WO2021131847A1 - Signal processing device, amplification device, and replay device - Google Patents

Signal processing device, amplification device, and replay device Download PDF

Info

Publication number
WO2021131847A1
WO2021131847A1 PCT/JP2020/046527 JP2020046527W WO2021131847A1 WO 2021131847 A1 WO2021131847 A1 WO 2021131847A1 JP 2020046527 W JP2020046527 W JP 2020046527W WO 2021131847 A1 WO2021131847 A1 WO 2021131847A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
signal
processing device
signal processing
pulse
Prior art date
Application number
PCT/JP2020/046527
Other languages
French (fr)
Japanese (ja)
Inventor
宜紀 田森
裕介 山本
学 山中
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2021131847A1 publication Critical patent/WO2021131847A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/30Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/34Negative-feedback-circuit arrangements with or without positive feedback
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/217Class D power amplifiers; Switching amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/01Shaping pulses

Definitions

  • This technology relates to signal processing devices, amplification devices, and reproduction devices that can be applied to signal amplification and the like.
  • Patent Document 1 describes a digital amplifier that amplifies an audio signal.
  • the voltage fluctuation of the power supply line is converted into data via an AD converter (Analog-to-Digital converter).
  • the data of this voltage fluctuation is fed back to the variable attenuator circuit, and the volume level of the audio signal is controlled.
  • AD converter Analog-to-Digital converter
  • the circuit configuration including the peripheral circuit becomes large, and the power consumption may increase. Therefore, there is a demand for a technology capable of reducing the size of the device and suppressing power consumption.
  • an object of the present technology is to provide a signal processing device, an amplification device, and a reproduction device capable of reducing the size of the device and suppressing power consumption.
  • the signal processing device includes a first generation unit and a second generation unit.
  • the first generation unit corrects the input data based on the feedback data and generates the correction data.
  • the second generation unit corrects the output data of the comparator to which the pulse signal corresponding to the correction data is input to generate the feedback data.
  • correction data is generated by correcting the input data using the feedback data.
  • the pulse signal corresponding to the correction data is input to the comparator, and the output data of the comparator is corrected to generate feedback data.
  • the second generation unit may correct the output data so that the shape of the pulse included in the pulse signal is restored.
  • the second generation unit may correct the slope of the rising or falling edge of the pulse in the output data.
  • the second generation unit may correct the amplitude of the pulse in the output data.
  • the second generation unit may correct the output data based on the circuit information about the output circuit that generates the output signal corresponding to the pulse signal.
  • the output circuit may include a switching amplifier that generates the pulse signal according to the correction data.
  • the circuit information may include first information which is information about the switching amplifier.
  • the first information may include shape information of the pulse signal detected by AD conversion.
  • the second generation unit may correct the output data based on the slope of the rise or fall of the pulse included in the pulse signal calculated from the shape information.
  • the first information may include information about the element characteristics of the switching amplifier, the dead time set in the switching amplifier, and at least one of the power supplies that drive the switching amplifier.
  • the output circuit may include a demodulation circuit that demodulates the pulse signal to generate the output signal.
  • the circuit information may include a second piece of information that is information about the demodulation circuit.
  • the second information may include information regarding the output signal.
  • the second generation unit may generate the output data by sampling the signal output from the comparator at a second frequency higher than the first frequency representing the resolution of the pulse signal.
  • the output data may be binary data in which the pulse signal is binarized.
  • the second generation unit may correct the level values of a plurality of data points included in the binary data.
  • the first generation unit may generate the correction data by subtracting the feedback data whose gain has been adjusted at a predetermined ratio from the input data.
  • the pulse signal may be a pulse width modulation type signal.
  • the input data may be voice data.
  • the amplification device includes a first generation unit, a switching amplifier, a comparator, and a second generation unit.
  • the first generation unit corrects the input data based on the feedback data and generates the correction data.
  • the switching amplifier generates a pulse signal according to the correction data.
  • the pulse signal is input to the comparator.
  • the second generation unit corrects the output data of the comparator to generate the feedback data.
  • the reproduction device includes a first generation unit, a switching amplifier, a demodulation circuit, a comparator, and a second generation unit.
  • the first generation unit corrects the voice data based on the feedback data and generates the correction data.
  • the switching amplifier generates a pulse signal according to the correction data.
  • the demodulation circuit demodulates the pulse signal to generate an audio signal.
  • the pulse signal is input to the comparator.
  • the second generation unit corrects the output data of the comparator to generate the feedback data.
  • FIG. 1 is a block diagram showing a configuration example of a digital amplifier according to an embodiment of the present technology.
  • the digital amplifier 100 is an amplifier that amplifies and outputs an analog signal corresponding to the input data 1 which is a digital signal.
  • the analog signal output from the digital amplifier 100 is used as an input for a predetermined element or circuit.
  • the digital amplifier 100 As an example of the digital amplifier 100, a digital audio amplifier that outputs an amplified audio signal 2 will be described.
  • the input data 1 input to the digital amplifier 100 is audio data (digital audio source).
  • the digital amplifier 100 corresponds to an amplification device and a reproduction device.
  • the input data 1 is a PCM sound source.
  • PCM pulse code modulation
  • the input data 1 is a PCM sound source.
  • the input data 1 is a PCM sound source of [1Fs, 16 bits].
  • 1Fs is a sampling frequency
  • 16 bits is the number of quantization bits in the PCM method.
  • the method of input data 1 is not limited, and any sound source format can be used.
  • PDM pulse density modulation
  • the digital amplifier 100 includes a feedback processing unit 20, a PWM conversion processing unit 21, a switching amplifier 22, a low-pass filter 23, a comparator 24, and a PWM shape correction processing unit 25.
  • the processes executed by the feedback processing unit 20, the PWM conversion processing unit 21, and the PWM shape correction processing unit 25 are mainly digital processes for processing digital signals (data).
  • the feedback processing unit 20 executes feedback processing on the input data 1 using the feedback data 7. Specifically, the feedback processing unit 20 corrects the input data 1 based on the feedback data 7 to generate the correction data 3. As shown in FIG. 1, the feedback data 7 is signal data generated by using the output of the subsequent stage (switching amplifier 22) of the digital amplifier 100. With reference to the feedback data 7, the input data 1 is corrected so that, for example, the waveform of the voice represented by the input data 1 and the waveform of the voice signal 2 match. Further, the corrected input data 1 is output as the corrected data 3.
  • the feedback processing unit 20 realizes feedback control that controls the input value (target value) and the output value (feedback value) to match. This makes it possible to improve the stability of the audio signal 2 and the like, which is the output of the digital amplifier 100, and eliminate the influence of disturbance.
  • the feedback processing unit 20 corresponds to the first generation unit.
  • the feedback data 7 corresponds to the feedback data.
  • the PWM conversion processing unit 21 converts the correction data 3 into a PWM signal 4.
  • the PWM signal 4 is a pulse width modulation (PWM) type signal.
  • PWM pulse width modulation
  • FIG. 2 is a schematic diagram showing an example of a PWM signal.
  • FIG. 2A is a schematic graph showing an outline of the PWM signal 4 generated by the PWM conversion processing unit 21.
  • the horizontal axis of the graph is time T, and the vertical axis is level.
  • the amplitude level of the PWM signal 4 is represented by, for example, a voltage V.
  • the PWM signal 4 is a signal including a plurality of pulses and the width W of each pulse is modulated.
  • the cycle T of the PWM signal 4 (for example, the cycle in which the pulse rises) is set to a constant cycle, and the width W of each pulse is modulated in the cycle T. That is, the timing at which each pulse falls is modulated according to the correction data 3.
  • the frequency F 0 of the master clock is not limited, and for example, the frequency at which the input data 1 can be appropriately converted may be appropriately set within a practical range.
  • the amplitude of the PWM signal 4 (pulse voltage V 0 ) is set to a voltage value that can be output by, for example, a system that performs digital processing. Further, the amplitude of each pulse included in the PWM signal 4 is set to be constant.
  • the switching amplifier 22 is a power amplification element that amplifies the power of the PWM signal 4. For example, the amplitude (voltage) of each pulse of the PWM signal 4 is amplified.
  • the amplified PWM signal 4 will be referred to as an amplified PWM signal 5.
  • the switching amplifier 22 has a switching circuit configured by using a semiconductor element or the like. This switching circuit is connected to, for example, a predetermined power supply, and is configured to output an amplified voltage VA in the ON state. Further, the switching circuit is configured so that the amplification voltage VA can be adjusted according to the amplification factor.
  • FIG. 2B is a schematic graph showing an outline of the amplified PWM signal 5 generated by the switching amplifier 22.
  • FIG. 2B schematically shows an outline of the amplified PWM signal 5 in which the PWM signal 4 shown in FIG. 2A is amplified.
  • the switching circuit is switched ON and OFF by using the pulse of the PWM signal 4 which is the input.
  • the output of the switching amplifier 22 becomes an amplified PWM signal 5 including a pulse having the same width W as each pulse of the PWM signal 4 and whose amplitude is amplified to the amplified voltage VA.
  • the switching amplifier 22 amplifies the PWM signal 4 according to the correction data 3 and generates the amplified PWM signal 5 according to the correction data 3. Therefore, the amplified PWM signal 5 is a PWM signal.
  • the amplified PWM signal 5 corresponds to a pulse signal.
  • the amplified PWM signal 5 is a signal converted into an audio signal 2 described later, and is also used as a feedback signal for performing feedback processing.
  • the shape of the pulse may be distorted depending on its characteristics and the like. For example, it is conceivable that the rise and fall of the pulse are inclined.
  • FIG. 2B is a graph emphasizing the distortion of the shape of such a pulse.
  • the switching amplifier 22 By using the switching amplifier 22, for example, the current loss when the switching circuit is OFF is suppressed, and it is possible to configure an amplification device with low power consumption.
  • the switching circuit can be configured by using a semiconductor element, and the element can be miniaturized.
  • the specific configuration of the switching circuit is not limited.
  • a switching circuit composed of semiconductor elements such as MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) and IGBT (Insulated Gate Bipolar Transistor) is used.
  • the low-pass filter 23 cuts the high frequency component of the amplified PWM signal 5 and demodulates the amplified PWM signal 5 which is a pulse signal. That is, the low-pass filter 23 outputs an analog signal obtained by demodulating the amplified PWM signal 5.
  • the amplified PWM signal 5 is a signal modulated according to the voice waveform represented by the voice data which is the input data 1. Therefore, the signal obtained by demodulating the amplified PWM signal 5 becomes an analog voice signal 2 representing a voice waveform. In this way, the low-pass filter 23 outputs the audio signal 2 in which the audio data is demodulated.
  • the low-pass filter 23 corresponds to a demodulation circuit.
  • the low-pass filter 23 for example, a passive low-pass filter configured by using a coil element, a capacitor element, a resistance element, or the like is used. Alternatively, an active low-pass filter using an operational amplifier or the like may be used. In addition, the specific configuration of the low-pass filter 23 is not limited, and any low-pass filter configured to be able to demodulate the amplified PWM signal 5 may be used.
  • the switching amplifier 22 and the low-pass filter 23 constitute a signal output unit 30 that generates an audio signal 2 corresponding to the amplified PWM signal 5.
  • the signal output unit 30 is a circuit that generates a signal (audio signal 2) that is the final output of the digital amplifier 100.
  • the signal output unit 30 corresponds to an output circuit.
  • the audio signal 2 corresponds to an output signal.
  • the comparator 24 is a comparator that compares an input signal with a predetermined threshold value. As shown in FIG. 1, the amplification PWM signal 5 output from the switching amplifier 22 is input to the comparator 24. Further, the comparator 24 outputs a comparator signal 6 in which the amplified PWM signal 5 is compared with the threshold value.
  • a reference voltage is set in the comparator 24, for example, as a predetermined threshold value. The reference voltage is appropriately set so that, for example, the rising and falling edges of the pulse of the amplified PWM signal 5 can be appropriately detected. This reference voltage is compared with the voltage of the amplified PWM signal 5.
  • the signal output from the comparator 24 includes a rectangular pulse corresponding to the pulse of the amplified PWM signal 5, and is represented by 1 (+ side power supply voltage) or 0 (-side power supply voltage) of the output of the comparator 24. It becomes a digital signal.
  • the shape of the pulse of the signal output from the comparator 24 is different from the shape of the pulse of the amplified PWM signal 5. This point will be described later.
  • the PWM shape correction processing unit 25 corrects the comparator data to generate feedback data 7.
  • the comparator data is, for example, a digital signal generated by sampling the comparator signal 6 at a predetermined sampling frequency, and corresponds to the output data of the comparator 24.
  • a digital signal obtained by binarizing the comparator signal 6 to 0 and 1 becomes comparator data (see FIG. 5).
  • the PWM shape correction processing unit 25 corrects the comparator data so that the shape of the pulse included in the amplified PWM signal 5 is restored. That is, the feedback data 7 in which the shape of the pulse of the amplified PWM signal 5 is restored is generated. As a result, the feedback processing unit 20 can perform processing equivalent to the feedback processing based on the amplified PWM signal 5.
  • the comparator data is corrected based on the circuit information about the signal output unit 30.
  • the circuit information is, for example, information related to the switching amplifier 22 and the low-pass filter 23 constituting the signal output unit 30.
  • the PWM shape correction processing unit 25 corresponds to the second generation unit.
  • the circuit information is generated by measuring and analyzing, for example, the operation of the signal output unit 30 and the characteristics of each unit. For example, circuit information is generated in the process of an operation test of the digital amplifier 100, and processing parameters and the like of the PWM shape correction processing unit 25 are set based on the information.
  • the circuit information includes amplifier information which is information about the switching amplifier 22.
  • the amplifier information is, for example, the characteristics of a switching circuit, information on an amplified signal, or the like. In this embodiment, the amplifier information corresponds to the first information.
  • the circuit information includes filter information which is information about the low-pass filter 23.
  • the filter information includes, for example, the characteristics of each element constituting the low-pass filter 23, information on the signal to be demodulated, and the like. In this embodiment, the filter information corresponds to the second information.
  • the AD converter 11 and the analysis unit 12 are shown by dotted lines.
  • the AD converter 11 and the analysis unit 12 are blocks that acquire and analyze circuit information necessary for the PWM shape correction processing unit 25.
  • the AD converter 11 and the analysis unit 12 are used only when generating circuit information, and are not mounted on the actual digital amplifier 100. That is, these blocks are used only in the development stage and the manufacturing stage, and do not affect the system size.
  • the AD converter 11 performs AD conversion (Analog to Digital conversion) of the output of the switching amplifier 22 (amplification PWM signal 5) and the output of the low-pass filter 23 (audio signal 2) to generate digital data of each output.
  • the analysis unit 12 analyzes, for example, digital data generated by the AD converter 11, measurement data obtained by measuring the characteristics of the switching amplifier 22, and the like.
  • the PWM shape correction processing unit 25 utilizes the information generated by the AD converter 11 and the analysis unit 12 to provide a feedback signal (amplified PWM signal) including error components such as distortion and noise generated by a switching amplifier or the like from the output of the comparator 24. 5) is restored.
  • the method of correcting the comparator data based on the circuit information will be described in detail later.
  • the feedback processing unit 20, the PWM conversion processing unit 21, the comparator 24, and the PWM shape correction processing unit 25 perform signal processing for generating a signal (PWM signal 4) to be output to the signal output unit 30.
  • the signal processing unit 31 is configured.
  • the signal processing unit 31 is configured by using an element capable of digital arithmetic processing such as a DSP (Digital Signal Processor).
  • the signal processing unit 31 may be configured as one processing unit on the same substrate, or each block may be configured by using a dedicated IC (Integrated Circuit) or the like. In this embodiment, the signal processing unit 31 corresponds to a signal processing device.
  • the digital amplifier 100 includes two signal paths, a reproduction path from the input data 1 to the reproduction of the audio signal 2, and a feedback path for performing feedback processing on the reproduction path.
  • a reproduction path from the input data 1 to the reproduction of the audio signal 2 and a feedback path for performing feedback processing on the reproduction path.
  • the basic operation of the digital amplifier 100 will be described along each signal path.
  • the feedback processing unit 20 performs predetermined signal processing on the input data 1 based on the feedback data 7, and outputs the correction data 3.
  • the correction data 3 is input to the PWM conversion processing unit 21 and converted into a PWM signal (PWM signal 4).
  • the PWM signal 4 is a signal for driving a switching amplifier 22 that amplifies power as a digital amplifier.
  • the PWM signal 4 of [512 Fs, 1 bit] is output.
  • the PWM signal 4 is amplified in the amplitude direction by the switching amplifier 22, and the amplified PWM signal 5 is output.
  • the amplification factor and the like in the switching amplifier 22 are appropriately set.
  • the amplified PWM signal 5 is transmitted separately in two signal paths, one is input to the low-pass filter 23 and the other is input to the comparator 24.
  • the amplified PWM signal 5 input to the low-pass filter 23 is demodulated by passing through the low-pass filter 23, and is output as an analog audio signal (audio signal 2).
  • the audio signal 2 is input to the playback device 10 connected to the digital amplifier 100.
  • the audio signal 2 drives a speaker mounted on the playback device 10 to output audio.
  • FIG. 3 is a schematic diagram for explaining signal processing in the feedback path.
  • FIG. 3 shows the waveform of the pulse in the signal processing of the feedback path along the same time axis.
  • each signal processing is performed in turn along the feedback path.
  • the amplified PWM signal 5 (first stage from the top in the figure) output from the switching amplifier 22 is input to the comparator 24.
  • the comparator 24 the voltage of the amplified PWM signal 5 is compared, and the comparator signal 6 (second stage from the top in the figure) including the rectangular pulse corresponding to the pulse of the amplified PWM signal 5 is output.
  • the input / output of these comparators 24 are analog voltage signals.
  • the comparator signal 6 is input to the PWM shape correction processing unit 25, sampled at a predetermined sampling frequency, and converted into comparator data 8 (third stage from the top in the figure).
  • the comparator data 8 is a digital signal represented by the Hi and Low levels of logic in the device.
  • the PWM shape correction processing unit 25 executes correction processing of the comparator data 8 to generate feedback data 7 (fourth stage from the top in the figure) in which the shape of the pulse of the amplified PWM signal 5 which is a feedback signal is restored.
  • the feedback data 7 is a digital signal represented by a predetermined number of bits (16 bits in this case).
  • the feedback data 7 is input to the feedback processing unit 20 and is used for feedback processing for correcting the input data 1. This makes it possible to output the correction data 3 that can suppress the distortion of the pulse generated by the switching amplifier 22, for example. In the following, the operation of each part in the feedback path will be specifically described.
  • FIG. 4 is a schematic diagram showing an outline of the amplified PWM signal 5 and the comparator signal 6.
  • the operation of the comparator 24 that generates the comparator signal 6 from the amplified PWM signal 5 will be described.
  • one pulse included in the amplified PWM signal 5 is shown by a thick solid line
  • one pulse that becomes the comparator signal 6 is shown by a thin solid line.
  • the amplified PWM signal 5 takes a certain amount of time for the rise and fall of the pulse depending on the characteristics of the switching amplifier 22, and becomes a signal in which both ends of the pulse are inclined (see FIG. 2B).
  • the comparator 24 generates a rectangular pulse in which the time required for rising and falling is shorter than that of the pulse of the amplified PWM signal 5.
  • a first reference voltage V 1 and a second reference voltage V 2 lower than the first reference voltage V 1 are set in the comparator 24 (V 1 > V 2 ).
  • the first reference voltage V 1 is a threshold level on the Hi side that is referred to when the output of the comparator 24 is switched to the power supply voltage (Hi level) on the + side.
  • the second reference voltage V 2 is the threshold level on the Low side that is referred to when the output of the comparator 24 is switched to the power supply voltage (Low level) on the ⁇ side.
  • the negative side supply voltage is typically set to GND level.
  • the pulse of the amplified PWM signal 5 is input, and the voltage of the comparator signal 6 is switched to the Hi level at the timing T 1 when the voltage of the amplified PWM signal 5 exceeds the first reference voltage V 1.
  • the rising edge of the pulse of the amplified PWM signal 5 is detected.
  • the voltage of the amplified PWM signal 5 rises to the amplified voltage VA , and then the voltage drops according to the fall of the pulse.
  • the voltage of the comparator signal 6 is switched to the Low level at the timing T 2 when the voltage of the amplified PWM signal 5 exceeds the second reference voltage V 2.
  • the comparator signal 6 including the rectangular pulse corresponding to the pulse of the amplified PWM signal 5 is generated.
  • the voltage of the amplified PWM signal 5 may fluctuate due to the influence of noise and the like. For example, it is conceivable that the voltage of the amplified PWM signal 5 fluctuates after the timing T 1 and temporarily becomes lower than the first reference voltage V 1. Even in such a case, the output of the comparator 24 is not switched to the Low level unless the voltage of the amplified PWM signal 5 becomes lower than the second reference voltage V 2. This also applies when the pulse of the amplified PWM signal 5 falls.
  • the first and second reference voltages V 1 and V 2 are appropriately set according to, for example, the noise level of the amplified PWM signal 5 so that an unintended oscillation operation or the like does not occur. As a result, the amplified PWM signal 5 can be appropriately converted into the comparator signal 6, and stable feedback operation is possible.
  • FIG. 5 is a schematic diagram showing an outline of the comparator data 8 and the feedback data 7.
  • FIG. 5 schematically shows each data point corresponding to times t 1 to t 9 and its level value (Lv) in the comparator data 8 and the feedback data 7.
  • time t 6 corresponds to timing T 1 shown in FIG.
  • These data points are data points that represent the rise of one pulse.
  • the comparator data 8 is represented by black data points, and the level value is represented by the vertical axis on the left side.
  • the feedback data 7 is represented by gray data points, and the level value is represented by the vertical axis on the right side.
  • the level values represented by the vertical axes on the left and right sides are independent of each other.
  • Comparator signal 6 input to the PWM shape correction process section 25 is sampled at a predetermined sampling frequency F 1.
  • each data point of the comparator data 8 shown in FIG. 5 is acquired at time intervals represented by the reciprocal of the sampling frequency F 1.
  • the comparator signal 6 is at the Low level (time t 1 to t 5 )
  • the value of the data point is set to 0 (Low level of the logic circuit).
  • the comparator signal 6 is at Hi level (time t 6 to t 9 )
  • the value of the data point is set to 1 (Hi level of the logic circuit).
  • the comparator data 8 obtained by sampling the comparator signal 6 of the amplified PWM signal 5 becomes binary data obtained by binarizing the amplified PWM signal 5.
  • the sampling frequency F 1 is set to a value higher than the frequency F 0 of the master clock of the PWM conversion processing unit 21 (F 1 > F 0 ).
  • the frequency F 0 of the master clock is a frequency representing the resolution of the PWM signal 4. Therefore, the resolution of the amplified PWM signal 5 in which the PWM signal 4 is amplified is also represented by the frequency F 0.
  • the PWM shape correction processing unit 25 samples the comparator signal 6 output from the comparator 24 at a sampling frequency F 1 higher than the frequency F 0 of the master clock representing the resolution of the amplified PWM signal 5, and the comparator data. 8 is generated.
  • the frequency F 0 of the master clock corresponds to the first frequency
  • the sampling frequency F 1 corresponds to the second frequency.
  • the sampling frequency F 1 is higher than the resolution of the amplified PWM signal 5 (frequency F 0 )
  • the PWM shape correction processing unit 25 does not directly correct the comparator signal 6, but once samples at a high sampling frequency F 1 , and then executes the correction processing.
  • the PWM shape correction processing unit 25 corrects the level values of a plurality of data points included in the binary data which is the comparator data 8. Specifically, a level value represented by a predetermined number of bits is set at each data point of the comparator data 8. The data in which the level value of a predetermined number of bits is set for each data point in this way is generated as the feedback data 7.
  • the feedback data 7 becomes a digital signal of [2048Fs, 16 bits].
  • the level value of each data point is represented in 7 stages. For example, when the number of data points is large, the level value of each data point is divided into finer levels.
  • the method of expressing the level value is not limited, and for example, an arbitrary number of bits or the like may be set as the resolution of the level value according to the accuracy of the feedback processing, the processing capacity of the apparatus, or the like.
  • the process of correcting the level value of the data point is the shape correction process of correcting the shape of the feedback data 7 so as to restore the shape of the pulse of the amplified PWM signal 5.
  • the PWM shape correction processing unit 25 corrects the slope of the rise or fall of the pulse in the comparator data 8. As shown in FIG. 5, since the comparator data 8 is represented by a binary value of Hi level or Low level, the shape of the pulse is rectangular. The level value of each data point is corrected so as to give an inclination to the rising and falling edges of such a rectangular pulse. This makes it possible to restore a gradient pulse similar to the amplified PWM signal 5 actually output from the switching amplifier 22.
  • the shape correction process may be performed on both the rising and falling slopes of the pulse, or may be performed on only one of them. For example, it is possible to improve the accuracy of the feedback processing by correcting both inclinations. Further, for example, when correcting one of the inclinations, it is possible to reduce the amount of calculation, improve the operating speed, and reduce the power consumption.
  • the PWM shape correction processing unit 25 corrects the amplitude of the pulse in the comparator data 8.
  • a level value represented by a predetermined number of bits is set for each data point of the comparator data 8.
  • a level value (amplitude level) representing the pulse amplitude in the feedback data 7 is set within the range of the level value that can be expressed by the predetermined number of bits. This makes it possible to appropriately adjust the pulse height of the feedback data 7.
  • FIG. 6 is a schematic diagram showing an example of the shape information of the amplified PWM signal 5.
  • the shape information 13 is data generated by AD-converting the amplified PWM signal 5 using the AD converter 11 shown in FIG.
  • a schematic graph showing shape information 13 showing the rise of the pulse of the amplified PWM signal 5 is shown by a solid black line.
  • the shape correction process a process using the shape information 13 of the amplified PWM signal 5 will be described.
  • the shape information 13 is data detected by AD-converting the actual shape of the amplified PWM signal 5 using the AD converter 11.
  • the shape information 13 is an example of amplifier information regarding the switching amplifier 22. That is, the amplifier information includes the shape information 13 in which the shape of the amplified PWM signal 5 is detected by AD conversion.
  • the shape information 13 thus acquired is analyzed by the analysis unit 12. Specifically, the slope of the shape (pulse) of the amplified PWM signal 5 is calculated. For example, from the shape information 13, data points corresponding to the upper end and the lower end of the rising edge of the pulse are acquired. Then, the slope of the straight line 14 (dotted line in the figure) connecting the data points is calculated as the slope of the rising edge of the pulse. It can be said that the slope of the straight line 14 represents the time until the signal rises from the Low level to the Hi level.
  • the analysis unit 12 can also calculate the slope of the fall of the pulse and the like by using the above method.
  • the inclination value calculated here is stored as a parameter of the shape correction processing in, for example, a memory referred to by the PWM shape correction processing unit 25.
  • the PWM shape correction processing unit 25 corrects the comparator data 8 based on the inclination of the rise or fall of the pulse included in the amplified PWM signal 5 calculated from the shape information 13. That is, the PWM shape correction processing unit 25 sets the level value so as to give the comparator data 8 the inclination of the straight line 14, and generates the feedback data 7. For example, the level value of each data point is set so that the time at which the level value of the data point rises in the feedback data 7 is equal to the time represented by the inclination of the straight line 14.
  • the level values of the data points at times t 3 to t 8 are set to increase in this order.
  • the level value of each data point is set according to the inclination of the straight line 14 shown in FIG. 6, and the time from time t 3 to time t 8 (that is, the rise time of the pulse) is the straight line 14 shown in FIG. It is the same as the rise time represented by the inclination of.
  • the slope of the pulse of the feedback data 7 becomes the same slope as the slope of the pulse of the actual amplified PWM signal 5.
  • the feedback data 7 becomes a digital signal in which the slope of the pulse of the amplified PWM signal 5 is restored.
  • the pulse amplitude (amplitude level) in the feedback data 7 is set based on, for example, a voltage value representing the pulse amplitude of the amplified PWM signal 5 in the shape information 13 shown in FIG. For example, when the voltage value representing the amplitude is large, the amplitude level is set high, and when the voltage value is small, the amplitude level is set low. This makes it possible to set the amplitude level according to the amplitude of the actual signal.
  • the comparator data 8 sampled at the sampling frequency F 1 higher than the resolution of the amplified PWM signal 5 which is the feedback signal is corrected by using the analysis result by the analysis unit 12. This makes it possible to restore the pulse, which is an error component of the amplified PWM signal 5 input to the comparator 24, in a stepped manner.
  • the shape correction process using the shape information 13 (amplifier information) of the amplified PWM signal 5 has been described.
  • the shape correction process may be executed based on, for example, other amplifier information, filter information, or the like.
  • the amplifier information includes information regarding the element characteristics of the switching amplifier 22.
  • the element characteristics are, for example, element parameters (on resistance between drain and source, charge capacitance characteristics, switching characteristics, etc.) of an FET or the like mounted on the switching amplifier 22.
  • the amplitude of the amplified PWM signal 5 may change depending on the on-resistance. In this case, the amplitude level is set according to the on-resistance.
  • the shape of the pulse may be deformed depending on the capacitance component represented by the charge capacitance characteristic. Such a shape change may be corrected. Further, it is conceivable that the slope of the pulse changes depending on the switching characteristics. In this case, the slope of the feedback data 7 is corrected based on the switching characteristics.
  • the amplifier information includes information on the dead time set in the switching amplifier 22.
  • the dead time is a time set in order to prevent the phenomenon that the high side and the low side are turned on at the same time in the switching amplifier 22. Due to such dead time, the slope of the pulse may change. In this case, the slope of the feedback data 7 is corrected based on the dead time.
  • the amplifier information includes information about the power supply that drives the switching amplifier.
  • the information on the power supply include information on the power supply quality such as the noise level and the fluctuation level of the power supply.
  • power supply noise may appear as the waveform of the amplified PWM signal 5. It is also possible to generate feedback data 7 so as to reproduce such a waveform of power supply noise.
  • the filter information includes information about the audio signal 2 in which the amplified PWM signal 5 is demodulated. For example, using, for example, an AD converter 11, the audio signal 2 which is an analog audio signal for driving the speaker is AD-converted, and the shape information of the audio signal 2 is acquired. Then, the analysis unit 12 analyzes the quality of the audio signal 2. The quality of the audio signal 2 is distortion, noise characteristics, etc. in the analog waveform. In the shape correction process, the feedback data 7 is generated so that the distortion of the audio signal 2 and the like are corrected. This makes it possible to make corrections according to the characteristics of the low-pass filter 23, and for example, it is possible to output an audio signal 2 or the like that accurately reproduces the audio waveform of the input data 1.
  • the shape correction process based on the amplifier information and the filter information may be executed independently, or a process in which each correction is combined may be executed.
  • the feedback data 7 generated by the shape correction process is input to the feedback processing unit and used for the feedback process for the input data 1.
  • the analog feedback signal (amplified PWM signal 5) including the error component and the like is binarized via the comparator 24.
  • This binarized data (comparator data 8) is corrected according to the characteristics of the switching amplifier 22 and the low-pass filter 23, and feedback data 7 in which error components and the like are restored is generated. This enables high quality feedback processing.
  • FIG. 7 is a block diagram showing a configuration example of the feedback processing unit 20.
  • FIG. 7 schematically shows a processing block constituting the feedback processing unit 20.
  • the feedback processing unit 20 includes an upsampling unit 40, a downsampling unit 41, a low-pass filter 42, a gain adjusting unit 43, and an addition processing unit 44.
  • Each part of the feedback processing unit 20 is a functional block that performs digital processing.
  • the upsampling unit 40 upsamples the input data 1 to increase the sampling rate.
  • the downsampling unit 41 downsamples the feedback data 7 to lower the sampling rate.
  • the outputs of the upsampling unit 40 and the downsampling unit 41 are sampled so as to have the same sampling rate.
  • the low-pass filter 42 removes noise components included in a band other than the feedback-capable frequency band from the downsampled feedback data 7.
  • the gain adjusting unit 43 adjusts the gain to adjust the level value of the feedback data 7 at a predetermined ratio. The rate of gain adjustment is appropriately set according to, for example, the amplification factor of the switching amplifier 22.
  • the addition processing unit 44 subtracts the gain-adjusted feedback data 7 from the upsampled input data 1, and outputs the correction data 3.
  • the input data 1 of [1Fs, 16 bits] is input to the upsampling unit 40.
  • This input data 1 is upsampled to the data of [64 Fs, 24 bits].
  • the feedback data 7 of [2048Fs, 16 bits] is input to the downsampling unit 41.
  • the feedback data 7 is downsampled to the same [64Fs, 24bit] data as the input data 1 after upsampling.
  • the downsampled feedback data 7 passes through the low-pass filter 42 to remove noise components, is input to the gain adjusting unit 43, and the gain is adjusted at a predetermined ratio.
  • the addition processing unit 44 subtracts the gain-adjusted feedback data 7 from the upsampled input data 1, and generates the correction data 3.
  • the feedback processing unit 20 generates the correction data 3 by subtracting the feedback data 7 whose gain is adjusted at a predetermined ratio from the input data 1.
  • the feedback data 7 is a signal in which the shape of the pulse of the output signal (amplified PWM signal 5) in the subsequent stage of the digital amplifier 100 is restored as described above. That is, it can be said that the feedback data 7 is a signal in which an error component is added to the component of the ideal output signal.
  • the configuration of the feedback processing unit 20, the specific content of the feedback processing, and the like are not limited, and any processing that can generate the desired correction data 3 may be executed.
  • FIG. 8 is a block diagram showing a configuration example of a digital amplifier given as a comparative example.
  • the audio signal 2 for driving the speaker is used as the feedback signal, and the pre-low-pass filter 111 and the AD converter 112 are provided in the feedback path.
  • a feedback processing unit 113, a PWM conversion processing unit 114, a switching amplifier 115, and a low-pass filter 116 are provided in the reproduction path of the digital audio source (input data 1).
  • An analog signal including error components such as distortion and noise generated by the switching amplifier 115 or the like is input to the pre-low pass filter 111 as an audio signal 2 for driving the speaker.
  • the pre-low pass filter 111 the pass band is limited so as to remove high frequency switching noise and the like caused by the digital amplifier 110 in order to stably operate the feedback system.
  • the audio signal 2 whose band is limited by the pre-low pass filter 111 is input to the AD converter 112 and subjected to AD conversion.
  • the AD converter 112 for example, a process of quantizing into a pulse density modulated signal (PDM signal) of [64 Fs, 1 bit] is executed.
  • the quantized audio signal 2 (output of the AD converter 112) is input to the feedback processing unit 113 as a digital signal (feedback data) including an error component.
  • signal processing for reducing the error component is performed together with the input data 1.
  • the AD converter 112 when the AD converter 112 is used for the feedback path, power for driving the AD converter 112 is required, which may increase the power consumption. Further, it is necessary to provide a peripheral circuit including an AD converter 112, a pre-low pass filter 111, and the like, which may increase the system size. Further, the digital amplifier 110 requires an AD converter 112 corresponding to the switching noise of the switching amplifier 115, which increases the design difficulty and the number of parts. Further, in order to bring out the performance of the AD converter 112, it is necessary to tune an external passive component and select a high-performance device, which may increase the development cost.
  • the pre-low-pass filter 111 is required as the preprocessing of the input of the AD converter 112, there is a possibility that extra noise components are mixed (distortion of the audio signal 2 etc.) and the delay time of the feedback path is increased. .. As a result, in the configuration including the AD converter 112, the feedback effect may be reduced or the feedback band may be limited.
  • the amplified PWM signal 5 which is a feedback signal is converted into the comparator data 8 via the comparator 24. That is, it can be said that the digital amplifier 100 uses the comparator 24 to perform AD conversion of the feedback signal. In this way, in this configuration, it is possible to configure a feedback path that does not include an AD converter.
  • the correction data 3 obtained by correcting the input data 1 using the feedback data 7 is generated.
  • the amplified PWM signal 5 corresponding to the correction data 3 is input to the comparator 24, and the comparator data 8 which is the output data of the comparator 24 is corrected to generate the feedback data 7.
  • the digital amplifier 100 a feedback system is adopted in order to improve the performance of the device. With the recent progress in miniaturization of products, low power consumption and miniaturization of device size are expected by adopting digital amplifiers. However, as shown in FIG. 8, when a feedback system including an AD converter 112 is used, the merit of the digital amplifier 100 may not be utilized depending on the construction method thereof.
  • the feedback system is constructed by using the comparator 24 without using the AD converter which is an AD conversion device.
  • the AD converter since the AD converter is not used, it is not necessary to provide the necessary pre-low pass filter in front of the AD converter. This makes it possible to prevent the mixing of extra noise components.
  • the delay time caused by the pre-low pass filter since the delay time caused by the pre-low pass filter does not occur, the feedback effect can be expected to be improved as the delay is reduced.
  • an error required in the feedback system from the output of the comparator 24 is utilized by utilizing parameters related to the switching amplifier 22 or the like which is a component of the digital amplifier 100 (such as the gradient of the pulse of the amplified PWM signal 5). Feedback data 7 including the components is generated. This enables highly accurate feedback processing that matches the waveform of the actual amplified PWM signal 5.
  • the sampling of the comparator signal 6 output from the comparator 24 is executed at a frequency F 1 higher than the resolution of the pulse width modulation in the digital amplifier 100.
  • the digital amplifier 100 mainly configured as an audio amplifier has been described.
  • This technology can be applied to any digital control amplifier, inverter, or the like.
  • a switching amplifier or the like is used when generating a control signal used for motor control.
  • a feedback system using a comparator may be configured by using the output of such a switching amplifier as a feedback signal. Thereby, it is possible to easily realize the feedback processing for the control signal.
  • by using a feedback system using a comparator it is also possible to correct a control signal or the like output by inverter control.
  • the present technology can also adopt the following configurations.
  • a first generation unit that corrects input data based on feedback data and generates correction data
  • a signal processing device including a second generation unit that corrects the output data of a comparator to which a pulse signal corresponding to the correction data is input and generates the feedback data.
  • the signal processing device according to (1) The second generation unit is a signal processing device that corrects the output data so that the shape of the pulse included in the pulse signal is restored.
  • the second generation unit is a signal processing device that corrects the slope of the rise or fall of the pulse in the output data.
  • the second generation unit is a signal processing device that corrects the amplitude of the pulse in the output data.
  • the signal processing device is a signal processing device that corrects the output data based on circuit information about an output circuit that generates an output signal corresponding to the pulse signal.
  • the signal processing device includes a switching amplifier that generates the pulse signal according to the correction data.
  • the circuit information is a signal processing device including first information which is information about the switching amplifier.
  • the signal processing device includes shape information of the pulse signal detected by AD conversion.
  • the second generation unit is a signal processing device that corrects the output data based on the inclination of the rise or fall of the pulse included in the pulse signal calculated from the shape information.
  • the signal processing device according to (6) or (7).
  • the first information is a signal processing device including information on the element characteristics of the switching amplifier, the dead time set in the switching amplifier, and at least one of the power supplies for driving the switching amplifier.
  • the output circuit includes a demodulation circuit that demodulates the pulse signal to generate the output signal.
  • the circuit information is a signal processing device including a second information which is information about the demodulation circuit.
  • the second information is a signal processing device including information about the output signal.
  • the second generation unit is a signal processing device that generates the output data by sampling the signal output from the comparator at a second frequency higher than the first frequency representing the resolution of the pulse signal.
  • the signal processing device according to any one of (1) to (11).
  • the output data is binary data obtained by binarizing the pulse signal.
  • the second generation unit is a signal processing device that corrects the level values of a plurality of data points included in the binary data.
  • the first generation unit is a signal processing device that generates the correction data by subtracting the feedback data whose gain is adjusted at a predetermined ratio from the input data.
  • the pulse signal is a signal processing device that is a pulse width modulation type signal.
  • the input data is a signal processing device that is voice data.
  • a first generation unit that corrects the input data based on the feedback data and generates the correction data, A switching amplifier that generates a pulse signal according to the correction data, and A comparator to which the pulse signal is input and An amplification device including a second generation unit that corrects the output data of the comparator and generates the feedback data.
  • a first generation unit that corrects audio data based on feedback data and generates correction data, and A switching amplifier that generates a pulse signal according to the correction data, and A demodulation circuit that demodulates the pulse signal to generate an audio signal, A comparator to which the pulse signal is input and A reproduction device including a second generation unit that corrects the output data of the comparator and generates the feedback data.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Amplifiers (AREA)

Abstract

A signal processing device according to an embodiment of the present invention is provided with a first generation unit and a second generation unit. The first generation unit generates corrected data by correcting input data on the basis of feedback data. The second generation unit generates the feedback data by correcting output data from a comparator to which pulse signals in accordance with the corrected data are input.

Description

信号処理装置、増幅装置、及び再生装置Signal processing equipment, amplification equipment, and playback equipment
 本技術は、信号増幅等に適用可能な信号処理装置、増幅装置、及び再生装置に関する。 This technology relates to signal processing devices, amplification devices, and reproduction devices that can be applied to signal amplification and the like.
 特許文献1には、オーディオ信号を増幅するデジタルアンプについて記載されている。このデジタルアンプでは、電源ラインの電圧変動がADコンバータ(Analog-to-Digital コンバータ)を介してデータ化される。この電圧変動のデータが可変アッテネータ回路にフィードバックされ、オーディオ信号の音量レベルが制御される。このようなフィードバック回路を構成することで、電源ラインの変動に伴う音質の劣化等が抑制可能となっている(特許文献1の明細書段落[0016][0031][0043]図1等)。 Patent Document 1 describes a digital amplifier that amplifies an audio signal. In this digital amplifier, the voltage fluctuation of the power supply line is converted into data via an AD converter (Analog-to-Digital converter). The data of this voltage fluctuation is fed back to the variable attenuator circuit, and the volume level of the audio signal is controlled. By configuring such a feedback circuit, it is possible to suppress deterioration of sound quality due to fluctuations in the power supply line (paragraphs [0016] [0031] [0043] of Patent Document 1 and the like).
特開2003-273656号公報Japanese Unexamined Patent Publication No. 2003-273656
 上記したように、フィードバック回路にADコンバータが含まれる方式では、周辺回路も含めて回路構成が大きくなり、消費電力が増加する可能性がある。このため、装置サイズの小型化を図るとともに消費電力を抑制することが可能な技術が求められている。 As described above, in the method in which the AD converter is included in the feedback circuit, the circuit configuration including the peripheral circuit becomes large, and the power consumption may increase. Therefore, there is a demand for a technology capable of reducing the size of the device and suppressing power consumption.
 以上のような事情に鑑み、本技術の目的は、装置サイズの小型化を図るとともに消費電力を抑制することが可能な信号処理装置、増幅装置、及び再生装置を提供することにある。 In view of the above circumstances, an object of the present technology is to provide a signal processing device, an amplification device, and a reproduction device capable of reducing the size of the device and suppressing power consumption.
 上記目的を達成するため、本技術の一形態に係る信号処理装置は、第1の生成部と、第2の生成部とを具備する。
 前記第1の生成部は、帰還データに基づいて入力データを補正して補正データを生成する。
 前記第2の生成部は、前記補正データに応じたパルス信号が入力されるコンパレータの出力データを補正して前記帰還データを生成する。
In order to achieve the above object, the signal processing device according to one embodiment of the present technology includes a first generation unit and a second generation unit.
The first generation unit corrects the input data based on the feedback data and generates the correction data.
The second generation unit corrects the output data of the comparator to which the pulse signal corresponding to the correction data is input to generate the feedback data.
 この信号処理装置では、帰還データを使って入力データを補正した補正データが生成される。補正データに応じたパルス信号はコンパレータに入力され、コンパレータの出力データを補正して帰還データが生成される。このように、コンパレータを用いたフィードバック回路を構成することで、装置サイズの小型化を図るとともに消費電力を抑制することが可能となる。 In this signal processing device, correction data is generated by correcting the input data using the feedback data. The pulse signal corresponding to the correction data is input to the comparator, and the output data of the comparator is corrected to generate feedback data. By configuring the feedback circuit using the comparator in this way, it is possible to reduce the size of the device and suppress the power consumption.
 前記第2の生成部は、前記パルス信号に含まれるパルスの形状が復元されるように前記出力データを補正してもよい。 The second generation unit may correct the output data so that the shape of the pulse included in the pulse signal is restored.
 前記第2の生成部は、前記出力データにおける前記パルスの立ち上がり又は立ち下がりの傾斜を補正してもよい。 The second generation unit may correct the slope of the rising or falling edge of the pulse in the output data.
 前記第2の生成部は、前記出力データにおける前記パルスの振幅を補正してもよい。 The second generation unit may correct the amplitude of the pulse in the output data.
 前記第2の生成部は、前記パルス信号に応じた出力信号を生成する出力回路に関する回路情報に基づいて、前記出力データを補正してもよい。 The second generation unit may correct the output data based on the circuit information about the output circuit that generates the output signal corresponding to the pulse signal.
 前記出力回路は、前記補正データに応じた前記パルス信号を生成するスイッチングアンプを含んでもよい。この場合、前記回路情報は、前記スイッチングアンプに関する情報である第1の情報を含んでもよい。 The output circuit may include a switching amplifier that generates the pulse signal according to the correction data. In this case, the circuit information may include first information which is information about the switching amplifier.
 前記第1の情報は、AD変換により検出された前記パルス信号の形状情報を含んでもよい。この場合、前記第2の生成部は、前記形状情報から算出された前記パルス信号に含まれるパルスの立ち上がり又は立ち下がりの傾斜に基づいて前記出力データを補正してもよい。 The first information may include shape information of the pulse signal detected by AD conversion. In this case, the second generation unit may correct the output data based on the slope of the rise or fall of the pulse included in the pulse signal calculated from the shape information.
 前記第1の情報は、前記スイッチングアンプの素子特性、前記スイッチングアンプに設定されたデッドタイム、及び前記スイッチングアンプを駆動する電源の少なくとも1つに関する情報を含んでもよい。 The first information may include information about the element characteristics of the switching amplifier, the dead time set in the switching amplifier, and at least one of the power supplies that drive the switching amplifier.
 前記出力回路は、前記パルス信号を復調して前記出力信号を生成する復調回路を含んでもよい。この場合、前記回路情報は、前記復調回路に関する情報である第2の情報を含んでもよい。 The output circuit may include a demodulation circuit that demodulates the pulse signal to generate the output signal. In this case, the circuit information may include a second piece of information that is information about the demodulation circuit.
 前記第2の情報は、前記出力信号に関する情報を含んでもよい。 The second information may include information regarding the output signal.
 前記第2の生成部は、前記コンパレータから出力された信号を、前記パルス信号の分解能を表す第1の周波数よりも高い第2の周波数でサンプリングして前記出力データを生成してもよい。 The second generation unit may generate the output data by sampling the signal output from the comparator at a second frequency higher than the first frequency representing the resolution of the pulse signal.
 前記出力データは、前記パルス信号が二値化された二値データであってもよい。この場合、前記第2の生成部は、前記二値データに含まれる複数のデータ点のレベル値を補正してもよい。 The output data may be binary data in which the pulse signal is binarized. In this case, the second generation unit may correct the level values of a plurality of data points included in the binary data.
 前記第1の生成部は、所定の割合でゲインが調整された前記帰還データを前記入力データから減算することで、前記補正データを生成してもよい。 The first generation unit may generate the correction data by subtracting the feedback data whose gain has been adjusted at a predetermined ratio from the input data.
 前記パルス信号は、パルス幅変調方式の信号であってもよい。 The pulse signal may be a pulse width modulation type signal.
 前記入力データは、音声データであってもよい。 The input data may be voice data.
 本技術の一形態に係る増幅装置は、第1の生成部と、スイッチングアンプと、コンパレータと、第2の生成部とを具備する。
 前記第1の生成部は、帰還データに基づいて入力データを補正して補正データを生成する。
 前記スイッチングアンプは、前記補正データに応じたパルス信号を生成する。
 前記コンパレータには、前記パルス信号が入力される。
 前記第2の生成部は、前記コンパレータの出力データを補正して前記帰還データを生成する。
The amplification device according to one embodiment of the present technology includes a first generation unit, a switching amplifier, a comparator, and a second generation unit.
The first generation unit corrects the input data based on the feedback data and generates the correction data.
The switching amplifier generates a pulse signal according to the correction data.
The pulse signal is input to the comparator.
The second generation unit corrects the output data of the comparator to generate the feedback data.
 本技術の一形態に係る再生装置は、第1の生成部と、スイッチングアンプと、復調回路と、コンパレータと、第2の生成部とを具備する。
 前記第1の生成部は、帰還データに基づいて音声データを補正して補正データを生成する。
 前記スイッチングアンプは、前記補正データに応じたパルス信号を生成する。
 前記復調回路は、前記パルス信号を復調して音声信号を生成する。
 前記コンパレータには、前記パルス信号が入力される。
 前記第2の生成部は、前記コンパレータの出力データを補正して前記帰還データを生成する。
The reproduction device according to one embodiment of the present technology includes a first generation unit, a switching amplifier, a demodulation circuit, a comparator, and a second generation unit.
The first generation unit corrects the voice data based on the feedback data and generates the correction data.
The switching amplifier generates a pulse signal according to the correction data.
The demodulation circuit demodulates the pulse signal to generate an audio signal.
The pulse signal is input to the comparator.
The second generation unit corrects the output data of the comparator to generate the feedback data.
本技術の一実施形態に係るデジタルアンプの構成例を示すブロック図である。It is a block diagram which shows the structural example of the digital amplifier which concerns on one Embodiment of this technique. PWM方式の信号の一例を示す模式図である。It is a schematic diagram which shows an example of the signal of the PWM system. フィードバック経路における信号処理について説明するための模式図である。It is a schematic diagram for demonstrating the signal processing in a feedback path. 増幅PWM信号とコンパレータ信号との概形を示す模式図である。It is a schematic diagram which shows the outline form of the amplification PWM signal and the comparator signal. コンパレータデータとフィードバックデータとの概形を示す模式図である。It is a schematic diagram which shows the outline form of the comparator data and feedback data. 増幅PWM信号の形状情報の一例を示す模式図である。It is a schematic diagram which shows an example of the shape information of the amplified PWM signal. フィードバック処理部の構成例を示すブロック図である。It is a block diagram which shows the structural example of the feedback processing part. 比較例として挙げるデジタルアンプの構成例を示すブロック図である。It is a block diagram which shows the structural example of the digital amplifier given as a comparative example.
 以下、本技術に係る実施形態を、図面を参照しながら説明する。 Hereinafter, embodiments relating to the present technology will be described with reference to the drawings.
 [デジタル制御アンプの構成]
 図1は、本技術の一実施形態に係るデジタルアンプの構成例を示すブロック図である。
 デジタルアンプ100は、デジタル信号である入力データ1に応じたアナログ信号を増幅して出力する増幅器である。デジタルアンプ100から出力されるアナログ信号は、所定の素子や回路の入力として用いられる。
[Digital control amplifier configuration]
FIG. 1 is a block diagram showing a configuration example of a digital amplifier according to an embodiment of the present technology.
The digital amplifier 100 is an amplifier that amplifies and outputs an analog signal corresponding to the input data 1 which is a digital signal. The analog signal output from the digital amplifier 100 is used as an input for a predetermined element or circuit.
 本実施形態では、デジタルアンプ100の一例として、増幅された音声信号2を出力するデジタルオーディオアンプについて説明する。この場合、デジタルアンプ100に入力される入力データ1は、音声データ(デジタルオーディオソース)である。
 例えばデジタルアンプ100から出力された音声信号2を、ヘッドフォンやスピーカ等の再生機器10に入力することで、音声を再生することが可能である。本実施形態では、デジタルアンプ100は、増幅装置及び再生装置に相当する。
In the present embodiment, as an example of the digital amplifier 100, a digital audio amplifier that outputs an amplified audio signal 2 will be described. In this case, the input data 1 input to the digital amplifier 100 is audio data (digital audio source).
For example, by inputting the audio signal 2 output from the digital amplifier 100 to the reproduction device 10 such as headphones or speakers, it is possible to reproduce the audio. In the present embodiment, the digital amplifier 100 corresponds to an amplification device and a reproduction device.
 入力データ1であるデジタルオーディオソースの方式には、例えばパルス符合変調(PCM:Pulse Code Modulation)方式が用いられる。すなわち入力データ1は、PCM音源であるとも言える。PCM方式では、例えば音声のアナログ波形が所定のサンプリング周波数でサンプリングされ、各サンプリング点での信号強度が所定のビット数で量子化される。
 図1に示す例では、入力データ1は、[1Fs,16bit]のPCM音源とする。ここで、1Fsは、サンプリング周波数であり、1Fs=1×Fs=44.1kHzとする。また16bitは、PCM方式における量子化ビット数である。
 この他、入力データ1の方式は限定されず、任意の音源形式が使用可能である。例えばパルス密度変調(PDM:Pulse Density Modulation)方式の音声データ等が入力データ1として用いられてもよい。
As the method of the digital audio source which is the input data 1, for example, a pulse code modulation (PCM) method is used. That is, it can be said that the input data 1 is a PCM sound source. In the PCM method, for example, an analog waveform of voice is sampled at a predetermined sampling frequency, and the signal strength at each sampling point is quantized with a predetermined number of bits.
In the example shown in FIG. 1, the input data 1 is a PCM sound source of [1Fs, 16 bits]. Here, 1Fs is a sampling frequency, and 1Fs = 1 × Fs = 44.1 kHz. Further, 16 bits is the number of quantization bits in the PCM method.
In addition, the method of input data 1 is not limited, and any sound source format can be used. For example, pulse density modulation (PDM) type audio data or the like may be used as the input data 1.
 図1に示すように、デジタルアンプ100は、フィードバック処理部20と、PWM変換処理部21と、スイッチングアンプ22と、ローパスフィルタ23と、コンパレータ24と、PWM形状補正処理部25とを有する。このうち、フィードバック処理部20、PWM変換処理部21、及びPWM形状補正処理部25で実行される処理は、主に、デジタル信号(データ)を処理するデジタル処理である。 As shown in FIG. 1, the digital amplifier 100 includes a feedback processing unit 20, a PWM conversion processing unit 21, a switching amplifier 22, a low-pass filter 23, a comparator 24, and a PWM shape correction processing unit 25. Of these, the processes executed by the feedback processing unit 20, the PWM conversion processing unit 21, and the PWM shape correction processing unit 25 are mainly digital processes for processing digital signals (data).
 フィードバック処理部20は、フィードバックデータ7を用いて、入力データ1に対するフィードバック処理を実行する。具体的には、フィードバック処理部20は、フィードバックデータ7に基づいて入力データ1を補正して補正データ3を生成する。
 図1に示すようにフィードバックデータ7は、デジタルアンプ100の後段(スイッチングアンプ22)の出力を用いて生成された信号データである。このフィードバックデータ7を参照して、例えば入力データ1が表す音声の波形と音声信号2の波形とが一致するように、入力データ1が補正される。また補正された入力データ1が、補正データ3として出力される。
The feedback processing unit 20 executes feedback processing on the input data 1 using the feedback data 7. Specifically, the feedback processing unit 20 corrects the input data 1 based on the feedback data 7 to generate the correction data 3.
As shown in FIG. 1, the feedback data 7 is signal data generated by using the output of the subsequent stage (switching amplifier 22) of the digital amplifier 100. With reference to the feedback data 7, the input data 1 is corrected so that, for example, the waveform of the voice represented by the input data 1 and the waveform of the voice signal 2 match. Further, the corrected input data 1 is output as the corrected data 3.
 このように、デジタルアンプ100では、フィードバック処理部20により、入力値(目標値)と出力値(フィードバック値)とが一致するように制御するフィードバック制御が実現される。これにより、デジタルアンプ100の出力である音声信号2等の安定性を向上するとともに、外乱の影響を排除することが可能となる。
 本実施形態では、フィードバック処理部20は、第1の生成部に相当する。また、フィードバックデータ7は、帰還データに相当する。
In this way, in the digital amplifier 100, the feedback processing unit 20 realizes feedback control that controls the input value (target value) and the output value (feedback value) to match. This makes it possible to improve the stability of the audio signal 2 and the like, which is the output of the digital amplifier 100, and eliminate the influence of disturbance.
In the present embodiment, the feedback processing unit 20 corresponds to the first generation unit. Further, the feedback data 7 corresponds to the feedback data.
 PWM変換処理部21は、補正データ3をPWM信号4に変換する。ここでPWM信号4とは、パルス幅変調(PWM:Pulse Width Modulation)方式の信号である。
 例えば、補正データ3がPWM方式のデータに変換され、そのデータに基づいて、PWM信号4が生成される。
The PWM conversion processing unit 21 converts the correction data 3 into a PWM signal 4. Here, the PWM signal 4 is a pulse width modulation (PWM) type signal.
For example, the correction data 3 is converted into PWM data, and the PWM signal 4 is generated based on the data.
 図2は、PWM方式の信号の一例を示す模式図である。図2Aは、PWM変換処理部21により生成されるPWM信号4の概形を示す模式的なグラフである。グラフの横軸は時間Tであり、縦軸はレベルである。PWM信号4の振幅レベルは、例えば電圧Vで表される。
 図2Aに示すように、PWM信号4は、複数のパルスを含み、各パルスの幅Wが変調された信号である。PWM信号4の周期T(例えばパルスが立ち上がる周期)は一定の周期に設定され、その周期Tの中で各パルスの幅Wが変調される。すなわち、各パルスが立ち下がるタイミングが補正データ3に応じて変調される。
FIG. 2 is a schematic diagram showing an example of a PWM signal. FIG. 2A is a schematic graph showing an outline of the PWM signal 4 generated by the PWM conversion processing unit 21. The horizontal axis of the graph is time T, and the vertical axis is level. The amplitude level of the PWM signal 4 is represented by, for example, a voltage V.
As shown in FIG. 2A, the PWM signal 4 is a signal including a plurality of pulses and the width W of each pulse is modulated. The cycle T of the PWM signal 4 (for example, the cycle in which the pulse rises) is set to a constant cycle, and the width W of each pulse is modulated in the cycle T. That is, the timing at which each pulse falls is modulated according to the correction data 3.
 PWM信号4の生成に用いられるシステムのマスタークロックの周波数F0は、例えばF0=512×Fs=22.5792MHzに設定される。また各パルスの幅Wは、周波数F0の逆数で表される時間を単位として変調される。すなわち周波数F0は、PWM信号4の分解能を表す周波数であるとも言える。例えば周波数F0が高いほど、PWM信号4の変調単位を表す時間は短くなり、その分解能は高くなる。
 マスタークロックの周波数F0は限定されず、例えば入力データ1が適正に変換可能となる周波数が実用可能な範囲で適宜設定されてよい。
 またPWM信号4の振幅(パルスの電圧V0)は、例えばデジタル処理を行うシステムで出力可能な電圧値に設定される。またPWM信号4に含まれる各パルスの振幅は一定に設定される。
The frequency F 0 of the master clock of the system used to generate the PWM signal 4 is set to, for example, F 0 = 512 × Fs = 22.5792 MHz. Further, the width W of each pulse is modulated in units of time represented by the reciprocal of the frequency F 0. That is, it can be said that the frequency F 0 is a frequency representing the resolution of the PWM signal 4. For example, the higher the frequency F 0 , the shorter the time representing the modulation unit of the PWM signal 4, and the higher the resolution.
The frequency F 0 of the master clock is not limited, and for example, the frequency at which the input data 1 can be appropriately converted may be appropriately set within a practical range.
Further, the amplitude of the PWM signal 4 (pulse voltage V 0 ) is set to a voltage value that can be output by, for example, a system that performs digital processing. Further, the amplitude of each pulse included in the PWM signal 4 is set to be constant.
 スイッチングアンプ22は、PWM信号4を電力増幅するパワー増幅素子である。例えばPWM信号4の各パルスの振幅(電圧)が増幅される。以下では、増幅されたPWM信号4を、増幅PWM信号5と記載する。
 スイッチングアンプ22は、半導体素子等を用いて構成されたスイッチング回路を有する。このスイッチング回路は、例えば所定の電源に接続され、ONの状態で増幅電圧VAを出力するように構成される。またスイッチング回路は、増幅率に応じて増幅電圧VAを調整可能に構成される。
The switching amplifier 22 is a power amplification element that amplifies the power of the PWM signal 4. For example, the amplitude (voltage) of each pulse of the PWM signal 4 is amplified. Hereinafter, the amplified PWM signal 4 will be referred to as an amplified PWM signal 5.
The switching amplifier 22 has a switching circuit configured by using a semiconductor element or the like. This switching circuit is connected to, for example, a predetermined power supply, and is configured to output an amplified voltage VA in the ON state. Further, the switching circuit is configured so that the amplification voltage VA can be adjusted according to the amplification factor.
 図2Bは、スイッチングアンプ22により生成された増幅PWM信号5の概形を示す模式的なグラフである。図2Bには図2Aに示すPWM信号4が増幅された増幅PWM信号5の概形が模式的に図示されている。
 スイッチングアンプ22では、入力であるPWM信号4のパルスを用いてスイッチング回路のON及びOFFが切り替えられる。この結果、スイッチングアンプ22の出力は、PWM信号4の各パルスと同様の幅Wを有し、振幅が増幅電圧VAに増幅されたパルスを含む増幅PWM信号5となる。
FIG. 2B is a schematic graph showing an outline of the amplified PWM signal 5 generated by the switching amplifier 22. FIG. 2B schematically shows an outline of the amplified PWM signal 5 in which the PWM signal 4 shown in FIG. 2A is amplified.
In the switching amplifier 22, the switching circuit is switched ON and OFF by using the pulse of the PWM signal 4 which is the input. As a result, the output of the switching amplifier 22 becomes an amplified PWM signal 5 including a pulse having the same width W as each pulse of the PWM signal 4 and whose amplitude is amplified to the amplified voltage VA.
 このように、スイッチングアンプ22は、補正データ3に応じたPWM信号4を増幅して、補正データ3に応じた増幅PWM信号5を生成する。従って、増幅PWM信号5は、PWM方式の信号となる。本実施形態では、増幅PWM信号5は、パルス信号に相当する。
 デジタルアンプ100では、増幅PWM信号5は、後述する音声信号2に変換される信号であるとともに、フィードバック処理を行うためのフィードバック信号として用いられる。
 なお、スイッチングアンプ22では、その特性等に応じてパルスの形状に歪みが生じる場合がある。例えばパルスの立ち上げりや立ち下がり等が傾斜することが考えられる。図2Bは、このようなパルスの形状の歪みを強調したグラフとなっている。
In this way, the switching amplifier 22 amplifies the PWM signal 4 according to the correction data 3 and generates the amplified PWM signal 5 according to the correction data 3. Therefore, the amplified PWM signal 5 is a PWM signal. In this embodiment, the amplified PWM signal 5 corresponds to a pulse signal.
In the digital amplifier 100, the amplified PWM signal 5 is a signal converted into an audio signal 2 described later, and is also used as a feedback signal for performing feedback processing.
In the switching amplifier 22, the shape of the pulse may be distorted depending on its characteristics and the like. For example, it is conceivable that the rise and fall of the pulse are inclined. FIG. 2B is a graph emphasizing the distortion of the shape of such a pulse.
 スイッチングアンプ22を用いることで、例えばスイッチング回路がOFFの状態での電流損失が抑制され、低消費電力な増幅装置を構成することが可能である。またスイッチング回路は半導体素子を用いて構成可能であり、素子の小型化が可能である。
 スイッチング回路の具体的な構成は限定されない。例えばMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)やIGBT(Insulated Gate Bipolar Transistor)等の半導体素子で構成されたスイッチング回路が用いられる。
By using the switching amplifier 22, for example, the current loss when the switching circuit is OFF is suppressed, and it is possible to configure an amplification device with low power consumption. Further, the switching circuit can be configured by using a semiconductor element, and the element can be miniaturized.
The specific configuration of the switching circuit is not limited. For example, a switching circuit composed of semiconductor elements such as MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) and IGBT (Insulated Gate Bipolar Transistor) is used.
 ローパスフィルタ23は、増幅PWM信号5の高周波成分をカットし、パルス信号である増幅PWM信号5を復調する。すなわち、ローパスフィルタ23は、増幅PWM信号5を復調したアナログ信号を出力する。
 増幅PWM信号5は、入力データ1である音声データが表す音声波形に応じて変調された信号である。従って増幅PWM信号5を復調した信号は、音声波形を表すアナログの音声信号2となる。このように、ローパスフィルタ23は、音声データが復調された音声信号2を出力する。本実施形態では、ローパスフィルタ23は、復調回路に相当する。
 ローパスフィルタ23としては、例えばコイル素子、コンデンサ素子、及び抵抗素子等を用いて構成された受動型のローパスフィルタが用いられる。あるいは、オペアンプ等を用いた能動型のローパスフィルタが用いられてもよい。この他、ローパスフィルタ23の具体的な構成は限定されず、増幅PWM信号5を復調可能に構成された任意のローパスフィルタが用いられてよい。
The low-pass filter 23 cuts the high frequency component of the amplified PWM signal 5 and demodulates the amplified PWM signal 5 which is a pulse signal. That is, the low-pass filter 23 outputs an analog signal obtained by demodulating the amplified PWM signal 5.
The amplified PWM signal 5 is a signal modulated according to the voice waveform represented by the voice data which is the input data 1. Therefore, the signal obtained by demodulating the amplified PWM signal 5 becomes an analog voice signal 2 representing a voice waveform. In this way, the low-pass filter 23 outputs the audio signal 2 in which the audio data is demodulated. In this embodiment, the low-pass filter 23 corresponds to a demodulation circuit.
As the low-pass filter 23, for example, a passive low-pass filter configured by using a coil element, a capacitor element, a resistance element, or the like is used. Alternatively, an active low-pass filter using an operational amplifier or the like may be used. In addition, the specific configuration of the low-pass filter 23 is not limited, and any low-pass filter configured to be able to demodulate the amplified PWM signal 5 may be used.
 本実施形態では、スイッチングアンプ22及びローパスフィルタ23により、増幅PWM信号5に応じた音声信号2を生成する信号出力部30が構成される。信号出力部30は、デジタルアンプ100の最終的な出力となる信号(音声信号2)を生成する回路である。本実施形態では、信号出力部30は、出力回路に相当する。また音声信号2は、出力信号に相当する。 In the present embodiment, the switching amplifier 22 and the low-pass filter 23 constitute a signal output unit 30 that generates an audio signal 2 corresponding to the amplified PWM signal 5. The signal output unit 30 is a circuit that generates a signal (audio signal 2) that is the final output of the digital amplifier 100. In this embodiment, the signal output unit 30 corresponds to an output circuit. The audio signal 2 corresponds to an output signal.
 コンパレータ24は、入力された信号を所定の閾値と比較する比較器である。図1に示すように、コンパレータ24には、スイッチングアンプ22から出力された増幅PWM信号5が入力される。またコンパレータ24からは、増幅PWM信号5を閾値と比較したコンパレータ信号6が出力される。
 コンパレータ24には、例えば所定の閾値として基準電圧が設定される。基準電圧は、例えば増幅PWM信号5のパルスの立ち上がり及び立ち下がりが適正に検出可能となるように適宜設定される。
 この基準電圧と、増幅PWM信号5の電圧が比較される。例えば増幅PWM信号5の電圧が基準電圧よりも高い場合は、+側の電源電圧が出力され、増幅PWM信号5の電圧が基準電圧よりも低い場合は、-側の電源電圧が出力される(図3及び図4等参照)。
 従ってコンパレータ24から出力される信号は、増幅PWM信号5のパルスに対応した矩形状のパルスを含み、コンパレータ24の出力の1(+側の電源電圧)か0(-側の電源電圧)で表現されたデジタル信号となる。
 なお、コンパレータ24から出力される信号のパルスの形状は、増幅PWM信号5のパルスの形状とは異なる。この点については後述する。
The comparator 24 is a comparator that compares an input signal with a predetermined threshold value. As shown in FIG. 1, the amplification PWM signal 5 output from the switching amplifier 22 is input to the comparator 24. Further, the comparator 24 outputs a comparator signal 6 in which the amplified PWM signal 5 is compared with the threshold value.
A reference voltage is set in the comparator 24, for example, as a predetermined threshold value. The reference voltage is appropriately set so that, for example, the rising and falling edges of the pulse of the amplified PWM signal 5 can be appropriately detected.
This reference voltage is compared with the voltage of the amplified PWM signal 5. For example, when the voltage of the amplified PWM signal 5 is higher than the reference voltage, the power supply voltage on the + side is output, and when the voltage of the amplified PWM signal 5 is lower than the reference voltage, the power supply voltage on the-side is output ( See FIGS. 3 and 4 etc.).
Therefore, the signal output from the comparator 24 includes a rectangular pulse corresponding to the pulse of the amplified PWM signal 5, and is represented by 1 (+ side power supply voltage) or 0 (-side power supply voltage) of the output of the comparator 24. It becomes a digital signal.
The shape of the pulse of the signal output from the comparator 24 is different from the shape of the pulse of the amplified PWM signal 5. This point will be described later.
 PWM形状補正処理部25は、コンパレータデータを補正してフィードバックデータ7を生成する。
 ここでコンパレータデータとは、例えばコンパレータ信号6を所定のサンプリング周波数でサンプリングして生成されたデジタル信号であり、コンパレータ24の出力データに相当する。例えばコンパレータ信号6を0及び1に二値化したデジタル信号がコンパレータデータとなる(図5参照)。
The PWM shape correction processing unit 25 corrects the comparator data to generate feedback data 7.
Here, the comparator data is, for example, a digital signal generated by sampling the comparator signal 6 at a predetermined sampling frequency, and corresponds to the output data of the comparator 24. For example, a digital signal obtained by binarizing the comparator signal 6 to 0 and 1 becomes comparator data (see FIG. 5).
 PWM形状補正処理部25では、増幅PWM信号5に含まれるパルスの形状が復元されるようにコンパレータデータが補正される。すなわち、増幅PWM信号5のパルスの形状が復元されたフィードバックデータ7が生成される。
 これにより、フィードバック処理部20では、増幅PWM信号5に基づいたフィードバック処理と同等の処理が可能となる。
The PWM shape correction processing unit 25 corrects the comparator data so that the shape of the pulse included in the amplified PWM signal 5 is restored. That is, the feedback data 7 in which the shape of the pulse of the amplified PWM signal 5 is restored is generated.
As a result, the feedback processing unit 20 can perform processing equivalent to the feedback processing based on the amplified PWM signal 5.
 本実施形態では、信号出力部30に関する回路情報に基づいて、コンパレータデータが補正される。ここで回路情報とは、例えば信号出力部30を構成するスイッチングアンプ22やローパスフィルタ23に関する情報である。
 このように、音声信号2を出力する回路(信号出力部30)の回路情報を用いて、コンパレータデータを補正することで、実際の回路の特性に合った適正なフィードバックデータ7を生成することが可能となる。本実施形態では、PWM形状補正処理部25は、第2の生成部に相当する。
In this embodiment, the comparator data is corrected based on the circuit information about the signal output unit 30. Here, the circuit information is, for example, information related to the switching amplifier 22 and the low-pass filter 23 constituting the signal output unit 30.
In this way, by correcting the comparator data using the circuit information of the circuit that outputs the audio signal 2 (signal output unit 30), it is possible to generate appropriate feedback data 7 that matches the characteristics of the actual circuit. It will be possible. In the present embodiment, the PWM shape correction processing unit 25 corresponds to the second generation unit.
 回路情報は、例えば信号出力部30の動作や各部の特性を測定・解析して生成される。例えばデジタルアンプ100の動作テスト等の過程で回路情報が生成され、その情報に基づいてPWM形状補正処理部25の処理パラメータ等が設定される。
 回路情報には、スイッチングアンプ22に関する情報であるアンプ情報が含まれる。アンプ情報は、例えばスイッチング回路の特性や、増幅される信号の情報等である。本実施形態では、アンプ情報は、第1の情報に相当する。
 また回路情報には、ローパスフィルタ23に関する情報であるフィルタ情報が含まれる。フィルタ情報は、例えばローパスフィルタ23を構成する各素子の特性や、復調される信号の情報等である。本実施形態では、フィルタ情報は、第2の情報に相当する。
The circuit information is generated by measuring and analyzing, for example, the operation of the signal output unit 30 and the characteristics of each unit. For example, circuit information is generated in the process of an operation test of the digital amplifier 100, and processing parameters and the like of the PWM shape correction processing unit 25 are set based on the information.
The circuit information includes amplifier information which is information about the switching amplifier 22. The amplifier information is, for example, the characteristics of a switching circuit, information on an amplified signal, or the like. In this embodiment, the amplifier information corresponds to the first information.
Further, the circuit information includes filter information which is information about the low-pass filter 23. The filter information includes, for example, the characteristics of each element constituting the low-pass filter 23, information on the signal to be demodulated, and the like. In this embodiment, the filter information corresponds to the second information.
 図1には、ADコンバータ11及び解析部12が点線で図示されている。ADコンバータ11及び解析部12は、PWM形状補正処理部25に必要な回路情報の取得と解析を行うブロックである。なお、ADコンバータ11及び解析部12は、回路情報を生成する際にのみ用いられ、実際のデジタルアンプ100には搭載されない。すなわち、これらのブロックは、開発段階や製造段階でのみ使用されるブロックであり、システムサイズには影響を及ぼさない。
 ADコンバータ11は、スイッチングアンプ22の出力(増幅PWM信号5)やローパスフィルタ23の出力(音声信号2)をAD変換(Analog to Digital変換)して、各出力のデジタルデータを生成する。
 解析部12は、例えばADコンバータ11により生成されたデジタルデータや、スイッチングアンプ22の特性を測定した測定データ等を解析する。
 PWM形状補正処理部25では、ADコンバータ11及び解析部12により生成された情報を活用して、コンパレータ24の出力からスイッチングアンプ等で生じる歪みやノイズといったエラー成分を含んだフィードバック信号(増幅PWM信号5)が復元される。
 回路情報(アンプ情報及びフィルタ情報)に基づいて、コンパレータデータを補正する方法については、後に詳しく説明する。
In FIG. 1, the AD converter 11 and the analysis unit 12 are shown by dotted lines. The AD converter 11 and the analysis unit 12 are blocks that acquire and analyze circuit information necessary for the PWM shape correction processing unit 25. The AD converter 11 and the analysis unit 12 are used only when generating circuit information, and are not mounted on the actual digital amplifier 100. That is, these blocks are used only in the development stage and the manufacturing stage, and do not affect the system size.
The AD converter 11 performs AD conversion (Analog to Digital conversion) of the output of the switching amplifier 22 (amplification PWM signal 5) and the output of the low-pass filter 23 (audio signal 2) to generate digital data of each output.
The analysis unit 12 analyzes, for example, digital data generated by the AD converter 11, measurement data obtained by measuring the characteristics of the switching amplifier 22, and the like.
The PWM shape correction processing unit 25 utilizes the information generated by the AD converter 11 and the analysis unit 12 to provide a feedback signal (amplified PWM signal) including error components such as distortion and noise generated by a switching amplifier or the like from the output of the comparator 24. 5) is restored.
The method of correcting the comparator data based on the circuit information (amplifier information and filter information) will be described in detail later.
 本実施形態では、フィードバック処理部20、PWM変換処理部21、コンパレータ24、及びPWM形状補正処理部25により、信号出力部30に出力する信号(PWM信号4)を生成するための信号処理を行う信号処理部31が構成される。
 信号処理部31は、例えばDSP(Digital Signal Processor)等のデジタル演算処理が可能な素子を用いて構成される。信号処理部31は、1つの処理ユニットとして同一基板上に構成されてもよいし、各ブロックが専用のIC(Integrated Circuit)等を用いて構成されてもよい。本実施形態では、信号処理部31は、信号処理装置に相当する。
In the present embodiment, the feedback processing unit 20, the PWM conversion processing unit 21, the comparator 24, and the PWM shape correction processing unit 25 perform signal processing for generating a signal (PWM signal 4) to be output to the signal output unit 30. The signal processing unit 31 is configured.
The signal processing unit 31 is configured by using an element capable of digital arithmetic processing such as a DSP (Digital Signal Processor). The signal processing unit 31 may be configured as one processing unit on the same substrate, or each block may be configured by using a dedicated IC (Integrated Circuit) or the like. In this embodiment, the signal processing unit 31 corresponds to a signal processing device.
[デジタルアンプの基本動作]
 デジタルアンプ100では、入力データ1から音声信号2を再生するまでの再生経路、及び再生経路に対してフィードバック処理を行うフィードバック経路の2つの信号経路が構成される。以下では、各信号経路にそって、デジタルアンプ100の基本動作について説明する。
[Basic operation of digital amplifier]
The digital amplifier 100 includes two signal paths, a reproduction path from the input data 1 to the reproduction of the audio signal 2, and a feedback path for performing feedback processing on the reproduction path. Hereinafter, the basic operation of the digital amplifier 100 will be described along each signal path.
 まず、フィードバック経路を除いた再生経路について説明する。
 デジタルオーディオソースである[1Fs,16bit]のPCM方式の入力データ1は、フィードバック処理部20に入力される。フィードバック処理部20では、フィードバックデータ7に基づいて入力データ1に対する所定の信号処理が施され、補正データ3として出力される。
 補正データ3は、PWM変換処理部21に入力され、PWM方式の信号(PWM信号4)に変換される。PWM信号4は、デジタルアンプとして電力増幅を行うスイッチングアンプ22を駆動するための信号となる。図1に示す例では、[512Fs,1bit]のPWM信号4が出力される。
 PWM信号4は、スイッチングアンプ22により振幅方向に増幅され、増幅PWM信号5が出力される。スイッチングアンプ22での増幅率等は適宜設定される。
 増幅PWM信号5は、2つの信号経路に分かれて伝送され、一方はローパスフィルタ23に入力され、他方はコンパレータ24に入力される。ローパスフィルタ23に入力された増幅PWM信号5は、ローパスフィルタ23を通過することで復調され、アナログのオーディオ信号(音声信号2)として出力される。
 音声信号2は、デジタルアンプ100に接続された再生機器10に入力される。この音声信号2により、再生機器10に搭載されたスピーカが駆動され音声が出力される。
First, the reproduction route excluding the feedback route will be described.
The PCM type input data 1 of [1Fs, 16 bits], which is a digital audio source, is input to the feedback processing unit 20. The feedback processing unit 20 performs predetermined signal processing on the input data 1 based on the feedback data 7, and outputs the correction data 3.
The correction data 3 is input to the PWM conversion processing unit 21 and converted into a PWM signal (PWM signal 4). The PWM signal 4 is a signal for driving a switching amplifier 22 that amplifies power as a digital amplifier. In the example shown in FIG. 1, the PWM signal 4 of [512 Fs, 1 bit] is output.
The PWM signal 4 is amplified in the amplitude direction by the switching amplifier 22, and the amplified PWM signal 5 is output. The amplification factor and the like in the switching amplifier 22 are appropriately set.
The amplified PWM signal 5 is transmitted separately in two signal paths, one is input to the low-pass filter 23 and the other is input to the comparator 24. The amplified PWM signal 5 input to the low-pass filter 23 is demodulated by passing through the low-pass filter 23, and is output as an analog audio signal (audio signal 2).
The audio signal 2 is input to the playback device 10 connected to the digital amplifier 100. The audio signal 2 drives a speaker mounted on the playback device 10 to output audio.
 次にフィードバック経路について説明する。
 図3は、フィードバック経路における信号処理について説明するための模式図である。図3にはフィードバック経路の信号処理におけるパルスの波形が、同じ時間軸に沿って図示されている。実際には、各信号処理はフィードバック経路に沿って順番に実行される。
 スイッチングアンプ22から出力された増幅PWM信号5(図中の上から1段目)は、コンパレータ24に入力される。コンパレータ24では、増幅PWM信号5の電圧が比較され、増幅PWM信号5のパルスと対応する矩形状のパルスを含むコンパレータ信号6(図中の上から2段目)が出力される。これらコンパレータ24の入出力(増幅PWM信号5及びコンパレータ信号6)は、アナログ電圧の信号となる。
 コンパレータ信号6は、PWM形状補正処理部25に入力され、所定のサンプリング周波数でサンプリングされてコンパレータデータ8(図中の上から3段目)に変換される。コンパレータデータ8は、デバイス内におけるロジックのHi及びLowレベルで表されるデジタル信号である。
 PWM形状補正処理部25では、コンパレータデータ8の補正処理が実行され、フィードバック信号である増幅PWM信号5のパルスの形状が復元されたフィードバックデータ7(図中の上から4段目)が生成される。フィードバックデータ7は、所定のbit数(ここでは16bit)で表されるデジタル信号である。
 フィードバックデータ7は、フィードバック処理部20に入力され、入力データ1を補正するフィードバック処理に用いられる。これにより、例えばスイッチングアンプ22で生じるパルスの歪み等を抑制することが可能な補正データ3を出力することが可能となる。
 以下では、フィードバック経路における各部の動作について具体的に説明する。
Next, the feedback route will be described.
FIG. 3 is a schematic diagram for explaining signal processing in the feedback path. FIG. 3 shows the waveform of the pulse in the signal processing of the feedback path along the same time axis. In practice, each signal processing is performed in turn along the feedback path.
The amplified PWM signal 5 (first stage from the top in the figure) output from the switching amplifier 22 is input to the comparator 24. In the comparator 24, the voltage of the amplified PWM signal 5 is compared, and the comparator signal 6 (second stage from the top in the figure) including the rectangular pulse corresponding to the pulse of the amplified PWM signal 5 is output. The input / output of these comparators 24 (amplified PWM signal 5 and comparator signal 6) are analog voltage signals.
The comparator signal 6 is input to the PWM shape correction processing unit 25, sampled at a predetermined sampling frequency, and converted into comparator data 8 (third stage from the top in the figure). The comparator data 8 is a digital signal represented by the Hi and Low levels of logic in the device.
The PWM shape correction processing unit 25 executes correction processing of the comparator data 8 to generate feedback data 7 (fourth stage from the top in the figure) in which the shape of the pulse of the amplified PWM signal 5 which is a feedback signal is restored. To. The feedback data 7 is a digital signal represented by a predetermined number of bits (16 bits in this case).
The feedback data 7 is input to the feedback processing unit 20 and is used for feedback processing for correcting the input data 1. This makes it possible to output the correction data 3 that can suppress the distortion of the pulse generated by the switching amplifier 22, for example.
In the following, the operation of each part in the feedback path will be specifically described.
[コンパレータの動作]
 図4は、増幅PWM信号5とコンパレータ信号6との概形を示す模式図である。ここでは、増幅PWM信号5からコンパレータ信号6を生成するコンパレータ24の動作について説明する。
 図4には、増幅PWM信号5に含まれる1つのパルスが太い実線で図示されており、コンパレータ信号6となる1つのパルスが細い実線で図示されている。
 上記したように、増幅PWM信号5は、スイッチングアンプ22の特性等に応じてパルスの立ち上がりや立ち下がりに一定の時間がかかり、パルスの両端が傾斜した信号となる(図2B参照)。コンパレータ24は、増幅PWM信号5のパルスよりも立ち上がりや立ち下がりに要する時間が短い矩形状のパルスを生成する。
[Comparator operation]
FIG. 4 is a schematic diagram showing an outline of the amplified PWM signal 5 and the comparator signal 6. Here, the operation of the comparator 24 that generates the comparator signal 6 from the amplified PWM signal 5 will be described.
In FIG. 4, one pulse included in the amplified PWM signal 5 is shown by a thick solid line, and one pulse that becomes the comparator signal 6 is shown by a thin solid line.
As described above, the amplified PWM signal 5 takes a certain amount of time for the rise and fall of the pulse depending on the characteristics of the switching amplifier 22, and becomes a signal in which both ends of the pulse are inclined (see FIG. 2B). The comparator 24 generates a rectangular pulse in which the time required for rising and falling is shorter than that of the pulse of the amplified PWM signal 5.
 コンパレータ24には、第1の基準電圧V1と、第1の基準電圧V1よりも低い第2の基準電圧V2とが設定される(V1>V2)。第1の基準電圧V1は、コンパレータ24の出力を+側の電源電圧(Hiレベル)に切り替える場合に参照されるHi側のスレッショルドレベルである。また第2の基準電圧V2は、コンパレータ24の出力を-側の電源電圧(Lowレベル)に切り替える場合に参照されるLow側のスレッショルドレベルである。-側の電源電圧は、典型的にはGNDレベルに設定される。 A first reference voltage V 1 and a second reference voltage V 2 lower than the first reference voltage V 1 are set in the comparator 24 (V 1 > V 2 ). The first reference voltage V 1 is a threshold level on the Hi side that is referred to when the output of the comparator 24 is switched to the power supply voltage (Hi level) on the + side. The second reference voltage V 2 is the threshold level on the Low side that is referred to when the output of the comparator 24 is switched to the power supply voltage (Low level) on the − side. The negative side supply voltage is typically set to GND level.
 例えば、増幅PWM信号5のパルスが入力され、増幅PWM信号5の電圧が、第1の基準電圧V1を超えたタイミングT1でコンパレータ信号6の電圧がHiレベルに切り替えられる。これにより、増幅PWM信号5のパルスの立ち上がりが検出される。
 タイミングT1以降、増幅PWM信号5の電圧は増幅電圧VAまで上昇し、その後パルスの立ち下がりに応じて電圧が下降する。この時、増幅PWM信号5の電圧が、第2の基準電圧V2を超えたタイミングT2でコンパレータ信号6の電圧がLowレベルに切り替えられる。これにより、増幅PWM信号5のパルスの立ち下がりが検出される。
 この結果、増幅PWM信号5のパルスに対応する矩形状のパルスを含むコンパレータ信号6が生成される。
For example, the pulse of the amplified PWM signal 5 is input, and the voltage of the comparator signal 6 is switched to the Hi level at the timing T 1 when the voltage of the amplified PWM signal 5 exceeds the first reference voltage V 1. As a result, the rising edge of the pulse of the amplified PWM signal 5 is detected.
After the timing T 1 , the voltage of the amplified PWM signal 5 rises to the amplified voltage VA , and then the voltage drops according to the fall of the pulse. At this time, the voltage of the comparator signal 6 is switched to the Low level at the timing T 2 when the voltage of the amplified PWM signal 5 exceeds the second reference voltage V 2. As a result, the fall of the pulse of the amplified PWM signal 5 is detected.
As a result, the comparator signal 6 including the rectangular pulse corresponding to the pulse of the amplified PWM signal 5 is generated.
 なお、増幅PWM信号5の電圧はノイズ等の影響により変動する場合がある。例えばタイミングT1以降に、増幅PWM信号5の電圧が変動して一時的に第1の基準電圧V1よりも低くなることが考えられる。このような場合であっても、増幅PWM信号5の電圧が第
2の基準電圧V2よりも低くならない限り、コンパレータ24の出力がLowレベルに切り替わることはない。これは増幅PWM信号5のパルスが立ち下がる場合も同様である。
 第1及び第2の基準電圧V1及びV2は、例えば増幅PWM信号5のノイズレベル等に応じて、意図しない発振動作等が生じないように適宜設定される。
 これにより、増幅PWM信号5を適正にコンパレータ信号6に変換することが可能となり、安定したフィードバック動作が可能となる。
The voltage of the amplified PWM signal 5 may fluctuate due to the influence of noise and the like. For example, it is conceivable that the voltage of the amplified PWM signal 5 fluctuates after the timing T 1 and temporarily becomes lower than the first reference voltage V 1. Even in such a case, the output of the comparator 24 is not switched to the Low level unless the voltage of the amplified PWM signal 5 becomes lower than the second reference voltage V 2. This also applies when the pulse of the amplified PWM signal 5 falls.
The first and second reference voltages V 1 and V 2 are appropriately set according to, for example, the noise level of the amplified PWM signal 5 so that an unintended oscillation operation or the like does not occur.
As a result, the amplified PWM signal 5 can be appropriately converted into the comparator signal 6, and stable feedback operation is possible.
[コンパレータデータの生成]
 図5は、コンパレータデータ8とフィードバックデータ7との概形を示す模式図である。図5には、コンパレータデータ8及びフィードバックデータ7において時刻t1~t9に対応する各データ点とそのレベル値(Lv)が模式的に図示されている。このうち時刻t6が、図4に示すタイミングT1に対応する。これらのデータ点は、1つのパルスの立ち上がりを表すデータ点である。
 またコンパレータデータ8は、黒色のデータ点で表され、レベル値は左側の縦軸で表されている。フィードバックデータ7は、灰色のデータ点で表され、レベル値は右側の縦軸で表されている。なお左側及び右側の縦軸が表すレベル値は、互いに独立している。
[Generation of comparator data]
FIG. 5 is a schematic diagram showing an outline of the comparator data 8 and the feedback data 7. FIG. 5 schematically shows each data point corresponding to times t 1 to t 9 and its level value (Lv) in the comparator data 8 and the feedback data 7. Of these, time t 6 corresponds to timing T 1 shown in FIG. These data points are data points that represent the rise of one pulse.
The comparator data 8 is represented by black data points, and the level value is represented by the vertical axis on the left side. The feedback data 7 is represented by gray data points, and the level value is represented by the vertical axis on the right side. The level values represented by the vertical axes on the left and right sides are independent of each other.
 まず、コンパレータ信号6からコンパレータデータ8を生成する処理について説明する。
 PWM形状補正処理部25に入力されたコンパレータ信号6は、所定のサンプリング周波数F1でサンプリングされる。例えば図5に示すコンパレータデータ8の各データ点が、サンプリン周波数F1の逆数で表される時間間隔で取得される。
 具体的には、コンパレータ信号6がLowレベルである場合(時刻t1~t5)、データ点の値は0(ロジック回路のLowレベル)に設定される。またコンパレータ信号6がHiレベルである場合(時刻t6~t9)、データ点の値は1(ロジック回路のHiレベル)に設定される。
 このように、増幅PWM信号5のコンパレータ信号6をサンプリングしたコンパレータデータ8は、増幅PWM信号5が二値化された二値データとなる。
First, the process of generating the comparator data 8 from the comparator signal 6 will be described.
Comparator signal 6 input to the PWM shape correction process section 25 is sampled at a predetermined sampling frequency F 1. For example, each data point of the comparator data 8 shown in FIG. 5, is acquired at time intervals represented by the reciprocal of the sampling frequency F 1.
Specifically, when the comparator signal 6 is at the Low level (time t 1 to t 5 ), the value of the data point is set to 0 (Low level of the logic circuit). When the comparator signal 6 is at Hi level (time t 6 to t 9 ), the value of the data point is set to 1 (Hi level of the logic circuit).
In this way, the comparator data 8 obtained by sampling the comparator signal 6 of the amplified PWM signal 5 becomes binary data obtained by binarizing the amplified PWM signal 5.
 サンプリング周波数F1は、PWM変換処理部21のマスタークロックの周波数F0よりも高い値に設定される(F1>F0)。
 図2Aを参照して説明したように、マスタークロックの周波数F0は、PWM信号4の分解能を表す周波数である。従ってPWM信号4が増幅された増幅PWM信号5の分解能も周波数F0で表される。
 このように、PWM形状補正処理部25は、コンパレータ24から出力されたコンパレータ信号6を、増幅PWM信号5の分解能を表すマスタークロックの周波数F0よりも高いサンプリング周波数F1でサンプリングしてコンパレータデータ8を生成する。
 本実施形態では、マスタークロックの周波数F0は、第1の周波数に相当し、サンプリング周波数F1は、第2の周波数に相当する。
The sampling frequency F 1 is set to a value higher than the frequency F 0 of the master clock of the PWM conversion processing unit 21 (F 1 > F 0 ).
As described with reference to FIG. 2A, the frequency F 0 of the master clock is a frequency representing the resolution of the PWM signal 4. Therefore, the resolution of the amplified PWM signal 5 in which the PWM signal 4 is amplified is also represented by the frequency F 0.
In this way, the PWM shape correction processing unit 25 samples the comparator signal 6 output from the comparator 24 at a sampling frequency F 1 higher than the frequency F 0 of the master clock representing the resolution of the amplified PWM signal 5, and the comparator data. 8 is generated.
In the present embodiment, the frequency F 0 of the master clock corresponds to the first frequency, and the sampling frequency F 1 corresponds to the second frequency.
 図1に示す例では、コンパレータ信号6のサンプリング周波数F1は、F1=2048×Fs=90.3168MHzに設定される。従って、コンパレータデータ8は、[2048Fs,1bit]のデジタル信号となる。このように、コンパレータ信号6は、増幅PWM信号の分解能を表すマスタークロックの周波数F0(512×Fs)よりも十分に高い周波数F1でサンプリングされる。
 仮にコンパレータ信号6を低い周波数でサンプリングしてしまうと、増幅PWM信号5の分解能を間引いて取得してしまうため、新たなエラー成分(歪みやノイズ)が生じてしまう恐れがある。
 これに対し、本実施形態では、サンプリング周波数F1を増幅PWM信号5の分解能(周波数F0)よりも高く設定することで、増幅PWM信号5の変調単位が間引かれるといった事態が回避される。これにより増幅PWM信号5(PWM信号4)の変調度を適正に取得しデータ化することが可能である。
 このように、PWM形状補正処理部25では、コンパレータ信号6を直接補正せずに、一度高いサンプリン周波数F1でサンプリングした上で補正処理が実行される。
In the example shown in FIG. 1, the sampling frequency F 1 of the comparator signal 6 is set to F 1 = 2048 × Fs = 90.316 MHz. Therefore, the comparator data 8 becomes a digital signal of [2048Fs, 1 bit]. In this way, the comparator signal 6 is sampled at a frequency F 1 that is sufficiently higher than the frequency F 0 (512 × Fs) of the master clock, which represents the resolution of the amplified PWM signal.
If the comparator signal 6 is sampled at a low frequency, the resolution of the amplified PWM signal 5 is thinned out and acquired, so that a new error component (distortion or noise) may occur.
On the other hand, in the present embodiment, by setting the sampling frequency F 1 to be higher than the resolution of the amplified PWM signal 5 (frequency F 0 ), it is possible to avoid a situation in which the modulation unit of the amplified PWM signal 5 is thinned out. .. This makes it possible to appropriately acquire the degree of modulation of the amplified PWM signal 5 (PWM signal 4) and convert it into data.
In this way, the PWM shape correction processing unit 25 does not directly correct the comparator signal 6, but once samples at a high sampling frequency F 1 , and then executes the correction processing.
[フィードバックデータの生成]
 続いて、コンパレータデータ8を補正してフィードバックデータ7を生成する処理について説明する。
 PWM形状補正処理部25は、コンパレータデータ8である二値データに含まれる複数のデータ点のレベル値を補正する。具体的には、コンパレータデータ8の各データ点に、所定のbit数で表されるレベル値が設定される。このように所定のbit数のレベル値がデータ点ごとに設定されたデータが、フィードバックデータ7として生成される。
[Generation of feedback data]
Subsequently, a process of correcting the comparator data 8 to generate the feedback data 7 will be described.
The PWM shape correction processing unit 25 corrects the level values of a plurality of data points included in the binary data which is the comparator data 8. Specifically, a level value represented by a predetermined number of bits is set at each data point of the comparator data 8. The data in which the level value of a predetermined number of bits is set for each data point in this way is generated as the feedback data 7.
 ここでは、例えば16bitで表現されたレベル値が用いられる。この場合、フィードバックデータ7は、[2048Fs,16bit]のデジタル信号となる。なお、図5に示す例では、各データ点のレベル値が7段階で表されている。例えば、データ点の数が多い場合には、各データ点のレベル値はより細かいレベルに分けて表されることになる。
 レベル値を表現する方法は限定されず、例えばフィードバック処理の精度や、装置の処理能力等に応じて任意のビット数等がレベル値の分解能として設定されてよい。
 このように、データ点のレベル値を補正する処理は、増幅PWM信号5のパルスの形状を復元するようにフィードバックデータ7の形状を補正する形状補正処理であると言える。
Here, for example, a level value expressed in 16 bits is used. In this case, the feedback data 7 becomes a digital signal of [2048Fs, 16 bits]. In the example shown in FIG. 5, the level value of each data point is represented in 7 stages. For example, when the number of data points is large, the level value of each data point is divided into finer levels.
The method of expressing the level value is not limited, and for example, an arbitrary number of bits or the like may be set as the resolution of the level value according to the accuracy of the feedback processing, the processing capacity of the apparatus, or the like.
As described above, it can be said that the process of correcting the level value of the data point is the shape correction process of correcting the shape of the feedback data 7 so as to restore the shape of the pulse of the amplified PWM signal 5.
[形状補正処理]
 PWM形状補正処理部25は、コンパレータデータ8におけるパルスの立ち上がり又は立ち下がりの傾斜を補正する。
 図5に示すように、コンパレータデータ8はHiレベルかLowレベルの二値で表されるため、パルスの形状は矩形状となる。このような矩形状のパルスの立ち上がりや立ち下がりに傾斜を与えるように、各データ点のレベル値が補正される。
 これにより、スイッチングアンプ22から実際に出力される増幅PWM信号5と同様に傾斜したパルスを復元するといったことが可能となる。
[Shape correction processing]
The PWM shape correction processing unit 25 corrects the slope of the rise or fall of the pulse in the comparator data 8.
As shown in FIG. 5, since the comparator data 8 is represented by a binary value of Hi level or Low level, the shape of the pulse is rectangular. The level value of each data point is corrected so as to give an inclination to the rising and falling edges of such a rectangular pulse.
This makes it possible to restore a gradient pulse similar to the amplified PWM signal 5 actually output from the switching amplifier 22.
 なお、形状補正処理は、パルスの立ち上がり及び立ち下がりの両方の傾斜に対して行われてもよいし、どちらか一方にのみ行われてもよい。例えば両方の傾斜を補正することで、フィードバック処理の精度を向上することが可能である。また例えば一方の傾斜を補正する場合、演算量が減少し動作速度を向上することや消費電力を低減することが可能である。 Note that the shape correction process may be performed on both the rising and falling slopes of the pulse, or may be performed on only one of them. For example, it is possible to improve the accuracy of the feedback processing by correcting both inclinations. Further, for example, when correcting one of the inclinations, it is possible to reduce the amount of calculation, improve the operating speed, and reduce the power consumption.
 またPWM形状補正処理部25は、コンパレータデータ8におけるパルスの振幅を補正する。上記したように、形状補正処理では、コンパレータデータ8の各データ点に対して、所定のbit数で表されるレベル値が設定される。この所定のbit数で表現可能なレベル値の範囲で、フィードバックデータ7におけるパルスの振幅を表すレベル値(振幅レベル)が設定される。これによりフィードバックデータ7のパルスの高さを適宜調整することが可能となる。 Further, the PWM shape correction processing unit 25 corrects the amplitude of the pulse in the comparator data 8. As described above, in the shape correction process, a level value represented by a predetermined number of bits is set for each data point of the comparator data 8. A level value (amplitude level) representing the pulse amplitude in the feedback data 7 is set within the range of the level value that can be expressed by the predetermined number of bits. This makes it possible to appropriately adjust the pulse height of the feedback data 7.
 図6は、増幅PWM信号5の形状情報の一例を示す模式図である。形状情報13は、図1に示すADコンバータ11を用いて、増幅PWM信号5をAD変換することで生成されたデータである。図6には、増幅PWM信号5のパルスの立ち上がりを示す形状情報13を示す模式的なグラフが黒の実線で図示されている。
 以下では、形状補正処理の一例として、増幅PWM信号5の形状情報13を用いた処理について説明する。
FIG. 6 is a schematic diagram showing an example of the shape information of the amplified PWM signal 5. The shape information 13 is data generated by AD-converting the amplified PWM signal 5 using the AD converter 11 shown in FIG. In FIG. 6, a schematic graph showing shape information 13 showing the rise of the pulse of the amplified PWM signal 5 is shown by a solid black line.
Hereinafter, as an example of the shape correction process, a process using the shape information 13 of the amplified PWM signal 5 will be described.
 形状情報13は、ADコンバータ11を用いて、増幅PWM信号5の実際の形状をAD変換することで検出されたデータである。ADコンバータ11のサンプリング周波数は、例えばコンパレータデータ8を生成する際のサンプリング周波数F1以上の値に設定される。例えばF1=2048Fsに設定されている場合、ADコンバータ11のサンプリング周波数は、2048Fs以上等の高い周波数に設定される。これにより、コンパレータデータ8の各データ点のレベル値を高精度に補正することが可能となる。
 形状情報13は、スイッチングアンプ22に関するアンプ情報の一例である。すなわち、アンプ情報には、増幅PWM信号5の形状をAD変換により検出した形状情報13が含まれる。
The shape information 13 is data detected by AD-converting the actual shape of the amplified PWM signal 5 using the AD converter 11. The sampling frequency of the AD converter 11 is set to a value equal to or higher than the sampling frequency F 1 when generating the comparator data 8, for example. For example, when F 1 = 2048 Fs, the sampling frequency of the AD converter 11 is set to a high frequency such as 2048 Fs or more. This makes it possible to correct the level value of each data point of the comparator data 8 with high accuracy.
The shape information 13 is an example of amplifier information regarding the switching amplifier 22. That is, the amplifier information includes the shape information 13 in which the shape of the amplified PWM signal 5 is detected by AD conversion.
 このように取得された形状情報13が解析部12により解析される。具体的には、増幅PWM信号5の形状(パルス)の傾斜が算出される。
 例えば形状情報13から、パルスの立ち上がりの上端及び下端に対応するデータ点が取得される。そして各データ点をつなぐ直線14(図中の点線)の傾斜が、パルスの立ち上がりの傾斜として算出される。なお直線14の傾斜は、信号がLowレベルからHiレベルに立ち上がるまでの時間を表しているとも言える。
 また解析部12は、上記した方法を用いてパルスの立ち下りの傾斜等も算出可能である。
 ここで算出された傾斜の値は、例えばPWM形状補正処理部25が参照するメモリ等に形状補正処理のパラメータとして記憶される。
The shape information 13 thus acquired is analyzed by the analysis unit 12. Specifically, the slope of the shape (pulse) of the amplified PWM signal 5 is calculated.
For example, from the shape information 13, data points corresponding to the upper end and the lower end of the rising edge of the pulse are acquired. Then, the slope of the straight line 14 (dotted line in the figure) connecting the data points is calculated as the slope of the rising edge of the pulse. It can be said that the slope of the straight line 14 represents the time until the signal rises from the Low level to the Hi level.
In addition, the analysis unit 12 can also calculate the slope of the fall of the pulse and the like by using the above method.
The inclination value calculated here is stored as a parameter of the shape correction processing in, for example, a memory referred to by the PWM shape correction processing unit 25.
 この方法では、傾斜以外のリンギング(パルスの上端や下端での電圧の変動)といった理想波形(矩形波形)との差分となるエラー情報が欠落することが考えられる。しかしながら、PWM形状補正処理部25では、データ処理用のローパスフィルタ等により帯域が制限されるため、上記した直線14の傾斜は、パルスの傾斜として扱うことが可能である。
 この他、パルスの傾斜を算出する方法は限定されない。
In this method, it is conceivable that error information that is a difference from the ideal waveform (rectangular waveform) such as ringing (voltage fluctuation at the upper end and lower end of the pulse) other than the inclination is missing. However, in the PWM shape correction processing unit 25, since the band is limited by a low-pass filter or the like for data processing, the slope of the straight line 14 described above can be treated as the slope of the pulse.
In addition, the method of calculating the slope of the pulse is not limited.
 PWM形状補正処理部25は、形状情報13から算出された増幅PWM信号5に含まれるパルスの立ち上がり又は立ち下がりの傾斜に基づいてコンパレータデータ8を補正する。すなわちPWM形状補正処理部25は、コンパレータデータ8に直線14の傾斜を与えるようにレベル値を設定して、フィードバックデータ7を生成する。
 例えば、フィードバックデータ7においてデータ点のレベル値が立ち上がる時間が、直線14の傾斜で表される時間と等しくなるように、各データ点のレベル値が設定される。
The PWM shape correction processing unit 25 corrects the comparator data 8 based on the inclination of the rise or fall of the pulse included in the amplified PWM signal 5 calculated from the shape information 13. That is, the PWM shape correction processing unit 25 sets the level value so as to give the comparator data 8 the inclination of the straight line 14, and generates the feedback data 7.
For example, the level value of each data point is set so that the time at which the level value of the data point rises in the feedback data 7 is equal to the time represented by the inclination of the straight line 14.
 例えば図5では、時刻t3~t8のデータ点のレベル値がこの順番で大きくなるように設定される。この時、各データ点のレベル値は、図6に示す直線14の傾斜に応じて設定され、時刻t3から時刻t8までの時間(すなわちパルスの立ち上がり時間)は、図6に示す直線14の傾斜が表す立ち上がり時間と同様となる。
 これにより、フィードバックデータ7のパルスの傾斜は、実際の増幅PWM信号5のパルスの傾斜と同様の傾斜となる。この結果、フィードバックデータ7は、増幅PWM信号5のパルスの傾斜を復元したデジタル信号となる。
 またフィードバックデータ7におけるパルスの振幅(振幅レベル)は、例えば図6に示す形状情報13における増幅PWM信号5のパルスの振幅を表す電圧値に基づいて設定される。例えば振幅を表す電圧値が大きい場合には、振幅レベルが高く設定され、電圧値が小さい場合には、振幅レベルが低く設定される。
 これにより実際の信号の振幅に応じた振幅レベルを設定することが可能である。
For example, in FIG. 5, the level values of the data points at times t 3 to t 8 are set to increase in this order. At this time, the level value of each data point is set according to the inclination of the straight line 14 shown in FIG. 6, and the time from time t 3 to time t 8 (that is, the rise time of the pulse) is the straight line 14 shown in FIG. It is the same as the rise time represented by the inclination of.
As a result, the slope of the pulse of the feedback data 7 becomes the same slope as the slope of the pulse of the actual amplified PWM signal 5. As a result, the feedback data 7 becomes a digital signal in which the slope of the pulse of the amplified PWM signal 5 is restored.
The pulse amplitude (amplitude level) in the feedback data 7 is set based on, for example, a voltage value representing the pulse amplitude of the amplified PWM signal 5 in the shape information 13 shown in FIG. For example, when the voltage value representing the amplitude is large, the amplitude level is set high, and when the voltage value is small, the amplitude level is set low.
This makes it possible to set the amplitude level according to the amplitude of the actual signal.
 このように、デジタルアンプ100では、フィードバック信号である増幅PWM信号5の分解能よりも高いサンプリング周波数F1でサンプリングされたコンパレータデータ8が、解析部12による解析結果を用いて補正される。これにより、コンパレータ24に入力される増幅PWM信号5のエラー成分となるパルスを階段状に復元することが可能となる。 As described above, in the digital amplifier 100, the comparator data 8 sampled at the sampling frequency F 1 higher than the resolution of the amplified PWM signal 5 which is the feedback signal is corrected by using the analysis result by the analysis unit 12. This makes it possible to restore the pulse, which is an error component of the amplified PWM signal 5 input to the comparator 24, in a stepped manner.
 上記では、増幅PWM信号5の形状情報13(アンプ情報)を使った形状補正処理について説明した。形状補正処理は、例えば他のアンプ情報やフィルタ情報等に基づいて形状補正処理が実行されてもよい。 In the above, the shape correction process using the shape information 13 (amplifier information) of the amplified PWM signal 5 has been described. The shape correction process may be executed based on, for example, other amplifier information, filter information, or the like.
 アンプ情報には、スイッチングアンプ22の素子特性に関する情報が含まれる。ここで素子特性とは、例えば、スイッチングアンプ22に搭載されたFET等の素子パラメータ(ドレイン・ソース間のオン抵抗、電荷容量特性、及びスイッチング特性等)である。
 例えばオン抵抗に応じて増幅PWM信号5の振幅が変化する場合がある。この場合、オン抵抗に応じた振幅レベルが設定される。また電荷容量特性が表す容量成分に応じて、パルスの形状が変形する場合がある。このような形状変化が補正されてもよい。またスイッチング特性によって、パルスの傾斜等が変化することが考えられる。この場合、スイッチング特性に基づいて、フィードバックデータ7の傾斜が補正される。
The amplifier information includes information regarding the element characteristics of the switching amplifier 22. Here, the element characteristics are, for example, element parameters (on resistance between drain and source, charge capacitance characteristics, switching characteristics, etc.) of an FET or the like mounted on the switching amplifier 22.
For example, the amplitude of the amplified PWM signal 5 may change depending on the on-resistance. In this case, the amplitude level is set according to the on-resistance. Further, the shape of the pulse may be deformed depending on the capacitance component represented by the charge capacitance characteristic. Such a shape change may be corrected. Further, it is conceivable that the slope of the pulse changes depending on the switching characteristics. In this case, the slope of the feedback data 7 is corrected based on the switching characteristics.
 またアンプ情報には、スイッチングアンプ22に設定されたデッドタイムに関する情報が含まれる。ここでデッドタイムとは、スイッチングアンプ22においてハイサイドとローサイドが同時にONになる現象を防ぐために設定される時間である。このようなデッドタイムにより、パルスの傾斜が変化することがあり得る。この場合、デッドタイムに基づいて、フィードバックデータ7の傾斜が補正される。 Further, the amplifier information includes information on the dead time set in the switching amplifier 22. Here, the dead time is a time set in order to prevent the phenomenon that the high side and the low side are turned on at the same time in the switching amplifier 22. Due to such dead time, the slope of the pulse may change. In this case, the slope of the feedback data 7 is corrected based on the dead time.
 またアンプ情報には、スイッチングアンプを駆動する電源に関する情報が含まれる。電源に関する情報としては、例えば電源のノイズレベルや変動レベル等の電源品質に関する情報が挙げられる。例えば電源ノイズは、増幅PWM信号5の波形としてあらわれる可能性がある。このような電源ノイズの波形を再現するように、フィードバックデータ7を生成することも可能である。 Also, the amplifier information includes information about the power supply that drives the switching amplifier. Examples of the information on the power supply include information on the power supply quality such as the noise level and the fluctuation level of the power supply. For example, power supply noise may appear as the waveform of the amplified PWM signal 5. It is also possible to generate feedback data 7 so as to reproduce such a waveform of power supply noise.
 フィルタ情報には、増幅PWM信号5が復調された音声信号2に関する情報が含まれる。例えば、例えばADコンバータ11を用いて、スピーカを駆動するアナログオーディオ信号である音声信号2がAD変換され、音声信号2の形状情報が取得される。そして解析部12により、音声信号2の品質が解析される。音声信号2の品質とは、アナログ波形における歪みやノイズ特性等である。
 形状補正処理では、音声信号2の歪み等が補正されるように、フィードバックデータ7が生成される。これにより、ローパスフィルタ23の特性に応じた補正が可能となり、例えば入力データ1の音声波形を精度よく再現した音声信号2等を出力することが可能である。
The filter information includes information about the audio signal 2 in which the amplified PWM signal 5 is demodulated. For example, using, for example, an AD converter 11, the audio signal 2 which is an analog audio signal for driving the speaker is AD-converted, and the shape information of the audio signal 2 is acquired. Then, the analysis unit 12 analyzes the quality of the audio signal 2. The quality of the audio signal 2 is distortion, noise characteristics, etc. in the analog waveform.
In the shape correction process, the feedback data 7 is generated so that the distortion of the audio signal 2 and the like are corrected. This makes it possible to make corrections according to the characteristics of the low-pass filter 23, and for example, it is possible to output an audio signal 2 or the like that accurately reproduces the audio waveform of the input data 1.
 これらアンプ情報やフィルタ情報に基づいた形状補正処理は、それぞれ単独で実行されてもよいし、各補正を組み合わせた処理が実行されてもよい。
 形状補正処理により生成されたフィードバックデータ7は、フィードバック処理部に入力され、入力データ1に対するフィードバック処理に用いられる。
 このように、デジタルアンプ100では、エラー成分等を含むアナログのフィードバック信号(増幅PWM信号5)がコンパレータ24を介して二値化される。この二値化されたデータ(コンパレータデータ8)が、スイッチングアンプ22やローパスフィルタ23の特性等に応じて補正され、エラー成分等が復元されたフィードバックデータ7が生成される。これにより、高品質なフィードバック処理が可能となる
The shape correction process based on the amplifier information and the filter information may be executed independently, or a process in which each correction is combined may be executed.
The feedback data 7 generated by the shape correction process is input to the feedback processing unit and used for the feedback process for the input data 1.
As described above, in the digital amplifier 100, the analog feedback signal (amplified PWM signal 5) including the error component and the like is binarized via the comparator 24. This binarized data (comparator data 8) is corrected according to the characteristics of the switching amplifier 22 and the low-pass filter 23, and feedback data 7 in which error components and the like are restored is generated. This enables high quality feedback processing.
[フィードバック処理]
 図7は、フィードバック処理部20の構成例を示すブロック図である。図7には、フィードバック処理部20を構成する処理ブロックが模式的に図示されている。
 フィードバック処理部20は、アップサンプリング部40と、ダウンサンプリング部41と、ローパスフィルタ42と、ゲイン調整部43と、加算処理部44とを有する。なおフィードバック処理部20の各部は、デジタル処理を行う機能ブロックである。
[Feedback processing]
FIG. 7 is a block diagram showing a configuration example of the feedback processing unit 20. FIG. 7 schematically shows a processing block constituting the feedback processing unit 20.
The feedback processing unit 20 includes an upsampling unit 40, a downsampling unit 41, a low-pass filter 42, a gain adjusting unit 43, and an addition processing unit 44. Each part of the feedback processing unit 20 is a functional block that performs digital processing.
 アップサンプリング部40は、入力データ1をアップサンプリングしてサンプリングレートを上げる。ダウンサンプリング部41は、フィードバックデータ7をダウンサンプリングしてサンプリングレートを下げる。なおアップサンプリング部40及びダウンサンプリング部41の出力は、同じサンプリングレートとなるようにサンプリングされる。
 ローパスフィルタ42は、ダウンサンプリングされたフィードバックデータ7から、フィードバック可能な周波数帯域以外の帯域に含まれるノイズ成分を除去する。
 ゲイン調整部43は、所定の割合でフィードバックデータ7のレベル値を調整するゲイン調整を行う。ゲイン調整の割合は、例えばスイッチングアンプ22の増幅率等に応じて適宜設定される。
 加算処理部44は、アップサンプリングされた入力データ1からゲイン調整されたフィードバックデータ7を減算して、補正データ3として出力する。
The upsampling unit 40 upsamples the input data 1 to increase the sampling rate. The downsampling unit 41 downsamples the feedback data 7 to lower the sampling rate. The outputs of the upsampling unit 40 and the downsampling unit 41 are sampled so as to have the same sampling rate.
The low-pass filter 42 removes noise components included in a band other than the feedback-capable frequency band from the downsampled feedback data 7.
The gain adjusting unit 43 adjusts the gain to adjust the level value of the feedback data 7 at a predetermined ratio. The rate of gain adjustment is appropriately set according to, for example, the amplification factor of the switching amplifier 22.
The addition processing unit 44 subtracts the gain-adjusted feedback data 7 from the upsampled input data 1, and outputs the correction data 3.
 図7に示す例では、アップサンプリング部40に[1Fs,16bit]の入力データ1が入力される。この入力データ1は、[64Fs,24bit]のデータにアップサンプリングされる。
 またダウンサンプリング部41に[2048Fs,16bit]のフィードバックデータ7が入力される。このフィードバックデータ7は、アップサンプリング後の入力データ1と同じ[64Fs,24bit]のデータにダウンサンプリングされる。
 ダウンサンプリングされたフィードバックデータ7は、ローパスフィルタ42を通過してノイズ成分が除去され、ゲイン調整部43に入力され所定の割合でゲインが調整される。
 加算処理部44により、アップサンプリングされた入力データ1からゲイン調整されたフィードバックデータ7が減算され、補正データ3が生成される。
In the example shown in FIG. 7, the input data 1 of [1Fs, 16 bits] is input to the upsampling unit 40. This input data 1 is upsampled to the data of [64 Fs, 24 bits].
Further, the feedback data 7 of [2048Fs, 16 bits] is input to the downsampling unit 41. The feedback data 7 is downsampled to the same [64Fs, 24bit] data as the input data 1 after upsampling.
The downsampled feedback data 7 passes through the low-pass filter 42 to remove noise components, is input to the gain adjusting unit 43, and the gain is adjusted at a predetermined ratio.
The addition processing unit 44 subtracts the gain-adjusted feedback data 7 from the upsampled input data 1, and generates the correction data 3.
 このように、フィードバック処理部20は、入力データ1から所定の割合でゲインが調整されたフィードバックデータ7を減算することで、補正データ3を生成する。
 フィードバックデータ7は、上記したようにデジタルアンプ100の後段の出力信号(増幅PWM信号5)のパルスの形状が復元された信号である。すなわちフィードバックデータ7は、理想的な出力信号の成分にエラー成分が追加された信号であるとも言える。
 この出力信号及びエラー成分を含むフィードバックデータ7に対して所定の割合でフィードバックゲインをかけて入力データ1に戻すことで、ノイズを抑制可能な補正データ3を生成することが可能である。
 なお、フィードバック処理部20の構成や、フィードバック処理の具体的な内容等は限定されず、所望の補正データ3を生成可能な任意の処理が実行されてよい。
In this way, the feedback processing unit 20 generates the correction data 3 by subtracting the feedback data 7 whose gain is adjusted at a predetermined ratio from the input data 1.
The feedback data 7 is a signal in which the shape of the pulse of the output signal (amplified PWM signal 5) in the subsequent stage of the digital amplifier 100 is restored as described above. That is, it can be said that the feedback data 7 is a signal in which an error component is added to the component of the ideal output signal.
By applying feedback gain to the feedback data 7 including the output signal and the error component at a predetermined ratio and returning the data to the input data 1, it is possible to generate the correction data 3 capable of suppressing noise.
The configuration of the feedback processing unit 20, the specific content of the feedback processing, and the like are not limited, and any processing that can generate the desired correction data 3 may be executed.
 図8は、比較例として挙げるデジタルアンプの構成例を示すブロック図である。デジタルアンプ110では、スピーカを駆動する音声信号2がフィードバック信号として用いられ、フィードバック経路には、プリローパスフィルタ111及びADコンバータ112が設けられる。
 またデジタルオーディオソース(入力データ1)の再生経路には、フィードバック処理部113、PWM変換処理部114、スイッチングアンプ115、及びローパスフィルタ116が設けられる。
FIG. 8 is a block diagram showing a configuration example of a digital amplifier given as a comparative example. In the digital amplifier 110, the audio signal 2 for driving the speaker is used as the feedback signal, and the pre-low-pass filter 111 and the AD converter 112 are provided in the feedback path.
Further, a feedback processing unit 113, a PWM conversion processing unit 114, a switching amplifier 115, and a low-pass filter 116 are provided in the reproduction path of the digital audio source (input data 1).
 スイッチングアンプ115等で生じる歪みやノイズなどのエラー成分を含んだアナログ信号は、スピーカを駆動する音声信号2として、プリローパスフィルタ111に入力される。プリローパスフィルタ111では、フィードバックの系を安定動作させるために、デジタルアンプ110に起因する高周波スイッチングノイズ等を取り除くように通過帯域が制限される。
 プリローパスフィルタ111で帯域制限を受けた音声信号2はADコンバータ112に入力され、AD変換される。ADコンバータ112では、例えば[64Fs,1bit]のパルス密度変調信号(PDM信号)に量子化する処理が実行される。
 量子化された音声信号2(ADコンバータ112の出力)は、エラー成分が含まれたデジタル信号(フィードバックデータ)としてフィードバック処理部113に入力される。フィードバック処理部113では、入力データ1と共にエラー成分を低減する信号処理が行われる。
An analog signal including error components such as distortion and noise generated by the switching amplifier 115 or the like is input to the pre-low pass filter 111 as an audio signal 2 for driving the speaker. In the pre-low pass filter 111, the pass band is limited so as to remove high frequency switching noise and the like caused by the digital amplifier 110 in order to stably operate the feedback system.
The audio signal 2 whose band is limited by the pre-low pass filter 111 is input to the AD converter 112 and subjected to AD conversion. In the AD converter 112, for example, a process of quantizing into a pulse density modulated signal (PDM signal) of [64 Fs, 1 bit] is executed.
The quantized audio signal 2 (output of the AD converter 112) is input to the feedback processing unit 113 as a digital signal (feedback data) including an error component. In the feedback processing unit 113, signal processing for reducing the error component is performed together with the input data 1.
 このように、フィードバック経路にADコンバータ112が用いられる場合、ADコンバータ112を駆動するための電力が必要となり消費電力が増加する可能性がある。また、ADコンバータ112やプリローパスフィルタ111等を含む周辺回路を設ける必要があり、システムサイズが肥大化する可能性がある。
 また、デジタルアンプ110では、スイッチングアンプ115のスイッチングノイズに対応したADコンバータ112が必要となり、その設計難易度が高くなることに加え部品点数が増加する。さらに、ADコンバータ112の性能を引き出すためには、外付け受動部品のチューニングや高性能デバイスの選定などが必要となり、開発コストが増加する恐れがある。
 また、ADコンバータ112の入力の前処理としてプリローパスフィルタ111が必要になるので、余分なノイズ成分の混入(音声信号2の歪み等)や、フィードバック経路の遅延時間増加が発生する可能性がある。この結果、ADコンバータ112を含む構成では、フィードバック効果が低減するといった事態や、フィードバック可能な帯域が制限されるといった事態が起こり得る。
As described above, when the AD converter 112 is used for the feedback path, power for driving the AD converter 112 is required, which may increase the power consumption. Further, it is necessary to provide a peripheral circuit including an AD converter 112, a pre-low pass filter 111, and the like, which may increase the system size.
Further, the digital amplifier 110 requires an AD converter 112 corresponding to the switching noise of the switching amplifier 115, which increases the design difficulty and the number of parts. Further, in order to bring out the performance of the AD converter 112, it is necessary to tune an external passive component and select a high-performance device, which may increase the development cost.
Further, since the pre-low-pass filter 111 is required as the preprocessing of the input of the AD converter 112, there is a possibility that extra noise components are mixed (distortion of the audio signal 2 etc.) and the delay time of the feedback path is increased. .. As a result, in the configuration including the AD converter 112, the feedback effect may be reduced or the feedback band may be limited.
 これに対し、本実施形態に係るデジタルアンプ100では、フィードバック信号である増幅PWM信号5がコンパレータ24を介してコンパレータデータ8に変換される。すなわち、デジタルアンプ100では、コンパレータ24を用いてフィードバック信号のAD変換を行っているとも言える。このように、本構成ではADコンバータが含まれないフィードバック経路を構成可能である。 On the other hand, in the digital amplifier 100 according to the present embodiment, the amplified PWM signal 5 which is a feedback signal is converted into the comparator data 8 via the comparator 24. That is, it can be said that the digital amplifier 100 uses the comparator 24 to perform AD conversion of the feedback signal. In this way, in this configuration, it is possible to configure a feedback path that does not include an AD converter.
 なお、コンパレータ24のみを用いたAD変換では、フィードバック信号として取得したい信号(増幅PWM信号5)に含まれる歪みやノイズ等のエラー成分が欠落してしまう。
 このため、デジタルアンプ100では、コンパレータ24の出力を高い周波数F1によってサンプリングし、スイッチングアンプ22やローパスフィルタ23に関する回路情報を用いた形状補正処理が実行される。
 この形状補正処理により、フィードバック信号と同様のエラー成分を含んだデータ(フィードバックデータ7)が生成される。これにより、図8に示すようなADコンバータ112を用いることなく、入力データ1に対して適正にフィードバック処理を実行することが可能なフィードバックシステムを構築することが可能となる。
In the AD conversion using only the comparator 24, error components such as distortion and noise included in the signal to be acquired as the feedback signal (amplified PWM signal 5) are missing.
Therefore, in the digital amplifier 100, the output of the comparator 24 is sampled by the high frequency F 1 , and the shape correction process using the circuit information regarding the switching amplifier 22 and the low-pass filter 23 is executed.
By this shape correction process, data (feedback data 7) including an error component similar to the feedback signal is generated. This makes it possible to construct a feedback system capable of appropriately executing feedback processing on the input data 1 without using the AD converter 112 as shown in FIG.
 以上、本実施形態に係るデジタルアンプ100では、フィードバックデータ7を使って入力データ1を補正した補正データ3が生成される。補正データ3に応じた増幅PWM信号5はコンパレータ24に入力され、コンパレータ24の出力データであるコンパレータデータ8を補正してフィードバックデータ7が生成される。このように、コンパレータ24を用いたフィードバック回路を構成することで、装置サイズの小型化を図るとともに消費電力を抑制することが可能となる。 As described above, in the digital amplifier 100 according to the present embodiment, the correction data 3 obtained by correcting the input data 1 using the feedback data 7 is generated. The amplified PWM signal 5 corresponding to the correction data 3 is input to the comparator 24, and the comparator data 8 which is the output data of the comparator 24 is corrected to generate the feedback data 7. By configuring the feedback circuit using the comparator 24 in this way, it is possible to reduce the size of the device and suppress the power consumption.
 一般的に、デジタルアンプ100では、装置の性能を改善するためにフィードバックシステムが採用されている。昨今、商品の小型化が進んでいる中、デジタルアンプを採用することで低消費電力や装置サイズの小型化が期待されている。しかしながら、図8に示すように、ADコンバータ112を含むフィードバックシステムを用いた場合、その構築方法によってはデジタルアンプ100のメリットを生かすことができなくなる可能性がある。 Generally, in the digital amplifier 100, a feedback system is adopted in order to improve the performance of the device. With the recent progress in miniaturization of products, low power consumption and miniaturization of device size are expected by adopting digital amplifiers. However, as shown in FIG. 8, when a feedback system including an AD converter 112 is used, the merit of the digital amplifier 100 may not be utilized depending on the construction method thereof.
 本実施形態では、AD変換デバイスであるADコンバータを使用せずに、コンパレータ24を使用して、フィードバックシステムが構築される。これにより、消費電力を抑制し、システムサイズをコンパクトにすることが可能である。
 またADコンバータを使用しないため、その前段に必要なプリローパスフィルタも設ける必要がない。これにより、余分なノイズ成分の混入を防止することが可能である。またプリローパスフィルタで生じる遅延時間等が発生しないため、低遅延化に伴うフィードバック効果の向上が期待できる。
In the present embodiment, the feedback system is constructed by using the comparator 24 without using the AD converter which is an AD conversion device. As a result, power consumption can be suppressed and the system size can be made compact.
Further, since the AD converter is not used, it is not necessary to provide the necessary pre-low pass filter in front of the AD converter. This makes it possible to prevent the mixing of extra noise components. In addition, since the delay time caused by the pre-low pass filter does not occur, the feedback effect can be expected to be improved as the delay is reduced.
 また本実施形態では、デジタルアンプ100の構成要素であるスイッチングアンプ22等に関係するパラメータ(増幅PWM信号5のパルスの傾斜等)を活用して、コンパレータ24の出力からフィードバックシステムで必要となるエラー成分を含んだフィードバックデータ7が生成される。これにより、実際の増幅PWM信号5の波形に合わせた高精度なフィードバック処理が可能となる。 Further, in the present embodiment, an error required in the feedback system from the output of the comparator 24 is utilized by utilizing parameters related to the switching amplifier 22 or the like which is a component of the digital amplifier 100 (such as the gradient of the pulse of the amplified PWM signal 5). Feedback data 7 including the components is generated. This enables highly accurate feedback processing that matches the waveform of the actual amplified PWM signal 5.
 コンパレータ24から出力されたコンパレータ信号6のサンプリングは、デジタルアンプ100におけるパルス幅変調の分解能より高い周波数F1で実行される。これにより、エラー成分を再現する帯域を十分に確保することが可能となり、フィードバックデータ7をより実際の波形に近づけることが可能である。この結果、フィードバック処理の精度を十分に向上することが可能である。 The sampling of the comparator signal 6 output from the comparator 24 is executed at a frequency F 1 higher than the resolution of the pulse width modulation in the digital amplifier 100. As a result, it is possible to secure a sufficient band for reproducing the error component, and it is possible to bring the feedback data 7 closer to the actual waveform. As a result, it is possible to sufficiently improve the accuracy of the feedback processing.
 <その他の実施形態>
 本技術は、以上説明した実施形態に限定されず、他の種々の実施形態を実現することができる。
 上記では、主にオーディオアンプとして構成されたデジタルアンプ100について説明した。本技術は、任意のデジタル制御アンプやインバータ等に適用することが可能である。
 例えばモータ制御に用いられる制御信号を生成する際に、スイッチングアンプ等が用いられる。このようなスイッチングアンプの出力をフィードバック信号として、コンパレータを用いたフィードバックシステムが構成されてもよい。これにより、制御信号に対するフィードバック処理を容易に実現することが可能である。
 この他にも、コンパレータを用いたフィードバックシステムを用いることで、インバータ制御で出力される制御信号等を補正することも可能である。
<Other Embodiments>
The present technology is not limited to the embodiments described above, and various other embodiments can be realized.
In the above, the digital amplifier 100 mainly configured as an audio amplifier has been described. This technology can be applied to any digital control amplifier, inverter, or the like.
For example, a switching amplifier or the like is used when generating a control signal used for motor control. A feedback system using a comparator may be configured by using the output of such a switching amplifier as a feedback signal. Thereby, it is possible to easily realize the feedback processing for the control signal.
In addition to this, by using a feedback system using a comparator, it is also possible to correct a control signal or the like output by inverter control.
 以上説明した本技術に係る特徴部分のうち、少なくとも2つの特徴部分を組み合わせることも可能である。すなわち各実施形態で説明した種々の特徴部分は、各実施形態の区別なく、任意に組み合わされてもよい。また上記で記載した種々の効果は、あくまで例示であって限定されるものではなく、また他の効果が発揮されてもよい。 It is also possible to combine at least two feature parts among the feature parts related to the present technology described above. That is, the various feature portions described in each embodiment may be arbitrarily combined without distinction between the respective embodiments. Further, the various effects described above are merely examples and are not limited, and other effects may be exhibited.
 本開示において、「同じ」「等しい」「直交」等は、「実質的に同じ」「実質的に等しい」「実質的に直交」等を含む概念とする。例えば「完全に同じ」「完全に等しい」「完全に直交」等を基準とした所定の範囲(例えば±10%の範囲)に含まれる状態も含まれる。 In the present disclosure, "same", "equal", "orthogonal", etc. are concepts including "substantially the same", "substantially equal", "substantially orthogonal", and the like. For example, a state included in a predetermined range (for example, a range of ± 10%) based on "exactly the same", "exactly equal", "exactly orthogonal", etc. is also included.
 なお、本技術は以下のような構成も採ることができる。
(1)帰還データに基づいて入力データを補正して補正データを生成する第1の生成部と、
 前記補正データに応じたパルス信号が入力されるコンパレータの出力データを補正して前記帰還データを生成する第2の生成部と
 を具備する信号処理装置。
(2)(1)に記載の信号処理装置であって、
 前記第2の生成部は、前記パルス信号に含まれるパルスの形状が復元されるように前記出力データを補正する
 信号処理装置。
(3)(2)に記載の信号処理装置であって、
 前記第2の生成部は、前記出力データにおける前記パルスの立ち上がり又は立ち下がりの傾斜を補正する
 信号処理装置。
(4)(2)又は(3)に記載の信号処理装置であって、
 前記第2の生成部は、前記出力データにおける前記パルスの振幅を補正する
 信号処理装置。
(5)(1)から(4)のうちいずれか1つに記載の信号処理装置であって、
 前記第2の生成部は、前記パルス信号に応じた出力信号を生成する出力回路に関する回路情報に基づいて、前記出力データを補正する
 信号処理装置。
(6)(5)に記載の信号処理装置であって、
 前記出力回路は、前記補正データに応じた前記パルス信号を生成するスイッチングアンプを含み、
 前記回路情報は、前記スイッチングアンプに関する情報である第1の情報を含む
 信号処理装置。
(7)(6)に記載の信号処理装置であって、
 前記第1の情報は、AD変換により検出された前記パルス信号の形状情報を含み、
 前記第2の生成部は、前記形状情報から算出された前記パルス信号に含まれるパルスの立ち上がり又は立ち下がりの傾斜に基づいて前記出力データを補正する
 信号処理装置。
(8)(6)又は(7)に記載の信号処理装置であって、
 前記第1の情報は、前記スイッチングアンプの素子特性、前記スイッチングアンプに設定されたデッドタイム、及び前記スイッチングアンプを駆動する電源の少なくとも1つに関する情報を含む
 信号処理装置。
(9)(5)から(8)のうちいずれか1つに記載の信号処理装置であって、
 前記出力回路は、前記パルス信号を復調して前記出力信号を生成する復調回路を含み、
 前記回路情報は、前記復調回路に関する情報である第2の情報を含む
 信号処理装置。
(10)(9)に記載の信号処理装置であって、
 前記第2の情報は、前記出力信号に関する情報を含む
 信号処理装置。
(11)(1)から(10)のうちいずれか1つに記載の信号処理装置であって、
 前記第2の生成部は、前記コンパレータから出力された信号を、前記パルス信号の分解能を表す第1の周波数よりも高い第2の周波数でサンプリングして前記出力データを生成する
 信号処理装置。
(12)(1)から(11)のうちいずれか1つに記載の信号処理装置であって、
 前記出力データは、前記パルス信号が二値化された二値データであり、
 前記第2の生成部は、前記二値データに含まれる複数のデータ点のレベル値を補正する
 信号処理装置。
(13)(1)から(12)のうちいずれか1つに記載の信号処理装置であって、
 前記第1の生成部は、所定の割合でゲインが調整された前記帰還データを前記入力データから減算することで、前記補正データを生成する
 信号処理装置。
(14)(1)から(13)のうちいずれか1つに記載の信号処理装置であって、
 前記パルス信号は、パルス幅変調方式の信号である
 信号処理装置。
(15)(1)から(14)のうちいずれか1つに記載の信号処理装置であって、
 前記入力データは、音声データである
 信号処理装置。
(16)帰還データに基づいて入力データを補正して補正データを生成する第1の生成部と、
 前記補正データに応じたパルス信号を生成するスイッチングアンプと、
 前記パルス信号が入力されるコンパレータと、
 前記コンパレータの出力データを補正して前記帰還データを生成する第2の生成部と
 を具備する増幅装置。
(17)帰還データに基づいて音声データを補正して補正データを生成する第1の生成部と、
 前記補正データに応じたパルス信号を生成するスイッチングアンプと、
 前記パルス信号を復調して音声信号を生成する復調回路と、
 前記パルス信号が入力されるコンパレータと、
 前記コンパレータの出力データを補正して前記帰還データを生成する第2の生成部と
 を具備する再生装置。
The present technology can also adopt the following configurations.
(1) A first generation unit that corrects input data based on feedback data and generates correction data, and
A signal processing device including a second generation unit that corrects the output data of a comparator to which a pulse signal corresponding to the correction data is input and generates the feedback data.
(2) The signal processing device according to (1).
The second generation unit is a signal processing device that corrects the output data so that the shape of the pulse included in the pulse signal is restored.
(3) The signal processing device according to (2).
The second generation unit is a signal processing device that corrects the slope of the rise or fall of the pulse in the output data.
(4) The signal processing device according to (2) or (3).
The second generation unit is a signal processing device that corrects the amplitude of the pulse in the output data.
(5) The signal processing device according to any one of (1) to (4).
The second generation unit is a signal processing device that corrects the output data based on circuit information about an output circuit that generates an output signal corresponding to the pulse signal.
(6) The signal processing device according to (5).
The output circuit includes a switching amplifier that generates the pulse signal according to the correction data.
The circuit information is a signal processing device including first information which is information about the switching amplifier.
(7) The signal processing device according to (6).
The first information includes shape information of the pulse signal detected by AD conversion.
The second generation unit is a signal processing device that corrects the output data based on the inclination of the rise or fall of the pulse included in the pulse signal calculated from the shape information.
(8) The signal processing device according to (6) or (7).
The first information is a signal processing device including information on the element characteristics of the switching amplifier, the dead time set in the switching amplifier, and at least one of the power supplies for driving the switching amplifier.
(9) The signal processing device according to any one of (5) to (8).
The output circuit includes a demodulation circuit that demodulates the pulse signal to generate the output signal.
The circuit information is a signal processing device including a second information which is information about the demodulation circuit.
(10) The signal processing device according to (9).
The second information is a signal processing device including information about the output signal.
(11) The signal processing device according to any one of (1) to (10).
The second generation unit is a signal processing device that generates the output data by sampling the signal output from the comparator at a second frequency higher than the first frequency representing the resolution of the pulse signal.
(12) The signal processing device according to any one of (1) to (11).
The output data is binary data obtained by binarizing the pulse signal.
The second generation unit is a signal processing device that corrects the level values of a plurality of data points included in the binary data.
(13) The signal processing device according to any one of (1) to (12).
The first generation unit is a signal processing device that generates the correction data by subtracting the feedback data whose gain is adjusted at a predetermined ratio from the input data.
(14) The signal processing device according to any one of (1) to (13).
The pulse signal is a signal processing device that is a pulse width modulation type signal.
(15) The signal processing device according to any one of (1) to (14).
The input data is a signal processing device that is voice data.
(16) A first generation unit that corrects the input data based on the feedback data and generates the correction data,
A switching amplifier that generates a pulse signal according to the correction data, and
A comparator to which the pulse signal is input and
An amplification device including a second generation unit that corrects the output data of the comparator and generates the feedback data.
(17) A first generation unit that corrects audio data based on feedback data and generates correction data, and
A switching amplifier that generates a pulse signal according to the correction data, and
A demodulation circuit that demodulates the pulse signal to generate an audio signal,
A comparator to which the pulse signal is input and
A reproduction device including a second generation unit that corrects the output data of the comparator and generates the feedback data.
 1…入力データ
 2…音声信号
 3…補正データ
 5…増幅PWM信号
 7…フィードバックデータ
 8…コンパレータデータ
 13…形状情報
 20…フィードバック処理部
 21…PWM変換処理部
 22…スイッチングアンプ
 23…ローパスフィルタ
 24…コンパレータ
 25…PWM形状補正処理部
 30…信号出力部
 31…信号処理部
 100…デジタルアンプ
1 ... Input data 2 ... Audio signal 3 ... Correction data 5 ... Amplified PWM signal 7 ... Feedback data 8 ... Comparator data 13 ... Shape information 20 ... Feedback processing unit 21 ... PWM conversion processing unit 22 ... Switching amplifier 23 ... Low pass filter 24 ... Comparator 25 ... PWM shape correction processing unit 30 ... Signal output unit 31 ... Signal processing unit 100 ... Digital amplifier

Claims (17)

  1.  帰還データに基づいて入力データを補正して補正データを生成する第1の生成部と、
     前記補正データに応じたパルス信号が入力されるコンパレータの出力データを補正して前記帰還データを生成する第2の生成部と
     を具備する信号処理装置。
    The first generator that corrects the input data based on the feedback data and generates the corrected data,
    A signal processing device including a second generation unit that corrects the output data of a comparator to which a pulse signal corresponding to the correction data is input and generates the feedback data.
  2.  請求項1に記載の信号処理装置であって、
     前記第2の生成部は、前記パルス信号に含まれるパルスの形状が復元されるように前記出力データを補正する
     信号処理装置。
    The signal processing device according to claim 1.
    The second generation unit is a signal processing device that corrects the output data so that the shape of the pulse included in the pulse signal is restored.
  3.  請求項2に記載の信号処理装置であって、
     前記第2の生成部は、前記出力データにおける前記パルスの立ち上がり又は立ち下がりの傾斜を補正する
     信号処理装置。
    The signal processing device according to claim 2.
    The second generation unit is a signal processing device that corrects the slope of the rise or fall of the pulse in the output data.
  4.  請求項2に記載の信号処理装置であって、
     前記第2の生成部は、前記出力データにおける前記パルスの振幅を補正する
     信号処理装置。
    The signal processing device according to claim 2.
    The second generation unit is a signal processing device that corrects the amplitude of the pulse in the output data.
  5.  請求項1に記載の信号処理装置であって、
     前記第2の生成部は、前記パルス信号に応じた出力信号を生成する出力回路に関する回路情報に基づいて、前記出力データを補正する
     信号処理装置。
    The signal processing device according to claim 1.
    The second generation unit is a signal processing device that corrects the output data based on circuit information about an output circuit that generates an output signal corresponding to the pulse signal.
  6.  請求項5に記載の信号処理装置であって、
     前記出力回路は、前記補正データに応じた前記パルス信号を生成するスイッチングアンプを含み、
     前記回路情報は、前記スイッチングアンプに関する情報である第1の情報を含む
     信号処理装置。
    The signal processing device according to claim 5.
    The output circuit includes a switching amplifier that generates the pulse signal according to the correction data.
    The circuit information is a signal processing device including first information which is information about the switching amplifier.
  7.  請求項6に記載の信号処理装置であって、
     前記第1の情報は、AD変換により検出された前記パルス信号の形状情報を含み、
     前記第2の生成部は、前記形状情報から算出された前記パルス信号に含まれるパルスの立ち上がり又は立ち下がりの傾斜に基づいて前記出力データを補正する
     信号処理装置。
    The signal processing device according to claim 6.
    The first information includes shape information of the pulse signal detected by AD conversion.
    The second generation unit is a signal processing device that corrects the output data based on the inclination of the rise or fall of the pulse included in the pulse signal calculated from the shape information.
  8.  請求項6に記載の信号処理装置であって、
     前記第1の情報は、前記スイッチングアンプの素子特性、前記スイッチングアンプに設定されたデッドタイム、及び前記スイッチングアンプを駆動する電源の少なくとも1つに関する情報を含む
     信号処理装置。
    The signal processing device according to claim 6.
    The first information is a signal processing device including information on the element characteristics of the switching amplifier, the dead time set in the switching amplifier, and at least one of the power supplies for driving the switching amplifier.
  9.  請求項5に記載の信号処理装置であって、
     前記出力回路は、前記パルス信号を復調して前記出力信号を生成する復調回路を含み、
     前記回路情報は、前記復調回路に関する情報である第2の情報を含む
     信号処理装置。
    The signal processing device according to claim 5.
    The output circuit includes a demodulation circuit that demodulates the pulse signal to generate the output signal.
    The circuit information is a signal processing device including a second information which is information about the demodulation circuit.
  10.  請求項9に記載の信号処理装置であって、
     前記第2の情報は、前記出力信号に関する情報を含む
     信号処理装置。
    The signal processing device according to claim 9.
    The second information is a signal processing device including information about the output signal.
  11.  請求項1に記載の信号処理装置であって、
     前記第2の生成部は、前記コンパレータから出力された信号を、前記パルス信号の分解能を表す第1の周波数よりも高い第2の周波数でサンプリングして前記出力データを生成する
     信号処理装置。
    The signal processing device according to claim 1.
    The second generation unit is a signal processing device that generates the output data by sampling the signal output from the comparator at a second frequency higher than the first frequency representing the resolution of the pulse signal.
  12.  請求項1に記載の信号処理装置であって、
     前記出力データは、前記パルス信号が二値化された二値データであり、
     前記第2の生成部は、前記二値データに含まれる複数のデータ点のレベル値を補正する
     信号処理装置。
    The signal processing device according to claim 1.
    The output data is binary data obtained by binarizing the pulse signal.
    The second generation unit is a signal processing device that corrects the level values of a plurality of data points included in the binary data.
  13.  請求項1に記載の信号処理装置であって、
     前記第1の生成部は、所定の割合でゲインが調整された前記帰還データを前記入力データから減算することで、前記補正データを生成する
     信号処理装置。
    The signal processing device according to claim 1.
    The first generation unit is a signal processing device that generates the correction data by subtracting the feedback data whose gain is adjusted at a predetermined ratio from the input data.
  14.  請求項1に記載の信号処理装置であって、
     前記パルス信号は、パルス幅変調方式の信号である
     信号処理装置。
    The signal processing device according to claim 1.
    The pulse signal is a signal processing device that is a pulse width modulation type signal.
  15.  請求項1に記載の信号処理装置であって、
     前記入力データは、音声データである
     信号処理装置。
    The signal processing device according to claim 1.
    The input data is a signal processing device that is voice data.
  16.  帰還データに基づいて入力データを補正して補正データを生成する第1の生成部と、
     前記補正データに応じたパルス信号を生成するスイッチングアンプと、
     前記パルス信号が入力されるコンパレータと、
     前記コンパレータの出力データを補正して前記帰還データを生成する第2の生成部と
     を具備する増幅装置。
    The first generator that corrects the input data based on the feedback data and generates the corrected data,
    A switching amplifier that generates a pulse signal according to the correction data, and
    A comparator to which the pulse signal is input and
    An amplification device including a second generation unit that corrects the output data of the comparator and generates the feedback data.
  17.  帰還データに基づいて音声データを補正して補正データを生成する第1の生成部と、
     前記補正データに応じたパルス信号を生成するスイッチングアンプと、
     前記パルス信号を復調して音声信号を生成する復調回路と、
     前記パルス信号が入力されるコンパレータと、
     前記コンパレータの出力データを補正して前記帰還データを生成する第2の生成部と
     を具備する再生装置。
    The first generator that corrects the audio data based on the feedback data and generates the corrected data,
    A switching amplifier that generates a pulse signal according to the correction data, and
    A demodulation circuit that demodulates the pulse signal to generate an audio signal,
    A comparator to which the pulse signal is input and
    A reproduction device including a second generation unit that corrects the output data of the comparator and generates the feedback data.
PCT/JP2020/046527 2019-12-24 2020-12-14 Signal processing device, amplification device, and replay device WO2021131847A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019232671 2019-12-24
JP2019-232671 2019-12-24

Publications (1)

Publication Number Publication Date
WO2021131847A1 true WO2021131847A1 (en) 2021-07-01

Family

ID=76573061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/046527 WO2021131847A1 (en) 2019-12-24 2020-12-14 Signal processing device, amplification device, and replay device

Country Status (1)

Country Link
WO (1) WO2021131847A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002252527A (en) * 2000-12-28 2002-09-06 Nokia Mobile Phones Ltd Method for compensating pulse width modulation signal and signal path constitution
JP2008141447A (en) * 2006-12-01 2008-06-19 New Japan Radio Co Ltd Class d amplifying method and class d amplifier
JP2008529390A (en) * 2005-01-28 2008-07-31 エヌエックスピー ビー ヴィ Device for amplifying a PWM input signal
JP2010063047A (en) * 2008-09-08 2010-03-18 Yamaha Corp Class-d amplifier

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002252527A (en) * 2000-12-28 2002-09-06 Nokia Mobile Phones Ltd Method for compensating pulse width modulation signal and signal path constitution
JP2008529390A (en) * 2005-01-28 2008-07-31 エヌエックスピー ビー ヴィ Device for amplifying a PWM input signal
JP2008141447A (en) * 2006-12-01 2008-06-19 New Japan Radio Co Ltd Class d amplifying method and class d amplifier
JP2010063047A (en) * 2008-09-08 2010-03-18 Yamaha Corp Class-d amplifier

Similar Documents

Publication Publication Date Title
US7482870B2 (en) Class D amplifier
US8786477B1 (en) Digital-to-analog conversion with improved dynamic range
US10008994B2 (en) Audio amplifier system
US7286008B2 (en) Digital amplifier
US20040046680A1 (en) Delta-sigma modulation apparatus and signal amplification apparatus
US20040028242A1 (en) Audio reproducing apparatus and method
US20080278230A1 (en) Systems and Methods for Correcting Errors Resulting from Component Mismatch in a Feedback Path
US6922100B2 (en) Method and apparatus for switching amplification having variable sample point and variable order correction
JP2006222852A (en) Digital amplifier
US10320337B2 (en) Fully-differential operational amplifier system
JP5861076B2 (en) Amplifier
US7183818B2 (en) Triangular wave generating circuit adapted to class-D amplifier
US11342892B2 (en) Amplifier and signal processing circuit
US9683866B2 (en) Device and method for correcting a sensor signal
JP4853176B2 (en) Class D amplifier
WO2021131847A1 (en) Signal processing device, amplification device, and replay device
US11133785B2 (en) Digital-to-analog converter and amplifier for headphones
US10555269B2 (en) Amplifier circuit having controllable output stage
JP6994656B2 (en) Signal processing device and adjustment method
JP2008154117A (en) Class-d amplifier
US20080150628A1 (en) Low distortion class-D amplifier
JP3175481U (en) Sound quality correction type amplifier using FM modulation circuit
US20130120075A1 (en) Pulse width modulation device
JP6405759B2 (en) Signal processing apparatus and signal processing method
JP3973519B2 (en) amplifier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20904418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20904418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP