 90% is used. Use. The silver nanowire ratio is preferably 92% or more, more preferably 95% or more, still more preferably 97% or more. Further, in the cross-flow filtration step, it is preferable to control the filtration rate per unit filter area and unit time (supply rate of coarse dispersion liquid) to 16.0 kg / m 2 · h or less. When the crude dispersion of silver nanowires is purified by the cross-flow filtration method, the higher the silver concentration in the crude dispersion, the more the filtration filter is blocked by silver nanoparticles, which are by-products of the silver nanowires, and the silver nanos. Problems that prevent the removal of particles from progressing are likely to occur. Further, when the filtration speed is increased, a metallic silver film is formed on the filter due to the aggregation of silver nanowires, and a problem that the removal of the polymer (structure-determining agent) does not proceed easily occurs. By controlling the filtration rate, the occurrence of these problems can be remarkably suppressed. Since the productivity is low when the filtration rate is slow, the more preferable filtration rate is 1.0 to 16.0 kg / m 2 · h, and the more preferable filtration rate is 2.0 to 15.0 kg / m 2 · h. Is. The pressure difference between the front and back of the filter is preferably in the range of 0.01 MPa to 1.0 MPa, more preferably 0.015 to 0.9 MPa, and even more preferably 0.02 to 0.8 MPa. By cross-flow filtration under the above conditions, the structure-defining agent can be efficiently removed while suppressing wire aggregation during filtration, and silver nanowires can be isolated in high yield.
 上記精製工程では、銀ナノワイヤ再分散液を濃縮した後に、フィルター外に濾液として排出された溶媒(再分散液)の合計量と同等量の洗浄溶媒を追加ラインから貯槽に添加することにより、銀ナノワイヤ粗分散液量をろ過前の粗分散液量の60%以上に維持し、銀ナノワイヤ再分散液の精製を実施してもよい。洗浄溶媒としては、銀ナノワイヤが凝集しなければ特に制限無く用いることができる。特に、除去したい銀ナノ粒子、無機系不純物、構造規定剤、銀ナノワイヤの製造工程、沈降工程で添加した余剰の分散剤が溶解する洗浄溶媒であることが好ましい。洗浄溶媒としては、水の他にメタノール、エタノール、イソプロピルアルコールやn-プロピルアルコールのようなアルコール類や水とアルコールとの混合物も使用可能ではあるが、取扱い性(安全性)の点から水を使用することが好ましい。クロスフロー温度に特に制限はないが、高い温度で実施した方が溶媒の粘度が低下するためろ過にかかる時間を短くすることができる。通常10~80℃の範囲であり、好ましくは15~70℃、より好ましくは20~60℃である。 In the above purification step, after concentrating the silver nanowire redispersion liquid, silver is added to the storage tank from an additional line in an amount equivalent to the total amount of the solvent (redispersion liquid) discharged as a filtrate to the outside of the filter. The amount of the coarse dispersion liquid of the nanowire may be maintained at 60% or more of the amount of the coarse dispersion liquid before filtration, and the silver nanowire redispersion liquid may be purified. The cleaning solvent can be used without particular limitation as long as the silver nanowires do not aggregate. In particular, it is preferable that the cleaning solvent dissolves the silver nanoparticles to be removed, the inorganic impurities, the structure defining agent, the surplus dispersant added in the manufacturing process of the silver nanowires, and the sedimentation step. As the cleaning solvent, in addition to water, alcohols such as methanol, ethanol, isopropyl alcohol and n-propyl alcohol and a mixture of water and alcohol can be used, but water is used from the viewpoint of handleability (safety). It is preferable to use it. The cross-flow temperature is not particularly limited, but the time required for filtration can be shortened when the solvent is carried out at a high temperature because the viscosity of the solvent is lowered. It is usually in the range of 10 to 80 ° C, preferably 15 to 70 ° C, and more preferably 20 to 60 ° C.
 フィルターの材料としては、クロスフロー濾過ができるものであれば限定されないが、例えばセラミック膜、中空糸膜等を使用することができる。中空糸膜としては、セルロース系、ポリエーテルスルホン酸系、PTFE(ポリテトラフルオロエチレン)等から選択される高分子材料を使用できる。また、セラミック膜としては、多孔質のセラミックス材料を使用できる。セラミック膜の平均孔径は、溶媒と銀ナノワイヤとの分離効率を向上させるために0.01~5.0μmであるのが好適である。セラミック膜の孔径はあまりに細かすぎるとろ過時間がかりすぎ、また、あまりに大きすぎると銀ナノ粒子のみならず銀ナノワイヤの一部までもが通過してしまう。より好ましくは平均1.0~3.0μmである。 The material of the filter is not limited as long as it can perform cross-flow filtration, but for example, a ceramic film, a hollow fiber membrane, or the like can be used. As the hollow fiber membrane, a polymer material selected from cellulosic type, polyether sulfonic acid type, PTFE (polytetrafluoroethylene) and the like can be used. Further, as the ceramic film, a porous ceramic material can be used. The average pore size of the ceramic film is preferably 0.01 to 5.0 μm in order to improve the separation efficiency between the solvent and the silver nanowires. If the pore size of the ceramic film is too small, the filtration time will be too long, and if it is too large, not only silver nanoparticles but also a part of silver nanowires will pass through. More preferably, the average is 1.0 to 3.0 μm.
 上記精製工程(S7)における精製の終了タイミングは、特に制限なく決定することができる。例えば、銀ナノワイヤと構造規定剤の濃度比(銀ナノワイヤ/構造規定剤(質量比))が、10以上、好ましくは15以上、より好ましくは20以上になった時や、循環ろ過液中の洗浄溶媒濃度が95%以上、好ましくは98%以上になった時等を終点とすれば良い。終点の判断には、熱重量分析やガスクロマトグラフィーなどの分析手法を用いて構造規定剤、銀ナノワイヤ、溶媒の質量を簡易的に測定すればよい。 The end timing of purification in the above purification step (S7) can be determined without particular limitation. For example, when the concentration ratio of silver nanowires to the structure-determining agent (silver nanowire / structure-determining agent (mass ratio)) is 10 or more, preferably 15 or more, more preferably 20 or more, or cleaning in a circulating filtrate. The end point may be when the solvent concentration reaches 95% or more, preferably 98% or more. To determine the end point, the masses of the structure-defining agent, silver nanowires, and solvent may be simply measured using an analytical method such as thermogravimetric analysis or gas chromatography.
 上述の方法により得た銀ナノワイヤ分散液の分散媒はそのまま、または必要に応じて印刷に適した溶媒への溶媒置換を行った後、更に必要に応じてバインダー樹脂等を添加することにより銀ナノワイヤインク(以下、インクということがある。)を製造することができる。本実施形態では、凝集の無い状態で溶媒置換銀ナノワイヤ分散液を得ることができるので、後工程として容易にバインダー成分を添加することができ、銀ナノワイヤインクの製造を容易に行うことができる。 The dispersion medium of the silver nanowire dispersion liquid obtained by the above method is used as it is, or if necessary, the solvent is replaced with a solvent suitable for printing, and then a binder resin or the like is added as necessary to add silver nanowires. Ink (hereinafter, may be referred to as ink) can be produced. In the present embodiment, since the solvent-substituted silver nanowire dispersion liquid can be obtained without agglomeration, the binder component can be easily added as a subsequent step, and the silver nanowire ink can be easily produced.
 銀ナノワイヤインクには粘度を調整するための新たに粘度調整溶媒を添加してもよい。粘度調整溶媒の例としては、水、アルコール、ケトン、エステル、エーテル、脂肪族系炭化水素溶剤および芳香族系炭化水素溶剤が挙げられる。銀ナノワイヤインク中の各成分を良好に分散する観点から、水、エタノール、イソプロピルアルコール、1-メトキシ-2-プロパノール(PGME)、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、ジアセトンアルコール、エチレングリコールモノブチルエーテル、プロピレングリコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、トリプロピレングリコール、トリエチレングリコールモノエチルエーテル、ターピネオール、ジヒドロターピネオール、ジヒドロターピニルモノアセテート、メチルエチルケトン、シクロヘキサノン、エチルラクテート、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、ジブチルエーテル、オクタン、トルエンが好ましい。これらの溶媒は単独で用いても、2種以上を混合して用いてもよい。 A new viscosity adjusting solvent may be added to the silver nanowire ink to adjust the viscosity. Examples of viscosity adjusting solvents include water, alcohols, ketones, esters, ethers, aliphatic hydrocarbon solvents and aromatic hydrocarbon solvents. From the viewpoint of satisfactorily dispersing each component in silver nanowire ink, water, ethanol, isopropyl alcohol, 1-methoxy-2-propanol (PGME), ethylene glycol, diethylene glycol, triethylene glycol, dipropylene glycol, ethylene glycol monomethyl ether , Ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, diacetone alcohol, ethylene glycol monobutyl ether, propylene glycol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, dipropylene glycol monopropyl ether, diethylene glycol monobutyl ether, tripropylene glycol, tri Ethylene glycol monoethyl ether, tarpineol, dihydroterpineol, dihydroterpinyl monoacetate, methyl ethyl ketone, cyclohexanone, ethyllactate, propylene glycol monomethyl ether acetate, diethylene glycol monomethyl ether acetate, diethylene glycol monobutyl ether acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monobutyl ether Acetate, dibutyl ether, octane and toluene are preferred. These solvents may be used alone or in combination of two or more.
 銀ナノワイヤインク中にはさらにバインダー樹脂を添加することができる。バインダー樹脂としては、ポリメチルメタクリレート、ポリアクリレート、ポリアクリロニトリル等のポリアクリロイル化合物;ポリビニルアルコール;ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル;ポリカーボネート;ノボラック等の高共役性ポリマー;ポリイミド、ポリアミドイミド、ポリエーテルイミド等のイミド類;ポリスルフィド;ポリスルホン;ポリフェニレン;ポリフェニルエーテル;ポリウレタン;エポキシ;ポリスチレン、ポリビニルトルエン、ポリビニルキシレン等の芳香族ポリオレフィン;ポリプロピレン、ポリメチルペンテン等の脂肪族ポリオレフィン;ポリノルボルネン等の脂環式オレフィン、ポリ-N-ビニルピロリドン、ポリ-N-ビニルカプロラクタム、ポリ-N-ビニルアセトアミド等のポリ-N-ビニル化合物;アクリロニトリル-ブタジエン-スチレン共重合ポリマー(ABS);ヒドロキシプロピルメチルセルロース(HPMC)、ニトロセルロース等のセルロース類;シリコーン樹脂;ポリアセテート;合成ゴム;ポリ塩化ビニル、塩素化ポリエチレン、塩素化ポリプロピレン等の含塩素ポリマー;ポリフルオロビニリデン、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、フルオロオレフィン-ヒドロカーボンオレフィンの共重合ポリマー等の含フッ素ポリマー等が挙げられる。 Binder resin can be further added to the silver nanowire ink. Examples of the binder resin include polyacryloyl compounds such as polymethylmethacrylate, polyacrylate and polyacrylonitrile; polyvinyl alcohol; polyesters such as polyethylene terephthalate and polyethylene naphthalate; polycarbonates; highly conjugated polymers such as novolak; polyimides, polyamideimides and polyethers. Iimides such as imide; polysulfide; polysulfone; polyphenylene; polyphenyl ether; polyurethane; epoxy; aromatic polyolefin such as polystyrene, polyvinyltoluene and polyvinylxylene; aliphatic polyolefin such as polypropylene and polymethylpentene; alicyclic such as polynorbornene Formula Poly-N-vinyl compounds such as olefin, poly-N-vinylpyrrolidone, poly-N-vinylcaprolactam, poly-N-vinylacetamide; acrylonitrile-butadiene-styrene copolymer polymer (ABS); hydroxypropylmethylcellulose (HPMC) , Nitrocellulose and other celluloses; Silicone resin; Polyacetate; Synthetic rubber; Polyvinyl chloride, Chlorinated polyethylene, Chlorinated polypropylene and other chlorinated polymers; Polyfluorovinylidene, Polytetrafluoroethylene, Polyhexafluoropropylene, Fluoroolefin -Examples include fluoropolymers such as copolymer polymers of hydrocarbon olefins.
 上記成分以外にも導電性インクに配合されている公知の任意成分、例えば、腐食防止剤、密着促進剤、界面活性剤等を含有させてもよい。腐食防止剤としてはベンゾトリアゾール等、密着促進剤としては2-ヒドロキシメチルセルロース等、界面活性剤としては商品名F―472SF(DIC(株)製)等が挙げられる。透明導電性インクは、上述した成分を、公知の方法で攪拌、混合、加熱、冷却、溶解、分散等を適宜選択して行うことによって製造できる。 In addition to the above components, known optional components contained in the conductive ink, such as corrosion inhibitors, adhesion promoters, and surfactants, may be contained. Examples of the corrosion inhibitor include benzotriazole and the like, the adhesion accelerator includes 2-hydroxymethyl cellulose and the like, and the surfactant includes the trade name F-472SF (manufactured by DIC Corporation). The transparent conductive ink can be produced by appropriately selecting the above-mentioned components by a known method such as stirring, mixing, heating, cooling, dissolving, and dispersing.
 以下、本発明の実施例を具体的に説明する。なお、以下の実施例は、本発明の理解を容易にするためのものであり、本発明はこれらの実施例に制限されるものではない。 Hereinafter, examples of the present invention will be specifically described. The following examples are for facilitating the understanding of the present invention, and the present invention is not limited to these examples.
実施例1
<銀ナノワイヤ粗分散液の製造>
 1Lポリ容器にプロピレングリコール667g(AGC株式会社製)を秤量し、銀塩として硝酸銀22.5g(0.13mol)(東洋化学工業株式会社製)を加えて室温遮光下で2時間撹拌することで硝酸銀溶液(第二溶液)を調製した。
Example 1
<Manufacturing of crude silver nanowire dispersion>
Weigh 667 g of propylene glycol (manufactured by AGC Inc.) in a 1 L plastic container, add 22.5 g (0.13 mol) of silver nitrate (manufactured by Toyo Kagaku Kogyo Co., Ltd.) as a silver salt, and stir for 2 hours under room temperature shading. A silver nitrate solution (second solution) was prepared.
 メカニカルスターラー、定量ポンプ、還流管、温度計、窒素ガス導入管を備えた5L四つ口セパラブルフラスコに、窒素ガス雰囲気下、プロピレングリコール3000g、イオン性誘導体としての塩化ナトリウム0.28g(4.8mmol)(マナック株式会社製)および臭化ナトリウム0.12g(1.2mmol)(マナック株式会社製)、構造規定剤としてポリビニルピロリドンK-90(PVP)72.1g(BASF社製、Sokalan K90)を仕込み、200rpmの回転数で150℃にて1時間撹拌することで完全に溶解させ、第一溶液を得た。先に調製した硝酸銀溶液(第二溶液)を定量ポンプに接続し、上記第一溶液へ温度150℃にて2.5時間かけて滴下することで銀ナノワイヤを合成し、滴下終了後さらに30分加熱撹拌を継続して反応を完結させ、銀ナノワイヤ粗分散液を得た。 In a 5L four-neck separable flask equipped with a mechanical stirrer, a metering pump, a reflux tube, a thermometer, and a nitrogen gas introduction tube, 3000 g of propylene glycol and 0.28 g of sodium chloride as an ionic derivative (4. 8 mmol) (manufactured by Manac Co., Ltd.) and sodium bromide 0.12 g (1.2 mmol) (manufactured by Manac Co., Ltd.), 72.1 g of polyvinylpyrrolidone K-90 (PVP) as a structure-determining agent (BASF, Sokalan K90) Was charged, and the mixture was completely dissolved by stirring at 150 ° C. for 1 hour at a rotation speed of 200 rpm to obtain a first solution. The silver nitrate solution (second solution) prepared above is connected to a metering pump and added dropwise to the first solution at a temperature of 150 ° C. over 2.5 hours to synthesize silver nanowires, and another 30 minutes after the completion of the dropping. The reaction was completed by continuing heating and stirring to obtain a crude silver nanowire dispersion.
 得られた銀ナノワイヤ粗分散液の銀濃度を滴定法を用いて測定したところ0.4質量%であった。また、含まれる銀ナノワイヤの形状を、SEM(日本電子株式会社製 JSM-7000F)を用いて任意に100点観察し、計測したところ平均径:26nm、平均長:13μmであった。 The silver concentration of the obtained crude silver nanowire dispersion was measured by the titration method and found to be 0.4% by mass. Further, the shape of the contained silver nanowires was arbitrarily observed at 100 points using SEM (JSM-7000F manufactured by JEOL Ltd.), and the average diameter was 26 nm and the average length was 13 μm.
<高濃度銀ナノワイヤ分散液の製造>
 上記操作を2回繰り返して銀ナノワイヤを0.4質量%含む粗分散液7.2kgを得た。
<Manufacturing of high-concentration silver nanowire dispersion liquid>
The above operation was repeated twice to obtain 7.2 kg of a crude dispersion liquid containing 0.4% by mass of silver nanowires.
 得られた粗分散液のうち6.3kgを15LのPFA(パーフルオロアルコキシエチレン‐テトラフルオロエチレン共重合体)コートSUS容器に入れ、メカニカルスターラーを用いて150rpmにて撹拌しながら酢酸ブチル(富士フイルム和光純薬株式会社製)6.6kgを10分かけて添加した。10分撹拌を継続した後、撹拌を止め10分静置することで上澄み液と沈殿物とを分離させた。その後、デカンテーション操作により上澄みを9.0kg除去した。 6.3 kg of the obtained crude dispersion was placed in a 15 L PFA (perfluoroalkoxy alkane-tetrafluoroethylene copolymer) coated SUS container, and butyl acetate (Fuji Film) was stirred at 150 rpm using a mechanical stirrer. 6.6 kg (manufactured by Wako Pure Chemical Industries, Ltd.) was added over 10 minutes. After continuing the stirring for 10 minutes, the stirring was stopped and the mixture was allowed to stand for 10 minutes to separate the supernatant and the precipitate. Then, 9.0 kg of the supernatant was removed by a decantation operation.
 沈殿を含む残液にアセトニトリル(富士フイルム和光純薬株式会社製)2.3kgを添加し、10分撹拌を継続して沈殿を再分散させた後、酢酸ブチル4.5kgを10分かけて添加した。10分撹拌を継続した後、撹拌を止め10分静置することで上澄み液と沈殿物とを分離させた。その後、デカンテーション操作により上澄みを全液量の70%(7.5kg)除去した。アセトニトリル(富士フイルム和光純薬株式会社製)2.3kg添加以降の操作を11回繰り返すことで副生したナノ粒子を除去した。 2.3 kg of acetonitrile (manufactured by Wako Pure Chemical Industries, Ltd.) was added to the residual liquid containing the precipitate, and stirring was continued for 10 minutes to redistribute the precipitate, and then 4.5 kg of butyl acetate was added over 10 minutes. did. After continuing the stirring for 10 minutes, the stirring was stopped and the mixture was allowed to stand for 10 minutes to separate the supernatant and the precipitate. Then, 70% (7.5 kg) of the total amount of the supernatant was removed by a decantation operation. Acetonitrile (manufactured by Wako Pure Chemical Industries, Ltd.) 2.3 kg The operation after the addition was repeated 11 times to remove the nanoparticles produced as by-products.
 沈殿を含む残液2.9kgにアセトン3.0kg(富士フイルム和光純薬株式会社(株)製)を添加し、10分撹拌を継続した後、撹拌を止め10分静置することで上澄み液と沈殿物とを分離させた。その後、デカンテーション操作により上澄みを全液量の80%(4.7kg)除去した。沈殿を含む残液を3Lポリ容器に移液し、イオン交換水を内液が2.1kgとなるまで加えて振盪攪拌することで完全に分散させた。 Add 3.0 kg of acetone (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) to 2.9 kg of the residual liquid containing the precipitate, continue stirring for 10 minutes, stop stirring, and let stand for 10 minutes to make the supernatant liquid. And the precipitate were separated. Then, 80% (4.7 kg) of the total amount of the supernatant was removed by a decantation operation. The residual liquid containing the precipitate was transferred to a 3 L plastic container, ion-exchanged water was added until the internal liquid became 2.1 kg, and the mixture was completely dispersed by shaking and stirring.
 得られた銀ナノワイヤ/水分散液(銀ナノワイヤ再分散液)の銀濃度を滴定法を用いて測定したところ1.2質量%であった。またGPCによりPVPの濃度を測定したところ1.8質量%であった。 The silver concentration of the obtained silver nanowire / water dispersion (silver nanowire redispersion) was measured by the titration method and found to be 1.2% by mass. Moreover, when the concentration of PVP was measured by GPC, it was 1.8% by mass.
 銀濃度の測定方法は以下の通りである。 The method of measuring the silver concentration is as follows.
 銀濃度はフォルハルト法を用いて決定する。試料をビーカーに約1g秤量し、硝酸(1+1)4mLおよび純水20mLを添加する。ビーカーを時計皿で覆い、ホットプレート上で150℃に加熱し固形分を溶解させる。溶解を確認後、加熱を止めて放冷し、時計皿内面とビーカー壁面を純水で洗い込み液量を約50mLとする。この溶液に硝酸(1+1)5mLと硫酸アンモニウム鉄(III)(3%硝酸酸性)3mLを加え、0.01mol/Lチオシアン酸アンモニウム水溶液で滴定する。このとき、溶液が無色から淡茶に着色した点を終点とする。 The silver concentration is determined using the Forhard method. Weigh about 1 g of the sample into a beaker and add 4 mL of nitric acid (1 + 1) and 20 mL of pure water. Cover the beaker with a watch glass and heat on a hot plate to 150 ° C. to dissolve the solids. After confirming the dissolution, stop heating and allow to cool, and wash the inner surface of the watch glass and the wall surface of the beaker with pure water to make the amount of liquid about 50 mL. To this solution, 5 mL of nitric acid (1 + 1) and 3 mL of ammonium iron (III) sulfate (3% nitric acid acidity) are added, and titration is performed with an aqueous 0.01 mol / L ammonium thiocyanate solution. At this time, the end point is the point where the solution is colored from colorless to light brown.
 滴定結果に基づいて、下記式に従い銀濃度を求める。
銀濃度(wt%)={(V×c)×107.9/1000}/m
m:試料の重量(g)
V:終点までの滴定に消費したチオシアン酸アンモニウム水溶液の量(mL)
c:チオシアン酸アンモニウム水溶液の濃度(0.01mol/L)
硝酸(1+1)、硫酸アンモニウム鉄(III)、チオシアン酸アンモニウム(富士フィルム和光純薬株式会社製)は、いずれも富士フイルム和光純薬株式会社製の試薬を用いた。硫酸アンモニウム鉄(III)(3%硝酸酸性)は、硫酸アンモニウム鉄(III)5.17g、純水170gおよび硝酸2.00gを混合して調製したものを用いた。0.01mol/Lチオシアン酸アンモニウム水溶液は、チオシアン酸アンモニウム38.06mgに純水を加え、全量50mLに調製したものを用いた。
Based on the titration result, the silver concentration is calculated according to the following formula.
Silver concentration (wt%) = {(V × c) × 107.9 / 1000} / m
m: Sample weight (g)
V: Amount of ammonium thiocyanate aqueous solution consumed for titration to the end point (mL)
c: Concentration of aqueous ammonium thiocyanate solution (0.01 mol / L)
Nitric acid (1 + 1), ammonium iron (III) sulfate, and ammonium thiocyanate (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) all used reagents manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. As the ammonium iron (III) sulfate (3% nitric acid acidity), a mixture of 5.17 g of ammonium iron (III) sulfate, 170 g of pure water and 2.00 g of nitric acid was used. As the 0.01 mol / L ammonium thiocyanate aqueous solution, pure water was added to 38.06 mg of ammonium thiocyanate to prepare a total volume of 50 mL.
 GPCによりPVPの濃度測定は以下の通りである。 The PVP concentration measurement by GPC is as follows.
 ポリビニルピロリドン(PVP)濃度の測定にはゲルパーミエーションクロマトグラフィー(以下GPCと省略する。)を用い、PVP標準水溶液(0.05%、0.10%、0.25%、0.50%、1.00%)を測定して作成した検量線から求めた。
なお、GPCの測定条件は以下のとおりである。
装置名:日本分光株式会社製HPLCユニット
カラム:ShodexカラムOHPAK SB-806M HQ
移動相:0.01M NaCl水溶液/メタノール=90:10
流速:1.0mL/min
検出器:日本分光株式会社製 RI-2031Plus
温度:40.0℃
試料量:サンプルループ 100μリットル
試料濃度:原液~3倍希釈液を遠心分離後、上澄みを0.22μmフィルターに通して調製
Gel permeation chromatography (hereinafter abbreviated as GPC) was used to measure the polyvinylpyrrolidone (PVP) concentration, and PVP standard aqueous solution (0.05%, 0.10%, 0.25%, 0.50%, 1.00%) was measured and obtained from the calibration curve prepared.
The measurement conditions of GPC are as follows.
Device name: HPLC unit column manufactured by JASCO Corporation Column: Shodex column OHPAK SB-806M HQ
Mobile phase: 0.01M NaCl aqueous solution / methanol = 90:10
Flow velocity: 1.0 mL / min
Detector: RI-2031Plus manufactured by JASCO Corporation
Temperature: 40.0 ° C
Sample volume: Sample loop 100 μliter Sample concentration: Prepared by centrifuging the stock solution to 3-fold diluted solution and then passing the supernatant through a 0.22 μm filter.
 上記得られた銀ナノワイヤ/水分散液をメタノールで300倍に希釈し、銀ナノワイヤ希薄溶液を作製した。清浄なガラス板上に先の銀ナノワイヤ希薄溶液を一滴ドロップし、90℃のホットプレートにて乾燥させた。ガラス板をレーザー顕微鏡(キーエンスVK-X200)を用いて3000倍の倍率で観察(測定視野:260μm×200μm)し、銀ナノワイヤの数と銀ナノ粒子の数を計測した。分散液中の銀ナノワイヤ比(銀ナノワイヤの数/(銀ナノワイヤの数+銀ナノ粒子の数))を算出したところ、97%であった。 The obtained silver nanowire / aqueous dispersion was diluted 300-fold with methanol to prepare a dilute silver nanowire solution. A drop of the silver nanowire dilute solution was dropped on a clean glass plate and dried on a hot plate at 90 ° C. The glass plate was observed using a laser microscope (Keyence VK-X200) at a magnification of 3000 (measurement field of view: 260 μm × 200 μm), and the number of silver nanowires and the number of silver nanoparticles were measured. The ratio of silver nanowires in the dispersion (number of silver nanowires / (number of silver nanowires + number of silver nanoparticles)) was calculated to be 97%.
<クロスフロー濾過>
 上記得られた銀ナノワイヤ/水分散液2.1kgを卓上小型試験機(日本ガイシ株式会社製、セラミック膜フィルター セフィルト使用、膜面積0.06m、孔径2.0μm、寸法Φ30mm×250mm)に流し入れ、循環流速4L/min、分散液温度25℃、ろ過差圧0.02MPaにてクロスフロー濾過(第二ろ過まで実施する実施例6、11、12、15、16における第一ろ過に相当)を実施した。ろ液の透過速度が10g/minとなるように透過バルブの開閉を調整し、ろ液が100g得られる(溶媒保持率95%)毎にイオン交換水100gを逆洗により系に加えた(逆洗圧力0.15MPa)。ろ液が合計8400g得られた段階でクロスフロー濾過を終了した。ろ過時間は合計で18.6時間であり、単位時間・単位ろ過面積あたりのろ過速度を算出すると7.5kg/m・hであった。
<Cross flow filtration>
Pour 2.1 kg of the obtained silver nanowire / water dispersion into a small desktop testing machine (manufactured by Nippon Gaishi Co., Ltd., using ceramic membrane filter Sepilt, membrane area 0.06 m 2 , pore diameter 2.0 μm, size Φ30 mm × 250 mm). Cross-flow filtration (corresponding to the first filtration in Examples 6, 11, 12, 15 and 16 performed up to the second filtration) at a circulation flow velocity of 4 L / min, a dispersion liquid temperature of 25 ° C., and a filtration differential pressure of 0.02 MPa. Carried out. The opening and closing of the permeation valve was adjusted so that the permeation rate of the filtrate was 10 g / min, and 100 g of ion-exchanged water was added to the system by backwashing every 100 g of the filtrate (solvent retention rate 95%). Washing pressure 0.15 MPa). Cross-flow filtration was completed when a total of 8400 g of filtrate was obtained. The total filtration time was 18.6 hours, and the filtration rate per unit time and unit filtration area was 7.5 kg / m 2 · h.
 クロスフロー濾過後の分散液を355メッシュのナイロンフィルターに通し凝集物を除去することで、銀ナノワイヤ精製液を1.6kg取得した。分散液を通す前後において、ナイロンフィルターの重量変化を測定したところ0.1gの増加であり、クロスフローろ過により発生した凝集物は非常に少なかった。 1.6 kg of silver nanowire purified liquid was obtained by passing the dispersion liquid after cross-flow filtration through a 355 mesh nylon filter to remove aggregates. When the weight change of the nylon filter was measured before and after passing the dispersion liquid, the increase was 0.1 g, and the agglomerates generated by the cross-flow filtration were very small.
 ナイロンフィルターを通した銀ナノワイヤ精製液の銀濃度を滴定法を用いて測定したところ1.2質量%であった(収率76%)。またGPCによりPVPの濃度を測定したところ0.07質量%であった。 The silver concentration of the silver nanowire purified solution passed through the nylon filter was measured by the titration method and found to be 1.2% by mass (yield 76%). Moreover, when the concentration of PVP was measured by GPC, it was 0.07% by mass.
 先と同様の方法で、ナイロンフィルターを通した銀ナノワイヤ精製液中の銀ナノワイヤ比(銀ナノワイヤの数/(銀ナノワイヤの数+銀ナノ粒子の数))を算出したところ、97%であった。 When the silver nanowire ratio (number of silver nanowires / (number of silver nanowires + number of silver nanoparticles)) in the silver nanowire purification solution passed through the nylon filter was calculated by the same method as before, it was 97%. ..
実施例2
 実施例1と同様の合成方法を3回繰り返して銀ナノワイヤを0.4質量%含む粗分散液9.7kgを得た。得られた粗分散液を25LのPFAコートSUS容器に入れ、メカニカルスターラーを用いて150rpmにて撹拌しながら酢酸ブチル10.2kgを10分かけて添加した。10分撹拌を継続した後、撹拌を止め10分静置することで上澄み液と沈殿物とを分離させた。その後、デカンテーション操作により上澄みを13.9kg除去した。
Example 2
The same synthesis method as in Example 1 was repeated three times to obtain 9.7 kg of a crude dispersion liquid containing 0.4% by mass of silver nanowires. The obtained crude dispersion was placed in a 25 L PFA-coated SUS container, and 10.2 kg of butyl acetate was added over 10 minutes while stirring at 150 rpm using a mechanical stirrer. After continuing the stirring for 10 minutes, the stirring was stopped and the mixture was allowed to stand for 10 minutes to separate the supernatant and the precipitate. Then, 13.9 kg of the supernatant was removed by a decantation operation.
 沈殿を含む残液にアセトニトリル3.3kgを再添加し、10分撹拌を継続して沈殿を再分散させた後、酢酸ブチル6.6kgを10分かけて添加した。10分撹拌を継続した後、撹拌を止め10分静置することで上澄み液と沈殿物とを分離させた。その後、デカンテーション操作により上澄みを全液量の70%(11.1kg)除去した。この操作を11回繰り返すことで副生したナノ粒子を除去した。 3.3 kg of acetonitrile was re-added to the residual liquid containing the precipitate, stirring was continued for 10 minutes to redisperse the precipitate, and then 6.6 kg of butyl acetate was added over 10 minutes. After continuing the stirring for 10 minutes, the stirring was stopped and the mixture was allowed to stand for 10 minutes to separate the supernatant and the precipitate. Then, 70% (11.1 kg) of the total amount of the supernatant was removed by a decantation operation. By repeating this operation 11 times, the nanoparticles produced as by-products were removed.
 沈殿を含む残液4.3kgにアセトン3.0kgを添加し、10分撹拌を継続した後、撹拌を止め10分静置することで上澄み液と沈殿物とを分離させた。その後、デカンテーション操作により上澄みを全液量の80%(5.8kg)除去した。この操作をもう一度繰り返した後、沈殿を含む残液を3Lポリ容器に移液し、イオン交換水を内液が2.1kgとなるまで加えて振盪攪拌することで完全に分散させた。 3.0 kg of acetone was added to 4.3 kg of the residual liquid containing the precipitate, and after continuing stirring for 10 minutes, the stirring was stopped and the mixture was allowed to stand for 10 minutes to separate the supernatant and the precipitate. Then, 80% (5.8 kg) of the total amount of the supernatant was removed by a decantation operation. After repeating this operation once more, the residual liquid containing the precipitate was transferred to a 3 L plastic container, ion-exchanged water was added until the internal liquid became 2.1 kg, and the mixture was completely dispersed by shaking and stirring.
 得られた銀ナノワイヤ/水分散液の銀濃度を滴定法を用いて測定したところ1.8質量%であった。またGPCによりPVPの濃度を測定したところ2.7質量%であった。 The silver concentration of the obtained silver nanowire / aqueous dispersion was measured by the titration method and found to be 1.8% by mass. Moreover, when the concentration of PVP was measured by GPC, it was 2.7% by mass.
 得られた銀ナノワイヤ/水分散液をメタノールで500倍に希釈し、銀ナノワイヤ希薄溶液を作製した。清浄なガラス板上に先の銀ナノワイヤ希薄溶液を一滴ドロップし、90℃のホットプレートにて乾燥させた。ガラス板をレーザー顕微鏡(株式会社キーエンス製 VK-X200)を用いて3000倍の倍率で観察し、銀ナノワイヤの数と銀ナノ粒子の数を計測した。分散液中の銀ナノワイヤ比(銀ナノワイヤの数/(銀ナノワイヤの数+銀ナノ粒子の数))を算出したところ、97%であった。 The obtained silver nanowire / aqueous dispersion was diluted 500-fold with methanol to prepare a dilute silver nanowire solution. A drop of the silver nanowire dilute solution was dropped on a clean glass plate and dried on a hot plate at 90 ° C. The glass plate was observed with a laser microscope (VK-X200 manufactured by KEYENCE CORPORATION) at a magnification of 3000 times, and the number of silver nanowires and the number of silver nanoparticles were measured. The ratio of silver nanowires in the dispersion (number of silver nanowires / (number of silver nanowires + number of silver nanoparticles)) was calculated to be 97%.
 得られた銀ナノワイヤ/水分散液を、実施例1と同様の方法でクロスフローろ過により精製した。ろ過時間は合計で29.1時間であり、単位時間・単位ろ過面積あたりのろ過速度を算出すると4.8kg/m・hであった。クロスフロー濾過後の分散液を355メッシュのナイロンフィルターに通し凝集物を除去することで、銀ナノワイヤ精製液を1.4kg取得した。分散液を通す前後において、ナイロンフィルターの重量変化を測定したところ0.02gの増加であり、クロスフローろ過により発生した凝集物はほとんどなかった。 The obtained silver nanowire / aqueous dispersion was purified by cross-flow filtration in the same manner as in Example 1. The total filtration time was 29.1 hours, and the filtration rate per unit time and unit filtration area was 4.8 kg / m 2 · h. The dispersion liquid after cross-flow filtration was passed through a 355 mesh nylon filter to remove aggregates, thereby obtaining 1.4 kg of a silver nanowire purified liquid. When the weight change of the nylon filter was measured before and after passing the dispersion liquid, the increase was 0.02 g, and there was almost no agglomerate generated by the cross-flow filtration.
 ナイロンフィルターを通した銀ナノワイヤ精製液の銀濃度を滴定法を用いて測定したところ1.8質量%であった(収率69%)。またGPCによりPVPの濃度を測定したところ0.09質量%であった。 The silver concentration of the silver nanowire purified liquid passed through the nylon filter was measured by the titration method and found to be 1.8% by mass (yield 69%). Moreover, when the concentration of PVP was measured by GPC, it was 0.09% by mass.
 先と同様の方法で、ナイロンフィルターを通した銀ナノワイヤ精製液中の銀ナノワイヤ比(銀ナノワイヤの数/(銀ナノワイヤの数+銀ナノ粒子の数))を算出したところ、98%であった。 When the silver nanowire ratio (number of silver nanowires / (number of silver nanowires + number of silver nanoparticles)) in the silver nanowire purification solution passed through the nylon filter was calculated by the same method as before, it was 98%. ..
実施例3
 実施例2と同様の方法で銀ナノワイヤ/水分散液2.1kgを得た。得られた銀ナノワイヤ/水分散液の銀濃度を滴定法を用いて測定したところ1.8質量%であった。またGPCによりPVPの濃度を測定したところ2.7質量%であった。
Example 3
2.1 kg of silver nanowire / water dispersion was obtained in the same manner as in Example 2. The silver concentration of the obtained silver nanowire / aqueous dispersion was measured by a titration method and found to be 1.8% by mass. Moreover, when the concentration of PVP was measured by GPC, it was 2.7% by mass.
 実施例2と同様の方法で分散液中の銀ナノワイヤ比(銀ナノワイヤの数/(銀ナノワイヤの数+銀ナノ粒子の数))を算出したところ、97%であった。 The ratio of silver nanowires in the dispersion (number of silver nanowires / (number of silver nanowires + number of silver nanoparticles)) was calculated by the same method as in Example 2 and found to be 97%.
 得られた銀ナノワイヤ/水分散液2.1kgを卓上小型試験機(日本ガイシ株式会社製、セラミック膜フィルター セフィルト使用、膜面積0.06m、孔径2.0μm、寸法Φ30mm×250mm)に流し入れ、循環流速4L/min、分散液温度25℃、ろ過差圧0.02MPaにてクロスフロー濾過を実施した。ろ液の透過速度がおよそ10g/minとなるように透過バルブの開閉を調整し、ろ液が200g得られる(溶媒保持率90%)毎にイオン交換水200gを逆洗により系に加えた(逆洗圧力0.15MPa)。ろ液が合計8400g得られた段階でクロスフロー濾過を終了した。ろ過時間は合計で24.7時間であり、単位時間・単位ろ過面積あたりのろ過速度を算出すると5.7kg/m・hであった。 2.1 kg of the obtained silver nanowire / water dispersion was poured into a small desktop testing machine (manufactured by Nippon Gaishi Co., Ltd., using ceramic membrane filter Sepilt, membrane area 0.06 m 2 , pore diameter 2.0 μm, size Φ30 mm × 250 mm). Cross-flow filtration was performed at a circulation flow rate of 4 L / min, a dispersion temperature of 25 ° C., and a filtration differential pressure of 0.02 MPa. The opening and closing of the permeation valve was adjusted so that the permeation rate of the filtrate was about 10 g / min, and 200 g of ion-exchanged water was added to the system by backwashing every time 200 g of the filtrate was obtained (solvent retention rate 90%). Backwash pressure 0.15 MPa). Cross-flow filtration was completed when a total of 8400 g of filtrate was obtained. The total filtration time was 24.7 hours, and the filtration rate per unit time and unit filtration area was 5.7 kg / m 2 · h.
 クロスフロー濾過後の分散液を355メッシュのナイロンフィルターに通し凝集物を除去することで、銀ナノワイヤ精製液を1.4kg取得した。分散液を通す前後において、ナイロンフィルターの重量変化を測定したところ0.01gの増加であり、クロスフローろ過により発生した凝集物はほとんどなかった。 1.4 kg of silver nanowire purified liquid was obtained by passing the dispersion liquid after cross-flow filtration through a 355 mesh nylon filter to remove aggregates. When the weight change of the nylon filter was measured before and after passing the dispersion liquid, the increase was 0.01 g, and there was almost no agglomerate generated by the cross-flow filtration.
 ナイロンフィルターを通した銀ナノワイヤ精製液の銀濃度を滴定法を用いて測定したところ1.7質量%であった(収率66%)。またGPCによりPVPの濃度を測定したところ0.07質量%であった。 The silver concentration of the silver nanowire purified solution passed through the nylon filter was measured by the titration method and found to be 1.7% by mass (yield 66%). Moreover, when the concentration of PVP was measured by GPC, it was 0.07% by mass.
 先と同様の方法で、ナイロンフィルターを通した銀ナノワイヤ精製液中の銀ナノワイヤ比(銀ナノワイヤの数/(銀ナノワイヤの数+銀ナノ粒子の数))を算出したところ、98%であった。 When the silver nanowire ratio (number of silver nanowires / (number of silver nanowires + number of silver nanoparticles)) in the silver nanowire purification solution passed through the nylon filter was calculated by the same method as before, it was 98%. ..
実施例4
 実施例2と同様の方法で銀ナノワイヤ/水分散液2.1kgを得た。得られた銀ナノワイヤ/水分散液の銀濃度を滴定法を用いて測定したところ1.8質量%であった。またGPCによりPVPの濃度を測定したところ2.2質量%であった。
Example 4
2.1 kg of silver nanowire / water dispersion was obtained in the same manner as in Example 2. The silver concentration of the obtained silver nanowire / aqueous dispersion was measured by a titration method and found to be 1.8% by mass. Moreover, when the concentration of PVP was measured by GPC, it was 2.2% by mass.
 実施例2と同様の方法で分散液中の銀ナノワイヤ比(銀ナノワイヤの数/(銀ナノワイヤの数+銀ナノ粒子の数))を算出したところ、95%であった。 The ratio of silver nanowires in the dispersion (number of silver nanowires / (number of silver nanowires + number of silver nanoparticles)) was calculated by the same method as in Example 2 and found to be 95%.
 得られた銀ナノワイヤ/水分散液2.1kgを卓上小型試験機(日本ガイシ株式会社製、セラミック膜フィルター セフィルト使用、膜面積0.06m、孔径2.0μm、寸法Φ30mm×250mm)に流し入れ、循環流速4L/min、分散液温度25℃、ろ過差圧0.02MPaにてクロスフロー濾過を実施した。ろ液の透過速度がおよそ10g/minとなるように透過バルブの開閉を調整し、ろ液が400g得られる(溶媒保持率80%)毎にイオン交換水400gを逆洗により系に加えた(逆洗圧力0.15MPa)。ろ液が合計8400g得られた段階でクロスフロー濾過を終了した。ろ過時間は合計で24.2時間であり、単位時間・単位ろ過面積あたりのろ過速度を算出すると5.8kg/m・hであった。 2.1 kg of the obtained silver nanowire / water dispersion was poured into a small desktop testing machine (manufactured by Nippon Gaishi Co., Ltd., using ceramic membrane filter Sepilt, membrane area 0.06 m 2 , pore diameter 2.0 μm, size Φ30 mm × 250 mm). Cross-flow filtration was performed at a circulation flow rate of 4 L / min, a dispersion temperature of 25 ° C., and a filtration differential pressure of 0.02 MPa. The opening and closing of the permeation valve was adjusted so that the permeation rate of the filtrate was about 10 g / min, and 400 g of ion-exchanged water was added to the system by backwash every time 400 g of the filtrate was obtained (solvent retention rate 80%). Backwash pressure 0.15 MPa). Cross-flow filtration was completed when a total of 8400 g of filtrate was obtained. The total filtration time was 24.2 hours, and the filtration rate per unit time and unit filtration area was 5.8 kg / m 2 · h.
 クロスフロー濾過後の分散液を355メッシュのナイロンフィルターに通し凝集物を除去することで、銀ナノワイヤ精製液を1.5kg取得した。分散液を通す前後において、ナイロンフィルターの重量変化を測定したところ0.01gの増加であり、クロスフローろ過により発生した凝集物はほとんどなかった。 1.5 kg of silver nanowire purified liquid was obtained by passing the dispersion liquid after cross-flow filtration through a 355 mesh nylon filter to remove aggregates. When the weight change of the nylon filter was measured before and after passing the dispersion liquid, the increase was 0.01 g, and there was almost no agglomerate generated by the cross-flow filtration.
 ナイロンフィルターを通した銀ナノワイヤ精製液の銀濃度を滴定法を用いて測定したところ1.8質量%であった(収率72%)。またGPCによりPVPの濃度を測定したところ0.06質量%であった。 The silver concentration of the silver nanowire purified solution passed through the nylon filter was measured by the titration method and found to be 1.8% by mass (yield 72%). Moreover, when the concentration of PVP was measured by GPC, it was 0.06% by mass.
 先と同様の方法で、ナイロンフィルターを通した銀ナノワイヤ精製液中の銀ナノワイヤ比(銀ナノワイヤの数/(銀ナノワイヤの数+銀ナノ粒子の数))を算出したところ、97%であった。 When the silver nanowire ratio (number of silver nanowires / (number of silver nanowires + number of silver nanoparticles)) in the silver nanowire purification solution passed through the nylon filter was calculated by the same method as before, it was 97%. ..
実施例5
 実施例2と同様の方法で銀ナノワイヤ/水分散液2.1kgを得た。得られた銀ナノワイヤ/水分散液の銀濃度を滴定法を用いて測定したところ1.8質量%であった。またGPCによりPVPの濃度を測定したところ2.0質量%であった。
Example 5
2.1 kg of silver nanowire / water dispersion was obtained in the same manner as in Example 2. The silver concentration of the obtained silver nanowire / aqueous dispersion was measured by a titration method and found to be 1.8% by mass. Moreover, when the concentration of PVP was measured by GPC, it was 2.0% by mass.
 実施例2と同様の方法で分散液中の銀ナノワイヤ比(銀ナノワイヤの数/(銀ナノワイヤの数+銀ナノ粒子の数))を算出したところ、95%であった。 The ratio of silver nanowires in the dispersion (number of silver nanowires / (number of silver nanowires + number of silver nanoparticles)) was calculated by the same method as in Example 2 and found to be 95%.
 得られた銀ナノワイヤ/水分散液2.1kgを卓上小型試験機(日本ガイシ株式会社製、セラミック膜フィルター セフィルト使用、膜面積0.06m、孔径2.0μm、寸法Φ30mm×250mm)に流し入れ、循環流速4L/min、分散液温度25℃、ろ過差圧0.02MPaにてクロスフロー濾過を実施した。ろ液の透過速度がおよそ10g/minとなるように透過バルブの開閉を調整し、ろ液が700g得られる(溶媒保持率67%)毎にイオン交換水700gを逆洗により系に加えた(逆洗圧力0.15MPa)。ろ液が合計8400g得られた段階でクロスフロー濾過を終了した。ろ過時間は合計で24.8時間であり、単位時間・単位ろ過面積あたりのろ過速度を算出すると5.7kg/m・hであった。 2.1 kg of the obtained silver nanowire / water dispersion was poured into a small desktop testing machine (manufactured by Nippon Gaishi Co., Ltd., using ceramic membrane filter Sepilt, membrane area 0.06 m 2 , pore diameter 2.0 μm, size Φ30 mm × 250 mm). Cross-flow filtration was performed at a circulation flow rate of 4 L / min, a dispersion temperature of 25 ° C., and a filtration differential pressure of 0.02 MPa. The opening and closing of the permeation valve was adjusted so that the permeation rate of the filtrate was about 10 g / min, and 700 g of ion-exchanged water was added to the system by backwashing every 700 g of the filtrate (solvent retention rate 67%). Backwash pressure 0.15 MPa). Cross-flow filtration was completed when a total of 8400 g of filtrate was obtained. The total filtration time was 24.8 hours, and the filtration rate per unit time and unit filtration area was 5.7 kg / m 2 · h.
 クロスフロー濾過後の分散液を355メッシュのナイロンフィルターに通し凝集物を除去することで、銀ナノワイヤ精製液を1.9kg取得した。分散液を通す前後において、ナイロンフィルターの重量変化を測定したところ0.02gの増加であり、クロスフローろ過により発生した凝集物はほとんどなかった。 1.9 kg of silver nanowire purified liquid was obtained by passing the dispersion liquid after cross-flow filtration through a 355 mesh nylon filter to remove aggregates. When the weight change of the nylon filter was measured before and after passing the dispersion liquid, the increase was 0.02 g, and there was almost no agglomerate generated by the cross-flow filtration.
 ナイロンフィルターを通した銀ナノワイヤ精製液の銀濃度を滴定法を用いて測定したところ1.8質量%であった(収率88%)。またGPCによりPVPの濃度を測定したところ0.04質量%であった。 The silver concentration of the silver nanowire purified solution passed through the nylon filter was measured by the titration method and found to be 1.8% by mass (yield 88%). Moreover, when the concentration of PVP was measured by GPC, it was 0.04% by mass.
 先と同様の方法で、ナイロンフィルターを通した銀ナノワイヤ精製液中の銀ナノワイヤ比(銀ナノワイヤの数/(銀ナノワイヤの数+銀ナノ粒子の数))を算出したところ、97%であった。 When the silver nanowire ratio (number of silver nanowires / (number of silver nanowires + number of silver nanoparticles)) in the silver nanowire purification solution passed through the nylon filter was calculated by the same method as before, it was 97%. ..
実施例6
 実施例2と同様の方法で銀ナノワイヤ/水分散液2.1kgを得た。得られた銀ナノワイヤ/水分散液の銀濃度を滴定法を用いて測定したところ1.8質量%であった。またGPCによりPVPの濃度を測定したところ2.7質量%であった。
Example 6
2.1 kg of silver nanowire / water dispersion was obtained in the same manner as in Example 2. The silver concentration of the obtained silver nanowire / aqueous dispersion was measured by a titration method and found to be 1.8% by mass. Moreover, when the concentration of PVP was measured by GPC, it was 2.7% by mass.
 実施例2と同様の方法で分散液中の銀ナノワイヤ比(銀ナノワイヤの数/(銀ナノワイヤの数+銀ナノ粒子の数))を算出したところ、97%であった。 The ratio of silver nanowires in the dispersion (number of silver nanowires / (number of silver nanowires + number of silver nanoparticles)) was calculated by the same method as in Example 2 and found to be 97%.
 得られた銀ナノワイヤ/水分散液2.1kgを卓上小型試験機(日本ガイシ株式会社製、セラミック膜フィルター セフィルト使用、膜面積0.06m、孔径2.0μm、寸法Φ30mm×250mm)に流し入れ、循環流速4L/min、分散液温度25℃、ろ過差圧0.02MPaにてクロスフロー濾過(第一ろ過)を実施した。ろ液の透過速度がおよそ10g/minとなるように透過バルブの開閉を調整し、ろ液が100g得られる(溶媒保持率95%)毎にイオン交換水100gを逆洗により系に加えた(逆洗圧力0.15MPa)。ろ液が合計5600g得られた段階で、逆洗により系に加える溶媒をイオン交換水からエタノールに変え、ろ過差圧0.03MPaにてクロスフロー濾過(第二ろ過)を継続した。ろ液がさらに2800g得られた段階でクロスフロー濾過を終了した。イオン交換水を用いた第一ろ過時間は合計で20.9時間であり、単位時間・単位ろ過面積あたりのろ過速度を算出すると4.6kg/m・hであった。またエタノールを用いた第二ろ過時間は合計で11.7時間であり、単位時間・単位ろ過面積あたりのろ過速度を算出すると4.0kg/m・hであった。 2.1 kg of the obtained silver nanowire / water dispersion was poured into a small desktop testing machine (manufactured by Nippon Gaishi Co., Ltd., using ceramic membrane filter Sepilt, membrane area 0.06 m 2 , pore diameter 2.0 μm, size Φ30 mm × 250 mm). Cross-flow filtration (first filtration) was performed at a circulation flow rate of 4 L / min, a dispersion temperature of 25 ° C., and a filtration differential pressure of 0.02 MPa. The opening and closing of the permeation valve was adjusted so that the permeation rate of the filtrate was about 10 g / min, and 100 g of ion-exchanged water was added to the system by backwashing every 100 g of the filtrate (solvent retention rate 95%). Backwash pressure 0.15 MPa). When a total of 5600 g of the filtrate was obtained, the solvent added to the system by backwashing was changed from ion-exchanged water to ethanol, and cross-flow filtration (second filtration) was continued at a filtration differential pressure of 0.03 MPa. Cross-flow filtration was terminated when an additional 2800 g of filtrate was obtained. The total first filtration time using ion-exchanged water was 20.9 hours, and the filtration rate per unit time and unit filtration area was 4.6 kg / m 2 · h. The total second filtration time using ethanol was 11.7 hours, and the filtration rate per unit time and unit filtration area was 4.0 kg / m 2 · h.
 クロスフロー濾過後の分散液を355メッシュのナイロンフィルターに通し凝集物を除去することで、銀ナノワイヤ精製液を1.4kg取得した。分散液を通す前後において、ナイロンフィルターの重量変化を測定したところ0.01gの増加であり、クロスフローろ過により発生した凝集物はほとんどなかった。 1.4 kg of silver nanowire purified liquid was obtained by passing the dispersion liquid after cross-flow filtration through a 355 mesh nylon filter to remove aggregates. When the weight change of the nylon filter was measured before and after passing the dispersion liquid, the increase was 0.01 g, and there was almost no agglomerate generated by the cross-flow filtration.
 ナイロンフィルターを通した銀ナノワイヤ精製液の銀濃度を滴定法を用いて測定したところ1.8質量%であった(収率70%)。またGPCによりPVPの濃度を測定したところ0.12質量%であった。 The silver concentration of the silver nanowire purified liquid passed through the nylon filter was measured by the titration method and found to be 1.8% by mass (yield 70%). Moreover, when the concentration of PVP was measured by GPC, it was 0.12% by mass.
 先と同様の方法で、ナイロンフィルターを通した銀ナノワイヤ精製液中の銀ナノワイヤ比(銀ナノワイヤの数/(銀ナノワイヤの数+銀ナノ粒子の数))を算出したところ、98%であった。 When the silver nanowire ratio (number of silver nanowires / (number of silver nanowires + number of silver nanoparticles)) in the silver nanowire purification solution passed through the nylon filter was calculated by the same method as before, it was 98%. ..
 ガスクロマトグラフィーを用いて銀ナノワイヤ精製液中の溶媒比率を測定したところ、エタノールが72.0%であり、水の比率は28.0%と算出された。 When the solvent ratio in the silver nanowire purified liquid was measured using gas chromatography, ethanol was calculated to be 72.0%, and the water ratio was calculated to be 28.0%.
実施例7
 実施例1と同様の合成方法を4回繰り返して銀ナノワイヤ粗分散液14.4kgを得た。得られた粗分散液のうち13.2kgを35LのETFE(エチレン‐テトラフルオロエチレン共重合体)コートSUS容器に入れ、メカニカルスターラーを用いて150rpmにて撹拌しながら酢酸ブチル13.8kgを10分かけて添加した。10分撹拌を継続した後、撹拌を止め10分静置することで上澄み液と沈殿物とを分離させた。その後、デカンテーション操作により上澄みを18.8kg除去した。
Example 7
The same synthesis method as in Example 1 was repeated 4 times to obtain 14.4 kg of a crude silver nanowire dispersion. 13.2 kg of the obtained crude dispersion was placed in a 35 L ETFE (ethylene-tetrafluoroethylene copolymer) coated SUS container, and 13.8 kg of butyl acetate was added for 10 minutes while stirring at 150 rpm using a mechanical stirrer. It was added over. After continuing the stirring for 10 minutes, the stirring was stopped and the mixture was allowed to stand for 10 minutes to separate the supernatant and the precipitate. Then, 18.8 kg of the supernatant was removed by a decantation operation.
 沈殿を含む残液にアセトニトリル4.5kgを添加し、10分撹拌を継続して沈殿を再分散させた後、酢酸ブチル9.0kgを10分かけて添加した。10分撹拌を継続した後、撹拌を止め10分静置することで上澄み液と沈殿物とを分離させた。その後、デカンテーション操作により上澄みを全液量の70%(15.1kg)除去した。この操作を11回繰り返すことで副生したナノ粒子を除去した。 4.5 kg of acetonitrile was added to the residual liquid containing the precipitate, stirring was continued for 10 minutes to redisperse the precipitate, and then 9.0 kg of butyl acetate was added over 10 minutes. After continuing the stirring for 10 minutes, the stirring was stopped and the mixture was allowed to stand for 10 minutes to separate the supernatant and the precipitate. Then, 70% (15.1 kg) of the total amount of the supernatant was removed by a decantation operation. By repeating this operation 11 times, the nanoparticles produced as by-products were removed.
 沈殿を含む残液にアセトン5.0kgを添加し、10分撹拌を継続した後、撹拌を止め10分静置することで上澄み液と沈殿物とを分離させた。その後、デカンテーション操作により上澄みを全液量の80%(8.6kg)除去した。この操作をもう一度繰り返した後、沈殿を含む残液を3Lポリ容器に移液し、イオン交換水を内液が2.1kgとなるまで加えて振盪攪拌することで完全に分散させた。 5.0 kg of acetone was added to the residual liquid containing the precipitate, and after continuing stirring for 10 minutes, the stirring was stopped and the mixture was allowed to stand for 10 minutes to separate the supernatant and the precipitate. Then, 80% (8.6 kg) of the total amount of the supernatant was removed by a decantation operation. After repeating this operation once more, the residual liquid containing the precipitate was transferred to a 3 L plastic container, ion-exchanged water was added until the internal liquid became 2.1 kg, and the mixture was completely dispersed by shaking and stirring.
 得られた銀ナノワイヤ/水分散液の銀濃度を滴定法を用いて測定したところ2.5質量%であった。またGPCによりPVPの濃度を測定したところ3.8質量%であった。 The silver concentration of the obtained silver nanowire / aqueous dispersion was measured by the titration method and found to be 2.5% by mass. Moreover, when the concentration of PVP was measured by GPC, it was 3.8% by mass.
 得られた銀ナノワイヤ/水分散液をメタノールで700倍に希釈し、銀ナノワイヤ希薄溶液を作製した。清浄なガラス板上に先の銀ナノワイヤ希薄溶液を一滴ドロップし、90℃のホットプレートにて乾燥させた。ガラス板をレーザー顕微鏡(キーエンスVK-X200)を用いて3000倍の倍率で観察し、銀ナノワイヤの数と銀ナノ粒子の数を計測した。分散液中の銀ナノワイヤ比(銀ナノワイヤの数/(銀ナノワイヤの数+銀ナノ粒子の数))を算出したところ、95%であった。 The obtained silver nanowire / aqueous dispersion was diluted 700-fold with methanol to prepare a dilute silver nanowire solution. A drop of the silver nanowire dilute solution was dropped on a clean glass plate and dried on a hot plate at 90 ° C. The glass plate was observed with a laser microscope (Keyence VK-X200) at a magnification of 3000 times, and the number of silver nanowires and the number of silver nanoparticles were measured. The ratio of silver nanowires in the dispersion (number of silver nanowires / (number of silver nanowires + number of silver nanoparticles)) was calculated to be 95%.
 銀ナノワイヤ/水分散液を、ろ過差圧が0.04MPaであること以外は実施例1と同様の方法でクロスフローろ過により精製した。ろ過時間は合計で35.0時間であり、単位時間・単位ろ過面積あたりのろ過速度を算出すると4.0kg/m・hであった。クロスフロー濾過後の分散液を355メッシュのナイロンフィルターに通し凝集物を除去することで、銀ナノワイヤ精製液を1.4kg取得した。分散液を通す前後において、ナイロンフィルターの重量変化を測定したところ0.1gの増加であり、クロスフローろ過により発生した凝集物はほとんどなかった。 The silver nanowire / water dispersion was purified by cross-flow filtration in the same manner as in Example 1 except that the filtration differential pressure was 0.04 MPa. The total filtration time was 35.0 hours, and the filtration rate per unit time and unit filtration area was 4.0 kg / m 2 · h. The dispersion liquid after cross-flow filtration was passed through a 355 mesh nylon filter to remove aggregates, thereby obtaining 1.4 kg of a silver nanowire purified liquid. When the weight change of the nylon filter was measured before and after passing the dispersion liquid, the increase was 0.1 g, and there was almost no agglomerate generated by the cross-flow filtration.
 ナイロンフィルターを通した銀ナノワイヤ精製液の銀濃度を滴定法を用いて測定したところ2.5質量%であった(収率72%)。またGPCによりPVPの濃度を測定したところ0.18質量%であった。 The silver concentration of the silver nanowire purified solution passed through the nylon filter was measured by the titration method and found to be 2.5% by mass (yield 72%). Moreover, when the concentration of PVP was measured by GPC, it was 0.18% by mass.
 先と同様の方法で、ナイロンフィルターを通した銀ナノワイヤ精製液中の銀ナノワイヤ比(銀ナノワイヤの数/(銀ナノワイヤの数+銀ナノ粒子の数))を算出したところ、96%であった。 When the silver nanowire ratio (number of silver nanowires / (number of silver nanowires + number of silver nanoparticles)) in the silver nanowire purification solution passed through the nylon filter was calculated by the same method as before, it was 96%. ..
実施例8
 実施例1と同様の合成方法を2回繰り返して銀ナノワイヤ粗分散液7.2kgを得た。得られた粗分散液のうち5.3kgを15LのPFAコートSUS容器に入れ、メカニカルスターラーを用いて150rpmにて撹拌しながら酢酸ブチル5.6kgを10分かけて添加した。10分撹拌を継続した後、撹拌を止め10分静置することで上澄み液と沈殿物とを分離させた。その後、デカンテーション操作により上澄みを7.6kg除去した。
Example 8
The same synthesis method as in Example 1 was repeated twice to obtain 7.2 kg of a crude silver nanowire dispersion. 5.3 kg of the obtained crude dispersion was placed in a 15 L PFA-coated SUS container, and 5.6 kg of butyl acetate was added over 10 minutes while stirring at 150 rpm using a mechanical stirrer. After continuing the stirring for 10 minutes, the stirring was stopped and the mixture was allowed to stand for 10 minutes to separate the supernatant and the precipitate. Then, 7.6 kg of the supernatant was removed by a decantation operation.
 沈殿を含む残液にアセトニトリル2.3kgを添加し、10分撹拌を継続して沈殿を再分散させた後、酢酸ブチル4.5kgを10分かけて添加した。10分撹拌を継続した後、撹拌を止め10分静置することで上澄み液と沈殿物とを分離させた。その後、デカンテーション操作により上澄みを全液量の70%(7.0kg)除去した。この操作を11回繰り返すことで副生したナノ粒子を除去した。 2.3 kg of acetonitrile was added to the residual liquid containing the precipitate, stirring was continued for 10 minutes to redisperse the precipitate, and then 4.5 kg of butyl acetate was added over 10 minutes. After continuing the stirring for 10 minutes, the stirring was stopped and the mixture was allowed to stand for 10 minutes to separate the supernatant and the precipitate. Then, 70% (7.0 kg) of the total amount of the supernatant was removed by a decantation operation. By repeating this operation 11 times, the nanoparticles produced as by-products were removed.
 沈殿を含む残液にアセトン3.0kgを添加し、10分撹拌を継続した後、撹拌を止め10分静置することで上澄み液と沈殿物とを分離させた。その後、デカンテーション操作により上澄みを全液量の80%(4.7kg)除去した。この操作をもう一度繰り返した後、沈殿を含む残液を3Lポリ容器に移液し、メタノールを内液が2.1kgとなるまで加えて振盪攪拌することで完全に分散させた。 3.0 kg of acetone was added to the residual liquid containing the precipitate, and after continuing stirring for 10 minutes, the stirring was stopped and the mixture was allowed to stand for 10 minutes to separate the supernatant and the precipitate. Then, 80% (4.7 kg) of the total amount of the supernatant was removed by a decantation operation. After repeating this operation once more, the residual liquid containing the precipitate was transferred to a 3 L plastic container, methanol was added until the internal liquid became 2.1 kg, and the mixture was completely dispersed by shaking and stirring.
 得られた銀ナノワイヤ/メタノール分散液の銀濃度を滴定法を用いて測定したところ1.0質量%であった。またGPCによりPVPの濃度を測定したところ1.4質量%であった。 The silver concentration of the obtained silver nanowire / methanol dispersion was measured by the titration method and found to be 1.0% by mass. Moreover, when the concentration of PVP was measured by GPC, it was 1.4% by mass.
 得られた銀ナノワイヤ/メタノール分散液をメタノールで300倍に希釈し、銀ナノワイヤ希薄溶液を作製した。清浄なガラス板上に先の銀ナノワイヤ希薄溶液を一滴ドロップし、90℃のホットプレートにて乾燥させた。ガラス板をレーザー顕微鏡(キーエンスVK-X200)を用いて3000倍の倍率で観察し、銀ナノワイヤの数と銀ナノ粒子の数を計測した。分散液中の銀ナノワイヤ比(銀ナノワイヤの数/(銀ナノワイヤの数+銀ナノ粒子の数))を算出したところ、92%であった。 The obtained silver nanowire / methanol dispersion was diluted 300-fold with methanol to prepare a dilute silver nanowire solution. A drop of the silver nanowire dilute solution was dropped on a clean glass plate and dried on a hot plate at 90 ° C. The glass plate was observed with a laser microscope (Keyence VK-X200) at a magnification of 3000 times, and the number of silver nanowires and the number of silver nanoparticles were measured. The ratio of silver nanowires in the dispersion (number of silver nanowires / (number of silver nanowires + number of silver nanoparticles)) was calculated to be 92%.
 得られた銀ナノワイヤ/メタノール分散液2.1kgを卓上小型試験機(日本ガイシ株式会社製、セラミック膜フィルター セフィルト使用、膜面積0.06m、孔径2.0μm、寸法Φ30mm×250mm)に流し入れ、循環流速10L/min、分散液温度25℃、ろ過差圧0.06MPaにてクロスフロー濾過を実施した。ろ液の透過速度が12g/minとなるように透過バルブの開閉を調整し、ろ液が100g得られる(溶媒保持率95%)毎にメタノール100gを逆洗により系に加えた(逆洗圧力0.15MPa)。ろ液が合計8400g得られた段階でクロスフロー濾過を終了した。ろ過時間は合計で12.7時間であり、単位時間・単位ろ過面積あたりのろ過速度を算出すると11.0kg/m・hであった。 2.1 kg of the obtained silver nanowire / methanol dispersion was poured into a small desktop testing machine (manufactured by Nippon Gaishi Co., Ltd., using ceramic membrane filter Sepilt, membrane area 0.06 m 2 , pore diameter 2.0 μm, size Φ30 mm × 250 mm). Cross-flow filtration was performed at a circulation flow rate of 10 L / min, a dispersion temperature of 25 ° C., and a filtration differential pressure of 0.06 MPa. The opening and closing of the permeation valve was adjusted so that the permeation rate of the filtrate was 12 g / min, and 100 g of methanol was added to the system by backwash every time 100 g of the filtrate was obtained (solvent retention rate 95%) (backwash pressure). 0.15 MPa). Cross-flow filtration was completed when a total of 8400 g of filtrate was obtained. The total filtration time was 12.7 hours, and the filtration rate per unit time and unit filtration area was 11.0 kg / m 2 · h.
 クロスフロー濾過後の分散液を355メッシュのナイロンフィルターに通し凝集物を除去することで、銀ナノワイヤ精製液を1.5kg取得した。分散液を通す前後において、ナイロンフィルターの重量変化を測定したところ0.04gの増加であり、クロスフローろ過により発生した凝集物はほとんどなかった。 1.5 kg of silver nanowire purified liquid was obtained by passing the dispersion liquid after cross-flow filtration through a 355 mesh nylon filter to remove aggregates. When the weight change of the nylon filter was measured before and after passing the dispersion liquid, the increase was 0.04 g, and there was almost no agglomerate generated by the cross-flow filtration.
 ナイロンフィルターを通した銀ナノワイヤ精製液の銀濃度を滴定法を用いて測定したところ1.0質量%であった(収率75%)。またGPCによりPVPの濃度を測定したところ0.07質量%であった。 The silver concentration of the silver nanowire purified liquid passed through the nylon filter was measured by the titration method and found to be 1.0% by mass (yield 75%). Moreover, when the concentration of PVP was measured by GPC, it was 0.07% by mass.
 先と同様の方法で、ナイロンフィルターを通した銀ナノワイヤ精製液中の銀ナノワイヤ比(銀ナノワイヤの数/(銀ナノワイヤの数+銀ナノ粒子の数))を算出したところ、96%であった。 When the silver nanowire ratio (number of silver nanowires / (number of silver nanowires + number of silver nanoparticles)) in the silver nanowire purification solution passed through the nylon filter was calculated by the same method as before, it was 96%. ..
 ガスクロマトグラフィーを用いて銀ナノワイヤ精製液中の溶媒比率を測定したところ、メタノールが88.1%であり、水の比率は11.9%と算出された。 When the solvent ratio in the silver nanowire purified liquid was measured using gas chromatography, it was calculated that methanol was 88.1% and water ratio was 11.9%.
実施例9
 実施例8と同様の方法で銀ナノワイヤ/メタノール分散液2.1kgを得た。得られた銀ナノワイヤ/メタノール分散液の銀濃度を滴定法を用いて測定したところ1.0質量%であった。またGPCによりPVPの濃度を測定したところ1.2質量%であった。
Example 9
2.1 kg of silver nanowire / methanol dispersion was obtained in the same manner as in Example 8. The silver concentration of the obtained silver nanowire / methanol dispersion was measured by a titration method and found to be 1.0% by mass. Moreover, when the concentration of PVP was measured by GPC, it was 1.2% by mass.
 実施例8と同様の方法で分散液中の銀ナノワイヤ比(銀ナノワイヤの数/(銀ナノワイヤの数+銀ナノ粒子の数))を算出したところ、95%であった。 The ratio of silver nanowires in the dispersion (number of silver nanowires / (number of silver nanowires + number of silver nanoparticles)) was calculated by the same method as in Example 8 and found to be 95%.
 得られた銀ナノワイヤ/メタノール分散液2.1kgを卓上小型試験機(日本ガイシ株式会社製、セラミック膜フィルター セフィルト使用、膜面積0.06m、孔径2.0μm、寸法Φ30mm×250mm)に流し入れ、循環流速14L/min、分散液温度25℃、ろ過差圧0.07MPaにてクロスフロー濾過を実施した。ろ液の透過速度が17g/minとなるように透過バルブの開閉を調整し、ろ液が100g得られる(溶媒保持率95%)毎にメタノール100gを逆洗により系に加えた(逆洗圧力0.15MPa)。ろ液が合計8400g得られた段階でクロスフロー濾過を終了した。ろ過時間は合計で8.8時間であり、単位時間・単位ろ過面積あたりのろ過速度を算出すると16.0kg/m・hであった。 2.1 kg of the obtained silver nanowire / methanol dispersion was poured into a small desktop testing machine (manufactured by Nippon Gaishi Co., Ltd., using ceramic membrane filter Sepilt, membrane area 0.06 m 2 , pore diameter 2.0 μm, size Φ30 mm × 250 mm). Cross-flow filtration was performed at a circulation flow rate of 14 L / min, a dispersion temperature of 25 ° C., and a filtration differential pressure of 0.07 MPa. The opening and closing of the permeation valve was adjusted so that the permeation rate of the filtrate was 17 g / min, and 100 g of methanol was added to the system by backwash every time 100 g of the filtrate was obtained (solvent retention rate 95%) (backwash pressure). 0.15 MPa). Cross-flow filtration was completed when a total of 8400 g of filtrate was obtained. The total filtration time was 8.8 hours, and the filtration rate per unit time and unit filtration area was 16.0 kg / m 2 · h.
 クロスフロー濾過後の分散液を355メッシュのナイロンフィルターに通し凝集物を除去することで、銀ナノワイヤ精製液を1.3kg取得した。分散液を通す前後において、ナイロンフィルターの重量変化を測定したところ0.25gの増加であり、クロスフローろ過により発生した凝集物は少なかった。 1.3 kg of silver nanowire purified liquid was obtained by passing the dispersion liquid after cross-flow filtration through a 355 mesh nylon filter to remove aggregates. When the weight change of the nylon filter was measured before and after passing the dispersion liquid, the increase was 0.25 g, and the amount of agglomerates generated by the cross-flow filtration was small.
 ナイロンフィルターを通した銀ナノワイヤ精製液の銀濃度を滴定法を用いて測定したところ1.0質量%であった(収率65%)。またGPCによりPVPの濃度を測定したところ0.09質量%であった。 The silver concentration of the silver nanowire purified liquid passed through the nylon filter was measured by the titration method and found to be 1.0% by mass (yield 65%). Moreover, when the concentration of PVP was measured by GPC, it was 0.09% by mass.
 先と同様の方法で、ナイロンフィルターを通した銀ナノワイヤ精製液中の銀ナノワイヤ比(銀ナノワイヤの数/(銀ナノワイヤの数+銀ナノ粒子の数))を算出したところ、92%であった。 When the silver nanowire ratio (number of silver nanowires / (number of silver nanowires + number of silver nanoparticles)) in the silver nanowire purification solution passed through the nylon filter was calculated by the same method as before, it was 92%. ..
 ガスクロマトグラフィーを用いて銀ナノワイヤ精製液中の溶媒比率を測定したところ、メタノールが85.6%であり、水の比率は14.4%と算出された。 When the solvent ratio in the silver nanowire purified liquid was measured using gas chromatography, it was calculated that methanol was 85.6% and water ratio was 14.4%.
実施例10
 実施例8と同様の方法で銀ナノワイヤ/メタノール分散液2.1kgを得た。得られた銀ナノワイヤ/メタノール分散液の銀濃度を滴定法を用いて測定したところ1.0質量%であった。またGPCによりPVPの濃度を測定したところ1.5質量%であった。
Example 10
2.1 kg of silver nanowire / methanol dispersion was obtained in the same manner as in Example 8. The silver concentration of the obtained silver nanowire / methanol dispersion was measured by a titration method and found to be 1.0% by mass. Moreover, when the concentration of PVP was measured by GPC, it was 1.5% by mass.
 実施例8と同様の方法で分散液中の銀ナノワイヤ比(銀ナノワイヤの数/(銀ナノワイヤの数+銀ナノ粒子の数))を算出したところ、97%であった。 The ratio of silver nanowires in the dispersion (number of silver nanowires / (number of silver nanowires + number of silver nanoparticles)) was calculated by the same method as in Example 8 and found to be 97%.
 得られた銀ナノワイヤ/メタノール分散液2.1kgを卓上小型試験機(日本ガイシ株式会社製、セラミック膜フィルター セフィルト使用、膜面積0.06m、孔径2.0μm、寸法Φ30mm×250mm)に流し入れ、循環流速14L/min、分散液温度25℃、ろ過差圧0.07MPaにてクロスフロー濾過を実施した。ろ液の透過速度が17g/minとなるように透過バルブの開閉を調整し、ろ液が100g得られる(溶媒保持率95%)毎にメタノール100gを逆洗により系に加えた(逆洗圧力0.15MPa)。ろ液が合計8400g得られた段階でクロスフロー濾過を終了した。ろ過時間は合計で7.0時間であり、単位時間・単位ろ過面積あたりのろ過速度を算出すると20.0kg/m・hであった。 2.1 kg of the obtained silver nanowire / methanol dispersion was poured into a small desktop testing machine (manufactured by Nippon Gaishi Co., Ltd., using ceramic membrane filter Sepilt, membrane area 0.06 m 2 , pore diameter 2.0 μm, size Φ30 mm × 250 mm). Cross-flow filtration was performed at a circulation flow rate of 14 L / min, a dispersion temperature of 25 ° C., and a filtration differential pressure of 0.07 MPa. The opening and closing of the permeation valve was adjusted so that the permeation rate of the filtrate was 17 g / min, and 100 g of methanol was added to the system by backwash every time 100 g of the filtrate was obtained (solvent retention rate 95%) (backwash pressure). 0.15 MPa). Cross-flow filtration was completed when a total of 8400 g of filtrate was obtained. The total filtration time was 7.0 hours, and the filtration rate per unit time and unit filtration area was 20.0 kg / m 2 · h.
 クロスフロー濾過後の分散液を30μmのデプスフィルターに通し凝集物を除去することで、銀ナノワイヤ精製液を1.4kg取得した。分散液を通す前後において、デプスフィルターの重量変化を測定したところ0.9gの増加であり、クロスフローろ過により発生した凝集物は少なかった。 1.4 kg of silver nanowire purified liquid was obtained by passing the dispersion liquid after cross-flow filtration through a 30 μm depth filter to remove aggregates. When the weight change of the depth filter was measured before and after passing the dispersion liquid, the increase was 0.9 g, and the amount of agglomerates generated by the cross-flow filtration was small.
 ナイロンフィルターを通した銀ナノワイヤ精製液の銀濃度を滴定法を用いて測定したところ0.9質量%であった(収率61%)。またGPCによりPVPの濃度を測定したところ0.18質量%であった。 The silver concentration of the silver nanowire purified solution passed through the nylon filter was measured by the titration method and found to be 0.9% by mass (yield 61%). Moreover, when the concentration of PVP was measured by GPC, it was 0.18% by mass.
 先と同様の方法で、ナイロンフィルターを通した銀ナノワイヤ精製液中の銀ナノワイヤ比(銀ナノワイヤの数/(銀ナノワイヤの数+銀ナノ粒子の数))を算出したところ、97%であった。 When the silver nanowire ratio (number of silver nanowires / (number of silver nanowires + number of silver nanoparticles)) in the silver nanowire purification solution passed through the nylon filter was calculated by the same method as before, it was 97%. ..
 ガスクロマトグラフィーを用いて銀ナノワイヤ精製液中の溶媒比率を測定したところ、メタノールが86.9%であり、水の比率は13.1%と算出された。 When the solvent ratio in the silver nanowire purified liquid was measured using gas chromatography, it was calculated that methanol was 86.9% and water ratio was 13.1%.
実施例11
 実施例1と同様の操作を2回繰り返して銀ナノワイヤ粗分散液7.2kgを得た。得られた粗分散液のうち6.3kgを15LのPFAコートSUS容器に入れ、メカニカルスターラーを用いて150rpmにて撹拌しながら酢酸ブチル6.6kgを10分かけて添加した。10分撹拌を継続した後、撹拌を止め10分静置することで上澄み液と沈殿物とを分離させた。その後、デカンテーション操作により上澄みを9.0kg除去した。
Example 11
The same operation as in Example 1 was repeated twice to obtain 7.2 kg of a crude silver nanowire dispersion liquid. 6.3 kg of the obtained crude dispersion was placed in a 15 L PFA-coated SUS container, and 6.6 kg of butyl acetate was added over 10 minutes while stirring at 150 rpm using a mechanical stirrer. After continuing the stirring for 10 minutes, the stirring was stopped and the mixture was allowed to stand for 10 minutes to separate the supernatant and the precipitate. Then, 9.0 kg of the supernatant was removed by a decantation operation.
 沈殿を含む残液にアセトニトリル2.3kgを添加し、10分撹拌を継続して沈殿を再分散させた後、酢酸ブチル4.5kgを10分かけて添加した。10分撹拌を継続した後、撹拌を止め10分静置することで上澄み液と沈殿物とを分離させた。その後、デカンテーション操作により上澄みを全液量の70%(7.5kg)除去した。この操作を11回繰り返すことで副生したナノ粒子を除去した。 2.3 kg of acetonitrile was added to the residual liquid containing the precipitate, stirring was continued for 10 minutes to redisperse the precipitate, and then 4.5 kg of butyl acetate was added over 10 minutes. After continuing the stirring for 10 minutes, the stirring was stopped and the mixture was allowed to stand for 10 minutes to separate the supernatant and the precipitate. Then, 70% (7.5 kg) of the total amount of the supernatant was removed by a decantation operation. By repeating this operation 11 times, the nanoparticles produced as by-products were removed.
 沈殿を含む残液にアセトン3.0kgを添加し、10分撹拌を継続した後、撹拌を止め10分静置することで上澄み液と沈殿物とを分離させた。その後、デカンテーション操作により上澄みを全液量の80%(4.7kg)除去した。沈殿を含む残液を3Lポリ容器に移液し、メタノールを内液が2.1kgとなるまで加えて振盪攪拌することで完全に分散させた。 3.0 kg of acetone was added to the residual liquid containing the precipitate, and after continuing stirring for 10 minutes, the stirring was stopped and the mixture was allowed to stand for 10 minutes to separate the supernatant and the precipitate. Then, 80% (4.7 kg) of the total amount of the supernatant was removed by a decantation operation. The residual liquid containing the precipitate was transferred to a 3 L plastic container, methanol was added until the internal liquid became 2.1 kg, and the mixture was completely dispersed by shaking and stirring.
 得られた銀ナノワイヤ/メタノール分散液の銀濃度を滴定法を用いて測定したところ1.2質量%であった。またGPCによりPVPの濃度を測定したところ1.1質量%であった。 The silver concentration of the obtained silver nanowire / methanol dispersion was measured by the titration method and found to be 1.2% by mass. Moreover, when the concentration of PVP was measured by GPC, it was 1.1% by mass.
 実施例と同様の方法で分散液中の銀ナノワイヤ比(銀ナノワイヤの数/(銀ナノワイヤの数+銀ナノ粒子の数))を算出したところ、96%であった。 The ratio of silver nanowires in the dispersion (number of silver nanowires / (number of silver nanowires + number of silver nanoparticles)) was calculated by the same method as in the examples, and it was 96%.
 得られた銀ナノワイヤ/メタノール分散液2.1kgを卓上小型試験機(日本ガイシ株式会社製、セラミック膜フィルター セフィルト使用、膜面積0.06m、孔径2.0μm、寸法Φ30mm×250mm)に流し入れ、循環流速10L/min、分散液温度25℃、ろ過差圧0.02MPaにてクロスフロー濾過(第一ろ過)を実施した。ろ液の透過速度が10g/minとなるように透過バルブの開閉を調整し、ろ液が100g得られる(溶媒保持率95%)毎にメタノール100gを逆洗により系に加えた(逆洗圧力0.15MPa)。ろ液が合計7000g得られた段階で、逆洗により系に加える溶媒をメタノールからエタノールに変え、ろ過差圧0.02MPaにてクロスフロー濾過(第二ろ過)を継続した。ろ液がさらに1400g得られた段階でクロスフロー濾過を終了した。メタノールを用いた第一ろ過時間は合計で16.7時間であり、単位時間・単位ろ過面積あたりのろ過速度を算出すると7.0kg/m・hであった。またエタノールを用いた第二ろ過時間は合計で3.0時間であり、単位時間・単位ろ過面積あたりのろ過速度を算出すると7.8g/m・hであった。 2.1 kg of the obtained silver nanowire / methanol dispersion was poured into a small desktop testing machine (manufactured by Nippon Gaishi Co., Ltd., using ceramic membrane filter Sepilt, membrane area 0.06 m 2 , pore diameter 2.0 μm, size Φ30 mm × 250 mm). Cross-flow filtration (first filtration) was performed at a circulation flow rate of 10 L / min, a dispersion temperature of 25 ° C., and a filtration differential pressure of 0.02 MPa. The opening and closing of the permeation valve was adjusted so that the permeation rate of the filtrate was 10 g / min, and 100 g of methanol was added to the system by backwash every time 100 g of the filtrate was obtained (solvent retention rate 95%) (backwash pressure). 0.15 MPa). When a total of 7,000 g of the filtrate was obtained, the solvent added to the system by backwashing was changed from methanol to ethanol, and cross-flow filtration (second filtration) was continued at a filtration differential pressure of 0.02 MPa. Cross-flow filtration was completed when 1400 g of the filtrate was obtained. The total first filtration time using methanol was 16.7 hours, and the filtration rate per unit time and unit filtration area was 7.0 kg / m 2 · h. The total second filtration time using ethanol was 3.0 hours, and the filtration rate per unit time and unit filtration area was 7.8 g / m 2 · h.
 クロスフロー濾過後の分散液を355メッシュのナイロンフィルターに通し凝集物を除去することで、銀ナノワイヤ精製液を1.5kg取得した。分散液を通す前後において、ナイロンフィルターの重量変化を測定したところ0.17gの増加であり、クロスフローろ過により発生した凝集物は非常に少なかった。 1.5 kg of silver nanowire purified liquid was obtained by passing the dispersion liquid after cross-flow filtration through a 355 mesh nylon filter to remove aggregates. When the weight change of the nylon filter was measured before and after passing the dispersion liquid, the increase was 0.17 g, and the agglomerates generated by the cross-flow filtration were very small.
 ナイロンフィルターを通した銀ナノワイヤ精製液の銀濃度を滴定法を用いて測定したところ1.2質量%であった(収率76%)。またGPCによりPVPの濃度を測定したところ0.10質量%であった。 The silver concentration of the silver nanowire purified solution passed through the nylon filter was measured by the titration method and found to be 1.2% by mass (yield 76%). Moreover, when the concentration of PVP was measured by GPC, it was 0.10% by mass.
 先と同様の方法で、ナイロンフィルターを通した銀ナノワイヤ精製液中の銀ナノワイヤ比(銀ナノワイヤの数/(銀ナノワイヤの数+銀ナノ粒子の数))を算出したところ、97%であった。 When the silver nanowire ratio (number of silver nanowires / (number of silver nanowires + number of silver nanoparticles)) in the silver nanowire purification solution passed through the nylon filter was calculated by the same method as before, it was 97%. ..
 ガスクロマトグラフィーを用いて銀ナノワイヤ精製液中の溶媒比率を測定したところ、メタノールが46.5%、エタノールが38.0%であり、水の比率は15.5%と算出された。 When the solvent ratio in the silver nanowire purified liquid was measured by gas chromatography, it was calculated that methanol was 46.5%, ethanol was 38.0%, and water ratio was 15.5%.
実施例12
 実施例11と同様の方法で銀ナノワイヤ/メタノール分散液2.1kgを得た。得られた銀ナノワイヤ分散液の銀濃度を滴定法を用いて測定したところ1.2質量%であった。またGPCによりPVPの濃度を測定したところ1.4質量%であった。
Example 12
2.1 kg of silver nanowire / methanol dispersion was obtained in the same manner as in Example 11. The silver concentration of the obtained silver nanowire dispersion was measured by the titration method and found to be 1.2% by mass. Moreover, when the concentration of PVP was measured by GPC, it was 1.4% by mass.
 実施例11と同様の方法で分散液中の銀ナノワイヤ比(銀ナノワイヤの数/(銀ナノワイヤの数+銀ナノ粒子の数))を算出したところ、96%であった。 The ratio of silver nanowires in the dispersion (number of silver nanowires / (number of silver nanowires + number of silver nanoparticles)) was calculated by the same method as in Example 11 and found to be 96%.
 得られた銀ナノワイヤ/メタノール分散液2.1kgを卓上小型試験機(日本ガイシ株式会社製、セラミック膜フィルター セフィルト使用、膜面積0.06m、孔径2.0μm、寸法Φ30mm×250mm)に流し入れ、循環流速10L/min、分散液温度25℃、ろ過差圧0.02MPaにてクロスフロー濾過(第一ろ過)を実施した。ろ液の透過速度が10g/minとなるように透過バルブの開閉を調整し、ろ液が100g得られる(溶媒保持率95%)毎にメタノール100gを逆洗により系に加えた(逆洗圧力0.15MPa)。ろ液が合計6300g得られた段階で、逆洗により系に加える溶媒をメタノールからエタノールに変え、ろ過差圧0.02MPaにてクロスフロー濾過(第二ろ過)を継続した。ろ液がさらに2100g得られた段階でクロスフロー濾過を終了した。メタノールを用いた第一ろ過時間は合計で21.2時間であり、単位時間・単位ろ過面積あたりのろ過速度を算出すると5.0kg/m・hであった。またエタノールを用いた第二ろ過時間は合計で4.2時間であり、単位時間・単位ろ過面積あたりのろ過速度を算出すると8.3kg/m・hであった。 2.1 kg of the obtained silver nanowire / methanol dispersion was poured into a small desktop testing machine (manufactured by Nippon Gaishi Co., Ltd., using ceramic membrane filter Sepilt, membrane area 0.06 m 2 , pore diameter 2.0 μm, size Φ30 mm × 250 mm). Cross-flow filtration (first filtration) was performed at a circulation flow rate of 10 L / min, a dispersion temperature of 25 ° C., and a filtration differential pressure of 0.02 MPa. The opening and closing of the permeation valve was adjusted so that the permeation rate of the filtrate was 10 g / min, and 100 g of methanol was added to the system by backwash every time 100 g of the filtrate was obtained (solvent retention rate 95%) (backwash pressure). 0.15 MPa). When a total of 6300 g of the filtrate was obtained, the solvent added to the system by backwashing was changed from methanol to ethanol, and cross-flow filtration (second filtration) was continued at a filtration differential pressure of 0.02 MPa. Cross-flow filtration was terminated when an additional 2100 g of filtrate was obtained. The total first filtration time using methanol was 21.2 hours, and the filtration rate per unit time and unit filtration area was 5.0 kg / m 2 · h. The total second filtration time using ethanol was 4.2 hours, and the filtration rate per unit time and unit filtration area was 8.3 kg / m 2 · h.
 クロスフロー濾過後の分散液を355メッシュのナイロンフィルターに通し凝集物を除去することで、銀ナノワイヤ精製液を1.4kg取得した。分散液を通す前後において、ナイロンフィルターの重量変化を測定したところ0.18gの増加であり、クロスフローろ過により発生した凝集物は非常に少なかった。 1.4 kg of silver nanowire purified liquid was obtained by passing the dispersion liquid after cross-flow filtration through a 355 mesh nylon filter to remove aggregates. When the weight change of the nylon filter was measured before and after passing the dispersion liquid, the increase was 0.18 g, and the agglomerates generated by the cross-flow filtration were very small.
 ナイロンフィルターを通した銀ナノワイヤ精製液の銀濃度を滴定法を用いて測定したところ1.2質量%であった(収率71%)。またGPCによりPVPの濃度を測定したところ0.11質量%であった。 The silver concentration of the silver nanowire purified liquid passed through the nylon filter was measured by the titration method and found to be 1.2% by mass (yield 71%). Moreover, when the concentration of PVP was measured by GPC, it was 0.11% by mass.
 先と同様の方法で、ナイロンフィルターを通した銀ナノワイヤ精製液中の銀ナノワイヤ比(銀ナノワイヤの数/(銀ナノワイヤの数+銀ナノ粒子の数))を算出したところ、97%であった。 When the silver nanowire ratio (number of silver nanowires / (number of silver nanowires + number of silver nanoparticles)) in the silver nanowire purification solution passed through the nylon filter was calculated by the same method as before, it was 97%. ..
 ガスクロマトグラフィーを用いて銀ナノワイヤ精製液中の溶媒比率を測定したところ、メタノールが38.1%、エタノールが50.0%であり、水の比率は11.9%と算出された。 When the solvent ratio in the silver nanowire purified liquid was measured by gas chromatography, it was calculated that methanol was 38.1%, ethanol was 50.0%, and water ratio was 11.9%.
実施例13
 イオン交換水の代わりにメタノールを用いる以外は実施例2と同様の方法で、銀ナノワイヤ/メタノール分散液2.1kgを得た。得られた銀ナノワイヤ/メタノール分散液の銀濃度を滴定法を用いて測定したところ1.8質量%であった。またGPCによりPVPの濃度を測定したところ2.6質量%であった。
Example 13
2.1 kg of silver nanowire / methanol dispersion was obtained in the same manner as in Example 2 except that methanol was used instead of ion-exchanged water. The silver concentration of the obtained silver nanowire / methanol dispersion was measured by a titration method and found to be 1.8% by mass. Moreover, when the concentration of PVP was measured by GPC, it was 2.6% by mass.
 実施例2と同様の方法で分散液中の銀ナノワイヤ比(銀ナノワイヤの数/(銀ナノワイヤの数+銀ナノ粒子の数))を算出したところ、95%であった。 The ratio of silver nanowires in the dispersion (number of silver nanowires / (number of silver nanowires + number of silver nanoparticles)) was calculated by the same method as in Example 2 and found to be 95%.
 得られた銀ナノワイヤ/メタノール分散液2.1kgを卓上小型試験機(日本ガイシ株式会社製、セラミック膜フィルター セフィルト使用、膜面積0.06m、孔径2.0μm、寸法Φ30mm×250mm)に流し入れ、循環流速10L/min、分散液温度25℃、ろ過差圧0.06MPaにてクロスフロー濾過を実施した。ろ液の透過速度が10g/minとなるように透過バルブの開閉を調整し、ろ液が100g得られる(溶媒保持率95%)毎にメタノール100gを逆洗により系に加えた(逆洗圧力0.15MPa)。ろ液が合計8400g得られた段階でクロスフロー濾過を終了した。ろ過時間は合計で15.4時間であり、単位時間・単位ろ過面積あたりのろ過速度を算出すると9.1kg/m・hであった。 2.1 kg of the obtained silver nanowire / methanol dispersion was poured into a small desktop testing machine (manufactured by Nippon Gaishi Co., Ltd., using ceramic membrane filter Sepilt, membrane area 0.06 m 2 , pore diameter 2.0 μm, size Φ30 mm × 250 mm). Cross-flow filtration was performed at a circulation flow rate of 10 L / min, a dispersion temperature of 25 ° C., and a filtration differential pressure of 0.06 MPa. The opening and closing of the permeation valve was adjusted so that the permeation rate of the filtrate was 10 g / min, and 100 g of methanol was added to the system by backwash every time 100 g of the filtrate was obtained (solvent retention rate 95%) (backwash pressure). 0.15 MPa). Cross-flow filtration was completed when a total of 8400 g of filtrate was obtained. The total filtration time was 15.4 hours, and the filtration rate per unit time and unit filtration area was 9.1 kg / m 2 · h.
 クロスフロー濾過後の分散液を355メッシュのナイロンフィルターに通し凝集物を除去することで、銀ナノワイヤ精製液を1.5kg取得した。分散液を通す前後において、ナイロンフィルターの重量変化を測定したところ0.2gの増加であり、クロスフローろ過により発生した凝集物は非常に少なかった。 1.5 kg of silver nanowire purified liquid was obtained by passing the dispersion liquid after cross-flow filtration through a 355 mesh nylon filter to remove aggregates. When the weight change of the nylon filter was measured before and after passing the dispersion liquid, the increase was 0.2 g, and the agglomerates generated by the cross-flow filtration were very small.
 ナイロンフィルターを通した銀ナノワイヤ精製液の銀濃度を滴定法を用いて測定したところ1.8質量%であった(収率75%)。またGPCによりPVPの濃度を測定したところ0.06質量%であった。 The silver concentration of the silver nanowire purified liquid passed through the nylon filter was measured by the titration method and found to be 1.8% by mass (yield 75%). Moreover, when the concentration of PVP was measured by GPC, it was 0.06% by mass.
 先と同様の方法で、ナイロンフィルターを通した銀ナノワイヤ精製液中の銀ナノワイヤ比(銀ナノワイヤの数/(銀ナノワイヤの数+銀ナノ粒子の数))を算出したところ、98%であった。 When the silver nanowire ratio (number of silver nanowires / (number of silver nanowires + number of silver nanoparticles)) in the silver nanowire purification solution passed through the nylon filter was calculated by the same method as before, it was 98%. ..
 ガスクロマトグラフィーを用いて銀ナノワイヤ精製液中の溶媒比率を測定したところ、メタノールが79.1%であり、水の比率は20.9%と算出された。 When the solvent ratio in the silver nanowire purified liquid was measured using gas chromatography, it was calculated that methanol was 79.1% and water ratio was 20.9%.
実施例14
 イオン交換水の代わりにエタノールを用いる以外は実施例2と同様の方法で銀ナノワイヤ/エタノール分散液2.1kgを得た。得られた銀ナノワイヤ/エタノール分散液の銀濃度を滴定法を用いて測定したところ1.8質量%であった。またGPCによりPVPの濃度を測定したところ2.7質量%であった。
Example 14
2.1 kg of silver nanowire / ethanol dispersion was obtained in the same manner as in Example 2 except that ethanol was used instead of the ion-exchanged water. The silver concentration of the obtained silver nanowire / ethanol dispersion was measured by a titration method and found to be 1.8% by mass. Moreover, when the concentration of PVP was measured by GPC, it was 2.7% by mass.
 実施例13と同様の方法で分散液中の銀ナノワイヤ比(銀ナノワイヤの数/(銀ナノワイヤの数+銀ナノ粒子の数))を算出したところ、92%であった。 The ratio of silver nanowires in the dispersion (number of silver nanowires / (number of silver nanowires + number of silver nanoparticles)) was calculated by the same method as in Example 13 and found to be 92%.
 得られた銀ナノワイヤ/エタノール分散液2.1kgを卓上小型試験機(日本ガイシ株式会社製、セラミック膜フィルター セフィルト使用、膜面積0.06m、孔径2.0μm、寸法Φ30mm×250mm)に流し入れ、循環流速12L/min、分散液温度25℃、ろ過差圧0.03MPaにてクロスフロー濾過を実施した。ろ液の透過速度がおよそ5g/minとなるように透過バルブの開閉を調整し、ろ液が100g得られる(溶媒保持率95%)毎にエタノール100gを逆洗により系に加えた(逆洗圧力0.15MPa)。ろ液が合計8400g得られた段階でクロスフロー濾過を終了した。ろ過時間は合計で40.1時間であり、ろ過速度を算出すると3.5kg/m・hであった。 2.1 kg of the obtained silver nanowire / ethanol dispersion was poured into a small desktop testing machine (manufactured by Nippon Gaishi Co., Ltd., using ceramic membrane filter Sepilt, membrane area 0.06 m 2 , pore diameter 2.0 μm, size Φ30 mm × 250 mm). Cross-flow filtration was performed at a circulation flow rate of 12 L / min, a dispersion temperature of 25 ° C., and a filtration differential pressure of 0.03 MPa. The opening and closing of the permeation valve was adjusted so that the permeation rate of the filtrate was about 5 g / min, and 100 g of ethanol was added to the system by backwash every time 100 g of the filtrate was obtained (solvent retention rate 95%). Pressure 0.15 MPa). Cross-flow filtration was completed when a total of 8400 g of filtrate was obtained. The total filtration time was 40.1 hours, and the filtration rate was calculated to be 3.5 kg / m 2 · h.
 クロスフロー濾過後の分散液を355メッシュのナイロンフィルターに通し凝集物を除去することで、銀ナノワイヤ精製液を1.4kg取得した。分散液を通す前後において、ナイロンフィルターの重量変化を測定したところ0.2gの増加であり、クロスフローろ過により発生した凝集物は非常に少なかった。 1.4 kg of silver nanowire purified liquid was obtained by passing the dispersion liquid after cross-flow filtration through a 355 mesh nylon filter to remove aggregates. When the weight change of the nylon filter was measured before and after passing the dispersion liquid, the increase was 0.2 g, and the agglomerates generated by the cross-flow filtration were very small.
 ナイロンフィルターを通した銀ナノワイヤ精製液の銀濃度を滴定法を用いて測定したところ1.8質量%であった(収率71%)。またGPCによりPVPの濃度を測定したところ0.11質量%であった。 The silver concentration of the silver nanowire purified liquid passed through the nylon filter was measured by the titration method and found to be 1.8% by mass (yield 71%). Moreover, when the concentration of PVP was measured by GPC, it was 0.11% by mass.
 先と同様の方法で、ナイロンフィルターを通した銀ナノワイヤ精製液中の銀ナノワイヤ比(銀ナノワイヤの数/(銀ナノワイヤの数+銀ナノ粒子の数))を算出したところ、97%であった。 When the silver nanowire ratio (number of silver nanowires / (number of silver nanowires + number of silver nanoparticles)) in the silver nanowire purification solution passed through the nylon filter was calculated by the same method as before, it was 97%. ..
 ガスクロマトグラフィーを用いて銀ナノワイヤ精製液中の溶媒比率を測定したところ、エタノールが89.8%であり、水の比率は10.2%と算出された。 When the solvent ratio in the silver nanowire purified liquid was measured using gas chromatography, it was calculated that ethanol was 89.8% and water ratio was 10.2%.
実施例15
 実施例1と同様の合成方法を27回繰り返して銀ナノワイヤ粗分散液97.2kgを得た。
Example 15
The same synthesis method as in Example 1 was repeated 27 times to obtain 97.2 kg of a crude silver nanowire dispersion.
 上記銀ナノワイヤ粗分散液のうち15.4kgを65LのPFAコートSUS容器に入れ、メカニカルスターラーを用いて150rpmにて撹拌しながら酢酸ブチル16.1kgを10分かけて添加した。10分撹拌を継続した後、撹拌を止め10分静置することで上澄み液と沈殿物とを分離させた。その後、デカンテーション操作により上澄みを22.1kg除去した。銀ナノワイヤ粗分散液をさらに16.9kg添加し、150rpmにて10分撹拌を継続して分散させた。酢酸ブチル17.8kgを10分かけて添加し、10分撹拌を継続した後、撹拌を止め10分静置することで上澄み液と沈殿物とを分離させた。その後、デカンテーション操作により上澄みを31.0kg除去した。 15.4 kg of the above silver nanowire coarse dispersion was placed in a 65 L PFA-coated SUS container, and 16.1 kg of butyl acetate was added over 10 minutes while stirring at 150 rpm using a mechanical stirrer. After continuing the stirring for 10 minutes, the stirring was stopped and the mixture was allowed to stand for 10 minutes to separate the supernatant and the precipitate. Then, 22.1 kg of the supernatant was removed by a decantation operation. A further 16.9 kg of a crude silver nanowire dispersion was added, and stirring was continued at 150 rpm for 10 minutes to disperse. 17.8 kg of butyl acetate was added over 10 minutes, stirring was continued for 10 minutes, then the stirring was stopped and the mixture was allowed to stand for 10 minutes to separate the supernatant and the precipitate. Then, 31.0 kg of the supernatant was removed by a decantation operation.
 沈殿を含む残液にアセトニトリル7.6kgを添加し、10分撹拌を継続して沈殿を再分散させた後、酢酸ブチル16.0kgを10分かけて添加した。10分撹拌を継続した後、撹拌を止め10分静置することで上澄み液と沈殿物とを分離させた。その後、デカンテーション操作により上澄みを全液量の70%(23.0kg)除去した。この操作を11回繰り返すことで副生したナノ粒子を除去した。 7.6 kg of acetonitrile was added to the residual liquid containing the precipitate, stirring was continued for 10 minutes to redisperse the precipitate, and then 16.0 kg of butyl acetate was added over 10 minutes. After continuing the stirring for 10 minutes, the stirring was stopped and the mixture was allowed to stand for 10 minutes to separate the supernatant and the precipitate. Then, 70% (23.0 kg) of the total amount of the supernatant was removed by a decantation operation. By repeating this operation 11 times, the nanoparticles produced as by-products were removed.
 沈殿を含む残液にアセトン7.0kgを添加し、10分撹拌を継続した後、撹拌を止め10分静置することで上澄み液と沈殿物とを分離させた。その後、デカンテーション操作により上澄みを全液量の70%(11.9kg)除去した。この操作をもう一度繰り返した後、沈殿を含む残液を10Lポリ容器に移液し、イオン交換水を内液が7.0kgとなるまで加えて振盪攪拌することで完全に分散させた。 7.0 kg of acetone was added to the residual liquid containing the precipitate, stirring was continued for 10 minutes, then the stirring was stopped and the mixture was allowed to stand for 10 minutes to separate the supernatant and the precipitate. Then, 70% (11.9 kg) of the total amount of the supernatant was removed by a decantation operation. After repeating this operation once more, the residual liquid containing the precipitate was transferred to a 10 L plastic container, ion-exchanged water was added until the internal liquid reached 7.0 kg, and the mixture was completely dispersed by shaking and stirring.
 上記再沈殿操作をさらに2回繰り返し、銀ナノワイヤ/水分散液を合計で21.0kg取得した。 The above reprecipitation operation was repeated twice more to obtain a total of 21.0 kg of silver nanowire / aqueous dispersion.
 得られた銀ナノワイヤ/水分散液の銀濃度を滴定法を用いて測定したところ1.8質量%であった。またGPCによりPVPの濃度を測定したところ2.7質量%であった。 The silver concentration of the obtained silver nanowire / aqueous dispersion was measured by the titration method and found to be 1.8% by mass. Moreover, when the concentration of PVP was measured by GPC, it was 2.7% by mass.
 実施例2と同様の方法で分散液中の銀ナノワイヤ比(銀ナノワイヤの数/(銀ナノワイヤの数+銀ナノ粒子の数))を算出したところ、93%であった。 The ratio of silver nanowires in the dispersion (number of silver nanowires / (number of silver nanowires + number of silver nanoparticles)) was calculated by the same method as in Example 2 and found to be 93%.
<クロスフロー濾過>
 得られた銀ナノワイヤ/水分散液21.0kgを標準試験機(日本ガイシ株式会社製、セラミック膜フィルター セフィルト使用、膜面積0.24m、孔径2.0μm、寸法Φ30mm×1000mm)に流し入れ、循環流速7L/min、分散液温度25℃、ろ過差圧0.07MPaにてクロスフロー濾過(第一ろ過)を実施した。ろ液の透過速度がおよそ40g/minとなるように透過バルブの開閉を調整し、ろ液が1.0kg得られる(溶媒保持率95%)毎にイオン交換水1.0kgを逆洗により系に加えた(逆洗圧力0.15MPa)。ろ液が合計140kg得られた段階で、逆洗により系に加える溶媒をイオン交換水からエタノールに変え、ろ過差圧0.07MPaにてクロスフロー濾過(第二ろ過)を継続した。ろ液がさらに10kg得られた段階でクロスフロー濾過を終了した。イオン交換水を用いた第一ろ過時間は合計で82.9時間であり、単位時間・単位ろ過面積あたりのろ過速度を算出すると7.0kg/m・hであった。またエタノールを用いた第二ろ過時間は合計で7.1時間であり、単位時間・単位ろ過面積あたりのろ過速度を算出すると5.9kg/m・hであった。
<Cross flow filtration>
21.0 kg of the obtained silver nanowire / aqueous dispersion is poured into a standard testing machine (manufactured by Nippon Gaishi Co., Ltd., using ceramic membrane filter Sepilt, membrane area 0.24 m 2 , pore diameter 2.0 μm, size Φ30 mm × 1000 mm) and circulated. Cross-flow filtration (first filtration) was performed at a flow velocity of 7 L / min, a dispersion temperature of 25 ° C., and a filtration differential pressure of 0.07 MPa. The opening and closing of the permeation valve is adjusted so that the permeation rate of the filtrate is about 40 g / min, and 1.0 kg of ion-exchanged water is backwashed every time 1.0 kg of filtrate is obtained (solvent retention rate 95%). (Backwash pressure 0.15 MPa). When a total of 140 kg of filtrate was obtained, the solvent added to the system by backwashing was changed from ion-exchanged water to ethanol, and cross-flow filtration (second filtration) was continued at a filtration differential pressure of 0.07 MPa. Cross-flow filtration was terminated when an additional 10 kg of filtrate was obtained. The total first filtration time using ion-exchanged water was 82.9 hours, and the filtration rate per unit time and unit filtration area was 7.0 kg / m 2 · h. The total second filtration time using ethanol was 7.1 hours, and the filtration rate per unit time and unit filtration area was 5.9 kg / m 2 · h.
 クロスフロー濾過後の分散液を30μmのデプスフィルターに通し凝集物を除去することで、銀ナノワイヤ精製液を16.4kg取得した。分散液を通す前後において、デプスフィルターの重量変化を測定したところ1.6gの増加であり、クロスフローろ過により発生した凝集物は銀ナノワイヤの理論収量(378g)に対して非常に少なかった。 16.4 kg of silver nanowire purified liquid was obtained by passing the dispersion liquid after cross-flow filtration through a 30 μm depth filter to remove aggregates. When the weight change of the depth filter was measured before and after passing through the dispersion liquid, the increase was 1.6 g, and the agglomerates generated by the cross-flow filtration were very small with respect to the theoretical yield (378 g) of the silver nanowires.
 デプスフィルターを通した銀ナノワイヤ精製液の銀濃度を滴定法を用いて測定したところ1.8質量%であった(収率78%)。またGPCによりPVPの濃度を測定したところ0.09質量%であった。 The silver concentration of the silver nanowire purified solution passed through the depth filter was measured by the titration method and found to be 1.8% by mass (yield 78%). Moreover, when the concentration of PVP was measured by GPC, it was 0.09% by mass.
 先と同様の方法で、デプスフィルターを通した銀ナノワイヤ精製液中の銀ナノワイヤ比(銀ナノワイヤの数/(銀ナノワイヤの数+銀ナノ粒子の数))を算出したところ、97%であった。 When the silver nanowire ratio (number of silver nanowires / (number of silver nanowires + number of silver nanoparticles)) in the silver nanowire purification solution passed through the depth filter was calculated by the same method as before, it was 97%. ..
 ガスクロマトグラフィーを用いて銀ナノワイヤ精製液中の溶媒比率を測定したところ、エタノールは43.3%であり、水の比率は56.7%と算出された。 When the solvent ratio in the silver nanowire purified liquid was measured using gas chromatography, it was calculated that ethanol was 43.3% and water ratio was 56.7%.
実施例16
 実施例1と同様の合成方法を27回繰り返して銀ナノワイヤを0.4質量%含む粗分散液97.2kgを得た。
Example 16
The same synthesis method as in Example 1 was repeated 27 times to obtain 97.2 kg of a crude dispersion liquid containing 0.4% by mass of silver nanowires.
 得られた粗分散液のうち29.0kgを65LのPFAコートSUS容器に入れ、メカニカルスターラーを用いて200rpmにて撹拌しながら酢酸ブチル30.5kgを20分かけて添加した。10分撹拌を継続した後、撹拌を止め10分静置することで上澄み液と沈殿物とを分離させた。その後、デカンテーション操作により上澄みを41.6kg除去した。 29.0 kg of the obtained crude dispersion was placed in a 65 L PFA-coated SUS container, and 30.5 kg of butyl acetate was added over 20 minutes while stirring at 200 rpm using a mechanical stirrer. After continuing the stirring for 10 minutes, the stirring was stopped and the mixture was allowed to stand for 10 minutes to separate the supernatant and the precipitate. Then, 41.6 kg of the supernatant was removed by a decantation operation.
 沈殿を含む残液に粗分散液をさらに23.0kg再度添加し、20分撹拌を継続して沈殿を再分散させた後、酢酸ブチル24.2kgを20分かけて添加した。10分撹拌を継続した後、撹拌を止め10分静置することで上澄み液と沈殿物とを分離させた。その後、デカンテーション操作により上澄みを45.5kg除去した。粗分散液をさらに23.0kg再度添加し、20分撹拌を継続して沈殿を再分散させた後、酢酸ブチル24.2kgを20分かけて添加した。10分撹拌を継続した後、撹拌を止め10分静置することで上澄み液と沈殿物とを分離させた。その後、デカンテーション操作により上澄みを46.7kg除去した。粗分散液をさらに21.9kg再度添加し、20分撹拌を継続して沈殿を再分散させた後、酢酸ブチル23.0kgを20分かけて添加した。10分撹拌を継続した後、撹拌を止め10分静置することで上澄み液と沈殿物とを分離させた。その後、デカンテーション操作により上澄みを45.4kg除去した。 23.0 kg of the crude dispersion was added again to the residual liquid containing the precipitate, and stirring was continued for 20 minutes to redisperse the precipitate, and then 24.2 kg of butyl acetate was added over 20 minutes. After continuing the stirring for 10 minutes, the stirring was stopped and the mixture was allowed to stand for 10 minutes to separate the supernatant and the precipitate. Then, 45.5 kg of the supernatant was removed by a decantation operation. A further 23.0 kg of the crude dispersion was added again, stirring was continued for 20 minutes to redistribute the precipitate, and then 24.2 kg of butyl acetate was added over 20 minutes. After continuing the stirring for 10 minutes, the stirring was stopped and the mixture was allowed to stand for 10 minutes to separate the supernatant and the precipitate. Then, 46.7 kg of the supernatant was removed by a decantation operation. A further 21.9 kg of the crude dispersion was added again, stirring was continued for 20 minutes to redistribute the precipitate, and then 23.0 kg of butyl acetate was added over 20 minutes. After continuing the stirring for 10 minutes, the stirring was stopped and the mixture was allowed to stand for 10 minutes to separate the supernatant and the precipitate. Then, 45.4 kg of the supernatant was removed by a decantation operation.
 沈殿を含む残液にイオン交換水9.0kgを添加し、20分撹拌を継続して沈殿を再分散させた後、アセトン20.1kgを20分かけて添加した。10分撹拌を継続した後、撹拌を止め10分静置することで上澄み液と沈殿物とを分離させた。その後、デカンテーション操作により上澄みを全液量の70%(29.1kg)除去した。イオン交換水9.0kg添加以降の操作を30回繰り返すことで副生したナノ粒子を除去した。 9.0 kg of ion-exchanged water was added to the residual liquid containing the precipitate, stirring was continued for 20 minutes to redisperse the precipitate, and then 20.1 kg of acetone was added over 20 minutes. After continuing the stirring for 10 minutes, the stirring was stopped and the mixture was allowed to stand for 10 minutes to separate the supernatant and the precipitate. Then, 70% (29.1 kg) of the total amount of the supernatant was removed by a decantation operation. The by-produced nanoparticles were removed by repeating the operation after the addition of 9.0 kg of ion-exchanged water 30 times.
 沈殿を含む残液19.4kgにアセトン7.0kgを添加し、10分撹拌を継続した後、撹拌を止め10分静置することで上澄み液と沈殿物とを分離させた。その後、デカンテーション操作により上澄みを全液量の70%(13.7kg)除去した。沈殿を含む残液にイオン交換水を液量が21.0kgとなるまで加えて攪拌することで完全に分散させた。 7.0 kg of acetone was added to 19.4 kg of the residual liquid containing the precipitate, and after continuing stirring for 10 minutes, the stirring was stopped and the mixture was allowed to stand for 10 minutes to separate the supernatant and the precipitate. Then, 70% (13.7 kg) of the total amount of the supernatant was removed by a decantation operation. Ion-exchanged water was added to the residual liquid containing the precipitate until the amount of the liquid reached 21.0 kg, and the mixture was completely dispersed by stirring.
 得られた銀ナノワイヤ/水分散液の銀濃度を滴定法を用いて測定したところ1.8質量%であった。またGPCによりPVPの濃度を測定したところ2.5質量%であった。 The silver concentration of the obtained silver nanowire / aqueous dispersion was measured by the titration method and found to be 1.8% by mass. Moreover, when the concentration of PVP was measured by GPC, it was 2.5% by mass.
 実施例2と同様の方法で分散液中の銀ナノワイヤ比(銀ナノワイヤの数/(銀ナノワイヤの数+銀ナノ粒子の数))を算出したところ、95%であった。 The ratio of silver nanowires in the dispersion (number of silver nanowires / (number of silver nanowires + number of silver nanoparticles)) was calculated by the same method as in Example 2 and found to be 95%.
<クロスフロー濾過>
 得られた銀ナノワイヤ/水分散液21.0kgを標準試験機(日本ガイシ株式会社製、セラミック膜フィルター セフィルト使用、膜面積0.24m、孔径2.0μm、寸法Φ30mm×1000mm)に流し入れ、循環流速7L/min、分散液温度25℃、ろ過差圧0.08MPaにてクロスフロー濾過(第一ろ過)を実施した。ろ液の透過速度がおよそ40g/minとなるように透過バルブの開閉を調整し、ろ液が2.0kg得られる(溶媒保持率90%)毎にイオン交換水2.0kgを逆洗により系に加えた(逆洗圧力0.15MPa)。ろ液が合計168kg得られた段階で、逆洗により系に加える溶媒をイオン交換水からエタノールに変え、ろ過差圧0.08MPaてクロスフロー濾過(第二ろ過)を継続した。ろ液がさらに14kg得られた段階でクロスフロー濾過を終了した。イオン交換水を用いた第一ろ過時間は合計で96.4時間であり、単位時間・単位ろ過面積あたりのろ過速度を算出すると7.3kg/m・hであった。またエタノールを用いた第二ろ過時間は合計で8.3時間であり、単位時間・単位ろ過面積あたりのろ過速度を算出すると5.0kg/m・hであった。
<Cross flow filtration>
21.0 kg of the obtained silver nanowire / aqueous dispersion is poured into a standard testing machine (manufactured by Nippon Gaishi Co., Ltd., using ceramic membrane filter Sepilt, membrane area 0.24 m 2 , pore diameter 2.0 μm, size Φ30 mm × 1000 mm) and circulated. Cross-flow filtration (first filtration) was performed at a flow velocity of 7 L / min, a dispersion temperature of 25 ° C., and a filtration differential pressure of 0.08 MPa. The opening and closing of the permeation valve is adjusted so that the permeation rate of the filtrate is about 40 g / min, and 2.0 kg of ion-exchanged water is backwashed every time 2.0 kg of filtrate is obtained (solvent retention rate 90%). (Backwash pressure 0.15 MPa). When a total of 168 kg of filtrate was obtained, the solvent added to the system by backwashing was changed from ion-exchanged water to ethanol, and cross-flow filtration (second filtration) was continued with a filtration differential pressure of 0.08 MPa. Cross-flow filtration was terminated when an additional 14 kg of filtrate was obtained. The total first filtration time using ion-exchanged water was 96.4 hours, and the filtration rate per unit time and unit filtration area was 7.3 kg / m 2 · h. The total second filtration time using ethanol was 8.3 hours, and the filtration rate per unit time and unit filtration area was 5.0 kg / m 2 · h.
 クロスフロー濾過後の分散液を30μmのデプスフィルターに通し凝集物を除去することで、銀ナノワイヤ精製液を14.7kg取得した。分散液を通す前後において、デプスフィルターの重量変化を測定したところ1.3gの増加であり、クロスフローろ過により発生した凝集物は銀ナノワイヤの理論収量(378g)に対して非常に少なかった。 14.7 kg of silver nanowire purified liquid was obtained by passing the dispersion liquid after cross-flow filtration through a 30 μm depth filter to remove aggregates. The weight change of the depth filter was measured before and after passing through the dispersion liquid, and the increase was 1.3 g, and the agglomerates generated by the cross-flow filtration were very small with respect to the theoretical yield (378 g) of the silver nanowires.
 デプスフィルターを通した銀ナノワイヤ精製液の銀濃度を滴定法を用いて測定したところ1.8質量%であった(収率70%)。またGPCによりPVPの濃度を測定したところ0.15質量%であった。 The silver concentration of the silver nanowire purified solution passed through the depth filter was measured by the titration method and found to be 1.8% by mass (yield 70%). Moreover, when the concentration of PVP was measured by GPC, it was 0.15% by mass.
 先と同様の方法で、デプスフィルターを通した銀ナノワイヤ精製液中の銀ナノワイヤ比(銀ナノワイヤの数/(銀ナノワイヤの数+銀ナノ粒子の数))を算出したところ、96%であった。 When the silver nanowire ratio (number of silver nanowires / (number of silver nanowires + number of silver nanoparticles)) in the silver nanowire purification solution passed through the depth filter was calculated by the same method as before, it was 96%. ..
 ガスクロマトグラフィーを用いて銀ナノワイヤ精製液中の溶媒比率を測定したところ、エタノールは48.7%であり、水の比率は51.3%と算出された。 When the solvent ratio in the silver nanowire purified liquid was measured using gas chromatography, it was calculated that ethanol was 48.7% and water ratio was 51.3%.
実施例17
 実施例1と同様の合成方法を3回繰り返して銀ナノワイヤを0.4質量%含む粗分散液9.7kgを得た。得られた粗分散液を25LのPFAコートSUS容器に入れ、メカニカルスターラーを用いて150rpmにて撹拌しながら酢酸ブチル10.2kgを10分かけて添加した。10分撹拌を継続した後、撹拌を止め10分静置することで上澄み液と沈殿物とを分離させた。その後、デカンテーション操作により上澄みを13.9kg除去した。
Example 17
The same synthesis method as in Example 1 was repeated three times to obtain 9.7 kg of a crude dispersion liquid containing 0.4% by mass of silver nanowires. The obtained crude dispersion was placed in a 25 L PFA-coated SUS container, and 10.2 kg of butyl acetate was added over 10 minutes while stirring at 150 rpm using a mechanical stirrer. After continuing the stirring for 10 minutes, the stirring was stopped and the mixture was allowed to stand for 10 minutes to separate the supernatant and the precipitate. Then, 13.9 kg of the supernatant was removed by a decantation operation.
 沈殿を含む残液にアセトニトリル5.0kgを添加し、30分撹拌を継続して沈殿を再分散させた。日立工機株式会社製高速冷却遠心機(CR22N、1.5L×4本)を用いて2000rpmにて30分遠心沈降させることで、上澄み液と沈殿物とを分離させた。その後、デカンテーション操作により上澄み液を全液量の80%除去した。アセトニトリル5.0kg添加以降の操作を3回繰り返すことで副生したナノ粒子を除去した。 5.0 kg of acetonitrile was added to the residual liquid containing the precipitate, and stirring was continued for 30 minutes to redistribute the precipitate. The supernatant and the precipitate were separated by centrifuging at 2000 rpm for 30 minutes using a high-speed cooling centrifuge (CR22N, 1.5 L × 4) manufactured by Hitachi Koki Co., Ltd. Then, 80% of the total amount of the supernatant was removed by a decantation operation. The by-produced nanoparticles were removed by repeating the operation after the addition of 5.0 kg of acetonitrile three times.
 沈殿を含む残液1.3kgにアセトン3.0kgを添加し、10分撹拌を継続した後、撹拌を止め10分静置することで上澄み液と沈殿物とを分離させた。その後、デカンテーション操作により上澄みを全液量の80%(3.4kg)除去した。沈殿を含む残液を3Lポリ容器に移液し、イオン交換水を内液が2.1kgとなるまで加えて振盪攪拌することで完全に分散させた。 3.0 kg of acetone was added to 1.3 kg of the residual liquid containing the precipitate, and after continuing stirring for 10 minutes, the stirring was stopped and the mixture was allowed to stand for 10 minutes to separate the supernatant and the precipitate. Then, 80% (3.4 kg) of the total amount of the supernatant was removed by a decantation operation. The residual liquid containing the precipitate was transferred to a 3 L plastic container, ion-exchanged water was added until the internal liquid became 2.1 kg, and the mixture was completely dispersed by shaking and stirring.
 得られた銀ナノワイヤ/水分散液の銀濃度を滴定法を用いて測定したところ1.7質量%であった。またGPCによりPVPの濃度を測定したところ1.8質量%であった。 The silver concentration of the obtained silver nanowire / aqueous dispersion was measured by the titration method and found to be 1.7% by mass. Moreover, when the concentration of PVP was measured by GPC, it was 1.8% by mass.
 得られた銀ナノワイヤ/水分散液をメタノールで500倍に希釈し、銀ナノワイヤ希薄溶液を作製した。清浄なガラス板上に先の銀ナノワイヤ希薄溶液を一滴ドロップし、90℃のホットプレートにて乾燥させた。ガラス板をレーザー顕微鏡(キーエンスVK-X200)を用いて3000倍の倍率で観察し、銀ナノワイヤの数と銀ナノ粒子の数を計測した。分散液中の銀ナノワイヤ比(銀ナノワイヤの数/(銀ナノワイヤの数+銀ナノ粒子の数))を算出したところ、92%であった。 The obtained silver nanowire / aqueous dispersion was diluted 500-fold with methanol to prepare a dilute silver nanowire solution. A drop of the silver nanowire dilute solution was dropped on a clean glass plate and dried on a hot plate at 90 ° C. The glass plate was observed with a laser microscope (Keyence VK-X200) at a magnification of 3000 times, and the number of silver nanowires and the number of silver nanoparticles were measured. The ratio of silver nanowires in the dispersion (number of silver nanowires / (number of silver nanowires + number of silver nanoparticles)) was calculated to be 92%.
 得られた銀ナノワイヤ/水分散液を、実施例1と同様の方法でクロスフローろ過により精製した。ろ過時間は合計で18.8時間であり、単位時間・単位ろ過面積あたりのろ過速度を算出すると7.4kg/m・hであった。クロスフロー濾過後の分散液を355メッシュのナイロンフィルターに通し凝集物を除去することで、銀ナノワイヤ精製液を1.4kg取得した。分散液を通す前後において、ナイロンフィルターの重量変化を測定したところ0.15gの増加であり、クロスフローろ過により発生した凝集物はほとんどなかった。 The obtained silver nanowire / aqueous dispersion was purified by cross-flow filtration in the same manner as in Example 1. The total filtration time was 18.8 hours, and the filtration rate per unit time and unit filtration area was 7.4 kg / m 2 · h. The dispersion liquid after cross-flow filtration was passed through a 355 mesh nylon filter to remove aggregates, thereby obtaining 1.4 kg of a silver nanowire purified liquid. When the weight change of the nylon filter was measured before and after passing the dispersion liquid, the increase was 0.15 g, and there was almost no agglomerate generated by the cross-flow filtration.
 ナイロンフィルターを通した銀ナノワイヤ精製液の銀濃度を滴定法を用いて測定したところ1.7質量%であった(収率68%)。またGPCによりPVPの濃度を測定したところ0.06質量%であった。 The silver concentration of the silver nanowire purified solution passed through the nylon filter was measured by the titration method and found to be 1.7% by mass (yield 68%). Moreover, when the concentration of PVP was measured by GPC, it was 0.06% by mass.
 先と同様の方法で、ナイロンフィルターを通した銀ナノワイヤ精製液中の銀ナノワイヤ比(銀ナノワイヤの数/(銀ナノワイヤの数+銀ナノ粒子の数))を算出したところ、95%であった。 When the silver nanowire ratio (number of silver nanowires / (number of silver nanowires + number of silver nanoparticles)) in the silver nanowire purification solution passed through the nylon filter was calculated by the same method as before, it was 95%. ..
比較例1
 実施例1と同様の合成方法を3回繰り返して銀ナノワイヤ粗分散液9.7kgを得た。得られた粗分散液を25LのPFAコートSUS容器に入れ、メカニカルスターラーを用いて150rpmにて撹拌しながら酢酸ブチル10.2kgを10分かけて添加した。10分撹拌を継続した後、撹拌を止め10分静置することで上澄み液と沈殿物とを分離させた。その後、デカンテーション操作により上澄みを13.9kg除去した。
Comparative Example 1
The same synthesis method as in Example 1 was repeated three times to obtain 9.7 kg of a crude silver nanowire dispersion. The obtained crude dispersion was placed in a 25 L PFA-coated SUS container, and 10.2 kg of butyl acetate was added over 10 minutes while stirring at 150 rpm using a mechanical stirrer. After continuing the stirring for 10 minutes, the stirring was stopped and the mixture was allowed to stand for 10 minutes to separate the supernatant and the precipitate. Then, 13.9 kg of the supernatant was removed by a decantation operation.
 沈殿を含む残液にアセトン3.0kgを添加し、10分撹拌を継続した後、撹拌を止め10分静置することで上澄み液と沈殿物とを分離させた。その後、デカンテーション操作により上澄みを全液量の80%(7.2kg)除去した。この操作をもう一度繰り返した後、沈殿を含む残液を3Lポリ容器に移液し、イオン交換水を内液が2.1kgとなるまで加えて振盪攪拌することで完全に分散させた。 3.0 kg of acetone was added to the residual liquid containing the precipitate, and after continuing stirring for 10 minutes, the stirring was stopped and the mixture was allowed to stand for 10 minutes to separate the supernatant and the precipitate. Then, 80% (7.2 kg) of the total amount of the supernatant was removed by a decantation operation. After repeating this operation once more, the residual liquid containing the precipitate was transferred to a 3 L plastic container, ion-exchanged water was added until the internal liquid became 2.1 kg, and the mixture was completely dispersed by shaking and stirring.
 得られた銀ナノワイヤ/水分散液の銀濃度を滴定法を用いて測定したところ1.8質量%であった。またGPCによりPVPの濃度を測定したところ5.9質量%であった。 The silver concentration of the obtained silver nanowire / aqueous dispersion was measured by the titration method and found to be 1.8% by mass. Moreover, when the concentration of PVP was measured by GPC, it was 5.9% by mass.
 実施例2と同様の方法で分散液中の銀ナノワイヤ比(銀ナノワイヤの数/(銀ナノワイヤの数+銀ナノ粒子の数))を算出したところ、26%であった。 The ratio of silver nanowires in the dispersion (number of silver nanowires / (number of silver nanowires + number of silver nanoparticles)) was calculated by the same method as in Example 2 and found to be 26%.
 銀ナノワイヤ濃縮液を実施例2と同様の方法でクロスフローろ過により精製した。ろ過時間は合計で40.0時間であり、単位時間・単位ろ過面積あたりのろ過速度を算出すると3.5kg/m・hであった。クロスフロー濾過後の分散液を355メッシュのナイロンフィルターに通し凝集物を除去することで、銀ナノワイヤ精製液を1.5kg取得した。分散液を通す前後において、ナイロンフィルターの重量変化を測定したところ0.1gの増加であり、クロスフローろ過により発生した凝集物は非常に少なかった。 The silver nanowire concentrate was purified by cross-flow filtration in the same manner as in Example 2. The total filtration time was 40.0 hours, and the filtration rate per unit time and unit filtration area was 3.5 kg / m 2 · h. The dispersion liquid after cross-flow filtration was passed through a 355 mesh nylon filter to remove aggregates, thereby obtaining 1.5 kg of a silver nanowire purified liquid. When the weight change of the nylon filter was measured before and after passing the dispersion liquid, the increase was 0.1 g, and the agglomerates generated by the cross-flow filtration were very small.
 ナイロンフィルターを通した銀ナノワイヤ精製液の銀濃度を滴定法を用いて測定したところ1.8質量%であった(収率74%)。またGPCによりPVPの濃度を測定したところ0.22質量%であった。 The silver concentration of the silver nanowire purified solution passed through the nylon filter was measured by the titration method and found to be 1.8% by mass (yield 74%). Moreover, when the concentration of PVP was measured by GPC, it was 0.22% by mass.
 先と同様の方法で、ナイロンフィルターを通した銀ナノワイヤ精製液中の銀ナノワイヤ比(銀ナノワイヤの数/(銀ナノワイヤの数+銀ナノ粒子の数))を算出したところ、33%であり、ナノ粒子の除去はほとんど進んでいなかった。 When the silver nanowire ratio (number of silver nanowires / (number of silver nanowires + number of silver nanoparticles)) in the silver nanowire purification solution passed through the nylon filter was calculated by the same method as before, it was 33%. Little progress has been made in removing nanoparticles.
比較例2
 実施例1と同様の合成方法を3回繰り返して銀ナノワイヤ粗分散液9.7kgを得た。得られた粗分散液を25LのPFAコートSUS容器に入れ、メカニカルスターラーを用いて150rpmにて撹拌しながら酢酸ブチル10.2kgを10分かけて添加した。10分撹拌を継続した後、撹拌を止め10分静置することで上澄み液と沈殿物とを分離させた。その後、デカンテーション操作により上澄みを13.9kg除去した。
Comparative Example 2
The same synthesis method as in Example 1 was repeated three times to obtain 9.7 kg of a crude silver nanowire dispersion. The obtained crude dispersion was placed in a 25 L PFA-coated SUS container, and 10.2 kg of butyl acetate was added over 10 minutes while stirring at 150 rpm using a mechanical stirrer. After continuing the stirring for 10 minutes, the stirring was stopped and the mixture was allowed to stand for 10 minutes to separate the supernatant and the precipitate. Then, 13.9 kg of the supernatant was removed by a decantation operation.
 沈殿を含む残液にアセトニトリル3.3kgを添加し、10分撹拌を継続して沈殿を再分散させた後、酢酸ブチル6.6kgを10分かけて添加した。10分撹拌を継続した後、撹拌を止め10分静置することで上澄み液と沈殿物とを分離させた。その後、デカンテーション操作により上澄みを全液量の70%(11.1kg)除去した。この操作を6回繰り返すことで副生したナノ粒子の一部を除去した。 3.3 kg of acetonitrile was added to the residual liquid containing the precipitate, stirring was continued for 10 minutes to redisperse the precipitate, and then 6.6 kg of butyl acetate was added over 10 minutes. After continuing the stirring for 10 minutes, the stirring was stopped and the mixture was allowed to stand for 10 minutes to separate the supernatant and the precipitate. Then, 70% (11.1 kg) of the total amount of the supernatant was removed by a decantation operation. By repeating this operation 6 times, some of the nanoparticles produced as by-products were removed.
 沈殿を含む残液にアセトン3.0kgを添加し、10分撹拌を継続した後、撹拌を止め10分静置することで上澄み液と沈殿物とを分離させた。その後、デカンテーション操作により上澄みを全液量の80%(5.8kg)除去した。この操作をもう一度繰り返した後、沈殿を含む残液を3Lポリ容器に移液し、イオン交換水を内液が2.1kgとなるまで加えて振盪攪拌することで完全に分散させた。 3.0 kg of acetone was added to the residual liquid containing the precipitate, and after continuing stirring for 10 minutes, the stirring was stopped and the mixture was allowed to stand for 10 minutes to separate the supernatant and the precipitate. Then, 80% (5.8 kg) of the total amount of the supernatant was removed by a decantation operation. After repeating this operation once more, the residual liquid containing the precipitate was transferred to a 3 L plastic container, ion-exchanged water was added until the internal liquid became 2.1 kg, and the mixture was completely dispersed by shaking and stirring.
 得られた銀ナノワイヤ/水分散液の銀濃度を滴定法を用いて測定したところ1.8質量%であった。またGPCによりPVPの濃度を測定したところ2.7質量%であった。 The silver concentration of the obtained silver nanowire / aqueous dispersion was measured by the titration method and found to be 1.8% by mass. Moreover, when the concentration of PVP was measured by GPC, it was 2.7% by mass.
 実施例2と同様の方法で分散液中の銀ナノワイヤ比(銀ナノワイヤの数/(銀ナノワイヤの数+銀ナノ粒子の数))を算出したところ、78%であった。 The ratio of silver nanowires in the dispersion (number of silver nanowires / (number of silver nanowires + number of silver nanoparticles)) was calculated by the same method as in Example 2 and found to be 78%.
 銀ナノワイヤ濃縮液を、ろ液が合計14kg得られるまでクロスフロー濾過を続けたことを除いて、実施例2と同様の方法で精製した。ろ過時間は合計で38.4時間であり、単位時間・単位ろ過面積あたりのろ過速度を算出すると6.1kg/m・hであった。クロスフロー濾過後の分散液を355メッシュのナイロンフィルターに通し凝集物を除去することで、銀ナノワイヤ精製液を1.4kg取得した。分散液を通す前後において、ナイロンフィルターの重量変化を測定したところ0.2gの増加であり、クロスフローろ過により発生した凝集物は非常に少なかった。 The silver nanowire concentrate was purified in the same manner as in Example 2 except that cross-flow filtration was continued until a total of 14 kg of filtrate was obtained. The total filtration time was 38.4 hours, and the filtration rate per unit time and unit filtration area was 6.1 kg / m 2 · h. The dispersion liquid after cross-flow filtration was passed through a 355 mesh nylon filter to remove aggregates, thereby obtaining 1.4 kg of a silver nanowire purified liquid. When the weight change of the nylon filter was measured before and after passing the dispersion liquid, the increase was 0.2 g, and the agglomerates generated by the cross-flow filtration were very small.
 ナイロンフィルターを通した銀ナノワイヤ精製液の銀濃度を滴定法を用いて測定したところ1.8質量%であった(収率67%)。またGPCによりPVPの濃度を測定したところ0.15質量%であった。 The silver concentration of the silver nanowire purified liquid passed through the nylon filter was measured by the titration method and found to be 1.8% by mass (yield 67%). Moreover, when the concentration of PVP was measured by GPC, it was 0.15% by mass.
 先と同様の方法で、ナイロンフィルターを通した銀ナノワイヤ精製液中の銀ナノワイヤ比(銀ナノワイヤの数/(銀ナノワイヤの数+銀ナノ粒子の数))を算出したところ、88%であり、クロスフロー濾過回数を実施例2と比べて増やしたにも関わらず、ナノ粒子の除去はほとんど進んでいなかった。 When the silver nanowire ratio (number of silver nanowires / (number of silver nanowires + number of silver nanoparticles)) in the silver nanowire purification solution passed through the nylon filter was calculated by the same method as before, it was 88%. Although the number of cross-flow filtrations was increased as compared with Example 2, the removal of nanoparticles was hardly advanced.
比較例3
 実施例1と同様の合成方法を3回繰り返して銀ナノワイヤ粗分散液9.7kgを得た。得られた粗分散液を25LのPFAコートSUS容器に入れ、メカニカルスターラーを用いて150rpmにて撹拌しながら酢酸ブチル10.2kgを10分かけて添加した。10分撹拌を継続した後、撹拌を止め10分静置することで上澄み液と沈殿物とを分離させた。その後、デカンテーション操作により上澄みを13.9kg除去した。
Comparative Example 3
The same synthesis method as in Example 1 was repeated three times to obtain 9.7 kg of a crude silver nanowire dispersion. The obtained crude dispersion was placed in a 25 L PFA-coated SUS container, and 10.2 kg of butyl acetate was added over 10 minutes while stirring at 150 rpm using a mechanical stirrer. After continuing the stirring for 10 minutes, the stirring was stopped and the mixture was allowed to stand for 10 minutes to separate the supernatant and the precipitate. Then, 13.9 kg of the supernatant was removed by a decantation operation.
 沈殿を含む残液にイオン交換水2.1kgを添加し、10分撹拌を継続して沈殿を再分散させた後、アセトン4.4kgを10分かけて添加した。10分撹拌を継続した後、撹拌を止め10分静置することで上澄み液と沈殿物とを分離させた。その後、デカンテーション操作により上澄みを全液量の70%(8.7kg)除去した。この操作を8回繰り返すことで副生したナノ粒子の一部を除去した。 2.1 kg of ion-exchanged water was added to the residual liquid containing the precipitate, stirring was continued for 10 minutes to redistribute the precipitate, and then 4.4 kg of acetone was added over 10 minutes. After continuing the stirring for 10 minutes, the stirring was stopped and the mixture was allowed to stand for 10 minutes to separate the supernatant and the precipitate. Then, 70% (8.7 kg) of the total amount of the supernatant was removed by a decantation operation. By repeating this operation 8 times, a part of the nanoparticles produced as a by-product was removed.
 沈殿を含む残液にアセトン3.0kgを添加し、10分撹拌を継続した後、撹拌を止め10分静置することで上澄み液と沈殿物とを分離させた。デカンテーション操作により上澄みを全液量の80%(4.6kg)除去した後、沈殿を含む残液を3Lポリ容器に移液し、イオン交換水を内液が2.1kgとなるまで加えて振盪攪拌することで完全に分散させた。 3.0 kg of acetone was added to the residual liquid containing the precipitate, and after continuing stirring for 10 minutes, the stirring was stopped and the mixture was allowed to stand for 10 minutes to separate the supernatant and the precipitate. After removing 80% (4.6 kg) of the total liquid volume by decantation operation, transfer the residual liquid containing the precipitate to a 3 L plastic container, and add ion-exchanged water until the internal liquid reaches 2.1 kg. It was completely dispersed by shaking and stirring.
 得られた銀ナノワイヤ/水分散液の銀濃度を滴定法を用いて測定したところ1.8質量%であった。またGPCによりPVPの濃度を測定したところ2.7質量%であった。 The silver concentration of the obtained silver nanowire / aqueous dispersion was measured by the titration method and found to be 1.8% by mass. Moreover, when the concentration of PVP was measured by GPC, it was 2.7% by mass.
 実施例2と同様の方法で分散液中の銀ナノワイヤ比(銀ナノワイヤの数/(銀ナノワイヤの数+銀ナノ粒子の数))を算出したところ、85%であった。 The ratio of silver nanowires in the dispersion (number of silver nanowires / (number of silver nanowires + number of silver nanoparticles)) was calculated by the same method as in Example 2 and found to be 85%.
 銀ナノワイヤ濃縮液を、ろ液が合計14kg得られるまでクロスフロー濾過を続けたことを除いて、実施例2と同様の方法で精製した。ろ過時間は合計で35.0時間であり、単位時間・単位ろ過面積あたりのろ過速度を算出すると5.0kg/m・hであった。クロスフロー濾過後の分散液を355メッシュのナイロンフィルターに通し凝集物を除去することで、銀ナノワイヤ精製液を1.3kg取得した。分散液を通す前後において、ナイロンフィルターの重量変化を測定したところ0.2gの増加であり、クロスフローろ過により発生した凝集物は非常に少なかった。 The silver nanowire concentrate was purified in the same manner as in Example 2 except that cross-flow filtration was continued until a total of 14 kg of filtrate was obtained. The total filtration time was 35.0 hours, and the filtration rate per unit time and unit filtration area was 5.0 kg / m 2 · h. The dispersion liquid after cross-flow filtration was passed through a 355 mesh nylon filter to remove aggregates, thereby obtaining 1.3 kg of a silver nanowire purified liquid. When the weight change of the nylon filter was measured before and after passing the dispersion liquid, the increase was 0.2 g, and the agglomerates generated by the cross-flow filtration were very small.
 ナイロンフィルターを通した銀ナノワイヤ精製液の銀濃度を滴定法を用いて測定したところ1.8質量%であった(収率65%)。またGPCによりPVPの濃度を測定したところ0.18質量%であった。 The silver concentration of the silver nanowire purified liquid passed through the nylon filter was measured by the titration method and found to be 1.8% by mass (yield 65%). Moreover, when the concentration of PVP was measured by GPC, it was 0.18% by mass.
 先と同様の方法で、ナイロンフィルターを通した銀ナノワイヤ精製液中の銀ナノワイヤ比(銀ナノワイヤの数/(銀ナノワイヤの数+銀ナノ粒子の数))を算出したところ、88%であり、ナノ粒子の除去はほとんど進んでいなかった。 When the silver nanowire ratio (number of silver nanowires / (number of silver nanowires + number of silver nanoparticles)) in the silver nanowire purification solution passed through the nylon filter was calculated by the same method as before, it was 88%. Little progress has been made in removing nanoparticles.
 以上の結果を表1に示す。銀濃度が1.0質量%以上である銀ナノワイヤ粗分散液を、クロスフローろ過法を用いて精製することにより、高収率で高純度の銀ナノワイヤ分散液を製造することができる。 The above results are shown in Table 1. By purifying the silver nanowire coarse dispersion having a silver concentration of 1.0% by mass or more by using a cross-flow filtration method, a high-purity silver nanowire dispersion can be produced in high yield.
Figure JPOXMLDOC01-appb-T000001
 
 
Figure JPOXMLDOC01-appb-T000001
 
 
 比較例1~3の結果から、銀濃度1.0%以上かつ銀ナノワイヤ比が90%以下の分散液をクロスフローろ過により精製した場合、クロスフローろ過回数を増やしても銀ナノワイヤ比はさほど改善しないことがわかる。これはナノ粒子によりフィルターが閉塞するためであると考えられる。銀ナノワイヤ比90%以下の分散液はナノ粒子由来の吸収により黄色度が大きいため、これを用いてインク化し塗布、透明導電フィルムを作製すると、光学特性が不十分となる。 From the results of Comparative Examples 1 to 3, when a dispersion having a silver concentration of 1.0% or more and a silver nanowire ratio of 90% or less was purified by cross-flow filtration, the silver nanowire ratio was significantly improved even if the number of cross-flow filtrations was increased. You can see that it doesn't. It is considered that this is because the filter is blocked by the nanoparticles. Since a dispersion liquid having a silver nanowire ratio of 90% or less has a large yellowness due to absorption derived from nanoparticles, if it is used as an ink and applied to produce a transparent conductive film, its optical characteristics become insufficient.
 一方で銀ナノワイヤ比が90%を超える分散液をクロスフローろ過により精製した実施例1~17では、フィルターの閉塞がなく、効率的に構造規定剤を除去することができるうえ、溶媒保持率を低くしても凝集が少ない。 On the other hand, in Examples 1 to 17 in which the dispersion liquid having a silver nanowire ratio of more than 90% was purified by cross-flow filtration, the structure defining agent could be efficiently removed without clogging of the filter, and the solvent retention rate was improved. Even if it is lowered, there is little aggregation.

Claims (7)

  1.  銀ナノワイヤ数/全粒子数>90%の銀ナノワイヤと、構造規定剤とを含み、銀濃度が1.0質量%以上である銀ナノワイヤ粗分散液を準備する工程と、
     前記銀ナノワイヤ粗分散液を循環式のクロスフローろ過法により精製するクロスフローろ過工程と、
    を含む、銀ナノワイヤ分散液の製造方法。
    A step of preparing a silver nanowire coarse dispersion liquid containing silver nanowires having a number of silver nanowires / total number of particles> 90% and a structure-determining agent and having a silver concentration of 1.0% by mass or more.
    A cross-flow filtration step of purifying the silver nanowire coarse dispersion liquid by a circulation type cross-flow filtration method, and
    A method for producing a silver nanowire dispersion liquid, which comprises.
  2.  前記クロスフローろ過工程において、単位フィルター面積・単位時間あたりのろ過速度を16.0kg/m・h以下に制御する請求項1に記載の銀ナノワイヤ分散液の製造方法。 The method for producing a silver nanowire dispersion liquid according to claim 1, wherein in the cross-flow filtration step, the filtration rate per unit filter area and unit time is controlled to 16.0 kg / m 2 · h or less.
  3.  前記ろ過速度が1.0kg/m・h以上である、請求項2に記載の銀ナノワイヤ分散液の製造方法。 The method for producing a silver nanowire dispersion liquid according to claim 2 , wherein the filtration rate is 1.0 kg / m 2 · h or more.
  4.  銀ナノワイヤ粗分散液中に構造規定剤を0.5質量%以上含む、請求項1~3のいずれか一項に記載の銀ナノワイヤ分散液の製造方法。 The method for producing a silver nanowire dispersion liquid according to any one of claims 1 to 3, wherein the structure-defining agent is contained in a crude silver nanowire dispersion liquid in an amount of 0.5% by mass or more.
  5.  前記銀ナノワイヤ粗分散液を準備する工程が、銀ナノワイヤが合成により反応溶媒に分散された銀ナノワイヤ粗分散液を製造する銀ナノワイヤ粗分散液製造工程を含む、請求項1~4のいずれか一項に記載の銀ナノワイヤ分散液の製造方法。 Any one of claims 1 to 4, wherein the step of preparing the silver nanowire coarse dispersion liquid includes a silver nanowire coarse dispersion liquid production step of producing a silver nanowire coarse dispersion liquid in which silver nanowires are synthetically dispersed in a reaction solvent. The method for producing a silver nanowire dispersion liquid according to the section.
  6.  前記銀ナノワイヤ粗分散液を準備する工程が、
     前記銀ナノワイヤが前記反応溶媒に分散された銀ナノワイヤ粗分散液に沈降溶媒を加えて銀ナノワイヤを沈降させる沈降工程と、
     副生ナノ粒子を含む前記反応溶媒と沈降溶媒の混合物の上澄みの一部を除去する上澄み除去工程と、
     沈降工程を複数回繰り返すことで副生ナノ粒子を除去し、分散液中の銀ナノワイヤ数/全粒子数>90%である分散液を得る再沈洗浄工程と、
    を銀ナノワイヤ粗分散液製造工程後にさらに含む、請求項5に記載の銀ナノワイヤ分散液の製造方法。
    The step of preparing the silver nanowire coarse dispersion liquid is
    A sedimentation step of adding a sedimentation solvent to a crude dispersion of silver nanowires in which the silver nanowires are dispersed in the reaction solvent to precipitate the silver nanowires.
    A supernatant removing step of removing a part of the supernatant of the mixture of the reaction solvent and the precipitation solvent containing by-product nanoparticles, and
    A re-sedimentation cleaning step of removing by-product nanoparticles by repeating the sedimentation step multiple times to obtain a dispersion liquid in which the number of silver nanowires / total number of particles> 90% in the dispersion liquid is obtained.
    The method for producing a silver nanowire dispersion liquid according to claim 5, further comprising after the silver nanowire coarse dispersion liquid production step.
  7.  前記クロスフローろ過工程において、銀ナノワイヤ粗分散液の濃縮中または濃縮後に、濾液として排出された溶媒を補足するように洗浄溶媒を添加することにより、銀ナノワイヤ粗分散液量をろ過前の粗分散液量の60%以上に維持する、請求項1~6のいずれか一項に記載の銀ナノワイヤ分散液の製造方法。

     
    In the cross-flow filtration step, the amount of the silver nanowire coarse dispersion liquid is coarsely dispersed before filtration by adding a washing solvent so as to supplement the solvent discharged as the filtrate during or after the concentration of the silver nanowire coarse dispersion liquid. The method for producing a silver nanowire dispersion liquid according to any one of claims 1 to 6, which is maintained at 60% or more of the liquid amount.

PCT/JP2020/047484 2019-12-27 2020-12-18 Production method for silver nanowire dispersion WO2021132095A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080061617.8A CN114302778A (en) 2019-12-27 2020-12-18 Method for producing silver nanowire dispersion
JP2021567407A JPWO2021132095A1 (en) 2019-12-27 2020-12-18
KR1020227006522A KR20220038762A (en) 2019-12-27 2020-12-18 Method of making silver nanowire dispersion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-238099 2019-12-27
JP2019238099 2019-12-27

Publications (1)

Publication Number Publication Date
WO2021132095A1 true WO2021132095A1 (en) 2021-07-01

Family

ID=76574657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047484 WO2021132095A1 (en) 2019-12-27 2020-12-18 Production method for silver nanowire dispersion

Country Status (5)

Country Link
JP (1) JPWO2021132095A1 (en)
KR (1) KR20220038762A (en)
CN (1) CN114302778A (en)
TW (1) TW202138043A (en)
WO (1) WO2021132095A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117773095A (en) * 2023-12-27 2024-03-29 华中科技大学 Silver nanowire dispersing method based on montmorillonite
WO2024159089A1 (en) 2023-01-27 2024-08-02 Lanxess Corporation Flame retardant and orange colorant combined for use with thermoplastics

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114849495B (en) * 2022-04-15 2023-06-30 成都昱恒新瑞科技有限公司 Visible light driving self-cleaning composite film based on iron-based MOF material and preparation method thereof
CN115319081B (en) * 2022-07-26 2024-05-24 天津科技大学 Method for dispersing metal nanowires in organic solvents with different polarities

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015180772A (en) * 2014-03-07 2015-10-15 Dowaホールディングス株式会社 Production method of silver nanowire, silver nanowire, and ink using the same
JP2017014621A (en) * 2015-07-01 2017-01-19 昭和電工株式会社 Production method of metal nanowire dispersion and production method of metal nanowire ink
JP2018095962A (en) * 2016-12-08 2018-06-21 Dowaエレクトロニクス株式会社 Silver nanowire, production method therefor, and silver nanowire ink
JP2019214782A (en) * 2018-06-12 2019-12-19 Dowaエレクトロニクス株式会社 Alcoholic silver-nanowire fluid dispersion and method for producing the same

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5332186B2 (en) 2007-11-26 2013-11-06 コニカミノルタ株式会社 Method for producing transparent conductive film using metal nanowire and transparent conductive film produced using the same
JP5507440B2 (en) 2008-02-27 2014-05-28 株式会社クラレ Method for producing metal nanowire, and dispersion and transparent conductive film obtained from metal nanowire
JP5203769B2 (en) * 2008-03-31 2013-06-05 富士フイルム株式会社 Silver nanowire and method for producing the same, aqueous dispersion and transparent conductor
JP5306760B2 (en) 2008-09-30 2013-10-02 富士フイルム株式会社 Transparent conductor, touch panel, and solar cell panel
JP5868751B2 (en) 2012-03-26 2016-02-24 富士フイルム株式会社 Method for producing silver nanowire dispersion
JP2015209555A (en) * 2014-04-24 2015-11-24 株式会社ノリタケカンパニーリミテド Silver nanowire and manufacturing method therefor
UA111105C2 (en) * 2014-07-08 2016-03-25 ТОВАРИСТВО З ОБМЕЖЕНОЮ ВІДПОВІДАЛЬНІСТЮ "НаноМедТраст" Biocompatible colloidal solution of silver nanoparticles in non-aqueous polar solvent and method for its preparation
WO2016035856A1 (en) 2014-09-05 2016-03-10 Dowaホールディングス株式会社 Method for manufacturing metal nanowire having improved length distribution uniformity
US9908178B2 (en) * 2014-10-28 2018-03-06 Kookmin University Industry Academy Cooperation Foundation Method for preparing ultrathin silver nanowires, and transparent conductive electrode film product thereof
JP6636949B2 (en) * 2014-12-26 2020-01-29 昭和電工株式会社 Method for producing silver nanowire, silver nanowire obtained by the method, and ink containing the silver nanowire
CN106466714A (en) * 2015-08-20 2017-03-01 南昌来捷尔新材料技术有限公司 A kind of preparation method of nano silver wire aqueous dispersions
GB2545190A (en) 2015-12-08 2017-06-14 Quantum Chemical Tech (Singapore) Pte Ltd Methods of purifying nanostructures
CN105537622A (en) * 2016-01-07 2016-05-04 嘉兴禾浦光电科技有限公司 Method for preparing silver nanowires
WO2017174539A1 (en) * 2016-04-06 2017-10-12 Basf Se Method of preparing a product comprising surface modified silver nanowires, and use of the product
JP2017066512A (en) * 2016-05-10 2017-04-06 マイクロ波化学株式会社 Method of producing silver nanowire
JP6526739B2 (en) 2016-06-02 2019-06-05 Dowaエレクトロニクス株式会社 Silver nanowire, method for producing the same, silver nanowire ink and transparent conductive film
WO2018168849A1 (en) * 2017-03-14 2018-09-20 Dowaエレクトロニクス株式会社 Method for producing silver nanowire dispersion having good separability between wires
CN110355381B (en) * 2019-08-21 2022-02-15 无锡帝科电子材料股份有限公司 Nano silver powder and preparation method and application thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015180772A (en) * 2014-03-07 2015-10-15 Dowaホールディングス株式会社 Production method of silver nanowire, silver nanowire, and ink using the same
JP2017014621A (en) * 2015-07-01 2017-01-19 昭和電工株式会社 Production method of metal nanowire dispersion and production method of metal nanowire ink
JP2018095962A (en) * 2016-12-08 2018-06-21 Dowaエレクトロニクス株式会社 Silver nanowire, production method therefor, and silver nanowire ink
JP2019214782A (en) * 2018-06-12 2019-12-19 Dowaエレクトロニクス株式会社 Alcoholic silver-nanowire fluid dispersion and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024159089A1 (en) 2023-01-27 2024-08-02 Lanxess Corporation Flame retardant and orange colorant combined for use with thermoplastics
CN117773095A (en) * 2023-12-27 2024-03-29 华中科技大学 Silver nanowire dispersing method based on montmorillonite

Also Published As

Publication number Publication date
TW202138043A (en) 2021-10-16
JPWO2021132095A1 (en) 2021-07-01
CN114302778A (en) 2022-04-08
KR20220038762A (en) 2022-03-29

Similar Documents

Publication Publication Date Title
WO2021132095A1 (en) Production method for silver nanowire dispersion
JP6807667B2 (en) Manufacturing method of metal nanowire dispersion liquid and manufacturing method of metal nanowire ink
WO2018079582A1 (en) Method for producing silver nanowires
EP2103364B1 (en) Process for manufacture of nanometric, monodisperse and stable metallic silver and product obtained therefrom
JP6067573B2 (en) Stable dispersion of single-crystal nanosilver particles
JP6703802B2 (en) Silver nanowire, method for producing the same, and ink
JP2019115905A (en) Production method of silver nanowire improved with uniformity of length distribution
JP6636949B2 (en) Method for producing silver nanowire, silver nanowire obtained by the method, and ink containing the silver nanowire
TWI665037B (en) Silver nanowire and manufacturing method thereof and silver nanowire ink
JP6587192B2 (en) Method for purifying metal nanowires
JP2017078207A (en) Silver nanowire and manufacturing method thereof as well as fluid dispersion and ink
TW201941221A (en) Silver nanowire ink and method for producing the same
JP7239297B2 (en) Method for producing silver nanowires
JP2015206081A (en) Method for concentrating metal nanowire dispersion, and method for preparing metal nanowire ink
WO2020045336A1 (en) Silver nano wire aggregate, silver nano wire dispersion liquid, silver nano wire ink, and production method therefor
WO2020090689A1 (en) Silver nanowire assembly, silver nanowire ink, transparent conductive film, method for producing silver nanowire assembly, method for producing silver nanowire ink, and method for producing transparent conductive film
JP2016020532A (en) Silver nanoparticle colloid, silver nanoparticle, manufacturing method of silver nanoparticle colloid and manufacturing method of silver nanoparticle
WO2022137886A1 (en) Silver nano-wire production method
TW202245934A (en) Method for producing silver nanowire
JP2023168911A (en) Method of producing silver nanowire
TW202104602A (en) Silver nanowire, method for producing the same, reaction liquid containing silver nanowire, and silver nanowire dispersion liquid
JP6363138B2 (en) Stable dispersion of single-crystal nanosilver particles
JP2021063294A (en) Silver nanowire with protective layer, dispersion liquid of the same, method for manufacturing the silver nanowire, and light-transmitting conductive film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20906974

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021567407

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227006522

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20906974

Country of ref document: EP

Kind code of ref document: A1