WO2021131122A1 - Droplet removal device and imaging unit - Google Patents

Droplet removal device and imaging unit Download PDF

Info

Publication number
WO2021131122A1
WO2021131122A1 PCT/JP2020/028252 JP2020028252W WO2021131122A1 WO 2021131122 A1 WO2021131122 A1 WO 2021131122A1 JP 2020028252 W JP2020028252 W JP 2020028252W WO 2021131122 A1 WO2021131122 A1 WO 2021131122A1
Authority
WO
WIPO (PCT)
Prior art keywords
droplet
removing device
body cover
translucent body
region
Prior art date
Application number
PCT/JP2020/028252
Other languages
French (fr)
Japanese (ja)
Inventor
宣孝 岸
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2021131122A1 publication Critical patent/WO2021131122A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/08Waterproof bodies or housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/56Accessories
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof

Definitions

  • the present invention relates to an imaging unit including a droplet removing device and a droplet removing device.
  • the lens In cameras used outdoors such as in-vehicle cameras or surveillance cameras, the lens is covered with a translucent body cover to prevent foreign matter such as raindrops or mud from adhering.
  • a translucent body cover to prevent foreign matter such as raindrops or mud from adhering.
  • the foreign matter adhering to the translucent body cover is reflected in the image captured by the camera, and it is difficult to acquire a clear image.
  • Patent Document 1 a dome-type surveillance camera system that determines whether or not foreign matter has adhered to the surface of the dome-shaped cover and vibrates the dome-shaped cover to remove the foreign matter when the foreign matter adheres.
  • Patent Document 1 has a problem that the droplets adhering to the cover may not be completely removed.
  • an object of the present invention is to provide a droplet removing device and an imaging unit capable of efficiently removing droplets adhering to the translucent body cover.
  • the droplet removing device is With a translucent cover, The vibrating part that vibrates the translucent cover and A control unit that controls the vibrating unit and With The translucent cover has a droplet removal region for removing droplets adhering to the surface of the translucent cover.
  • the droplet removal region includes the portion of the surface of the translucent body cover that is most vibrated by the vibrating portion.
  • the image pickup unit includes the above-mentioned droplet removing device and an image pickup device.
  • a droplet removing device and an imaging unit capable of efficiently removing droplets adhering to a translucent body cover.
  • FIG. 1 It is a perspective view which shows the structure of the image pickup unit which concerns on Embodiment 1 of this invention. It is sectional drawing which shows the structure of the image pickup unit of FIG. It is a block diagram for demonstrating the control of the image pickup unit of FIG. It is an enlarged view of a part of the translucent body cover arranged in the droplet removal apparatus of the image pickup unit of FIG. It is a schematic diagram for demonstrating the water contact angle in this embodiment. It is a flowchart explaining operation of a droplet removal apparatus. It is a graph which shows the distribution of the vibration displacement in a translucent body cover. It is a figure explaining the viewing angle in a translucent body cover.
  • FIG. 5 is an enlarged cross-sectional view of a part of a translucent body cover arranged in the droplet removing device according to the second embodiment.
  • 9A is a view of the translucent body cover of FIG. 9A viewed from another angle.
  • FIG. 5 is an enlarged cross-sectional view of a part of a translucent body cover of a modified example of the droplet removing device according to the second embodiment.
  • a camera used outdoors such as an in-vehicle camera, a surveillance camera, or a camera mounted on a drone is provided with a cover made of glass or transparent plastic so as to cover the lens because it is exposed to wind and rain.
  • a liquid such as water droplets or muddy water or a foreign substance adheres to the cover, the liquid or the like may be reflected in the image captured by the camera, and a clear image may not be obtained.
  • the magnitude of vibration of the cover varies depending on the location, and the effect of removing droplets is high in locations with large vibration. For this reason, the present inventors have devised to form a droplet removal region on the surface of the cover where the vibration is greatest. It was also found that the effect of removing droplets differs depending on the surface condition of the cover.
  • the surface state of the cover is, for example, the water contact angle on the surface of the cover, and the present inventors have investigated a method of optimizing the water contact angle of the droplet removal region and removing droplets more efficiently. , The following inventions have been reached.
  • the droplet removing device is With a translucent cover, The vibrating part that vibrates the translucent cover and A control unit that controls the vibrating unit and With The translucent cover has a droplet removal region for removing droplets adhering to the surface of the translucent cover.
  • the droplet removal region includes the portion of the surface of the translucent body cover that is most vibrated by the vibrating portion.
  • the droplets adhering to the translucent body cover can be efficiently removed.
  • the droplet removal region may include at least the central portion of the translucent body cover.
  • the droplet removal region can be arranged in the central portion of the translucent body cover having a high effect of removing droplets by vibration, and the droplets can be removed more efficiently.
  • the water contact angle of the droplet removal region may be 50 ° or more.
  • the water contact angle of the droplet removal region may be 110 ° or less.
  • the time required for removing droplets can be further shortened.
  • the droplet removal region may have a water-repellent coating layer formed on the surface of the translucent cover.
  • the droplets adhering to the translucent body cover can be efficiently removed.
  • the water-repellent coating layer may be formed of a fluororesin or a silicon resin.
  • a water-repellent coating layer can be easily formed from a fluororesin or a silicon resin.
  • the droplet removal region may have a plurality of protrusions formed on the surface of the translucent body.
  • the translucent body cover may have a hydrophilic region having a lower water contact angle than the droplet removing region around the droplet removing region.
  • droplets can be easily removed by setting a portion having a low effect of removing droplets due to vibration as a hydrophilic region.
  • the hydrophilic region may have a hydrophilic coating layer on the surface of the translucent cover.
  • the hydrophilic region can be easily formed by the coating agent.
  • the hydrophilic coating layer may be formed of at least one of alkoxysilane, polyethylene glycol, photocatalyst, and organosiloxane.
  • the hydrophilic region can be easily formed by the coating agent.
  • a discharge unit that is controlled by the control unit and discharges at least one of a cleaning liquid and a coating agent onto the surface of the translucent cover. May be provided.
  • cleaning can be performed by discharging a cleaning liquid onto the surface of the translucent body cover.
  • a coating agent can be applied to maintain a water-repellent or hydrophilic effect.
  • the imaging unit of the present invention With the above-mentioned droplet removal device, An image sensor arranged inside the droplet removing device and May be provided.
  • FIG. 1 is a perspective view showing a configuration of an imaging unit 100 according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the configuration of the imaging unit 100 of FIG.
  • FIG. 3 is a block diagram for explaining the control of the image pickup unit 100 of FIG.
  • FIG. 4 is an enlarged view of a part of the translucent body cover 2 arranged in the droplet removing device 200 of the imaging unit 100 of FIG.
  • the imaging unit 100 includes a droplet removing device 200 and an imaging unit 5 arranged inside the droplet removing device 200.
  • the droplet removing device 200 and the imaging unit 5 are held in the housing 1 to form the imaging unit 100.
  • the image pickup unit 5 is supported by the main body member 4 and is fixed to the base plate 4a fixed to a part of the housing 1. Further, a circuit 6 including an image pickup element is built in the image pickup unit 5. A lens unit 7 including a plurality of lenses 9 is fixed in the imaging direction of the imaging unit 5.
  • the structure of the imaging unit 5 is not particularly limited as long as it can image an imaging object located in front of the lens 9.
  • the housing 1 is formed in a tubular shape and is made of, for example, metal or synthetic resin. In the present embodiment, as shown in FIG. 1, the housing 1 is formed in a square tubular shape, but it may have another shape such as a cylindrical shape.
  • the base plate 4a is fixed to one end side of the housing 1. Further, on the other end side of the housing 1, the translucent body cover 2 of the droplet removing device 200 is arranged so as to be exposed to the outside.
  • the droplet removing device 200 is a device that removes droplets and / or foreign matter adhering to the translucent body cover 2 by vibration.
  • the droplet means, for example, a liquid deposit such as raindrop or muddy water, and the foreign substance means a solid deposit such as mud.
  • the droplets are atomized by vibration, and the foreign matter is shaken off by vibration and removed from the translucent cover 2. In the following description, a case where the droplets are mainly atomized and removed will be described.
  • the droplet removing device 200 includes a translucent body cover 2, a vibrating unit 12, and a control unit 20 (see FIG. 3).
  • the droplet removing device 200 may further include a ejection unit 3. Each component constituting the droplet removing device 200 will be described below.
  • the vibrating unit 12 vibrates the translucent body cover 2.
  • the vibrating portion 12 has a cylindrical shape.
  • the vibrating unit 12 includes a first tubular member 13, a second tubular member 14, and a piezoelectric vibrator 15.
  • the piezoelectric vibrator 15 is sandwiched between the first tubular member 13 and the second tubular member 14.
  • the first tubular member 13, the second tubular member 14, and the piezoelectric vibrator 15 are each formed in a cylindrical shape.
  • the piezoelectric vibrator 15 includes two piezoelectric plates 16 and 17. In the thickness direction of the two piezoelectric plates 16 and 17, the polarization direction of one piezoelectric plate and the polarization direction of the other piezoelectric plate are opposite to each other.
  • the terminal 18 is sandwiched between the piezoelectric plates 16 and 17, and the terminal 19 is sandwiched between the piezoelectric plate 16 and the second tubular member 14. That is, the piezoelectric plate 17, the terminal 18, the piezoelectric plate 16, and the terminal 19 are laminated in this order to form the piezoelectric vibrator 15. Therefore, the piezoelectric vibrator 15 is in contact with the first tubular member 13 and the terminal 19 of the piezoelectric vibrator 15 is in contact with the second tubular member 14. It is sandwiched between the tubular member 13 and the second tubular member 14. Further, the piezoelectric vibrator 15 is formed in a ring shape.
  • the shape of the vibrating portion 12 and each component constituting the vibrating portion 12 is not limited to a cylindrical shape or a ring shape, and may be another shape such as a square cylinder shape. Preferably, a cylindrical, or ring-shaped, shape is used.
  • the piezoelectric plates 16 and 17 can be formed of lead zirconate titanate-based piezoelectric ceramics. Further, other piezoelectric ceramics such as (K, Na) NbO 3 may be used. Further, a piezoelectric single crystal such as LiTaO 3 may be used.
  • Electrodes are formed on both sides of the piezoelectric plates 16 and 17.
  • the electrode has, for example, a laminated structure of Ag / NiCu / NiCr.
  • the terminal 18 is arranged so as to be in contact with an electrode formed inside the piezoelectric plates 16 and 17 in the stacking direction.
  • the terminal 18 can be formed by using any conductive material.
  • As the conductive material for example, Cu, Al, Ag, or an alloy mainly composed of these can be used.
  • the first tubular member 13 is fixed to the piezoelectric plate 17 side of the piezoelectric vibrator 15.
  • the first tubular member 13 is made of metal and has conductivity.
  • the metal forming the first tubular member 13 for example, duralumin, stainless steel, Kovar or the like can be used.
  • the first tubular member 13 may be formed of a conductive semiconductor such as Si.
  • the second tubular member 14 is arranged on the terminal 18 side of the piezoelectric vibrator 15.
  • the second tubular member 14 is made of metal and has conductivity.
  • the metal forming the second tubular member 14 for example, duralumin, stainless steel, Kovar or the like can be used.
  • the second tubular member 14 may be formed of a conductive semiconductor such as Si.
  • the piezoelectric vibrator 15 By applying an AC electric field between the terminal 18 and the terminal 19, the piezoelectric vibrator 15 can be vibrated vertically or horizontally.
  • the threaded portion 14a is formed on a part of the inner peripheral surface of the second tubular member 14, the first tubular member 13 is screwed into the inside of the second tubular member 14, and the first tubular member 14 is screwed into the first tubular member 14.
  • the member 13 is fixed to the second tubular member 14. Therefore, the first tubular member 13 is pressure-welded to the piezoelectric plate 17 side of the piezoelectric vibrator 15, and a part of the second tubular member 14 is pressure-welded to the terminal 19 side of the piezoelectric vibrator 15.
  • the vibration generated in the piezoelectric vibrator 15 can efficiently vibrate the entire vibrating portion 12.
  • the vibrating portion 12 is efficiently excited by the vertical effect or the horizontal effect.
  • the horizontal effect means that stress is generated in the direction perpendicular to the direction of the electric field
  • the vertical effect means that stress is generated in the direction parallel to the direction of the electric field.
  • the second tubular member 14 is provided with a flange portion 14b overhanging to the outside. As shown in FIG. 2, the flange portion 14b is placed and fixed in the recess formed in the housing 1.
  • a flange portion 14c is provided at an end portion of the second tubular member 14 opposite to the piezoelectric vibrator 15.
  • the portion connected between the flange portion 14b and the flange portion 14c is a thin-walled portion 14d.
  • the thickness of the thin portion 14d is thinner than the thickness of the first tubular member 13. Therefore, when the vibration of the vibrating portion 12 generated by the piezoelectric vibrator 15 is transmitted to the translucent body cover 2, the thin-walled portion 14d functions to convert the vibration mode and expand the vibration.
  • the vibrating unit 12 and the discharging unit 3 are controlled by the control unit 20 shown in FIG.
  • the control unit 20 is composed of a CPU (Central Processing Unit) or the like as a control center. Further, the control unit 20 has a ROM (Read Only Memory) for storing a program or control data for operating the CPU, a RAM (Random Access Memory) that functions as a work area of the CPU, and signal consistency with peripheral devices. It has an input / output interface, etc.
  • the translucent body cover 2 is fixed to the flange portion 14c of the second tubular member 14.
  • the translucent body cover 2 is a cover for protecting the image pickup unit 5 and the lens unit 7 from adhesion of droplets or foreign matter.
  • the translucent body cover 2 is formed by a cover main body 2a and a water-repellent coating layer 21a (see FIG. 4) formed on the surface of the cover main body 2a. In FIG. 2, the water-repellent coating layer 21a is not shown.
  • the translucent body cover 2 has a hemispherical dome shape and has an opening on the bottom surface 2b.
  • the bottom surface 2b is joined to the flange portion 14c of the second tubular member 14.
  • the translucent body cover 2 and the second tubular member 14 can be joined, for example, by using an adhesive or a brazing material. Alternatively, thermocompression bonding, anode bonding, or the like can also be used.
  • the image pickup unit 5 and the lens unit 7 are arranged inside the translucent body cover 2, and an external image pickup object is imaged through the translucent body cover 2.
  • the shape of the translucent body cover 2 is not limited to the hemispherical dome shape, and may be, for example, a shape in which cylinders are connected to the hemisphere, a curved shape smaller than the hemisphere, or a shape having a flat surface.
  • the translucent body cover 2 has translucency as a whole, and in the present embodiment, the translucent body cover 2 has a cover body 2a formed of glass and a water repellent formed on the surface thereof. It has a coating layer 21a.
  • the cover body 2a may be made of synthetic resin, translucent ceramics, or the like. Further, by forming the cover body 2a with tempered glass, it is possible to increase the strength of the translucent body cover 2.
  • the translucent body cover 2 has a droplet removal region 21.
  • the droplet removal region 21 includes the portion of the surface of the translucent body cover 2 that is most vibrated by the vibrating portion 12, which will be described later.
  • the portion having the largest vibration is the portion having the largest vibration displacement (amplitude).
  • the droplet removal region 21 is formed over the entire translucent body cover 2.
  • the droplet removal region 21 does not necessarily have to be formed over the entire translucent body cover 2, and may include at least the central portion of the translucent body cover 2.
  • the droplet removing region 21 is a region for removing droplets adhering to the surface of the translucent body cover 2 and has water repellency.
  • the droplets are liquid deposits adhering to the translucent body cover 2 that are formed into granular liquid masses due to surface tension.
  • the fact that the droplet removing region 21 has water repellency means that the water contact angle of the surface of the translucent body cover 2 is 50 ° or more in the droplet removing region 21. The water contact angle will be described later. Since the droplet removing region 21 has the water-repellent coating layer 21a, it is possible to realize a water contact angle capable of removing droplets in the droplet removing region 21.
  • the droplet removal region 21 has a water-repellent coating layer 21a formed on the surface of the cover body 2a.
  • the water-repellent coating layer 21a can be formed of, for example, a fluororesin such as PTFE (polytetrafluoroethylene), a silicon resin, or the like.
  • the water-repellent coating layer 21a can be formed by a well-known coating method such as wet coating, vacuum deposition, and sputtering.
  • FIG. 5 is a schematic view for explaining the water contact angle in the present embodiment.
  • the water contact angle ⁇ is an angle when 2 ⁇ l of water droplet L is attached to the surface (droplet removal region 21) of the translucent body cover 2.
  • the surface of the transparent body cover 2 by adhering water droplets L, the tangent T 1 drawn on the surface of the water droplet L from the portion in contact and the water droplet L and the transparent body cover 2, the surface of the transparent body cover 2
  • the angle ⁇ with the drawn tangent T 2 is the water contact angle.
  • the water contact angle of the droplet removal region 21 is 50 ° or more. More preferably, the water contact angle of the droplet removal region 21 is 50 ° or more and 110 ° or less.
  • the discharge unit 3 has a cleaning nozzle 31 and an opening 32 provided in the housing 1 of the imaging unit 100.
  • the discharge unit 3 is controlled by the control unit 20 and discharges at least one of the cleaning liquid and the coating agent to the surface of the translucent body cover 2.
  • the cleaning nozzle 31 and the opening 32 are outside the imaging range (field of view) of the imaging unit 5, and the cleaning nozzle 31 and the opening 32 are arranged at positions where they are not reflected in the image captured by the imaging unit 5. That is, as shown in FIG. 2, the discharge portion 3 is arranged so that the opening 32 of the discharge portion 3 is located in the range R between the bottom surface 2b of the translucent body cover 2 and the top of the translucent body cover 2. It should be done.
  • the coating agent is applied from the ejection portion 3 to the translucent body cover 2. Can be sprayed.
  • spraying the coating agent it is desirable to reduce the amplitude of vibration by the vibrating portion 12 so that the coating agent does not atomize. Due to the vibration having a small amplitude, the sprayed coating agent stays on the surface of the translucent body cover 2 for a long time without being atomized, so that the coating agent can be easily fixed to the translucent body cover 2.
  • the peeling of the water-repellent coating layer 21a can be detected by, for example, image processing.
  • image processing When the droplets adhering to the surface of the translucent body cover 2 cannot be completely removed and remain, the image captured by the imaging unit 5 is distorted or the like.
  • the control unit 20 automatically detects the distortion of the image generated at this time, and when the distortion of the image is detected, it is determined that the water-repellent coating layer 21a has peeled off, and the coating agent is automatically used. May be discharged. Alternatively, the coating agent may be discharged periodically.
  • the cleaning liquid is discharged from the discharge unit 3 to wash away the solid component adhering to the translucent body cover 2 with the cleaning liquid, and the surface thereof is washed away.
  • the cleaning liquid remaining in the water can be atomized by vibration. Even when dirt containing a solid component adheres to the translucent body cover 2, for example, it may be detected by image processing by the control unit 20 and the cleaning liquid may be automatically discharged.
  • the cleaning nozzle 31 and the opening 32 are arranged so that the cleaning liquid or the coating agent is discharged to the top of the translucent cover 2, but the positions of the cleaning nozzle 31 and the opening 32 are the same. Not limited to. Further, a plurality of cleaning nozzles may be arranged.
  • the discharge portion is arranged so that the cleaning liquid or the coating liquid is discharged near the top of the translucent body cover 2. This is because the coating is easily peeled off in the vicinity of the top of the translucent body cover 2 because the vibration amplitude becomes large, as will be described later.
  • FIG. 6 is a flowchart illustrating the operation of the droplet removing device 200.
  • An AC electric field is applied to the piezoelectric vibrator 15 to drive the piezoelectric vibrator 15.
  • the AC electric field applied to the piezoelectric vibrator 15 is not particularly limited, but a current such as a sine wave sufficient to remove water droplets is applied.
  • the piezoelectric vibrator 15 When the piezoelectric vibrator 15 is driven, it vibrates due to longitudinal vibration or lateral vibration. Along with this, the vibrating portion 12 having the first tubular member 13 and the second tubular member 14 sandwiching the piezoelectric vibrator 15 vibrates due to a vertical effect or a horizontal effect (step S101).
  • the vibrating unit 12 vibrates in the respiratory vibration mode due to the lateral effect.
  • the vibration of the vibrating portion 12 is converted into the bending vibration mode by the thin-walled portion 14d of the second tubular member 14, and the amplitude is expanded and transmitted to the translucent body cover 2.
  • the distribution of the vibration displacement on the surface of the translucent body cover 2 at this time is shown in FIG. 7A.
  • the respiratory vibration mode is a mode in which the ring-shaped piezoelectric vibrator 15 naturally vibrates in the radial direction.
  • the bending vibration mode is a mode in which the piezoelectric vibrator 15 vibrates naturally in the thickness direction.
  • FIG. 7A is a graph showing the distribution of vibration displacement in the translucent body cover 2.
  • FIG. 7B is a diagram illustrating a viewing angle in the translucent body cover 2.
  • the viewing angle on the horizontal axis of the graph of FIG. 7A indicates the viewing angle of the camera (lens unit 7) when the top of the translucent cover 2 is 0 °. That is, the top of the translucent cover 2 serves as the optical axis of the lens unit 7, and the viewing angle approaches 90 ° from the top of the translucent cover 2 toward the outer periphery.
  • the vertical axis of the graph of FIG. 7A indicates the vibration displacement, that is, the magnitude of the amplitude on the surface of the translucent body cover 2.
  • the acceleration ⁇ for atomizing the foreign matter can be obtained.
  • the values of the frequency f and the acceleration ⁇ of the piezoelectric vibrator 15 depend on the design of the piezoelectric vibrator 15. Further, the vibration displacement D can be adjusted by the voltage V applied to the piezoelectric vibrator 15. For water contact angle to atomize the foreign matter in the range of less than 110 degrees 50 degrees, may acceleration ⁇ is approximately 1 ⁇ 10 5 G. More preferably, may acceleration ⁇ is at 3 ⁇ 10 5 G.
  • the frequency f of the piezoelectric vibrator 15 is 20 to 100 kHz
  • the applied voltage V is 20 to 80 Vpp
  • the mechanical quality coefficient Q of the piezoelectric vibrator is 40 to 2500
  • the piezoelectric vibrator is piezoelectric. It is desirable that the constant d is 7 to 300 pc / N.
  • the magnitude of vibration on the surface of the translucent body cover 2 is largest in the portion where the viewing angle is 0 °.
  • the magnitude of vibration is the magnitude of vibration displacement (amplitude)
  • the portion (top) having a viewing angle of 0 ° is the portion having the largest vibration.
  • the maximum amplitude is not limited to the top portion, but may be other portions. Further, the portion where the magnitude of the amplitude is maximized may differ depending on the shape of the translucent body cover. For example, when the translucent body cover is formed in a flat plate shape, the magnitude of the amplitude may be maximized at the central portion of the translucent body cover.
  • the droplets adhering to the surface move as droplets from the portion where the vibration is small to the portion where the vibration is large (step S102). This is because a larger acceleration acts on a portion having a large amplitude.
  • the atomized region A (see FIG. 7B) including the portion with the largest vibration is atomized by vibration and removed from the surface of the translucent body cover 2 (step S103).
  • the droplet removing device 200 removes the droplets adhering to the surface of the translucent body cover 2.
  • the atomized region A of the translucent body cover 2 is, for example, a region in which the viewing angle of the translucent body cover 2 is 0 ° or more and less than 30 °, as shown in FIG. 7B. Further, as shown in FIG. 7B, the region other than the atomization region A is referred to as a movement region B in which the droplet moves toward the atomization region A.
  • the droplet removal region 21 includes both the atomization region A and the movement region B, but the droplet removal region 21 may include at least the atomization region A.
  • the energy given to the droplets by vibration is applied to the droplets due to surface tension. It suffices to be greater than the force that tends to stay on the surface of the translucent body cover 2. For that purpose, it is desirable to balance the force of vibration energy and surface tension.
  • FIG. 8 is a graph showing the relationship between the water contact angle on the surface of the translucent body cover 2 and the time until droplets are removed from the surface of the translucent body cover 2 by vibration. This is a measurement of the time required for the droplets to be removed by vibration by adhering 5 ⁇ l of water (droplets) to any five positions on the surface of the translucent body cover 2.
  • what is plotted in a circle indicates that all the droplets were atomized at the indicated time.
  • what is plotted as a quadrangle indicates that the unatomized droplets remained on the surface of the translucent body cover 2 at the displayed time and were not further atomized. Shown.
  • the droplets can be atomized about twice as fast as in the case of other water contact angles. You can see that. Therefore, it can be seen that when the water contact angle is 50 ° or more and 110 ° or less, the droplets adhering to the surface of the translucent body cover 2 can be efficiently removed.
  • the water contact angle is smaller than 50 °, that is, when the contact area between the droplet and the translucent cover 2 is large, the droplet moves on the surface of the translucent cover 2 although the vibration energy is transmitted to the droplet.
  • the resistance of the time increases. Therefore, when the water contact angle is less than 50 °, it can be seen that the droplets may not be removed to the end.
  • the water contact angle is larger than 110 °, that is, when the contact area between the droplet and the translucent cover 2 is small, the vibration energy is not efficiently transmitted to the droplet. Therefore, when the water contact angle is larger than 110 °, it takes time for the droplets to move to the atomization region A, or it takes time for the droplets to atomize in the atomization region A. When the water contact angle is larger than 110 °, it takes time to move the droplet to the atomization region A or atomize in the atomization region A, but the droplet is finally atomized.
  • the droplet removal region 21 should have a water contact angle of 50 ° or more. More preferably, the water contact angle is 50 ° or more and 110 ° or less.
  • the imaging unit 100 includes a droplet removing device 200 and an imaging unit 5.
  • the droplet removing device 200 includes a translucent body cover 2, a vibrating unit 12, and a control unit 20.
  • the translucent body cover 2 has a droplet removing region 21 for removing droplets adhering to the surface, and the droplet removing region 21 covers the portion of the surface of the translucent body cover 2 that is most vibrated by the vibrating portion 12. Including. Therefore, the droplets adhering to the translucent body cover 2 can be efficiently atomized by the vibration of the vibrating unit 12.
  • the water contact angle of the droplet removing region 21 is 50 ° or more, more preferably 50 ° or more and 110 ° or less, it is possible to quickly remove the droplets adhering to the translucent body cover 2. is there.
  • the droplet removing device 200 further includes the ejection unit 3, for example, when the water-repellent coating layer 21a of the translucent body cover 2 is peeled off, the coating agent is ejected and the water-repellent coating layer 21a is peeled off. Can be repaired. Therefore, deterioration of the function of the water-repellent coating layer 21a can be prevented.
  • the ejection unit 3 is not an essential configuration in the droplet removing device 200.
  • FIG. 9 is a diagram showing a modified example of the droplet removing region 21 of the droplet removing device 200 according to the first embodiment.
  • the droplet removing region 21 may have a plurality of protrusions formed on the surface of the cover body 2a instead of the water-repellent coating layer 21a described in the first embodiment.
  • the surface of the cover main body 2a may be regularly provided with irregularities having a size (for example, a diameter or a side length) of about several ⁇ m.
  • the size and height of the concave portion and the convex portion are both preferably about several ⁇ m.
  • the second embodiment mainly describes the differences from the first embodiment.
  • the same or equivalent configurations as those in the first embodiment will be described with the same reference numerals. Further, in the second embodiment, the description overlapping with the first embodiment is omitted.
  • the second embodiment is different from the first embodiment in that the translucent body cover 24 has a hydrophilic region 22 having a water contact angle lower than that of the droplet removing region 21 around the droplet removing region 21.
  • Other configurations are the same as those of the droplet removing device 200 and the imaging unit 100 described in the first embodiment.
  • FIG. 10A is an enlarged cross-sectional view of a part of the translucent body cover 24 arranged in the droplet removing device according to the second embodiment.
  • FIG. 10B is a view of the translucent body cover 24 of FIG. 10A viewed from another angle.
  • the translucent body cover 24 has a hydrophilic region 22 around the droplet removing region 21 having a lower water contact angle than the droplet removing region 21.
  • the hydrophilic region 22 has a hydrophilic coating layer 22a.
  • the hydrophilic coating layer 22a can be formed of, for example, alkoxysilane, polyethylene glycol, a photocatalyst (TiO 2 ), organosiloxane, or the like.
  • the hydrophilic coating layer 22a can be formed by a well-known coating method such as wet coating, vacuum deposition, and sputtering.
  • the vibration displacement by the vibrating portion 12 becomes small in the portion where the viewing angle of the translucent body cover 24 is close to 90 °. Therefore, in the portion where the viewing angle of the translucent body cover 24 is close to 90 °, the effect of removing droplets by vibration is reduced. Therefore, in the present embodiment, the droplet removing region 21 is formed in the central portion of the translucent body cover 24 having a small viewing angle, and the hydrophilic region 22 is formed around the droplet removing region 21 having a large viewing angle. ..
  • the hydrophilic region 22 has a lower water contact angle than the droplet removal region 21, the attached droplets spread like a film in the hydrophilic region 22. Therefore, the outflow of droplets can be promoted in the hydrophilic region 22. Further, since the droplets spread like a film, it is possible to suppress the occurrence of distortion of the image captured by the imaging unit 5 even when the droplets remain in the hydrophilic region 22.
  • the translucent body cover 24 has a hydrophilic region 22 having a lower water contact angle than the droplet removing region 21 around the droplet removing region 21.
  • the hydrophilic region 22 is formed in the translucent body cover 24 at a portion where the effect of removing droplets due to vibration of the vibrating portion 12 is low. Therefore, in the hydrophilic region 22, distortion in the captured image can be suppressed by spreading the attached droplets like a film.
  • the translucent body cover 24 has the hydrophilic region 22, it is possible to promote the outflow of droplets that cannot be completely removed by vibration.
  • FIG. 11 is an enlarged cross-sectional view of a part of the translucent body cover 25 of the modified example of the droplet removing device according to the second embodiment.
  • the hydrophilic region 22 may not have the hydrophilic coating layer 22a formed.
  • the cover body 2a of the translucent body cover 25 is made of glass. Generally, since the surface of the glass has a low water contact angle, the water contact angle is lower than that of the droplet removal region 21 even if the hydrophilic coating layer 22a is not formed. Therefore, the water-repellent coating layer 21a of the droplet removal region 21 or the region where a plurality of protrusions are not formed can be designated as the hydrophilic region 22.
  • the imaging unit and the droplet removing device of the present invention can be applied to an in-vehicle camera, a surveillance camera, or an optical sensor such as LiDAR used outdoors.

Abstract

The present invention provides a droplet removal device and an imaging unit, the droplet removal device being able to efficiently remove droplets adhering to a translucent cover. This droplet removal device is provided with a translucent cover, a vibration unit that vibrates the translucent cover, and a control unit that controls the vibration unit. The translucent cover has a droplet removal region for removing droplets adhering to the surface of the translucent cover, and the droplet removal region includes a portion having the largest vibration generated by the vibration unit on the surface of the translucent cover.

Description

液滴除去装置および撮像ユニットDroplet remover and imaging unit
 本発明は、液滴除去装置および液滴除去装置を備える撮像ユニットに関する。 The present invention relates to an imaging unit including a droplet removing device and a droplet removing device.
 車載カメラ、または監視カメラなどの屋外で使用されるカメラにおいては、雨滴または泥等の異物の付着を防止するために、透光体カバーによりレンズが覆われている。しかし、透光体カバーに雨滴または泥等の異物が付着すると、カメラで撮像した画像に透光体カバーに付着した異物が映り込み、鮮明な画像を取得することが困難である。 In cameras used outdoors such as in-vehicle cameras or surveillance cameras, the lens is covered with a translucent body cover to prevent foreign matter such as raindrops or mud from adhering. However, when foreign matter such as raindrops or mud adheres to the translucent body cover, the foreign matter adhering to the translucent body cover is reflected in the image captured by the camera, and it is difficult to acquire a clear image.
 そこで、特許文献1のように、ドーム型カバーの表面に異物が付着したか否かを判断し、異物が付着した場合にドーム型カバーを振動させて異物を除去する、ドーム型監視カメラシステムが知られている。 Therefore, as in Patent Document 1, a dome-type surveillance camera system that determines whether or not foreign matter has adhered to the surface of the dome-shaped cover and vibrates the dome-shaped cover to remove the foreign matter when the foreign matter adheres. Are known.
特開2012-138768号公報Japanese Unexamined Patent Publication No. 2012-138768
 しかし、特許文献1に記載のシステムには、カバーに付着した液滴を除去しきれないことがあるという課題がある。 However, the system described in Patent Document 1 has a problem that the droplets adhering to the cover may not be completely removed.
 そこで、本発明は、透光体カバーに付着した液滴を効率的に除去することができる液滴除去装置、および撮像ユニットを提供することを目的とする。 Therefore, an object of the present invention is to provide a droplet removing device and an imaging unit capable of efficiently removing droplets adhering to the translucent body cover.
 本発明の一態様にかかる液滴除去装置は、
 透光体カバーと、
 前記透光体カバーを振動させる振動部と、
 前記振動部を制御する制御部と、
を備え、
 前記透光体カバーは、前記透光体カバーの表面に付着した液滴を除去する液滴除去領域を有し、
 前記液滴除去領域は、前記透光体カバーの表面において前記振動部による振動の最も大きい部分を含む。
The droplet removing device according to one aspect of the present invention is
With a translucent cover,
The vibrating part that vibrates the translucent cover and
A control unit that controls the vibrating unit and
With
The translucent cover has a droplet removal region for removing droplets adhering to the surface of the translucent cover.
The droplet removal region includes the portion of the surface of the translucent body cover that is most vibrated by the vibrating portion.
 本発明の一態様にかかる撮像ユニットは、上述の液滴除去装置と、撮像素子とを備える。 The image pickup unit according to one aspect of the present invention includes the above-mentioned droplet removing device and an image pickup device.
 本発明によると、透光体カバーに付着した液滴を効率的に除去することができる液滴除去装置、および撮像ユニットを提供することができる。 According to the present invention, it is possible to provide a droplet removing device and an imaging unit capable of efficiently removing droplets adhering to a translucent body cover.
本発明の実施の形態1にかかる撮像ユニットの構成を示す斜視図である。It is a perspective view which shows the structure of the image pickup unit which concerns on Embodiment 1 of this invention. 図1の撮像ユニットの構成を示す断面図である。It is sectional drawing which shows the structure of the image pickup unit of FIG. 図1の撮像ユニットの制御を説明するためのブロック図である。It is a block diagram for demonstrating the control of the image pickup unit of FIG. 図1の撮像ユニットの液滴除去装置に配置された透光体カバーの一部を拡大した図である。It is an enlarged view of a part of the translucent body cover arranged in the droplet removal apparatus of the image pickup unit of FIG. 本実施の形態における水接触角を説明するための模式図である。It is a schematic diagram for demonstrating the water contact angle in this embodiment. 液滴除去装置の動作を説明するフローチャートである。It is a flowchart explaining operation of a droplet removal apparatus. 透光体カバーにおける振動変位の分布を示すグラフである。It is a graph which shows the distribution of the vibration displacement in a translucent body cover. 透光体カバーにおける視野角を説明する図である。It is a figure explaining the viewing angle in a translucent body cover. 透光体カバーの表面における、水接触角と、振動により透光体カバーの表面から液滴が除去されるまでの時間との関係を示すグラフである。It is a graph which shows the relationship between the water contact angle on the surface of a translucent body cover, and the time until a droplet is removed from the surface of a translucent body cover by vibration. 図1の液滴除去装置の液滴除去領域の変形例を示す図である。It is a figure which shows the modification of the droplet removal region of the droplet removal apparatus of FIG. 実施の形態2にかかる液滴除去装置に配置された透光体カバーの一部を拡大した断面図である。FIG. 5 is an enlarged cross-sectional view of a part of a translucent body cover arranged in the droplet removing device according to the second embodiment. 図9Aの透光体カバーを別の角度から見た図である。9A is a view of the translucent body cover of FIG. 9A viewed from another angle. 実施の形態2にかかる液滴除去装置における変形例の透光体カバーの一部を拡大した断面図である。FIG. 5 is an enlarged cross-sectional view of a part of a translucent body cover of a modified example of the droplet removing device according to the second embodiment.
(本発明に至った経緯)
 例えば車載カメラや監視カメラ等、またはドローンに搭載されるカメラ等の屋外で使用するカメラは、風雨にさらされるためレンズを覆うようにガラスまたは透明プラスチックで形成されるカバーが設けられている。しかし、カバーに水滴または泥水等の液体または異物が付着すると、カメラにより撮像された画像に液体等が映り込み、鮮明な画像が得られない場合がある。
(Background to the present invention)
For example, a camera used outdoors such as an in-vehicle camera, a surveillance camera, or a camera mounted on a drone is provided with a cover made of glass or transparent plastic so as to cover the lens because it is exposed to wind and rain. However, if a liquid such as water droplets or muddy water or a foreign substance adheres to the cover, the liquid or the like may be reflected in the image captured by the camera, and a clear image may not be obtained.
 そこで、特許文献1に記載の監視カメラシステムのように、ドーム型カバーに液体または異物が付着した場合に、カバーを振動させることで液体または異物を除去するシステムが検討されている。 Therefore, a system for removing liquid or foreign matter by vibrating the cover when liquid or foreign matter adheres to the dome-shaped cover, such as the surveillance camera system described in Patent Document 1, is being studied.
 カバーの振動の大きさは場所によって異なり、振動の大きい場所では、液滴の除去効果が高い。このため、本発明者らは、カバーの表面において、振動が最も大きい部分に液滴除去領域を形成することを考案した。また、カバーの表面状態により、液滴の除去効果に違いがあることを見出した。カバーの表面状態とは、例えば、カバーの表面における水接触角であり、本発明者らは、液滴除去領域の水接触角を最適化し、より効率的に液滴を除去する方法を検討し、以下の発明に至った。 The magnitude of vibration of the cover varies depending on the location, and the effect of removing droplets is high in locations with large vibration. For this reason, the present inventors have devised to form a droplet removal region on the surface of the cover where the vibration is greatest. It was also found that the effect of removing droplets differs depending on the surface condition of the cover. The surface state of the cover is, for example, the water contact angle on the surface of the cover, and the present inventors have investigated a method of optimizing the water contact angle of the droplet removal region and removing droplets more efficiently. , The following inventions have been reached.
 本発明の一態様にかかる液滴除去装置は、
 透光体カバーと、
 前記透光体カバーを振動させる振動部と、
 前記振動部を制御する制御部と、
を備え、
 前記透光体カバーは、前記透光体カバーの表面に付着した液滴を除去する液滴除去領域を有し、
 前記液滴除去領域は、前記透光体カバーの表面において前記振動部による振動の最も大きい部分を含む。
The droplet removing device according to one aspect of the present invention is
With a translucent cover,
The vibrating part that vibrates the translucent cover and
A control unit that controls the vibrating unit and
With
The translucent cover has a droplet removal region for removing droplets adhering to the surface of the translucent cover.
The droplet removal region includes the portion of the surface of the translucent body cover that is most vibrated by the vibrating portion.
 この構成によると、透光体カバーに付着した液滴を効率的に除去することができる。 According to this configuration, the droplets adhering to the translucent body cover can be efficiently removed.
 前記液滴除去領域は、少なくとも前記透光体カバーの中央部を含んでもよい。 The droplet removal region may include at least the central portion of the translucent body cover.
 この構成によると、振動による液滴除去効果の高い透光体カバーの中央部に液滴除去領域を配置することができ、より効率的に液滴を除去することができる。 According to this configuration, the droplet removal region can be arranged in the central portion of the translucent body cover having a high effect of removing droplets by vibration, and the droplets can be removed more efficiently.
 前記液滴除去領域は、水接触角が50°以上であってもよい。 The water contact angle of the droplet removal region may be 50 ° or more.
 この構成によると、液滴除去に要する時間を短縮することができる。 According to this configuration, the time required for removing droplets can be shortened.
 前記液滴除去領域は、水接触角が110°以下であってもよい。 The water contact angle of the droplet removal region may be 110 ° or less.
 この構成によると、液滴除去に要する時間をさらに短縮することができる。 According to this configuration, the time required for removing droplets can be further shortened.
 前記液滴除去領域は、前記透光体カバーの表面に形成された撥水コーティング層を有してもよい。 The droplet removal region may have a water-repellent coating layer formed on the surface of the translucent cover.
 この構成によると、透光体カバーに付着した液滴を効率的に除去することができる。 According to this configuration, the droplets adhering to the translucent body cover can be efficiently removed.
 前記撥水コーティング層は、フッ素樹脂またはシリコン樹脂により形成されていてもよい。 The water-repellent coating layer may be formed of a fluororesin or a silicon resin.
 この構成によると、フッ素樹脂またはシリコン樹脂により、容易に撥水コーティング層を形成することができる。 According to this configuration, a water-repellent coating layer can be easily formed from a fluororesin or a silicon resin.
 前記液滴除去領域は、前記透光体の表面に形成された複数の突起を有してもよい。 The droplet removal region may have a plurality of protrusions formed on the surface of the translucent body.
 この構成によると、透光体カバーの表面に複数の突起が形成されるため、水接触角が大きくなってしまうこと等の使用中の劣化を抑制することができる。 According to this configuration, since a plurality of protrusions are formed on the surface of the translucent body cover, deterioration during use such as an increase in the water contact angle can be suppressed.
 前記透光体カバーは、前記液滴除去領域の周りに、前記液滴除去領域よりも水接触角の低い親水領域を有してもよい。 The translucent body cover may have a hydrophilic region having a lower water contact angle than the droplet removing region around the droplet removing region.
 この構成によると、振動による液滴除去効果の低い部分を親水領域とすることで、液滴を容易に除去することができる。 According to this configuration, droplets can be easily removed by setting a portion having a low effect of removing droplets due to vibration as a hydrophilic region.
 前記親水領域は、前記透光体カバーの表面に親水コーティング層を有していてもよい。 The hydrophilic region may have a hydrophilic coating layer on the surface of the translucent cover.
 この構成によると、コーティング剤により、容易に親水領域を形成することができる。 According to this configuration, the hydrophilic region can be easily formed by the coating agent.
 前記親水コーティング層は、アルコキシシラン、ポリエチレングリコール、光触媒、またはオルガノシロキサンのうち少なくともいずれか1つにより形成されていてもよい。 The hydrophilic coating layer may be formed of at least one of alkoxysilane, polyethylene glycol, photocatalyst, and organosiloxane.
 この構成によると、コーティング剤により、容易に親水領域を形成することができる。 According to this configuration, the hydrophilic region can be easily formed by the coating agent.
 さらに、
 前記制御部により制御され、前記透光体カバーの表面に洗浄液とコーティング剤との少なくともいずれか一方を吐出する吐出部、
を備えてもよい。
further,
A discharge unit that is controlled by the control unit and discharges at least one of a cleaning liquid and a coating agent onto the surface of the translucent cover.
May be provided.
 この構成によると、透光体カバーの表面に洗浄液を吐出してクリーニングを行うことができる。また、コーティング剤を塗布して撥水または親水効果を維持することができる。 According to this configuration, cleaning can be performed by discharging a cleaning liquid onto the surface of the translucent body cover. In addition, a coating agent can be applied to maintain a water-repellent or hydrophilic effect.
 本発明の撮像ユニットは、
 上述の液滴除去装置と、
 前記液滴除去装置の内部に配置される撮像素子と、
を備えてもよい。
The imaging unit of the present invention
With the above-mentioned droplet removal device,
An image sensor arranged inside the droplet removing device and
May be provided.
 この構成によると、透光体カバーに付着した液滴および/または異物を効率的に除去することができるため、雨滴または泥水等により撮像素子の視野が不鮮明となることを防止することができる。 According to this configuration, droplets and / or foreign matter adhering to the translucent body cover can be efficiently removed, so that it is possible to prevent the field of view of the image sensor from becoming unclear due to raindrops, muddy water, or the like.
 以下、本発明にかかる実施の形態1について、添付の図面を参照しながら説明する。また、各図においては、説明を容易なものとするため、各要素を誇張して示している。 Hereinafter, Embodiment 1 according to the present invention will be described with reference to the accompanying drawings. Further, in each figure, each element is exaggerated for easy explanation.
(実施の形態1)
 図1は、本発明の実施の形態1にかかる撮像ユニット100の構成を示す斜視図である。図2は、図1の撮像ユニット100の構成を示す断面図である。図3は、図1の撮像ユニット100の制御を説明するためのブロック図である。図4は、図1の撮像ユニット100の液滴除去装置200に配置された透光体カバー2の一部を拡大した図である。
(Embodiment 1)
FIG. 1 is a perspective view showing a configuration of an imaging unit 100 according to a first embodiment of the present invention. FIG. 2 is a cross-sectional view showing the configuration of the imaging unit 100 of FIG. FIG. 3 is a block diagram for explaining the control of the image pickup unit 100 of FIG. FIG. 4 is an enlarged view of a part of the translucent body cover 2 arranged in the droplet removing device 200 of the imaging unit 100 of FIG.
[全体構成]
 図1および図2に示すように、撮像ユニット100は、液滴除去装置200および液滴除去装置200の内部に配置された撮像部5を備える。液滴除去装置200および撮像部5が筐体1に保持されて撮像ユニット100が構成される。
[overall structure]
As shown in FIGS. 1 and 2, the imaging unit 100 includes a droplet removing device 200 and an imaging unit 5 arranged inside the droplet removing device 200. The droplet removing device 200 and the imaging unit 5 are held in the housing 1 to form the imaging unit 100.
 撮像部5は、図2に示すように、本体部材4により支えられ、筐体1の一部に固定されたベースプレート4aに固定されている。また、撮像部5内には、撮像素子を含む回路6が内蔵されている。撮像部5の撮像方向に、複数のレンズ9を含むレンズユニット7が固定されている。なお、撮像部5の構造は、レンズ9の前方に位置する撮像対象物を撮像し得る限り、特に限定されるものではない。 As shown in FIG. 2, the image pickup unit 5 is supported by the main body member 4 and is fixed to the base plate 4a fixed to a part of the housing 1. Further, a circuit 6 including an image pickup element is built in the image pickup unit 5. A lens unit 7 including a plurality of lenses 9 is fixed in the imaging direction of the imaging unit 5. The structure of the imaging unit 5 is not particularly limited as long as it can image an imaging object located in front of the lens 9.
 筐体1は、筒状に形成され、例えば金属や合成樹脂からなる。本実施の形態では、図1に示すように、筐体1が角筒状に形成されているが、円筒状など他の形状であってもよい。筐体1の一方の端部側にベースプレート4aが固定されている。また、筐体1の他方の端部側には、液滴除去装置200の透光体カバー2が外部に露出するように配置されている。 The housing 1 is formed in a tubular shape and is made of, for example, metal or synthetic resin. In the present embodiment, as shown in FIG. 1, the housing 1 is formed in a square tubular shape, but it may have another shape such as a cylindrical shape. The base plate 4a is fixed to one end side of the housing 1. Further, on the other end side of the housing 1, the translucent body cover 2 of the droplet removing device 200 is arranged so as to be exposed to the outside.
 液滴除去装置200は、透光体カバー2に付着した液滴および/または異物を振動により除去する装置である。本実施の形態において、液滴とは、例えば、雨滴または泥水等の液体状の付着物のことをいい、異物とは、例えば、泥等の固形状の付着物のことをいう。液滴除去装置200において、液滴は振動により霧化され、異物は振動により振り落とされて、透光体カバー2から除去される。以下の説明においては、主に液滴を霧化させて除去する場合について説明する。 The droplet removing device 200 is a device that removes droplets and / or foreign matter adhering to the translucent body cover 2 by vibration. In the present embodiment, the droplet means, for example, a liquid deposit such as raindrop or muddy water, and the foreign substance means a solid deposit such as mud. In the droplet removing device 200, the droplets are atomized by vibration, and the foreign matter is shaken off by vibration and removed from the translucent cover 2. In the following description, a case where the droplets are mainly atomized and removed will be described.
 液滴除去装置200は、透光体カバー2と、振動部12と、制御部20(図3参照)とを備える。液滴除去装置200はさらに、吐出部3を備えていてもよい。液滴除去装置200を構成する各構成要素について、以下に説明する。 The droplet removing device 200 includes a translucent body cover 2, a vibrating unit 12, and a control unit 20 (see FIG. 3). The droplet removing device 200 may further include a ejection unit 3. Each component constituting the droplet removing device 200 will be described below.
<振動部>
 振動部12は、透光体カバー2を振動させるものである。振動部12は、円筒状の形状を有する。図2に示すように、振動部12は、第1の筒部材13と、第2の筒部材14と、圧電振動子15とを有する。振動部12において、圧電振動子15が、第1の筒部材13と第2の筒部材14との間に挟持されている。本実施の形態では、第1の筒部材13、第2の筒部材14、および圧電振動子15はそれぞれ円筒状に形成されている。
<Vibration part>
The vibrating unit 12 vibrates the translucent body cover 2. The vibrating portion 12 has a cylindrical shape. As shown in FIG. 2, the vibrating unit 12 includes a first tubular member 13, a second tubular member 14, and a piezoelectric vibrator 15. In the vibrating unit 12, the piezoelectric vibrator 15 is sandwiched between the first tubular member 13 and the second tubular member 14. In the present embodiment, the first tubular member 13, the second tubular member 14, and the piezoelectric vibrator 15 are each formed in a cylindrical shape.
 圧電振動子15は、2枚の圧電板16、17を含む。2枚の圧電板16、17は、厚み方向において、一方の圧電板の分極方向と他方の圧電板の分極方向とが逆方向となっている。圧電板16、17の間に端子18が挟持され、圧電板16と第2の筒部材14との間に端子19が挟持されている。すなわち、圧電板17、端子18、圧電板16、端子19の順で積層されて圧電振動子15が形成される。したがって、圧電振動子15の圧電板17が第1の筒部材13と接触し、圧電振動子15の端子19が第2の筒部材14と接触するように、圧電振動子15が、第1の筒部材13と第2の筒部材14とに挟まれている。また、圧電振動子15は、リング状に形成されている。 The piezoelectric vibrator 15 includes two piezoelectric plates 16 and 17. In the thickness direction of the two piezoelectric plates 16 and 17, the polarization direction of one piezoelectric plate and the polarization direction of the other piezoelectric plate are opposite to each other. The terminal 18 is sandwiched between the piezoelectric plates 16 and 17, and the terminal 19 is sandwiched between the piezoelectric plate 16 and the second tubular member 14. That is, the piezoelectric plate 17, the terminal 18, the piezoelectric plate 16, and the terminal 19 are laminated in this order to form the piezoelectric vibrator 15. Therefore, the piezoelectric vibrator 15 is in contact with the first tubular member 13 and the terminal 19 of the piezoelectric vibrator 15 is in contact with the second tubular member 14. It is sandwiched between the tubular member 13 and the second tubular member 14. Further, the piezoelectric vibrator 15 is formed in a ring shape.
 なお、振動部12および振動部12を構成する各構成要素の形状は、円筒状またはリング状に限らず、例えば角筒状等、他の形状であってもよい。好ましくは、円筒状、すなわちリング状の形状が用いられる。 The shape of the vibrating portion 12 and each component constituting the vibrating portion 12 is not limited to a cylindrical shape or a ring shape, and may be another shape such as a square cylinder shape. Preferably, a cylindrical, or ring-shaped, shape is used.
 圧電板16、17は、チタン酸ジルコン酸鉛系の圧電セラミックスにより形成することができる。また、(K、Na)NbO等の他の圧電セラミックスが用いられてもよい。さらに、LiTaOなどの圧電単結晶が用いられてもよい。 The piezoelectric plates 16 and 17 can be formed of lead zirconate titanate-based piezoelectric ceramics. Further, other piezoelectric ceramics such as (K, Na) NbO 3 may be used. Further, a piezoelectric single crystal such as LiTaO 3 may be used.
 圧電板16、17の両面には、図示されていない電極が形成されている。電極は、例えば、Ag/NiCu/NiCrの積層構造を有する。端子18は、圧電板16、17の積層方向における内側に形成された電極に接するように配置される。端子18は、任意の導電性材料を用いて形成することができる。導電性材料として、例えば、Cu、Al、Ag、またはこれらを主体とする合金を用いることができる。 Electrodes (not shown) are formed on both sides of the piezoelectric plates 16 and 17. The electrode has, for example, a laminated structure of Ag / NiCu / NiCr. The terminal 18 is arranged so as to be in contact with an electrode formed inside the piezoelectric plates 16 and 17 in the stacking direction. The terminal 18 can be formed by using any conductive material. As the conductive material, for example, Cu, Al, Ag, or an alloy mainly composed of these can be used.
 第1の筒部材13は、圧電振動子15の圧電板17側に固定されている。第1の筒部材13は、金属により形成され、導電性を有する。第1の筒部材13を形成する金属としては、例えば、ジュラルミン、ステンレス、またはコバール等を使用することができる。または、第1の筒部材13は、導電性を有するSiなどの半導体により形成されてもよい。 The first tubular member 13 is fixed to the piezoelectric plate 17 side of the piezoelectric vibrator 15. The first tubular member 13 is made of metal and has conductivity. As the metal forming the first tubular member 13, for example, duralumin, stainless steel, Kovar or the like can be used. Alternatively, the first tubular member 13 may be formed of a conductive semiconductor such as Si.
 第2の筒部材14は、圧電振動子15の端子18側に配置されている。第2の筒部材14は、金属により形成され、導電性を有する。第2の筒部材14を形成する金属としては、例えば、ジュラルミン、ステンレス、またはコバール等を使用することができる。または、第2の筒部材14は、導電性を有するSiなどの半導体により形成されてもよい。 The second tubular member 14 is arranged on the terminal 18 side of the piezoelectric vibrator 15. The second tubular member 14 is made of metal and has conductivity. As the metal forming the second tubular member 14, for example, duralumin, stainless steel, Kovar or the like can be used. Alternatively, the second tubular member 14 may be formed of a conductive semiconductor such as Si.
 端子18と端子19との間に交流電界を印加することにより、圧電振動子15を縦振動または横振動させることができる。 By applying an AC electric field between the terminal 18 and the terminal 19, the piezoelectric vibrator 15 can be vibrated vertically or horizontally.
 第2の筒部材14の内周面の一部に、ねじ部14aが形成されていることにより、第2の筒部材14の内側に、第1の筒部材13がねじ込まれ、第1の筒部材13が第2の筒部材14に固定される。このため、圧電振動子15の圧電板17側に第1の筒部材13が圧接され、圧電振動子15の端子19側に第2の筒部材14の一部が圧接されている。 Since the threaded portion 14a is formed on a part of the inner peripheral surface of the second tubular member 14, the first tubular member 13 is screwed into the inside of the second tubular member 14, and the first tubular member 14 is screwed into the first tubular member 14. The member 13 is fixed to the second tubular member 14. Therefore, the first tubular member 13 is pressure-welded to the piezoelectric plate 17 side of the piezoelectric vibrator 15, and a part of the second tubular member 14 is pressure-welded to the terminal 19 side of the piezoelectric vibrator 15.
 したがって、圧電振動子15において生じた振動により、振動部12の全体を効率よく振動させることができる。本実施の形態では、振動部12は、縦効果または横効果により、効率よく励振される。なお、横効果とは、電界の方向と垂直な方向に応力が生じることをいい、縦効果とは、電界の方向と平行な方向に応力が生じることをいう。 Therefore, the vibration generated in the piezoelectric vibrator 15 can efficiently vibrate the entire vibrating portion 12. In the present embodiment, the vibrating portion 12 is efficiently excited by the vertical effect or the horizontal effect. The horizontal effect means that stress is generated in the direction perpendicular to the direction of the electric field, and the vertical effect means that stress is generated in the direction parallel to the direction of the electric field.
 第2の筒部材14には、外側に張り出したフランジ部14bが設けられている。図2に示すように、フランジ部14bは、筐体1に形成された凹部に載置され、かつ固定されている。 The second tubular member 14 is provided with a flange portion 14b overhanging to the outside. As shown in FIG. 2, the flange portion 14b is placed and fixed in the recess formed in the housing 1.
 また、第2の筒部材14の圧電振動子15と反対側の端部には、フランジ部14cが設けられている。フランジ部14bとフランジ部14cとの間に連なる部分は、薄肉部14dである。薄肉部14dの厚みは、第1の筒部材13の厚みよりも薄い。そのため、圧電振動子15により生じた振動部12の振動を透光体カバー2に伝達する際に、薄肉部14dは、振動モードの変換、および振動の拡大といった機能を果たす。 Further, a flange portion 14c is provided at an end portion of the second tubular member 14 opposite to the piezoelectric vibrator 15. The portion connected between the flange portion 14b and the flange portion 14c is a thin-walled portion 14d. The thickness of the thin portion 14d is thinner than the thickness of the first tubular member 13. Therefore, when the vibration of the vibrating portion 12 generated by the piezoelectric vibrator 15 is transmitted to the translucent body cover 2, the thin-walled portion 14d functions to convert the vibration mode and expand the vibration.
<制御部>
 振動部12および吐出部3は、図3に示す制御部20により制御される。制御部20は、制御中枢としてのCPU(Central Processing Unit)等により構成される。また、制御部20は、CPUが動作するためのプログラムまたは制御データ等を格納するROM(Read Only Memory)、CPUのワークエリアとして機能するRAM(Ramdom Access Memory)、周辺機器との信号の整合性を保つための入出力インタフェース等を有する。
<Control unit>
The vibrating unit 12 and the discharging unit 3 are controlled by the control unit 20 shown in FIG. The control unit 20 is composed of a CPU (Central Processing Unit) or the like as a control center. Further, the control unit 20 has a ROM (Read Only Memory) for storing a program or control data for operating the CPU, a RAM (Random Access Memory) that functions as a work area of the CPU, and signal consistency with peripheral devices. It has an input / output interface, etc.
<透光体カバー>
 図2に示すように、第2の筒部材14のフランジ部14cには、透光体カバー2が固定されている。透光体カバー2は、撮像部5およびレンズユニット7を液滴または異物の付着から保護するためのカバーである。透光体カバー2は、カバー本体2aと、カバー本体2aの表面に形成された撥水コーティング層21a(図4参照)とにより形成されている。なお、図2においては、撥水コーティング層21aが図示省略されている。
<Translucent body cover>
As shown in FIG. 2, the translucent body cover 2 is fixed to the flange portion 14c of the second tubular member 14. The translucent body cover 2 is a cover for protecting the image pickup unit 5 and the lens unit 7 from adhesion of droplets or foreign matter. The translucent body cover 2 is formed by a cover main body 2a and a water-repellent coating layer 21a (see FIG. 4) formed on the surface of the cover main body 2a. In FIG. 2, the water-repellent coating layer 21a is not shown.
 透光体カバー2は半球形のドーム形状であり、底面2bに開口を有する。底面2bが、第2の筒部材14のフランジ部14cに接合されている。透光体カバー2と第2の筒部材14との接合は、例えば、接着剤またはろう材を用いて行うことができる。または、熱圧着または陽極接合等を用いることもできる。 The translucent body cover 2 has a hemispherical dome shape and has an opening on the bottom surface 2b. The bottom surface 2b is joined to the flange portion 14c of the second tubular member 14. The translucent body cover 2 and the second tubular member 14 can be joined, for example, by using an adhesive or a brazing material. Alternatively, thermocompression bonding, anode bonding, or the like can also be used.
 透光体カバー2の内部に撮像部5およびレンズユニット7が配置され、透光体カバー2を通して、外部の撮像対象物の撮像が行われる。透光体カバー2の形状は、半球形のドーム形状に限定されず、例えば、半球に円筒を連ねた形状、半球よりも小さい局面形状、または平面を有する形状であってもよい。 The image pickup unit 5 and the lens unit 7 are arranged inside the translucent body cover 2, and an external image pickup object is imaged through the translucent body cover 2. The shape of the translucent body cover 2 is not limited to the hemispherical dome shape, and may be, for example, a shape in which cylinders are connected to the hemisphere, a curved shape smaller than the hemisphere, or a shape having a flat surface.
 透光体カバー2は、その全体が透光性を有しており、本実施の形態では、透光体カバー2は、ガラスにより形成されたカバー本体2aと、その表面に形成された撥水コーティング層21aとを有する。カバー本体2aは、合成樹脂または透光性のセラミックス等により形成されてもよい。また、カバー本体2aを強化ガラスにより形成することで、透光体カバー2の強度を高めることが可能である。 The translucent body cover 2 has translucency as a whole, and in the present embodiment, the translucent body cover 2 has a cover body 2a formed of glass and a water repellent formed on the surface thereof. It has a coating layer 21a. The cover body 2a may be made of synthetic resin, translucent ceramics, or the like. Further, by forming the cover body 2a with tempered glass, it is possible to increase the strength of the translucent body cover 2.
 図4に示すように、透光体カバー2は、液滴除去領域21を有する。液滴除去領域21は、透光体カバー2の表面において、後述する振動部12による振動の最も大きい部分を含む。透光体カバー2の表面において、振動の最も大きい部分とは、振動変位(振幅)の大きさが最も大きい部分のことである。 As shown in FIG. 4, the translucent body cover 2 has a droplet removal region 21. The droplet removal region 21 includes the portion of the surface of the translucent body cover 2 that is most vibrated by the vibrating portion 12, which will be described later. On the surface of the translucent body cover 2, the portion having the largest vibration is the portion having the largest vibration displacement (amplitude).
 本実施の形態では、液滴除去領域21は、透光体カバー2の全体にわたって形成されている。液滴除去領域21は、必ずしも透光体カバー2の全体にわたって形成されていなくてもよく、少なくとも透光体カバー2の中央部が含まれていればよい。 In the present embodiment, the droplet removal region 21 is formed over the entire translucent body cover 2. The droplet removal region 21 does not necessarily have to be formed over the entire translucent body cover 2, and may include at least the central portion of the translucent body cover 2.
 液滴除去領域21は、透光体カバー2の表面に付着した液滴を除去する領域であり、撥水性を有する。液滴とは、透光体カバー2に付着した液体状の付着物が、表面張力により粒状の液体の塊となったものをいう。液滴除去領域21が撥水性を有するとは、液滴除去領域21において、透光体カバー2の表面の水接触角が50°以上であることを示す。水接触角については後述する。液滴除去領域21が撥水コーティング層21aを有することにより、液滴除去領域21において、液滴を除去し得る水接触角を実現することができる。 The droplet removing region 21 is a region for removing droplets adhering to the surface of the translucent body cover 2 and has water repellency. The droplets are liquid deposits adhering to the translucent body cover 2 that are formed into granular liquid masses due to surface tension. The fact that the droplet removing region 21 has water repellency means that the water contact angle of the surface of the translucent body cover 2 is 50 ° or more in the droplet removing region 21. The water contact angle will be described later. Since the droplet removing region 21 has the water-repellent coating layer 21a, it is possible to realize a water contact angle capable of removing droplets in the droplet removing region 21.
 本実施の形態では、液滴除去領域21は、カバー本体2aの表面に形成された撥水コーティング層21aを有する。撥水コーティング層21aは、例えば、PTFE(ポリテトラフルオロエチレン)等のフッ素樹脂、またはシリコン樹脂等により形成することができる。撥水コーティング層21aは、ウェット塗布、真空蒸着、スパッタ等の周知のコーティング手法により形成することができる。 In the present embodiment, the droplet removal region 21 has a water-repellent coating layer 21a formed on the surface of the cover body 2a. The water-repellent coating layer 21a can be formed of, for example, a fluororesin such as PTFE (polytetrafluoroethylene), a silicon resin, or the like. The water-repellent coating layer 21a can be formed by a well-known coating method such as wet coating, vacuum deposition, and sputtering.
 図5は、本実施の形態における水接触角を説明するための模式図である。本実施の形態において、水接触角θは、透光体カバー2の表面(液滴除去領域21)に2μlの水滴Lを付着させたときの角度である。透光体カバー2の表面に水滴Lを付着させたときに、水滴Lと透光体カバー2とが接する部分から水滴Lの表面に引いた接線Tと、透光体カバー2の表面に引いた接線Tとの角度θが水接触角である。 FIG. 5 is a schematic view for explaining the water contact angle in the present embodiment. In the present embodiment, the water contact angle θ is an angle when 2 μl of water droplet L is attached to the surface (droplet removal region 21) of the translucent body cover 2. When the surface of the transparent body cover 2 by adhering water droplets L, the tangent T 1 drawn on the surface of the water droplet L from the portion in contact and the water droplet L and the transparent body cover 2, the surface of the transparent body cover 2 The angle θ with the drawn tangent T 2 is the water contact angle.
 本実施の形態では、液滴除去領域21の水接触角は、50°以上である。より好ましくは、液滴除去領域21の水接触角が、50°以上110°以下であるとよい。 In the present embodiment, the water contact angle of the droplet removal region 21 is 50 ° or more. More preferably, the water contact angle of the droplet removal region 21 is 50 ° or more and 110 ° or less.
<吐出部>
 吐出部3は、図2に示すように、撮像ユニット100の筐体1に設けられた洗浄ノズル31と開口部32とを有する。吐出部3は、制御部20により制御され、透光体カバー2の表面に洗浄液とコーティング剤との少なくともいずれか一方を吐出する。洗浄ノズル31および開口部32は、撮像部5の撮像範囲(視野)の外部であり、撮像部5により撮像された画像に洗浄ノズル31および開口部32は写り込まない位置に配置される。すなわち、図2に示すように、吐出部3の開口部32が透光体カバー2の底面2bから透光体カバー2の頂部までの間の範囲Rに位置するように、吐出部3が配置されるとよい。
<Discharge part>
As shown in FIG. 2, the discharge unit 3 has a cleaning nozzle 31 and an opening 32 provided in the housing 1 of the imaging unit 100. The discharge unit 3 is controlled by the control unit 20 and discharges at least one of the cleaning liquid and the coating agent to the surface of the translucent body cover 2. The cleaning nozzle 31 and the opening 32 are outside the imaging range (field of view) of the imaging unit 5, and the cleaning nozzle 31 and the opening 32 are arranged at positions where they are not reflected in the image captured by the imaging unit 5. That is, as shown in FIG. 2, the discharge portion 3 is arranged so that the opening 32 of the discharge portion 3 is located in the range R between the bottom surface 2b of the translucent body cover 2 and the top of the translucent body cover 2. It should be done.
 液滴除去装置200が吐出部3を有することにより、例えば、長期間の使用による経年劣化等により撥水コーティング層21aの剥がれが生じた場合に、吐出部3から透光体カバー2にコーティング剤を噴霧することができる。コーティング剤を噴霧する場合、コーティング剤が霧化しない程度に、振動部12による振動の振幅を小さくすることが望ましい。振幅の小さい振動により、噴霧されたコーティング剤が、霧化されずに透光体カバー2の表面にとどまる時間が長くなるため、コーティング剤を透光体カバー2に定着させやすくなる。 When the droplet removing device 200 has the ejection portion 3, for example, when the water-repellent coating layer 21a is peeled off due to aged deterioration due to long-term use, the coating agent is applied from the ejection portion 3 to the translucent body cover 2. Can be sprayed. When spraying the coating agent, it is desirable to reduce the amplitude of vibration by the vibrating portion 12 so that the coating agent does not atomize. Due to the vibration having a small amplitude, the sprayed coating agent stays on the surface of the translucent body cover 2 for a long time without being atomized, so that the coating agent can be easily fixed to the translucent body cover 2.
 撥水コーティング層21aの剥がれは、例えば画像処理等により検出することができる。透光体カバー2の表面に付着した液滴が除去しきれず残留してしまう場合、撮像部5により撮像された画像に歪み等が生じる。このとき生じた画像の歪みを、例えば、制御部20により自動的に検出し、画像の歪みが検出された場合は、撥水コーティング層21aに剥がれが生じたと判断して、自動的にコーティング剤の吐出を行ってもよい。または、定期的にコーティング剤の吐出を行ってもよい。 The peeling of the water-repellent coating layer 21a can be detected by, for example, image processing. When the droplets adhering to the surface of the translucent body cover 2 cannot be completely removed and remain, the image captured by the imaging unit 5 is distorted or the like. For example, the control unit 20 automatically detects the distortion of the image generated at this time, and when the distortion of the image is detected, it is determined that the water-repellent coating layer 21a has peeled off, and the coating agent is automatically used. May be discharged. Alternatively, the coating agent may be discharged periodically.
 また、透光体カバー2に例えば泥などの固形成分を含む汚れが付着した場合に、吐出部3から洗浄液を吐出することで、透光体カバー2に付着した固形成分を洗浄液で洗い流し、表面に残った洗浄液を振動で霧化させることができる。透光体カバー2に固形成分を含む汚れが付着した場合も、例えば、制御部20による画像処理により検出して自動的に洗浄液の吐出を行ってもよい。 Further, when dirt containing a solid component such as mud adheres to the translucent body cover 2, the cleaning liquid is discharged from the discharge unit 3 to wash away the solid component adhering to the translucent body cover 2 with the cleaning liquid, and the surface thereof is washed away. The cleaning liquid remaining in the water can be atomized by vibration. Even when dirt containing a solid component adheres to the translucent body cover 2, for example, it may be detected by image processing by the control unit 20 and the cleaning liquid may be automatically discharged.
 本実施の形態では、洗浄液またはコーティング剤が透光体カバー2の頂部に吐出されるよう、洗浄ノズル31および開口部32が配置されているが、洗浄ノズル31および開口部32の位置は、これに限定されない。また、洗浄ノズルは複数以上配置されてもよい。 In the present embodiment, the cleaning nozzle 31 and the opening 32 are arranged so that the cleaning liquid or the coating agent is discharged to the top of the translucent cover 2, but the positions of the cleaning nozzle 31 and the opening 32 are the same. Not limited to. Further, a plurality of cleaning nozzles may be arranged.
 本実施の形態では、透光体カバー2の頂部付近に洗浄液またはコーティング液が吐出されるよう、吐出部が配置されているとよい。これは、透光体カバー2の頂部付近は、後述するように、振動の振幅が大きくなるためコーティングが剥がれやすいためである。 In the present embodiment, it is preferable that the discharge portion is arranged so that the cleaning liquid or the coating liquid is discharged near the top of the translucent body cover 2. This is because the coating is easily peeled off in the vicinity of the top of the translucent body cover 2 because the vibration amplitude becomes large, as will be described later.
[動作]
 次に、図6を参照して、液滴除去装置200により、透光体カバー2に付着した液滴を除去する動作について説明する。図6は、液滴除去装置200の動作を説明するフローチャートである。
[motion]
Next, with reference to FIG. 6, the operation of removing the droplets adhering to the translucent body cover 2 by the droplet removing device 200 will be described. FIG. 6 is a flowchart illustrating the operation of the droplet removing device 200.
 圧電振動子15に交流電界を印加して圧電振動子15を駆動する。圧電振動子15に印加される交流電界としては、特に限定されないが、水滴を除去し得るのに十分な正弦波等の電流を印加する。圧電振動子15が駆動されると、縦振動または横振動で振動する。それに伴い、圧電振動子15を挟持する第1の筒部材13および第2の筒部材14を有する振動部12が、縦効果または横効果により振動する(ステップS101)。 An AC electric field is applied to the piezoelectric vibrator 15 to drive the piezoelectric vibrator 15. The AC electric field applied to the piezoelectric vibrator 15 is not particularly limited, but a current such as a sine wave sufficient to remove water droplets is applied. When the piezoelectric vibrator 15 is driven, it vibrates due to longitudinal vibration or lateral vibration. Along with this, the vibrating portion 12 having the first tubular member 13 and the second tubular member 14 sandwiching the piezoelectric vibrator 15 vibrates due to a vertical effect or a horizontal effect (step S101).
 本実施の形態においては、振動部12が横効果により呼吸振動モードで振動する。振動部12の振動は、第2の筒部材14の薄肉部14dにより屈曲振動モードに変換されるとともに、振幅が拡大されて透光体カバー2に伝達される。このときの、透光体カバー2の表面における振動変位の分布を図7Aに示す。なお、呼吸振動モードは、リング状の圧電振動子15が径方向に固有振動するモードである。また、屈曲振動モードは、圧電振動子15の厚み方向に固有振動するモードである。 In the present embodiment, the vibrating unit 12 vibrates in the respiratory vibration mode due to the lateral effect. The vibration of the vibrating portion 12 is converted into the bending vibration mode by the thin-walled portion 14d of the second tubular member 14, and the amplitude is expanded and transmitted to the translucent body cover 2. The distribution of the vibration displacement on the surface of the translucent body cover 2 at this time is shown in FIG. 7A. The respiratory vibration mode is a mode in which the ring-shaped piezoelectric vibrator 15 naturally vibrates in the radial direction. The bending vibration mode is a mode in which the piezoelectric vibrator 15 vibrates naturally in the thickness direction.
 図7Aは、透光体カバー2における振動変位の分布を示すグラフである。図7Bは、透光体カバー2における視野角を説明する図である。 FIG. 7A is a graph showing the distribution of vibration displacement in the translucent body cover 2. FIG. 7B is a diagram illustrating a viewing angle in the translucent body cover 2.
 図7Aのグラフの横軸の視野角は、図7Bに示すように、透光体カバー2の頂部を0°としたときの、カメラ(レンズユニット7)の視野角を示す。すなわち、透光体カバー2の頂部がレンズユニット7の光軸となり、透光体カバー2の頂部から外周側に向かうに従い、視野角が90°に近くなる。図7Aのグラフの縦軸は、振動変位、すなわち、透光体カバー2の表面における振幅の大きさを示す。 As shown in FIG. 7B, the viewing angle on the horizontal axis of the graph of FIG. 7A indicates the viewing angle of the camera (lens unit 7) when the top of the translucent cover 2 is 0 °. That is, the top of the translucent cover 2 serves as the optical axis of the lens unit 7, and the viewing angle approaches 90 ° from the top of the translucent cover 2 toward the outer periphery. The vertical axis of the graph of FIG. 7A indicates the vibration displacement, that is, the magnitude of the amplitude on the surface of the translucent body cover 2.
 図7Aのグラフに示す振動変位Dにより、異物を霧化する加速度αを得ることができる。加速度αは、α=ω×Dで算出することができる。図7Aにおいて、最大の加速度は約3.5×10Gであった。圧電振動子15の周波数fおよび加速度αの値は、圧電振動子15の設計に依存する。また、振動変位Dは、圧電振動子15への印加電圧Vによって調整することも可能である。水接触角が50度以上110度以下の範囲で異物を霧化するためには、加速度αが約1×10Gであるとよい。より好ましくは、加速度αが3×10Gであるとよい。 From the vibration displacement D shown in the graph of FIG. 7A, the acceleration α for atomizing the foreign matter can be obtained. The acceleration α can be calculated by α = ω 2 × D. 7A, the maximum acceleration was about 3.5 × 10 5 G. The values of the frequency f and the acceleration α of the piezoelectric vibrator 15 depend on the design of the piezoelectric vibrator 15. Further, the vibration displacement D can be adjusted by the voltage V applied to the piezoelectric vibrator 15. For water contact angle to atomize the foreign matter in the range of less than 110 degrees 50 degrees, may acceleration α is approximately 1 × 10 5 G. More preferably, may acceleration α is at 3 × 10 5 G.
 上述の加速度αの値を実現するために、圧電振動子15の周波数fを、20~100kHz、印加電圧Vを20~80Vp-p、圧電振動子の機械的品質係数Qを40~2500、圧電定数dを7~300pc/Nとすることが望ましい。 In order to realize the above-mentioned value of acceleration α, the frequency f of the piezoelectric vibrator 15 is 20 to 100 kHz, the applied voltage V is 20 to 80 Vpp, the mechanical quality coefficient Q of the piezoelectric vibrator is 40 to 2500, and the piezoelectric vibrator is piezoelectric. It is desirable that the constant d is 7 to 300 pc / N.
 図7Aに示すように、透光体カバー2の表面における振動の大きさは、視野角が0°の部分が最も大きくなる。ここで、振動の大きさとは、振動変位(振幅)の大きさのことであり、透光体カバー2の表面においては、視野角0°の部分(頂部)が最も振動の大きい部分である。 As shown in FIG. 7A, the magnitude of vibration on the surface of the translucent body cover 2 is largest in the portion where the viewing angle is 0 °. Here, the magnitude of vibration is the magnitude of vibration displacement (amplitude), and on the surface of the translucent body cover 2, the portion (top) having a viewing angle of 0 ° is the portion having the largest vibration.
 なお、透光体カバー2の表面において、振幅の大きさが最大となるのは頂部には限らず、他の部分であってもよい。また、透光体カバーの形状によって、振幅の大きさが最大となる部分が異なってもよい。例えば、透光体カバーが平板状に形成されている場合、透光体カバーの中央部において振幅の大きさが最大となることがある。 On the surface of the translucent body cover 2, the maximum amplitude is not limited to the top portion, but may be other portions. Further, the portion where the magnitude of the amplitude is maximized may differ depending on the shape of the translucent body cover. For example, when the translucent body cover is formed in a flat plate shape, the magnitude of the amplitude may be maximized at the central portion of the translucent body cover.
 透光体カバー2において、表面に付着した液滴は、振動の小さい部分から大きい部分に、液滴となって移動する(ステップS102)。これは振幅が大きい部分に対してより大きな加速度が働くためである。 In the translucent body cover 2, the droplets adhering to the surface move as droplets from the portion where the vibration is small to the portion where the vibration is large (step S102). This is because a larger acceleration acts on a portion having a large amplitude.
 振動の最も大きい部分を含む霧化領域A(図7B参照)に、振動により霧化されて透光体カバー2の表面から除去される(ステップS103)。以上のステップで、液滴除去装置200により、透光体カバー2の表面に付着した液滴が除去される。 The atomized region A (see FIG. 7B) including the portion with the largest vibration is atomized by vibration and removed from the surface of the translucent body cover 2 (step S103). In the above steps, the droplet removing device 200 removes the droplets adhering to the surface of the translucent body cover 2.
 ここで、透光体カバー2の霧化領域Aとは、例えば、図7Bに示すように、透光体カバー2における視野角が0°以上30°未満の領域である。また、図7Bに示すように、霧化領域A以外の領域は、液滴が霧化領域Aに向かって移動する移動領域Bと称する。本実施の形態では、液滴除去領域21は、霧化領域Aと移動領域Bとの両方を含むが、液滴除去領域21は、少なくとも霧化領域Aを含んでいればよい。 Here, the atomized region A of the translucent body cover 2 is, for example, a region in which the viewing angle of the translucent body cover 2 is 0 ° or more and less than 30 °, as shown in FIG. 7B. Further, as shown in FIG. 7B, the region other than the atomization region A is referred to as a movement region B in which the droplet moves toward the atomization region A. In the present embodiment, the droplet removal region 21 includes both the atomization region A and the movement region B, but the droplet removal region 21 may include at least the atomization region A.
 透光体カバー2に付着した液滴が、霧化領域Aに移動したり、霧化領域Aにおいて霧化したりするためには、振動により液滴に与えられるエネルギーが、表面張力により液滴が透光体カバー2の表面にとどまろうとする力よりも大きくなればよい。そのためには、振動によるエネルギーと表面張力との力のバランスをとることが望ましい。 In order for the droplets adhering to the translucent body cover 2 to move to the atomization region A or to be atomized in the atomization region A, the energy given to the droplets by vibration is applied to the droplets due to surface tension. It suffices to be greater than the force that tends to stay on the surface of the translucent body cover 2. For that purpose, it is desirable to balance the force of vibration energy and surface tension.
 図8は、透光体カバー2の表面における、水接触角と、振動により透光体カバー2の表面から液滴が除去されるまでの時間との関係を示すグラフである。これは、透光体カバー2の表面の任意の5箇所に、それぞれ5μlの水(液滴)を付着させて、振動により液滴が除去されるまでの時間を計測したものである。図8において、円形でプロットされているものは、表示された時間において液滴がすべて霧化されたことを示す。また、図8において、四角形でプロットされているものは、表示された時間において霧化されていない液滴が透光体カバー2の表面に残留し、それ以上霧化されない状態となったことを示す。 FIG. 8 is a graph showing the relationship between the water contact angle on the surface of the translucent body cover 2 and the time until droplets are removed from the surface of the translucent body cover 2 by vibration. This is a measurement of the time required for the droplets to be removed by vibration by adhering 5 μl of water (droplets) to any five positions on the surface of the translucent body cover 2. In FIG. 8, what is plotted in a circle indicates that all the droplets were atomized at the indicated time. Further, in FIG. 8, what is plotted as a quadrangle indicates that the unatomized droplets remained on the surface of the translucent body cover 2 at the displayed time and were not further atomized. Shown.
 図8のグラフに示すように、水接触角が50°以上110°以下である場合、他の水接触角の場合と比較して約2倍の速さで液滴を霧化することができていることがわかる。したがって、水接触角が50°以上110°以下であると、透光体カバー2の表面に付着した液滴を効率よく除去できることがわかる。 As shown in the graph of FIG. 8, when the water contact angle is 50 ° or more and 110 ° or less, the droplets can be atomized about twice as fast as in the case of other water contact angles. You can see that. Therefore, it can be seen that when the water contact angle is 50 ° or more and 110 ° or less, the droplets adhering to the surface of the translucent body cover 2 can be efficiently removed.
 水接触角が50°よりも小さい、すなわち、液滴と透光体カバー2との接触面積が大きい場合、液滴に振動エネルギーが伝わるものの、液滴が透光体カバー2の表面を移動するときの抵抗力が大きくなる。このため、水接触角が50°未満の場合、最後まで液滴を除去することができない場合があることがわかる。 When the water contact angle is smaller than 50 °, that is, when the contact area between the droplet and the translucent cover 2 is large, the droplet moves on the surface of the translucent cover 2 although the vibration energy is transmitted to the droplet. The resistance of the time increases. Therefore, when the water contact angle is less than 50 °, it can be seen that the droplets may not be removed to the end.
 一方、水接触角が110°よりも大きい、すなわち、液滴と透光体カバー2との接触面積が小さい場合、振動エネルギーが液滴に効率よく伝わらない。このため、水接触角が110°より大きい場合、液滴が霧化領域Aに移動するのに時間がかかる、または霧化領域Aにおいて液滴が霧化するのに時間がかかる。水接触角が110°よりも大きい場合には、液滴の霧化領域Aへの移動、または霧化領域Aでの霧化に時間がかかるが、最終的に液滴は霧化される。 On the other hand, when the water contact angle is larger than 110 °, that is, when the contact area between the droplet and the translucent cover 2 is small, the vibration energy is not efficiently transmitted to the droplet. Therefore, when the water contact angle is larger than 110 °, it takes time for the droplets to move to the atomization region A, or it takes time for the droplets to atomize in the atomization region A. When the water contact angle is larger than 110 °, it takes time to move the droplet to the atomization region A or atomize in the atomization region A, but the droplet is finally atomized.
 したがって、液滴除去領域21は、水接触角が50°以上であるとよい。より好ましくは、水接触角が50°以上110°以下であるとよい。 Therefore, the droplet removal region 21 should have a water contact angle of 50 ° or more. More preferably, the water contact angle is 50 ° or more and 110 ° or less.
[効果]
 実施の形態1にかかる液滴除去装置200および撮像ユニット100によれば、以下の効果を奏することができる。
[effect]
According to the droplet removing device 200 and the imaging unit 100 according to the first embodiment, the following effects can be obtained.
 撮像ユニット100は、液滴除去装置200と、撮像部5とを備える。液滴除去装置200は、透光体カバー2と、振動部12と、制御部20と、を備える。透光体カバー2は、表面に付着した液滴を除去する液滴除去領域21を有し、液滴除去領域21は、透光体カバー2の表面において振動部12による振動の最も大きい部分を含む。このため、透光体カバー2に付着した液滴を、振動部12の振動により効率よく霧化させることができる。 The imaging unit 100 includes a droplet removing device 200 and an imaging unit 5. The droplet removing device 200 includes a translucent body cover 2, a vibrating unit 12, and a control unit 20. The translucent body cover 2 has a droplet removing region 21 for removing droplets adhering to the surface, and the droplet removing region 21 covers the portion of the surface of the translucent body cover 2 that is most vibrated by the vibrating portion 12. Including. Therefore, the droplets adhering to the translucent body cover 2 can be efficiently atomized by the vibration of the vibrating unit 12.
 また、液滴除去領域21の水接触角が、50°以上、より好ましくは、50°以上110°以下であるため、透光体カバー2に付着した液滴を、素早く除去することが可能である。 Further, since the water contact angle of the droplet removing region 21 is 50 ° or more, more preferably 50 ° or more and 110 ° or less, it is possible to quickly remove the droplets adhering to the translucent body cover 2. is there.
 また、液滴除去装置200がさらに吐出部3を備えると、例えば、透光体カバー2の撥水コーティング層21aの剥がれが生じた場合に、コーティング剤を吐出して撥水コーティング層21aの剥がれを修復することが可能である。このため、撥水コーティング層21aの機能の劣化を防止することができる。 Further, when the droplet removing device 200 further includes the ejection unit 3, for example, when the water-repellent coating layer 21a of the translucent body cover 2 is peeled off, the coating agent is ejected and the water-repellent coating layer 21a is peeled off. Can be repaired. Therefore, deterioration of the function of the water-repellent coating layer 21a can be prevented.
 なお、実施の形態1では、液滴除去装置200が吐出部3を有する構成について説明したが、吐出部3は、液滴除去装置200において必須の構成ではない。 Although the configuration in which the droplet removing device 200 has the ejection unit 3 has been described in the first embodiment, the ejection unit 3 is not an essential configuration in the droplet removing device 200.
 図9は、実施の形態1にかかる液滴除去装置200の液滴除去領域21の変形例を示す図である。液滴除去領域21は、実施の形態1で説明した撥水コーティング層21aに代わり、カバー本体2aの表面に形成された複数の突起を有していてもよい。例えば、図9に示すように、カバー本体2aの表面に、大きさ(例えば、直径または一辺の長さ)が数μm程度の凹凸が規則的に設けられていてもよい。この場合、凹部および凸部の大きさおよび高さがともに数μm程度であるとよい。このように、複数の突起を形成することで、液滴を除去し得る水接触角を実現することができる。 FIG. 9 is a diagram showing a modified example of the droplet removing region 21 of the droplet removing device 200 according to the first embodiment. The droplet removing region 21 may have a plurality of protrusions formed on the surface of the cover body 2a instead of the water-repellent coating layer 21a described in the first embodiment. For example, as shown in FIG. 9, the surface of the cover main body 2a may be regularly provided with irregularities having a size (for example, a diameter or a side length) of about several μm. In this case, the size and height of the concave portion and the convex portion are both preferably about several μm. By forming the plurality of protrusions in this way, it is possible to realize a water contact angle capable of removing droplets.
(実施の形態2)
 本発明の実施の形態2にかかる液滴除去装置について説明する。
(Embodiment 2)
The droplet removing apparatus according to the second embodiment of the present invention will be described.
 実施の形態2では、主に実施の形態1と異なる点について説明する。実施の形態2においては、実施の形態1と同一または同等の構成については同じ符号を付して説明する。また、実施の形態2では、実施の形態1と重複する記載は省略する。 The second embodiment mainly describes the differences from the first embodiment. In the second embodiment, the same or equivalent configurations as those in the first embodiment will be described with the same reference numerals. Further, in the second embodiment, the description overlapping with the first embodiment is omitted.
 実施の形態2では、透光体カバー24が、液滴除去領域21の周りに、液滴除去領域21よりも水接触角の低い親水領域22を有する点で、実施の形態1と異なる。その他の構成は、実施の形態1で説明した液滴除去装置200および撮像ユニット100と同一である。 The second embodiment is different from the first embodiment in that the translucent body cover 24 has a hydrophilic region 22 having a water contact angle lower than that of the droplet removing region 21 around the droplet removing region 21. Other configurations are the same as those of the droplet removing device 200 and the imaging unit 100 described in the first embodiment.
 図10Aは、実施の形態2にかかる液滴除去装置に配置された透光体カバー24の一部を拡大した断面図である。図10Bは、図10Aの透光体カバー24を別の角度から見た図である。図10Aおよび図10Bに示すように、透光体カバー24は、液滴除去領域21の周りに液滴除去領域21よりも水接触角の低い親水領域22を有する。親水領域22は、親水コーティング層22aを有する。親水コーティング層22aは、例えば、アルコキシシラン、ポリエチレングリコール、光触媒(TiO)、またはオルガノシロキサン等により形成することができる。親水コーティング層22aは、ウェット塗布、真空蒸着、スパッタ等の周知のコーティング手法により形成することができる。 FIG. 10A is an enlarged cross-sectional view of a part of the translucent body cover 24 arranged in the droplet removing device according to the second embodiment. FIG. 10B is a view of the translucent body cover 24 of FIG. 10A viewed from another angle. As shown in FIGS. 10A and 10B, the translucent body cover 24 has a hydrophilic region 22 around the droplet removing region 21 having a lower water contact angle than the droplet removing region 21. The hydrophilic region 22 has a hydrophilic coating layer 22a. The hydrophilic coating layer 22a can be formed of, for example, alkoxysilane, polyethylene glycol, a photocatalyst (TiO 2 ), organosiloxane, or the like. The hydrophilic coating layer 22a can be formed by a well-known coating method such as wet coating, vacuum deposition, and sputtering.
 上述した図7Aに示すように、透光体カバー24の視野角が90°に近い部分において、振動部12による振動変位が小さくなる。このため、透光体カバー24の視野角が90°に近い部分においては、振動による液滴除去の効果が低くなってしまう。そこで、本実施の形態では、視野角の小さい透光体カバー24の中央部に液滴除去領域21を形成し、視野角の大きい液滴除去領域21の周りに親水領域22を形成している。 As shown in FIG. 7A described above, the vibration displacement by the vibrating portion 12 becomes small in the portion where the viewing angle of the translucent body cover 24 is close to 90 °. Therefore, in the portion where the viewing angle of the translucent body cover 24 is close to 90 °, the effect of removing droplets by vibration is reduced. Therefore, in the present embodiment, the droplet removing region 21 is formed in the central portion of the translucent body cover 24 having a small viewing angle, and the hydrophilic region 22 is formed around the droplet removing region 21 having a large viewing angle. ..
 親水領域22は、液滴除去領域21よりも水接触角が低いため、付着した液滴が親水領域22において膜のように広がる。このため、親水領域22において液滴の流出を促進することができる。また、液滴が膜のように広がることで、親水領域22に液滴が残留している場合でも、撮像部5により撮像された画像の歪み等の発生を抑制することができる。 Since the hydrophilic region 22 has a lower water contact angle than the droplet removal region 21, the attached droplets spread like a film in the hydrophilic region 22. Therefore, the outflow of droplets can be promoted in the hydrophilic region 22. Further, since the droplets spread like a film, it is possible to suppress the occurrence of distortion of the image captured by the imaging unit 5 even when the droplets remain in the hydrophilic region 22.
[効果]
 実施の形態2にかかる液滴除去装置によると、以下の効果を奏することができる。
[effect]
According to the droplet removing device according to the second embodiment, the following effects can be obtained.
 透光体カバー24は、液滴除去領域21の周りに液滴除去領域21よりも水接触角の低い親水領域22を有する。親水領域22は、透光体カバー24において、振動部12の振動による液滴除去の効果の低い部分に形成される。このため、親水領域22においては、付着した液滴を膜のように広げることで、撮像された画像における歪みを抑制することができる。 The translucent body cover 24 has a hydrophilic region 22 having a lower water contact angle than the droplet removing region 21 around the droplet removing region 21. The hydrophilic region 22 is formed in the translucent body cover 24 at a portion where the effect of removing droplets due to vibration of the vibrating portion 12 is low. Therefore, in the hydrophilic region 22, distortion in the captured image can be suppressed by spreading the attached droplets like a film.
 また、透光体カバー24が親水領域22を有することで、振動では除去しきれない液滴の流出を促進することができる。 Further, since the translucent body cover 24 has the hydrophilic region 22, it is possible to promote the outflow of droplets that cannot be completely removed by vibration.
 なお、実施の形態2では、親水領域22が親水コーティング層22aを有する構成について説明したが、これに限定されない。 In the second embodiment, the configuration in which the hydrophilic region 22 has the hydrophilic coating layer 22a has been described, but the present invention is not limited to this.
 図11は、実施の形態2にかかる液滴除去装置における変形例の透光体カバー25の一部を拡大した断面図である。図11に示すように、親水領域22は、親水コーティング層22aが形成されていなくてもよい。本実施の形態では、透光体カバー25のカバー本体2aはガラスで形成されている。一般的に、ガラスの表面は水接触角が低いため、親水コーティング層22aが形成されていなくても、液滴除去領域21よりも水接触角が低くなる。このため、液滴除去領域21の撥水コーティング層21aまたは複数の突起が形成されていない領域を親水領域22とすることができる。 FIG. 11 is an enlarged cross-sectional view of a part of the translucent body cover 25 of the modified example of the droplet removing device according to the second embodiment. As shown in FIG. 11, the hydrophilic region 22 may not have the hydrophilic coating layer 22a formed. In the present embodiment, the cover body 2a of the translucent body cover 25 is made of glass. Generally, since the surface of the glass has a low water contact angle, the water contact angle is lower than that of the droplet removal region 21 even if the hydrophilic coating layer 22a is not formed. Therefore, the water-repellent coating layer 21a of the droplet removal region 21 or the region where a plurality of protrusions are not formed can be designated as the hydrophilic region 22.
 本発明の撮像ユニットおよび液滴除去装置は、屋外で使用する車載カメラ、監視カメラ、またはLiDAR等の光センサへ適用することができる。 The imaging unit and the droplet removing device of the present invention can be applied to an in-vehicle camera, a surveillance camera, or an optical sensor such as LiDAR used outdoors.
2、24、25 透光体カバー
  3 吐出部
  5 撮像部(撮像素子)
 12 振動部
 20 制御部
 21 液滴除去領域
21a 撥水コーティング層
 22 親水領域
22a 親水コーティング層
100 撮像ユニット
200 液滴除去装置
2, 24, 25 Translucent body cover 3 Discharge unit 5 Image pickup unit (image sensor)
12 Vibration unit 20 Control unit 21 Droplet removal area 21a Water-repellent coating layer 22 Hydrophilic area 22a Hydrophilic coating layer 100 Imaging unit 200 Droplet removal device

Claims (12)

  1.  透光体カバーと、
     前記透光体カバーを振動させる振動部と、
     前記振動部を制御する制御部と、
    を備え、
     前記透光体カバーは、前記透光体カバーの表面に付着した液滴を除去する液滴除去領域を有し、
     前記液滴除去領域は、前記透光体カバーの表面において前記振動部による振動の最も大きい部分を含む、
     液滴除去装置。
    With a translucent cover,
    The vibrating part that vibrates the translucent cover and
    A control unit that controls the vibrating unit and
    With
    The translucent cover has a droplet removal region for removing droplets adhering to the surface of the translucent cover.
    The droplet removal region includes the portion of the surface of the translucent body cover that is most vibrated by the vibrating portion.
    Droplet remover.
  2.  前記液滴除去領域は、少なくとも前記透光体カバーの中央部を含む、
     請求項1に記載の液滴除去装置。
    The droplet removal region includes at least the central portion of the translucent cover.
    The droplet removing device according to claim 1.
  3.  前記液滴除去領域は、水接触角が50°以上である、
     請求項1または2に記載の液滴除去装置。
    The droplet removal region has a water contact angle of 50 ° or more.
    The droplet removing device according to claim 1 or 2.
  4.  前記液滴除去領域は、水接触角が110°以下である、
     請求項3に記載の液滴除去装置。
    The droplet removal region has a water contact angle of 110 ° or less.
    The droplet removing device according to claim 3.
  5.  前記液滴除去領域は、前記透光体カバーの表面に形成された撥水コーティング層を有する、
     請求項1ないし4のいずれか1項に記載の液滴除去装置。
    The droplet removal region has a water repellent coating layer formed on the surface of the translucent cover.
    The droplet removing device according to any one of claims 1 to 4.
  6.  前記撥水コーティング層は、フッ素樹脂またはシリコン樹脂により形成されている、
     請求項5に記載の液滴除去装置。
    The water-repellent coating layer is made of a fluororesin or a silicone resin.
    The droplet removing device according to claim 5.
  7.  前記液滴除去領域は、前記透光体カバーの表面に形成された複数の突起を有する、
     請求項1ないし4のいずれか1項に記載の液滴除去装置。
    The droplet removal region has a plurality of protrusions formed on the surface of the translucent cover.
    The droplet removing device according to any one of claims 1 to 4.
  8.  前記透光体カバーは、前記液滴除去領域の周りに、前記液滴除去領域よりも水接触角の低い親水領域を有する、
     請求項1ないし7のいずれか1項に記載の液滴除去装置。
    The translucent cover has a hydrophilic region around the droplet removal region, which has a lower water contact angle than the droplet removal region.
    The droplet removing device according to any one of claims 1 to 7.
  9.  前記親水領域は、前記透光体カバーの表面に親水コーティング層を有する、
     請求項8に記載の液滴除去装置。
    The hydrophilic region has a hydrophilic coating layer on the surface of the translucent cover.
    The droplet removing device according to claim 8.
  10.  前記親水コーティング層は、アルコキシシラン、ポリエチレングリコール、光触媒、またはオルガノシロキサンのうち少なくともいずれか1つにより形成されている、
     請求項9に記載の液滴除去装置。
    The hydrophilic coating layer is formed of at least one of alkoxysilane, polyethylene glycol, photocatalyst, or organosiloxane.
    The droplet removing device according to claim 9.
  11.  さらに、
     前記制御部により制御され、前記透光体カバーの表面に洗浄液とコーティング剤との少なくともいずれか一方を吐出する吐出部、
    を備える、
     請求項1ないし10のいずれか1項に記載の液滴除去装置。
    further,
    A discharge unit that is controlled by the control unit and discharges at least one of a cleaning liquid and a coating agent onto the surface of the translucent cover.
    To prepare
    The droplet removing device according to any one of claims 1 to 10.
  12.  請求項1ないし11のいずれか1項に記載の液滴除去装置と、
     前記液滴除去装置の内部に配置される撮像素子と、
    を備える、
     撮像ユニット。
    The droplet removing device according to any one of claims 1 to 11.
    An image sensor arranged inside the droplet removing device and
    To prepare
    Imaging unit.
PCT/JP2020/028252 2019-12-26 2020-07-21 Droplet removal device and imaging unit WO2021131122A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019236946 2019-12-26
JP2019-236946 2019-12-26

Publications (1)

Publication Number Publication Date
WO2021131122A1 true WO2021131122A1 (en) 2021-07-01

Family

ID=76574111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028252 WO2021131122A1 (en) 2019-12-26 2020-07-21 Droplet removal device and imaging unit

Country Status (1)

Country Link
WO (1) WO2021131122A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021258197A1 (en) * 2020-06-22 2021-12-30 Excelsense Technologies Corp. Apparatus for cleaning an optical surface in an optical device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008148276A (en) * 2006-11-14 2008-06-26 Alpine Electronics Inc Optical unit, imaging device using optical unit, and on-vehicle image display device using imaging device
JP2009147826A (en) * 2007-12-17 2009-07-02 Nikon Corp Imaging apparatus and optical device
JP2014027539A (en) * 2012-07-27 2014-02-06 Clarion Co Ltd Lens cleaning device
WO2017110563A1 (en) * 2015-12-24 2017-06-29 株式会社村田製作所 Vibration device, method for driving same, and camera

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008148276A (en) * 2006-11-14 2008-06-26 Alpine Electronics Inc Optical unit, imaging device using optical unit, and on-vehicle image display device using imaging device
JP2009147826A (en) * 2007-12-17 2009-07-02 Nikon Corp Imaging apparatus and optical device
JP2014027539A (en) * 2012-07-27 2014-02-06 Clarion Co Ltd Lens cleaning device
WO2017110563A1 (en) * 2015-12-24 2017-06-29 株式会社村田製作所 Vibration device, method for driving same, and camera

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021258197A1 (en) * 2020-06-22 2021-12-30 Excelsense Technologies Corp. Apparatus for cleaning an optical surface in an optical device

Similar Documents

Publication Publication Date Title
US10156719B2 (en) Vibration device and camera
US11511322B2 (en) Cleaning device and imaging unit including the same
US10915005B2 (en) Vibrating device, method for driving same, and camera
US20200379320A1 (en) Vibration unit and optical detection device
WO2020217600A1 (en) Cleaning device, imaging unit with cleaning device, and cleaning method
US11754830B2 (en) Vibration device and vibration control method
JP6819844B1 (en) A vibrating device and an imaging unit equipped with the vibrating device
US20230004072A1 (en) Vibration device and vibration control method
WO2021038942A1 (en) Vibration device and optical detection device
WO2021131122A1 (en) Droplet removal device and imaging unit
US20210080714A1 (en) Optical device and optical unit including optical device
WO2021220539A1 (en) Cleaning device, imaging unit equipped with cleaning device, and cleaning method
JPWO2021100232A1 (en) A vibrating device and an imaging unit equipped with the vibrating device
US11960076B2 (en) Vibrating device and vibration control method
JP6988987B2 (en) A vibrating device and an imaging unit equipped with the vibrating device
WO2021186785A1 (en) Vibration device and vibration control method
WO2019225042A1 (en) Oscillation device and optical detection device
JP7031803B1 (en) Cleaning device, imaging unit equipped with cleaning device, and control method
WO2023100397A1 (en) Optical module and optical device
WO2023100399A1 (en) Optical module and optical device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20906643

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20906643

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP