JP2017078207A - Silver nanowire and manufacturing method thereof as well as fluid dispersion and ink - Google Patents

Silver nanowire and manufacturing method thereof as well as fluid dispersion and ink Download PDF

Info

Publication number
JP2017078207A
JP2017078207A JP2015206775A JP2015206775A JP2017078207A JP 2017078207 A JP2017078207 A JP 2017078207A JP 2015206775 A JP2015206775 A JP 2015206775A JP 2015206775 A JP2015206775 A JP 2015206775A JP 2017078207 A JP2017078207 A JP 2017078207A
Authority
JP
Japan
Prior art keywords
silver
acrylate
silver nanowire
solvent
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015206775A
Other languages
Japanese (ja)
Inventor
翔平 伊田
Shohei Ida
翔平 伊田
能嗣 廣川
Takatsugu Hirokawa
能嗣 廣川
ジャヤデワン バラチャンドラン
Jayadewan Barachandoran
ジャヤデワン バラチャンドラン
ウアマン ジョン レマン クヤ
Lehman Cuya Huaman Jhon
ウアマン ジョン レマン クヤ
王高 佐藤
Kimitaka Sato
王高 佐藤
大輔 兒玉
Daisuke Kodama
大輔 兒玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
University of Shiga Prefecture
Original Assignee
Dowa Electronics Materials Co Ltd
University of Shiga Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd, University of Shiga Prefecture filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2015206775A priority Critical patent/JP2017078207A/en
Publication of JP2017078207A publication Critical patent/JP2017078207A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Insulated Conductors (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a slender and long shape silver nanowire that exhibits excellent dispersibility in an aqueous solvent added with alcohol or an alcoholic solvent.SOLUTION: A silver nanowire covered with a copolymer of an acrylate-based monomer and vinylpyrrolidone and having an average diameter of 50 nm or smaller and an average length of 10 μm or longer. The silver nanowire can be manufactured by a method in which, in a manufacturing method of a silver nanowire in which silver is reduced and precipitated in wire in an alcohol solvent in which a silver compound is dissolved, in a state where the copolymer of the acrylate-based monomer and vinylpyrrolidone is dissolved in the solvent, the precipitation is proceeded.SELECTED DRAWING: Figure 5

Description

本発明は、透明導電体を形成する材料などとして有用な銀ナノワイヤ、およびその製造方法に関する。また、その銀ナノワイヤを用いた銀ナノワイヤインクに関する。   The present invention relates to a silver nanowire useful as a material for forming a transparent conductor, and a method for producing the same. The present invention also relates to a silver nanowire ink using the silver nanowire.

本明細書では、太さが200nm程度以下の微細な金属ワイヤの集まりを「ナノワイヤ(nanowires)」と呼ぶ。粉末に例えると、個々のワイヤは粉末を構成する「粒子」に相当し、ナノワイヤ(nanowires)は粒子の集まりである「粉末」に相当する。   In this specification, a collection of fine metal wires having a thickness of about 200 nm or less is referred to as “nanowires”. In the case of powder, each wire corresponds to “particles” constituting the powder, and nanowires corresponds to “powder” that is a collection of particles.

銀ナノワイヤは、透明基材に導電性を付与するための導電素材として有望視されている。銀ナノワイヤを含有する液(銀ナノワイヤインク)をガラス、PET(ポリエチレンテレフタレート)、PC(ポリカーボネート)などの透明基材にコーティングしたのち、液状成分を蒸発等により除去させると、銀ナノワイヤは当該基材上で互いに接触し合うことにより導電ネットワークを形成するので、透明導電体を実現することができる。従来、透明導電材料としてはITOに代表される金属酸化物膜が主として透明電極等の用途に使用されている。しかし、金属酸化物膜は、成膜コストが高いことや、曲げに弱く最終製品のフレキシブル化を阻む要因となることなどの欠点を有している。また、透明導電体の主要用途のひとつであるタッチパネルセンサーの導電性フィルムには高い透明性と高い導電性が要求されるが、昨今、視認性に関する要求も一層厳しくなっている。従来のITOフィルムでは、導電性を稼ぐためにはITO層の厚さを増大させる必要があるが、厚さの増大は透明性の低下を招き、視認性の改善には至らない。
銀ナノワイヤは、ITOに代表される金属酸化物膜に特有の上記欠点を克服するうえで有望である。
Silver nanowires are promising as conductive materials for imparting conductivity to transparent substrates. When a liquid containing silver nanowire (silver nanowire ink) is coated on a transparent substrate such as glass, PET (polyethylene terephthalate), PC (polycarbonate), etc., and then the liquid component is removed by evaporation or the like, the silver nanowire becomes the substrate. Since a conductive network is formed by contacting each other above, a transparent conductor can be realized. Conventionally, as a transparent conductive material, a metal oxide film typified by ITO is mainly used for applications such as a transparent electrode. However, the metal oxide film has drawbacks such as high film formation cost and weakness against bending, which hinders flexibility of the final product. In addition, high transparency and high conductivity are required for the conductive film of the touch panel sensor, which is one of the main uses of the transparent conductor, but recently, the demand for visibility has become more severe. In the conventional ITO film, it is necessary to increase the thickness of the ITO layer in order to obtain conductivity, but the increase in thickness causes a decrease in transparency and does not improve the visibility.
Silver nanowires are promising in overcoming the above-described drawbacks inherent in metal oxide films represented by ITO.

銀ナノワイヤの製造方法としては、エチレングリコール等のポリオール溶媒に銀化合物を溶解させ、ハロゲン化合物と有機保護剤であるPVP(ポリビニルピロリドン)存在下において、溶媒のポリオールの還元力を利用して線状形状の金属銀を析出させる手法が知られている(特許文献1、2、非特許文献1)。PVPは銀ナノワイヤを収率良く合成するための有機保護剤として極めて効果的な物質である。   As a method for producing silver nanowires, a silver compound is dissolved in a polyol solvent such as ethylene glycol, and in the presence of a halogen compound and PVP (polyvinylpyrrolidone), which is an organic protective agent, linearity is obtained using the reducing power of the solvent polyol. Techniques for depositing shaped metallic silver are known (Patent Documents 1 and 2, Non-Patent Document 1). PVP is an extremely effective substance as an organic protective agent for synthesizing silver nanowires with high yield.

US2005/0056118号公報US2005 / 0056118 Publication US2008/0003130号公報US2008 / 0003130 Publication

J.of Solid State Chem.1992,100,272−280J. et al. of Solid State Chem. 1992, 100, 272-280

銀ナノワイヤを用いて透明導電体を製造するためには、「銀ナノワイヤインク」を透明基材上に塗布する工程が不可欠である。PVPで被覆された従来の銀ナノワイヤは、水に対して良好な分散性を示すため、通常、水系の液状媒体を用いた銀ナノワイヤインクとして提供される。ただし、透明基材に多用されているPET(ポリエチレンテレフタレート)との濡れ性を改善する必要があるため、銀ナノワイヤインクの水系溶媒中にはエタノール、2−プロパノール、エチレングリコールなどのアルコールが添加されることが一般的である。アルコールの添加量が多くなるほどPET基材との濡れ性は向上する。しかし、このアルコールの添加はPVP被覆された銀ナノワイヤの液中分散性を低下させるという問題がある。すなわち、水系溶媒中へのアルコールの添加量が多くなるとPVP被覆された銀ナノワイヤは液中で凝集しやすくなり、良好な分散性を有する銀ナノワイヤインクとして提供することが難しくなる。また、用途によってはアルコール系溶媒(例えばアルコール100%の溶媒)を用いた銀ナノワイヤ分散液を使用したいというニーズもある。PVPで被覆された従来の銀ナノワイヤでは、アルコール系溶媒での良好な分散安定性は望めない。   In order to produce a transparent conductor using silver nanowires, a process of applying “silver nanowire ink” on a transparent substrate is indispensable. Since conventional silver nanowires coated with PVP exhibit good dispersibility in water, they are usually provided as silver nanowire inks using an aqueous liquid medium. However, since it is necessary to improve wettability with PET (polyethylene terephthalate), which is frequently used for transparent substrates, alcohols such as ethanol, 2-propanol, and ethylene glycol are added to the aqueous solvent of the silver nanowire ink. In general. As the amount of alcohol added increases, the wettability with the PET substrate improves. However, the addition of this alcohol has a problem in that the dispersibility of PNP-coated silver nanowires in liquid is lowered. That is, when the amount of alcohol added to the aqueous solvent increases, the silver nanowires coated with PVP tend to aggregate in the liquid, making it difficult to provide a silver nanowire ink having good dispersibility. There is also a need to use a silver nanowire dispersion liquid using an alcohol solvent (for example, a solvent containing 100% alcohol) depending on applications. In the conventional silver nanowire coated with PVP, good dispersion stability in an alcohol solvent cannot be expected.

一方、銀ナノワイヤは、その直径が細く、また長さが長いほど、高い透明性と高い導電性を両立させるうえで有利である。PVPを用いて合成された従来の銀ナノワイヤは、タッチパネルセンサー等の用途で今後更に厳しくなることが予想される要求特性(透明性と導電性の更なる高レベルでの両立)を考慮すると、必ずしも満足できるものではない。   On the other hand, the silver nanowire has a smaller diameter and a longer length, which is more advantageous for achieving both high transparency and high conductivity. Conventional silver nanowires synthesized using PVP are not necessarily in consideration of the required characteristics (coexistence of transparency and conductivity at a higher level) that are expected to become more severe in the future for applications such as touch panel sensors. It is not satisfactory.

アルコールを添加した水系溶媒中における銀ナノワイヤの分散性を改善するための一手法としては、PVPの親水性を低下させた「アルキル化PVP」を有機保護剤として適用することが有効であると考えられる。しかしながら、アルキル化PVPを有機保護剤に用いた銀ナノワイヤの合成手法では、細く、長い形状のワイヤを合成することが難しい。   As one method for improving the dispersibility of silver nanowires in an aqueous solvent to which alcohol has been added, it is considered effective to apply “alkylated PVP” with reduced hydrophilicity of PVP as an organic protective agent. It is done. However, it is difficult to synthesize thin and long wires by the silver nanowire synthesis method using alkylated PVP as an organic protective agent.

このように、アルコールを添加した水系溶媒中や、アルコール系溶媒中において、従来のPVP被覆銀ナノワイヤよりも優れた分散性を発揮する銀ナノワイヤを得るというニーズに叶う技術は、まだ確立されていない。特に、より細く、より長いワイヤを得るというもう一つのニーズと両立させることは更に難しい。本発明は、これらのニーズに応えることのできる銀ナノワイヤを提供することを目的とする。   As described above, a technology that satisfies the need to obtain silver nanowires that exhibit superior dispersibility compared with conventional PVP-coated silver nanowires in an aqueous solvent to which alcohol is added or in an alcohol-based solvent has not yet been established. . In particular, it is even more difficult to reconcile with another need to obtain thinner and longer wires. An object of this invention is to provide the silver nanowire which can respond to these needs.

発明者らは研究の結果、アルコール溶媒中において有機保護剤の存在下で銀をワイヤ状に還元析出させる際に、有機保護剤として、PVPではなく、「アクリレート系またはメタクリレート系モノマーに由来する構造単位を持つポリマー」を使用することにより、アルコールを添加した水系溶媒中での分散性を改善することができ、かつ、細く、長い形状のワイヤを合成させることが可能となることを見出した。   As a result of research, the inventors have found that when silver is reduced and deposited in the form of a wire in an alcohol solvent in the presence of an organic protective agent, the organic protective agent is not a PVP, but a “structure derived from an acrylate or methacrylate monomer. It has been found that the use of the “polymer having a unit” can improve the dispersibility in an aqueous solvent to which an alcohol has been added, and can synthesize a thin and long wire.

上記目的は、アクリレート系またはメタクリレート系モノマーの構造単位を持つポリマー、より好ましくはアクリレート系またはメタクリレート系モノマーと水溶性モノマーとのコポリマーに被覆された、平均直径100nm以下、平均長さ5μm以上の銀ナノワイヤによって達成される。ここで、水溶性モノマーとは、25℃の水1000gに1g以上溶解する性質を持つモノマーを意味する。   The object is to provide silver having an average diameter of 100 nm or less and an average length of 5 μm or more coated with a polymer having a structural unit of an acrylate or methacrylate monomer, more preferably a copolymer of an acrylate or methacrylate monomer and a water-soluble monomer. Achieved by nanowires. Here, the water-soluble monomer means a monomer having a property of dissolving 1 g or more in 1000 g of water at 25 ° C.

平均直径50nm以下、平均長さ10μm以上であるものがより好適な対象となり、平均直径40nm未満、平均長さ10μm以上であるものが更に好適な対象となる。平均長さ(nm)と平均直径(nm)の比を平均アスペクト比と呼ぶとき、平均アスペクト比が250以上であるものが特に好ましい。なお、銀ナノワイヤの平均直径は合成時にほぼ決まってしまうが、平均長さや平均アスペクト比は精製方法を工夫することにより更に改善することができる。例えばクロスフローろ過により平均アスペクト比400以上の銀ナノワイヤを得ることも可能である。ここで、平均直径、平均長さ、平均アスペクト比は以下の定義に従う。   Those having an average diameter of 50 nm or less and an average length of 10 μm or more are more suitable objects, and those having an average diameter of less than 40 nm and an average length of 10 μm or more are more suitable objects. When the ratio of the average length (nm) to the average diameter (nm) is called the average aspect ratio, it is particularly preferable that the average aspect ratio is 250 or more. The average diameter of the silver nanowires is almost determined at the time of synthesis, but the average length and average aspect ratio can be further improved by devising a purification method. For example, silver nanowires having an average aspect ratio of 400 or more can be obtained by cross flow filtration. Here, the average diameter, average length, and average aspect ratio conform to the following definitions.

〔平均直径〕
顕微鏡画像(例えばFE−SEM画像)上で、ある1本の金属ワイヤの投影像において、太さ方向両側の輪郭に接する内接円の直径をワイヤ全長にわたって測定したときの前記直径の平均値を、そのワイヤの直径と定義する。そして、ナノワイヤ(nanowires)を構成する個々のワイヤの直径を平均した値を、当該ナノワイヤの平均直径と定義する。平均直径を算出するためには、測定対象のワイヤの総数を100以上とする。ただし、長さ(後述)が0.5μm未満であるワイヤ状生成物や、粒状生成物は、測定対象から外す。
[Average diameter]
On a microscopic image (for example, FE-SEM image), in a projection image of a single metal wire, the average value of the diameters when the diameter of the inscribed circle in contact with the contours on both sides in the thickness direction is measured over the entire length of the wire. , Defined as the diameter of the wire. And the value which averaged the diameter of each wire which comprises nanowire (nanowires) is defined as the average diameter of the said nanowire. In order to calculate the average diameter, the total number of wires to be measured is set to 100 or more. However, a wire-like product or a granular product having a length (described later) of less than 0.5 μm is excluded from the measurement target.

〔平均長さ〕
上記と同様の顕微鏡画像上で、ある1本の金属ワイヤの投影像において、そのワイヤの太さ中央(すなわち前記内接円の中心)位置を通る線の、ワイヤの一端から他端までの長さを、そのワイヤの長さと定義する。そして、ナノワイヤ(nanowires)を構成する個々のワイヤの長さを平均した値を、当該ナノワイヤの平均長さと定義する。平均長さを算出するためには、測定対象のワイヤの総数を100以上とする。ただし、長さが0.5μm未満であるワイヤ状生成物や、粒状生成物は、測定対象から外す。
本発明に従う銀ナノワイヤは非常に細長い形状のワイヤで構成されている。そのため、回収された銀ナノワイヤは、直線的なロッド状より、むしろ曲線的な紐状の形態を呈することが多い。発明者らは、このような曲線的なワイヤについて、上記のワイヤ長さを画像上で効率的に測定するためのソフトウエアを作成し、データ処理に利用している。
[Average length]
On a microscopic image similar to the above, in a projected image of a single metal wire, the length from one end of the wire to the other end of the line passing through the center of the thickness of the wire (that is, the center of the inscribed circle) This is defined as the length of the wire. And the value which averaged the length of each wire which comprises nanowire (nanowires) is defined as the average length of the said nanowire. In order to calculate the average length, the total number of wires to be measured is set to 100 or more. However, wire-like products having a length of less than 0.5 μm and granular products are excluded from the measurement target.
The silver nanowire according to the present invention is composed of a very elongated wire. For this reason, the collected silver nanowires often have a curved string shape rather than a straight rod shape. The inventors have created software for efficiently measuring the above-described wire length on an image for such a curved wire and uses it for data processing.

〔平均アスペクト比〕
上記の平均直径および平均長さを下記(1)式に代入することにより平均アスペクト比を算出する。
[平均アスペクト比]=[平均長さ(nm)]/[平均直径(nm)] …(1)
[Average aspect ratio]
The average aspect ratio is calculated by substituting the above average diameter and average length into the following formula (1).
[Average aspect ratio] = [Average length (nm)] / [Average diameter (nm)] (1)

アクリレート系モノマーとはアクリロイル基を持つモノマーである。メタクリレート系モノマーとはメタクリロイル基を持つモノマーである。これらのモノマーの分子量は例えば85〜300である。「アクリレート系またはメタクリレート系モノマー」に該当するモノマーの具体例としては、エチルアクリレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート、ブチルアクリレート、4−ヒドロキシブチルアクリレートなどが挙げられる。   An acrylate monomer is a monomer having an acryloyl group. A methacrylate monomer is a monomer having a methacryloyl group. The molecular weight of these monomers is, for example, 85 to 300. Specific examples of the monomer corresponding to the “acrylate or methacrylate monomer” include ethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, butyl acrylate, 4-hydroxybutyl acrylate and the like.

上記のポリマーに被覆された銀ナノワイヤの製造方法として、銀化合物が溶解しているアルコール溶媒中で銀をワイヤ状に還元析出させる銀ナノワイヤの製造方法において、アクリレート系またはメタクリレート系モノマーに由来する構造単位を持つポリマーが前記溶媒中に溶解している状態で前記析出を進行させる銀ナノワイヤ製造方法が提供される。この手法で銀ナノワイヤを合成すると、有機保護剤である「アクリレート系またはメタクリレート系モノマーの構造単位を持つポリマー」に被覆された銀ナノワイヤが得られる。このようなポリマーとしては、上述のように、アクリレート系またはメタクリレート系モノマーと、ビニルピロリドンなどの水溶性モノマーとのコポリマーを挙げることができる。   As a method for producing a silver nanowire coated with the above polymer, a structure derived from an acrylate-based or methacrylate-based monomer in a method for producing a silver nanowire in which silver is reduced and precipitated in a wire shape in an alcohol solvent in which a silver compound is dissolved A silver nanowire manufacturing method is provided in which the precipitation proceeds in a state where a polymer having units is dissolved in the solvent. When silver nanowires are synthesized by this method, silver nanowires coated with “polymer having a structural unit of acrylate or methacrylate monomer” which is an organic protective agent are obtained. Examples of such a polymer include a copolymer of an acrylate or methacrylate monomer and a water-soluble monomer such as vinyl pyrrolidone as described above.

この場合、特に、上記ポリマー、塩化物、臭化物、アルカリ金属水酸化物およびアルミニウム塩が前記溶媒中に溶解している状態で前記析出を進行させることが、細く、長いワイヤを合成するためには、より効果的である。アクリレート系またはメタクリレート系モノマーとしては、前記のエチルアクリレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート、ブチルアクリレート、4−ヒドロキシブチルアクリレートなどを例示することができる。アクリレート系またはメタクリレート系モノマーとビニルピロリドンとのコポリマーは、例えば0.1〜25質量部のアクリレート系またはメタクリレート系モノマーと100質量部のビニルピロリドンが重合した構造を有するものが適用できる。溶媒であるアルコールとしては、ポリオールが適用できる。前記銀の還元析出を60℃以上かつ使用する溶媒アルコールの沸点以下の温度範囲で進行させることがより効果的である。   In this case, in particular, in order to synthesize a thin and long wire, it is possible to advance the precipitation in a state where the polymer, chloride, bromide, alkali metal hydroxide and aluminum salt are dissolved in the solvent. Is more effective. Examples of the acrylate or methacrylate monomers include the aforementioned ethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, butyl acrylate, 4-hydroxybutyl acrylate and the like. As the copolymer of an acrylate or methacrylate monomer and vinyl pyrrolidone, for example, a copolymer having a structure in which 0.1 to 25 parts by mass of an acrylate or methacrylate monomer and 100 parts by mass of vinyl pyrrolidone are polymerized can be applied. A polyol is applicable as the alcohol as the solvent. It is more effective to cause the silver reduction precipitation to proceed in a temperature range of 60 ° C. or higher and lower than the boiling point of the solvent alcohol used.

また、本発明では、前記のポリマーに被覆された銀ナノワイヤがイソプロピルアルコール中に分散している銀ナノワイヤ分散液が提供される。また、前記のポリマーに被覆された銀ナノワイヤを液状媒体中に0.02〜5.0質量%含有する銀ナノワイヤインクが提供される。   Moreover, in this invention, the silver nanowire dispersion liquid in which the silver nanowire coat | covered with the said polymer is disperse | distributing in isopropyl alcohol is provided. Moreover, the silver nanowire ink which contains 0.02-5.0 mass% of silver nanowires coat | covered with the said polymer in a liquid medium is provided.

本発明では、アクリレート系またはメタクリレート系モノマーに由来する構造単位を持つポリマーに被覆された銀ナノワイヤを開示した。この新たなタイプの有機保護剤は、アルコールを添加した水系溶媒中や、アルコール系溶媒中での分散性を改善する点で、PVPとは異質の効果を呈する。ポリマーに占めるアクリレート系またはメタクリレート系モノマーの配合割合を調整することにより、有機保護剤の親水性、疎水性の程度を変化させることができるので、銀ナノインクの液状媒体の種類に応じた分散性の適正化が行いやすい。従って本発明は、アルコール等を添加してPET基材等との濡れ性を改善した銀ナノワイヤインクを得る上で極めて有用である。また、アクリレート系またはメタクリレート系モノマーとビニルピロリドンとのコポリマーを有機保護剤に用いる場合において、例えば平均直径50nm以下好ましくは40nm未満、平均長さ10μm以上、平均アスペクト比200以上好ましくは250以上といった、細く、長い銀ナノワイヤを合成することが可能である。細く、長い銀ナノワイヤは、透明導電体の導電性および視認性(耐ヘイズ性)の改善に極めて有効である。   In the present invention, a silver nanowire coated with a polymer having a structural unit derived from an acrylate-based or methacrylate-based monomer is disclosed. This new type of organic protective agent exhibits an effect different from that of PVP in terms of improving dispersibility in an aqueous solvent to which an alcohol is added or in an alcohol solvent. By adjusting the blending ratio of the acrylate or methacrylate monomer in the polymer, the hydrophilicity and hydrophobicity of the organic protective agent can be changed, so that the dispersibility according to the type of silver nanoink liquid medium can be changed. Easy to optimize. Therefore, the present invention is extremely useful for obtaining a silver nanowire ink having improved wettability with a PET substrate or the like by adding alcohol or the like. In the case of using a copolymer of an acrylate or methacrylate monomer and vinyl pyrrolidone as an organic protective agent, for example, an average diameter of 50 nm or less, preferably less than 40 nm, an average length of 10 μm or more, an average aspect ratio of 200 or more, preferably 250 or more, It is possible to synthesize thin, long silver nanowires. Thin and long silver nanowires are extremely effective in improving the conductivity and visibility (haze resistance) of transparent conductors.

以上のように、本発明は、(i)細く、長い銀ナノワイヤの合成、(ii)銀ナノワイヤインクの分散性改善、(iii)銀ナノワイヤインクの透明基材に対する濡れ性改善、を同時に実現しうるものである。   As described above, the present invention simultaneously realizes (i) synthesis of thin and long silver nanowires, (ii) improvement of dispersibility of silver nanowire ink, and (iii) improvement of wettability of silver nanowire ink to a transparent substrate. It can be.

エチルアクリレートの構造式。Structural formula of ethyl acrylate. 2−ヒドロキシエチルアクリレートの構造式。Structural formula of 2-hydroxyethyl acrylate. 2−ヒドロキシエチルメタクリレートの構造式。Structural formula of 2-hydroxyethyl methacrylate. 4−ヒドロキシブチルアクリレートの構造式。Structural formula of 4-hydroxybutyl acrylate. ビニルピロリドン−エチルアクリレートコポリマーの構造式。Structural formula of vinylpyrrolidone-ethyl acrylate copolymer. 実施例1で得られた銀ナノワイヤのSEM写真。2 is an SEM photograph of the silver nanowire obtained in Example 1. FIG. 実施例2で得られた銀ナノワイヤのSEM写真。4 is an SEM photograph of silver nanowires obtained in Example 2. FIG. 実施例3で得られた銀ナノワイヤのSEM写真。4 is an SEM photograph of silver nanowires obtained in Example 3. FIG. 実施例4で得られたビニルピロリドン−2−ヒドロキシエチルアクリレートコポリマーのNMRスペクトル。NMR spectrum of the vinylpyrrolidone-2-hydroxyethyl acrylate copolymer obtained in Example 4. 実施例4で得られた銀ナノワイヤのSEM写真。4 is a SEM photograph of silver nanowires obtained in Example 4. FIG. 実施例5で得られた銀ナノワイヤのSEM写真。4 is an SEM photograph of silver nanowires obtained in Example 5. FIG. 実施例6で得られた銀ナノワイヤのSEM写真。4 is an SEM photograph of silver nanowires obtained in Example 6. FIG. 比較例1で得られた銀ナノワイヤのSEM写真。3 is an SEM photograph of silver nanowires obtained in Comparative Example 1. 比較例2で得られた生成物のSEM写真。3 is an SEM photograph of the product obtained in Comparative Example 2. 実施例1および比較例3で得られた銀ナノワイヤのIPA(イソプロピルアルコール)分散液の3日静置後の様子を表す図面代用写真。The drawing substitute photograph showing the mode after leaving still for 3 days of the IPA (isopropyl alcohol) dispersion liquid of the silver nanowire obtained in Example 1 and Comparative Example 3. FIG.

《銀ナノワイヤの合成》
本発明に従う銀ナノワイヤは、有機保護剤である「アクリレート系またはメタクリレート系モノマーに由来する構造単位を持つポリマー」に被覆されたものである。この銀ナノワイヤは、アルコール溶媒中において、有機保護剤の存在下で、当該溶媒アルコールの還元力を利用して銀をワイヤ状に還元析出させる手法にて合成することができる。以下にその手法について説明する。
<Synthesis of silver nanowires>
The silver nanowire according to the present invention is coated with an organic protective agent “polymer having a structural unit derived from an acrylate-based or methacrylate-based monomer”. This silver nanowire can be synthesized by a technique of reducing and precipitating silver into a wire shape in the presence of an organic protective agent in an alcohol solvent by using the reducing power of the solvent alcohol. The method will be described below.

〔アルコール溶媒〕
適用するアルコールの種類としては、銀に対して適度な還元力を有し、金属銀をワイヤ状に析出させることができるものが選択される。現時点において、エチレングリコールに代表されるポリオールが銀ナノワイヤの生成に比較的適しているとされるが、今後の研究により、適用可能な多くのアルコール類が確認されると思われる。発明者らは既に、エチレングリコール、プロピレングリコール(1,2−プロパンジオール)、1,3−プロパンジオール、1,3ブタンジオール、1,4−ブタンジオール、グリセリンの1種以上からなるアルコール溶媒中で、工業的に実用可能な収率で、細くて長い銀ナノワイヤの合成に成功している。これらのアルコールは単独で用いてもよいし、2種以上混合して用いてもよい。
[Alcohol solvent]
As the kind of alcohol to be applied, one having an appropriate reducing power for silver and capable of depositing metallic silver in a wire shape is selected. At present, polyols typified by ethylene glycol are considered to be relatively suitable for the production of silver nanowires, but future studies will confirm many applicable alcohols. The inventors have already in an alcohol solvent comprising one or more of ethylene glycol, propylene glycol (1,2-propanediol), 1,3-propanediol, 1,3 butanediol, 1,4-butanediol, and glycerin. So, we have succeeded in synthesizing thin and long silver nanowires with a practically practical yield. These alcohols may be used alone or in combination of two or more.

〔有機保護剤〕
有機保護剤は、還元反応において析出した銀ナノワイヤの表面を覆い、粗大成長を抑止する作用を有する。また、得られた銀ナノワイヤの表面に存在する有機保護剤は液状媒体への分散性を確保する作用を有する。銀の析出を一方向のみへ優先的に生じさせて銀ナノワイヤを合成するために有効な有機保護剤としてはPVP(ポリビニルピロリドン)が知られている。しかし、PVPを用いて合成した銀ナノワイヤでは、分散安定性の良好な銀ナノワイヤインクを得ることが難しい。PET基材に代表される透明基材に銀ナノワイヤインクを塗布する際には、基材に対するインクの濡れ性が良好でなければならない。PVPは親水性が高いため、通常、銀ナノワイヤインクには水系溶媒が使用される。この場合、PET等の基材との濡れ性を確保するために、水系溶媒中にアルコールが添加されることが一般的である。アルコールの添加により、基材との濡れ性が向上する反面、PVPで被覆された銀ナノワイヤの水系溶媒に対する分散性は大幅に低下する。すなわち、銀ナノワイヤをインク化したときに沈殿し易い。このように、PVPを用いて合成された銀ナノワイヤの場合、銀ナノワイヤインクの分散安定性を向上させることには厳しい制約があった。
[Organic protective agent]
An organic protective agent has the effect | action which covers the surface of the silver nanowire which precipitated in the reduction reaction, and suppresses coarse growth. Moreover, the organic protective agent which exists in the surface of the obtained silver nanowire has the effect | action which ensures the dispersibility to a liquid medium. PVP (polyvinyl pyrrolidone) is known as an effective organic protective agent for synthesizing silver nanowires by preferentially causing silver precipitation in only one direction. However, with silver nanowires synthesized using PVP, it is difficult to obtain a silver nanowire ink with good dispersion stability. When silver nanowire ink is applied to a transparent substrate typified by a PET substrate, the wettability of the ink with respect to the substrate must be good. Since PVP is highly hydrophilic, an aqueous solvent is usually used for the silver nanowire ink. In this case, in order to ensure wettability with a substrate such as PET, an alcohol is generally added to the aqueous solvent. The addition of alcohol improves the wettability with the substrate, but the dispersibility of the silver nanowires coated with PVP in the aqueous solvent is greatly reduced. That is, it is easy to precipitate when silver nanowires are converted into ink. As described above, in the case of silver nanowires synthesized using PVP, there are severe restrictions on improving the dispersion stability of the silver nanowire ink.

発明者らは、有機保護剤として、PVPではなく、アクリレート系またはメタクリレート系モノマーの構造単位を持つポリマーを使用することにより、細く、長い銀ナノワイヤの合成と、アルコールを添加した水系溶媒に対する銀ナノワイヤの分散性向上が両立できることを見出した。特に、アクリレート系またはメタクリレート系のモノマーと、その他の水溶性モノマーとのコポリマーを適用することが好ましい。
水溶性モノマーは、25℃の水1000gに1g以上溶解する性質を持つモノマーを意味する。そのような水溶性モノマーの具体例としては、ビニルピロリドン、ビニルアセトアミド、ビニルアルコール、エチレンイミン、アクリルアミド、ビニルピリジン、ビニルカプロラクタム、ビニルホルムアミド、アクリロニトリル、ジアリルジメチルアンモニウム塩、メタクリル酸2−(ジメチルアミノ)エチルなどが挙げられる。
アクリレート系またはメタクリレート系モノマーの例としては、分子量85〜300のものを挙げることができる。例えば、エチルアクリレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート、ブチルアクリレート、4−ヒドロキシブチルアクリレートなどを使うことができる。使用するアクリレート系またはメタクリレート系のモノマーの炭素数違い、種々の置換基の有無などによって、アルコールを添加した水系溶媒に対する溶解性・分散性を調整することができる。
The inventors used a polymer having a structural unit of an acrylate or methacrylate monomer instead of PVP as an organic protective agent, thereby synthesizing a thin and long silver nanowire and a silver nanowire for an aqueous solvent to which an alcohol was added. It has been found that the improvement of dispersibility can be achieved. In particular, it is preferable to apply a copolymer of an acrylate or methacrylate monomer and another water-soluble monomer.
The water-soluble monomer means a monomer having a property of dissolving 1 g or more in 1000 g of water at 25 ° C. Specific examples of such water-soluble monomers include vinylpyrrolidone, vinylacetamide, vinyl alcohol, ethyleneimine, acrylamide, vinylpyridine, vinylcaprolactam, vinylformamide, acrylonitrile, diallyldimethylammonium salt, 2- (dimethylamino) methacrylate Examples include ethyl.
Examples of acrylate or methacrylate monomers include those having a molecular weight of 85-300. For example, ethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, butyl acrylate, 4-hydroxybutyl acrylate, and the like can be used. The solubility / dispersibility in an aqueous solvent to which an alcohol is added can be adjusted depending on the difference in the number of carbon atoms of the acrylate or methacrylate monomer used and the presence or absence of various substituents.

アクリレート系またはメタクリレート系のモノマーと、その他のモノマーとの重合組成により、アルコール等の有機物質を添加した水系溶媒に対する親和性を調整することが可能である。例えば、アクリレート系またはメタクリレート系のモノマーとの重合相手としてビニルピロリドンを使用する場合、0.1〜25質量部のアクリレート系またはメタクリレート系のモノマーと100質量部のビニルピロリドンが重合した組成のコポリマーにおいて、細く、長い銀ナノワイヤの合成容易性と、アルコールを添加した水系溶媒中での銀ナノワイヤの分散性とのバランスを最適化しやすい。ビニルピロリドン100質量部に対するアクリレート系またはメタクリレート系モノマーの配合割合は0.1質量部と僅かであっても、分散性はPVPと比較して大きく向上する。一方、アクリレート系またはメタクリレート系モノマーの配合割合が過剰になると、細く、長い銀ナノワイヤを合成することが難しくなる。ビニルピロリドン100質量部に対するアクリレート系またはメタクリレート系モノマーの配合割合の範囲は0.1〜10質量部とすることがより好ましい。   The affinity for an aqueous solvent to which an organic substance such as alcohol is added can be adjusted by the polymerization composition of an acrylate or methacrylate monomer and another monomer. For example, when vinylpyrrolidone is used as a polymerization partner with an acrylate or methacrylate monomer, in a copolymer having a composition in which 0.1 to 25 parts by mass of an acrylate or methacrylate monomer and 100 parts by mass of vinylpyrrolidone are polymerized. It is easy to optimize the balance between the ease of synthesis of thin and long silver nanowires and the dispersibility of silver nanowires in an aqueous solvent containing alcohol. Even if the blending ratio of the acrylate or methacrylate monomer to 100 parts by mass of vinylpyrrolidone is as small as 0.1 part by mass, the dispersibility is greatly improved as compared with PVP. On the other hand, if the blending ratio of the acrylate or methacrylate monomer is excessive, it becomes difficult to synthesize thin and long silver nanowires. The range of the blending ratio of the acrylate or methacrylate monomer to 100 parts by mass of vinylpyrrolidone is more preferably 0.1 to 10 parts by mass.

有機保護剤として使用するポリマーは、重量平均分子量が30,000〜3,000,000の範囲が好ましい。重量平均分子量が30,000未満の場合には銀粒子が生成しやすくなり、銀ナノワイヤの収率が低下する。重量平均分子量が3,000,000を超えると、得られる銀ナノワイヤの直径が太くなりやすく、透明導電材料に適した細い銀ナノワイヤを得ることが困難になる。   The polymer used as the organic protective agent preferably has a weight average molecular weight in the range of 30,000 to 3,000,000. When the weight average molecular weight is less than 30,000, silver particles are easily generated, and the yield of silver nanowires is reduced. When the weight average molecular weight exceeds 3,000,000, the diameter of the obtained silver nanowire tends to increase, and it becomes difficult to obtain a thin silver nanowire suitable for a transparent conductive material.

〔銀化合物〕
銀ナノワイヤを還元析出させるための銀源として、溶媒に可溶な銀化合物を使用する。例えば、硝酸銀、酢酸銀、酸化銀、塩化銀などが挙げられるが、溶媒に対する溶解性やコストを考慮すると硝酸銀(AgNO3)が使いやすい。使用するアルコール溶媒の総量に対するAg添加量は、溶媒1L当たりAg0.001〜0.1モルの範囲とすることが好ましく、0.025〜0.080モルの範囲とすることがより好ましい。
[Silver compound]
A silver compound that is soluble in a solvent is used as a silver source for reducing and depositing silver nanowires. For example, silver nitrate, silver acetate, silver oxide, silver chloride and the like can be mentioned, but silver nitrate (AgNO 3 ) is easy to use in consideration of solubility in solvents and cost. The amount of Ag added to the total amount of alcohol solvent used is preferably in the range of 0.001 to 0.1 mol of Ag per liter of solvent, and more preferably in the range of 0.025 to 0.080 mol.

〔塩化物〕
アルコール溶媒中で金属銀をワイヤ状に還元析出させるためには、析出の成長方向に異方性を持たせる作用を有する塩化物イオンの存在させることが効果的である。塩化物イオンは、核生成した金属銀の特定の結晶面を速やかにエッチングして多重双晶の生成を促し、それによってワイヤとなる核晶の存在比率を高める効果を有すると考えられる。塩化物イオン源としては、溶媒であるアルコールに溶解する塩化物であれば種々のものが適用対象となる。有機塩素化合物であるTBAC(テトラブチルアンモニウムクロライド;(CH3CH2CH2CH2)4NCl)なども対象となる。工業上入手しやすく、価格の安い塩化ナトリウム(NaCl)、塩化カリウム(KCl)、塩化水素(HCl)、塩化リチウム(LiCl)などが好適な対象となる。また、アルコール溶媒に可溶な塩化銅(II)(CuCl2)を使用してもよい。使用するアルコール溶媒の総量に対する塩化物の添加量は、溶媒1L当たりCl量として0.00001(1×10-5)〜0.01モルの範囲とすることが好ましく、0.00005(5×10-5)〜0.01モルの範囲とすることがより好ましい。
〔chloride〕
In order to reduce and precipitate metallic silver in the form of a wire in an alcohol solvent, it is effective to make chloride ions having an effect of providing anisotropy in the growth direction of the precipitation. Chloride ions are considered to have an effect of promptly etching a specific crystal plane of nucleated metallic silver to promote the formation of multiple twins, thereby increasing the abundance of nuclei serving as wires. Various chloride ion sources are applicable as long as they are soluble in alcohol as a solvent. TBAC (tetrabutylammonium chloride; (CH 3 CH 2 CH 2 CH 2 ) 4 NCl) which is an organic chlorine compound is also a target. Sodium chloride (NaCl), potassium chloride (KCl), hydrogen chloride (HCl), lithium chloride (LiCl), and the like that are industrially available and inexpensive are suitable targets. Further, copper (II) chloride (CuCl 2 ) soluble in an alcohol solvent may be used. The amount of chloride added relative to the total amount of alcohol solvent used is preferably in the range of 0.00001 (1 × 10 −5 ) to 0.01 mol as the amount of Cl per liter of solvent, and is 0.000005 (5 × 10 5 -5 ) to 0.01 mol is more preferable.

〔臭化物〕
臭化物イオンも、金属銀の析出成長方向に異方性を持たせる作用を有する。種々検討の結果、アルコール溶媒中に、上述の塩化物イオンに加え、臭化物イオンを存在させておくことが、平均直径50nm以下好ましくは40nm未満、平均長さ10μm以上といった細くて長い銀ナノワイヤを得る上で極めて有効であることがわかった。臭化物イオン源としては、溶媒であるアルコールに溶解する臭化物であれば種々のものが適用対象となる。有機臭素化合物であるCTAB(臭化セチルトリメチルアンモニウム;(C1633)N(CH3)3Br)なども対象となる。工業上入手しやすく、価格の安い臭化ナトリウム(NaBr)、臭化カリウム(KBr)、臭化水素(HBr)、臭化リチウム(LiBr)などが好適な対象となる。臭化物の添加量は極めて微量であるが、異方性を持たせるには極めて有効な添加物である。使用するアルコール溶媒の総量に対する臭化物の添加量は、溶媒1L当たりBr量として0.000001(1×10-6)〜0.001(1×10-3)モルの範囲とすることが好ましく、0.000005(5×10-6)〜0.001(1×10-3)モルの範囲とすることがより好ましい。
[Bromide]
Bromide ions also have the effect of imparting anisotropy in the direction of metal silver precipitation. As a result of various studies, it is possible to obtain thin and long silver nanowires having an average diameter of 50 nm or less, preferably less than 40 nm, and an average length of 10 μm or more by adding bromide ions in addition to the above-described chloride ions in an alcohol solvent. It was found to be extremely effective above. Various bromide ion sources are applicable as long as they are bromides that dissolve in alcohol as a solvent. CTAB (cetyltrimethylammonium bromide; (C 16 H 33 ) N (CH 3 ) 3 Br), which is an organic bromine compound, is also an object. Sodium bromide (NaBr), potassium bromide (KBr), hydrogen bromide (HBr), lithium bromide (LiBr) and the like that are industrially available and inexpensive are suitable targets. Although the amount of bromide added is extremely small, it is an extremely effective additive for imparting anisotropy. The amount of bromide added relative to the total amount of alcohol solvent used is preferably in the range of 0.000001 (1 × 10 −6 ) to 0.001 (1 × 10 −3 ) mol as Br amount per liter of solvent. A range of 0.0005 (5 × 10 −6 ) to 0.001 (1 × 10 −3 ) mol is more preferable.

〔アルミニウム塩およびアルカリ金属水酸化物〕
発明者らの研究によれば、銀を析出させる溶媒中に、アルミニウム塩と、アルカリ金属水酸化物とを所定割合で溶解させておくことが、アスペクト比の大きい銀ナノワイヤを効果的に合成するうえで極めて有効である。このような現象のメカニズムについては現時点で不明であるが、アルミニウムイオンには銀がワイヤ状に成長するための結晶面を活性化する作用や、還元速度を向上させる作用があるのではないかと推測され、そのような作用は、水酸化物イオンの適正存在下で発揮されるものと考えられる。
なお、アルミニウム塩を含有する溶媒中で合成した銀ナノワイヤには、Alの存在が確認される。発明者らの調査によれば、金属成分のうち、Alを100〜1000ppm含有する金属ナノワイヤは、直径の均一性が高く、細くて長いわりに局所的な折れや曲がりが生じにくい傾向が見られた。このような銀ナノワイヤはインク化の操作や、基材へのコーティングの操作において、取り扱い性に優れる。A1含有量200ppm以上であるものがより好適な対象となる。
[Aluminum salt and alkali metal hydroxide]
According to the inventors' research, it is possible to effectively synthesize silver nanowires having a large aspect ratio by dissolving an aluminum salt and an alkali metal hydroxide in a predetermined ratio in a solvent for depositing silver. It is extremely effective. The mechanism of this phenomenon is currently unknown, but it is speculated that aluminum ions may have the effect of activating the crystal plane for silver to grow into a wire shape and improving the reduction rate. Such an action is considered to be exhibited in the proper presence of hydroxide ions.
In addition, the presence of Al is confirmed in the silver nanowire synthesized in the solvent containing the aluminum salt. According to the investigation by the inventors, among metal components, metal nanowires containing 100 to 1000 ppm of Al had a high uniformity of diameter, and although they were thin and long, there was a tendency for local bending and bending to be difficult to occur. . Such silver nanowires are excellent in handleability in the operation of making an ink and the operation of coating on a substrate. Those having an A1 content of 200 ppm or more are more suitable targets.

本明細書では、溶媒に溶解させるアルミニウム塩のAl総量とアルカリ金属水酸化物の水酸化物イオン総量とのモル比を「Al/OH」と表記し、以下、このモル比を単に「Al/OHモル比」と呼ぶことがある。詳細な検討の結果、Al/OHモル比を0.01〜0.40とすることにより、細く、長い銀ナノワイヤを合成できる。Al/OHモル比が高すぎるとアルコール溶媒による還元力が低下し、当該溶媒中に溶解している銀イオンあるいは銀錯体を金属銀に還元させることができない。Al/OHモル比が低すぎると平均アスペクト比の大きい、長いワイヤを合成することが難しくなる。   In this specification, the molar ratio between the total amount of Al of the aluminum salt dissolved in the solvent and the total amount of hydroxide ions of the alkali metal hydroxide is expressed as “Al / OH”. Sometimes referred to as “OH molar ratio”. As a result of detailed studies, thin and long silver nanowires can be synthesized by setting the Al / OH molar ratio to 0.01 to 0.40. If the Al / OH molar ratio is too high, the reducing power due to the alcohol solvent decreases, and silver ions or silver complexes dissolved in the solvent cannot be reduced to metallic silver. If the Al / OH molar ratio is too low, it becomes difficult to synthesize a long wire having a large average aspect ratio.

だだし、Al/OHモル比が適正範囲にあっても、銀に対するアルカリ水酸化物の量が多すぎると酸化銀を主体とした合成物が多量に形成され、ワイヤの合成ができなくなる。逆に銀に対するアルカリ水酸化物の量が少なすぎると銀の還元反応が生じにくくなる。本明細書では、溶媒に溶解させるアルカリ金属水酸化物の水酸化物イオン総量と銀化合物のAg総量とのモル比を「OH/Ag」と表記し、以下、このモル比を単に「OH/Agモル比」と呼ぶことがある。詳細な検討の結果、OH/Agモル比は0.005〜0.50の範囲とすることが望ましい。   However, even if the Al / OH molar ratio is within an appropriate range, if the amount of alkali hydroxide relative to silver is too large, a composite composed mainly of silver oxide is formed, and the wire cannot be synthesized. Conversely, if the amount of alkali hydroxide relative to silver is too small, the silver reduction reaction is difficult to occur. In the present specification, the molar ratio between the total amount of hydroxide ions of the alkali metal hydroxide dissolved in the solvent and the total amount of Ag of the silver compound is expressed as “OH / Ag”. It may be referred to as “Ag molar ratio”. As a result of detailed studies, the OH / Ag molar ratio is preferably in the range of 0.005 to 0.50.

アルカリ金属水酸化物としては、工業的には例えば水酸化リチウム、水酸化ナトリウム、水酸化カリウムの1種以上を使用することが望ましい。
アルミニウム塩としては、硝酸アルミニウムや、塩化アルミニウムが適用対象となる。硝酸アルミニウムは硝酸アルミニウム九水和物Al(NO3)3・9H2Oとして添加しても構わない。塩化アルミニウムを使用する場合、上述の塩化物を兼ねることができる。
As the alkali metal hydroxide, industrially, for example, one or more of lithium hydroxide, sodium hydroxide, and potassium hydroxide are preferably used.
As the aluminum salt, aluminum nitrate and aluminum chloride are applicable. Aluminum nitrate may be added as aluminum nitrate nonahydrate Al (NO 3 ) 3 · 9H 2 O. When aluminum chloride is used, it can also serve as the above chloride.

〔銀ナノワイヤ合成手順の例示〕
従来、銀化合物が溶解しているアルコール溶媒中において、ハロゲン化合物および有機保護剤の存在下で、溶媒であるアルコールの還元力により銀ナノワイヤを得る手法が知られている。この場合、金属銀をワイヤ状に析出させるための有機保護剤としてPVPが適しているとされる。本発明でも、このようなアルコール溶媒の還元力を利用して銀ナノワイヤを生成させる。ただし本発明では前述の通り、有機保護剤として、PVPではなく、アクリレート系またはメタクリレート系モノマーの構造単位を持つポリマーを使用する。
[Example of silver nanowire synthesis procedure]
Conventionally, a technique for obtaining silver nanowires by reducing power of alcohol as a solvent in an alcohol solvent in which a silver compound is dissolved in the presence of a halogen compound and an organic protective agent is known. In this case, PVP is considered suitable as an organic protective agent for depositing metallic silver into a wire shape. Also in the present invention, silver nanowires are generated using the reducing power of such an alcohol solvent. However, as described above, in the present invention, a polymer having a structural unit of an acrylate or methacrylate monomer is used as the organic protective agent, not PVP.

銀の還元析出反応を進行させる温度は60℃以上溶媒の沸点以下の範囲で設定することができる。沸点は、反応容器内の溶媒液面が接する気相空間の圧力における沸点である。複数種類のアルコールを混合して溶媒とする場合、最も沸点が低いアルコールの沸点以下の温度とすればよい。ただし、穏やかに反応を進行させる観点から、沸騰を避け、沸点より低い温度に管理することが好ましい。例えば溶媒としてエチレングリコールを使用し、大気圧下で反応を進行させる場合、エチレングリコールの沸点は約197℃であるが、60〜185℃で反応を進行させることが好ましく、80〜175℃とすることがより好ましい。反応時間は例えば10分〜100時間の範囲で設定すればよい。   The temperature at which the silver reductive precipitation reaction proceeds can be set in the range of 60 ° C. or higher and the boiling point of the solvent or lower. The boiling point is the boiling point at the pressure of the gas phase space where the liquid level of the solvent in the reaction vessel contacts. When a plurality of types of alcohols are mixed to form a solvent, the temperature may be set to a temperature equal to or lower than the boiling point of the lowest boiling alcohol. However, from the viewpoint of allowing the reaction to proceed gently, it is preferable to avoid boiling and control the temperature below the boiling point. For example, when ethylene glycol is used as a solvent and the reaction is allowed to proceed under atmospheric pressure, the boiling point of ethylene glycol is about 197 ° C., but the reaction is preferably allowed to proceed at 60 to 185 ° C., and 80 to 175 ° C. It is more preferable. What is necessary is just to set reaction time, for example in the range of 10 minutes-100 hours.

手順としては、アルコール溶媒中に銀化合物以外の各物質を溶解させておき、その溶媒(以下「溶液A」という)の温度が所定の反応温度に到達したのちに、銀化合物を溶液A中に添加することが望ましい。銀化合物は、予め別の容器で前記溶媒と同種のアルコール溶媒に溶解させておき、その銀含有液(「溶液B」という)を溶液A中に混合する方法で添加することができる。溶液Aに混合する前の溶液Bは、常温付近の温度(例えば15〜40℃)とすることが望ましい。溶液Bの温度が低すぎると銀化合物の溶解に時間がかかり、高すぎると溶液B中のアルコール溶媒の還元力によって溶液Aに混合する前の段階で銀の還元反応が起こりやすくなる。硝酸銀など、アルコール溶媒に溶けやすい銀化合物は、固体のまま前記溶液A中に添加してもよい。銀化合物の添加は、全量を一度に添加する方法や、一定時間内に断続的または継続的に添加する方法が採用できる。反応進行中は液の撹拌を継続する。また、反応進行中に溶液Aの液面が接する気相の雰囲気は大気または窒素とすることができる。   As a procedure, each substance other than the silver compound is dissolved in an alcohol solvent, and after the temperature of the solvent (hereinafter referred to as “solution A”) reaches a predetermined reaction temperature, the silver compound is dissolved in the solution A. It is desirable to add. The silver compound can be added by a method in which the silver compound solution (referred to as “solution B”) is mixed in the solution A after being previously dissolved in an alcohol solvent of the same type as the solvent in another container. It is desirable that the solution B before being mixed with the solution A has a temperature around room temperature (for example, 15 to 40 ° C.). If the temperature of the solution B is too low, it takes time to dissolve the silver compound, and if it is too high, a silver reduction reaction is likely to occur in the stage before mixing with the solution A due to the reducing power of the alcohol solvent in the solution B. A silver compound that is easily soluble in an alcohol solvent, such as silver nitrate, may be added to the solution A as a solid. For the addition of the silver compound, a method of adding the whole amount at once, or a method of adding it intermittently or continuously within a fixed time can be adopted. The liquid is continuously stirred while the reaction is in progress. Further, the gas phase atmosphere in contact with the liquid surface of the solution A during the progress of the reaction can be air or nitrogen.

銀の析出反応が終了したのち、銀ナノワイヤを含有するスラリーを遠心分離やデカンテーションなどの手段を用いて固液分離して固形分を回収する。デカンテーションは、静置したまま2〜2週間程度かけ濃縮を行ってもよいし、スラリーに、アセトン、トルエン、ヘキサン、ケロシンなどの極性の小さい溶媒を少なくとも1種類以上添加し、沈降速度を速めて濃縮してもよい。遠心分離の場合は、反応後のスラリーをそのまま遠心分離機にかけて、銀ナノワイヤを濃縮すればよい。
濃縮後、上澄みを除去する。その後、水やアルコールなど極性の大きい溶媒を添加し、銀ナノワイヤを再分散させ、さらに遠心分離やデカンテーションなどの手段を用いて固液分離して固形分を回収する。この再分散と濃縮の工程(洗浄)を繰り返して行うことが好ましい。
After the silver precipitation reaction is completed, the slurry containing silver nanowires is solid-liquid separated using means such as centrifugation or decantation to recover the solid content. Decantation may be performed for about 2 to 2 weeks with standing, or at least one solvent with low polarity such as acetone, toluene, hexane, kerosene, etc. is added to the slurry to increase the sedimentation rate. And may be concentrated. In the case of centrifugation, the slurry after the reaction may be directly applied to a centrifuge to concentrate the silver nanowires.
After concentration, the supernatant is removed. Thereafter, a highly polar solvent such as water or alcohol is added to re-disperse the silver nanowires, and further solid-liquid separation is performed using means such as centrifugation or decantation to recover the solid content. It is preferable to repeat this redispersion and concentration step (washing).

〔銀ナノワイヤの精製〕
銀ナノワイヤを合成すると、十分に長い銀ナノワイヤ以外に、銀ナノ粒子や短い銀ナノワイヤも生成する。これら粒子状のものや短いワイヤなど、不純物に属する生成物(以下「生成不純物」という)をできるだけ除去して、有用である長い銀ナノワイヤを分離回収する操作を「精製」と呼ぶ。
[Purification of silver nanowires]
When silver nanowires are synthesized, in addition to sufficiently long silver nanowires, silver nanoparticles and short silver nanowires are also generated. The operation of removing products belonging to impurities (hereinafter referred to as “product impurities”) such as particles and short wires as much as possible and separating and collecting useful long silver nanowires is called “purification”.

精製においては、体積的に大きい銀ナノワイヤが優先的に沈降する現象を利用し、合成後に回収された銀ナノワイヤ含有固形分を水に分散させたあと、遠心分離、デカンテーションなどにより生成不純物を上澄みとともに除去することができる。沈降速度をより速くするためには上記極性の小さい溶媒を添加してもよい。   In refining, a phenomenon in which silver nanowires with a large volume are preferentially settled is used. After the silver nanowire-containing solids recovered after synthesis are dispersed in water, the produced impurities are clarified by centrifugation, decantation, etc. And can be removed. In order to increase the sedimentation rate, a solvent having a small polarity may be added.

ナノ粒子や短いワイヤなどの生成不純物は凝集性が高く、長いナノワイヤに付着して分離し難いことがある。このような場合の対策として、発明者らは、銀ナノワイヤ含有固形分(濃縮物)を水に分散させる際に分散剤や界面活性剤を添加し、より良好な分散状態とすることにより、生成不純物の分離が促進されることを見出した。好適な分散剤としてはPVPが挙げられる。   Generated impurities such as nanoparticles and short wires are highly cohesive and may be difficult to adhere to and separate from long nanowires. As a countermeasure in such a case, the inventors added a dispersant or a surfactant when dispersing the silver nanowire-containing solid content (concentrate) in water, thereby producing a better dispersion state. It has been found that the separation of impurities is promoted. A suitable dispersant includes PVP.

また、メンブレンフィルター、ナイロンフィルターのように孔径の小さいフィルターを用いてフィルタリングすると、回収すべき銀ナノワイヤはフィルター径より長いためフィルターを通過せずにトラップされ、フィルターを通過する生成不純物と分離することができる。その他、クロスフローろ過方式を適用することも有効である。特にセラミックフィルターを用いたクロスフローろ過によれば平均アスペクト比が例えば400以上の銀ナノワイヤを回収することもできる。   In addition, when filtering using a filter with a small pore size such as a membrane filter or nylon filter, the silver nanowires to be collected are trapped without passing through the filter because they are longer than the filter diameter, and separated from the generated impurities passing through the filter. Can do. In addition, it is effective to apply a cross flow filtration method. In particular, cross flow filtration using a ceramic filter can recover silver nanowires having an average aspect ratio of, for example, 400 or more.

洗浄後の固形分は有機保護剤を表面に有する銀ナノワイヤを主体とするものである。この銀ナノワイヤは、目的に応じて適切な液状媒体中に分散させた分散液として保管することができる。銀ナノワイヤインクの製造方法に適用する場合、前記洗浄後の固形分を水やアルコールなどに分散させた銀ナノワイヤ分散液に、後述のように粘度調整剤やバインダー成分を添加して「インク化」させる。   The solid content after washing is mainly composed of silver nanowires having an organic protective agent on the surface. This silver nanowire can be stored as a dispersion liquid dispersed in an appropriate liquid medium according to the purpose. When applied to a method for producing silver nanowire ink, a viscosity modifier and a binder component are added to the silver nanowire dispersion liquid in which the solid content after washing is dispersed in water, alcohol, etc. Let

《銀ナノワイヤインク》
銀ナノワイヤインクを製造するためには、上述のようにして精製された銀ナノワイヤの分散液を用意し、粘度調整剤やバインダー成分を添加して所定の性状に調整する。ここでは、水系溶媒に、PET基材との濡れ性改善に有効なアルコールを添加したインクを例に、以下、インクの好ましい添加物質、組成、性状、分散安定性等について説明する。
《Silver nanowire ink》
In order to produce a silver nanowire ink, a silver nanowire dispersion liquid purified as described above is prepared, and a viscosity modifier and a binder component are added to adjust to a predetermined property. Here, a preferable additive substance, composition, property, dispersion stability, and the like of the ink will be described below by taking as an example an ink in which an alcohol effective for improving wettability with a PET base material is added to an aqueous solvent.

〔粘度調整剤〕
本発明に適用する粘度調整剤は、溶媒である水+アルコールに溶解することが必要である。増粘剤として従来から各分野で使用されている各種水溶性高分子が使用できる。例えば、天然系およびその誘導体としては、センイ繊維素(セルロース)系およびその誘導体ではCMC(カルボキシメチルセルロース)、MC(メチルセルロース)などがあり、蛋白質系ではアルブミン(卵白の成分)、カゼイン(牛乳に含まれている)などがある。その他、アルギン酸、寒天、澱粉、多糖類なども水溶性増粘剤として使用可能である。合成系としては、ビニル系化合物、ポリエステル系化合物、ポリビニルアルコール系化合物、ポリアルキレンオキサイド系化合物などの高分子が挙げられる。
[Viscosity modifier]
The viscosity modifier applied to the present invention needs to be dissolved in water + alcohol as a solvent. Various water-soluble polymers conventionally used in various fields can be used as the thickener. For example, as natural systems and derivatives thereof, there are CMC (carboxymethylcellulose) and MC (methylcellulose) in the cellulose fiber and derivatives, and albumin (egg white component) and casein (included in milk) in the protein system. Etc.). In addition, alginic acid, agar, starch, polysaccharides and the like can also be used as water-soluble thickeners. Examples of the synthetic system include polymers such as a vinyl compound, a polyester compound, a polyvinyl alcohol compound, and a polyalkylene oxide compound.

〔バインダー〕
銀ナノワイヤインクを基材に塗布し乾燥させて得られる透明導電塗膜における、個々の銀ナノワイヤ同士の密着性、および銀ナノワイヤと基材との密着性は、透明導電フィルムを製造するうえで歩留まりに大きく影響し、極めて重要である。この密着性を確保するためには、「糊」の役割を有するバインダー成分を添加する必要がある。本明細書では、銀ナノワイヤインクを基材に塗布し乾燥させて得られる透明塗膜であって、個々のワイヤが一体化して導電性を呈する状態となっているものを、透明導電塗膜と呼んでいる。
〔binder〕
The adhesion between individual silver nanowires and the adhesion between the silver nanowires and the substrate in the transparent conductive coating obtained by applying silver nanowire ink to the substrate and drying is a yield in producing a transparent conductive film. Is very important. In order to ensure this adhesion, it is necessary to add a binder component having the role of “glue”. In the present specification, a transparent coating film obtained by applying a silver nanowire ink to a substrate and drying it, wherein individual wires are integrated to exhibit conductivity, a transparent conductive coating film I'm calling.

透明導電フィルム(フィルム状基材とその表面の透明導電塗膜との接合構造体)の導電性は、透明導電塗膜を構成する銀ナノワイヤの金属同士が接触していることによって発現する。銀ナノワイヤインクに、バインダー成分を添加すると、ワイヤ同士の金属接触が妨げられて十分な導通が得られなくなる恐れがある。そのため、従来は、強力なバインダー成分を含まない銀ナノインクを基材上に塗布して乾燥させることにより、まずワイヤ同士の確実な接触状態を得ておき、その後、接着成分を含む上塗り剤(オーバーコーティング剤)を塗布して、透明導電塗膜の密着性を確保する手法を採用する場合が多い。   The conductivity of the transparent conductive film (the bonded structure of the film-like base material and the transparent conductive coating on the surface thereof) is manifested by the silver nanowire metals constituting the transparent conductive coating being in contact with each other. If a binder component is added to the silver nanowire ink, metal contact between the wires may be hindered and sufficient conduction may not be obtained. For this reason, conventionally, a silver nanoink that does not contain a strong binder component is applied onto a substrate and dried to obtain a reliable contact state between the wires, and then an overcoat containing an adhesive component (overcoat) In many cases, a method of applying a coating agent) to ensure adhesion of the transparent conductive coating film is employed.

しかし、上記のオーバーコーティングを行う手法においても、最初に銀ナノワイヤインクを塗布したフィルムは、乾燥時間を稼ぐために炉内のロールによる方向転換箇所を何度も通過するのが一般的である。ライン内のロール通過点では基材に曲げが加えられるため、塗膜にもストレスが付与され、ワイヤ同士の接触による導通性が劣化する恐れがある。良好な導通性を維持するためにはライン速度を高めた操業を行うことが難しく、生産性向上は望めない。また、次工程に送るために一旦コイル状に巻き取られ、その後オーバーコーティング工程で再び巻き出されるという手順を踏む場合も多い。この場合にも巻き取り・巻き出しの際に基材の塗膜表面にはストレスが付与され、導通性の低下や、基材からの剥離が生じる恐れがある。従って、オーバーコーティングを行う場合にも、銀ナノワイヤインク中に何らかのバインダー成分を配合させ、ワイヤ同士の密着性および基材と塗膜の密着性を向上させることが、生産性向上のためには不可欠となる。以下、特に断らない限り、「密着性」とは、ワイヤ同士の密着性および基材と塗膜の密着性の両方を意味する。   However, even in the above-described overcoating method, the film on which the silver nanowire ink is first applied generally passes through the turning point by the roll in the furnace many times in order to increase the drying time. Since bending is applied to the base material at the roll passing point in the line, stress is also applied to the coating film, and there is a possibility that conductivity due to contact between the wires may deteriorate. In order to maintain good continuity, it is difficult to operate at an increased line speed, and improvement in productivity cannot be expected. Further, in many cases, a procedure is taken in which the coil is once wound up in a coil shape to be sent to the next process and is then unwound again in the overcoating process. In this case as well, stress may be applied to the surface of the coating film of the base material at the time of winding / unwinding, which may cause a decrease in conductivity and peeling from the base material. Therefore, even when overcoating is performed, it is indispensable to improve productivity by adding some binder component to the silver nanowire ink and improving the adhesion between the wires and the adhesion between the substrate and the coating film. It becomes. Hereinafter, unless otherwise specified, “adhesion” means both adhesion between wires and adhesion between a substrate and a coating film.

銀ナノワイヤインクに添加されるバインダーには、導電性、光学性能(光の透過性が高くヘイズが小さいこと)、および密着性に優れることが要求される。しかし、これらを高度に満たすことは容易でない。バインダーは基本的には接着剤であるため、その選択を誤ると、銀ナノワイヤ同士の接触点間に接着剤が介在し、導電性を大幅に阻害することがある。また、接着剤であるが故に、インク中で銀ナノワイヤ同士がくっつき、凝集が生じやすくなるという問題もある。好適なバインダー成分として水溶性アクリル−ウレタン共重合樹脂を例示することができる。以下、水溶性アクリル−ウレタン共重合樹脂を適用する組成を例に挙げて説明する。   The binder added to the silver nanowire ink is required to have excellent conductivity, optical performance (high light transmission and low haze), and adhesion. However, it is not easy to meet these requirements to a high degree. Since the binder is basically an adhesive, if the selection is wrong, the adhesive may be interposed between the contact points of the silver nanowires, and the conductivity may be significantly inhibited. Moreover, since it is an adhesive agent, there also exists a problem that silver nanowires will adhere in an ink and aggregation will occur easily. A water-soluble acrylic-urethane copolymer resin can be illustrated as a suitable binder component. Hereinafter, the composition to which the water-soluble acrylic-urethane copolymer resin is applied will be described as an example.

〔インク組成〕
銀ナノワイヤインクの総量に占める質量割合において、銀ナノワイヤの含有量は0.02〜1.0質量%であることが好ましく、粘度調整剤の添加量は0.01〜1.0質量%、バインダー成分の添加量は、有効成分である水溶性アクリル−ウレタン共重合樹脂の添加量が0.01〜2.0質量%であることが好ましい。溶媒は水とアルコールの混合物であることが好ましく、質量割合でアルコールが5〜40質量%、残部が水であることが好ましい。アルコールとしては、溶解度パラメータ(SP値)が10以上の極性を有するものが好ましい。例えばメタノール、エタノール、イソプロピルアルコール(2−プロパノール)などの低沸点アルコールが好適に使用できる。なお、SP値は、水:23.4、メタノール:14.5、エタノール:12.7、イソプロピルアルコールが11.5であるとされる。
[Ink composition]
The content of the silver nanowire is preferably 0.02 to 1.0% by mass in the mass ratio of the total amount of the silver nanowire ink, and the addition amount of the viscosity modifier is 0.01 to 1.0% by mass. It is preferable that the addition amount of a component is 0.01-2.0 mass% of the addition amount of the water-soluble acrylic-urethane copolymer resin which is an active ingredient. The solvent is preferably a mixture of water and alcohol, and is preferably 5 to 40% by mass of alcohol and the balance water. As the alcohol, those having a solubility parameter (SP value) of 10 or more are preferable. For example, low boiling point alcohols such as methanol, ethanol, isopropyl alcohol (2-propanol) can be preferably used. The SP values are: water: 23.4, methanol: 14.5, ethanol: 12.7, and isopropyl alcohol are 11.5.

〔粘度と表面張力〕
銀ナノワイヤインクは、回転型粘度計によるシェアレート300(1/s)のときの粘度が1〜100mPa・s、表面張力が20〜80mN/mであることが塗布性に優れる。
粘度は、例えば、Thermo scientific社製回転型粘度計、HAAKE RheoStress 600(測定コーン:Cone C60/1°Ti、D=60mm、プレート:Meas. Plate cover MPC60)を用いて測定することができる。
表面張力は、全自動表面張力計(例えば、協和界面科学株式会社製全自動表面張力計、CBVP−Zを用いて測定することができる。
[Viscosity and surface tension]
The silver nanowire ink has excellent coating properties when the viscosity is 1 to 100 mPa · s and the surface tension is 20 to 80 mN / m at a shear rate of 300 (1 / s) measured by a rotary viscometer.
The viscosity can be measured using, for example, a thermo-scientific rotational viscometer, HAAKE Rheo Stress 600 (measuring cone: Cone C60 / 1 ° Ti, D = 60 mm, plate: Meas. Plate cover MPC60).
The surface tension can be measured using a fully automatic surface tension meter (for example, a fully automatic surface tension meter manufactured by Kyowa Interface Science Co., Ltd., CBVP-Z).

〔銀ナノワイヤインクの分散安定性〕
分散安定性は、銀ナノワイヤインクを作成後、そのインクを収容した容器を静置し、インク作成直後および所定時間経過後に銀ナノワイヤインクを基材に塗布し、乾燥塗膜とし、この乾燥塗膜についてシート抵抗を測定することにより評価することができる。銀ナノワイヤの分散安定性が良好なインクでは、作成直後、4時間後、8時間後、24時間後のそれぞれのインクを塗布して得たシート抵抗値がほとんど変化せず一定となる。分散安定性の悪いインクでは銀ナノワイヤの沈殿に起因してインクの液中に分散している銀ナノワイヤの濃度が低下し、4時間後、8時間後、24時間後と経過時間の長いインクで形成した塗膜ほど、シート抵抗値が高くなる。このような分散安定性の悪いインクは、容器内のインクを目視すると、長時間経過後(8時間後、あるいは24時間後)に上澄みが透明になっていることが確認できる。
[Dispersion stability of silver nanowire ink]
Dispersion stability is determined by preparing a silver nanowire ink, then allowing the container containing the ink to stand, and applying the silver nanowire ink to a substrate immediately after the ink is created and after a predetermined time has elapsed to form a dry coating film. Can be evaluated by measuring the sheet resistance. Ink with good dispersion stability of silver nanowires, the sheet resistance values obtained by applying the respective inks immediately after production, after 4 hours, after 8 hours, and after 24 hours remain almost unchanged. Ink with poor dispersion stability decreases the concentration of silver nanowires dispersed in the ink liquid due to the precipitation of silver nanowires, and the ink has a long elapsed time of 4 hours, 8 hours, 24 hours, etc. The formed coating film has a higher sheet resistance value. When such an ink with poor dispersion stability is visually observed in the container, it can be confirmed that the supernatant is transparent after a long time (after 8 hours or 24 hours).

この分散安定性は、透明導電体の製造上極めて重要である。銀ナノワイヤの重要な用途のひとつに透明導電フィルムがある。その製造過程では、透明基材であるPETフィルム上に、コーティング装置によりRoll to Rollで連続的に銀ナノインクがコーティングされ、その連続コーティング時間は長いときは半日にもなる。その間、銀ナノワイヤインクはコーティング装置のインクタンクの中に収容されているが、銀ナノワイヤの分散安定性が悪いと、このインクタンク内で銀ナノワイヤが沈殿・凝集を起こしてしまい、品質の安定したコーティング層を形成することが困難となる。   This dispersion stability is extremely important for the production of transparent conductors. One important application of silver nanowires is in transparent conductive films. In the production process, silver nanoink is continuously coated on a PET film, which is a transparent substrate, in a roll-to-roll manner by a coating apparatus, and the continuous coating time is as long as half a day. In the meantime, the silver nanowire ink is stored in the ink tank of the coating device. However, if the dispersion stability of the silver nanowire is poor, the silver nanowire will precipitate and agglomerate in this ink tank, resulting in stable quality. It becomes difficult to form a coating layer.

〔実施例1〕
<エチルアクリレートとビニルピロリドンとのコポリマーの作成>
蓋で密閉できる100mLのガラス容器に、溶媒である1,4−ジオキサン45gと、1−ビニル2ピロリドン10.014g、エチルアクリレート(図1、分子量100.1)0.113g、および重合開始剤である2,2’−アゾビス(イソブチロニトリル)0.576gを入れ、マグネチックスターラーを用いて撹拌し、溶媒中に各物質を溶解させた。溶解後の溶液を撹拌しながらに、窒素ガスを10分間吹き込んだ後、蓋で容器を密閉し、窒素雰囲気を維持できるようにした。この溶液をマグネチックスターラーにより500rpmで撹拌しながら60℃で24時間保持した。24時間後、反応を止めるために、氷水の中に容器をつけ急速冷却した。
[Example 1]
<Creation of a copolymer of ethyl acrylate and vinyl pyrrolidone>
In a 100 mL glass container that can be sealed with a lid, 45 g of 1,4-dioxane as a solvent, 10.014 g of 1-vinyl-2-pyrrolidone, 0.113 g of ethyl acrylate (FIG. 1, molecular weight 100.1), and a polymerization initiator 0.576 g of a certain 2,2′-azobis (isobutyronitrile) was added and stirred using a magnetic stirrer to dissolve each substance in the solvent. Nitrogen gas was blown in for 10 minutes while stirring the solution after dissolution, and then the container was sealed with a lid so that a nitrogen atmosphere could be maintained. This solution was kept at 60 ° C. for 24 hours while stirring at 500 rpm with a magnetic stirrer. After 24 hours, in order to stop the reaction, a container was placed in ice water and rapidly cooled.

未反応のモノマーや重合開始剤などを除去する目的で以下の洗浄操作を行った。
前記の24時間保持した溶液を、撹拌状態にある500mLのジエチルエーテル中にビュレットを使い滴下した。滴下することにより、ビニルピロリドン−エチルアクリレートコポリマーが析出する。析出したビニルピロリドン−エチルアクリレートコポリマーをメンブレンフィルターでろ過して回収し、これを室温真空乾燥により30分間乾燥させ、ビニルピロリドン−エチルアクリレートコポリマーの固形物を得た(1回目の洗浄工程終了)。
The following washing operation was performed for the purpose of removing unreacted monomers and polymerization initiators.
The solution kept for 24 hours was dropped into 500 mL of diethyl ether in a stirred state using a burette. By dripping, a vinylpyrrolidone-ethyl acrylate copolymer precipitates. The precipitated vinylpyrrolidone-ethyl acrylate copolymer was collected by filtration through a membrane filter, and dried at room temperature under vacuum for 30 minutes to obtain a vinylpyrrolidone-ethyl acrylate copolymer solid (end of the first washing step).

1回目の洗浄工程を終了したビニルピロリドン−エチルアクリレートコポリマーの固形物を100mLのクロロホルムに溶解させた。この溶液を、撹拌状態にある500mLのジエチルエーテル中にビュレットを使い滴下した。滴下することにより、ビニルピロリドン−エチルアクリレートコポリマーが析出する。析出したビニルピロリドン−エチルアクリレートコポリマーをメンブレンフィルターでろ過して回収し、これを室温真空乾燥により30分間乾燥させ、ビニルピロリドン−エチルアクリレートコポリマーの固形物を得た(2回目の洗浄工程終了)。   The solid of the vinyl pyrrolidone-ethyl acrylate copolymer that completed the first washing step was dissolved in 100 mL of chloroform. This solution was added dropwise to 500 mL of diethyl ether with stirring using a burette. By dripping, a vinylpyrrolidone-ethyl acrylate copolymer precipitates. The precipitated vinyl pyrrolidone-ethyl acrylate copolymer was recovered by filtration through a membrane filter, and dried at room temperature under vacuum for 30 minutes to obtain a vinyl pyrrolidone-ethyl acrylate copolymer solid (end of the second washing step).

2回目の洗浄工程を終了したビニルピロリドン−エチルアクリレートコポリマーの固形物を再度100mLのクロロホルムに溶解させた。この溶液を、撹拌状態にある500mLのジエチルエーテル中にビュレットを使い滴下した。滴下することにより、ビニルピロリドン−エチルアクリレートコポリマーが析出する。析出したビニルピロリドン−エチルアクリレートコポリマーをメンブレンフィルターでろ過して回収し、これを60℃真空乾燥により24時間乾燥させ、ビニルピロリドン−エチルアクリレートコポリマーの乾燥物を得た(3回目の洗浄工程終了)。   The solid of the vinyl pyrrolidone-ethyl acrylate copolymer which finished the second washing step was dissolved again in 100 mL of chloroform. This solution was added dropwise to 500 mL of diethyl ether with stirring using a burette. By dripping, a vinylpyrrolidone-ethyl acrylate copolymer precipitates. The precipitated vinylpyrrolidone-ethyl acrylate copolymer was recovered by filtration through a membrane filter, and this was dried by vacuum drying at 60 ° C. for 24 hours to obtain a dried product of vinyl pyrrolidone-ethyl acrylate copolymer (end of the third washing step). .

以上の洗浄操作を経て、1.128質量部のアクリレート系モノマーと100質量部のビニルピロリドンが重合した構造を有するビニルピロリドン−エチルアクリレートコポリマーの乾燥物が作成された。各モノマーの仕込み量を質量%に換算すると、エチルアクリレート1質量%、ビニルピロリドン99質量%となる。図5に、ビニルピロリドン−エチルアクリレートコポリマーの構造式を示す。   Through the above washing operation, a dried product of vinylpyrrolidone-ethyl acrylate copolymer having a structure in which 1.128 parts by mass of an acrylate monomer and 100 parts by mass of vinylpyrrolidone were polymerized was prepared. When the amount of each monomer charged is converted to mass%, ethyl acrylate is 1 mass% and vinylpyrrolidone is 99 mass%. FIG. 5 shows the structural formula of the vinylpyrrolidone-ethyl acrylate copolymer.

<銀ナノワイヤの作成>
常温にて、50mLのバイアル瓶に、プロピレングリコール(1,2−プロパンジオール)26gをとり、その中に、上記で得たビニルピロリドン−エチルアクリレートコポリマー0.402g、塩化リチウム含有量が1質量%である1,2−プロパンジオール溶液0.151g、水酸化リチウム含有量が1質量%である1,2−プロパンジオール溶液0.150g、臭化カリウム含有量が0.25質量%である1,2−プロパンジオール溶液0.166g、硝酸アルミニウム九水和物含有量が2質量%である1,2−プロパンジオール溶液0.104gをそれぞれ添加して混合し、溶液Aとした。硝酸銀0.212gを1,2−プロパンジオール2g中に溶解させ、溶液Bとした。
<Creation of silver nanowires>
At room temperature, 26 g of propylene glycol (1,2-propanediol) was taken in a 50 mL vial, and 0.402 g of the vinylpyrrolidone-ethyl acrylate copolymer obtained above was contained therein, and the lithium chloride content was 1% by mass. 0.151 g of a 1,2-propanediol solution, 0.150 g of a 1,2-propanediol solution having a lithium hydroxide content of 1% by mass, 1,0.1% having a potassium bromide content of 0.25% by mass A solution A was prepared by adding 0.166 g of a 2-propanediol solution and 0.104 g of a 1,2-propanediol solution having an aluminum nitrate nonahydrate content of 2 mass%. A solution B was prepared by dissolving 0.212 g of silver nitrate in 2 g of 1,2-propanediol.

前記溶液Aの全量を常温から115℃まで昇温したのち、300rpmで20分間撹拌した。撹拌時間が20分を経過した後、115℃の溶液A中に、前記溶液Bをチューブポンプで1分間かけて添加し、さらに撹拌状態を維持して115℃で12時間保持することにより銀の析出反応が終了した反応液を得た。その後、反応液を常温まで冷却した。   The total amount of the solution A was raised from room temperature to 115 ° C., and then stirred at 300 rpm for 20 minutes. After stirring time of 20 minutes, the solution B was added to the solution A at 115 ° C. over 1 minute with a tube pump, and the stirring state was maintained and maintained at 115 ° C. for 12 hours. A reaction solution in which the precipitation reaction was completed was obtained. Thereafter, the reaction solution was cooled to room temperature.

冷却後の反応液にアセトンを反応液の10倍量添加し、10分撹拌後に24時間静置を行った。静置後、濃縮物と上澄みが観察されたため、上澄み部分をピペットにて丁寧に除去し、濃縮物を得た。得られた濃縮物に25gの純水を添加し、10分撹拌して濃縮物を分散させた後、アセトンを10倍量添加し、さらに撹拌後に24時間静置を行った。静置後、新たに濃縮物と上澄みが観察されたため、上澄み部分をピペットにて丁寧に除去した。過剰な有機保護剤は良好な導電性を得るためには不要なものであるため、この洗浄操作を繰り返して固形分を十分に洗浄した。   To the reaction solution after cooling, 10 times the amount of acetone was added, and after stirring for 10 minutes, the reaction solution was allowed to stand for 24 hours. Since the concentrate and the supernatant were observed after standing, the supernatant was carefully removed with a pipette to obtain a concentrate. 25 g of pure water was added to the obtained concentrate and stirred for 10 minutes to disperse the concentrate, then 10 times the amount of acetone was added, and the mixture was further allowed to stand for 24 hours after stirring. Since the concentrate and the supernatant were newly observed after standing, the supernatant was carefully removed with a pipette. Since the excessive organic protective agent is unnecessary for obtaining good conductivity, this washing operation was repeated to sufficiently wash the solid content.

洗浄後の固形分に純水を加えてこの固形分の分散液を得た。この分散液を分取し、溶媒の純水を観察台上で揮発させたのち高分解能FE−SEM(高分解能電界放出形走査電子顕微鏡)により観察した結果、固形分は銀ナノワイヤであることが確認された。図6に、その銀ナノワイヤのSEM写真を例示する。   Pure water was added to the solid content after washing to obtain a dispersion of this solid content. The dispersion was collected, and the pure water of the solvent was volatilized on the observation table and then observed with a high resolution FE-SEM (high resolution field emission scanning electron microscope). As a result, the solid content was a silver nanowire. confirmed. FIG. 6 illustrates an SEM photograph of the silver nanowire.

SEM観察において、無作為に選んだ5視野について観察される全ての銀ナノワイヤを測定対象として前述の定義に従い、平均直径および平均長さを求めた。測定対象のワイヤ総数は100個以上である。なお、直径測定は倍率150,000倍のSEM画像、長さ測定は高分解能SEM倍率2,500倍のSEM画像をそれぞれ用いて行った。
その結果、本例で得られた銀ナノワイヤの平均直径は32nm、平均長さは11.1μmであり、平均アスペクト比は11100nm/32nm≒347であった。
In SEM observation, the average diameter and the average length were determined according to the above-mentioned definition using all the silver nanowires observed in five randomly selected fields as the measurement target. The total number of wires to be measured is 100 or more. The diameter measurement was performed using an SEM image at a magnification of 150,000 times, and the length measurement was performed using an SEM image at a high resolution SEM magnification of 2,500 times.
As a result, the average diameter of the silver nanowire obtained in this example was 32 nm, the average length was 11.1 μm, and the average aspect ratio was 11100 nm / 32 nm≈347.

上記洗浄後の固形分(銀ナノワイヤ)をIPA(イソプロピルアルコール)100%のアルコール系溶媒に分散させ、銀ナノワイヤ分散液を得た。分散液中の銀濃度は0.2質量%に調整した。この銀ナノワイヤ分散液をバイアル瓶へ約40mL分取したのち、バイアル瓶を静置した。静置開始後、3日経過時点での液の様子を図15の写真に示す。図中には、PVP被覆銀ナノワイヤの例(後述比較例3)を並べて示してある。ビニルピロリドン−エチルアクリレートコポリマーで被覆された本例の銀ナノワイヤは3日間経過しても沈降は見られず、アルコール系溶媒中で優れた分散安定性を呈することが確認された。   The solid content (silver nanowires) after the washing was dispersed in an IPA (isopropyl alcohol) 100% alcohol solvent to obtain a silver nanowire dispersion. The silver concentration in the dispersion was adjusted to 0.2% by mass. About 40 mL of this silver nanowire dispersion was dispensed into a vial, and then the vial was allowed to stand. The state of the liquid after 3 days has elapsed after the start of standing is shown in the photograph of FIG. In the figure, examples of PVP-coated silver nanowires (Comparative Example 3 described later) are shown side by side. It was confirmed that the silver nanowires of this example coated with vinylpyrrolidone-ethyl acrylate copolymer did not precipitate even after 3 days and exhibited excellent dispersion stability in alcohol solvents.

また、上記洗浄後の固形分(銀ナノワイヤ)を、純水80質量%、IPA(イソプロピルアルコール)20質量%の混合溶媒に分散させ、銀ナノワイヤ分散液を得た。分散液中の銀濃度は0.2質量%に調整した。この銀ナノワイヤ分散液をバイアル瓶へ約40mL分取したのち、バイアル瓶を静置した。静置開始後、1日経過時点においても銀ナノワイヤの沈降は見られず、ビニルピロリドン−エチルアクリレートコポリマーで被覆された本例の銀ナノワイヤは、アルコールを添加した水系溶媒中で優れた分散安定性を呈することが確認された。   Moreover, the solid content (silver nanowire) after the washing was dispersed in a mixed solvent of 80% by mass of pure water and 20% by mass of IPA (isopropyl alcohol) to obtain a silver nanowire dispersion. The silver concentration in the dispersion was adjusted to 0.2% by mass. About 40 mL of this silver nanowire dispersion was dispensed into a vial, and then the vial was allowed to stand. No settling of silver nanowires was observed even after 1 day from the start of standing, and the silver nanowires of this example coated with vinylpyrrolidone-ethyl acrylate copolymer had excellent dispersion stability in an aqueous solvent to which alcohol was added. It was confirmed that

〔実施例2〕
<2−ヒドロキシエチルアクリレートとビニルピロリドンとのコポリマーの作成>
実施例1におけるコポリマーの作成において、エチルアクリレート0.113gに代えて、2−ヒドロキシエチルアクリレート(図2、分子量116.1)0.113gを添加したことを除き、実施例1と同じ条件でコポリマーを作成した。得られたコポリマーは、1.128質量部のアクリレート系モノマーと100質量部のビニルピロリドンが重合した構造を有するビニルピロリドン−2−ヒドロキシエチルアクリレートコポリマーであり、各モノマーの仕込み量を質量%に換算すると、2−ヒドロキシエチルアクリレート1質量%、ビニルピロリドン99質量%となる。
[Example 2]
<Preparation of copolymer of 2-hydroxyethyl acrylate and vinyl pyrrolidone>
The copolymer was prepared under the same conditions as in Example 1, except that 0.113 g of 2-hydroxyethyl acrylate (FIG. 2, molecular weight 116.1) was added instead of 0.113 g of ethyl acrylate in the preparation of the copolymer in Example 1. It was created. The obtained copolymer is a vinylpyrrolidone-2-hydroxyethyl acrylate copolymer having a structure in which 1.128 parts by mass of an acrylate monomer and 100 parts by mass of vinylpyrrolidone are polymerized, and the charge amount of each monomer is converted to mass%. As a result, 1% by mass of 2-hydroxyethyl acrylate and 99% by mass of vinylpyrrolidone are obtained.

<銀ナノワイヤの作成>
常温にて、50mLのバイアル瓶に、プロピレングリコール(1,2−プロパンジオール)26gをとり、その中に、上記で得たビニルピロリドン−2−ヒドロキシエチルアクリレートコポリマー0.472g、塩化リチウム含有量が1質量%である1,2−プロパンジオール溶液0.151g、水酸化リチウム含有量が1質量%である1,2−プロパンジオール溶液0.107g、臭化カリウム含有量が0.25質量%である1,2−プロパンジオール溶液0.166g、硝酸アルミニウム九水和物含有量が2質量%である1,2−プロパンジオール溶液0.104gをそれぞれ添加して混合し、溶液Aとした。硝酸銀0.212gを1,2−プロパンジオール2g中に溶解させ、溶液Bとした。
<Creation of silver nanowires>
At room temperature, 26 g of propylene glycol (1,2-propanediol) is taken into a 50 mL vial, and 0.472 g of the vinylpyrrolidone-2-hydroxyethyl acrylate copolymer obtained above is contained therein, and the content of lithium chloride is 0.151 g of a 1,2-propanediol solution that is 1% by mass, 0.107 g of a 1,2-propanediol solution that has a lithium hydroxide content of 1% by mass, and a potassium bromide content of 0.25% by mass. 0.166 g of a certain 1,2-propanediol solution and 0.104 g of a 1,2-propanediol solution having an aluminum nitrate nonahydrate content of 2% by mass were added and mixed to obtain a solution A. A solution B was prepared by dissolving 0.212 g of silver nitrate in 2 g of 1,2-propanediol.

前記溶液Aの全量を常温から115℃まで昇温したのち、300rpmで20分間撹拌した。撹拌時間が20分を経過した後、115℃の溶液A中に、前記溶液Bをチューブポンプで1分間かけて添加し、さらに撹拌状態を維持して115℃で12時間保持することにより銀の析出反応が終了した反応液を得た。その後、実施例1と同様の方法で洗浄を行い、銀ナノワイヤを得た。図7に、その銀ナノワイヤのSEM写真を例示する。   The total amount of the solution A was raised from room temperature to 115 ° C., and then stirred at 300 rpm for 20 minutes. After stirring time of 20 minutes, the solution B was added to the solution A at 115 ° C. over 1 minute with a tube pump, and the stirring state was maintained and maintained at 115 ° C. for 12 hours. A reaction solution in which the precipitation reaction was completed was obtained. Then, it wash | cleaned by the method similar to Example 1, and obtained silver nanowire. FIG. 7 illustrates an SEM photograph of the silver nanowire.

得られた銀ナノワイヤについて実施例1と同様の測定を行った結果、銀ナノワイヤの平均直径は34nm、平均長さは12.0μmであり、平均アスペクト比は12000nm/34nm≒353であった。   The obtained silver nanowire was measured in the same manner as in Example 1. As a result, the average diameter of the silver nanowire was 34 nm, the average length was 12.0 μm, and the average aspect ratio was 12000 nm / 34 nm≈353.

上記洗浄後の銀ナノワイヤを、純水80質量%、IPA(イソプロピルアルコール)20質量%の混合溶媒に分散させ、実施例1と同様に分散安定性を調べた。その結果、静置開始後、1日経過時点においても銀ナノワイヤの沈降は見られず、ビニルピロリドン−2−ヒドロキシエチルアクリレートコポリマーで被覆された本例の銀ナノワイヤは、アルコールを添加した水系溶媒中で優れた分散安定性を呈することが確認された。   The washed silver nanowire was dispersed in a mixed solvent of 80% by mass of pure water and 20% by mass of IPA (isopropyl alcohol), and the dispersion stability was examined in the same manner as in Example 1. As a result, after the start of standing, the silver nanowires were not precipitated even after 1 day, and the silver nanowires of this example coated with vinylpyrrolidone-2-hydroxyethyl acrylate copolymer were in an aqueous solvent to which alcohol was added. It was confirmed that it exhibited excellent dispersion stability.

〔実施例3〕
<2−ヒドロキシエチルアクリレートとビニルピロリドンとのコポリマーの作成>
実施例1におけるコポリマーの作成において、エチルアクリレート0.113gに代えて、2−ヒドロキシエチルアクリレート(図2、分子量116.1)0.557gを添加したことを除き、実施例1と同じ条件でコポリマーを作成した。得られたコポリマーは、5.263質量部のアクリレート系モノマーと100質量部のビニルピロリドンが重合した構造を有するビニルピロリドン−2−ヒドロキシエチルアクリレートコポリマーであり、各モノマーの仕込み量を質量%に換算すると、2−ヒドロキシエチルアクリレート5質量%、ビニルピロリドン95質量%となる。
Example 3
<Preparation of copolymer of 2-hydroxyethyl acrylate and vinyl pyrrolidone>
The copolymer was prepared under the same conditions as in Example 1 except that 0.557 g of 2-hydroxyethyl acrylate (FIG. 2, molecular weight 116.1) was added in place of 0.113 g of ethyl acrylate in the preparation of the copolymer in Example 1. It was created. The obtained copolymer is a vinyl pyrrolidone-2-hydroxyethyl acrylate copolymer having a structure in which 5.263 parts by mass of an acrylate monomer and 100 parts by mass of vinyl pyrrolidone are polymerized. Then, it becomes 5 mass% of 2-hydroxyethyl acrylate, and 95 mass% of vinyl pyrrolidone.

<銀ナノワイヤの作成>
常温にて、50mLのバイアル瓶に、プロピレングリコール(1,2−プロパンジオール)26gをとり、その中に、上記で得たビニルピロリドン−2−ヒドロキシエチルアクリレートコポリマー0.472g、塩化リチウム含有量が1質量%である1,2−プロパンジオール溶液0.151g、水酸化リチウム含有量が1質量%である1,2−プロパンジオール溶液0.150g、臭化カリウム含有量が0.25質量%である1,2−プロパンジオール溶液0.166g、硝酸アルミニウム九水和物含有量が2質量%である1,2−プロパンジオール溶液0.104gをそれぞれ添加して混合し、溶液Aとした。硝酸銀0.212gを1,2−プロパンジオール2g中に溶解させ、溶液Bとした。
<Creation of silver nanowires>
At room temperature, 26 g of propylene glycol (1,2-propanediol) is taken into a 50 mL vial, and 0.472 g of the vinylpyrrolidone-2-hydroxyethyl acrylate copolymer obtained above is contained therein, and the content of lithium chloride is 0.151 g of a 1,2-propanediol solution that is 1% by mass, 0.150 g of a 1,2-propanediol solution that has a lithium hydroxide content of 1% by mass, and a potassium bromide content of 0.25% by mass. 0.166 g of a certain 1,2-propanediol solution and 0.104 g of a 1,2-propanediol solution having an aluminum nitrate nonahydrate content of 2% by mass were added and mixed to obtain a solution A. A solution B was prepared by dissolving 0.212 g of silver nitrate in 2 g of 1,2-propanediol.

前記溶液Aの全量を常温から115℃まで昇温したのち、300rpmで20分間撹拌した。撹拌時間が20分を経過した後、115℃の溶液A中に、前記溶液Bをチューブポンプで1分間かけて添加し、さらに撹拌状態を維持して115℃で12時間保持することにより銀の析出反応が終了した反応液を得た。その後、実施例1と同様の方法で洗浄を行い、銀ナノワイヤを得た。図8に、その銀ナノワイヤのSEM写真を例示する。   The total amount of the solution A was raised from room temperature to 115 ° C., and then stirred at 300 rpm for 20 minutes. After stirring time of 20 minutes, the solution B was added to the solution A at 115 ° C. over 1 minute with a tube pump, and the stirring state was maintained and maintained at 115 ° C. for 12 hours. A reaction solution in which the precipitation reaction was completed was obtained. Then, it wash | cleaned by the method similar to Example 1, and obtained silver nanowire. FIG. 8 illustrates an SEM photograph of the silver nanowire.

得られた銀ナノワイヤについて実施例1と同様の測定を行った結果、銀ナノワイヤの平均直径は39nm、平均長さは10.7μmであり、平均アスペクト比は10700nm/39nm≒274であった。   The obtained silver nanowire was measured in the same manner as in Example 1. As a result, the average diameter of the silver nanowire was 39 nm, the average length was 10.7 μm, and the average aspect ratio was 10700 nm / 39 nm≈274.

上記洗浄後の銀ナノワイヤを、純水80質量%、IPA(イソプロピルアルコール)20質量%の混合溶媒に分散させ、実施例1と同様に分散安定性を調べた。その結果、静置開始後、1日経過時点においても銀ナノワイヤの沈降は見られず、ビニルピロリドン−2−ヒドロキシエチルアクリレートコポリマーで被覆された本例の銀ナノワイヤは、アルコールを添加した水系溶媒中で優れた分散安定性を呈することが確認された。   The washed silver nanowire was dispersed in a mixed solvent of 80% by mass of pure water and 20% by mass of IPA (isopropyl alcohol), and the dispersion stability was examined in the same manner as in Example 1. As a result, after the start of standing, the silver nanowires were not precipitated even after 1 day, and the silver nanowires of this example coated with vinylpyrrolidone-2-hydroxyethyl acrylate copolymer were in an aqueous solvent to which alcohol was added. It was confirmed that it exhibited excellent dispersion stability.

〔実施例4〕
<2−ヒドロキシエチルアクリレートとビニルピロリドンとのコポリマーの作成>
実施例1におけるコポリマーの作成において、エチルアクリレート0.113gに代えて、2−ヒドロキシエチルアクリレート(図2、分子量116.1)2.226gを添加したことを除き、実施例1と同じ条件でコポリマーを作成した。得られたコポリマーは、25.00質量部のアクリレート系モノマーと100質量部のビニルピロリドンが重合した構造を有するビニルピロリドン−2−ヒドロキシエチルアクリレートコポリマーであり、各モノマーの仕込み量を質量%に換算すると、2−ヒドロキシエチルアクリレート20質量%、ビニルピロリドン80質量%となる。
Example 4
<Preparation of copolymer of 2-hydroxyethyl acrylate and vinyl pyrrolidone>
The copolymer was prepared under the same conditions as in Example 1 except that 2.226 g of 2-hydroxyethyl acrylate (FIG. 2, molecular weight 116.1) was added instead of 0.113 g of ethyl acrylate in the preparation of the copolymer in Example 1. It was created. The obtained copolymer is a vinylpyrrolidone-2-hydroxyethyl acrylate copolymer having a structure in which 25.00 parts by mass of an acrylate monomer and 100 parts by mass of vinylpyrrolidone are polymerized, and the charged amount of each monomer is converted to mass%. Then, 20% by mass of 2-hydroxyethyl acrylate and 80% by mass of vinyl pyrrolidone are obtained.

得られたビニルピロリドン−2−ヒドロキシエチルアクリレートコポリマーについて、NMR(核磁気共鳴法)スペクトルを測定した。図9にそのNMRスペクトルを示す。測定されたNMRスペクトルには、図9中に示すコポリマー構造式に記載したアルファベット記号の位置に対応すると考えられるピークが観測された。すなわち、上記の手法で作成したビニルピロリドン−2−ヒドロキシエチルアクリレートコポリマーは、2−ヒドロキシエチルアクリレートに由来する構造部分を有していることが確認できた。なお、図9中、「TMS」は標準物質として重クロロホルムに含まれているテトラメチルシラン(0PPM)を表す。また、溶媒に微量含まれているCHCl3のピークも示してある。 NMR (nuclear magnetic resonance) spectrum was measured for the obtained vinylpyrrolidone-2-hydroxyethyl acrylate copolymer. FIG. 9 shows the NMR spectrum. In the measured NMR spectrum, a peak considered to correspond to the position of the alphabet symbol described in the copolymer structural formula shown in FIG. 9 was observed. That is, it has been confirmed that the vinylpyrrolidone-2-hydroxyethyl acrylate copolymer prepared by the above method has a structural portion derived from 2-hydroxyethyl acrylate. In FIG. 9, “TMS” represents tetramethylsilane (0PPM) contained in deuterated chloroform as a standard substance. A peak of CHCl 3 contained in a trace amount in the solvent is also shown.

<銀ナノワイヤの作成>
常温にて、50mLのバイアル瓶に、プロピレングリコール(1,2−プロパンジオール)26gをとり、その中に、上記で得たビニルピロリドン−2−ヒドロキシエチルアクリレートコポリマー0.402g、塩化リチウム含有量が1質量%である1,2−プロパンジオール溶液0.151g、水酸化リチウム含有量が1質量%である1,2−プロパンジオール溶液0.150g、臭化カリウム含有量が0.25質量%である1,2−プロパンジオール溶液0.166g、硝酸アルミニウム九水和物含有量が2質量%である1,2−プロパンジオール溶液0.104gをそれぞれ添加して混合し、溶液Aとした。硝酸銀0.212gを1,2−プロパンジオール2g中に溶解させ、溶液Bとした。
<Creation of silver nanowires>
At room temperature, take 50 g of propylene glycol (1,2-propanediol) in a 50 mL vial, and in that, 0.402 g of the vinylpyrrolidone-2-hydroxyethyl acrylate copolymer obtained above has a lithium chloride content. 0.151 g of a 1,2-propanediol solution that is 1% by mass, 0.150 g of a 1,2-propanediol solution that has a lithium hydroxide content of 1% by mass, and a potassium bromide content of 0.25% by mass. 0.166 g of a certain 1,2-propanediol solution and 0.104 g of a 1,2-propanediol solution having an aluminum nitrate nonahydrate content of 2% by mass were added and mixed to obtain a solution A. A solution B was prepared by dissolving 0.212 g of silver nitrate in 2 g of 1,2-propanediol.

前記溶液Aの全量を常温から115℃まで昇温したのち、300rpmで20分間撹拌した。撹拌時間が20分を経過した後、115℃の溶液A中に、前記溶液Bをチューブポンプで1分間かけて添加し、さらに撹拌状態を維持して115℃で12時間保持することにより銀の析出反応が終了した反応液を得た。その後、実施例1と同様の方法で洗浄を行い、銀ナノワイヤを得た。図10に、その銀ナノワイヤのSEM写真を例示する。   The total amount of the solution A was raised from room temperature to 115 ° C., and then stirred at 300 rpm for 20 minutes. After stirring time of 20 minutes, the solution B was added to the solution A at 115 ° C. over 1 minute with a tube pump, and the stirring state was maintained and maintained at 115 ° C. for 12 hours. A reaction solution in which the precipitation reaction was completed was obtained. Then, it wash | cleaned by the method similar to Example 1, and obtained silver nanowire. FIG. 10 illustrates an SEM photograph of the silver nanowire.

得られた銀ナノワイヤについて実施例1と同様の測定を行った結果、銀ナノワイヤの平均直径は33nm、平均長さは8.5μmであり、平均アスペクト比は8500nm/33nm≒258であった。   The obtained silver nanowire was measured in the same manner as in Example 1. As a result, the average diameter of the silver nanowire was 33 nm, the average length was 8.5 μm, and the average aspect ratio was 8500 nm / 33 nm≈258.

上記洗浄後の銀ナノワイヤを、純水80質量%、IPA(イソプロピルアルコール)20質量%の混合溶媒に分散させ、実施例1と同様に分散安定性を調べた。その結果、静置開始後、1日経過時点においても銀ナノワイヤの沈降は見られず、ビニルピロリドン−2−ヒドロキシエチルアクリレートコポリマーで被覆された本例の銀ナノワイヤは、アルコールを添加した水系溶媒中で優れた分散安定性を呈することが確認された。   The washed silver nanowire was dispersed in a mixed solvent of 80% by mass of pure water and 20% by mass of IPA (isopropyl alcohol), and the dispersion stability was examined in the same manner as in Example 1. As a result, after the start of standing, the silver nanowires were not precipitated even after 1 day, and the silver nanowires of this example coated with vinylpyrrolidone-2-hydroxyethyl acrylate copolymer were in an aqueous solvent to which alcohol was added. It was confirmed that it exhibited excellent dispersion stability.

〔実施例5〕
<2−ヒドロキシエチルメタクリレートとビニルピロリドンとのコポリマーの作成>
実施例1におけるコポリマーの作成において、エチルアクリレート0.113gに代えて、2−ヒドロキシエチルメタクリレート(図3、分子量130.1)0.113gを添加したことを除き、実施例1と同じ条件でコポリマーを作成した。得られたコポリマーは、1.128質量部のアクリレート系モノマーと100質量部のビニルピロリドンが重合した構造を有するビニルピロリドン−2−ヒドロキシエチルメタクリレートコポリマーであり、各モノマーの仕込み量を質量%に換算すると、2−ヒドロキシエチルメタクリレート1質量%、ビニルピロリドン99質量%となる。
Example 5
<Preparation of copolymer of 2-hydroxyethyl methacrylate and vinyl pyrrolidone>
The copolymer was prepared under the same conditions as in Example 1 except that 0.113 g of 2-hydroxyethyl methacrylate (FIG. 3, molecular weight 130.1) was added instead of 0.113 g of ethyl acrylate in preparation of the copolymer in Example 1. It was created. The obtained copolymer is a vinylpyrrolidone-2-hydroxyethyl methacrylate copolymer having a structure in which 1.128 parts by mass of an acrylate monomer and 100 parts by mass of vinylpyrrolidone are polymerized, and the charge amount of each monomer is converted to mass%. Then, it becomes 1 mass% of 2-hydroxyethyl methacrylate and 99 mass% of vinyl pyrrolidone.

<銀ナノワイヤの作成>
常温にて、50mLのバイアル瓶に、プロピレングリコール(1,2−プロパンジオール)26gをとり、その中に、上記で得たビニルピロリドン−2−ヒドロキシエチルメタクリレートコポリマー0.472g、塩化リチウム含有量が1質量%である1,2−プロパンジオール溶液0.151g、水酸化リチウム含有量が1質量%である1,2−プロパンジオール溶液0.150g、臭化カリウム含有量が0.25質量%である1,2−プロパンジオール溶液0.166g、硝酸アルミニウム九水和物含有量が2質量%である1,2−プロパンジオール溶液0.104gをそれぞれ添加して混合し、溶液Aとした。硝酸銀0.212gを1,2−プロパンジオール2g中に溶解させ、溶液Bとした。
<Creation of silver nanowires>
At room temperature, 26 g of propylene glycol (1,2-propanediol) was taken into a 50 mL vial, and 0.472 g of the vinylpyrrolidone-2-hydroxyethyl methacrylate copolymer obtained above was contained therein, and the lithium chloride content was 0.151 g of a 1,2-propanediol solution that is 1% by mass, 0.150 g of a 1,2-propanediol solution that has a lithium hydroxide content of 1% by mass, and a potassium bromide content of 0.25% by mass. 0.166 g of a certain 1,2-propanediol solution and 0.104 g of a 1,2-propanediol solution having an aluminum nitrate nonahydrate content of 2% by mass were added and mixed to obtain a solution A. A solution B was prepared by dissolving 0.212 g of silver nitrate in 2 g of 1,2-propanediol.

前記溶液Aの全量を常温から115℃まで昇温したのち、300rpmで20分間撹拌した。撹拌時間が20分を経過した後、115℃の溶液A中に、前記溶液Bをチューブポンプで1分間かけて添加し、さらに撹拌状態を維持して115℃で12時間保持することにより銀の析出反応が終了した反応液を得た。その後、実施例1と同様の方法で洗浄を行い、銀ナノワイヤを得た。図11に、その銀ナノワイヤのSEM写真を例示する。   The total amount of the solution A was raised from room temperature to 115 ° C., and then stirred at 300 rpm for 20 minutes. After stirring time of 20 minutes, the solution B was added to the solution A at 115 ° C. over 1 minute with a tube pump, and the stirring state was maintained and maintained at 115 ° C. for 12 hours. A reaction solution in which the precipitation reaction was completed was obtained. Then, it wash | cleaned by the method similar to Example 1, and obtained silver nanowire. FIG. 11 illustrates an SEM photograph of the silver nanowire.

得られた銀ナノワイヤについて実施例1と同様の測定を行った結果、銀ナノワイヤの平均直径は34nm、平均長さは10.1μmであり、平均アスペクト比は10100nm/34nm≒297であった。   The obtained silver nanowire was measured in the same manner as in Example 1. As a result, the average diameter of the silver nanowire was 34 nm, the average length was 10.1 μm, and the average aspect ratio was 10100 nm / 34 nm≈297.

上記洗浄後の銀ナノワイヤを、純水80質量%、IPA(イソプロピルアルコール)20質量%の混合溶媒に分散させ、実施例1と同様に分散安定性を調べた。その結果、静置開始後、1日経過時点においても銀ナノワイヤの沈降は見られず、ビニルピロリドン−2−ヒドロキシエチルメタクリレートコポリマーで被覆された本例の銀ナノワイヤは、アルコールを添加した水系溶媒中で優れた分散安定性を呈することが確認された。   The washed silver nanowire was dispersed in a mixed solvent of 80% by mass of pure water and 20% by mass of IPA (isopropyl alcohol), and the dispersion stability was examined in the same manner as in Example 1. As a result, the silver nanowires of this example coated with vinylpyrrolidone-2-hydroxyethyl methacrylate copolymer were not found in the aqueous solvent to which alcohol was added, even after one day had elapsed after the start of standing. It was confirmed that it exhibited excellent dispersion stability.

〔実施例6〕
<4−ヒドロキシブチルアクリレートとビニルピロリドンとのコポリマーの作成>
実施例1におけるコポリマーの作成において、エチルアクリレート0.113gに代えて、4−ヒドロキシブチルアクリレート(図4、分子量144.2)0.113gを添加したことを除き、実施例1と同じ条件でコポリマーを作成した。得られたコポリマーは、1.128質量部のアクリレート系モノマーと100質量部のビニルピロリドンが重合した構造を有するビニルピロリドン−4−ヒドロキシブチルアクリレートコポリマーであり、各モノマーの仕込み量を質量%に換算すると、4−ヒドロキシブチルアクリレート1質量%、ビニルピロリドン99質量%となる。
Example 6
<Preparation of copolymer of 4-hydroxybutyl acrylate and vinyl pyrrolidone>
The copolymer was prepared under the same conditions as in Example 1 except that 0.113 g of 4-hydroxybutyl acrylate (FIG. 4, molecular weight 144.2) was added instead of 0.113 g of ethyl acrylate in the preparation of the copolymer in Example 1. It was created. The obtained copolymer is a vinylpyrrolidone-4-hydroxybutyl acrylate copolymer having a structure in which 1.128 parts by mass of an acrylate monomer and 100 parts by mass of vinylpyrrolidone are polymerized, and the charge amount of each monomer is converted to mass%. As a result, 1% by mass of 4-hydroxybutyl acrylate and 99% by mass of vinylpyrrolidone are obtained.

<銀ナノワイヤの作成>
常温にて、50mLのバイアル瓶に、プロピレングリコール(1,2−プロパンジオール)26gをとり、その中に、上記で得たビニルピロリドン−4−ヒドロキシブチルアクリレートコポリマー0.402g、塩化リチウム含有量が1質量%である1,2−プロパンジオール溶液0.151g、水酸化リチウム含有量が1質量%である1,2−プロパンジオール溶液0.150g、臭化カリウム含有量が0.25質量%である1,2−プロパンジオール溶液0.166g、硝酸アルミニウム九水和物含有量が2質量%である1,2−プロパンジオール溶液0.104gをそれぞれ添加して混合し、溶液Aとした。硝酸銀0.212gを1,2−プロパンジオール2g中に溶解させ、溶液Bとした。
<Creation of silver nanowires>
At room temperature, 26 g of propylene glycol (1,2-propanediol) is taken into a 50 mL vial, and 0.402 g of the vinylpyrrolidone-4-hydroxybutyl acrylate copolymer obtained above is contained therein, and the content of lithium chloride is 0.151 g of a 1,2-propanediol solution that is 1% by mass, 0.150 g of a 1,2-propanediol solution that has a lithium hydroxide content of 1% by mass, and a potassium bromide content of 0.25% by mass. 0.166 g of a certain 1,2-propanediol solution and 0.104 g of a 1,2-propanediol solution having an aluminum nitrate nonahydrate content of 2% by mass were added and mixed to obtain a solution A. A solution B was prepared by dissolving 0.212 g of silver nitrate in 2 g of 1,2-propanediol.

前記溶液Aの全量を常温から115℃まで昇温したのち、300rpmで20分間撹拌した。撹拌時間が20分を経過した後、115℃の溶液A中に、前記溶液Bをチューブポンプで1分間かけて添加し、さらに撹拌状態を維持して115℃で12時間保持することにより銀の析出反応が終了した反応液を得た。その後、実施例1と同様の方法で洗浄を行い、銀ナノワイヤを得た。図12に、その銀ナノワイヤのSEM写真を例示する。   The total amount of the solution A was raised from room temperature to 115 ° C., and then stirred at 300 rpm for 20 minutes. After stirring time of 20 minutes, the solution B was added to the solution A at 115 ° C. over 1 minute with a tube pump, and the stirring state was maintained and maintained at 115 ° C. for 12 hours. A reaction solution in which the precipitation reaction was completed was obtained. Then, it wash | cleaned by the method similar to Example 1, and obtained silver nanowire. FIG. 12 illustrates an SEM photograph of the silver nanowire.

得られた銀ナノワイヤについて実施例1と同様の測定を行った結果、銀ナノワイヤの平均直径は34nm、平均長さは8.2μmであり、平均アスペクト比は7600nm/38nm≒241であった。ここで測定した銀ナノワイヤの平均長さは10μmを下回っていたが、この銀ナノワイヤには長さが10μmを超えるワイヤが多数含まれているので、更に精製を行うことにより平均長さ10.0μm以上の銀ナノワイヤを回収することが可能である。   The obtained silver nanowire was measured in the same manner as in Example 1. As a result, the average diameter of the silver nanowire was 34 nm, the average length was 8.2 μm, and the average aspect ratio was 7600 nm / 38 nm≈241. The average length of the silver nanowires measured here was less than 10 μm. However, since this silver nanowire contains many wires having a length exceeding 10 μm, the average length is 10.0 μm by further purification. It is possible to collect the above silver nanowires.

上記洗浄後の銀ナノワイヤを、純水80質量%、IPA(イソプロピルアルコール)20質量%の混合溶媒に分散させ、実施例1と同様に分散安定性を調べた。その結果、静置開始後、1日経過時点においても銀ナノワイヤの沈降は見られず、ビニルピロリドン−4−ヒドロキシブチルアクリレートコポリマーで被覆された本例の銀ナノワイヤは、アルコールを添加した水系溶媒中で優れた分散安定性を呈することが確認された。   The washed silver nanowire was dispersed in a mixed solvent of 80% by mass of pure water and 20% by mass of IPA (isopropyl alcohol), and the dispersion stability was examined in the same manner as in Example 1. As a result, after the start of standing, the silver nanowires were not precipitated even after 1 day, and the silver nanowires of this example coated with vinylpyrrolidone-4-hydroxybutyl acrylate copolymer were in an aqueous solvent to which alcohol was added. It was confirmed that it exhibited excellent dispersion stability.

〔比較例1〕
有機保護剤として、市販のアルキル化PVP(ISP社製、Antaron V−904LC)を使用した。これは、ビニルピロリドンと、10質量%のアルキル付加ビニルピロリドンとのコポリマーである。
[Comparative Example 1]
As the organic protective agent, commercially available alkylated PVP (manufactured by ISP, Antaron V-904LC) was used. This is a copolymer of vinyl pyrrolidone and 10% by weight of an alkylated vinyl pyrrolidone.

<銀ナノワイヤの作成>
常温にて、50mLのバイアル瓶に、プロピレングリコール(1,2−プロパンジオール)20.8gをとり、その中に、上記のアルキル化PVP0.56g、塩化リチウム含有量が0.5質量%である1,2−プロパンジオール溶液0.14g、水酸化リチウム含有量が1質量%である1,2−プロパンジオール溶液0.150g、硝酸アルミニウム九水和物含有量が2質量%である1,2−プロパンジオール溶液0.14gをそれぞれ添加して混合し、溶液Aとした。硝酸銀0.17gを1,2−プロパンジオール2g中に溶解させ、溶液Bとした。
<Creation of silver nanowires>
At room temperature, 20.8 g of propylene glycol (1,2-propanediol) is taken into a 50 mL vial, and the alkylated PVP is 0.56 g and the lithium chloride content is 0.5% by mass. 0.14 g of 1,2-propanediol solution, 0.150 g of 1,2-propanediol solution having a lithium hydroxide content of 1% by mass, 1,2% having an aluminum nitrate nonahydrate content of 2% by mass -0.14 g of propanediol solution was added and mixed to obtain Solution A. A solution B was prepared by dissolving 0.17 g of silver nitrate in 2 g of 1,2-propanediol.

前記溶液Aの全量を常温から115℃まで昇温したのち、300rpmで20分間撹拌した。撹拌時間が20分を経過した後、115℃の溶液A中に、前記溶液Bをチューブポンプで1分間かけて添加し、さらに撹拌状態を維持して115℃で12時間保持することにより銀の析出反応が終了した反応液を得た。その後、実施例1と同様の方法で洗浄を行い、銀ナノワイヤを得た。図13に、その銀ナノワイヤのSEM写真を例示する。   The total amount of the solution A was raised from room temperature to 115 ° C., and then stirred at 300 rpm for 20 minutes. After stirring time of 20 minutes, the solution B was added to the solution A at 115 ° C. over 1 minute with a tube pump, and the stirring state was maintained and maintained at 115 ° C. for 12 hours. A reaction solution in which the precipitation reaction was completed was obtained. Then, it wash | cleaned by the method similar to Example 1, and obtained silver nanowire. FIG. 13 illustrates an SEM photograph of the silver nanowire.

得られた銀ナノワイヤについて実施例1と同様の測定を行った結果、銀ナノワイヤの平均直径は75nm、平均長さは3.7μmであり、平均アスペクト比は3700/75nm≒49であった。この銀ナノワイヤはアルキル化PVPで被覆されており、アルコールを添加した水系溶媒中での分散性は改善されるが、この種の有機保護剤を用いて細く、長い形状の銀ナノワイヤを合成することは難しい。   The obtained silver nanowire was measured in the same manner as in Example 1. As a result, the average diameter of the silver nanowire was 75 nm, the average length was 3.7 μm, and the average aspect ratio was 3700/75 nm≈49. Although this silver nanowire is coated with alkylated PVP, dispersibility in an aqueous solvent added with alcohol is improved, but a thin and long silver nanowire is synthesized using this type of organic protective agent. Is difficult.

〔比較例2〕
<アクリルアミドとビニルピロリドンとのコポリマーの作成>
実施例1におけるコポリマーの作成において、エチルアクリレート0.113gに代えて、アクリルアミド(分子量71.1)0.113gを添加したことを除き、実施例1と同じ条件でコポリマーを作成した。得られたコポリマーは、1.128質量部のアクリルアミドと100質量部のビニルピロリドンが重合した構造を有するビニルピロリドン−アクリルアミドコポリマーであり、各モノマーの仕込み量を質量%に換算すると、アクリルアミド1質量%、ビニルピロリドン99質量%となる。
[Comparative Example 2]
<Creation of copolymer of acrylamide and vinylpyrrolidone>
A copolymer was prepared under the same conditions as in Example 1 except that 0.113 g of acrylamide (molecular weight 71.1) was added instead of 0.113 g of ethyl acrylate in the preparation of the copolymer in Example 1. The obtained copolymer is a vinyl pyrrolidone-acrylamide copolymer having a structure in which 1.128 parts by mass of acrylamide and 100 parts by mass of vinyl pyrrolidone are polymerized. The vinyl pyrrolidone is 99% by mass.

<銀ナノワイヤの作成>
常温にて、50mLのバイアル瓶に、プロピレングリコール(1,2−プロパンジオール)26gをとり、その中に、上記で得たビニルピロリドン−アクリルアミド0.402g、塩化リチウム含有量が1質量%である1,2−プロパンジオール溶液0.151g、水酸化リチウム含有量が1質量%である1,2−プロパンジオール溶液0.150g、臭化カリウム含有量が0.25質量%である1,2−プロパンジオール溶液0.166g、硝酸アルミニウム九水和物含有量が2質量%である1,2−プロパンジオール溶液0.104gをそれぞれ添加して混合し、溶液Aとした。硝酸銀0.212gを1,2−プロパンジオール2g中に溶解させ、溶液Bとした。
<Creation of silver nanowires>
At room temperature, 26 g of propylene glycol (1,2-propanediol) is taken into a 50 mL vial, and 0.442 g of vinylpyrrolidone-acrylamide obtained above is contained therein, and the lithium chloride content is 1% by mass. 0.151 g of a 1,2-propanediol solution, 0.150 g of a 1,2-propanediol solution with a lithium hydroxide content of 1% by mass, 1,2- with a potassium bromide content of 0.25% by mass A solution A was prepared by adding 0.166 g of a propanediol solution and 0.104 g of a 1,2-propanediol solution having an aluminum nitrate nonahydrate content of 2% by mass. A solution B was prepared by dissolving 0.212 g of silver nitrate in 2 g of 1,2-propanediol.

前記溶液Aの全量を常温から115℃まで昇温したのち、300rpmで20分間撹拌した。撹拌時間が20分を経過した後、115℃の溶液A中に、前記溶液Bをチューブポンプで1分間かけて添加し、さらに撹拌状態を維持して115℃で12時間保持することにより銀の析出反応が終了した反応液を得た。その後、実施例1と同様の方法で洗浄を行い、反応生成物を得た。図14に、その反応生成物のSEM写真を例示する。   The total amount of the solution A was raised from room temperature to 115 ° C., and then stirred at 300 rpm for 20 minutes. After stirring time of 20 minutes, the solution B was added to the solution A at 115 ° C. over 1 minute with a tube pump, and the stirring state was maintained and maintained at 115 ° C. for 12 hours. A reaction solution in which the precipitation reaction was completed was obtained. Then, it wash | cleaned by the method similar to Example 1, and obtained the reaction product. FIG. 14 illustrates an SEM photograph of the reaction product.

反応生成物は粒状物のみであり、銀ナノワイヤは確認されなかった。   The reaction product was only a granular material, and silver nanowires were not confirmed.

〔比較例3〕
有機保護剤として、市販のPVP(重量平均分子量55,000)を使用した。
[Comparative Example 3]
Commercially available PVP (weight average molecular weight 55,000) was used as the organic protective agent.

<銀ナノワイヤの作成>
常温にて、1Lのビーカーに、プロピレングリコール(1,2−プロパンジオール)500gをとり、その中に、上記PVP5.240g、塩化リチウム含有量が10質量%である1,2−プロパンジオール溶液0.300g、水酸化リチウム含有量が10質量%である1,2−プロパンジオール溶液0.110g、臭化カリウム含有量が2質量%である1,2−プロパンジオール溶液0.260g、硝酸アルミニウム九水和物含有量が8質量%である1,2−プロパンジオール溶液0.780gをそれぞれ添加して混合し、溶液Aとした。硝酸銀4.250gを1,2−プロパンジオール20g中に溶解させ、溶液Bとした。
<Creation of silver nanowires>
At room temperature, 500 g of propylene glycol (1,2-propanediol) is taken in a 1 L beaker, and 5.240 g of the above PVP and 1,2-propanediol solution 0 having a lithium chloride content of 10% by mass are contained therein. .300 g, 0.110 g of a 1,2-propanediol solution having a lithium hydroxide content of 10% by mass, 0.260 g of a 1,2-propanediol solution having a potassium bromide content of 2% by mass, aluminum nitrate nine 0.780 g of a 1,2-propanediol solution having a hydrate content of 8% by mass was added and mixed to obtain Solution A. A solution B was prepared by dissolving 4.250 g of silver nitrate in 20 g of 1,2-propanediol.

前記溶液Aの全量を常温から90℃まで昇温したのち、250rpmで20分間撹拌した。撹拌時間が20分を経過した後、90℃の溶液A中に、前記溶液Bをチューブポンプで1分間かけて添加し、さらに撹拌状態を維持して90℃で24時間保持することにより銀の析出反応が終了した反応液を得た。その後、実施例1と同様の方法で洗浄を行い、銀ナノワイヤを得た。   The whole amount of the solution A was heated from room temperature to 90 ° C., and then stirred at 250 rpm for 20 minutes. After 20 minutes of stirring time, the solution B was added to the solution A at 90 ° C. over 1 minute with a tube pump, and the stirring state was maintained and kept at 90 ° C. for 24 hours. A reaction solution in which the precipitation reaction was completed was obtained. Then, it wash | cleaned by the method similar to Example 1, and obtained silver nanowire.

得られた銀ナノワイヤについて実施例1と同様の測定を行った結果、銀ナノワイヤの平均直径は55nm、平均長さは9.8μmであり、平均アスペクト比は9800/55nm≒178であった。   The obtained silver nanowire was measured in the same manner as in Example 1. As a result, the average diameter of the silver nanowire was 55 nm, the average length was 9.8 μm, and the average aspect ratio was 9800/55 nm≈178.

上記洗浄後の銀ナノワイヤをIPA(イソプロピルアルコール)100%のアルコール系溶媒に分散させ、実施例1と同様の方法で分散安定性を調べた。静置開始後、3日経過時点での液の様子を図15の写真に示す。本例のPVP被覆銀ナノワイヤは沈降が生じており、実施例1のものに比べアルコール系溶媒中での分散安定性は大きく劣る。   The silver nanowires after washing were dispersed in an IPA (isopropyl alcohol) 100% alcohol solvent, and the dispersion stability was examined in the same manner as in Example 1. The state of the liquid after 3 days has elapsed after the start of standing is shown in the photograph of FIG. In the PVP-coated silver nanowire of this example, precipitation occurs, and the dispersion stability in an alcohol solvent is greatly inferior to that of Example 1.

Claims (20)

アクリレート系またはメタクリレート系モノマーの構造単位を持つポリマーに被覆された、平均直径100nm以下、平均長さ5μm以上の銀ナノワイヤ。   A silver nanowire having an average diameter of 100 nm or less and an average length of 5 μm or more coated with a polymer having a structural unit of an acrylate or methacrylate monomer. アクリレート系またはメタクリレート系モノマーと水溶性モノマーとのコポリマーに被覆された、平均直径100nm以下、平均長さ5μm以上の銀ナノワイヤ。   A silver nanowire having an average diameter of 100 nm or less and an average length of 5 μm or more, coated with a copolymer of an acrylate or methacrylate monomer and a water-soluble monomer. アクリレート系またはメタクリレート系モノマーとビニルピロリドンとのコポリマーに被覆された、平均直径100nm以下、平均長さ5μm以上の銀ナノワイヤ。   A silver nanowire having an average diameter of 100 nm or less and an average length of 5 μm or more coated with a copolymer of an acrylate or methacrylate monomer and vinylpyrrolidone. 平均直径50nm以下、平均長さ10μm以上である請求項1〜3のいずれか1項に記載の銀ナノワイヤ。   The silver nanowire according to any one of claims 1 to 3, which has an average diameter of 50 nm or less and an average length of 10 µm or more. アクリレート系またはメタクリレート系モノマーの分子量が85〜300である請求項1〜3のいずれか1項に記載の銀ナノワイヤ。   The silver nanowire according to any one of claims 1 to 3, wherein the molecular weight of the acrylate or methacrylate monomer is 85 to 300. アクリレート系またはメタクリレート系モノマーが、エチルアクリレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート、4−ヒドロキシブチルアクリレートの1種または2種以上である請求項1〜3のいずれか1項に記載の銀ナノワイヤ。   The acrylate-based or methacrylate-based monomer is one or more of ethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, and 4-hydroxybutyl acrylate. Silver nanowire. アクリレート系またはメタクリレート系モノマーとビニルピロリドンとのコポリマーは、アクリレート系またはメタクリレート系モノマー0.1〜25質量部とビニルピロリドン100質量部の重合組成を有するものである請求項3に記載の銀ナノワイヤ。   The silver nanowire according to claim 3, wherein the copolymer of the acrylate or methacrylate monomer and vinyl pyrrolidone has a polymerization composition of 0.1 to 25 parts by mass of the acrylate or methacrylate monomer and 100 parts by mass of vinyl pyrrolidone. 銀化合物が溶解しているアルコール溶媒中で銀をワイヤ状に還元析出させる銀ナノワイヤの製造方法において、アクリレート系またはメタクリレート系モノマーの構造単位を持つポリマーが前記溶媒中に溶解している状態で前記析出を進行させる銀ナノワイヤの製造方法。   In the method for producing a silver nanowire in which silver is reduced and deposited in a wire form in an alcohol solvent in which a silver compound is dissolved, the polymer having a structural unit of an acrylate-based or methacrylate-based monomer is dissolved in the solvent. A method for producing silver nanowires that promotes precipitation. 前記ポリマー、塩化物、臭化物、アルカリ金属水酸化物およびアルミニウム塩が前記溶媒中に溶解している状態で前記析出を進行させる請求項8に記載の銀ナノワイヤの製造方法。   The method for producing silver nanowires according to claim 8, wherein the precipitation proceeds in a state where the polymer, chloride, bromide, alkali metal hydroxide and aluminum salt are dissolved in the solvent. 銀化合物が溶解しているアルコール溶媒中で銀をワイヤ状に還元析出させる銀ナノワイヤの製造方法において、アクリレート系またはメタクリレート系モノマーと水溶性モノマーとのコポリマーが前記溶媒中に溶解している状態で前記析出を進行させる銀ナノワイヤの製造方法。   In the method for producing a silver nanowire in which silver is reduced and precipitated in an alcohol solvent in which a silver compound is dissolved, a copolymer of an acrylate-based or methacrylate-based monomer and a water-soluble monomer is dissolved in the solvent. A method for producing silver nanowires, wherein the precipitation proceeds. 前記コポリマー、塩化物、臭化物、アルカリ金属水酸化物およびアルミニウム塩が前記溶媒中に溶解している状態で前記析出を進行させる請求項10に記載の銀ナノワイヤの製造方法。   The method for producing silver nanowires according to claim 10, wherein the precipitation proceeds in a state where the copolymer, chloride, bromide, alkali metal hydroxide and aluminum salt are dissolved in the solvent. 銀化合物が溶解しているアルコール溶媒中で銀をワイヤ状に還元析出させる銀ナノワイヤの製造方法において、アクリレート系またはメタクリレート系モノマーとビニルピロリドンとのコポリマーが前記溶媒中に溶解している状態で前記析出を進行させる銀ナノワイヤの製造方法。   In the method for producing a silver nanowire in which silver is reduced and deposited in a wire form in an alcohol solvent in which a silver compound is dissolved, the copolymer of an acrylate-based or methacrylate-based monomer and vinylpyrrolidone is dissolved in the solvent. A method for producing silver nanowires that promotes precipitation. 前記コポリマー、塩化物、臭化物、アルカリ金属水酸化物およびアルミニウム塩が前記溶媒中に溶解している状態で前記析出を進行させる請求項12に記載の銀ナノワイヤの製造方法。   The method for producing silver nanowires according to claim 12, wherein the precipitation proceeds in a state where the copolymer, chloride, bromide, alkali metal hydroxide and aluminum salt are dissolved in the solvent. アクリレート系またはメタクリレート系モノマーの分子量が85〜300である請求項8〜13のいずれか1項に記載の銀ナノワイヤの製造方法。   The method for producing a silver nanowire according to any one of claims 8 to 13, wherein the molecular weight of the acrylate or methacrylate monomer is 85 to 300. アクリレート系またはメタクリレート系モノマーが、エチルアクリレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート、4−ヒドロキシブチルアクリレートの1種または2種以上である請求項8〜13のいずれか1項に記載の銀ナノワイヤの製造方法。   The acrylate-based or methacrylate-based monomer is one or more of ethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, and 4-hydroxybutyl acrylate. A method for producing silver nanowires. 溶媒であるアルコールがポリオールである請求項8〜13のいずれか1項に記載の銀ナノワイヤの製造方法。   The method for producing silver nanowires according to any one of claims 8 to 13, wherein the alcohol as a solvent is a polyol. 前記銀の還元析出を60℃以上かつ使用する溶媒アルコールの沸点以下の温度範囲で進行させる請求項8〜13のいずれか1項に記載の銀ナノワイヤの製造方法。   The method for producing silver nanowires according to any one of claims 8 to 13, wherein the reduction precipitation of silver proceeds in a temperature range of 60 ° C or higher and lower than the boiling point of a solvent alcohol to be used. アクリレート系またはメタクリレート系モノマーとビニルピロリドンとのコポリマーは、0.1〜25質量部のアクリレート系またはメタクリレート系モノマーと100質量部のビニルピロリドンが重合した構造を有するものである請求項12または13に記載の銀ナノワイヤの製造方法。   14. The copolymer of an acrylate or methacrylate monomer and vinyl pyrrolidone has a structure in which 0.1 to 25 parts by mass of an acrylate or methacrylate monomer and 100 parts by mass of vinyl pyrrolidone are polymerized. The manufacturing method of silver nanowire of description. 請求項1〜3のいずれか1項に記載の銀ナノワイヤがイソプロピルアルコール中に分散している銀ナノワ分散液。   The silver nanowire dispersion liquid in which the silver nanowire of any one of Claims 1-3 is disperse | distributing in isopropyl alcohol. 請求項1〜3のいずれか1項に記載の銀ナノワイヤを液状媒体中に0.02〜5.0質量%含有する銀ナノワイヤインク。   The silver nanowire ink which contains the silver nanowire of any one of Claims 1-3 in 0.02-5.0 mass% in a liquid medium.
JP2015206775A 2015-10-20 2015-10-20 Silver nanowire and manufacturing method thereof as well as fluid dispersion and ink Pending JP2017078207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015206775A JP2017078207A (en) 2015-10-20 2015-10-20 Silver nanowire and manufacturing method thereof as well as fluid dispersion and ink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015206775A JP2017078207A (en) 2015-10-20 2015-10-20 Silver nanowire and manufacturing method thereof as well as fluid dispersion and ink

Publications (1)

Publication Number Publication Date
JP2017078207A true JP2017078207A (en) 2017-04-27

Family

ID=58665934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015206775A Pending JP2017078207A (en) 2015-10-20 2015-10-20 Silver nanowire and manufacturing method thereof as well as fluid dispersion and ink

Country Status (1)

Country Link
JP (1) JP2017078207A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019183105A (en) * 2018-10-29 2019-10-24 星光Pmc株式会社 Metal nanowire growth control agent, manufacturing method of metal nanowire, and manufacturing method of metal nanowire dispersion
CN110844978A (en) * 2019-11-21 2020-02-28 深圳市益达兴科技股份有限公司 Silver nanowire electrode applied to photoelectrocatalysis
CN111032257A (en) * 2017-08-09 2020-04-17 同和电子科技有限公司 Method for manufacturing silver nanowire, silver nanowire ink, and transparent conductive film
CN112154038A (en) * 2018-05-25 2020-12-29 星光Pmc株式会社 Method for manufacturing silver nanowires
CN112331410A (en) * 2020-09-07 2021-02-05 湖南大学 Preparation of silver nanowire and application of silver nanowire in transparent conductive film
CN113284668A (en) * 2021-03-31 2021-08-20 浙江中科玖源新材料有限公司 Preparation method and application of metal grid transparent conductive film
CN113857487A (en) * 2021-09-06 2021-12-31 中化学科学技术研究有限公司 Silver nanowire and preparation method thereof
CN113976906A (en) * 2021-10-21 2022-01-28 中化学科学技术研究有限公司 Silver nanowire and preparation method thereof
JP2022528106A (en) * 2019-04-03 2022-06-08 カンブリオス フィルム ソリューションズ コーポレーション Purification of metal nanostructures

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013531133A (en) * 2010-07-02 2013-08-01 ヘレウス プレシャス メタルズ ゲーエムベーハー ウント コンパニー カーゲー Process for producing silver nanowires
WO2014112292A1 (en) * 2013-01-15 2014-07-24 東海ゴム工業株式会社 Conductive material, method for producing same, and transducer using same
WO2015102863A1 (en) * 2013-12-31 2015-07-09 Rhodia Operations Processes for making silver nanostructures
JP2015180772A (en) * 2014-03-07 2015-10-15 Dowaホールディングス株式会社 Production method of silver nanowire, silver nanowire, and ink using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013531133A (en) * 2010-07-02 2013-08-01 ヘレウス プレシャス メタルズ ゲーエムベーハー ウント コンパニー カーゲー Process for producing silver nanowires
WO2014112292A1 (en) * 2013-01-15 2014-07-24 東海ゴム工業株式会社 Conductive material, method for producing same, and transducer using same
WO2015102863A1 (en) * 2013-12-31 2015-07-09 Rhodia Operations Processes for making silver nanostructures
JP2015180772A (en) * 2014-03-07 2015-10-15 Dowaホールディングス株式会社 Production method of silver nanowire, silver nanowire, and ink using the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111032257A (en) * 2017-08-09 2020-04-17 同和电子科技有限公司 Method for manufacturing silver nanowire, silver nanowire ink, and transparent conductive film
CN112154038B (en) * 2018-05-25 2023-04-07 星光Pmc株式会社 Method for manufacturing silver nanowires
CN112154038A (en) * 2018-05-25 2020-12-29 星光Pmc株式会社 Method for manufacturing silver nanowires
JP2019183105A (en) * 2018-10-29 2019-10-24 星光Pmc株式会社 Metal nanowire growth control agent, manufacturing method of metal nanowire, and manufacturing method of metal nanowire dispersion
JP2022528106A (en) * 2019-04-03 2022-06-08 カンブリオス フィルム ソリューションズ コーポレーション Purification of metal nanostructures
CN110844978A (en) * 2019-11-21 2020-02-28 深圳市益达兴科技股份有限公司 Silver nanowire electrode applied to photoelectrocatalysis
CN112331410B (en) * 2020-09-07 2021-11-26 湖南大学 Preparation of silver nanowire and application of silver nanowire in transparent conductive film
CN112331410A (en) * 2020-09-07 2021-02-05 湖南大学 Preparation of silver nanowire and application of silver nanowire in transparent conductive film
CN113284668A (en) * 2021-03-31 2021-08-20 浙江中科玖源新材料有限公司 Preparation method and application of metal grid transparent conductive film
CN113857487A (en) * 2021-09-06 2021-12-31 中化学科学技术研究有限公司 Silver nanowire and preparation method thereof
CN113857487B (en) * 2021-09-06 2024-04-26 中化学科学技术研究有限公司 Silver nanowire and preparation method thereof
CN113976906A (en) * 2021-10-21 2022-01-28 中化学科学技术研究有限公司 Silver nanowire and preparation method thereof
CN113976906B (en) * 2021-10-21 2024-03-26 中化学科学技术研究有限公司 Silver nanowire and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2017078207A (en) Silver nanowire and manufacturing method thereof as well as fluid dispersion and ink
WO2016114370A1 (en) Silver nanowire, method for manufacturing same, and ink
JP6321566B2 (en) Silver nanowire manufacturing method, silver nanowire and ink using the same
WO2018079582A1 (en) Method for producing silver nanowires
JP6636949B2 (en) Method for producing silver nanowire, silver nanowire obtained by the method, and ink containing the silver nanowire
WO2018105642A1 (en) Silver nanowire, production method therefor, and silver nanowire ink
TW201941221A (en) Silver nanowire ink and method for producing the same
KR20190128670A (en) Manufacturing method of silver nanowire ink and silver nanowire ink and transparent conductive coating film
JP2017082305A (en) Silver nanowire and method for producing the same, and fluid dispersion
JP2019147983A (en) Silver nanowire synthesizing organic protection agent, and silver nanowire and method for manufacturing same
TWI686484B (en) Method for producing silver nanowire
TWI709536B (en) Alcohol-based silver nanowire dispersion liquid and method for producing the same
JP2020158857A (en) Method for producing silver nanowire
JP2020158858A (en) Method for producing silver nanowire
TWI696669B (en) Method for manufacturing silver nanowire and silver nanowire, silver nanowire ink and transparent conductive film
WO2020090689A1 (en) Silver nanowire assembly, silver nanowire ink, transparent conductive film, method for producing silver nanowire assembly, method for producing silver nanowire ink, and method for producing transparent conductive film
WO2019239975A1 (en) Alcohol-based silver nanowire dispersion liquid and method for producing same
JP2018070946A (en) Organic protection agent for synthesizing silver nanowire, silver nanowire and manufacturing method therefor
WO2020175255A1 (en) Silver nanowires, production method therefor, silver nanowire-containing reaction solution, and silver nanowire dispersion
JP2021063294A (en) Silver nanowire with protective layer, dispersion liquid of the same, method for manufacturing the silver nanowire, and light-transmitting conductive film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200721