WO2021131601A1 - Radar device - Google Patents

Radar device Download PDF

Info

Publication number
WO2021131601A1
WO2021131601A1 PCT/JP2020/045180 JP2020045180W WO2021131601A1 WO 2021131601 A1 WO2021131601 A1 WO 2021131601A1 JP 2020045180 W JP2020045180 W JP 2020045180W WO 2021131601 A1 WO2021131601 A1 WO 2021131601A1
Authority
WO
WIPO (PCT)
Prior art keywords
radar device
received
virtual
received signal
antenna
Prior art date
Application number
PCT/JP2020/045180
Other languages
French (fr)
Japanese (ja)
Inventor
黒田 浩司
武田 茂樹
梅比良 正弘
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to DE112020005328.8T priority Critical patent/DE112020005328T5/en
Priority to JP2021567150A priority patent/JPWO2021131601A1/ja
Publication of WO2021131601A1 publication Critical patent/WO2021131601A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/267Phased-array testing or checking devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/3208Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used
    • H01Q1/3233Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used particular used as part of a sensor or in a security system, e.g. for automotive radar, navigation systems

Definitions

  • the present invention relates to a radar device.
  • Patent Document 1 The technique described in Patent Document 1 is known for miniaturization of radar devices.
  • a technique called MIMO Multiple Input Multiple Output
  • MIMO Multiple Input Multiple Output
  • Techniques for improving detection accuracy are disclosed.
  • the radar device uses a virtual extended antenna method, and calibrates the first received information based on the received signal received by an existing receiving antenna, and the calibrated process is performed.
  • the first reception information is converted into the second reception information based on the virtual expansion antenna method, and the first reception information is converted into the second reception information.
  • the arrival direction of the received signal is estimated based on the received information of 2.
  • the directional detection accuracy of the radar device can be improved.
  • FIG. 1 is a diagram showing a configuration of a radar device according to an embodiment of the present invention.
  • the radar device 1 shown in FIG. 1 is used, for example, mounted on an automobile, and includes a waveform generator 101, a voltage controlled oscillator 102, an amplifier 103, a low noise amplifier 104a, 104b, a mixer 105a, 105b, and a low-pass filter. It includes 106a, 106b, AD converters 107a, 107b, a digital signal processor (DSP) 108, a transmitting antenna 109, and receiving antennas 110a, 110b.
  • DSP digital signal processor
  • the waveform generator 101 generates a voltage waveform in which the voltage continuously changes at a predetermined cycle under the control of the DSP 108, and outputs the voltage waveform to the voltage controlled oscillator 102.
  • the voltage controlled oscillator 102 generates a transmission signal having an oscillation frequency controlled according to the voltage waveform input from the waveform generator 101, and outputs the transmission signal to the amplifier 103 and the mixers 105a and 105b.
  • the amplifier 103 amplifies the transmission signal input from the voltage controlled oscillator 102 and outputs it to the transmission antenna 109.
  • the transmission antenna 109 emits the transmission signal input from the amplifier 103 into space. As a result, the FMCW signal in which the continuous wave is frequency-modulated is transmitted from the radar device.
  • the receiving antennas 110a and 110b are arranged at predetermined intervals, and the received signal reflected by the object is received and output to the low noise amplifiers 104a and 104b, respectively.
  • the low noise amplifiers 104a and 104b amplify the received signals input from the receiving antennas 110a and 110b, respectively, and output them to the mixers 105a and 105b.
  • the mixers 105a and 105b are composed of multipliers, and the frequency difference between these signals is obtained by multiplying the transmission signal input from the voltage controlled oscillator 102 and the reception signal input from the low noise amplifiers 104a and 104b. Beat signals corresponding to the above are generated and output to the low-pass filters 106a and 106b, respectively.
  • the low-pass filters 106a and 106b take out the low-frequency components of the beat signal input from the mixers 105a and 105b, respectively, and output them to the AD converters 107a and 107b.
  • the AD converters 107a and 107b generate a digital value of the beat signal by converting the beat signal input from the low-pass filters 106a and 106b into a digital signal at predetermined sampling cycles, and output the beat signal to the DSP 108.
  • the DSP 108 is a processor that performs predetermined arithmetic processing by executing a program stored in advance, and has a Fourier transform unit 108a, a virtual expansion processing unit 108b, a peak detection unit 108c, and a direction estimation unit 108d as its functions. It should be noted that these functions may be realized by using a logic circuit such as FPGA (Field Programmable Gate Array) or other hardware instead of the DSP.
  • FPGA Field Programmable Gate Array
  • the Fourier transform unit 108a performs a fast Fourier transform (FFT) on the digital values of the beat signals obtained by the AD converters 107a and 107b, respectively, to obtain information representing the frequency component of each beat signal.
  • FFT fast Fourier transform
  • the virtual expansion processing unit 108b performs virtual expansion processing for virtually expanding the number of receiving antennas with respect to the information of the frequency component of each beat signal input from the Fourier transform unit 108a.
  • This virtual expansion processing expansion antennas corresponding to the reception antennas 110a and 110b are virtually generated, and the frequency information of the beat signal corresponding to the reception information of the reception antennas 110a and 110b and the reception information of each expansion antenna correspond to each other.
  • the frequency information of the beat signal to be output is output from the virtual expansion processing unit 108b.
  • the reception information before the virtual expansion processing by the virtual expansion processing unit 108b that is, the information on the frequency component of the beat signal based on the reception signals actually received by the reception antennas 110a and 110b is referred to as "first reception information”. It is called.
  • the reception information after the virtual expansion processing by the virtual expansion processing unit 108b that is, the frequency component information of the beat signal based on the reception signals received by the reception antennas 110a and 110b, and the reception signal virtually received by each expansion antenna Together with the information on the frequency component of the beat signal based on it, it is referred to as "second reception information”.
  • the virtual expansion processing unit 108b converts the first received information into the second received information by performing the virtual expansion processing. The details of the virtual extension processing will be described later.
  • the peak detection unit 108c detects a peak that exceeds a preset threshold value based on the second reception information input from the virtual expansion processing unit 108b. Then, based on the detected peak, the frequency of the beat signal corresponding to the distance to the object is obtained, and the distance to the object and the relative velocity are calculated.
  • the direction estimation unit 108d estimates the arrival direction for each peak detected by the peak detection unit 108c based on the second received information input from the virtual expansion processing unit 108b. As a result, the transmission signal is reflected by the object, the arrival direction of the received signal received by the receiving antennas 110a and 110b is estimated, and the direction of the object with respect to the radar device 1 is obtained.
  • the radar device 1 described above generates, for example, a voltage waveform of a triangular wave or a sawtooth wave by a waveform generator 101, and outputs this to a voltage controlled oscillator 102 to transmit a transmission signal in which a continuous wave is frequency-modulated.
  • the reflected wave whose transmitted signal is reflected by the object is input to the mixers 105a and 105b as a received signal after a delay time proportional to the distance d to the object. Therefore, a beat signal having a frequency proportional to the delay time can be obtained.
  • FIG. 1 shows a configuration example of the radar device 1 in the case where the transmission signal transmitted from one transmission antenna 109 is received by the two reception antennas 110a and 110b after being reflected by the object.
  • the number of transmit or receive antennas is not limited to this. Any number of receiving antennas as long as one transmitting antenna is provided with a plurality of receiving antennas for receiving each of the received signals generated by the transmission signal transmitted from the transmitting antenna being reflected by the object.
  • the radar device 1 can be configured with.
  • the number of receiving antennas is increased, the resolution when the direction estimation unit 108d estimates the arrival direction of the received signal can be improved, but there is a demerit that the mounting space of the radar device 1 increases. Therefore, it is preferable to determine the optimum number of receiving antennas from the relationship between the required resolution of the radar device 1 and the mounting space.
  • FIGS. 2 and 3 the number of receiving antennas is different from that in FIG. 1 in order to explain the virtual expansion process in an easy-to-understand manner.
  • two receiving antennas 110a and 110b are shown in FIG. 1, but in FIGS. 2 and 3, the virtual expansion process will be described by taking the case where the radar device 1 has five receiving antennas 21 to 25 as an example. ..
  • the radar device 1 can use an arbitrary number of receiving antennas, and even if the number of receiving antennas is different, the virtual expansion process can be performed by the same method.
  • FIG. 2 is a diagram illustrating a virtual expansion array antenna formed by the virtual expansion process.
  • the actual array antenna is formed by arranging the five receiving antennas 21 to 25 in a row in the radar device 1.
  • the receiving antennas 21 to 25 are arranged in a line at positions different from those of the receiving antennas 21 to 25 as shown in FIG. 2 (b).
  • Virtual array antennas 31 to 35 arranged side by side can be virtually set to form a virtual array antenna.
  • the receiving antennas 21 to 25 and the virtual antennas 31 to 35 are combined to form a virtual extended array antenna as shown in FIG. 2 (c).
  • the vector of the received signal received by the real array antennas formed by the receiving antennas 21 to 25 is expressed as x to r
  • the vector of the received signal received by the virtual array antennas formed by the virtual antennas 31 to 35 is It is calculated by multiplying the received signal vectors x to r by the transformation matrix T. That is, the received signal vectors x to T of the virtual extended array antenna shown in FIG. 2C are represented by the following equation (1).
  • FIG. 3 is a diagram for explaining the operating principle of the virtual extended array antenna.
  • the positions of the receiving antennas 21 to 25 forming the real array antenna are represented by d r1 to d r5 , respectively, and the positions of the virtual antennas 31 to 35 forming the virtual array antenna are designated as d v1 to d v5.
  • the steering vector of the real array antenna and the steering vector of the virtual array antenna with respect to the plane wave incident from the ⁇ L direction are represented by the following equations (2) and (3), respectively.
  • the steering vector a T ( ⁇ ) of the virtual extended array antenna shown in FIG. 3 is represented by the following equation (4).
  • the steering vector of the real array antenna and the steering of the virtual array antenna are steered by dividing this angle range at ⁇ intervals.
  • the vector can be queued as shown in the following equations (5) and (6), respectively.
  • the transformation matrix T is a transformation matrix for estimating the reception signal of the virtual array antenna by the plane wave in the range of ⁇ L to ⁇ R for each ⁇ .
  • the transformation matrix T is obtained by the general inverse matrix represented by the following equation (8).
  • the direction estimation unit 108d uses the received signal vector and the steering vector of the virtual extended array antennas represented by the above equations (1) and (4), respectively, in the direction of arrival of the received signal. That is, the direction of the object is estimated. As a result, even when the number of elements of the receiving antenna is small, the opening of the receiving antenna can be virtually expanded to improve the resolution when estimating the arrival direction of the received signal.
  • the received signal obtained by the radar device 1 contains errors due to various error factors. Therefore, a deviation of an error occurs from the theoretical value that should be originally obtained, which leads to a decrease in resolution when estimating the arrival direction of the received signal. Therefore, in the radar device 1 of the present embodiment, the virtual expansion processing unit 108b performs a calibration process for removing an error from the first received information prior to the execution of the virtual expansion processing. This improves the resolution of estimating the arrival direction of the received signal.
  • an error matrix indicating an error between the received signal and the theoretical value calculated based on the calibration measurement data experimentally acquired in advance is stored in the DSP 108.
  • the virtual expansion processing unit 108b does not include an error in the received signal vector represented by the first received information obtained from the receiving antenna by using the inverse matrix of the error matrix stored in the DSP 108 in advance. Convert to a received signal vector. Then, by performing virtual expansion processing on the received signal vector after this conversion, the first received information is converted into the second received information.
  • the inverse matrix of the error matrix may be stored in the DSP 108, and the calibration process may be performed using this.
  • the direction estimation unit 108d estimates the arrival direction of the received signal by using the calibrated second reception information output from the virtual expansion processing unit 108b. Therefore, the resolution when the direction estimation unit 108d estimates the arrival direction of the received signal is improved, and as a result, the direction detection accuracy of the radar device 1 can be improved.
  • FIG. 4 is a flowchart of the calibration process and the virtual expansion process in the radar device 1 according to the first embodiment of the present invention.
  • the processes of steps S10 and S20 are preprocesses performed in advance in an experimental environment using the receiving antennas 110a and 110b, and the processes of steps S110 to S150 radar the receiving antennas 110a and 110b. This is a process performed by the DSP 108 when a received signal from an object is actually received while mounted on the device 1.
  • step S10 the steering vector including the error is experimentally acquired by measuring the received signal waveforms when the experimental radio waves are transmitted from a plurality of directions to the receiving antennas 110a and 110b, respectively.
  • step S20 an error matrix G ⁇ indicating an error from the theoretical value is calculated based on the steering vector acquired in step S10.
  • step S110 the virtual expansion processing unit 108b acquires the reception signal vectors x to r of the radar device 1 received by the reception antennas 110a and 110b, respectively.
  • the received signal vectors x to r are acquired by acquiring the first received information output from the Fourier transform unit 108a to the virtual expansion processing unit 108b.
  • step S120 the virtual expansion processing unit 108b performs calibration processing on the received signal vectors x to r acquired in step S110.
  • the virtual expansion processing unit 108b performs calibration processing on the received signal vectors x to r acquired in step S110.
  • the virtual expansion processing unit 108b performs calibration processing on the received signal vectors x to r acquired in step S110.
  • G ⁇ -1 of the error matrix G ⁇ calculated in step S20 by multiplying an inverse matrix G ⁇ -1 of the error matrix G ⁇ calculated in step S20 before processing on the received signal vector x ⁇ r, removing the error component from the received signal vector x ⁇ r.
  • the received signal vector x r including no error can be calculated.
  • step S130 the virtual expansion processing unit 108b calculates the transformation matrix T defined by the above equation (8) for the angle range from ⁇ L to ⁇ R.
  • step S140 the virtual expansion processing unit 108b performs virtual expansion processing using the transformation matrix T calculated in step S130 on the received signal vector x r calculated by the calibration process in step S120.
  • the reception signal vector x by the virtual expansion array antenna that has been calibrated by using the following equation (9) in which the above equation (1) is applied to the reception signal vector x r and the above equation (4).
  • T and the steering vector a T ( ⁇ ) As a result, the first received information from which the error component has been removed by the calibration process can be converted into the second received information after the virtual expansion process.
  • step S150 the peak detection unit 108c and the direction estimation unit 108d estimate the arrival direction of the received signal using the received signal vector x T and the steering vector a T ( ⁇ ) calculated in step S140 after the virtual expansion processing. To do.
  • the peak detection unit 108c detects the peak, and the direction estimation unit 108d estimates the arrival direction of the received signal for each detected peak.
  • FIG. 5 is a diagram illustrating the effect of the calibration process according to the first embodiment of the present invention.
  • the waveform shown by reference numeral 51 shows an example of a spatial spectrum when the received signal is subjected to virtual expansion processing without performing calibration processing
  • the waveform shown by reference numeral 52 is obtained by performing calibration processing on the received signal.
  • An example of the spatial spectrum when the virtual expansion processing is performed after the processing is shown. Comparing these spatial spectra, the spatial spectrum 51 has two peaks integrated and the boundary is not clear, whereas the spatial spectrum 52 has a clear boundary between the two peaks. Therefore, it can be seen that the calibration process improves the resolution of estimating the arrival direction of the received signal.
  • the spatial spectra 51 and 52 show examples of spatial spectra obtained from received signals using a well-known algorithm called MUSIC (Multiple Signal Classification).
  • MUSIC Multiple Signal Classification
  • the radar device 1 using the virtual extended antenna method performs calibration processing on the first reception information based on the reception signals received by the existing reception antennas 110a and 110b (step S120), and the calibration processing is performed.
  • the first reception information becomes the second reception information based on the virtual expansion antenna method. Convert.
  • the arrival direction of the received signal is estimated based on the second received information (step S150). Since this is done, the directional detection accuracy of the radar device can be improved.
  • the radar device 1 removes the error from the first received information by using the inverse matrix G ⁇ -1 of the error matrix G ⁇ indicating the error between the received signal and the theoretical value. Perform the calculation of. Since this is done, the error can be reliably removed from the first received information including the error, and the resolution at the time of estimating the arrival direction of the received signal can be improved.
  • the radar apparatus 1 using the inverse matrix G ⁇ -1 which is the inverse matrix G ⁇ -1 or preset calculated from the set error matrix G ⁇ advance, perform calculations of the calibration process of step S120 To do. Since this is done, it is possible to obtain an inverse matrix capable of reliably removing an error from the first received information based on the calibration measurement data experimentally acquired in advance.
  • the radar device 1 receives one transmitting antenna 109 and a plurality of receiving antennas 110a, each of which receives a receiving signal generated by reflecting a transmitting signal transmitted from one transmitting antenna 109 by an object. It is provided with 110b. Therefore, in the radar device 1, it is possible to apply the invention method capable of realizing a small size and high directional resolution.
  • FIG. 6 is a diagram for explaining the outline of the spatial averaging method.
  • the receiving antennas 21 to 25 and the virtual antennas 31 to 35 described in the first embodiment are divided into two groups by shifting the overlapping range to divide the receiving antennas 21 into two groups.
  • a first sub-array composed of 24 to 24 and virtual antennas 31 to 35 and a second sub-array composed of receiving antennas 21 to 25 and virtual antennas 31 to 34 are set.
  • the correlation matrices of the first sub-array and the second sub-array are calculated respectively, and a new correlation matrix is obtained by taking the average of these, and the arrival direction of the received signal is estimated. Thereby, the estimation accuracy of the arrival direction of the received signal can be improved. Since the spatial averaging method itself is a well-known technique, the details thereof will be omitted.
  • FIG. 7 is a flowchart of the calibration process and the virtual expansion process in the radar device 1 according to the second embodiment of the present invention.
  • the parts that perform the same processing as the flowchart of FIG. 4 described in the first embodiment are assigned the same step numbers as those of FIG.
  • steps S10 and S20 the same processing as in FIG. 4 is performed as preprocessing.
  • steps S110 to S140 the virtual expansion processing unit 108b performs the same processing as in FIG. 4, respectively.
  • step S145 the virtual expansion processing unit 108b obtains the second reception information obtained by the virtual expansion processing in step S140, that is, the received signals after the virtual expansion processing represented by the above equations (9) and (4), respectively.
  • Spatial averaging processing based on the spatial averaging method is performed on the vector x T and the steering vector a T ( ⁇ ).
  • step S150 the peak detection unit 108c and the direction estimation unit 108d use the second reception information after the spatial averaging process calculated in step S145 to determine the arrival direction of the received signal as in the first embodiment. presume. After executing the process of step S150, the flowchart of FIG. 7 ends.
  • FIG. 8 is a diagram illustrating the effect of the calibration process according to the second embodiment of the present invention.
  • the waveform shown by reference numeral 81 shows an example of a spatial spectrum when the received signal is subjected to virtual expansion processing and spatial averaging processing without performing calibration processing
  • the waveform shown by reference numeral 82 is a received signal.
  • An example of the spatial spectrum when the virtual expansion processing and the spatial averaging processing are performed after the calibration processing is performed is shown. Comparing these spatial spectra, similar to the spatial spectra 51 and 52 of FIG. 5 described in the first embodiment, in the spatial spectrum 81, the two peaks are integrated and the boundary is not clear, whereas the space In spectrum 82, the boundary between the two peaks is clear. Therefore, it can be seen that the calibration process improves the resolution of estimating the arrival direction of the received signal.
  • the spatial spectra 81 and 82 show examples of spatial spectra obtained from received signals using a well-known algorithm called MUSIC.
  • the radar device 1 relates to the second received information obtained by performing the virtual expansion process on the first received information that has been calibrated. Spatial averaging processing is performed (step S145), and the arrival direction of the received signal is estimated based on the second received information after the spatial averaging processing (step S150). Since this is done, the estimation accuracy of the arrival direction of the received signal can be further improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Security & Cryptography (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

The present invention improves the azimuth detection accuracy of a radar device. A radar device 1 that uses a virtual expansion antenna system performs, by a DSP 108, a calibration process on first reception information based on a reception signal received through an existing reception antenna 110a, 110b, and performs virtual expansion process for virtually expanding the reception antenna 110a, 110b with respect to the first reception information on which the calibration process has been performed, to convert the first reception information into second reception information based on the virtual expansion antenna system. Then, the radar device estimates the incoming direction of the reception signal on the basis of the second reception information.

Description

レーダ装置Radar device
 本発明は、レーダ装置に関する。 The present invention relates to a radar device.
 従来、車両の自動運転や運転支援システムにおいて利用するために、車両周囲の障害物等を検出するレーダ装置が知られている。こうしたレーダ装置は、車両に搭載する必要があるため、小型化が求められる。 Conventionally, a radar device that detects obstacles around the vehicle has been known for use in automatic driving of vehicles and driving support systems. Since such a radar device needs to be mounted on a vehicle, miniaturization is required.
 レーダ装置の小型化に関して、特許文献1に記載の技術が知られている。特許文献1には、MIMO(Multiple Input Multiple Output)と呼ばれる手法を用いて、複数のアンテナで同時に送受信を行うレーダ装置において、送信アンテナ間の相互結合の影響を低減し、ターゲットが存在する方位の検出精度を向上させる技術が開示されている。 The technique described in Patent Document 1 is known for miniaturization of radar devices. In Patent Document 1, a technique called MIMO (Multiple Input Multiple Output) is used to reduce the influence of mutual coupling between transmitting antennas in a radar device that transmits and receives simultaneously with a plurality of antennas, and the direction in which the target exists is determined. Techniques for improving detection accuracy are disclosed.
特開2019-128235号公報Japanese Unexamined Patent Publication No. 2019-128235
 レーダ装置では、上記のMIMO方式以外に、一つの送信アンテナから送信される電波を複数の受信アンテナで受信するSIMO(Single Input Multiple Output)方式等、他の方式も利用されている。しかしながら、これらのレーダ装置では特許文献1に記載の技術を適用できないため、方位検出精度を向上するのが困難である。 In the radar device, in addition to the above-mentioned MIMO method, other methods such as SIMO (Single Input Multiple Output) method in which radio waves transmitted from one transmitting antenna are received by a plurality of receiving antennas are also used. However, since the technique described in Patent Document 1 cannot be applied to these radar devices, it is difficult to improve the directional detection accuracy.
 本発明によるレーダ装置は、仮想拡張アンテナ方式を用いるものであって、実存する受信アンテナで受信した受信信号に基づく第1の受信情報に対して校正処理を行い、前記校正処理が行われた前記第1の受信情報に対して前記受信アンテナを仮想的に拡張する仮想拡張処理を行うことで、前記第1の受信情報を前記仮想拡張アンテナ方式に基づく第2の受信情報に変換し、前記第2の受信情報に基づいて前記受信信号の到来方向を推定する。 The radar device according to the present invention uses a virtual extended antenna method, and calibrates the first received information based on the received signal received by an existing receiving antenna, and the calibrated process is performed. By performing a virtual expansion process for virtually expanding the reception antenna with respect to the first reception information, the first reception information is converted into the second reception information based on the virtual expansion antenna method, and the first reception information is converted into the second reception information. The arrival direction of the received signal is estimated based on the received information of 2.
 本発明によれば、レーダ装置の方位検出精度を向上できる。 According to the present invention, the directional detection accuracy of the radar device can be improved.
本発明の一実施形態に係るレーダ装置の構成を示す図である。It is a figure which shows the structure of the radar apparatus which concerns on one Embodiment of this invention. 仮想拡張処理により形成される仮想拡張アレーアンテナを説明する図である。It is a figure explaining the virtual expansion array antenna formed by the virtual expansion processing. 仮想拡張アレーアンテナの動作原理を説明する図である。It is a figure explaining the operation principle of a virtual expansion array antenna. 本発明の第1の実施形態に係るレーダ装置における校正処理および仮想拡張処理のフローチャートである。It is a flowchart of the calibration process and the virtual extension process in the radar apparatus which concerns on 1st Embodiment of this invention. 本発明の第1の実施形態に係る校正処理の効果を説明する図である。It is a figure explaining the effect of the calibration process which concerns on 1st Embodiment of this invention. 空間平均法の概要を説明する図である。It is a figure explaining the outline of the space averaging method. 本発明の第2の実施形態に係るレーダ装置における校正処理および仮想拡張処理のフローチャートである。It is a flowchart of the calibration process and the virtual extension process in the radar apparatus which concerns on 2nd Embodiment of this invention. 本発明の第2の実施形態に係る校正処理の効果を説明する図である。It is a figure explaining the effect of the calibration process which concerns on the 2nd Embodiment of this invention.
(第1の実施形態)
 図1は、本発明の一実施形態に係るレーダ装置の構成を示す図である。図1に示すレーダ装置1は、例えば自動車に搭載されて用いられるものであり、波形発生器101、電圧制御発振器102、増幅器103、低雑音増幅器104a,104b、ミキサ105a,105b、低域通過フィルタ106a,106b、AD変換器107a,107b、ディジタルシグナルプロセッサ(DSP)108、送信アンテナ109、および受信アンテナ110a,110bを備える。
(First Embodiment)
FIG. 1 is a diagram showing a configuration of a radar device according to an embodiment of the present invention. The radar device 1 shown in FIG. 1 is used, for example, mounted on an automobile, and includes a waveform generator 101, a voltage controlled oscillator 102, an amplifier 103, a low noise amplifier 104a, 104b, a mixer 105a, 105b, and a low-pass filter. It includes 106a, 106b, AD converters 107a, 107b, a digital signal processor (DSP) 108, a transmitting antenna 109, and receiving antennas 110a, 110b.
 波形発生器101は、DSP108の制御により、所定の周期で電圧が連続的に変化する電圧波形を発生して電圧制御発振器102に出力する。電圧制御発振器102は、波形発生器101から入力した電圧波形に応じて制御された発振周波数の送信信号を生成し、増幅器103およびミキサ105a,105bに出力する。増幅器103は、電圧制御発振器102から入力した送信信号を増幅して送信アンテナ109に出力する。送信アンテナ109は、増幅器103から入力した送信信号を空間に放出する。これにより、連続波が周波数変調されたFMCW信号がレーダ装置から送信される。 The waveform generator 101 generates a voltage waveform in which the voltage continuously changes at a predetermined cycle under the control of the DSP 108, and outputs the voltage waveform to the voltage controlled oscillator 102. The voltage controlled oscillator 102 generates a transmission signal having an oscillation frequency controlled according to the voltage waveform input from the waveform generator 101, and outputs the transmission signal to the amplifier 103 and the mixers 105a and 105b. The amplifier 103 amplifies the transmission signal input from the voltage controlled oscillator 102 and outputs it to the transmission antenna 109. The transmission antenna 109 emits the transmission signal input from the amplifier 103 into space. As a result, the FMCW signal in which the continuous wave is frequency-modulated is transmitted from the radar device.
 受信アンテナ110a,110bは、所定の間隔を空けて配置されており、送信信号が対象物で反射された受信信号をそれぞれ受信して低雑音増幅器104a,104bに出力する。低雑音増幅器104a,104bは、受信アンテナ110a,110bから入力した受信信号をそれぞれ増幅してミキサ105a,105bに出力する。ミキサ105a,105bは、乗算器で構成されており、電圧制御発振器102から入力した送信信号と、低雑音増幅器104a,104bから入力した受信信号との乗算を行うことで、これらの信号の周波数差に応じたビート信号をそれぞれ生成し、低域通過フィルタ106a,106bに出力する。 The receiving antennas 110a and 110b are arranged at predetermined intervals, and the received signal reflected by the object is received and output to the low noise amplifiers 104a and 104b, respectively. The low noise amplifiers 104a and 104b amplify the received signals input from the receiving antennas 110a and 110b, respectively, and output them to the mixers 105a and 105b. The mixers 105a and 105b are composed of multipliers, and the frequency difference between these signals is obtained by multiplying the transmission signal input from the voltage controlled oscillator 102 and the reception signal input from the low noise amplifiers 104a and 104b. Beat signals corresponding to the above are generated and output to the low- pass filters 106a and 106b, respectively.
 低域通過フィルタ106a,106bは、ミキサ105a,105bから入力したビート信号の低周波成分をそれぞれ取り出し、AD変換器107a,107bに出力する。AD変換器107a,107bは、低域通過フィルタ106a,106bから入力したビート信号を所定のサンプリング周期ごとにディジタル信号にそれぞれ変換することで、ビート信号のディジタル値を生成し、DSP108に出力する。 The low- pass filters 106a and 106b take out the low-frequency components of the beat signal input from the mixers 105a and 105b, respectively, and output them to the AD converters 107a and 107b. The AD converters 107a and 107b generate a digital value of the beat signal by converting the beat signal input from the low- pass filters 106a and 106b into a digital signal at predetermined sampling cycles, and output the beat signal to the DSP 108.
 DSP108は、予め記憶されたプログラムを実行することで所定の演算処理を行うプロセッサであり、その機能として、フーリエ変換部108a、仮想拡張処理部108b、ピーク検出部108cおよび方向推定部108dを有する。なお、DSPではなく、例えばFPGA(Field Programmable Gate Array)等の論理回路や他のハードウェアを用いてこれらの機能を実現してもよい。 The DSP 108 is a processor that performs predetermined arithmetic processing by executing a program stored in advance, and has a Fourier transform unit 108a, a virtual expansion processing unit 108b, a peak detection unit 108c, and a direction estimation unit 108d as its functions. It should be noted that these functions may be realized by using a logic circuit such as FPGA (Field Programmable Gate Array) or other hardware instead of the DSP.
 フーリエ変換部108aは、AD変換器107a,107bでそれぞれ得られたビート信号のディジタル値に対して高速フーリエ変換(FFT)を行うことで、各ビート信号の周波数成分を表す情報を求める。 The Fourier transform unit 108a performs a fast Fourier transform (FFT) on the digital values of the beat signals obtained by the AD converters 107a and 107b, respectively, to obtain information representing the frequency component of each beat signal.
 仮想拡張処理部108bは、フーリエ変換部108aから入力される各ビート信号の周波数成分の情報に対して、受信アンテナの数を仮想的に拡張する仮想拡張処理を行う。この仮想拡張処理により、受信アンテナ110a,110bにそれぞれ対応する拡張アンテナが仮想的に生成され、受信アンテナ110a,110bの受信情報に相当するビート信号の周波数情報と、各拡張アンテナの受信情報に相当するビート信号の周波数情報とが、仮想拡張処理部108bから出力される。 The virtual expansion processing unit 108b performs virtual expansion processing for virtually expanding the number of receiving antennas with respect to the information of the frequency component of each beat signal input from the Fourier transform unit 108a. By this virtual expansion processing, expansion antennas corresponding to the reception antennas 110a and 110b are virtually generated, and the frequency information of the beat signal corresponding to the reception information of the reception antennas 110a and 110b and the reception information of each expansion antenna correspond to each other. The frequency information of the beat signal to be output is output from the virtual expansion processing unit 108b.
 以下の説明では、仮想拡張処理部108bによる仮想拡張処理前の受信情報、すなわち受信アンテナ110a,110bで実際に受信した受信信号に基づくビート信号の周波数成分の情報を、「第1の受信情報」と称する。また、仮想拡張処理部108bによる仮想拡張処理後の受信情報、すなわち受信アンテナ110a,110bで受信した受信信号に基づくビート信号の周波数成分の情報と、各拡張アンテナで仮想的に受信した受信信号に基づくビート信号の周波数成分の情報とを合わせて、「第2の受信情報」と称する。換言すると、仮想拡張処理部108bは、仮想拡張処理を行うことで、第1の受信情報を第2の受信情報に変換する。なお、仮想拡張処理の詳細については後述する。 In the following description, the reception information before the virtual expansion processing by the virtual expansion processing unit 108b, that is, the information on the frequency component of the beat signal based on the reception signals actually received by the reception antennas 110a and 110b is referred to as "first reception information". It is called. Further, the reception information after the virtual expansion processing by the virtual expansion processing unit 108b, that is, the frequency component information of the beat signal based on the reception signals received by the reception antennas 110a and 110b, and the reception signal virtually received by each expansion antenna Together with the information on the frequency component of the beat signal based on it, it is referred to as "second reception information". In other words, the virtual expansion processing unit 108b converts the first received information into the second received information by performing the virtual expansion processing. The details of the virtual extension processing will be described later.
 ピーク検出部108cは、仮想拡張処理部108bから入力される第2の受信情報に基づいて、予め設定された閾値を上回るピークを検出する。そして、検出したピークに基づいて対象物までの距離に応じたビート信号の周波数を求め、対象物までの距離や相対速度を算出する。 The peak detection unit 108c detects a peak that exceeds a preset threshold value based on the second reception information input from the virtual expansion processing unit 108b. Then, based on the detected peak, the frequency of the beat signal corresponding to the distance to the object is obtained, and the distance to the object and the relative velocity are calculated.
 方向推定部108dは、仮想拡張処理部108bから入力される第2の受信情報に基づいて、ピーク検出部108cで検出された各ピークに対する到来方向の推定を行う。これにより、送信信号が対象物で反射されて受信アンテナ110a,110bにより受信された受信信号の到来方向が推定され、レーダ装置1に対する対象物の方向が求められる。 The direction estimation unit 108d estimates the arrival direction for each peak detected by the peak detection unit 108c based on the second received information input from the virtual expansion processing unit 108b. As a result, the transmission signal is reflected by the object, the arrival direction of the received signal received by the receiving antennas 110a and 110b is estimated, and the direction of the object with respect to the radar device 1 is obtained.
 以上説明したレーダ装置1は、たとえば三角波やのこぎり波の電圧波形を波形発生器101で生成し、これを電圧制御発振器102に出力することで、連続波を周波数変調した送信信号を送信する。この送信信号が対象物で反射された反射波は、対象物との距離dに比例した遅延時間の後、ミキサ105a,105bに受信信号として入力される。そのため、遅延時間に比例した周波数のビート信号が得られる。 The radar device 1 described above generates, for example, a voltage waveform of a triangular wave or a sawtooth wave by a waveform generator 101, and outputs this to a voltage controlled oscillator 102 to transmit a transmission signal in which a continuous wave is frequency-modulated. The reflected wave whose transmitted signal is reflected by the object is input to the mixers 105a and 105b as a received signal after a delay time proportional to the distance d to the object. Therefore, a beat signal having a frequency proportional to the delay time can be obtained.
 なお、図1では、1つの送信アンテナ109から送信される送信信号が対象物で反射された受信信号を、2つの受信アンテナ110a,110bで受信する場合のレーダ装置1の構成例を示したが、送信アンテナまたは受信アンテナの数はこれに限定されない。1つの送信アンテナに対し、この送信アンテナから送信された送信信号が対象物で反射されることにより生成される受信信号をそれぞれ受信する複数の受信アンテナを備えるものであれば、任意の受信アンテナ数でレーダ装置1を構成することができる。ここで、受信アンテナの数を増やすほど方向推定部108dが受信信号の到来方向を推定する際の分解能を向上できるが、レーダ装置1の搭載スペースが増大するというデメリットがある。そのため、レーダ装置1において必要な分解能と搭載スペースとの関係から、最適な受信アンテナ数を定めることが好ましい。 Note that FIG. 1 shows a configuration example of the radar device 1 in the case where the transmission signal transmitted from one transmission antenna 109 is received by the two reception antennas 110a and 110b after being reflected by the object. , The number of transmit or receive antennas is not limited to this. Any number of receiving antennas as long as one transmitting antenna is provided with a plurality of receiving antennas for receiving each of the received signals generated by the transmission signal transmitted from the transmitting antenna being reflected by the object. The radar device 1 can be configured with. Here, as the number of receiving antennas is increased, the resolution when the direction estimation unit 108d estimates the arrival direction of the received signal can be improved, but there is a demerit that the mounting space of the radar device 1 increases. Therefore, it is preferable to determine the optimum number of receiving antennas from the relationship between the required resolution of the radar device 1 and the mounting space.
 次に、仮想拡張処理部108bにより実行される仮想拡張処理について、図2および図3を参照して説明する。なお、図2および図3では、仮想拡張処理を分かりやすく説明するため、受信アンテナの数を図1とは変えている。具体的には、図1では2つの受信アンテナ110a,110bを示したが、図2および図3では5つの受信アンテナ21~25をレーダ装置1が有する場合を例として、仮想拡張処理を説明する。ただし前述のように、レーダ装置1では任意数の受信アンテナを用いることが可能であり、受信アンテナの数が異なる場合であっても、同様の手法により仮想拡張処理を実施することができる。 Next, the virtual expansion processing executed by the virtual expansion processing unit 108b will be described with reference to FIGS. 2 and 3. In FIGS. 2 and 3, the number of receiving antennas is different from that in FIG. 1 in order to explain the virtual expansion process in an easy-to-understand manner. Specifically, two receiving antennas 110a and 110b are shown in FIG. 1, but in FIGS. 2 and 3, the virtual expansion process will be described by taking the case where the radar device 1 has five receiving antennas 21 to 25 as an example. .. However, as described above, the radar device 1 can use an arbitrary number of receiving antennas, and even if the number of receiving antennas is different, the virtual expansion process can be performed by the same method.
 図2は、仮想拡張処理により形成される仮想拡張アレーアンテナを説明する図である。例えば図2(a)に示すように、レーダ装置1において5つの受信アンテナ21~25が一列に並べて配置されることで、実アレーアンテナが形成されている場合を想定する。この場合、仮想拡張処理では、変換行列Tを用いた演算を行うことで、受信アンテナ21~25に対して、図2(b)に示すように受信アンテナ21~25とは異なる位置に一列に並べて配置された仮想アンテナ31~35を仮想的に設定し、仮想アレーアンテナを形成することができる。そして、受信アンテナ21~25と仮想アンテナ31~35を合わせて、図2(c)に示すような仮想拡張アレーアンテナが形成される。 FIG. 2 is a diagram illustrating a virtual expansion array antenna formed by the virtual expansion process. For example, as shown in FIG. 2A, it is assumed that the actual array antenna is formed by arranging the five receiving antennas 21 to 25 in a row in the radar device 1. In this case, in the virtual expansion process, by performing an operation using the transformation matrix T, the receiving antennas 21 to 25 are arranged in a line at positions different from those of the receiving antennas 21 to 25 as shown in FIG. 2 (b). Virtual array antennas 31 to 35 arranged side by side can be virtually set to form a virtual array antenna. Then, the receiving antennas 21 to 25 and the virtual antennas 31 to 35 are combined to form a virtual extended array antenna as shown in FIG. 2 (c).
 受信アンテナ21~25で形成される実アレーアンテナにより受信される受信信号のベクトルをx~rと表すと、仮想アンテナ31~35で形成される仮想アレーアンテナにより受信される受信信号のベクトルは、受信信号ベクトルx~rに変換行列Tをかけることで算出される。すなわち、図2(c)に示す仮想拡張アレーアンテナの受信信号ベクトルx~Tは、以下の式(1)で表される。 When the vector of the received signal received by the real array antennas formed by the receiving antennas 21 to 25 is expressed as x to r , the vector of the received signal received by the virtual array antennas formed by the virtual antennas 31 to 35 is It is calculated by multiplying the received signal vectors x to r by the transformation matrix T. That is, the received signal vectors x to T of the virtual extended array antenna shown in FIG. 2C are represented by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 図3は、仮想拡張アレーアンテナの動作原理を説明する図である。図3に示すように、実アレーアンテナを形成する受信アンテナ21~25の位置をdr1~dr5とそれぞれ表し、仮想アレーアンテナを形成する仮想アンテナ31~35の位置をdv1~dv5とそれぞれ表す。この場合、θL方向から入射する平面波に対する実アレーアンテナのステアリングベクトルと、仮想アレーアンテナのステアリングベクトルは、それぞれ以下の式(2)、(3)で表される。 FIG. 3 is a diagram for explaining the operating principle of the virtual extended array antenna. As shown in FIG. 3, the positions of the receiving antennas 21 to 25 forming the real array antenna are represented by d r1 to d r5 , respectively, and the positions of the virtual antennas 31 to 35 forming the virtual array antenna are designated as d v1 to d v5. Represent each. In this case, the steering vector of the real array antenna and the steering vector of the virtual array antenna with respect to the plane wave incident from the θ L direction are represented by the following equations (2) and (3), respectively.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 したがって、図3に示す仮想拡張アレーアンテナのステアリングベクトルaT(θ)は、以下の式(4)で表される。 Therefore, the steering vector a T (θ) of the virtual extended array antenna shown in FIG. 3 is represented by the following equation (4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 実アレーアンテナと仮想アレーアンテナに到来する受信信号の角度範囲をθLからθRの範囲とすると、この角度範囲をΔθ間隔で分割することにより、実アレーアンテナのステアリングベクトルと仮想アレーアンテナのステアリングベクトルを、以下の式(5)、(6)のようにそれぞれ行列化することができる。 Assuming that the angle range of the received signal arriving at the real array antenna and the virtual array antenna is the range of θ L to θ R , the steering vector of the real array antenna and the steering of the virtual array antenna are steered by dividing this angle range at Δθ intervals. The vector can be queued as shown in the following equations (5) and (6), respectively.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 ここで、式(5)で表される実アレーアンテナのステアリングベクトルと、式(6)で表される仮想アレーアンテナのステアリングベクトルの間には、前述の変換行列Tを用いて、以下の式(7)の関係が成り立つ。すなわち変換行列Tは、平面波による仮想アレーアンテナの受信信号を、θLからθRの範囲でΔθ毎に推定するための変換行列である。 Here, between the steering vector of the real array antenna represented by the equation (5) and the steering vector of the virtual array antenna represented by the equation (6), the following equation is used using the transformation matrix T described above. The relationship (7) holds. That is, the transformation matrix T is a transformation matrix for estimating the reception signal of the virtual array antenna by the plane wave in the range of θ L to θ R for each Δθ.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 なお、変換行列Tは、以下の式(8)で表される一般逆行列により得られる。 The transformation matrix T is obtained by the general inverse matrix represented by the following equation (8).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 本実施形態のレーダ装置1では、方向推定部108dにおいて、上記の式(1)、(4)でそれぞれ表される仮想拡張アレーアンテナの受信信号ベクトルとステアリングベクトルを用いて、受信信号の到来方向、すなわち対象物の方向が推定される。これにより、受信アンテナの素子数が少ない場合でも、受信アンテナの開口を仮想的に拡張して、受信信号の到来方向を推定する際の分解能を向上することができる。 In the radar device 1 of the present embodiment, the direction estimation unit 108d uses the received signal vector and the steering vector of the virtual extended array antennas represented by the above equations (1) and (4), respectively, in the direction of arrival of the received signal. That is, the direction of the object is estimated. As a result, even when the number of elements of the receiving antenna is small, the opening of the receiving antenna can be virtually expanded to improve the resolution when estimating the arrival direction of the received signal.
 ところで、レーダ装置1において得られる受信信号には、様々な誤差要因による誤差が含まれている。そのため、本来得られるはずの理論値から誤差分のずれが生じてしまい、受信信号の到来方向を推定する際の分解能の低下につながる。そこで、本実施形態のレーダ装置1では、仮想拡張処理部108bにより、仮想拡張処理の実行に先立って、第1の受信情報から誤差を取り除くための校正処理を行う。これにより、受信信号の到来方向推定の分解能を改善するようにしている。 By the way, the received signal obtained by the radar device 1 contains errors due to various error factors. Therefore, a deviation of an error occurs from the theoretical value that should be originally obtained, which leads to a decrease in resolution when estimating the arrival direction of the received signal. Therefore, in the radar device 1 of the present embodiment, the virtual expansion processing unit 108b performs a calibration process for removing an error from the first received information prior to the execution of the virtual expansion processing. This improves the resolution of estimating the arrival direction of the received signal.
 本実施形態では、予め実験的に取得した校正用測定データに基づいて計算された受信信号と理論値との誤差を示す誤差行列を、DSP108に記憶しておく。仮想拡張処理部108bは、上記の校正処理において、DSP108に予め記憶された誤差行列の逆行列を用いて、受信アンテナから得られた第1の受信情報が表す受信信号ベクトルを、誤差を含まない受信信号ベクトルに変換する。そして、この変換後の受信信号ベクトルに対して仮想拡張処理を行うことで、第1の受信情報を第2の受信情報に変換する。なお、誤差行列ではなく、誤差行列の逆行列をDSP108に記憶しておき、これを用いて校正処理を行ってもよい。 In the present embodiment, an error matrix indicating an error between the received signal and the theoretical value calculated based on the calibration measurement data experimentally acquired in advance is stored in the DSP 108. In the above calibration process, the virtual expansion processing unit 108b does not include an error in the received signal vector represented by the first received information obtained from the receiving antenna by using the inverse matrix of the error matrix stored in the DSP 108 in advance. Convert to a received signal vector. Then, by performing virtual expansion processing on the received signal vector after this conversion, the first received information is converted into the second received information. In addition, instead of the error matrix, the inverse matrix of the error matrix may be stored in the DSP 108, and the calibration process may be performed using this.
 方向推定部108dは、仮想拡張処理部108bから出力される校正処理済みの第2の受信情報を用いて、受信信号の到来方向を推定する。したがって、方向推定部108dが受信信号の到来方向を推定する際の分解能が改善され、その結果、レーダ装置1の方位検出精度を向上できる。 The direction estimation unit 108d estimates the arrival direction of the received signal by using the calibrated second reception information output from the virtual expansion processing unit 108b. Therefore, the resolution when the direction estimation unit 108d estimates the arrival direction of the received signal is improved, and as a result, the direction detection accuracy of the radar device 1 can be improved.
 図4は、本発明の第1の実施形態に係るレーダ装置1における校正処理および仮想拡張処理のフローチャートである。図4のフローチャートにおいて、ステップS10、S20の処理は、受信アンテナ110a,110bを用いた実験環境下で事前に行われる前処理であり、ステップS110~S150の処理は、受信アンテナ110a,110bをレーダ装置1に搭載した状態で対象物からの受信信号を実際に受信したときに、DSP108において行われる処理である。 FIG. 4 is a flowchart of the calibration process and the virtual expansion process in the radar device 1 according to the first embodiment of the present invention. In the flowchart of FIG. 4, the processes of steps S10 and S20 are preprocesses performed in advance in an experimental environment using the receiving antennas 110a and 110b, and the processes of steps S110 to S150 radar the receiving antennas 110a and 110b. This is a process performed by the DSP 108 when a received signal from an object is actually received while mounted on the device 1.
 ステップS10では、受信アンテナ110a,110bに対して、複数方向から実験用の電波をそれぞれ送信したときの受信信号波形を測定することにより、誤差を含んだステアリングベクトルを実験的に取得する。ステップS20では、ステップS10で取得したステアリングベクトルに基づいて、理論値との誤差を示す誤差行列G~を計算する。 In step S10, the steering vector including the error is experimentally acquired by measuring the received signal waveforms when the experimental radio waves are transmitted from a plurality of directions to the receiving antennas 110a and 110b, respectively. In step S20, an error matrix G ~ indicating an error from the theoretical value is calculated based on the steering vector acquired in step S10.
 ステップS110では、仮想拡張処理部108bにより、受信アンテナ110a,110bでそれぞれ受信されるレーダ装置1の受信信号ベクトルx~rを取得する。ここでは、フーリエ変換部108aから仮想拡張処理部108bに出力される第1の受信情報を取得することで、受信信号ベクトルx~rを取得する。 In step S110, the virtual expansion processing unit 108b acquires the reception signal vectors x to r of the radar device 1 received by the reception antennas 110a and 110b, respectively. Here, the received signal vectors x to r are acquired by acquiring the first received information output from the Fourier transform unit 108a to the virtual expansion processing unit 108b.
 ステップS120では、仮想拡張処理部108bにより、ステップS110で取得した受信信号ベクトルx~rに対して校正処理を実施する。ここでは、前処理のステップS20で計算された誤差行列G~の逆行列G~-1を受信信号ベクトルx~rに乗じることにより、受信信号ベクトルx~rから誤差成分を取り除く。これにより、誤差を含まない受信信号ベクトルxrを計算することができる。 In step S120, the virtual expansion processing unit 108b performs calibration processing on the received signal vectors x to r acquired in step S110. Here, by multiplying an inverse matrix G ~ -1 of the error matrix G ~ calculated in step S20 before processing on the received signal vector x ~ r, removing the error component from the received signal vector x ~ r. As a result, the received signal vector x r including no error can be calculated.
 ステップS130では、仮想拡張処理部108bにより、θLからθRの角度範囲に対して、前述の式(8)で定義される変換行列Tを計算する。 In step S130, the virtual expansion processing unit 108b calculates the transformation matrix T defined by the above equation (8) for the angle range from θ L to θ R.
 ステップS140では、仮想拡張処理部108bにより、ステップS120の校正処理によって計算された受信信号ベクトルxrに対して、ステップS130で計算した変換行列Tを用いた仮想拡張処理を行う。ここでは、前述の式(1)を受信信号ベクトルxrに適用した下記の式(9)と、前述の式(4)とを用いて、校正処理済みの仮想拡張アレーアンテナによる受信信号ベクトルxTおよびステアリングベクトルaT(θ)を計算する。
これにより、校正処理によって誤差成分が取り除かれた第1の受信情報を、仮想拡張処理後の第2の受信情報に変換することができる。
In step S140, the virtual expansion processing unit 108b performs virtual expansion processing using the transformation matrix T calculated in step S130 on the received signal vector x r calculated by the calibration process in step S120. Here, the reception signal vector x by the virtual expansion array antenna that has been calibrated by using the following equation (9) in which the above equation (1) is applied to the reception signal vector x r and the above equation (4). Calculate T and the steering vector a T (θ).
As a result, the first received information from which the error component has been removed by the calibration process can be converted into the second received information after the virtual expansion process.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 ステップS150では、ピーク検出部108cおよび方向推定部108dにより、ステップS140で計算された仮想拡張処理後の受信信号ベクトルxTおよびステアリングベクトルaT(θ)を用いて、受信信号の到来方向を推定する。ここでは前述のように、ピーク検出部108cにおいてピークを検出し、検出された各ピークに対して、方向推定部108dにより受信信号の到来方向を推定する。ステップS150の処理を実行したら、図4のフローチャートを終了する。 In step S150, the peak detection unit 108c and the direction estimation unit 108d estimate the arrival direction of the received signal using the received signal vector x T and the steering vector a T (θ) calculated in step S140 after the virtual expansion processing. To do. Here, as described above, the peak detection unit 108c detects the peak, and the direction estimation unit 108d estimates the arrival direction of the received signal for each detected peak. After executing the process of step S150, the flowchart of FIG. 4 ends.
 図5は、本発明の第1の実施形態に係る校正処理の効果を説明する図である。図5において、符号51に示す波形は、受信信号に校正処理を実施せずに仮想拡張処理を行った場合の空間スペクトルの一例を示し、符号52に示す波形は、受信信号に校正処理を実施した後に仮想拡張処理を行った場合の空間スペクトルの一例を示している。これらの空間スペクトルを比較すると、空間スペクトル51では2つのピークが一体化しており境界が明確でないのに対して、空間スペクトル52では2つのピークの境界が明確になっている。
したがって、校正処理により受信信号の到来方向推定の分解能が改善されていることが分かる。なお、空間スペクトル51,52は、MUSIC(Multiple Signal Classification)と呼ばれる周知のアルゴリズムを用いて受信信号から求めた空間スペクトルの例をそれぞれ示している。
FIG. 5 is a diagram illustrating the effect of the calibration process according to the first embodiment of the present invention. In FIG. 5, the waveform shown by reference numeral 51 shows an example of a spatial spectrum when the received signal is subjected to virtual expansion processing without performing calibration processing, and the waveform shown by reference numeral 52 is obtained by performing calibration processing on the received signal. An example of the spatial spectrum when the virtual expansion processing is performed after the processing is shown. Comparing these spatial spectra, the spatial spectrum 51 has two peaks integrated and the boundary is not clear, whereas the spatial spectrum 52 has a clear boundary between the two peaks.
Therefore, it can be seen that the calibration process improves the resolution of estimating the arrival direction of the received signal. The spatial spectra 51 and 52 show examples of spatial spectra obtained from received signals using a well-known algorithm called MUSIC (Multiple Signal Classification).
 以上説明した本発明の第1の実施形態によれば、以下の作用効果を奏する。 According to the first embodiment of the present invention described above, the following effects are exhibited.
(1)仮想拡張アンテナ方式を用いるレーダ装置1は、実存する受信アンテナ110a,110bで受信した受信信号に基づく第1の受信情報に対して校正処理を行い(ステップS120)、校正処理が行われた第1の受信情報に対して受信アンテナ110a,110bを仮想的に拡張する仮想拡張処理を行う(ステップS140)ことで、第1の受信情報を仮想拡張アンテナ方式に基づく第2の受信情報に変換する。そして、第2の受信情報に基づいて受信信号の到来方向を推定する(ステップS150)。このようにしたので、レーダ装置の方位検出精度を向上できる。 (1) The radar device 1 using the virtual extended antenna method performs calibration processing on the first reception information based on the reception signals received by the existing reception antennas 110a and 110b (step S120), and the calibration processing is performed. By performing a virtual expansion process for virtually expanding the reception antennas 110a and 110b with respect to the first reception information (step S140), the first reception information becomes the second reception information based on the virtual expansion antenna method. Convert. Then, the arrival direction of the received signal is estimated based on the second received information (step S150). Since this is done, the directional detection accuracy of the radar device can be improved.
(2)レーダ装置1は、ステップS120の校正処理では、受信信号と理論値との誤差を示す誤差行列G~の逆行列G~-1を用いて、第1の受信情報から誤差を取り除くための計算を実施する。このようにしたので、誤差を含む第1の受信情報からその誤差を確実に取り除き、受信信号の到来方向を推定する際の分解能を改善することができる。 (2) In the calibration process of step S120, the radar device 1 removes the error from the first received information by using the inverse matrix G ~ -1 of the error matrix G ~ indicating the error between the received signal and the theoretical value. Perform the calculation of. Since this is done, the error can be reliably removed from the first received information including the error, and the resolution at the time of estimating the arrival direction of the received signal can be improved.
(3)レーダ装置1は、予め設定された誤差行列G~から算出される逆行列G~-1または予め設定された逆行列G~-1を用いて、ステップS120の校正処理の計算を実施する。このようにしたので、事前に実験的に取得した校正用測定データに基づき、第1の受信情報から誤差を確実に取り除くことが可能な逆行列を得ることができる。 (3) the radar apparatus 1, using the inverse matrix G ~ -1 which is the inverse matrix G ~ -1 or preset calculated from the set error matrix G ~ advance, perform calculations of the calibration process of step S120 To do. Since this is done, it is possible to obtain an inverse matrix capable of reliably removing an error from the first received information based on the calibration measurement data experimentally acquired in advance.
(4)レーダ装置1は、1つの送信アンテナ109と、1つの送信アンテナ109から送信された送信信号が対象物で反射されることにより生成される受信信号をそれぞれ受信する複数の受信アンテナ110a,110bとを備える。このようにしたので、レーダ装置1において、小型で高い方位分解能を実現可能な発明方式を適用することができる。 (4) The radar device 1 receives one transmitting antenna 109 and a plurality of receiving antennas 110a, each of which receives a receiving signal generated by reflecting a transmitting signal transmitted from one transmitting antenna 109 by an object. It is provided with 110b. Therefore, in the radar device 1, it is possible to apply the invention method capable of realizing a small size and high directional resolution.
(第2の実施形態)
 次に、本発明の第2の実施形態に係るレーダ装置について説明する。本実施形態では、第1の実施形態で説明したレーダ装置1において、さらに空間平均法を適用する例を説明する。
(Second embodiment)
Next, the radar device according to the second embodiment of the present invention will be described. In this embodiment, an example in which the spatial averaging method is further applied to the radar device 1 described in the first embodiment will be described.
 図6は、空間平均法の概要を説明する図である。図6に示すように、空間平均法では、第1の実施形態で説明した受信アンテナ21~25および仮想アンテナ31~35を、重複する範囲をずらして2つのグループに分けることで、受信アンテナ21~24および仮想アンテナ31~35により構成される第1サブアレーと、受信アンテナ21~25および仮想アンテナ31~34により構成される第2サブアレーとを設定する。そして、第1サブアレーと第2サブアレーの相関行列をそれぞれ計算し、これらの平均をとることで新たな相関行列を求めて、受信信号の到来方向を推定する。これにより、受信信号の到来方向の推定精度を向上することができる。なお、空間平均法自体は周知の技術であるため、詳細については説明を省略する。 FIG. 6 is a diagram for explaining the outline of the spatial averaging method. As shown in FIG. 6, in the spatial averaging method, the receiving antennas 21 to 25 and the virtual antennas 31 to 35 described in the first embodiment are divided into two groups by shifting the overlapping range to divide the receiving antennas 21 into two groups. A first sub-array composed of 24 to 24 and virtual antennas 31 to 35 and a second sub-array composed of receiving antennas 21 to 25 and virtual antennas 31 to 34 are set. Then, the correlation matrices of the first sub-array and the second sub-array are calculated respectively, and a new correlation matrix is obtained by taking the average of these, and the arrival direction of the received signal is estimated. Thereby, the estimation accuracy of the arrival direction of the received signal can be improved. Since the spatial averaging method itself is a well-known technique, the details thereof will be omitted.
 図7は、本発明の第2の実施形態に係るレーダ装置1における校正処理および仮想拡張処理のフローチャートである。図7のフローチャートにおいて、第1の実施形態で説明した図4のフローチャートと同じ処理を行う部分には、図4と同一のステップ番号を付している。 FIG. 7 is a flowchart of the calibration process and the virtual expansion process in the radar device 1 according to the second embodiment of the present invention. In the flowchart of FIG. 7, the parts that perform the same processing as the flowchart of FIG. 4 described in the first embodiment are assigned the same step numbers as those of FIG.
 ステップS10,S20では、前処理として、図4と同じ処理をそれぞれ実施する。 In steps S10 and S20, the same processing as in FIG. 4 is performed as preprocessing.
 ステップS110~S140では、仮想拡張処理部108bにより、図4と同じ処理をそれぞれ実施する。 In steps S110 to S140, the virtual expansion processing unit 108b performs the same processing as in FIG. 4, respectively.
 ステップS145では、仮想拡張処理部108bにより、ステップS140の仮想拡張処理によって得られた第2の受信情報、すなわち前述の式(9)、(4)でそれぞれ表される仮想拡張処理後の受信信号ベクトルxTおよびステアリングベクトルaT(θ)に対して、空間平均法に基づく空間平均処理を行う。 In step S145, the virtual expansion processing unit 108b obtains the second reception information obtained by the virtual expansion processing in step S140, that is, the received signals after the virtual expansion processing represented by the above equations (9) and (4), respectively. Spatial averaging processing based on the spatial averaging method is performed on the vector x T and the steering vector a T (θ).
 ステップS150では、ピーク検出部108cおよび方向推定部108dにより、ステップS145で計算された空間平均処理後の第2の受信情報を用いて、第1の実施形態と同様に、受信信号の到来方向を推定する。ステップS150の処理を実行したら、図7のフローチャートを終了する。 In step S150, the peak detection unit 108c and the direction estimation unit 108d use the second reception information after the spatial averaging process calculated in step S145 to determine the arrival direction of the received signal as in the first embodiment. presume. After executing the process of step S150, the flowchart of FIG. 7 ends.
 図8は、本発明の第2の実施形態に係る校正処理の効果を説明する図である。図8において、符号81に示す波形は、受信信号に校正処理を実施せずに仮想拡張処理および空間平均処理を行った場合の空間スペクトルの一例を示し、符号82に示す波形は、受信信号に校正処理を実施した後に仮想拡張処理および空間平均処理を行った場合の空間スペクトルの一例を示している。これらの空間スペクトルを比較すると、第1の実施形態で説明した図5の空間スペクトル51,52と同様に、空間スペクトル81では2つのピークが一体化しており境界が明確でないのに対して、空間スペクトル82では2つのピークの境界が明確になっている。したがって、校正処理により受信信号の到来方向推定の分解能が改善されていることが分かる。なお、空間スペクトル81,82は、MUSICと呼ばれる周知のアルゴリズムを用いて受信信号から求めた空間スペクトルの例をそれぞれ示している。 FIG. 8 is a diagram illustrating the effect of the calibration process according to the second embodiment of the present invention. In FIG. 8, the waveform shown by reference numeral 81 shows an example of a spatial spectrum when the received signal is subjected to virtual expansion processing and spatial averaging processing without performing calibration processing, and the waveform shown by reference numeral 82 is a received signal. An example of the spatial spectrum when the virtual expansion processing and the spatial averaging processing are performed after the calibration processing is performed is shown. Comparing these spatial spectra, similar to the spatial spectra 51 and 52 of FIG. 5 described in the first embodiment, in the spatial spectrum 81, the two peaks are integrated and the boundary is not clear, whereas the space In spectrum 82, the boundary between the two peaks is clear. Therefore, it can be seen that the calibration process improves the resolution of estimating the arrival direction of the received signal. The spatial spectra 81 and 82 show examples of spatial spectra obtained from received signals using a well-known algorithm called MUSIC.
 以上説明した本発明の第2の実施形態によれば、レーダ装置1は、校正処理が行われた第1の受信情報に仮想拡張処理を行うことで得られた第2の受信情報に対して空間平均処理を行い(ステップS145)、空間平均処理後の第2の受信情報に基づいて受信信号の到来方向を推定する(ステップS150)。このようにしたので、受信信号の到来方向の推定精度をさらに向上することができる。 According to the second embodiment of the present invention described above, the radar device 1 relates to the second received information obtained by performing the virtual expansion process on the first received information that has been calibrated. Spatial averaging processing is performed (step S145), and the arrival direction of the received signal is estimated based on the second received information after the spatial averaging processing (step S150). Since this is done, the estimation accuracy of the arrival direction of the received signal can be further improved.
 以上説明した実施形態や各種変形例はあくまで一例であり、発明の特徴が損なわれない限り、本発明はこれらの内容に限定されるものではない。また、上記では種々の実施形態や変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。 The embodiments and various modifications described above are merely examples, and the present invention is not limited to these contents as long as the features of the invention are not impaired. Moreover, although various embodiments and modifications have been described above, the present invention is not limited to these contents. Other aspects conceivable within the scope of the technical idea of the present invention are also included within the scope of the present invention.
 1 レーダ装置
 101 波形発生器
 102 電圧制御発振器
 103 増幅器
 104a,104b 低雑音増幅器
 105a,105b ミキサ
 106a,106b 低域通過フィルタ
 107a,107b AD変換器
 108 ディジタルシグナルプロセッサ(DSP)
 108a フーリエ変換部
 108b 仮想拡張処理部
 108c ピーク検出部
 108d 方向推定部
 109 送信アンテナ
 110a,110b 受信アンテナ
1 Radar device 101 Waveform generator 102 Voltage controlled oscillator 103 Amplifier 104a, 104b Low noise amplifier 105a, 105b Mixer 106a, 106b Low- pass filter 107a, 107b AD converter 108 Digital signal processor (DSP)
108a Fourier transform unit 108b Virtual expansion processing unit 108c Peak detection unit 108d Direction estimation unit 109 Transmitting antenna 110a, 110b Receiving antenna

Claims (5)

  1.  仮想拡張アンテナ方式を用いるレーダ装置であって、
     実存する受信アンテナで受信した受信信号に基づく第1の受信情報に対して校正処理を行い、
     前記校正処理が行われた前記第1の受信情報に対して前記受信アンテナを仮想的に拡張する仮想拡張処理を行うことで、前記第1の受信情報を前記仮想拡張アンテナ方式に基づく第2の受信情報に変換し、
     前記第2の受信情報に基づいて前記受信信号の到来方向を推定する、レーダ装置。
    A radar device that uses a virtual extended antenna system.
    The first received information based on the received signal received by the existing receiving antenna is calibrated and processed.
    By performing a virtual expansion process that virtually expands the receiving antenna with respect to the first received information that has undergone the calibration process, the first received information is subjected to a second reception information based on the virtual expansion antenna method. Convert to received information and
    A radar device that estimates the arrival direction of the received signal based on the second received information.
  2.  請求項1に記載のレーダ装置において、
     前記校正処理では、前記受信信号と理論値との誤差を示す誤差行列の逆行列を用いて、前記第1の受信情報から前記誤差を取り除くための計算を実施する、レーダ装置。
    In the radar device according to claim 1,
    In the calibration process, a radar device that performs a calculation for removing the error from the first received information by using an inverse matrix of an error matrix indicating an error between the received signal and a theoretical value.
  3.  請求項2に記載のレーダ装置において、
     予め設定された前記誤差行列から算出される前記逆行列または予め設定された前記逆行列を用いて前記計算を実施する演算処理部を備える、レーダ装置。
    In the radar device according to claim 2,
    A radar device including an arithmetic processing unit that performs the calculation using the inverse matrix calculated from the preset error matrix or the preset inverse matrix.
  4.  請求項1に記載のレーダ装置において、
     前記第2の受信情報に対して空間平均処理を行い、前記空間平均処理後の前記第2の受信情報に基づいて前記受信信号の到来方向を推定する、レーダ装置。
    In the radar device according to claim 1,
    A radar device that performs spatial averaging processing on the second received information and estimates the arrival direction of the received signal based on the second received information after the spatial averaging processing.
  5.  請求項1に記載のレーダ装置において、
     1つの送信アンテナと、
     前記1つの送信アンテナから送信された送信信号が対象物で反射されることにより生成される前記受信信号をそれぞれ受信する複数の前記受信アンテナと、を備える、レーダ装置。
    In the radar device according to claim 1,
    One transmitting antenna and
    A radar device including a plurality of receiving antennas each receiving the received signal generated by reflecting a transmitted signal transmitted from the one transmitting antenna by an object.
PCT/JP2020/045180 2019-12-25 2020-12-04 Radar device WO2021131601A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112020005328.8T DE112020005328T5 (en) 2019-12-25 2020-12-04 RADAR DEVICE
JP2021567150A JPWO2021131601A1 (en) 2019-12-25 2020-12-04

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-234772 2019-12-25
JP2019234772 2019-12-25

Publications (1)

Publication Number Publication Date
WO2021131601A1 true WO2021131601A1 (en) 2021-07-01

Family

ID=76574002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045180 WO2021131601A1 (en) 2019-12-25 2020-12-04 Radar device

Country Status (3)

Country Link
JP (1) JPWO2021131601A1 (en)
DE (1) DE112020005328T5 (en)
WO (1) WO2021131601A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116466299A (en) * 2023-06-20 2023-07-21 中国人民解放军火箭军工程大学 Two-dimensional subarray level sparse array FPMIMO radar receiving and transmitting beam synthesis method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257298A (en) * 2004-03-09 2005-09-22 Yokohama Tlo Co Ltd Calibration method and calibration device for array antenna
JP2017090229A (en) * 2015-11-10 2017-05-25 富士通テン株式会社 Arriving direction estimating device, arriving direction estimating method, and arriving direction estimating program

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6947054B2 (en) 2018-01-24 2021-10-13 株式会社デンソー Radar device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257298A (en) * 2004-03-09 2005-09-22 Yokohama Tlo Co Ltd Calibration method and calibration device for array antenna
JP2017090229A (en) * 2015-11-10 2017-05-25 富士通テン株式会社 Arriving direction estimating device, arriving direction estimating method, and arriving direction estimating program

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KANG, SEOKHYUN ET AL.: "Improving the Performance of DOA Estimation Using Virtual Antenna in Automotive Radar", IEICE TRANSACTIONS ON COMMUNICATIONS, vol. E100-B, no. 5, May 2017 (2017-05-01), pages 771 - 778, DOI: 10.1587/transcom.2016EBP3368 4 *
YAMADA, HIROYOSHI: "Array Calibration Technique for High-Resolution Direction of Arrival Estimation", THE IEICE TRANSACTIONS ON COMMUNICATIONS B, vol. J92-B, no. 9, 1 September 2009 (2009-09-01), pages 1308 - 1321 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116466299A (en) * 2023-06-20 2023-07-21 中国人民解放军火箭军工程大学 Two-dimensional subarray level sparse array FPMIMO radar receiving and transmitting beam synthesis method
CN116466299B (en) * 2023-06-20 2023-08-18 中国人民解放军火箭军工程大学 Two-dimensional subarray level sparse array FPMIMO radar receiving and transmitting beam synthesis method

Also Published As

Publication number Publication date
JPWO2021131601A1 (en) 2021-07-01
DE112020005328T5 (en) 2022-08-04

Similar Documents

Publication Publication Date Title
EP3309577B1 (en) Radar apparatus
EP3471210B1 (en) Radar apparatus
JP6818541B2 (en) Radar device and positioning method
JP6677408B2 (en) Direction of arrival estimating device, direction of arrival estimating method, direction of arrival estimating program
EP3211445B1 (en) Radar system
JP4098311B2 (en) Electronic scanning millimeter wave radar apparatus and computer program
JP6148622B2 (en) Radar equipment
KR101953697B1 (en) Method and apparatus for estimating direction of arrival using generation of virtual received signals based on uniform linear array antenna
JP5617334B2 (en) Radar apparatus and target detection method
CN108885254B (en) Object detection device
JP2016151425A (en) Radar system
KR20150094240A (en) Apparatus and method of detecting target using radar
US10539658B2 (en) Radar system
JP2010096575A (en) Signal wave arrival angle measuring device
EP3399334B1 (en) Object detecting device and sensor device
JP5779370B2 (en) Electronic scanning radar apparatus, received wave direction estimation method, and program
WO2021131601A1 (en) Radar device
JP2010127771A (en) Synthetic aperture sonar, and method and program for correcting phase error of synthetic aperture sonar
JP7154494B2 (en) Direction-of-arrival estimation device and direction-of-arrival estimation method
JP2019174130A (en) Radar system and radar system target detection method
JP7160561B2 (en) Azimuth calculation device and azimuth calculation method
JP4763002B2 (en) Electronic scanning millimeter wave radar apparatus and computer program
KR102099388B1 (en) Method of estimating direction of arrival of radar signal based on antenna array extrapolation and apparatus for the same
JP7012903B2 (en) Antenna device and radar device
EP3742196B1 (en) Radar device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907176

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021567150

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20907176

Country of ref document: EP

Kind code of ref document: A1