WO2021130965A1 - Power receiving device and wireless power feed system - Google Patents

Power receiving device and wireless power feed system Download PDF

Info

Publication number
WO2021130965A1
WO2021130965A1 PCT/JP2019/051150 JP2019051150W WO2021130965A1 WO 2021130965 A1 WO2021130965 A1 WO 2021130965A1 JP 2019051150 W JP2019051150 W JP 2019051150W WO 2021130965 A1 WO2021130965 A1 WO 2021130965A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power receiving
circuit
receiving device
current
Prior art date
Application number
PCT/JP2019/051150
Other languages
French (fr)
Japanese (ja)
Inventor
秀人 吉田
友一 坂下
卓哉 中西
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/051150 priority Critical patent/WO2021130965A1/en
Priority to CN201980103080.4A priority patent/CN114846734A/en
Priority to DE112019008002.4T priority patent/DE112019008002T5/en
Priority to KR1020227020060A priority patent/KR20220100665A/en
Priority to US17/773,616 priority patent/US20220376553A1/en
Priority to JP2020539011A priority patent/JP6847316B1/en
Publication of WO2021130965A1 publication Critical patent/WO2021130965A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • H02M1/0085Partially controlled bridges
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0064Magnetic structures combining different functions, e.g. storage, filtering or transformation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • H02M7/2195Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration the switches being synchronously commutated at the same frequency of the AC input voltage

Definitions

  • This application relates to a power receiving device and a wireless power supply system.
  • the control method disclosed in Patent Document 1 includes a short-circuit mode in which the power receiving coil is short-circuited by the operation of the first power converter and power is not supplied to the first power converter and thereafter.
  • This is a method applicable to the configuration of a resonator in which the output from is a current source operation.
  • a resonator that operates as a voltage source is configured, an overcurrent is generated, and there is a risk of heat generation and destruction of the switching element. Therefore, when the method described in Patent Document 1 is performed, it is necessary to configure a specific resonator.
  • the present application discloses a technique for solving the above-mentioned problems, and provides a power receiving device capable of interrupting power from a power receiving coil by opening a circuit and realizing power control by a power converter on the power receiving side.
  • the purpose is.
  • the power receiving device disclosed in the present application is a power receiving device of a wireless power feeding system, which has a power receiving coil and receives AC power sent from a power transmission circuit, and DC power obtained by the power receiving circuit.
  • a power converter that converts to, a voltage detecting means that detects the output voltage of the power receiving circuit, at least one switch that switches between conduction and opening of the circuit between the power receiving circuit and the power converter, and the voltage. It includes a control device that controls the switch based on the voltage detected by the detection means.
  • the power from the power receiving coil can be cut off by opening the circuit. Therefore, the power converter on the power receiving side is used for the configuration of the resonator that operates as a voltage source. It becomes possible to perform power control.
  • FIG. 5 is a schematic diagram of a waveform of each signal in the power receiving device according to the first embodiment, and is a diagram for explaining a basic control method of power control.
  • FIG. 5 is a schematic diagram of a waveform of each signal in the power receiving device according to the first embodiment, and is a diagram for explaining a basic control method of power control.
  • FIG. 5 is a schematic diagram of a waveform of each signal in the power receiving device according to the first embodiment, and is a diagram for explaining a basic control method of power control.
  • FIG. 5 is a schematic diagram of a waveform of each signal in the power receiving device according to the first embodiment, and is a diagram for explaining an example of a control method of power control.
  • FIG. 5 is a schematic diagram of a waveform of each signal in the power receiving device according to the first embodiment, and is a diagram for explaining another example of a control method of power control.
  • FIG. 5 is a schematic diagram of a waveform of each signal in the power receiving device according to the first embodiment, and is a diagram for explaining still another example of a control method of power control. It is a schematic circuit diagram which shows the structure of the power receiving device which concerns on Embodiment 2. FIG. It is a figure which shows the current path of the non-feeding period in the configuration of FIG.
  • FIG. 5 is a schematic diagram of a waveform of each signal in the power receiving device according to the second embodiment, and is a diagram for explaining an example of a control method of power control.
  • FIG. 5 is a schematic diagram of a waveform of each signal in the power receiving device according to the second embodiment, and is a diagram for explaining an example of a control method of power control.
  • FIG. 5 is a schematic diagram of a waveform of each signal in the power receiving device according to the second embodiment, and is a diagram for explaining an example of a control method of power control.
  • FIG. 5 is a schematic diagram of a waveform of each signal in the power receiving device according to the second embodiment, and is a diagram for explaining an example of a control method of power control. It is a schematic circuit diagram which shows the structure of the power receiving device which concerns on Embodiment 3.
  • FIG. 5 is a schematic diagram of a waveform of each signal in the power receiving device according to the third embodiment, and is a diagram for explaining a drive signal pattern I used for reactor current control.
  • FIG. 5 is a schematic diagram of a waveform of each signal in the power receiving device according to the third embodiment, and is a diagram for explaining a drive signal pattern II used for reactor current control.
  • FIG. 5 is a schematic diagram of a waveform of each signal in the power receiving device according to the third embodiment, and is a diagram for explaining a drive signal pattern III used for reactor current control.
  • FIG. 5 is a schematic diagram of a waveform of each signal in the power receiving device according to the third embodiment, and is a diagram for explaining a drive signal pattern IV used for reactor current control. It is a flowchart which performs power control by reactor current control in the power receiving device which concerns on Embodiment 3.
  • FIG. It is a flowchart which performs power control by reactor current control in the power receiving device which concerns on Embodiment 3.
  • FIG. It is a flowchart which performs power control by reactor current control in the power receiving device which concerns on Embodiment 3.
  • FIG. It is a flowchart which performs power control by reactor current control in the power receiving device which concerns on Embodiment 3.
  • FIG. 5 is a schematic diagram of a waveform of each signal in the power receiving device which concerns on Embodiment 3.
  • FIG. 5 is a schematic diagram of a waveform of each signal in the power receiving device according to the fourth embodiment, and is a diagram for explaining an example of a control method of power control.
  • FIG. 5 is a schematic diagram of another waveform of each signal in the power receiving device according to the fourth embodiment, and is a diagram for explaining an example of a control method of power control. It is a figure for demonstrating the example of the control method of power control with the schematic diagram of the waveform of each signal in the power receiving device which concerns on Embodiment 4.
  • FIG. It is a hardware block diagram of a control device.
  • FIG. 1 is a diagram showing a schematic configuration of a wireless power supply system according to the first embodiment.
  • the wireless power supply system 1 includes a power transmission circuit 11 that transmits power supplied from an AC power source 5 that is a main power source, and a power receiving device 10 that receives power from the power transmission circuit 11 and outputs it to a load 15. .
  • the power receiving device 10 includes a power receiving circuit 12, a power converter 13, and an LC filter 14.
  • the electric power supplied from the AC power source 5 is transmitted in a non-contact manner between the power transmission circuit 11 and the power reception circuit 12.
  • the power converter 13 plays the role of a power converter that converts the AC power received by the power receiving circuit 12 into DC power and adjusts the received power to preset power.
  • the LC filter 14 attenuates the AC component included in the output power of the power converter 13. The electric power output from the LC filter 14 is consumed or stored in the load 15.
  • the power transmission circuit 11 is a circuit including at least one coil, and in FIG. 1, the power transmission coil 111 and the power transmission side capacitor 112 are connected in series.
  • the power transmission side capacitor 112 is not indispensable for wireless power supply, but if the power transmission side capacitor 112 is not provided, the power transmission efficiency between the power transmission / reception coils is significantly reduced. Therefore, it is desirable to use the power transmission side capacitor 112 to perform power factor compensation.
  • the power receiving circuit 12 is a circuit including at least one coil, and in FIG. 1, the power receiving coil 121 and the power receiving side capacitor 122 are connected in parallel.
  • the power receiving side capacitor 122 is not indispensable for wireless power supply, but if the power receiving side capacitor 122 is not provided, the power transmission efficiency between the power transmitting and receiving coils is significantly reduced. Therefore, it is desirable to use the power receiving side capacitor 122 to perform power factor compensation.
  • the output of the power reception circuit 12 becomes a voltage source operation or a current source operation.
  • the output of the power reception circuit 12 operates as a voltage source.
  • the configuration of the power transmission circuit 11 and the power reception circuit 12 shown in FIG. 1 is an example, and the configuration of each is not limited. However, in the present embodiment, the output of the power reception circuit 12 operates as a voltage source. It is targeted.
  • FIG. 2 is a schematic circuit diagram showing the configuration of the power receiving device 10 according to the first embodiment.
  • the rectifier circuit 13a includes four diodes 131, 132, 133, 134 and two semiconductor switches 135a and 136a, the diode 132 and the semiconductor switch 135a are connected in series, and the diode 134 and the semiconductor switch 136a are connected in series. It has become.
  • a switch such as a MOS-FET (Metal-Oxide-Semiconductor Field-Effective Transistor: MOS type field effect transistor) or an IGBT (Insulated Gate Bipolar Transistor: Insulated Gate Bipolar Transistor) or the like and a diode are reversed in parallel with the switch. It is an electrical component having connected characteristics.
  • the semiconductor switch 135a is connected in series with the diode 132 in a direction in which no current flows through the diode 132 when the switch is off.
  • the semiconductor switch 136a is connected in series with the diode 134 in a direction in which no current flows through the diode 134 when the switch is off.
  • the semiconductor switches 135a and 136a are connected in series to the diode 132 and the diode 134, which are the lower arms on the negative side of the rectifier circuit 13a, respectively, but the semiconductor is connected to the diode 131 and the diode 133, which are the upper arms on the positive side.
  • the switches 135a and 136a may be connected in series, respectively.
  • the LC filter 14 is composed of a DC reactor 141 and a DC capacitor 142, and has a role of attenuating the AC component of the output voltage and current of the rectifier circuit 13a.
  • the load 15 is a motor that consumes electric power, a battery for storing electricity, or the like.
  • the voltage detecting means 16 detects the output voltage (input voltage of the rectifier circuit 13a) V2 of the power receiving circuit 12.
  • the control device 17 generates a drive signal for controlling the on / off of the semiconductor switches 135a and 136a of the rectifier circuit 13a based on the information of the voltage V2 detected by the voltage detecting means 16.
  • the output of the power receiving circuit 12 is opened depending on the on / off state of the semiconductor switches 135a and 136a, and the power supply from the power receiving circuit 12 to the load 15 is cut off.
  • the output of the power reception circuit 12 operates as a voltage source. Therefore, when the output of the power reception circuit 12 is open, it is viewed from the AC power supply 5. The impedance becomes a very large value. As a result, the output power of the AC power supply 5 is reduced.
  • the on / off states and circuit operations of the semiconductor switches 135a and 136a will be described.
  • FIG. 3A and 3B are diagrams for explaining the circuit operation of the power receiving device 10 in the steady state when the semiconductor switch 135a is off and the semiconductor switch 136a is on.
  • the arrows in the figure indicate the current path.
  • FIG. 3A illustrates the circuit operation when the output voltage V2 of the power receiving circuit 12 is positive, and shows the operation during the power supply period in which power is sent from the power receiving circuit 12 to the load.
  • the output voltage V2 of the power receiving circuit 12 is positive, the diode 131, the diode 134, and the semiconductor switch 136a are electrically connected, and power is supplied from the power receiving circuit 12 to the load 15.
  • the output voltage of the rectifier circuit 13a becomes equal to the input voltage V2.
  • a potential difference between the load voltage Vout and the output voltage of the rectifier circuit 13a is applied to the DC reactor 141 of the LC filter 14, and the load current increases or decreases according to this potential difference and the inductance value of the DC reactor 141.
  • FIG. 3B illustrates the circuit operation when the output voltage V2 of the power receiving circuit 12 is negative, and shows the operation during the non-power supply period in which the power supply from the power receiving circuit 12 is cut off.
  • the diode 133, the diode 134, and the semiconductor switch 136a become conductive, and the power supply from the power receiving circuit 12 to the load 15 is stopped.
  • the output voltage of the rectifier circuit 13a becomes 0.
  • the current supplied to the load 15 is the energy stored in the DC reactor 141, and the load current decreases with a slope determined by the load voltage Vout and the inductance value of the DC reactor 141.
  • FIG. 4A and 4B are diagrams for explaining the circuit operation of the power receiving device 10 in the steady state when the semiconductor switch 135a is on and the semiconductor switch 136a is off.
  • the arrows in the figure indicate the current path.
  • FIG. 4A illustrates the circuit operation when the output voltage V2 of the power receiving circuit 12 is positive, and shows the operation during the non-power supply period in which the power supply from the power receiving circuit 12 is cut off.
  • the output voltage V2 of the power receiving circuit 12 is positive, the diode 131, the diode 132, and the semiconductor switch 135a become conductive, and the power supply from the power receiving circuit 12 to the load 15 is stopped.
  • the output voltage of the rectifier circuit 13a becomes 0.
  • the current supplied to the load 15 is the energy stored in the DC reactor 141, and the load current decreases with a slope determined by the load voltage Vout and the inductance value of the DC reactor 141.
  • FIG. 4B illustrates the circuit operation when the output voltage V2 of the power receiving circuit 12 is negative, and shows the operation during the power supply period in which power is sent from the power receiving circuit 12 to the load.
  • the rectifier circuit 13a behaves as a full bridge diode rectifier circuit. That is, when the output voltage V2 of the power receiving circuit 12 is positive, the circuit operation is shown in FIG. 3A, and when the output voltage V2 of the power receiving circuit 12 is negative, the circuit operation is shown in FIG. Since the power is supplied from the circuit 12 to the load 15, the power supply period is always reached.
  • 5A, 5B, and 5C are diagrams for explaining a basic control method of power control in the power receiving device 10 according to the first embodiment, and are schematic views of waveforms of each signal.
  • the approximate waveforms of the output voltage V2 of the power receiving circuit 12, the input current of the rectifier circuit 13a, and the drive signals of the semiconductor switches 135a and 136a are shown in order from the top.
  • the drive signal represents an on state when the waveform is 1, and an off state when the waveform is 0.
  • FIG. 5A shows the signal waveform when the output power from the power receiving device 10 is maximized.
  • the output voltage V2 and the input current of the power receiving circuit 12 have a sine wave shape and a square wave shape, respectively, and the two semiconductor switches 135a and 136a are always on. That is, FIG. 5A shows a state in which power supply is continued.
  • FIG. 5B shows a signal waveform when the output power from the power receiving device 10 is set to be smaller than that in FIG. 5A.
  • the semiconductor switches 135a and 136a are switched on and off at the zero cross or near the zero cross of the output voltage V2 of the power receiving circuit 12 detected by the voltage detecting means 16 as shown by the dotted line position in FIG. 5B. That is, the switching between the power supply period PS and the non-power supply period NPS described above is performed at zero cross or near zero cross of the output voltage V2 of the power receiving circuit 12. Further, the power control is performed by controlling the time ratio between the total power supply period and the total non-power supply period within a predetermined period.
  • the predetermined period is set in advance as an integral multiple of the half cycle of the output voltage V2 of the power receiving circuit 12, and can be changed according to the required power.
  • the repetition period of the drive signal of the semiconductor switches 135a and 136a is set to the same time as the three cycles of the output voltage V2 of the power receiving circuit 12, the time of two cycles of the output voltage V2 of the power receiving circuit 12 is the power supply period PS, and the remaining The time of one cycle is set to the non-power supply period NPS.
  • the average output voltage value of the rectifier circuit 13a in FIG. 5B is 2/3 of the average output voltage value of the rectifier circuit 13a in FIG. 5A. Therefore, when the load 15 is a resistive load, the output power in FIG.
  • the zero cross or the vicinity of the zero cross of the output voltage V2 indicates the time for which the voltage value becomes sufficiently smaller than the maximum value of the output voltage V2 of the power receiving circuit 12 detected by the voltage detecting means 16, and is approximately the absolute value of the output voltage V2. The time during which the value is 20% or less of the maximum value.
  • FIG. 5C shows a signal waveform when the output power from the power receiving device 10 is set to be smaller than that in FIGS. 5A and 5B.
  • the repetition cycle of the drive signals of the semiconductor switches 135a and 136a is set to the same time as the two cycles of the output voltage V2 of the power receiving circuit 12, the time of one cycle of the output voltage V2 of the power receiving circuit 12 is the power supply period PS, and the rest One cycle is set to the non-power supply period NPS.
  • the average output voltage value of the rectifier circuit 13a in FIG. 5C is 1/2 of the average output voltage value of the rectifier circuit 13a in FIG. 5A. Therefore, when the load 15 is a resistive load, the output power in FIG. 5C is 1/4 of the output power in the signal waveform shown in FIG. 5A.
  • the output voltage of the rectifier circuit 13a can be controlled by adjusting the ratio of the power supply period to the non-power supply period within a preset predetermined period, and as a result, the output power can be controlled. Further, by performing the on / off switching operation of all the semiconductor switches at the timing of zero cross or near zero cross of the output voltage V2 of the power receiving circuit 12, the switching loss represented by the product of the voltage and current of the semiconductor switch is reduced to a small value. Can be suppressed.
  • FIGS. 5A, 5B, and 5C show an example in which the semiconductor switches 135a and 136a are driven so as to be switched on and off in a complementary manner, a circuit is provided even if both semiconductor switches are turned on during the power supply period. The operation is the same.
  • FIGS. 6A, 6B, and 6C are diagrams for explaining a control method by different power control of the power receiving device 10 according to the first embodiment. Similar to FIGS. 5A, 5B, and 5C, FIGS. 6A, 6B, and 6C show approximate waveforms of the input voltage V2 of the rectifier circuit 13a, the input current of the rectifier circuit 13a, and the drive signals of the semiconductor switches 135a and 136a, respectively, in order from the top. Shown. Then, in each of the three examples shown in FIGS.
  • the output voltage V2 of the power receiving circuit 12 is 3
  • the power supply period is provided for only one cycle in the cycle, and the drive signals of the semiconductor switches 135a and 136a are set so that the average value of the output voltage is 1/3 of the maximum state (the state where the two switches are always on). It is set.
  • the power supply period PS is set with one cycle of the frequency of the output voltage V2 of the power receiving circuit 12 as one unit, as in the example of FIGS. 5A, 5B, and 5C.
  • the power supply period PS is set with the half cycle of the frequency of the output voltage V2 of the power receiving circuit 12 as one unit, and the power supply period PS of this one unit is further set. Is intermittently provided, and the same time as one cycle of the output voltage V2 of the power receiving circuit 12 is set as the total power feeding period within the repeating cycle of the drive signal.
  • the signal waveform of FIG. 6C shows an example of a method of setting the power supply period and the non-power supply period according to the polarity of the output voltage V2 of the power receiving circuit 12. That is, in FIG. 6C, the first two positive periods of the output voltage V2 of the power receiving circuit 12 are set to the feeding period PS, and the negative period is always set to the non-feeding period NPS. Then, as in FIG. 6B, the power supply period PS is set with the half cycle of the frequency of the output voltage V2 of the power receiving circuit 12 as one unit, and the power supply period PS of this one unit is intermittently provided to repeat the drive signal cycle. The total power supply period is the same as one cycle of the output voltage V2 of the power receiving circuit 12.
  • the average value of the output voltage is set to 1/3 of the maximum state (the state in which the two switches are always on), but as a drive signal for the semiconductor switches 135a and 136a. Achieves this using different waveforms.
  • the magnitude of the ripple current included in the output current of the rectifier circuit differs depending on the difference in the waveform of the drive signal. For example, in the waveform of the drive signal of FIG. 6A, the non-feeding period is the time of two cycles of the output voltage V2 of the power receiving circuit 12, but in the waveform of the drive signal of FIG. 6B, the non-feeding period is 2 within the repetition cycle of the drive signal.
  • the non-power supply period per time is the time of one cycle of the output voltage V2 of the power receiving circuit 12.
  • the ripple current of the input current of the rectifier circuit 13a becomes smaller, so that the ripple current in FIG. 6B becomes smaller than that in the case of the waveform of the drive signal in FIG. 6A.
  • the ripple current which is an AC component, needs to be attenuated by the LC filter 14, if the ripple current is small, the LC filter 14 can be miniaturized.
  • the power receiving device 10 detects the voltage detection of the power receiving circuit 12 for receiving the power from the power transmitting circuit 11 and the output voltage V2 of the power receiving circuit 12.
  • a power converter 13 rectifying circuit 13a having means 16 and semiconductor switches 135a and 136a and converting AC power received by the power receiving circuit 12 into DC power, and an output voltage V2 of the power receiving circuit 12 detected by the voltage detecting means 16.
  • At least a control device for controlling the semiconductor switches 135a and 136a is provided based on the above, and the conduction state and the cutoff state with the power receiving circuit 12 are switched by the operation of the semiconductor switches 135a and 136a. In this configuration, a cutoff state can be formed between the power receiving circuit and the power converter by opening instead of short-circuiting, and there is no risk of damage to the elements constituting the power converter due to overcurrent.
  • the ratio of the power supply period in which the power converter 13 and the power receiving circuit 12 are in a conductive state and the ratio of the non-power supply period in which the power converter 13 and the power receiving circuit 12 are cut off is adjusted.
  • the output voltage of the power converter 13 can be controlled, and as a result, the output power can be controlled.
  • switching loss can be suppressed and highly efficient power control becomes possible.
  • FIG. 7 is a schematic circuit diagram showing the configuration of the power receiving device according to the second embodiment.
  • the same or corresponding parts as those in FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted.
  • the arrangement of the two semiconductor switches 135b and 136b in the rectifier circuit 13b is different from that of the first embodiment, and the diode 133 and the diode 134 are connected in series, respectively.
  • the arrangement of the semiconductor switches 135b and 136b in FIG. 7 is an example, and the diode 131 and the diode 132 may be connected in series. That is, it may be connected in series to the diode on the leg side of either of the two left and right legs constituting the rectifier circuit 13b.
  • FIG. 8 illustrates one of the current paths during the non-feeding period in the configuration of FIG. 7.
  • the energy stored in the DC reactor 141 can be recirculated via the load 15, the diode 132, and the diode 131, and the recirculation path does not include a semiconductor switch.
  • the non-feeding period in the first embodiment is shown in FIGS. 3B and 4A, the energy recirculation path of the DC reactor 141 includes a semiconductor switch.
  • the recirculation path is cut off if the semiconductor switch is damaged or malfunctions, and the energy stored in the DC reactor 141 causes an overvoltage in the circuit, causing the entire device to be affected. There is a risk of losing functionality.
  • FIGS. 9A, 9B, and 9C are diagrams for explaining an example of a control method of power control of the power receiving device according to the second embodiment, and are schematic views of waveforms of each signal of the power receiving device. From the top, the output voltage V2 of the power receiving circuit 12, the input current of the rectifier circuit 13b, and the approximate waveforms of the drive signals of the semiconductor switches 135b and 136b are shown. In each of the three examples shown in FIGS. 9A, 9B, and 9C, the semiconductor switch is such that the average value of the output voltage from the power receiving device is 1/3 of the maximum state (the state in which the two switches are always on). The drive signals of 135b and 136b are set.
  • a power control method for driving a semiconductor switch with one cycle of the output voltage V2 of the power receiving circuit 12 as one unit and in the signal waveform of FIG. 9B, a half cycle of the output voltage V2 of the power receiving circuit 12 is used.
  • a power control method for driving a semiconductor switch as one unit, and a power control method for setting a power supply period PS and a non-power supply period NPS according to the polarity of the output voltage V2 of the power receiving circuit 12 are shown in the signal waveform of FIG. 9C. It is a thing.
  • the state of the other semiconductor switch may be either on or off.
  • the semiconductor switch 135b and 136b even if both the semiconductor switches 135b and 136b are on, if the output voltage V2 of the power receiving circuit 12 is positive, the semiconductor switch 136b side becomes the current path, while the output voltage of the power receiving circuit 12 When V2 is negative, the semiconductor switch 135b side becomes the current path. Therefore, in the drive signals of the semiconductor switches 135b and 136b of FIGS. 9A, 9B, and 9C, the time indicated as on (the signal is 1) is the time, and the time indicated by the diagonal line is off even if it is on. It is a good period. Further, in FIG. 9C, the drive signal of the semiconductor switch 135b is switched on and off, but the circuit operation is the same even in the constantly off state.
  • the power receiving device of the second embodiment has the same effect as that of the first embodiment.
  • the semiconductor switches 135b and 136b are connected in series to the diode on the leg side of either of the two left and right legs constituting the rectifier circuit 13b which is the power converter 13. It is possible to provide a non-power supply period by turning off the semiconductor switches 135b and 136b at the same time. As a result, it is possible to suppress the generation of an excessive voltage due to the state of the semiconductor switch in the recirculation path of the energy stored in the DC reactor 141 during the non-feeding period. Further, since the two semiconductor switches 135b and 136b can be controlled by one drive signal, there is an effect that the control device can be simplified as compared with the first embodiment.
  • FIG. 10 is a schematic circuit diagram showing the configuration of the power receiving device according to the third embodiment.
  • the same or corresponding parts as those in FIG. 7 are designated by the same reference numerals, and the description thereof will be omitted.
  • the power receiving device according to the third embodiment further includes a current detecting means 18 for detecting the current ILdc flowing through the DC reactor 141 and a voltage detecting means 19 for detecting the voltage Vout of the load 15.
  • the current and voltage information detected by the current detecting means 18 and the voltage detecting means 19 is input to the control device 17.
  • the control device 17 sets the output power command value Pout * so that the output from the power receiving device becomes a preset predetermined output power, and generates a drive signal for the semiconductor switch. This was an example of controlling a semiconductor switch and controlling power.
  • the control device 17 divides the output power command value Pout * by the load voltage Vout detected by the voltage detecting means 19 to calculate the current command value ILdc * of the DC reactor 141 and detect the current.
  • the output power is controlled by using current control that controls the semiconductor switch so that the current ILdc of the DC reactor 141 detected by the means 18 becomes the current command value ILdc *.
  • 11A, 11B, 11C, and 11D are schematic views of waveforms of each signal in the power receiving device according to the third embodiment, and are diagrams for explaining a drive signal pattern used for reactor current control.
  • the drive signal pattern for controlling the semiconductor switches 135b and 136b so as to have the following four voltages with respect to the maximum voltage of the average output voltage of the rectifier circuit 13b is set to the non-power supply state. Is added to set five drive signal patterns.
  • Drive signal pattern I A pattern in which the average output voltage is the maximum voltage
  • Drive signal pattern II A pattern in which the average output voltage is 3/4 of the maximum voltage
  • Drive signal pattern III A pattern in which the average output voltage is 1/2 of the maximum voltage
  • Drive signal pattern IV A pattern in which the average output voltage is 1/4 of the maximum voltage
  • Drive signal pattern V A pattern in which no power is supplied. The control device 17 holds and executes these drive signal patterns.
  • FIG. 11A is a diagram showing the drive signal pattern I, indicating that the power supply state is continuing.
  • FIG. 11B is a diagram showing the drive signal pattern II. Focusing on two cycles of the output voltage V2 of the power receiving circuit 12, the 1.5 cycle period is the power supply period PS, and the half cycle period is the non-power supply period NPS. This is a pattern in which the average output voltage of the rectifier circuit 13b is 3/4 of the maximum voltage.
  • FIG. 11C is a diagram showing the drive signal pattern III. Focusing on the two cycles of the output voltage V2 of the power receiving circuit 12, the power supply period PS for half a cycle and the non-power supply period NPS for half a cycle are repeated.
  • FIG. 11D is a diagram showing the drive signal pattern IV. Focusing on two cycles of the output voltage V2 of the power receiving circuit 12, the half cycle period is the power supply period PS, and the 1.5 cycle period is the non-power supply period NPS. This is a pattern in which the average output voltage of the rectifier circuit 13b is 1/4 of the maximum voltage.
  • the drive signal pattern V is not shown, both the semiconductor switches 135b and 136b are off (the drive signal is 0), and the power supply is not supplied.
  • step S101 is the non-power supply state, which corresponds to the execution of the drive signal pattern V.
  • the control device 17 divides the set output power command value Pout * by the load voltage Vout detected by the voltage detecting means 19 to calculate the current command value ILdc * of the DC reactor 141. Further, the current ILdc of the DC reactor 141 detected by the current detecting means 18 is input to the control device 17.
  • step S102 When the drive signal pattern IV is executed in step S102 of the start of power supply, the current ILdc of the DC reactor 141 increases.
  • step S103 it is determined whether the detected current ILdc of the DC reactor 141 is equal to or greater than the current command value ILdc *, and if it is equal to or greater than the current command value ILdc * (YES), the process proceeds to step S201 shown in the flowchart of FIG. 12B. move on. If the current ILdc of the detected DC reactor 141 does not reach the current command value ILdc * in step S103 (NO), the drive signal pattern III is executed in step S104.
  • step S104 When the drive signal pattern III is executed in step S104, the current ILdc of the DC reactor 141 is further increased.
  • step S105 it is determined whether the detected current ILdc of the DC reactor 141 is equal to or greater than the current command value ILdc *, and if it is equal to or greater than the current command value ILdc * (YES), the process proceeds to step S301 shown in the flowchart of FIG. 12C. move on. If the current ILdc of the detected DC reactor 141 does not reach the current command value ILdc * in step S105 (NO), the drive signal pattern II is executed in step S106.
  • step S106 When the drive signal pattern II is executed in step S106, the current ILdc of the DC reactor 141 is further increased.
  • step S107 it is determined whether the detected current ILdc of the DC reactor 141 is equal to or greater than the current command value ILdc *, and if it is equal to or greater than the current command value ILdc * (YES), the process proceeds to step S401 shown in the flowchart of FIG. 12D. move on. If the current ILdc of the detected DC reactor 141 does not reach the current command value ILdc * in step S107 (NO), the drive signal pattern I is executed in step S108.
  • step S109 it is determined whether the detected current ILdc of the DC reactor 141 is equal to or greater than the current command value ILdc *, and if it is equal to or greater than the current command value ILdc * (YES), the process proceeds to step S501 shown in the flowchart of FIG. 12E. move on. If the current ILdc of the DC reactor 141 detected in step S109 does not reach the current command value ILdc * (NO), there is a concern that there is a problem in setting the current command value ILdc *, so control is performed in step S110. Stop power supply as impossible.
  • steps S103, S105, S107, and S109 it is determined as follows whether the detected current ILdc of the DC reactor 141 does not reach the current command value ILdc * or exceeds the current command value ILdc *. For example, if the detected current ILdc of the DC reactor 141 does not fluctuate for a certain period of time and does not reach the current command value ILdc *, it is determined that the current command value ILdc * is not reached. Alternatively, if the current command value ILdc * is not reached even after three times the repetition period of the drive signal has elapsed, it is determined that the current command value ILdc * is not reached.
  • the elapsed time can be set arbitrarily. In this way, the determination is made based on the saturation status or transition of the current ILdc of the detected DC reactor 141.
  • step S201 When the current ILdc of the detected DC reactor 141 becomes equal to or higher than the current command value ILdc * in step S103, the process proceeds to step S201 of FIG. 12B, and the drive signal pattern V is executed. That is, it is in a non-powered state. Then, since the current ILdc of the DC reactor 141 decreases, the process proceeds to step S202, and it is determined whether the current ILdc of the DC reactor 141 is equal to or greater than the current command value ILdc *. If the current ILdc of the DC reactor 141 continues to be equal to or higher than the current command value ILdc * (YES), the non-power supply state in step S201 is continued.
  • step S202 When the current ILdc of the DC reactor 141 falls below the current command value ILdc * in step S202, the drive signal pattern IV is executed in step S203, and the current ILdc of the DC reactor 141 increases. After that, the drive signal pattern V and the drive signal pattern IV are executed until there is a command to stop the power supply, and the current ILdc of the DC reactor 141 is controlled to approach the current command value ILdc *.
  • step S301 the process proceeds to step S301 of FIG. 12C, and the drive signal pattern IV is executed. Then, since the current ILdc of the DC reactor 141 decreases, the process proceeds to step S302, and it is determined whether the current ILdc of the DC reactor 141 is equal to or greater than the current command value ILdc *. If the current ILdc of the DC reactor 141 continues to be equal to or higher than the current command value ILdc * (YES), the execution of the drive signal pattern IV in step S301 is continued.
  • step S302 If the current ILdc of the DC reactor 141 falls below the current command value ILdc * in step S302, the drive signal pattern III is executed in step S303, and the current ILdc of the DC reactor 141 increases. After that, the drive signal pattern IV and the drive signal pattern III are executed until there is a command to stop the power supply, and the current ILdc of the DC reactor 141 is controlled to approach the current command value ILdc *.
  • step S107 when the current ILdc of the detected DC reactor 141 becomes equal to or higher than the current command value ILdc * in step S107, the process proceeds to step S401 of FIG. 12D, and the drive signal pattern III is executed. Then, since the current ILdc of the DC reactor 141 decreases, the process proceeds to step S402, and it is determined whether the current ILdc of the DC reactor 141 is equal to or greater than the current command value ILdc *. If the current ILdc of the DC reactor 141 continues to be equal to or higher than the current command value ILdc * (YES), the execution of the drive signal pattern III in step S401 is continued.
  • step S402 If the current ILdc of the DC reactor 141 falls below the current command value ILdc * in step S402, the drive signal pattern II is executed in step S403, and the current ILdc of the DC reactor 141 increases. After that, the drive signal pattern III and the drive signal pattern II are executed until there is a command to stop the power supply, and the current ILdc of the DC reactor 141 is controlled to approach the current command value ILdc *.
  • step S109 when the current ILdc of the detected DC reactor 141 becomes equal to or higher than the current command value ILdc * in step S109, the process proceeds to step S501 of FIG. 12E, and the drive signal pattern II is executed. Then, since the current ILdc of the DC reactor 141 decreases, the process proceeds to step S502, and it is determined whether the current ILdc of the DC reactor 141 is equal to or greater than the current command value ILdc *. If the current ILdc of the DC reactor 141 continues to be equal to or higher than the current command value ILdc * (YES), the execution of the drive signal pattern II in step S501 is continued.
  • step S502 If the current ILdc of the DC reactor 141 falls below the current command value ILdc * in step S502, the drive signal pattern I is executed in step S503, and the current ILdc of the DC reactor 141 increases. After that, the drive signal pattern II and the drive signal pattern I are executed until there is a command to stop the power supply, and the current ILdc of the DC reactor 141 is controlled to approach the current command value ILdc *.
  • the current is controlled at a voltage close to the load voltage Vout. It can be performed.
  • the current ILdc of the DC reactor 141 does not exceed the current command value ILdc * even when the drive signal pattern I is executed in step S109, the power supply is stopped as uncontrollable in step S110, but the current
  • the current In addition to problems with the setting of the command value ILdc *, there is a possibility that current control cannot be performed in principle. Therefore, it is necessary to change the test conditions or circuit constants.
  • the current control method according to the third embodiment is performed rather than operating the power receiving device only with the drive signal pattern I which is the maximum voltage and the drive signal pattern V in the non-powered state. If it is applied, the inductance value required for the DC reactor 141 can be designed to be smaller, so that the size can be reduced.
  • the drive signal pattern and control method shown above are examples of the third embodiment.
  • the number of drive signal patterns may be increased or decreased to five or less, or the type of drive method may be changed to a different one. It is also possible to do it.
  • the control device 17 has at least three drive signal patterns, and based on the current ILdc detected by the current detecting means 18, two drive signal patterns in which the ratio of the power supply period to the non-power supply period is close are obtained from a plurality of drive signal patterns. It may be used to control the semiconductor switch so that the output power command value Pout * is set in a stepwise manner.
  • the power receiving device has the same effect as that of the second embodiment. Further, a current detecting means 18 for detecting the current ILdc flowing through the DC reactor 141 and a voltage detecting means 19 for detecting the voltage Vout of the load 15 are provided, and the current ILdc of the DC reactor 141 detected by the current detecting means 18 is the current command value. Since the output power is controlled by using the current control that controls the semiconductor switch so that it becomes ILdc *, the average output voltage of the rectifying circuit 13b is gradually increased to a voltage close to the load voltage Vout. By controlling the current, it is possible to suppress the fluctuation amount of the applied voltage and the applied voltage to the DC reactor 141, and it is possible to reduce the output current ripple of the rectifying circuit 13b.
  • FIG. 7 of the second embodiment shows an example in which the current detecting means 18 for detecting the current ILdc flowing in the DC reactor 141 and the voltage detecting means 19 for detecting the voltage Vout of the load 15 are provided.
  • the current detecting means 18 for detecting the current ILdc flowing through the DC reactor 141 and the voltage detecting means 19 for detecting the voltage Vout of the load 15 may be provided.
  • FIG. 13 is a schematic circuit diagram showing the configuration of the power receiving device according to the fourth embodiment.
  • the bidirectional switch 20 is connected between the power receiving circuit 12 and the rectifier circuit 13c.
  • the rectifier circuit 13c which is a power converter, is composed of only four diodes.
  • the power receiving device controls the output power with the bidirectional switch 20.
  • the bidirectional switch 20 When the bidirectional switch 20 is on, the power supply period is high, and when the bidirectional switch 20 is off, the power supply period is non-power supply. It becomes.
  • the power receiving circuit and the power converter are not short-circuited but open and cut off, so that the power due to overcurrent is cut off. There is no risk of damage to the elements that make up the converter, that is, the diode and the like.
  • the timing of switching the bidirectional switch 20 on and off is performed at zero cross or near zero cross of the input voltage V2 of the rectifier circuit 13c. As a result, it is possible to suppress the switching loss of the bidirectional switch 20 as in the above-described first to third embodiments.
  • the output power can be controlled by the time when the bidirectional switch is on, and can be controlled regardless of the polarity of the input voltage V2 of the rectifier circuit 13c. Therefore, the program of the control device can be simplified and the calculation load of the control device can be reduced. Further, since the rectifier circuit 13c becomes a full bridge diode rectifier circuit, modularized parts can be applied, and an effect of simplifying circuit mounting can be obtained.
  • 14A, 14B, and 14C are diagrams for explaining a control method by power control of the power receiving device according to the fourth embodiment.
  • 14A, 14B, and 14C show approximate waveforms of the input voltage V2 of the rectifier circuit 13c, the input current of the rectifier circuit 13c, and the drive signal of the bidirectional switch 20 in this order from the top.
  • the power supply period is set to one cycle among the three cycles of the output voltage V2 of the power receiving circuit 12.
  • the drive signal of the bidirectional switch 20 is set so that the average value of the output voltage is 1/3 of the maximum state (the bidirectional switch is always on).
  • 14A and 14C correspond to the output power controls of FIGS. 6A and 6C of the first embodiment, respectively.
  • the same output power control as in the first embodiment can be performed.
  • FIG. 14B shows an example in which a half cycle of the output voltage V2 of the power receiving circuit 12 is set as one unit of the power feeding period PS, and the repeating cycle of the drive signal is 1.5 cycles of the output voltage V2 of the power receiving circuit 12.
  • the drive signal of the bidirectional switch 20 is set so that the average value of the output voltage is 1/3 of the maximum state (the bidirectional switch is always on).
  • FIG. 14B corresponds to the output power control of FIG. 9B of the second embodiment. As described above, in the fourth embodiment using the bidirectional switch 20, the same output power control as in the first embodiment can be performed.
  • FIG. 13 shows a configuration in which only the voltage detecting means 16 for detecting the output voltage V2 of the power receiving circuit 12 is provided as the means for detecting the current or the voltage, the voltage detecting means of the load 15 and the LC filter 14 are provided.
  • the current detecting means of the included DC reactor 141 it is also possible to carry out power control by the reactor current control as shown in the third embodiment.
  • the bidirectional switch 20 is provided between the power receiving circuit 12 and the rectifier circuit 13c which is a power converter, and the power supply period and the non-power supply period are switched. Therefore, not only the effects of the first to third embodiments can be obtained, but also the device configuration can be simplified, and the effects of miniaturization and cost reduction can be obtained.
  • the control device 17 is composed of a processor 170 and a storage device 171 as shown in FIG. 15 as an example of hardware.
  • the storage device includes a volatile storage device such as a random access memory and a non-volatile auxiliary storage device such as a flash memory. Further, an auxiliary storage device of a hard disk may be provided instead of the flash memory.
  • the processor 170 executes the program input from the storage device 171. In this case, a program is input from the auxiliary storage device to the processor 170 via the volatile storage device. Further, the processor 170 may output data such as a calculation result to the volatile storage device of the storage device 171 or may store the data in the auxiliary storage device via the volatile storage device.

Abstract

A power receiving device (10) of a wireless power feed system (1) that is connected to an electric power source (5) and that receives electric power from a power transmission circuit (11) having a power transmission coil (111), the power receiving device (10) including: a power receiving circuit (12); a power converter (13a); an LC filter (14); and switches (135a, 136b) that are controlled by a control device (17) on the basis of voltage (V2) detected by a voltage detecting means (16) that detects output voltage of the power receiving circuit (12) and that cuts off between the power receiving circuit (12) and the power converter (13a) when power is not being supplied.

Description

受電装置及びワイヤレス給電システムPower receiving device and wireless power supply system
 本願は、受電装置及びワイヤレス給電システムに関する。 This application relates to a power receiving device and a wireless power supply system.
 空間を隔てた2つのコイル間での磁界結合により電力を伝送するワイヤレス給電技術がある。ワイヤレス給電技術において給電電力を調整する方法は様々であり、その多くは送電側の電力変換器を制御することにより行われる。しかしながら、ワイヤレス給電技術の適用先における負荷の多くはバッテリなどの蓄電要素であるため、その蓄電要素の充電状況に応じて給電電力を調整するためには負荷側(受電側)にある電力変換器で電力制御を行うことが望ましい。以上の理由から、受電側の電力変換器のみにより伝送電力制御する方法について、種々の手法が報告されている(例えば、特許文献1参照)。 There is a wireless power supply technology that transmits power by magnetic field coupling between two coils that separate a space. There are various methods of adjusting the power supply in wireless power supply technology, and most of them are performed by controlling the power converter on the transmission side. However, since most of the load to which the wireless power supply technology is applied is a power storage element such as a battery, a power converter on the load side (power receiving side) is required to adjust the power supply power according to the charging status of the power storage element. It is desirable to control the power with. For the above reasons, various methods have been reported as methods for controlling transmission power only by the power converter on the power receiving side (see, for example, Patent Document 1).
 特許文献1に開示された受電装置は、送電側から交流電力を受電するコイルに2つの電力変換器が接続され、コイル側の第1の電力変換器は交流電圧を直流電圧に整流し、第1の電力変換器に接続された第2の電力変換器は整流された直流電圧を、任意の直流電圧または交流電圧に変換する。そして、一方の電力変換器により、伝送側との間の伝送効率を制御し、他方の電力変換器により受電電力を制御することで、受電側の電力変換器のみで伝送効率の制御と給電電力の電力制御の両立を図っている。 In the power receiving device disclosed in Patent Document 1, two power converters are connected to a coil that receives AC power from the transmitting side, and the first power converter on the coil side rectifies the AC voltage to a DC voltage, and the first The second power converter connected to the power converter of 1 converts the rectified DC voltage into an arbitrary DC voltage or AC voltage. Then, by controlling the transmission efficiency with and from the transmission side by one power converter and controlling the received power by the other power converter, the transmission efficiency can be controlled and the power supply power is supplied only by the power converter on the power receiving side. We are trying to achieve both power control.
特開2017-93094号公報JP-A-2017-93094
 特許文献1に開示された制御方法では、第1の電力変換器の動作によって受電コイルが短絡し、第1の電力変換器以降に電力を供給しないようにする短絡モードを含んでいるため、コイルからの出力が電流源的動作となる共振器の構成に適用可能な方法である。しかし、電圧源的動作となる共振器を構成すると過電流が発生し、スイッチング素子の発熱及び破壊のおそれがある。そのため、特許文献1に記載の方法を行う場合は、特定の共振器の構成にする必要があった。 The control method disclosed in Patent Document 1 includes a short-circuit mode in which the power receiving coil is short-circuited by the operation of the first power converter and power is not supplied to the first power converter and thereafter. This is a method applicable to the configuration of a resonator in which the output from is a current source operation. However, if a resonator that operates as a voltage source is configured, an overcurrent is generated, and there is a risk of heat generation and destruction of the switching element. Therefore, when the method described in Patent Document 1 is performed, it is necessary to configure a specific resonator.
 本願は、上記の課題を解決するための技術を開示するものであり、受電コイルからの電力を回路の開放によって遮断可能とし、受電側の電力変換器により電力制御を実現できる受電装置を提供することを目的とする。 The present application discloses a technique for solving the above-mentioned problems, and provides a power receiving device capable of interrupting power from a power receiving coil by opening a circuit and realizing power control by a power converter on the power receiving side. The purpose is.
 本願に開示される受電装置は、ワイヤレス給電システムの受電装置であって、受電コイルを有し、送電回路より送られる交流電力を受電する受電回路と、前記受電回路が受電した交流電力を直流電力に変換する電力変換器と、前記受電回路の出力電圧を検出する電圧検出手段と、前記受電回路と前記電力変換器との間の回路の導通と開放とを切り替える少なくとも1つのスイッチと、前記電圧検出手段により検出された電圧に基づいて、前記スイッチを制御する制御装置と、を備えたものである。 The power receiving device disclosed in the present application is a power receiving device of a wireless power feeding system, which has a power receiving coil and receives AC power sent from a power transmission circuit, and DC power obtained by the power receiving circuit. A power converter that converts to, a voltage detecting means that detects the output voltage of the power receiving circuit, at least one switch that switches between conduction and opening of the circuit between the power receiving circuit and the power converter, and the voltage. It includes a control device that controls the switch based on the voltage detected by the detection means.
 本願に開示される受電装置によれば、受電コイルからの電力を回路の開放によって遮断可能となるため、電圧源的動作となる共振器の構成に対して、受電側の電力変換器を用いた電力制御を行うことが可能となる。 According to the power receiving device disclosed in the present application, the power from the power receiving coil can be cut off by opening the circuit. Therefore, the power converter on the power receiving side is used for the configuration of the resonator that operates as a voltage source. It becomes possible to perform power control.
実施の形態1に係るワイヤレス給電システムの例を示す概略構成図である。It is a schematic block diagram which shows the example of the wireless power supply system which concerns on Embodiment 1. FIG. 実施の形態1に係る受電装置の構成を示す概略回路図である。It is a schematic circuit diagram which shows the structure of the power receiving device which concerns on Embodiment 1. FIG. 図2に示す受電装置の動作を説明する図である。It is a figure explaining the operation of the power receiving device shown in FIG. 図2に示す受電装置の動作を説明する図である。It is a figure explaining the operation of the power receiving device shown in FIG. 図2に示す受電装置の動作を説明する図である。It is a figure explaining the operation of the power receiving device shown in FIG. 図2に示す受電装置の動作を説明する図である。It is a figure explaining the operation of the power receiving device shown in FIG. 実施の形態1に係る受電装置における各信号の波形の概略図で、電力制御の基本的な制御方法を説明するための図である。FIG. 5 is a schematic diagram of a waveform of each signal in the power receiving device according to the first embodiment, and is a diagram for explaining a basic control method of power control. 実施の形態1に係る受電装置における各信号の波形の概略図で、電力制御の基本的な制御方法を説明するための図である。FIG. 5 is a schematic diagram of a waveform of each signal in the power receiving device according to the first embodiment, and is a diagram for explaining a basic control method of power control. 実施の形態1に係る受電装置における各信号の波形の概略図で、電力制御の基本的な制御方法を説明するための図である。FIG. 5 is a schematic diagram of a waveform of each signal in the power receiving device according to the first embodiment, and is a diagram for explaining a basic control method of power control. 実施の形態1に係る受電装置における各信号の波形の概略図で、電力制御の制御方法の例を説明するための図である。FIG. 5 is a schematic diagram of a waveform of each signal in the power receiving device according to the first embodiment, and is a diagram for explaining an example of a control method of power control. 実施の形態1に係る受電装置における各信号の波形の概略図で、電力制御の制御方法の別の例を説明するための図である。FIG. 5 is a schematic diagram of a waveform of each signal in the power receiving device according to the first embodiment, and is a diagram for explaining another example of a control method of power control. 実施の形態1に係る受電装置における各信号の波形の概略図で、電力制御の制御方法のさらに別の例を説明するための図である。FIG. 5 is a schematic diagram of a waveform of each signal in the power receiving device according to the first embodiment, and is a diagram for explaining still another example of a control method of power control. 実施の形態2に係る受電装置の構成を示す概略回路図である。It is a schematic circuit diagram which shows the structure of the power receiving device which concerns on Embodiment 2. FIG. 図7の構成における非給電期間の電流経路を示す図である。It is a figure which shows the current path of the non-feeding period in the configuration of FIG. 実施の形態2に係る受電装置における各信号の波形の概略図で、電力制御の制御方法の例を説明するための図である。FIG. 5 is a schematic diagram of a waveform of each signal in the power receiving device according to the second embodiment, and is a diagram for explaining an example of a control method of power control. 実施の形態2に係る受電装置における各信号の波形の概略図で、電力制御の制御方法の例を説明するための図である。FIG. 5 is a schematic diagram of a waveform of each signal in the power receiving device according to the second embodiment, and is a diagram for explaining an example of a control method of power control. 実施の形態2に係る受電装置における各信号の波形の概略図で、電力制御の制御方法の例を説明するための図である。FIG. 5 is a schematic diagram of a waveform of each signal in the power receiving device according to the second embodiment, and is a diagram for explaining an example of a control method of power control. 実施の形態3に係る受電装置の構成を示す概略回路図である。It is a schematic circuit diagram which shows the structure of the power receiving device which concerns on Embodiment 3. 実施の形態3に係る受電装置における各信号の波形の概略図で、リアクトル電流制御に用いる駆動信号パターンIを説明するための図である。FIG. 5 is a schematic diagram of a waveform of each signal in the power receiving device according to the third embodiment, and is a diagram for explaining a drive signal pattern I used for reactor current control. 実施の形態3に係る受電装置における各信号の波形の概略図で、リアクトル電流制御に用いる駆動信号パターンIIを説明するための図である。FIG. 5 is a schematic diagram of a waveform of each signal in the power receiving device according to the third embodiment, and is a diagram for explaining a drive signal pattern II used for reactor current control. 実施の形態3に係る受電装置における各信号の波形の概略図で、リアクトル電流制御に用いる駆動信号パターンIIIを説明するための図である。FIG. 5 is a schematic diagram of a waveform of each signal in the power receiving device according to the third embodiment, and is a diagram for explaining a drive signal pattern III used for reactor current control. 実施の形態3に係る受電装置における各信号の波形の概略図で、リアクトル電流制御に用いる駆動信号パターンIVを説明するための図である。FIG. 5 is a schematic diagram of a waveform of each signal in the power receiving device according to the third embodiment, and is a diagram for explaining a drive signal pattern IV used for reactor current control. 実施の形態3に係る受電装置におけるリアクトル電流制御による電力制御を行うフローチャート図である。It is a flowchart which performs power control by reactor current control in the power receiving device which concerns on Embodiment 3. FIG. 実施の形態3に係る受電装置におけるリアクトル電流制御による電力制御を行うフローチャート図である。It is a flowchart which performs power control by reactor current control in the power receiving device which concerns on Embodiment 3. FIG. 実施の形態3に係る受電装置におけるリアクトル電流制御による電力制御を行うフローチャート図である。It is a flowchart which performs power control by reactor current control in the power receiving device which concerns on Embodiment 3. FIG. 実施の形態3に係る受電装置におけるリアクトル電流制御による電力制御を行うフローチャート図である。It is a flowchart which performs power control by reactor current control in the power receiving device which concerns on Embodiment 3. FIG. 実施の形態3に係る受電装置におけるリアクトル電流制御による電力制御を行うフローチャート図である。It is a flowchart which performs power control by reactor current control in the power receiving device which concerns on Embodiment 3. FIG. 実施の形態4に係る受電装置の構成を示す概略回路図である。It is a schematic circuit diagram which shows the structure of the power receiving device which concerns on Embodiment 4. FIG. 実施の形態4に係る受電装置における各信号の波形の概略図で、電力制御の制御方法の例を説明するための図である。FIG. 5 is a schematic diagram of a waveform of each signal in the power receiving device according to the fourth embodiment, and is a diagram for explaining an example of a control method of power control. 実施の形態4に係る受電装置における各信号の別波形の概略図で、電力制御の制御方法の例を説明するための図である。FIG. 5 is a schematic diagram of another waveform of each signal in the power receiving device according to the fourth embodiment, and is a diagram for explaining an example of a control method of power control. 実施の形態4に係る受電装置における各信号のさらに別の波形の概略図で、電力制御の制御方法の例を説明するための図である。It is a figure for demonstrating the example of the control method of power control with the schematic diagram of the waveform of each signal in the power receiving device which concerns on Embodiment 4. FIG. 制御装置のハードウエア構成図である。It is a hardware block diagram of a control device.
 以下、本実施の形態について図を参照して説明する。なお、各図中、同一符号は、同一または相当する部分を示すものとする。 Hereinafter, the present embodiment will be described with reference to the drawings. In each figure, the same reference numerals indicate the same or corresponding parts.
実施の形態1. 
 以下、実施の形態1に係るワイヤレス給電システムについて説明する。
 図1は、本実施の形態1に係るワイヤレス給電システムの概略構成を示す図である。図1において、ワイヤレス給電システム1は、主電源である交流電源5から供給された電力を送電する送電回路11と、送電回路11からの電力を受電し、負荷15に出力する受電装置10を備える。受電装置10は、受電回路12、電力変換器13、及びLCフィルタ14を備える。
Embodiment 1.
Hereinafter, the wireless power supply system according to the first embodiment will be described.
FIG. 1 is a diagram showing a schematic configuration of a wireless power supply system according to the first embodiment. In FIG. 1, the wireless power supply system 1 includes a power transmission circuit 11 that transmits power supplied from an AC power source 5 that is a main power source, and a power receiving device 10 that receives power from the power transmission circuit 11 and outputs it to a load 15. .. The power receiving device 10 includes a power receiving circuit 12, a power converter 13, and an LC filter 14.
 交流電源5から供給された電力は、送電回路11と受電回路12との間において非接触で送られる。電力変換器13は、受電回路12にて受電した交流電力を直流電力に変換し、受電電力を予め設定された電力に調整する電力変換器の役割を担う。LCフィルタ14では電力変換器13の出力電力に含まれる交流成分を減衰させる。LCフィルタ14から出力された電力は負荷15にて消費あるいは蓄電等が行われる。 The electric power supplied from the AC power source 5 is transmitted in a non-contact manner between the power transmission circuit 11 and the power reception circuit 12. The power converter 13 plays the role of a power converter that converts the AC power received by the power receiving circuit 12 into DC power and adjusts the received power to preset power. The LC filter 14 attenuates the AC component included in the output power of the power converter 13. The electric power output from the LC filter 14 is consumed or stored in the load 15.
 送電回路11は、少なくとも一つのコイルを含む回路であり、図1においては送電コイル111と送電側コンデンサ112が直列接続された構成となっている。ワイヤレス給電を行う上で送電側コンデンサ112は必須ではないが、送電側コンデンサ112がない場合は送受電コイル間の電力伝送効率が大幅に低下する。そのため、送電側コンデンサ112を使用して力率補償を行うことが望ましい。 The power transmission circuit 11 is a circuit including at least one coil, and in FIG. 1, the power transmission coil 111 and the power transmission side capacitor 112 are connected in series. The power transmission side capacitor 112 is not indispensable for wireless power supply, but if the power transmission side capacitor 112 is not provided, the power transmission efficiency between the power transmission / reception coils is significantly reduced. Therefore, it is desirable to use the power transmission side capacitor 112 to perform power factor compensation.
 受電回路12は、少なくとも一つのコイルを含む回路であり、図1においては受電コイル121と受電側コンデンサ122が並列接続された構成となっている。ワイヤレス給電を行う上で受電側コンデンサ122は必須ではないが、受電側コンデンサ122がない場合は送受電コイル間の電力伝送効率が大幅に低下する。そのため、受電側コンデンサ122を使用して力率補償を行うことが望ましい。 The power receiving circuit 12 is a circuit including at least one coil, and in FIG. 1, the power receiving coil 121 and the power receiving side capacitor 122 are connected in parallel. The power receiving side capacitor 122 is not indispensable for wireless power supply, but if the power receiving side capacitor 122 is not provided, the power transmission efficiency between the power transmitting and receiving coils is significantly reduced. Therefore, it is desirable to use the power receiving side capacitor 122 to perform power factor compensation.
 上述した送電回路11と受電回路12の構成に依存して、受電回路12の出力が電圧源的動作もしくは電流源的動作となる。図1に示す送電回路11と受電回路12の構成においては、電源が電圧源であり、共振器がイミタンス変換特性を有しないため、受電回路12の出力は電圧源的動作となる。なお、図1に示す送電回路11と受電回路12の構成は一例であり、それぞれの構成を限定するものではないが、本実施の形態では受電回路12の出力が電圧源的動作となる構成を対象としている。 Depending on the configuration of the power transmission circuit 11 and the power reception circuit 12 described above, the output of the power reception circuit 12 becomes a voltage source operation or a current source operation. In the configuration of the power transmission circuit 11 and the power reception circuit 12 shown in FIG. 1, since the power supply is the voltage source and the resonator does not have the imittance conversion characteristic, the output of the power reception circuit 12 operates as a voltage source. The configuration of the power transmission circuit 11 and the power reception circuit 12 shown in FIG. 1 is an example, and the configuration of each is not limited. However, in the present embodiment, the output of the power reception circuit 12 operates as a voltage source. It is targeted.
 図2は実施の形態1に係る受電装置10の構成を示す概略回路図である。本実施の形態においては、電力変換器13として整流回路13aを用いた例で説明する。整流回路13aは4つのダイオード131、132、133、134と2つの半導体スイッチ135a、136aを備えており、ダイオード132と半導体スイッチ135aが直列接続され、ダイオード134と半導体スイッチ136aが直列接続された構成となっている。半導体スイッチ135a、136aは、例えばMOS-FET(Metal-Oxide-Semiconductor Field-Effect Transistor:MOS型電界効果トランジスタ)あるいはIGBT(Insulated Gate Bipolar Transistor:絶縁ゲートバイポーラトランジスタ)等のスイッチとダイオードが逆並列に接続された特性を有する電気部品である。半導体スイッチ135aは、スイッチがオフの状態において、ダイオード132に電流が流れない向きにダイオード132と直列接続される。同様に、半導体スイッチ136aは、スイッチがオフの状態において、ダイオード134に電流が流れない向きにダイオード134と直列接続される。図2では、整流回路13aの負側の下アームであるダイオード132とダイオード134に半導体スイッチ135a、136aがそれぞれ直列に接続されているが、正側の上アームであるダイオード131とダイオード133に半導体スイッチ135a、136aがそれぞれ直列接続された構成でも良い。 FIG. 2 is a schematic circuit diagram showing the configuration of the power receiving device 10 according to the first embodiment. In this embodiment, an example in which the rectifier circuit 13a is used as the power converter 13 will be described. The rectifier circuit 13a includes four diodes 131, 132, 133, 134 and two semiconductor switches 135a and 136a, the diode 132 and the semiconductor switch 135a are connected in series, and the diode 134 and the semiconductor switch 136a are connected in series. It has become. In the semiconductor switches 135a and 136a, for example, a switch such as a MOS-FET (Metal-Oxide-Semiconductor Field-Effective Transistor: MOS type field effect transistor) or an IGBT (Insulated Gate Bipolar Transistor: Insulated Gate Bipolar Transistor) or the like and a diode are reversed in parallel with the switch. It is an electrical component having connected characteristics. The semiconductor switch 135a is connected in series with the diode 132 in a direction in which no current flows through the diode 132 when the switch is off. Similarly, the semiconductor switch 136a is connected in series with the diode 134 in a direction in which no current flows through the diode 134 when the switch is off. In FIG. 2, the semiconductor switches 135a and 136a are connected in series to the diode 132 and the diode 134, which are the lower arms on the negative side of the rectifier circuit 13a, respectively, but the semiconductor is connected to the diode 131 and the diode 133, which are the upper arms on the positive side. The switches 135a and 136a may be connected in series, respectively.
 LCフィルタ14は、DCリアクトル141とDCコンデンサ142から構成されており、整流回路13aの出力電圧および電流が有する交流成分を減衰させる役割を有する。
 負荷15は、電力消費を行うモータまたは蓄電用のバッテリなどである。
 電圧検出手段16は、受電回路12の出力電圧(整流回路13aの入力電圧)V2を検出する。
The LC filter 14 is composed of a DC reactor 141 and a DC capacitor 142, and has a role of attenuating the AC component of the output voltage and current of the rectifier circuit 13a.
The load 15 is a motor that consumes electric power, a battery for storing electricity, or the like.
The voltage detecting means 16 detects the output voltage (input voltage of the rectifier circuit 13a) V2 of the power receiving circuit 12.
 制御装置17は、電圧検出手段16により検出された電圧V2の情報に基づいて、整流回路13aの半導体スイッチ135a、136aのオン、オフを制御する駆動信号を生成する。
 本実施の形態に係る受電装置10は、半導体スイッチ135a、136aのオン、オフの状態によっては、受電回路12の出力が開放状態となり、受電回路12から負荷15への電力供給が遮断される。上述したように、本実施の形態の送電回路11と受電回路12の構成では、受電回路12の出力が電圧源的動作となるので、受電回路12の出力が開放状態において、交流電源5から見たインピーダンスが非常に大きな値になる。その結果、交流電源5の出力電力は減少する。
 以下、半導体スイッチ135a、136aのオン、オフの状態及び回路動作について説明する。
The control device 17 generates a drive signal for controlling the on / off of the semiconductor switches 135a and 136a of the rectifier circuit 13a based on the information of the voltage V2 detected by the voltage detecting means 16.
In the power receiving device 10 according to the present embodiment, the output of the power receiving circuit 12 is opened depending on the on / off state of the semiconductor switches 135a and 136a, and the power supply from the power receiving circuit 12 to the load 15 is cut off. As described above, in the configuration of the power transmission circuit 11 and the power reception circuit 12 of the present embodiment, the output of the power reception circuit 12 operates as a voltage source. Therefore, when the output of the power reception circuit 12 is open, it is viewed from the AC power supply 5. The impedance becomes a very large value. As a result, the output power of the AC power supply 5 is reduced.
Hereinafter, the on / off states and circuit operations of the semiconductor switches 135a and 136a will be described.
 図3A、3Bは、半導体スイッチ135aがオフ、半導体スイッチ136aがオンの時の定常状態での受電装置10の回路動作を説明するための図である。図中の矢印は電流経路を示している。
 図3Aは、受電回路12の出力電圧V2が正の場合の回路動作を図示しており、受電回路12から負荷に電力が送られる給電期間の動作を表している。受電回路12の出力電圧V2が正の場合、ダイオード131、ダイオード134、および半導体スイッチ136aが導通し、受電回路12から負荷15に給電される。この時、整流回路13aの出力電圧は入力電圧V2と等しくなる。LCフィルタ14のDCリアクトル141には、負荷電圧Voutと整流回路13aの出力電圧との電位差が印加され、この電位差とDCリアクトル141のインダクタンス値に応じて負荷電流が増減する。
3A and 3B are diagrams for explaining the circuit operation of the power receiving device 10 in the steady state when the semiconductor switch 135a is off and the semiconductor switch 136a is on. The arrows in the figure indicate the current path.
FIG. 3A illustrates the circuit operation when the output voltage V2 of the power receiving circuit 12 is positive, and shows the operation during the power supply period in which power is sent from the power receiving circuit 12 to the load. When the output voltage V2 of the power receiving circuit 12 is positive, the diode 131, the diode 134, and the semiconductor switch 136a are electrically connected, and power is supplied from the power receiving circuit 12 to the load 15. At this time, the output voltage of the rectifier circuit 13a becomes equal to the input voltage V2. A potential difference between the load voltage Vout and the output voltage of the rectifier circuit 13a is applied to the DC reactor 141 of the LC filter 14, and the load current increases or decreases according to this potential difference and the inductance value of the DC reactor 141.
 図3Bは、受電回路12の出力電圧V2が負の場合の回路動作を図示しており、受電回路12からの電力供給が遮断される非給電期間の動作を表している。受電回路12の出力電圧V2が負の場合、ダイオード133、ダイオード134、および半導体スイッチ136aが導通し、受電回路12から負荷15への給電が停止する。この時、整流回路13aの出力電圧は0となる。負荷15に供給される電流はDCリアクトル141に蓄えられたエネルギーであり、負荷電流は負荷電圧VoutとDCリアクトル141のインダクタンス値により決まる傾きで減少する。 FIG. 3B illustrates the circuit operation when the output voltage V2 of the power receiving circuit 12 is negative, and shows the operation during the non-power supply period in which the power supply from the power receiving circuit 12 is cut off. When the output voltage V2 of the power receiving circuit 12 is negative, the diode 133, the diode 134, and the semiconductor switch 136a become conductive, and the power supply from the power receiving circuit 12 to the load 15 is stopped. At this time, the output voltage of the rectifier circuit 13a becomes 0. The current supplied to the load 15 is the energy stored in the DC reactor 141, and the load current decreases with a slope determined by the load voltage Vout and the inductance value of the DC reactor 141.
 図4A、4Bは、半導体スイッチ135aがオン、半導体スイッチ136aがオフの時の定常状態での受電装置10の回路動作を説明するための図である。図中の矢印は電流経路を示している。
 図4Aは、受電回路12の出力電圧V2が正の場合の回路動作を図示しており、受電回路12からの電力供給が遮断される非給電期間の動作を表している。受電回路12の出力電圧V2が正の場合、ダイオード131、ダイオード132、および半導体スイッチ135aが導通し、受電回路12から負荷15への給電が停止する。この時、整流回路13aの出力電圧は0となる。負荷15に供給される電流はDCリアクトル141に蓄えられたエネルギーであり、負荷電流は負荷電圧VoutとDCリアクトル141のインダクタンス値により決まる傾きで減少する。
4A and 4B are diagrams for explaining the circuit operation of the power receiving device 10 in the steady state when the semiconductor switch 135a is on and the semiconductor switch 136a is off. The arrows in the figure indicate the current path.
FIG. 4A illustrates the circuit operation when the output voltage V2 of the power receiving circuit 12 is positive, and shows the operation during the non-power supply period in which the power supply from the power receiving circuit 12 is cut off. When the output voltage V2 of the power receiving circuit 12 is positive, the diode 131, the diode 132, and the semiconductor switch 135a become conductive, and the power supply from the power receiving circuit 12 to the load 15 is stopped. At this time, the output voltage of the rectifier circuit 13a becomes 0. The current supplied to the load 15 is the energy stored in the DC reactor 141, and the load current decreases with a slope determined by the load voltage Vout and the inductance value of the DC reactor 141.
 図4Bは、受電回路12の出力電圧V2が負の場合の回路動作を図示しており、受電回路12から負荷に電力が送られる給電期間の動作を表している。受電回路12の出力電圧V2が負の場合、ダイオード133、ダイオード132、および半導体スイッチ135aが導通し、受電回路12から負荷15に給電される。したがって、整流回路13aの出力電圧は入力電圧V2と等しくなる。このとき、DCリアクトル141には、負荷電圧Voutと整流回路13aの出力電圧との電位差が印加され、前記電位差とDCリアクトル141のインダクタンス値に応じて負荷電流が増減する。 FIG. 4B illustrates the circuit operation when the output voltage V2 of the power receiving circuit 12 is negative, and shows the operation during the power supply period in which power is sent from the power receiving circuit 12 to the load. When the output voltage V2 of the power receiving circuit 12 is negative, the diode 133, the diode 132, and the semiconductor switch 135a become conductive, and power is supplied from the power receiving circuit 12 to the load 15. Therefore, the output voltage of the rectifier circuit 13a becomes equal to the input voltage V2. At this time, a potential difference between the load voltage Vout and the output voltage of the rectifier circuit 13a is applied to the DC reactor 141, and the load current increases or decreases according to the potential difference and the inductance value of the DC reactor 141.
 半導体スイッチ135a、136aが共にオンの場合、整流回路13aはフルブリッジダイオード整流回路として振る舞う。すなわち、受電回路12の出力電圧V2が正の場合は図3A、受電回路12の出力電圧V2が負の場合は図4Bの回路動作となり、受電回路12の出力電圧V2の極性に依存せず受電回路12から負荷15に給電されるため、常に給電期間となる。 When both the semiconductor switches 135a and 136a are on, the rectifier circuit 13a behaves as a full bridge diode rectifier circuit. That is, when the output voltage V2 of the power receiving circuit 12 is positive, the circuit operation is shown in FIG. 3A, and when the output voltage V2 of the power receiving circuit 12 is negative, the circuit operation is shown in FIG. Since the power is supplied from the circuit 12 to the load 15, the power supply period is always reached.
 一方、半導体スイッチ135a、136aが共にオフの場合、受電回路12から負荷15に給電される経路がなくなる。また、DCリアクトル141に蓄えられたエネルギーの環流経路もなくなるため、半導体スイッチ135aまたは136aに過電圧が発生する。過電圧の発生は半導体スイッチの破壊に繋がる虞があるため、半導体スイッチ135a、136aが共にオフとならないように駆動信号を生成する必要がある。そのため、半導体スイッチ135a、136aを相補的にオンとオフとの切り替えを行う場合には、両方のスイッチが共にオンとなるようなオーバーラップタイムを設けることが望ましい。 On the other hand, when both the semiconductor switches 135a and 136a are off, there is no path for power to be supplied from the power receiving circuit 12 to the load 15. Further, since the recirculation path of the energy stored in the DC reactor 141 is also eliminated, an overvoltage is generated in the semiconductor switch 135a or 136a. Since the generation of overvoltage may lead to the destruction of the semiconductor switch, it is necessary to generate a drive signal so that both the semiconductor switches 135a and 136a are not turned off. Therefore, when the semiconductor switches 135a and 136a are switched on and off in a complementary manner, it is desirable to provide an overlap time so that both switches are turned on.
 図5A、5B、5Cは、実施の形態1に係る受電装置10における電力制御の基本的な制御方法を説明するための図で、各信号の波形の概略図である。それぞれ上から順に、受電回路12の出力電圧V2、整流回路13aの入力電流、半導体スイッチ135a、136aの駆動信号の概略の波形を示している。なお、駆動信号は波形が1の時はオン、波形が0の時はオフの状態を表す。 5A, 5B, and 5C are diagrams for explaining a basic control method of power control in the power receiving device 10 according to the first embodiment, and are schematic views of waveforms of each signal. The approximate waveforms of the output voltage V2 of the power receiving circuit 12, the input current of the rectifier circuit 13a, and the drive signals of the semiconductor switches 135a and 136a are shown in order from the top. The drive signal represents an on state when the waveform is 1, and an off state when the waveform is 0.
 図5Aは、受電装置10からの出力電力が最大となるときの信号波形を示している。受電回路12の出力電圧V2と入力電流はそれぞれ正弦波と矩形波形状となっており、二つの半導体スイッチ135a、136aは常時オンの状態である。すなわち、図5Aは、給電が継続している状態を示している。 FIG. 5A shows the signal waveform when the output power from the power receiving device 10 is maximized. The output voltage V2 and the input current of the power receiving circuit 12 have a sine wave shape and a square wave shape, respectively, and the two semiconductor switches 135a and 136a are always on. That is, FIG. 5A shows a state in which power supply is continued.
 図5Bは、図5Aよりも受電装置10からの出力電力を小さく設定したときの信号波形を示している。半導体スイッチ135a、136aのオンとオフとの切り替えは、図5B中の点線の位置で示すように、電圧検出手段16によって検出された受電回路12の出力電圧V2のゼロクロスまたはゼロクロス近傍で行う。すなわち、上記した給電期間PSと非給電期間NPSの切り替えは受電回路12の出力電圧V2のゼロクロスまたはゼロクロス近傍で行われる。また、電力制御については所定期間内におけるトータルの給電期間とトータルの非給電期間の時比率を制御することで行われる。所定期間は受電回路12の出力電圧V2の半周期の整数倍の時間に予め設定され、必要とする電力に応じて変えることができる。図5Bでは、半導体スイッチ135a、136aの駆動信号の繰り返し周期を受電回路12の出力電圧V2の3周期と同じ時間とし、受電回路12の出力電圧V2の2周期の時間を給電期間PS、残りの1周期の時間を非給電期間NPSに設定している。図5Bにおける整流回路13aの出力電圧平均値は、図5Aにおける整流回路13aの出力電圧平均値の2/3となる。したがって、負荷15が抵抗負荷である場合には、図5Bの出力電力は図5Aに示された信号波形での出力電力の4/9となる。
 ここで出力電圧V2のゼロクロスまたはゼロクロス近傍とは、電圧検出手段16によって検出された受電回路12の出力電圧V2の最大値から十分小さくなった電圧値となる時間を示し、概ね出力電圧V2の絶対値が最大値に対して20%以下である時間である。
FIG. 5B shows a signal waveform when the output power from the power receiving device 10 is set to be smaller than that in FIG. 5A. The semiconductor switches 135a and 136a are switched on and off at the zero cross or near the zero cross of the output voltage V2 of the power receiving circuit 12 detected by the voltage detecting means 16 as shown by the dotted line position in FIG. 5B. That is, the switching between the power supply period PS and the non-power supply period NPS described above is performed at zero cross or near zero cross of the output voltage V2 of the power receiving circuit 12. Further, the power control is performed by controlling the time ratio between the total power supply period and the total non-power supply period within a predetermined period. The predetermined period is set in advance as an integral multiple of the half cycle of the output voltage V2 of the power receiving circuit 12, and can be changed according to the required power. In FIG. 5B, the repetition period of the drive signal of the semiconductor switches 135a and 136a is set to the same time as the three cycles of the output voltage V2 of the power receiving circuit 12, the time of two cycles of the output voltage V2 of the power receiving circuit 12 is the power supply period PS, and the remaining The time of one cycle is set to the non-power supply period NPS. The average output voltage value of the rectifier circuit 13a in FIG. 5B is 2/3 of the average output voltage value of the rectifier circuit 13a in FIG. 5A. Therefore, when the load 15 is a resistive load, the output power in FIG. 5B is 4/9 of the output power in the signal waveform shown in FIG. 5A.
Here, the zero cross or the vicinity of the zero cross of the output voltage V2 indicates the time for which the voltage value becomes sufficiently smaller than the maximum value of the output voltage V2 of the power receiving circuit 12 detected by the voltage detecting means 16, and is approximately the absolute value of the output voltage V2. The time during which the value is 20% or less of the maximum value.
 図5Cは、図5Aおよび図5Bよりも受電装置10からの出力電力を小さく設定したときの信号波形を示している。図5Cでは、半導体スイッチ135a、136aの駆動信号の繰り返し周期を受電回路12の出力電圧V2の2周期と同じ時間とし、受電回路12の出力電圧V2の1周期の時間を給電期間PS、残りの1周期を非給電期間NPSに設定している。図5Cにおける整流回路13aの出力電圧平均値は、図5Aにおける整流回路13aの出力電圧平均値の1/2となる。したがって、負荷15が抵抗負荷である場合には、図5Cの出力電力は図5Aに示された信号波形での出力電力の1/4となる。 FIG. 5C shows a signal waveform when the output power from the power receiving device 10 is set to be smaller than that in FIGS. 5A and 5B. In FIG. 5C, the repetition cycle of the drive signals of the semiconductor switches 135a and 136a is set to the same time as the two cycles of the output voltage V2 of the power receiving circuit 12, the time of one cycle of the output voltage V2 of the power receiving circuit 12 is the power supply period PS, and the rest One cycle is set to the non-power supply period NPS. The average output voltage value of the rectifier circuit 13a in FIG. 5C is 1/2 of the average output voltage value of the rectifier circuit 13a in FIG. 5A. Therefore, when the load 15 is a resistive load, the output power in FIG. 5C is 1/4 of the output power in the signal waveform shown in FIG. 5A.
 以上のように、予め設定された所定期間内における給電期間と非給電期間の比率を調整することで、整流回路13aの出力電圧を制御し、結果として出力電力を制御することができる。また、全ての半導体スイッチのオン、オフのスイッチング動作を受電回路12の出力電圧V2のゼロクロスまたはゼロクロス近傍のタイミングで行うことで、半導体スイッチの電圧と電流の積で表されるスイッチング損失を小さい値に抑制することが可能となる。 As described above, the output voltage of the rectifier circuit 13a can be controlled by adjusting the ratio of the power supply period to the non-power supply period within a preset predetermined period, and as a result, the output power can be controlled. Further, by performing the on / off switching operation of all the semiconductor switches at the timing of zero cross or near zero cross of the output voltage V2 of the power receiving circuit 12, the switching loss represented by the product of the voltage and current of the semiconductor switch is reduced to a small value. Can be suppressed.
 なお、図5A、5B、5Cでは半導体スイッチ135a、136aのオンとオフの切り替えが相補的となるように駆動する例を示したが、給電期間において二つの半導体スイッチを共にオン状態にしても回路動作は同様となる。 Although FIGS. 5A, 5B, and 5C show an example in which the semiconductor switches 135a and 136a are driven so as to be switched on and off in a complementary manner, a circuit is provided even if both semiconductor switches are turned on during the power supply period. The operation is the same.
 次に、異なる電力制御により受電装置10から同じ出力電力を得る方法について説明する。
 図6A、6B、6Cは、実施の形態1に係る受電装置10の異なる電力制御による制御方法を説明するための図である。図6A、6B、6Cは、図5A、5B、5Cと同様、それぞれ上から順に、整流回路13aの入力電圧V2、整流回路13aの入力電流、半導体スイッチ135a、136aの駆動信号の概略の波形を示している。そして、図6A、6B、6Cに示された3つの例は、いずれも駆動信号の繰り返し周期を受電回路12の出力電圧V2の3周期と同じ時間とすると、受電回路12の出力電圧V2の3周期の中で1周期だけ給電期間を設けており、出力電圧の平均値が最大の状態(二つのスイッチが常時オンの状態)の1/3となるように半導体スイッチ135a、136aの駆動信号が設定されている。
Next, a method of obtaining the same output power from the power receiving device 10 by different power controls will be described.
6A, 6B, and 6C are diagrams for explaining a control method by different power control of the power receiving device 10 according to the first embodiment. Similar to FIGS. 5A, 5B, and 5C, FIGS. 6A, 6B, and 6C show approximate waveforms of the input voltage V2 of the rectifier circuit 13a, the input current of the rectifier circuit 13a, and the drive signals of the semiconductor switches 135a and 136a, respectively, in order from the top. Shown. Then, in each of the three examples shown in FIGS. 6A, 6B, and 6C, assuming that the repetition cycle of the drive signal is the same time as the three cycles of the output voltage V2 of the power receiving circuit 12, the output voltage V2 of the power receiving circuit 12 is 3 The power supply period is provided for only one cycle in the cycle, and the drive signals of the semiconductor switches 135a and 136a are set so that the average value of the output voltage is 1/3 of the maximum state (the state where the two switches are always on). It is set.
 図6Aの信号波形において、図5A、5B、5Cの例と同様に受電回路12の出力電圧V2の周波数の1周期を一単位として給電期間PSを設定した場合のものである。出力電力の平均値を最大の状態のM/Nに設定する場合は、駆動信号の繰り返し周期をN(ここではN=3)、給電期間PSをM周期(ここではM=1)、とすると、給電期間PSをM周期と非給電期間NPSを(N-M)周期(ここではN-M=2)とが繰り返されるパターンとなる。 In the signal waveform of FIG. 6A, the power supply period PS is set with one cycle of the frequency of the output voltage V2 of the power receiving circuit 12 as one unit, as in the example of FIGS. 5A, 5B, and 5C. When setting the average value of the output power to the maximum M / N, assume that the drive signal repetition cycle is N (here, N = 3) and the power supply period PS is the M cycle (here, M = 1). The pattern is such that the power supply period PS is the M cycle and the non-power supply period NPS is the (NM) cycle (here, NM = 2).
 図6Bの信号波形においては、図6Aに示された信号波形と異なり、受電回路12の出力電圧V2の周波数の半周期を一単位として給電期間PSを設定し、さらにこの一単位の給電期間PSを間欠的に設けて、駆動信号の繰り返し周期内で受電回路12の出力電圧V2の1周期と同じ時間をトータルの給電期間としている。 In the signal waveform of FIG. 6B, unlike the signal waveform shown in FIG. 6A, the power supply period PS is set with the half cycle of the frequency of the output voltage V2 of the power receiving circuit 12 as one unit, and the power supply period PS of this one unit is further set. Is intermittently provided, and the same time as one cycle of the output voltage V2 of the power receiving circuit 12 is set as the total power feeding period within the repeating cycle of the drive signal.
 図6Cの信号波形では、受電回路12の出力電圧V2の極性に応じて給電期間と非給電期間を設定する方法の例を示している。すなわち、図6Cにおいて、受電回路12の出力電圧V2の最初の2つの正の期間を給電期間PSに設定し、負の期間を常に非給電期間NPSに設定している。そして、図6Bと同様に、受電回路12の出力電圧V2の周波数の半周期を一単位として給電期間PSを設定し、この一単位の給電期間PSを間欠的に設けて、駆動信号の繰り返し周期内で受電回路12の出力電圧V2の1周期と同じ時間をトータルの給電期間としている。 The signal waveform of FIG. 6C shows an example of a method of setting the power supply period and the non-power supply period according to the polarity of the output voltage V2 of the power receiving circuit 12. That is, in FIG. 6C, the first two positive periods of the output voltage V2 of the power receiving circuit 12 are set to the feeding period PS, and the negative period is always set to the non-feeding period NPS. Then, as in FIG. 6B, the power supply period PS is set with the half cycle of the frequency of the output voltage V2 of the power receiving circuit 12 as one unit, and the power supply period PS of this one unit is intermittently provided to repeat the drive signal cycle. The total power supply period is the same as one cycle of the output voltage V2 of the power receiving circuit 12.
 図6A、6B、6Cは、いずれも出力電圧の平均値が最大の状態(二つのスイッチが常時オンの状態)の1/3となるようにしているが、半導体スイッチ135a、136aの駆動信号としては異なる波形を用いてこれを実現している。この駆動信号の波形の違いにより整流回路の出力電流に含まれるリプル電流の大きさが異なってくる。たとえば、図6Aの駆動信号の波形では非給電期間が受電回路12の出力電圧V2の2周期の時間であるが、図6Bの駆動信号の波形では駆動信号の繰り返し周期内で非給電期間は2回あり、1回あたりの非給電期間は受電回路12の出力電圧V2の1周期の時間となっている。非給電期間の時間が短くなると整流回路13aの入力電流のリプル電流が小さくなるため、図6Bの方が図6Aの駆動信号の波形の場合よりもリプル電流が小さくなる。最終的に交流成分であるリプル電流はLCフィルタ14にて減衰させる必要があるため、リプル電流が小さければLCフィルタ14を小形化することが可能となる。 In FIGS. 6A, 6B, and 6C, the average value of the output voltage is set to 1/3 of the maximum state (the state in which the two switches are always on), but as a drive signal for the semiconductor switches 135a and 136a. Achieves this using different waveforms. The magnitude of the ripple current included in the output current of the rectifier circuit differs depending on the difference in the waveform of the drive signal. For example, in the waveform of the drive signal of FIG. 6A, the non-feeding period is the time of two cycles of the output voltage V2 of the power receiving circuit 12, but in the waveform of the drive signal of FIG. 6B, the non-feeding period is 2 within the repetition cycle of the drive signal. There are times, and the non-power supply period per time is the time of one cycle of the output voltage V2 of the power receiving circuit 12. When the non-feeding period time is shortened, the ripple current of the input current of the rectifier circuit 13a becomes smaller, so that the ripple current in FIG. 6B becomes smaller than that in the case of the waveform of the drive signal in FIG. 6A. Finally, since the ripple current, which is an AC component, needs to be attenuated by the LC filter 14, if the ripple current is small, the LC filter 14 can be miniaturized.
 同様に、図6Cの駆動信号の波形では駆動信号の繰り返し周期内で非給電期間は2回あり、いずれの非給電期間も図6Aにおける非給電期間の時間よりも短いため、図6Aの駆動信号の波形の場合よりもリプル電流を小さくすることが可能である。
 図5A、5B、5C、及び図6A、6B、6Cに示された駆動信号の波形からもわかるように、半導体スイッチ135a、136aの駆動信号の波形を変えることにより、電力制御を行うことが可能であり、また半導体スイッチ135a、136aのオン、オフのスイッチング動作を受電回路12の出力電圧V2のゼロクロスまたはゼロクロス近傍のタイミングで行うことで、スイッチング損失を抑制することが可能となる。
Similarly, in the waveform of the drive signal of FIG. 6C, there are two non-feeding periods within the repetition cycle of the drive signal, and each non-feeding period is shorter than the time of the non-feeding period in FIG. It is possible to make the ripple current smaller than in the case of the waveform of.
As can be seen from the waveforms of the drive signals shown in FIGS. 5A, 5B, 5C, and 6A, 6B, and 6C, power control can be performed by changing the waveforms of the drive signals of the semiconductor switches 135a and 136a. Further, by performing the on / off switching operation of the semiconductor switches 135a and 136a at the timing of zero crossing or near zero crossing of the output voltage V2 of the power receiving circuit 12, it is possible to suppress the switching loss.
 以上のように実施の形態1に係るワイヤレス給電システムの受電装置10によれば、受電装置10は送電回路11からの電力を受電する受電回路12、受電回路12の出力電圧V2を検出する電圧検出手段16、半導体スイッチ135a、136aを有し受電回路12で受電した交流電力を直流電力に変換する電力変換器13(整流回路13a)、電圧検出手段16で検出された受電回路12の出力電圧V2に基づいて半導体スイッチ135a、136aを制御する制御装置を少なくとも備え、半導体スイッチ135a、136aの動作により受電回路12との導通状態及び遮断状態を切り替えるようにしたので、電圧源的動作となる共振器の構成において、受電回路と電力変換器との間で短絡でなく開放により遮断状態を形成でき、過電流による電力変換器を構成する素子の破壊等の虞がなくなる。 As described above, according to the power receiving device 10 of the wireless power feeding system according to the first embodiment, the power receiving device 10 detects the voltage detection of the power receiving circuit 12 for receiving the power from the power transmitting circuit 11 and the output voltage V2 of the power receiving circuit 12. A power converter 13 (rectifying circuit 13a) having means 16 and semiconductor switches 135a and 136a and converting AC power received by the power receiving circuit 12 into DC power, and an output voltage V2 of the power receiving circuit 12 detected by the voltage detecting means 16. At least a control device for controlling the semiconductor switches 135a and 136a is provided based on the above, and the conduction state and the cutoff state with the power receiving circuit 12 are switched by the operation of the semiconductor switches 135a and 136a. In this configuration, a cutoff state can be formed between the power receiving circuit and the power converter by opening instead of short-circuiting, and there is no risk of damage to the elements constituting the power converter due to overcurrent.
 また、予め設定された所定期間内において、電力変換器13と受電回路12との導通状態である給電期間及び電力変換器13と受電回路12との遮断状態である非給電期間の比率を調整することで、電力変換器13の出力電圧を制御し、結果として出力電力を制御することができる。また、全ての半導体スイッチのオン、オフのスイッチング動作を受電回路12の出力電圧V2のゼロクロスまたはゼロクロス近傍のタイミングで行うことで、スイッチング損失を抑制でき、高効率な電力制御が可能となる。 Further, within a predetermined period set in advance, the ratio of the power supply period in which the power converter 13 and the power receiving circuit 12 are in a conductive state and the ratio of the non-power supply period in which the power converter 13 and the power receiving circuit 12 are cut off is adjusted. As a result, the output voltage of the power converter 13 can be controlled, and as a result, the output power can be controlled. Further, by performing the on / off switching operation of all the semiconductor switches at the timing of zero crossing or near zero crossing of the output voltage V2 of the power receiving circuit 12, switching loss can be suppressed and highly efficient power control becomes possible.
実施の形態2.
 以下、実施の形態2に係るワイヤレス給電システムの受電装置について説明する。本実施の形態2に係る受電装置も実施の形態1の図1で示したワイヤレス給電システムに適用されるものである。
 図7は、本実施の形態2に係る受電装置の構成を示す概略回路図である。なお、図2と同一または相当部分については同一符号を付し、その説明を省略する。実施の形態2では整流回路13bにおける二つの半導体スイッチ135b、136bの配置が実施の形態1とは異なり、ダイオード133とダイオード134にそれぞれ直列に接続している。なお、図7において半導体スイッチ135b、136bの配置は一例であり、ダイオード131とダイオード132に直列に接続してもよい。すなわち、整流回路13bを構成する左右2つのレグのうちいずれかのレグ側のダイオードに直列に接続すればよい。
Embodiment 2.
Hereinafter, the power receiving device of the wireless power supply system according to the second embodiment will be described. The power receiving device according to the second embodiment is also applied to the wireless power feeding system shown in FIG. 1 of the first embodiment.
FIG. 7 is a schematic circuit diagram showing the configuration of the power receiving device according to the second embodiment. The same or corresponding parts as those in FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted. In the second embodiment, the arrangement of the two semiconductor switches 135b and 136b in the rectifier circuit 13b is different from that of the first embodiment, and the diode 133 and the diode 134 are connected in series, respectively. Note that the arrangement of the semiconductor switches 135b and 136b in FIG. 7 is an example, and the diode 131 and the diode 132 may be connected in series. That is, it may be connected in series to the diode on the leg side of either of the two left and right legs constituting the rectifier circuit 13b.
 実施の形態1との動作の差異は、非給電期間においてDCリアクトル141で蓄積されたエネルギーの環流経路が半導体スイッチ135b、136bの状態に影響されない点である。図8は、図7の構成における非給電期間の電流経路の一つを図示したものである。DCリアクトル141で蓄積されたエネルギーは負荷15、ダイオード132、およびダイオード131を経由して環流することが可能であり、環流経路に半導体スイッチが含まれていない。しかし、実施の形態1における非給電期間は図3B、図4Aで示されるが、DCリアクトル141のエネルギーの環流経路に半導体スイッチを含む。DCリアクトル141で蓄積されたエネルギーの環流時に、半導体スイッチが損傷あるいは誤動作した場合に環流経路が断たれることになり、DCリアクトル141で蓄積されたエネルギーにより回路中に過電圧が生じ、装置全体が機能を失う虞がある。しかし、本実施の形態2の構成では、DCリアクトル141で蓄積されたエネルギーの環流経路に半導体スイッチはなく、半導体スイッチ135b、136bの状態に影響されることはない。 The difference in operation from the first embodiment is that the recirculation path of the energy stored in the DC reactor 141 during the non-feeding period is not affected by the state of the semiconductor switches 135b and 136b. FIG. 8 illustrates one of the current paths during the non-feeding period in the configuration of FIG. 7. The energy stored in the DC reactor 141 can be recirculated via the load 15, the diode 132, and the diode 131, and the recirculation path does not include a semiconductor switch. However, although the non-feeding period in the first embodiment is shown in FIGS. 3B and 4A, the energy recirculation path of the DC reactor 141 includes a semiconductor switch. When the energy stored in the DC reactor 141 is recirculated, the recirculation path is cut off if the semiconductor switch is damaged or malfunctions, and the energy stored in the DC reactor 141 causes an overvoltage in the circuit, causing the entire device to be affected. There is a risk of losing functionality. However, in the configuration of the second embodiment, there is no semiconductor switch in the recirculation path of the energy stored in the DC reactor 141, and the state of the semiconductor switches 135b and 136b is not affected.
 図9A、9B、9Cは、実施の形態2に係る受電装置の電力制御の制御方法の例を説明するための図で、受電装置の各信号の波形の概略図である。それぞれ上から順に、受電回路12の出力電圧V2、整流回路13bの入力電流、半導体スイッチ135b、136bの駆動信号の概略の波形を示している。図9A、9B、9Cに示された3つの例は、いずれも受電装置からの出力電圧の平均値が最大の状態(二つのスイッチが常時オンの状態)の1/3となるように半導体スイッチ135b、136bの駆動信号が設定されている。 9A, 9B, and 9C are diagrams for explaining an example of a control method of power control of the power receiving device according to the second embodiment, and are schematic views of waveforms of each signal of the power receiving device. From the top, the output voltage V2 of the power receiving circuit 12, the input current of the rectifier circuit 13b, and the approximate waveforms of the drive signals of the semiconductor switches 135b and 136b are shown. In each of the three examples shown in FIGS. 9A, 9B, and 9C, the semiconductor switch is such that the average value of the output voltage from the power receiving device is 1/3 of the maximum state (the state in which the two switches are always on). The drive signals of 135b and 136b are set.
 図9Aの信号波形においては、受電回路12の出力電圧V2の1周期を一単位として半導体スイッチを駆動する電力制御方法、図9Bの信号波形においては、受電回路12の出力電圧V2の半周期を一単位として半導体スイッチを駆動する電力制御方法、また、図9Cの信号波形においては、受電回路12の出力電圧V2の極性に応じて給電期間PSと非給電期間NPSを設定する電力制御方法を示すものである。 In the signal waveform of FIG. 9A, a power control method for driving a semiconductor switch with one cycle of the output voltage V2 of the power receiving circuit 12 as one unit, and in the signal waveform of FIG. 9B, a half cycle of the output voltage V2 of the power receiving circuit 12 is used. A power control method for driving a semiconductor switch as one unit, and a power control method for setting a power supply period PS and a non-power supply period NPS according to the polarity of the output voltage V2 of the power receiving circuit 12 are shown in the signal waveform of FIG. 9C. It is a thing.
 図9A、9B、9Cからわかるように、実施の形態2においては、二つの半導体スイッチ135b、136bをオンにすれば給電期間PSとなり、二つの半導体スイッチ135b、136bをオフにすれば非給電期間NPSにできる。そのため、二つの半導体スイッチ135b、136bを共通の駆動信号で動作させることが可能である。
 図9Bの信号波形においては、受電回路12の出力電圧V2の半周期を給電期間PSの一単位としており、駆動信号の繰り返し周期は受電回路12の出力電圧V2の1.5周期の時間となり、図9A及び図9Cの半分の時間となる。
As can be seen from FIGS. 9A, 9B, and 9C, in the second embodiment, turning on the two semiconductor switches 135b and 136b results in a power supply period PS, and turning off the two semiconductor switches 135b and 136b results in a non-power supply period. Can be NPS. Therefore, it is possible to operate the two semiconductor switches 135b and 136b with a common drive signal.
In the signal waveform of FIG. 9B, a half cycle of the output voltage V2 of the power receiving circuit 12 is set as one unit of the power feeding period PS, and the repeating cycle of the drive signal is 1.5 cycles of the output voltage V2 of the power receiving circuit 12. It takes half the time of FIGS. 9A and 9C.
 なお、給電期間PSにおいては二つの半導体スイッチの一方のみが電流経路となるため、他方の半導体スイッチの状態はオンとオフのどちらでもよい。例えば、図7において、半導体スイッチ135b、136bの両方がオンの状態であっても、受電回路12の出力電圧V2が正の場合は、半導体スイッチ136b側が電流経路となり、一方受電回路12の出力電圧V2が負の場合は、半導体スイッチ135b側が電流経路となる。そのため、図9A、9B、9Cの半導体スイッチ135b、136bの駆動信号において、それぞれオンで示されている(信号が1)時間であって、斜線で示された時間はオンであってもオフであってもよい期間である。
 また、図9Cでは半導体スイッチ135bの駆動信号をオンとオフに切り替えているが、常時オフの状態でも回路動作は同一となる。
Since only one of the two semiconductor switches serves as the current path during the power supply period PS, the state of the other semiconductor switch may be either on or off. For example, in FIG. 7, even if both the semiconductor switches 135b and 136b are on, if the output voltage V2 of the power receiving circuit 12 is positive, the semiconductor switch 136b side becomes the current path, while the output voltage of the power receiving circuit 12 When V2 is negative, the semiconductor switch 135b side becomes the current path. Therefore, in the drive signals of the semiconductor switches 135b and 136b of FIGS. 9A, 9B, and 9C, the time indicated as on (the signal is 1) is the time, and the time indicated by the diagonal line is off even if it is on. It is a good period.
Further, in FIG. 9C, the drive signal of the semiconductor switch 135b is switched on and off, but the circuit operation is the same even in the constantly off state.
 以上のように、実施の形態2の受電装置は実施の形態1と同様の効果を奏する。さらに、実施の形態2によれば、電力変換器13である整流回路13bを構成する左右2つのレグのうちいずれかのレグ側のダイオードに半導体スイッチ135b、136bをそれぞれ直列に接続したので、二つの半導体スイッチ135b、136bを同時にオフの状態にして非給電期間を設けることが可能となる。これにより、非給電期間にDCリアクトル141で蓄積されたエネルギーの環流経路中に半導体スイッチの状態に起因する過大電圧の発生を抑制できる。また、二つの半導体スイッチ135b、136bを1つの駆動信号で制御することが可能なため、実施の形態1と比較して制御装置を簡素化できる効果がある。 As described above, the power receiving device of the second embodiment has the same effect as that of the first embodiment. Further, according to the second embodiment, the semiconductor switches 135b and 136b are connected in series to the diode on the leg side of either of the two left and right legs constituting the rectifier circuit 13b which is the power converter 13. It is possible to provide a non-power supply period by turning off the semiconductor switches 135b and 136b at the same time. As a result, it is possible to suppress the generation of an excessive voltage due to the state of the semiconductor switch in the recirculation path of the energy stored in the DC reactor 141 during the non-feeding period. Further, since the two semiconductor switches 135b and 136b can be controlled by one drive signal, there is an effect that the control device can be simplified as compared with the first embodiment.
実施の形態3.
 以下、実施の形態3に係るワイヤレス給電システムの受電装置について説明する。本実施の形態3に係る受電装置も実施の形態1の図1で示したワイヤレス給電システムに適用されるものである。
 図10は、本実施の形態3に係る受電装置の構成を示す概略回路図である。なお、図7と同一または相当部分については同一符号を付し、その説明を省略する。実施の形態3に係る受電装置では、DCリアクトル141に流れる電流ILdcを検出する電流検出手段18と負荷15の電圧Voutを検出する電圧検出手段19をさらに備える。電流検出手段18と電圧検出手段19によって検出された電流及び電圧情報は制御装置17に入力される。実施の形態1及び2において、制御装置17は、受電装置からの出力が予め設定された所定の出力電力となるように、出力電力指令値Pout*を設定し、半導体スイッチの駆動信号を生成することで半導体スイッチを制御し、電力制御を行う例であった。本実施の形態3では、制御装置17は、出力電力指令値Pout*を電圧検出手段19により検出された負荷電圧Voutで除して、DCリアクトル141の電流指令値ILdc*を算出し、電流検出手段18により検出されたDCリアクトル141の電流ILdcが電流指令値ILdc*となるように半導体スイッチの制御を行う電流制御を用いて出力電力を制御する。
Embodiment 3.
Hereinafter, the power receiving device of the wireless power supply system according to the third embodiment will be described. The power receiving device according to the third embodiment is also applied to the wireless power feeding system shown in FIG. 1 of the first embodiment.
FIG. 10 is a schematic circuit diagram showing the configuration of the power receiving device according to the third embodiment. The same or corresponding parts as those in FIG. 7 are designated by the same reference numerals, and the description thereof will be omitted. The power receiving device according to the third embodiment further includes a current detecting means 18 for detecting the current ILdc flowing through the DC reactor 141 and a voltage detecting means 19 for detecting the voltage Vout of the load 15. The current and voltage information detected by the current detecting means 18 and the voltage detecting means 19 is input to the control device 17. In the first and second embodiments, the control device 17 sets the output power command value Pout * so that the output from the power receiving device becomes a preset predetermined output power, and generates a drive signal for the semiconductor switch. This was an example of controlling a semiconductor switch and controlling power. In the third embodiment, the control device 17 divides the output power command value Pout * by the load voltage Vout detected by the voltage detecting means 19 to calculate the current command value ILdc * of the DC reactor 141 and detect the current. The output power is controlled by using current control that controls the semiconductor switch so that the current ILdc of the DC reactor 141 detected by the means 18 becomes the current command value ILdc *.
 以下に、半導体スイッチ135b、136bによりDCリアクトル141の電流を制御することで、出力電力制御を行う方法について説明する。
 図11A、11B、11C、11Dは、実施の形態3に係る受電装置における各信号の波形の概略図で、リアクトル電流制御に用いる駆動信号パターンを説明するための図である。本実施の形態では、整流回路13bの出力電圧平均値の最大電圧に対し、以下の4つの電圧となるように半導体スイッチ135b、136bを制御する駆動信号パターンに、非給電状態とする駆動信号パターンを加え5つの駆動信号パターンを設定している。
  駆動信号パターンI:出力電圧平均値が最大電圧となるパターン、
  駆動信号パターンII:出力電圧平均値が最大電圧の3/4となるパターン、
  駆動信号パターンIII:出力電圧平均値が最大電圧の1/2となるパターン、
  駆動信号パターンIV:出力電圧平均値が最大電圧の1/4となるパターン、
  駆動信号パターンV:非給電状態とするパターン。
 制御装置17は、これら駆動信号パターンを保持し、実行する。
Hereinafter, a method of controlling the output power by controlling the current of the DC reactor 141 by the semiconductor switches 135b and 136b will be described.
11A, 11B, 11C, and 11D are schematic views of waveforms of each signal in the power receiving device according to the third embodiment, and are diagrams for explaining a drive signal pattern used for reactor current control. In the present embodiment, the drive signal pattern for controlling the semiconductor switches 135b and 136b so as to have the following four voltages with respect to the maximum voltage of the average output voltage of the rectifier circuit 13b is set to the non-power supply state. Is added to set five drive signal patterns.
Drive signal pattern I: A pattern in which the average output voltage is the maximum voltage,
Drive signal pattern II: A pattern in which the average output voltage is 3/4 of the maximum voltage.
Drive signal pattern III: A pattern in which the average output voltage is 1/2 of the maximum voltage,
Drive signal pattern IV: A pattern in which the average output voltage is 1/4 of the maximum voltage.
Drive signal pattern V: A pattern in which no power is supplied.
The control device 17 holds and executes these drive signal patterns.
 図11Aは、駆動信号パターンIを示す図で、給電状態が継続していることを示している。図11Bは、駆動信号パターンIIを示す図で、受電回路12の出力電圧V2の2周期分に着目すると、1.5周期の期間が給電期間PS、半周期の期間が非給電期間NPSであり、整流回路13bの出力電圧平均値が最大電圧の3/4となるパターンである。図11Cは、駆動信号パターンIIIを示す図で、受電回路12の出力電圧V2の2周期分に着目すると、半周期分の給電期間PS、と半周期分の非給電期間NPSが繰り返されており、整流回路13bの出力電圧平均値が最大電圧の1/2となるパターンである。図11Dは、駆動信号パターンIVを示す図で、受電回路12の出力電圧V2の2周期分に着目すると、半周期の期間が給電期間PS、1.5周期の期間が非給電期間NPSであり、整流回路13bの出力電圧平均値が最大電圧の1/4となるパターンである。駆動信号パターンVは図示していないが、半導体スイッチ135b、136bの両方がオフ(駆動信号が0)の、非給電状態である。 FIG. 11A is a diagram showing the drive signal pattern I, indicating that the power supply state is continuing. FIG. 11B is a diagram showing the drive signal pattern II. Focusing on two cycles of the output voltage V2 of the power receiving circuit 12, the 1.5 cycle period is the power supply period PS, and the half cycle period is the non-power supply period NPS. This is a pattern in which the average output voltage of the rectifier circuit 13b is 3/4 of the maximum voltage. FIG. 11C is a diagram showing the drive signal pattern III. Focusing on the two cycles of the output voltage V2 of the power receiving circuit 12, the power supply period PS for half a cycle and the non-power supply period NPS for half a cycle are repeated. This is a pattern in which the average value of the output voltage of the rectifier circuit 13b is 1/2 of the maximum voltage. FIG. 11D is a diagram showing the drive signal pattern IV. Focusing on two cycles of the output voltage V2 of the power receiving circuit 12, the half cycle period is the power supply period PS, and the 1.5 cycle period is the non-power supply period NPS. This is a pattern in which the average output voltage of the rectifier circuit 13b is 1/4 of the maximum voltage. Although the drive signal pattern V is not shown, both the semiconductor switches 135b and 136b are off (the drive signal is 0), and the power supply is not supplied.
 次に、5つの駆動信号パターンを用いてDCリアクトル141の電流を制御することで、出力電力制御を行う方法について、図12Aから図12Eのフローチャートに従って説明する。
 図12Aにおいて、まずステップS101の初期状態は非給電状態であり、駆動信号パターンVが実行されていることに相当する。給電開始すると、制御装置17では、設定された出力電力指令値Pout*を電圧検出手段19により検出された負荷電圧Voutで除して、DCリアクトル141の電流指令値ILdc*が算出される。また、電流検出手段18により検出されたDCリアクトル141の電流ILdcが制御装置17に入力される。
Next, a method of controlling the output power by controlling the current of the DC reactor 141 using the five drive signal patterns will be described with reference to the flowcharts of FIGS. 12A to 12E.
In FIG. 12A, first, the initial state of step S101 is the non-power supply state, which corresponds to the execution of the drive signal pattern V. When the power supply is started, the control device 17 divides the set output power command value Pout * by the load voltage Vout detected by the voltage detecting means 19 to calculate the current command value ILdc * of the DC reactor 141. Further, the current ILdc of the DC reactor 141 detected by the current detecting means 18 is input to the control device 17.
 給電開始のステップS102で、駆動信号パターンIVが実行されると、DCリアクトル141の電流ILdcは増加する。ステップS103で、検出されたDCリアクトル141の電流ILdcが電流指令値ILdc*以上となったか判定し、電流指令値ILdc*以上となった場合(YES)は図12Bのフローチャートに示されるステップS201に進む。ステップS103で、検出されたDCリアクトル141の電流ILdcが電流指令値ILdc*に達しない場合(NO)は、ステップS104において、駆動信号パターンIIIが実行される。 When the drive signal pattern IV is executed in step S102 of the start of power supply, the current ILdc of the DC reactor 141 increases. In step S103, it is determined whether the detected current ILdc of the DC reactor 141 is equal to or greater than the current command value ILdc *, and if it is equal to or greater than the current command value ILdc * (YES), the process proceeds to step S201 shown in the flowchart of FIG. 12B. move on. If the current ILdc of the detected DC reactor 141 does not reach the current command value ILdc * in step S103 (NO), the drive signal pattern III is executed in step S104.
 ステップS104で、駆動信号パターンIIIが実行されると、DCリアクトル141の電流ILdcはさらに増加する。ステップS105で、検出されたDCリアクトル141の電流ILdcが電流指令値ILdc*以上となったか判定し、電流指令値ILdc*以上となった場合(YES)は図12Cのフローチャートに示されるステップS301に進む。ステップS105で、検出されたDCリアクトル141の電流ILdcが電流指令値ILdc*に達しない場合(NO)は、ステップS106において、駆動信号パターンIIが実行される。 When the drive signal pattern III is executed in step S104, the current ILdc of the DC reactor 141 is further increased. In step S105, it is determined whether the detected current ILdc of the DC reactor 141 is equal to or greater than the current command value ILdc *, and if it is equal to or greater than the current command value ILdc * (YES), the process proceeds to step S301 shown in the flowchart of FIG. 12C. move on. If the current ILdc of the detected DC reactor 141 does not reach the current command value ILdc * in step S105 (NO), the drive signal pattern II is executed in step S106.
 ステップS106で、駆動信号パターンIIが実行されると、DCリアクトル141の電流ILdcはさらに増加する。ステップS107で、検出されたDCリアクトル141の電流ILdcが電流指令値ILdc*以上となったか判定し、電流指令値ILdc*以上となった場合(YES)は図12Dのフローチャートに示されるステップS401に進む。ステップS107で、検出されたDCリアクトル141の電流ILdcが電流指令値ILdc*に達しない場合(NO)は、ステップS108において、駆動信号パターンIが実行される。 When the drive signal pattern II is executed in step S106, the current ILdc of the DC reactor 141 is further increased. In step S107, it is determined whether the detected current ILdc of the DC reactor 141 is equal to or greater than the current command value ILdc *, and if it is equal to or greater than the current command value ILdc * (YES), the process proceeds to step S401 shown in the flowchart of FIG. 12D. move on. If the current ILdc of the detected DC reactor 141 does not reach the current command value ILdc * in step S107 (NO), the drive signal pattern I is executed in step S108.
 ステップS108で、駆動信号パターンIが実行されると、DCリアクトル141の電流ILdcはさらに増加する。ステップS109で、検出されたDCリアクトル141の電流ILdcが電流指令値ILdc*以上となったか判定し、電流指令値ILdc*以上となった場合(YES)は図12Eのフローチャートに示されるステップS501に進む。ステップS109で、検出されたDCリアクトル141の電流ILdcが電流指令値ILdc*に達しない場合(NO)は、電流指令値ILdc*の設定に問題があるなど懸念されるため、ステップS110において、制御不可として給電を停止する。 When the drive signal pattern I is executed in step S108, the current ILdc of the DC reactor 141 is further increased. In step S109, it is determined whether the detected current ILdc of the DC reactor 141 is equal to or greater than the current command value ILdc *, and if it is equal to or greater than the current command value ILdc * (YES), the process proceeds to step S501 shown in the flowchart of FIG. 12E. move on. If the current ILdc of the DC reactor 141 detected in step S109 does not reach the current command value ILdc * (NO), there is a concern that there is a problem in setting the current command value ILdc *, so control is performed in step S110. Stop power supply as impossible.
 なお、ステップS103、S105、S107、S109において、検出されたDCリアクトル141の電流ILdcが電流指令値ILdc*に達しないか、あるいは電流指令値ILdc*以上となったかの判定は次のように行う。例えば、検出されたDCリアクトル141の電流ILdcが一定期間変動せず、電流指令値ILdc*に達しない場合は、電流指令値ILdc*に達しないと判定する。あるいは、駆動信号の繰り返し周期の3倍の時間経過しても電流指令値ILdc*に達しない場合は、電流指令値ILdc*に達しないと判定する。ここで経過時間の設定は任意に行うことができる。このように、検出されたDCリアクトル141の電流ILdcの飽和状況あるいは推移で判定を行う。 In steps S103, S105, S107, and S109, it is determined as follows whether the detected current ILdc of the DC reactor 141 does not reach the current command value ILdc * or exceeds the current command value ILdc *. For example, if the detected current ILdc of the DC reactor 141 does not fluctuate for a certain period of time and does not reach the current command value ILdc *, it is determined that the current command value ILdc * is not reached. Alternatively, if the current command value ILdc * is not reached even after three times the repetition period of the drive signal has elapsed, it is determined that the current command value ILdc * is not reached. Here, the elapsed time can be set arbitrarily. In this way, the determination is made based on the saturation status or transition of the current ILdc of the detected DC reactor 141.
 ステップS103で、検出されたDCリアクトル141の電流ILdcが電流指令値ILdc*以上となった場合、図12BのステップS201に進み、駆動信号パターンVが実行される。すなわち、非給電状態とする。すると、DCリアクトル141の電流ILdcは減少するので、ステップS202に進み、DCリアクトル141の電流ILdcが電流指令値ILdc*以上であるか判定する。DCリアクトル141の電流ILdcが電流指令値ILdc*以上が継続していれば(YES)、ステップS201の非給電状態が継続される。ステップS202で、DCリアクトル141の電流ILdcが電流指令値ILdc*を下回った場合、ステップS203で駆動信号パターンIVが実行され、DCリアクトル141の電流ILdcは増加する。
 以降、給電停止の指令があるまで、駆動信号パターンVと駆動信号パターンIVが実行され、DCリアクトル141の電流ILdcが電流指令値ILdc*に近づくように制御される。
When the current ILdc of the detected DC reactor 141 becomes equal to or higher than the current command value ILdc * in step S103, the process proceeds to step S201 of FIG. 12B, and the drive signal pattern V is executed. That is, it is in a non-powered state. Then, since the current ILdc of the DC reactor 141 decreases, the process proceeds to step S202, and it is determined whether the current ILdc of the DC reactor 141 is equal to or greater than the current command value ILdc *. If the current ILdc of the DC reactor 141 continues to be equal to or higher than the current command value ILdc * (YES), the non-power supply state in step S201 is continued. When the current ILdc of the DC reactor 141 falls below the current command value ILdc * in step S202, the drive signal pattern IV is executed in step S203, and the current ILdc of the DC reactor 141 increases.
After that, the drive signal pattern V and the drive signal pattern IV are executed until there is a command to stop the power supply, and the current ILdc of the DC reactor 141 is controlled to approach the current command value ILdc *.
 同様に、ステップS105で、検出されたDCリアクトル141の電流ILdcが電流指令値ILdc*以上となった場合、図12CのステップS301に進み、駆動信号パターンIVが実行される。すると、DCリアクトル141の電流ILdcは減少するので、ステップS302に進み、DCリアクトル141の電流ILdcが電流指令値ILdc*以上であるか判定する。DCリアクトル141の電流ILdcが電流指令値ILdc*以上が継続していれば(YES)、ステップS301の駆動信号パターンIVの実行が継続される。ステップS302で、DCリアクトル141の電流ILdcが電流指令値ILdc*を下回った場合、ステップS303で駆動信号パターンIIIが実行され、DCリアクトル141の電流ILdcは増加する。
 以降、給電停止の指令があるまで、駆動信号パターンIVと駆動信号パターンIIIが実行され、DCリアクトル141の電流ILdcが電流指令値ILdc*に近づくように制御される。
Similarly, when the current ILdc of the detected DC reactor 141 becomes equal to or higher than the current command value ILdc * in step S105, the process proceeds to step S301 of FIG. 12C, and the drive signal pattern IV is executed. Then, since the current ILdc of the DC reactor 141 decreases, the process proceeds to step S302, and it is determined whether the current ILdc of the DC reactor 141 is equal to or greater than the current command value ILdc *. If the current ILdc of the DC reactor 141 continues to be equal to or higher than the current command value ILdc * (YES), the execution of the drive signal pattern IV in step S301 is continued. If the current ILdc of the DC reactor 141 falls below the current command value ILdc * in step S302, the drive signal pattern III is executed in step S303, and the current ILdc of the DC reactor 141 increases.
After that, the drive signal pattern IV and the drive signal pattern III are executed until there is a command to stop the power supply, and the current ILdc of the DC reactor 141 is controlled to approach the current command value ILdc *.
 同様に、ステップS107で、検出されたDCリアクトル141の電流ILdcが電流指令値ILdc*以上となった場合、図12DのステップS401に進み、駆動信号パターンIIIが実行される。すると、DCリアクトル141の電流ILdcは減少するので、ステップS402に進み、DCリアクトル141の電流ILdcが電流指令値ILdc*以上であるか判定する。DCリアクトル141の電流ILdcが電流指令値ILdc*以上が継続していれば(YES)、ステップS401の駆動信号パターンIIIの実行が継続される。ステップS402で、DCリアクトル141の電流ILdcが電流指令値ILdc*を下回った場合、ステップS403で駆動信号パターンIIが実行され、DCリアクトル141の電流ILdcは増加する。
 以降、給電停止の指令があるまで、駆動信号パターンIIIと駆動信号パターンIIが実行され、DCリアクトル141の電流ILdcが電流指令値ILdc*に近づくように制御される。
Similarly, when the current ILdc of the detected DC reactor 141 becomes equal to or higher than the current command value ILdc * in step S107, the process proceeds to step S401 of FIG. 12D, and the drive signal pattern III is executed. Then, since the current ILdc of the DC reactor 141 decreases, the process proceeds to step S402, and it is determined whether the current ILdc of the DC reactor 141 is equal to or greater than the current command value ILdc *. If the current ILdc of the DC reactor 141 continues to be equal to or higher than the current command value ILdc * (YES), the execution of the drive signal pattern III in step S401 is continued. If the current ILdc of the DC reactor 141 falls below the current command value ILdc * in step S402, the drive signal pattern II is executed in step S403, and the current ILdc of the DC reactor 141 increases.
After that, the drive signal pattern III and the drive signal pattern II are executed until there is a command to stop the power supply, and the current ILdc of the DC reactor 141 is controlled to approach the current command value ILdc *.
 同様に、ステップS109で、検出されたDCリアクトル141の電流ILdcが電流指令値ILdc*以上となった場合、図12EのステップS501に進み、駆動信号パターンIIが実行される。すると、DCリアクトル141の電流ILdcは減少するので、ステップS502に進み、DCリアクトル141の電流ILdcが電流指令値ILdc*以上であるか判定する。DCリアクトル141の電流ILdcが電流指令値ILdc*以上が継続していれば(YES)、ステップS501の駆動信号パターンIIの実行が継続される。ステップS502で、DCリアクトル141の電流ILdcが電流指令値ILdc*を下回った場合、ステップS503で駆動信号パターンIが実行され、DCリアクトル141の電流ILdcは増加する。
 以降、給電停止の指令があるまで、駆動信号パターンIIと駆動信号パターンIが実行され、DCリアクトル141の電流ILdcが電流指令値ILdc*に近づくように制御される。
Similarly, when the current ILdc of the detected DC reactor 141 becomes equal to or higher than the current command value ILdc * in step S109, the process proceeds to step S501 of FIG. 12E, and the drive signal pattern II is executed. Then, since the current ILdc of the DC reactor 141 decreases, the process proceeds to step S502, and it is determined whether the current ILdc of the DC reactor 141 is equal to or greater than the current command value ILdc *. If the current ILdc of the DC reactor 141 continues to be equal to or higher than the current command value ILdc * (YES), the execution of the drive signal pattern II in step S501 is continued. If the current ILdc of the DC reactor 141 falls below the current command value ILdc * in step S502, the drive signal pattern I is executed in step S503, and the current ILdc of the DC reactor 141 increases.
After that, the drive signal pattern II and the drive signal pattern I are executed until there is a command to stop the power supply, and the current ILdc of the DC reactor 141 is controlled to approach the current command value ILdc *.
 以上のように、整流回路13bの出力電圧平均値を段階的に上げていき、電流指令値ILdc*に制御可能な二つの駆動信号パターンを選択することで、負荷電圧Voutに近い電圧で電流制御を行うことができる。
 なお、上述したが、ステップS109において、駆動信号パターンIを実行してもDCリアクトル141の電流ILdcが電流指令値ILdc*以上にならない場合、ステップS110において、制御不可として給電を停止したが、電流指令値ILdc*の設定に問題等がある他、原理的に電流制御ができない状態である可能性もある。そのため、試験条件あるいは回路定数の変更が必要となる。
As described above, by gradually increasing the average output voltage of the rectifier circuit 13b and selecting two drive signal patterns that can be controlled to the current command value ILdc *, the current is controlled at a voltage close to the load voltage Vout. It can be performed.
As described above, if the current ILdc of the DC reactor 141 does not exceed the current command value ILdc * even when the drive signal pattern I is executed in step S109, the power supply is stopped as uncontrollable in step S110, but the current In addition to problems with the setting of the command value ILdc *, there is a possibility that current control cannot be performed in principle. Therefore, it is necessary to change the test conditions or circuit constants.
 また、本電流制御を適用することでDCリアクトル141への印加電圧及び印加電圧の変動量を最小限にすることができ、整流回路13bの出力電流リプルを低減することが可能となる。また、電流リプルを一定値とする場合、最大電圧となる駆動信号パターンIと非給電の状態の駆動信号パターンVのみで受電装置を動作させるよりも、本実施の形態3に係る電流制御法を適用したほうがDCリアクトル141に必要とされるインダクタンス値を小さく設計できるため小形化することが可能となる。 Further, by applying this current control, it is possible to minimize the fluctuation amount of the applied voltage and the applied voltage to the DC reactor 141, and it is possible to reduce the output current ripple of the rectifier circuit 13b. Further, when the current ripple is set to a constant value, the current control method according to the third embodiment is performed rather than operating the power receiving device only with the drive signal pattern I which is the maximum voltage and the drive signal pattern V in the non-powered state. If it is applied, the inductance value required for the DC reactor 141 can be designed to be smaller, so that the size can be reduced.
 以上に示した駆動信号パターン及び制御方法は実施の形態3の一例であり、例えば、駆動信号パターンの数を5つより多くまたは少なくして実施したり、駆動方法の種類を異なるものに変更したりすることも可能である。制御装置17は少なくとも3つの駆動信号パターンを有し、電流検出手段18で検出された電流ILdcに基づき、複数の駆動信号パターンから給電期間と非給電期間との比率が近い2つの駆動信号パターンを用いて、段階的に予め設定された出力電力指令値Pout*となるように、半導体スイッチを制御すればよい。 The drive signal pattern and control method shown above are examples of the third embodiment. For example, the number of drive signal patterns may be increased or decreased to five or less, or the type of drive method may be changed to a different one. It is also possible to do it. The control device 17 has at least three drive signal patterns, and based on the current ILdc detected by the current detecting means 18, two drive signal patterns in which the ratio of the power supply period to the non-power supply period is close are obtained from a plurality of drive signal patterns. It may be used to control the semiconductor switch so that the output power command value Pout * is set in a stepwise manner.
 以上のように実施の形態3に係る受電装置によれば、実施の形態2と同様の効果を奏する。さらに、DCリアクトル141に流れる電流ILdcを検出する電流検出手段18と負荷15の電圧Voutを検出する電圧検出手段19を備え、電流検出手段18により検出されたDCリアクトル141の電流ILdcが電流指令値ILdc*となるように半導体スイッチの制御を行う電流制御を用いて出力電力を制御するようにしたので、整流回路13bの出力電圧平均値を段階的に上げていき、負荷電圧Voutに近い電圧で電流制御を行うことでDCリアクトル141への印加電圧及び印加電圧の変動量を抑制でき、整流回路13bの出力電流リプルを低減することが可能となる。 As described above, the power receiving device according to the third embodiment has the same effect as that of the second embodiment. Further, a current detecting means 18 for detecting the current ILdc flowing through the DC reactor 141 and a voltage detecting means 19 for detecting the voltage Vout of the load 15 are provided, and the current ILdc of the DC reactor 141 detected by the current detecting means 18 is the current command value. Since the output power is controlled by using the current control that controls the semiconductor switch so that it becomes ILdc *, the average output voltage of the rectifying circuit 13b is gradually increased to a voltage close to the load voltage Vout. By controlling the current, it is possible to suppress the fluctuation amount of the applied voltage and the applied voltage to the DC reactor 141, and it is possible to reduce the output current ripple of the rectifying circuit 13b.
 なお、上記実施の形態3では、実施の形態2の図7にDCリアクトル141に流れる電流ILdcを検出する電流検出手段18と負荷15の電圧Voutを検出する電圧検出手段19を備えた例を示したが、実施の形態1の図2において、DCリアクトル141に流れる電流ILdcを検出する電流検出手段18と負荷15の電圧Voutを検出する電圧検出手段19を備えてもよい。実施の形態1においても、整流回路13aの出力電圧平均値を段階的に上げていく、駆動信号パターンを作成することは可能であり、整流回路13aの出力電圧平均値を段階的に上げていき、負荷電圧Voutに近い電圧で電流制御を行うことでDCリアクトル141への印加電圧及び印加電圧の変動量を抑制でき、整流回路13aの出力電流リプルを低減することが可能となる。 In the third embodiment, FIG. 7 of the second embodiment shows an example in which the current detecting means 18 for detecting the current ILdc flowing in the DC reactor 141 and the voltage detecting means 19 for detecting the voltage Vout of the load 15 are provided. However, in FIG. 2 of the first embodiment, the current detecting means 18 for detecting the current ILdc flowing through the DC reactor 141 and the voltage detecting means 19 for detecting the voltage Vout of the load 15 may be provided. Also in the first embodiment, it is possible to create a drive signal pattern in which the average output voltage of the rectifier circuit 13a is gradually increased, and the average output voltage of the rectifier circuit 13a is gradually increased. By controlling the current at a voltage close to the load voltage Vout, it is possible to suppress the fluctuation amount of the applied voltage and the applied voltage to the DC reactor 141, and it is possible to reduce the output current ripple of the rectifier circuit 13a.
実施の形態4.
 以下、実施の形態4に係るワイヤレス給電システムの受電装置について説明する。本実施の形態4に係る受電装置も実施の形態1の図1で示したワイヤレス給電システムに適用されるものである。
 図13は、本実施の形態4に係る受電装置の構成を示す概略回路図である。なお、図1、7、10と同一または相当部分については同一符号を付し、その説明を省略する。実施の形態4に係る受電装置では、受電回路12と整流回路13cとの間に双方向スイッチ20が接続されている。また、電力変換器である整流回路13cが4つのダイオードのみで構成される。
Embodiment 4.
Hereinafter, the power receiving device of the wireless power supply system according to the fourth embodiment will be described. The power receiving device according to the fourth embodiment is also applied to the wireless power feeding system shown in FIG. 1 of the first embodiment.
FIG. 13 is a schematic circuit diagram showing the configuration of the power receiving device according to the fourth embodiment. The same or corresponding parts as those in FIGS. 1, 7 and 10 are designated by the same reference numerals, and the description thereof will be omitted. In the power receiving device according to the fourth embodiment, the bidirectional switch 20 is connected between the power receiving circuit 12 and the rectifier circuit 13c. Further, the rectifier circuit 13c, which is a power converter, is composed of only four diodes.
 本実施の形態4に係る受電装置は、双方向スイッチ20で出力電力制御を行うものであって、双方向スイッチ20がオンのときは給電期間、双方向スイッチ20がオフの時は非給電期間となる。電圧源的動作となるワイヤレス給電システムの共振器の構成において、双方向スイッチ20がオフの時は、受電回路と電力変換器との間が短絡でなく開放となり遮断されるので、過電流による電力変換器を構成する素子、すなわちダイオード等の破壊等の虞がなくなる。双方向スイッチ20のオンとオフとの切り替えのタイミングは、整流回路13cの入力電圧V2のゼロクロスあるいはゼロクロス近傍の時間で行う。これにより、上述した実施の形態1から3と同様、双方向スイッチ20のスイッチング損失を抑制することが可能となる。 The power receiving device according to the fourth embodiment controls the output power with the bidirectional switch 20. When the bidirectional switch 20 is on, the power supply period is high, and when the bidirectional switch 20 is off, the power supply period is non-power supply. It becomes. In the configuration of the resonator of the wireless power supply system that operates as a voltage source, when the bidirectional switch 20 is off, the power receiving circuit and the power converter are not short-circuited but open and cut off, so that the power due to overcurrent is cut off. There is no risk of damage to the elements that make up the converter, that is, the diode and the like. The timing of switching the bidirectional switch 20 on and off is performed at zero cross or near zero cross of the input voltage V2 of the rectifier circuit 13c. As a result, it is possible to suppress the switching loss of the bidirectional switch 20 as in the above-described first to third embodiments.
 また、出力電力は、双方向スイッチがオンの時間で制御可能であり、かつ整流回路13cの入力電圧V2の極性によらず制御可能である。そのため、制御装置のプログラムを簡素化可能で制御装置の演算負荷を低減できる効果を奏する。さらに、整流回路13cがフルブリッジダイオード整流回路となることからモジュール化された部品が適用可能となり、回路実装を簡素化できる効果も得られる。 Further, the output power can be controlled by the time when the bidirectional switch is on, and can be controlled regardless of the polarity of the input voltage V2 of the rectifier circuit 13c. Therefore, the program of the control device can be simplified and the calculation load of the control device can be reduced. Further, since the rectifier circuit 13c becomes a full bridge diode rectifier circuit, modularized parts can be applied, and an effect of simplifying circuit mounting can be obtained.
 図14A、14B、14Cは、実施の形態4に係る受電装置の電力制御による制御方法を説明するための図である。図14A、14B、14Cは、それぞれ上から順に、整流回路13cの入力電圧V2、整流回路13cの入力電流、双方向スイッチ20の駆動信号の概略の波形を示している。そして、図14Aと図14Cは、駆動信号の繰り返し周期を受電回路12の出力電圧V2の3周期と同じ時間とすると、受電回路12の出力電圧V2の3周期の中で1周期だけ給電期間を設けており、出力電圧の平均値が最大の状態(双方向スイッチが常時オンの状態)の1/3となるように双方向スイッチ20の駆動信号が設定されている。図14Aと図14Cは、それぞれ実施の形態1の図6Aと図6Cの出力電力制御に相当する。このように、双方向スイッチ20を用いた実施の形態4においても実施の形態1と同様の出力電力制御が可能である。 14A, 14B, and 14C are diagrams for explaining a control method by power control of the power receiving device according to the fourth embodiment. 14A, 14B, and 14C show approximate waveforms of the input voltage V2 of the rectifier circuit 13c, the input current of the rectifier circuit 13c, and the drive signal of the bidirectional switch 20 in this order from the top. Then, in FIGS. 14A and 14C, assuming that the repetition cycle of the drive signal is the same time as the three cycles of the output voltage V2 of the power receiving circuit 12, the power supply period is set to one cycle among the three cycles of the output voltage V2 of the power receiving circuit 12. The drive signal of the bidirectional switch 20 is set so that the average value of the output voltage is 1/3 of the maximum state (the bidirectional switch is always on). 14A and 14C correspond to the output power controls of FIGS. 6A and 6C of the first embodiment, respectively. As described above, in the fourth embodiment using the bidirectional switch 20, the same output power control as in the first embodiment can be performed.
 また、図14Bは、受電回路12の出力電圧V2の半周期を給電期間PSの一単位としており、駆動信号の繰り返し周期は受電回路12の出力電圧V2の1.5周期の時間とした例で、出力電圧の平均値が最大の状態(双方向スイッチが常時オンの状態)の1/3となるように双方向スイッチ20の駆動信号が設定されている。図14Bは、実施の形態2の図9Bの出力電力制御に相当する。このように、双方向スイッチ20を用いた実施の形態4においても実施の形態1と同様の出力電力制御が可能である。 Further, FIG. 14B shows an example in which a half cycle of the output voltage V2 of the power receiving circuit 12 is set as one unit of the power feeding period PS, and the repeating cycle of the drive signal is 1.5 cycles of the output voltage V2 of the power receiving circuit 12. The drive signal of the bidirectional switch 20 is set so that the average value of the output voltage is 1/3 of the maximum state (the bidirectional switch is always on). FIG. 14B corresponds to the output power control of FIG. 9B of the second embodiment. As described above, in the fourth embodiment using the bidirectional switch 20, the same output power control as in the first embodiment can be performed.
 なお、図13において、電流または電圧を検出する手段として、受電回路12の出力電圧V2を検出する電圧検出手段16のみ備えた構成を示しているが、負荷15の電圧検出手段及びLCフィルタ14に含まれるDCリアクトル141の電流検出手段を追加することで、実施の形態3で示したようなリアクトル電流制御による電力制御を実施することも可能である。 Although FIG. 13 shows a configuration in which only the voltage detecting means 16 for detecting the output voltage V2 of the power receiving circuit 12 is provided as the means for detecting the current or the voltage, the voltage detecting means of the load 15 and the LC filter 14 are provided. By adding the current detecting means of the included DC reactor 141, it is also possible to carry out power control by the reactor current control as shown in the third embodiment.
 以上のように、本実施の形態4の受電装置よれば、受電回路12と電力変換器である整流回路13cとの間に双方向スイッチ20を設けて、給電期間、非給電期間を切り替えるようにしたので、実施の形態1から3の効果を奏するだけでなく、装置構成を簡素化可能で小型化及び低コスト化の効果も得られる。 As described above, according to the power receiving device of the fourth embodiment, the bidirectional switch 20 is provided between the power receiving circuit 12 and the rectifier circuit 13c which is a power converter, and the power supply period and the non-power supply period are switched. Therefore, not only the effects of the first to third embodiments can be obtained, but also the device configuration can be simplified, and the effects of miniaturization and cost reduction can be obtained.
 なお、制御装置17は、ハードウエアの一例を図15に示すように、プロセッサ170と記憶装置171から構成される。記憶装置は図示していないが、ランダムアクセスメモリ等の揮発性記憶装置と、フラッシュメモリ等の不揮発性の補助記憶装置とを具備する。また、フラッシュメモリの代わりにハードディスクの補助記憶装置を具備してもよい。プロセッサ170は、記憶装置171から入力されたプログラムを実行する。この場合、補助記憶装置から揮発性記憶装置を介してプロセッサ170にプログラムが入力される。また、プロセッサ170は、演算結果等のデータを記憶装置171の揮発性記憶装置に出力してもよいし、揮発性記憶装置を介して補助記憶装置にデータを保存してもよい。 The control device 17 is composed of a processor 170 and a storage device 171 as shown in FIG. 15 as an example of hardware. Although the storage device is not shown, it includes a volatile storage device such as a random access memory and a non-volatile auxiliary storage device such as a flash memory. Further, an auxiliary storage device of a hard disk may be provided instead of the flash memory. The processor 170 executes the program input from the storage device 171. In this case, a program is input from the auxiliary storage device to the processor 170 via the volatile storage device. Further, the processor 170 may output data such as a calculation result to the volatile storage device of the storage device 171 or may store the data in the auxiliary storage device via the volatile storage device.
 本開示は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
 従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
Although the present disclosure describes various exemplary embodiments and examples, the various features, embodiments, and functions described in one or more embodiments are those of a particular embodiment. It is not limited to application, but can be applied to embodiments alone or in various combinations.
Therefore, innumerable variations not illustrated are envisioned within the scope of the techniques disclosed herein. For example, it is assumed that at least one component is modified, added or omitted, and further, at least one component is extracted and combined with the components of other embodiments.
 1:ワイヤレス給電システム、 5:交流電源、 11:送電回路、 12:受電回路、 13:電力変換器、 13a、13b、13c:整流回路、 14:LCフィルタ、 15:負荷、 16:電圧検出手段、 17:制御装置、 19:電圧検出手段、 111:送電コイル、 112:送電側コンデンサ、 121:受電コイル、 122:受電側コンデンサ、 131、132、133、134:ダイオード、 135a、135b、136a、136b:半導体スイッチ、 141:DCリアクトル、 142:DCコンデンサ、 170:プロセッサ、 171:記憶装置。 1: Wireless power supply system, 5: AC power supply, 11: Transmission circuit, 12: Power receiving circuit, 13: Power converter, 13a, 13b, 13c: Capacitor circuit, 14: LC filter, 15: Load, 16: Voltage detection means , 17: Control device, 19: Voltage detection means, 111: Transmission coil, 112: Transmission side capacitor, 121: Power receiving coil, 122: Power receiving side capacitor, 131, 132, 133, 134: Diode, 135a, 135b, 136a, 136b: Semiconductor switch, 141: DC reactor, 142: DC capacitor, 170: Processor, 171: Storage device.

Claims (14)

  1.  ワイヤレス給電システムの受電装置であって、
     受電コイルを有し、送電回路より送られる交流電力を受電する受電回路と、
     前記受電回路が受電した交流電力を直流電力に変換する電力変換器と、
     前記受電回路の出力電圧を検出する電圧検出手段と、
     前記受電回路と前記電力変換器との間の回路の導通と開放とを切り替える少なくとも1つのスイッチと、
     前記電圧検出手段により検出された電圧に基づいて、前記スイッチを制御する制御装置と、を備えた受電装置。
    A power receiving device for a wireless power supply system
    A power receiving circuit that has a power receiving coil and receives AC power sent from the power transmission circuit,
    A power converter that converts AC power received by the power receiving circuit into DC power, and
    A voltage detecting means for detecting the output voltage of the power receiving circuit and
    At least one switch that switches between conduction and opening of the circuit between the power receiving circuit and the power converter, and
    A power receiving device including a control device that controls the switch based on the voltage detected by the voltage detecting means.
  2.  前記スイッチのオンとオフを切り替える時間を、前記電圧検出手段により検出された電圧の絶対値が最大値に対して20%以下である時間とする請求項1に記載の受電装置。 The power receiving device according to claim 1, wherein the time for switching the switch on and off is a time during which the absolute value of the voltage detected by the voltage detecting means is 20% or less of the maximum value.
  3.  前記スイッチは、前記電力変換器の具備する半導体スイッチであり、前記制御装置により前記半導体スイッチのオンとオフとを制御することで、前記受電回路と前記電力変換器とが導通する給電期間及び前記受電回路と前記電力変換器との間が開放される非給電期間を切り替えて出力する電力の制御を行う請求項1または2に記載の受電装置。 The switch is a semiconductor switch included in the power converter, and by controlling the on / off of the semiconductor switch by the control device, the power supply period in which the power receiving circuit and the power converter are conducted and the power supply period and the said The power receiving device according to claim 1 or 2, wherein the power to be output is controlled by switching the non-power supply period in which the power receiving circuit and the power converter are opened.
  4.  前記制御装置は、前記半導体スイッチのオンとオフとを切り替える繰り返し周期あたりの前記給電期間と前記非給電期間との比率により、前記出力する電力の制御を行う請求項3に記載の受電装置。 The power receiving device according to claim 3, wherein the control device controls the output power according to the ratio of the power supply period to the non-power supply period per the repetition cycle of switching the semiconductor switch on and off.
  5.  前記電力変換器は4つのダイオードを有するフルブリッジ回路であり、前記フルブリッジ回路を構成する上下アームのいずれかのアーム側の前記ダイオードに、前記半導体スイッチがそれぞれ直列に接続された請求項4に記載の受電装置。 The power converter is a full-bridge circuit having four diodes, and the semiconductor switch is connected in series to the diode on the arm side of any of the upper and lower arms constituting the full-bridge circuit. The power receiving device described.
  6.  前記電力変換器は4つのダイオードを有するフルブリッジ回路であり、前記フルブリッジ回路を構成する2つのレグのいずれかのレグ側の前記ダイオードに、前記半導体スイッチがそれぞれ直列に接続された請求項4に記載の受電装置。 The power converter is a full-bridge circuit having four diodes, and the semiconductor switch is connected in series to the diode on the leg side of either of the two legs constituting the full-bridge circuit. The power receiving device described in.
  7.  前記制御装置は、前記半導体スイッチのオンとオフの制御を前記電圧検出手段により検出された電圧の半周期単位として行う請求項4から6のいずれか1項に記載の受電装置。 The power receiving device according to any one of claims 4 to 6, wherein the control device controls on and off of the semiconductor switch as a half-cycle unit of the voltage detected by the voltage detecting means.
  8.  リアクトルを有し、前記電力変換器に接続されたLCフィルタと、
    前記リアクトルに流れる電流を検出する電流検出手段と、をさらに設け、
    前記制御装置は前記検出された電流に基づき、予め設定された出力電力指令値となるように、前記半導体スイッチを制御する請求項4から7のいずれか1項に記載の受電装置。
    An LC filter having a reactor and connected to the power converter,
    A current detecting means for detecting the current flowing through the reactor is further provided.
    The power receiving device according to any one of claims 4 to 7, wherein the control device controls the semiconductor switch so that the output power command value is set in advance based on the detected current.
  9.  前記制御装置は、前記半導体スイッチのオンとオフとを切り替える繰り返し周期あたりの前記給電期間の比率が異なる、前記半導体スイッチを制御する駆動信号パターンを少なくとも3つ以上有し、
    前記電流検出手段で検出された電流値に基づき、前記複数の駆動信号パターンから前記給電期間と前記非給電期間との比率が近い2つの前記駆動信号パターンを用いて、段階的に予め設定された前記出力電力指令値となるように、前記半導体スイッチを制御する請求項8に記載の受電装置。
    The control device has at least three or more drive signal patterns for controlling the semiconductor switch, which have different ratios of the power supply period per repetition period for switching on and off of the semiconductor switch.
    Based on the current value detected by the current detecting means, two drive signal patterns in which the ratio of the power supply period and the non-power supply period are close to each other from the plurality of drive signal patterns are set in a stepwise preset manner. The power receiving device according to claim 8, wherein the semiconductor switch is controlled so as to have the output power command value.
  10.  前記スイッチは、前記受電回路と前記電力変換器との間に設けられた双方向スイッチであり、前記制御装置により前記双方向スイッチのオンとオフを制御することで、前記受電回路と前記電力変換器とが導通する給電期間及び前記受電回路と前記電力変換器との間が開放される非給電期間を切り替えて出力する電力の制御を行う請求項1または2に記載の受電装置。 The switch is a bidirectional switch provided between the power receiving circuit and the power converter, and the power receiving circuit and the power conversion are performed by controlling the on / off of the bidirectional switch by the control device. The power receiving device according to claim 1 or 2, wherein the power receiving device controls the power output by switching between the power feeding period in which the device is conductive and the non-power supply period in which the power receiving circuit and the power converter are opened.
  11.  前記制御装置は、前記双方向スイッチのオンとオフとを切り替える繰り返し周期あたりの前記給電期間と前記非給電期間との比率により、出力する電力の制御を行う請求項10に記載の受電装置。 The power receiving device according to claim 10, wherein the control device controls output power according to a ratio of the power supply period to the non-power supply period per a repetition cycle for switching on and off of the bidirectional switch.
  12.  リアクトルを有し、前記電力変換器に接続されたLCフィルタと、
    前記リアクトルに流れる電流を検出する電流検出手段と、をさらに設け、
    前記制御装置は前記検出された電流に基づき、予め設定された出力電力指令値となるように、前記双方向スイッチを制御する請求項11に記載の受電装置。
    An LC filter having a reactor and connected to the power converter,
    A current detecting means for detecting the current flowing through the reactor is further provided.
    The power receiving device according to claim 11, wherein the control device controls the bidirectional switch so that the output power command value is set in advance based on the detected current.
  13.  前記制御装置は、前記双方向スイッチのオンとオフとを切り替える繰り返し周期あたりの前記給電期間の比率が異なる、前記双方向スイッチを制御する駆動信号パターンを少なくとも3つ以上有し、
    前記電流検出手段で検出された電流値に基づき、前記複数の駆動信号パターンから前記給電期間と前記非給電期間との比率が近い2つの前記駆動信号パターンを用いて、段階的に予め設定された前記出力電力指令値となるように、前記双方向スイッチを制御する請求項12に記載の受電装置。
    The control device has at least three or more drive signal patterns for controlling the bidirectional switch, wherein the ratio of the power feeding period per the repetition cycle for switching the bidirectional switch on and off is different.
    Based on the current value detected by the current detecting means, two drive signal patterns in which the ratio of the power supply period and the non-power supply period are close to each other from the plurality of drive signal patterns are set in a stepwise preset manner. The power receiving device according to claim 12, wherein the bidirectional switch is controlled so as to have the output power command value.
  14.  電力源に接続され、送電コイルを有する送電回路と、
     請求項1から13のいずれか1項に記載の受電装置と、を備え、
     前記送電回路から非接触で前記受電装置に電力が送られるワイヤレス給電システム。
    A power transmission circuit that is connected to a power source and has a power transmission coil,
    The power receiving device according to any one of claims 1 to 13 is provided.
    A wireless power supply system in which power is transmitted from the power transmission circuit to the power receiving device in a non-contact manner.
PCT/JP2019/051150 2019-12-26 2019-12-26 Power receiving device and wireless power feed system WO2021130965A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2019/051150 WO2021130965A1 (en) 2019-12-26 2019-12-26 Power receiving device and wireless power feed system
CN201980103080.4A CN114846734A (en) 2019-12-26 2019-12-26 Power receiving device and wireless power supply system
DE112019008002.4T DE112019008002T5 (en) 2019-12-26 2019-12-26 ENERGY RECEIVER AND WIRELESS ENERGY TRANSMISSION SYSTEM
KR1020227020060A KR20220100665A (en) 2019-12-26 2019-12-26 Power receiving device and wireless power feeding system
US17/773,616 US20220376553A1 (en) 2019-12-26 2019-12-26 Power receiving device and wireless power transfer system
JP2020539011A JP6847316B1 (en) 2019-12-26 2019-12-26 Power receiving device and wireless power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/051150 WO2021130965A1 (en) 2019-12-26 2019-12-26 Power receiving device and wireless power feed system

Publications (1)

Publication Number Publication Date
WO2021130965A1 true WO2021130965A1 (en) 2021-07-01

Family

ID=74879223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/051150 WO2021130965A1 (en) 2019-12-26 2019-12-26 Power receiving device and wireless power feed system

Country Status (6)

Country Link
US (1) US20220376553A1 (en)
JP (1) JP6847316B1 (en)
KR (1) KR20220100665A (en)
CN (1) CN114846734A (en)
DE (1) DE112019008002T5 (en)
WO (1) WO2021130965A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012253964A (en) * 2011-06-06 2012-12-20 Fuji Electric Co Ltd Control method of power supply device
JP2014082897A (en) * 2012-10-18 2014-05-08 Advantest Corp Wireless power-receiving device, impedance control circuit available for the same, and impedance control method
JP2014121137A (en) * 2012-12-14 2014-06-30 Tdk Corp Wireless power-receiving device and wireless power transmission device using the same
WO2018037758A1 (en) * 2016-08-23 2018-03-01 株式会社村田製作所 Power reception device and power transmission device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5348081B2 (en) * 2010-07-07 2013-11-20 村田機械株式会社 Non-contact power receiving device
DE102013217816A1 (en) * 2013-09-06 2015-03-12 Robert Bosch Gmbh Device for inductive energy transmission and method for operating a device for inductive energy transmission
JP6224041B2 (en) 2015-08-31 2017-11-01 矢崎総業株式会社 Connector waterproof structure
JP6548554B2 (en) 2015-11-06 2019-07-24 国立大学法人 東京大学 Power receiving device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012253964A (en) * 2011-06-06 2012-12-20 Fuji Electric Co Ltd Control method of power supply device
JP2014082897A (en) * 2012-10-18 2014-05-08 Advantest Corp Wireless power-receiving device, impedance control circuit available for the same, and impedance control method
JP2014121137A (en) * 2012-12-14 2014-06-30 Tdk Corp Wireless power-receiving device and wireless power transmission device using the same
WO2018037758A1 (en) * 2016-08-23 2018-03-01 株式会社村田製作所 Power reception device and power transmission device

Also Published As

Publication number Publication date
JPWO2021130965A1 (en) 2021-12-23
CN114846734A (en) 2022-08-02
JP6847316B1 (en) 2021-03-24
DE112019008002T5 (en) 2022-11-24
KR20220100665A (en) 2022-07-15
US20220376553A1 (en) 2022-11-24

Similar Documents

Publication Publication Date Title
US10170974B1 (en) Variable frequency and burst mode operation of primary resonant flyback converters
EP2720365B1 (en) Bi-directional DC/DC converter
US10574146B2 (en) Converter and driving method thereof
US7483282B2 (en) PWM method for cycloconverter
US9667153B2 (en) Switching power supply apparatus for generating control signal for lowering switching frequency of switching devices
US9391532B2 (en) System and method for a switched-mode power converter
AU2016277074B2 (en) Dual bridge DC/DC power converter
JP2013031307A (en) Current-type insulation converter
CN112600430A (en) Switched mode power supply with multimode operation and method therefor
KR101654490B1 (en) Converter and bi-directional converter
CN201440636U (en) Limiting circuit with largest conduction duty ratio for power switch tube of switch power supply
CN115868105A (en) Soft switching pulse width modulation DC-DC power converter
JPH07123717A (en) Switching power unit
JP6482009B2 (en) Multi-input converter and bidirectional converter
JP2009050080A (en) Snubber circuit
JPH11113191A (en) Uninterruptible power-supply apparatus and its charging control method
US9698666B2 (en) Power supply and gate driver therein
JP6847316B1 (en) Power receiving device and wireless power supply system
US9362836B2 (en) Circuit for driving synchronous rectifier and power supply apparatus including the same
CN110557022B (en) Method for controlling PSFB converter and PSFB converter
TWI771882B (en) Power converter device and driving method
JP4434010B2 (en) DC converter
CN110572058B (en) Power supply capable of prolonging holding time
CN218868110U (en) DC conversion circuit and charging system
CN211352037U (en) Flyback switching power supply lossless absorption circuit

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020539011

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19957077

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227020060

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19957077

Country of ref document: EP

Kind code of ref document: A1