WO2021129776A1 - 成像处理方法和电子设备 - Google Patents

成像处理方法和电子设备 Download PDF

Info

Publication number
WO2021129776A1
WO2021129776A1 PCT/CN2020/139208 CN2020139208W WO2021129776A1 WO 2021129776 A1 WO2021129776 A1 WO 2021129776A1 CN 2020139208 W CN2020139208 W CN 2020139208W WO 2021129776 A1 WO2021129776 A1 WO 2021129776A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
pixel array
pixel
image
list
Prior art date
Application number
PCT/CN2020/139208
Other languages
English (en)
French (fr)
Inventor
成通
林华鑫
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2021129776A1 publication Critical patent/WO2021129776A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging

Definitions

  • the present invention relates to the field of terminals, in particular to an imaging processing method and electronic equipment.
  • the Time of Flight (TOF) sensor module can continuously send light pulses to the target object through the pixel array of the transmitting sensor, and then use the pixel array of the receiving sensor to receive the light pulses returned from the target object, and detect the flight of the light pulses. (Round trip) time to obtain the distance of the target object, and generate a depth image or a three-dimensional (3Dimensions, 3D) image through the measured points.
  • the TOF sensor module performs imaging processing of the target object, all the pixel arrays of the transmitting sensor and the receiving sensor are in working state, and the power consumption is high.
  • the purpose of the embodiments of the present invention is to provide an imaging processing method and electronic equipment to solve the problem of high power consumption of the TOF sensor module in the object imaging processing process.
  • an imaging processing method including:
  • an electronic device in a second aspect, includes:
  • An acquiring module for acquiring a first target position of a target object in a first image, the first image being generated by a pixel array of the TOF sensor module in an on state;
  • a determining module configured to determine a first sub-pixel array corresponding to the first target position in a sub-pixel array list, the sub-pixel array list including a plurality of sub-pixel arrays of the pixel array;
  • the closing module is configured to close other sub-pixel arrays except the first sub-pixel array, and update the first image based on the first sub-pixel array.
  • an electronic device in a third aspect, includes a processor, a memory, and a computer program stored on the memory and capable of running on the processor, and the computer program is executed by the processor. When executed, the steps of the method described in the first aspect are realized.
  • a computer-readable storage medium is provided, and a computer program is stored on the computer-readable storage medium, and the computer program implements the steps of the method described in the first aspect when the computer program is executed by a processor.
  • the pixel array of the TOF sensor module is divided into a plurality of sub-pixel arrays in advance, and only part of the necessary sub-pixel arrays are turned on during the imaging process of the target object to realize the imaging of the target object Therefore, the power consumption of the TOF sensor module can be effectively reduced.
  • FIG. 1 is a schematic flowchart of an imaging processing method according to an embodiment of the present invention
  • 2a is a schematic diagram of sub-pixel array division of a transmitting sensor of a TOF sensor module according to an embodiment of the present invention
  • 2b is a schematic diagram of the sub-pixel array division of a transmitting sensor of a TOF sensor module according to another embodiment of the present invention.
  • 2c is a schematic diagram of sub-pixel array division of a receiving sensor of a TOF sensor module according to an embodiment of the present invention
  • Figure 2d is a schematic diagram of sub-pixel array division of a receiving sensor of a TOF sensor module according to another embodiment of the present invention.
  • Figure 2e is a schematic diagram of a first image and a second image containing a target object provided by an embodiment of the present invention
  • Figure 2f is a schematic diagram of a third image containing a target object provided by an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of an electronic device provided by an embodiment of the present invention.
  • Fig. 4 is a schematic structural diagram of an electronic device according to another embodiment of the present invention.
  • FIG. 1 is a schematic flowchart of an imaging processing method provided by an embodiment of the present invention, which may be executed by an electronic device. Referring to FIG. 1, the method may specifically include the following steps:
  • Step 102 Obtain a first target position of the target object in a first image, the first image being generated by the pixel array of the TOF sensor module in an on state.
  • the pixel array of the TOF sensor module includes the pixel array of the transmitting sensor as shown in FIGS. 2a and 2b, and the pixel array of the receiving sensor as shown in FIGS. 2c to 2f;
  • the object in the overlapping area of the field of view of the transmitting sensor and the receiving sensor may also be an object outside the overlapping area of the field of view;
  • the pixel array of the transmitting sensor includes a large number of laser diodes, which can transmit electrical signals Converted into an optical pulse signal and emitted to the target object, the emitting sensor can be a vertical cavity surface emitting laser (Vertical Cavity Surface Emitting Laser, VCSEL) chip, or a distributed Bragg reflector laser diode and a grating coupled sampling reflection laser diode Wait.
  • VCSEL Vertical Cavity Surface Emitting Laser
  • the pixel array of the receiving sensor includes a large number of photodiodes, which can receive the light pulse signal reflected by the target object, convert the light pulse signal into an electrical signal, and generate a digital signal matrix
  • the receiving sensor may be a chip similar to a Complementary Metal Oxide Semiconductor (CMOS) chip.
  • CMOS Complementary Metal Oxide Semiconductor
  • the difference between the chip and the CMOS chip is that the circuit design achieves higher quantum efficiency in the infrared band ( That is, the photoelectric conversion capability of the chip is stronger), and the exposure mode of the chip is global exposure; the first image is an image containing the target object generated by the pixel array of the receiving sensor.
  • step 102 can be:
  • Step 1021 When detecting that the TOF sensor module is turned on, turn on the pixel array of the transmitting sensor and the pixel array of the receiving sensor of the TOF sensor module;
  • Step 1022 Generate a first image including a target object based on the pixel array of the transmitting sensor and the pixel array of the receiving sensor, and obtain a first target position of the target object in the first image.
  • Step 104 Determine a first sub-pixel array corresponding to the first target position in a sub-pixel array list, where the sub-pixel array list includes multiple sub-pixel arrays of the pixel array.
  • the sub-pixel array list includes: a first sub-pixel array list and a second sub-pixel array list, and the first sub-pixel array list includes a plurality of sub-pixels obtained by dividing the pixel array of the receiving sensor of the TOF sensor module.
  • Pixel array (as shown in Figure 2c, occupying the two sub-pixel arrays of the A1 area and B1 area of the pixel array respectively; or as shown in Figures 2d to 2f, occupying the A1 area, B1 area, C1 area and D1 area of the pixel array respectively.
  • the second sub-pixel array list includes a plurality of sub-pixel arrays obtained by dividing the pixel array of the emitting sensor of the TOF sensor module (as shown in FIG.
  • step 104 can be:
  • Step 1041 Determine a first receiving sub-pixel array corresponding to the first target position in the first sub-pixel array list, where the first receiving sub-pixel array is used to receive the light pulse signal reflected by the target object;
  • Step 1042 Determine a first emitting sub-pixel array corresponding to the first receiving sub-pixel array in the second sub-pixel array list, and the first emitting sub-pixel array is used to emit the light to the target object Pulse signal.
  • step 1021, step 1022, step 1041, and step 1042 are specific Examples can be:
  • the electronic device After the electronic device detects that the TOF sensor module is switched from the off state to the on state, it turns on the sub-pixel arrays of the A, B, C, and D areas of the transmitting sensor, and the A1 and B1 areas of the receiving sensor , C1 area and D1 area sub-pixel array; the sub-pixel array of the emission sensor's A area, B area, C area and D area emits light pulse signal to the target object "F", and receives the sensor's A1 area, B1 area, C1
  • the sub-pixel arrays in the area and D1 area receive the light pulse signal emitted by the target object, convert the light pulse signal into an electrical signal, and generate a digital signal matrix through the amplifying circuit and analog-to-digital conversion circuit in the logic circuit area (That is, the first image containing the target object "F” as shown in the left image in Figure 2e), the electronic device determines the first target position based on the coordinates of the target object "F” in the first image, and determines the first image
  • Step 106 Turn off other sub-pixel arrays except the first sub-pixel array, and update the first image based on the first sub-pixel array.
  • an implementation manner of turning off other sub-pixel arrays and image update in step 106 can be:
  • Step 1061 Turn off other sub-pixel arrays except the first receiving sub-pixel array and the first transmitting sub-pixel array;
  • Step 1062 Update the first image based on the first receiving sub-pixel array and the first transmitting sub-pixel array.
  • steps 1061 and 1062 can be specifically exemplified as follows:
  • the electronic device turns off the sub-pixel arrays in the A1, C1, and D1 areas, and the sub-pixel arrays in the A, C, and D areas, and the sub-pixel array in the B area of the emitting sensor emits light pulse signals to the target object "F"
  • the sub-pixel array in the B1 area of the receiving sensor receives the light pulse signal emitted by the target object, and converts the light pulse signal into an electrical signal, through the amplifying circuit and analog-to-digital conversion circuit in the logic circuit area, as shown in the figure
  • the first image containing the target object "F" is shown in the left image in 2e.
  • the power consumption of the TOF sensor module can be effectively reduced on the basis of ensuring the complete imaging of the target object.
  • an implementation of the image update in step 106 can be:
  • Step 1061' Generate a second image based on the first sub-pixel array, where the second image is a partial image of the target object in the first image;
  • Step 1062' update the position of the target object in the second image
  • Step 1063' if it is detected that the target object moves out of the second image, turn on other sub-pixel arrays except for the first sub-pixel array;
  • Step 1064' Generate a third image based on the sub-pixel array list.
  • steps 1061' to 1064' can be specifically exemplified for:
  • the sub-pixel array in the B area of the transmitting sensor emits a light pulse signal to the target object "F"
  • the sub-pixel array in the B1 area of the receiving sensor receives the light pulse signal emitted by the target object, and converts the light pulse signal Is an electrical signal, through the amplifying circuit and analog-to-digital conversion circuit in the logic circuit area, the second image as shown in the right figure in Figure 2e is generated, and the second image is the first image as shown in the left figure in Figure 2e containing the target A partial image of the object "F"; the electronic device updates the position of the target object "F” in the second image every preset time.
  • the target object "F” If the target object "F" is detected to move out of the second image, it will reopen area A1 and C1
  • the sub-pixel arrays of area and D1 area, and the sub-pixel arrays of area A, C, and D; the sub-pixel arrays of area A, B, C, and D of the emitting sensor emit light pulses to the target object "F" Signal
  • the sub-pixel arrays in the A1, B1, C1, and D1 areas of the sensor receive the light pulse signal emitted by the target object, and convert the light pulse signal into an electrical signal, which passes through the logic circuit area
  • the amplifying circuit and the analog-to-digital conversion circuit regenerate the digital signal matrix (that is, the third image containing the target object "F” as shown in FIG. 2f).
  • step 106 the method further includes a step of re-determining the necessary sub-pixel array, and an implementation manner of this step may be:
  • S2 Determine a third sub-pixel array corresponding to the third target position in the sub-pixel array list, where the third sub-pixel array is different from the first sub-pixel array;
  • S2 can be:
  • S22 Determine a third transmitting sub-pixel array corresponding to the third receiving sub-pixel array in the second sub-pixel array list.
  • S1, S21, S22 and S3 can be specifically exemplified as follows:
  • the electronic device determines the third target position based on the coordinates of the target object "F" in the third image; the electronic device determines that the receiving sensor corresponding to the third target position needs to be turned on.
  • the third receiving sub-pixel array is the sub-pixel in the C1 area.
  • the electronic device closes the A1 area, The sub-pixel arrays in the B1 and D1 areas, as well as the sub-pixel arrays in the A, B, and D areas, the sub-pixel arrays in the C area of the emitting sensor emit light pulse signals to the target object "F", and the sub-pixel arrays in the C1 area of the sensor are received
  • the sub-pixel array receives the light pulse signal emitted by the target object, and converts the light pulse signal into an electrical signal.
  • the sub-pixel array is updated as shown in FIG. 2f. The third image of the target object "F".
  • the pixel array of the TOF sensor module is divided into multiple sub-pixel arrays in advance, and only part of the necessary sub-pixel arrays are turned on during the imaging process of the target object to realize the imaging of the target object, thereby The power consumption of the TOF sensor module can be effectively reduced.
  • FIG. 3 is a schematic structural diagram of an electronic device provided by an embodiment of the present invention.
  • the electronic device may specifically include an obtaining module 302, a determining module 304, and a closing module 306, where:
  • the acquiring module 302 is configured to acquire the first target position of the target object in the first image, the first image being generated by the pixel array in the ON state of the TOF sensor module;
  • the determining module 304 is configured to determine a first sub-pixel array corresponding to the first target position in a sub-pixel array list, where the sub-pixel array list includes multiple sub-pixel arrays of the pixel array;
  • the closing module 306 is configured to close other sub-pixel arrays except the first sub-pixel array, and update the first image based on the first sub-pixel array.
  • the sub-pixel array list includes: a first sub-pixel array list and a second sub-pixel array list, and the first sub-pixel array list includes a pixel array obtained by dividing a receiving sensor of the TOF sensor module A plurality of sub-pixel arrays, the second sub-pixel array list includes a plurality of sub-pixel arrays obtained by dividing the pixel array of the emission sensor of the TOF sensor module;
  • the determining module 304 includes:
  • the first determining sub-module is configured to determine the first receiving sub-pixel array corresponding to the first target position in the first sub-pixel array list, and the first receiving sub-pixel array is used to receive the reflection of the target object The light pulse signal;
  • the second determining sub-module is configured to determine a first emitting sub-pixel array corresponding to the first receiving sub-pixel array in the second sub-pixel array list, and the first emitting sub-pixel array is used to send a message to the target The object emits the light pulse signal.
  • the closing module 306 includes:
  • a closing sub-module for closing other sub-pixel arrays except the first receiving sub-pixel array and the first emitting sub-pixel array
  • the update sub-module is configured to update the first image based on the first receiving sub-pixel array and the first transmitting sub-pixel array.
  • the closing module 306 includes:
  • a first generation sub-module configured to generate a second image based on the first sub-pixel array, the second image being a partial image of the target object in the first image;
  • An enabling sub-module configured to enable other sub-pixel arrays other than the first sub-pixel array if it is detected that the target object moves out of the second image
  • the second generating sub-module is configured to generate a third image based on the sub-pixel array list.
  • the electronic device further includes:
  • a second acquiring module configured to acquire a third target position of the target object in the third image
  • a second determining module configured to determine a third sub-pixel array corresponding to the third target position in the sub-pixel array list, where the third sub-pixel array is different from the first sub-pixel array;
  • the second closing module is configured to close other sub-pixel arrays except the third sub-pixel array, and update the third image based on the third sub-pixel array.
  • the pixel array of the TOF sensor module is divided into multiple sub-pixel arrays in advance, and only part of the necessary sub-pixel arrays are turned on during the imaging process of the target object to realize the imaging of the target object, thereby The power consumption of the TOF sensor module can be effectively reduced.
  • the device provided by the embodiment of the present invention can implement each process implemented by the device in the method embodiment of FIG. 1 to FIG. 2f. To avoid repetition, details are not described herein again. Moreover, it should be noted that in the various components of the device of the present invention, the components are logically divided according to the functions to be realized. However, the present invention is not limited to this, and each component can be divided according to needs. Re-divide or combine.
  • FIG. 4 is a schematic diagram of the hardware structure of an electronic device that implements various embodiments of the present invention.
  • the electronic device 400 includes but is not limited to: a radio frequency unit 401, a network module 402, an audio output unit 403, an input unit 404, a sensor 405, a display unit 406, a user input unit 407, an interface unit 408, a memory 409, a processor 410, and Power supply 411 and other components.
  • a radio frequency unit 401 includes but is not limited to: a radio frequency unit 401, a network module 402, an audio output unit 403, an input unit 404, a sensor 405, a display unit 406, a user input unit 407, an interface unit 408, a memory 409, a processor 410, and Power supply 411 and other components.
  • Those skilled in the art can understand that the structure of the electronic device shown in FIG. 4 does not constitute a limitation on the electronic device.
  • the electronic device may include more or fewer components than those shown in the figure, or a combination of certain components, or different components. Layout.
  • electronic devices include, but are not limited to, mobile phones, tablet computers,
  • the radio frequency unit 401 is configured to obtain the first target position of the target object in the first image, the first image being generated by the pixel array in the ON state of the TOF sensor module;
  • the processor 410 is configured to determine a first sub-pixel array corresponding to the first target position in a sub-pixel array list, where the sub-pixel array list includes a plurality of sub-pixel arrays of the pixel array;
  • the radio frequency unit 401 can be used for receiving and sending signals in the process of sending and receiving information or talking. Specifically, after receiving the downlink data from the base station, it is processed by the processor 410; Uplink data is sent to the base station.
  • the radio frequency unit 401 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 401 can also communicate with the network and other devices through a wireless communication system.
  • the electronic device provides users with wireless broadband Internet access through the network module 402, such as helping users to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 403 may convert the audio data received by the radio frequency unit 401 or the network module 402 or stored in the memory 409 into an audio signal and output it as sound. Moreover, the audio output unit 403 may also provide audio output related to a specific function performed by the electronic device 400 (for example, call signal reception sound, message reception sound, etc.).
  • the audio output unit 403 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 404 is used to receive audio or video signals.
  • the input unit 404 may include a graphics processing unit (GPU) 4041 and a microphone 4042.
  • the graphics processor 4041 is configured to respond to still pictures or video images obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode. Data is processed.
  • the processed image frame can be displayed on the display unit 406.
  • the image frame processed by the graphics processor 4041 may be stored in the memory 409 (or other storage medium) or sent via the radio frequency unit 401 or the network module 402.
  • the microphone 4042 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to the mobile communication base station via the radio frequency unit 401 in the case of a telephone call mode for output.
  • the electronic device 400 also includes at least one sensor 405, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 4061 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 4061 and the display panel 4061 when the electronic device 400 is moved to the ear. / Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three axes), and can detect the magnitude and direction of gravity when stationary, and can be used to identify the posture of electronic devices (such as horizontal and vertical screen switching, related games) , Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, percussion), etc.; sensor 405 can also include fingerprint sensors, pressure sensors, iris sensors, molecular sensors, gyroscopes, barometers, hygrometers, thermometers, Infrared sensors, etc., will not be repeated here.
  • the display unit 406 is used to display information input by the user or information provided to the user.
  • the display unit 406 may include a display panel 4061, and the display panel 4061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 407 may be used to receive inputted numeric or character information, and generate key signal input related to user settings and function control of the electronic device.
  • the user input unit 407 includes a touch panel 4071 and other input devices 4072.
  • the touch panel 4071 also called a touch screen, can collect the user's touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 4071 or near the touch panel 4071. operating).
  • the touch panel 4071 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 410, the command sent by the processor 410 is received and executed.
  • the touch panel 4071 can be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 407 may also include other input devices 4072.
  • other input devices 4072 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be repeated here.
  • the touch panel 4071 can cover the display panel 4061.
  • the touch panel 4071 detects a touch operation on or near it, it transmits it to the processor 410 to determine the type of the touch event, and then the processor 410 determines the type of the touch event according to the touch.
  • the type of event provides corresponding visual output on the display panel 4061.
  • the touch panel 4071 and the display panel 4061 are used as two independent components to implement the input and output functions of the electronic device, in some embodiments, the touch panel 4071 and the display panel 4061 can be integrated
  • the implementation of the input and output functions of the electronic device is not specifically limited here.
  • the interface unit 408 is an interface for connecting an external device and the electronic device 400.
  • the external device may include a wired or wireless headset port, an external power source (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 408 can be used to receive input (for example, data information, power, etc.) from an external device and transmit the received input to one or more elements in the electronic device 400 or can be used to connect the electronic device 400 to an external device. Transfer data between devices.
  • the memory 409 can be used to store software programs and various data.
  • the memory 409 may mainly include a storage program area and a storage data area.
  • the storage program area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data created by the use of mobile phones (such as audio data, phone book, etc.), etc.
  • the memory 409 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 410 is the control center of the electronic device. It uses various interfaces and lines to connect the various parts of the entire electronic device, runs or executes the software programs and/or modules stored in the memory 409, and calls the data stored in the memory 409 , Perform various functions of electronic equipment and process data, so as to monitor the electronic equipment as a whole.
  • the processor 410 may include one or more processing units; optionally, the processor 410 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface, application programs, etc., and the modem
  • the adjustment processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 410.
  • the electronic device 400 may also include a power source 411 (such as a battery) for supplying power to various components.
  • a power source 411 such as a battery
  • the power source 411 may be logically connected to the processor 410 through a power management system, so as to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • the electronic device 400 includes some functional modules not shown, which will not be repeated here.
  • an embodiment of the present invention further provides an electronic device, including a processor, a memory, and a computer program stored in the memory and running on the processor, and when the computer program is executed by the processor, the foregoing imaging processing is implemented.
  • an electronic device including a processor, a memory, and a computer program stored in the memory and running on the processor, and when the computer program is executed by the processor, the foregoing imaging processing is implemented.
  • Each process of the method embodiment can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the embodiment of the present invention also provides a computer-readable storage medium, and a computer program is stored on the computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computer program is executed by a processor, each process of the foregoing imaging processing method embodiment is realized, and the same technology can be achieved. The effect, in order to avoid repetition, will not be repeated here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk, or optical disk, etc.
  • the technical solution of the present invention essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes several instructions to make a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the method described in each embodiment of the present invention.
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Studio Devices (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

一种成像处理方法和电子设备(400),包括:获取目标物体在第一图像中的第一目标位置,第一图像由TOF传感器模组的处于开启状态的像素阵列生成(102);确定子像素阵列列表中与第一目标位置对应的第一子像素阵列,子像素阵列列表包括像素阵列的多个子像素阵列(104);关闭第一子像素阵列之外的其他子像素阵列,并基于第一子像素阵列,更新第一图像(106)。

Description

成像处理方法和电子设备
相关申请的交叉引用
本申请主张在2019年12月26日在中国提交的中国专利申请No.201911368178.0的优先权,其全部内容通过引用包含于此。
技术领域
本发明涉及终端领域,尤其涉及一种成像处理方法和电子设备。
背景技术
飞行时间(Time of flight,TOF)传感器模组,可以通过发射传感器的像素阵列给目标物体连续发送光脉冲,然后用接收传感器的像素阵列接收从目标物体返回的光脉冲,通过探测光脉冲的飞行(往返)时间来得到目标物体的距离,并通过测量的点生成深度图像或三维(3Dimensions,3D)图像。
目前TOF传感器模组在进行目标物体的成像处理时,发射传感器和接收传感器的所有像素阵列均会处于工作状态,功耗较高。
因此,亟需一种更低功耗的成像处理方案。
发明内容
本发明实施例的目的是提供一种成像处理方法和电子设备,用以解决TOF传感器模组在物体成像处理过程中功耗较高的问题。
第一方面,提供了一种成像处理的方法,该方法包括:
获取目标物体在第一图像中的第一目标位置,所述第一图像由TOF传感器模组的处于开启状态的像素阵列生成;
确定子像素阵列列表中与所述第一目标位置对应的第一子像素阵列,所述子像素阵列列表包括所述像素阵列的多个子像素阵列;
关闭所述第一子像素阵列之外的其他子像素阵列,并基于所述第一子像素阵列,更新所述第一图像。
第二方面,提供了一种电子设备,该电子设备包括:
获取模块,用于获取目标物体在第一图像中的第一目标位置,所述第一图像由TOF传感器模组的处于开启状态的像素阵列生成;
确定模块,用于确定子像素阵列列表中与所述第一目标位置对应的第一子像素阵列,所述子像素阵列列表包括所述像素阵列的多个子像素阵列;
关闭模块,用于关闭所述第一子像素阵列之外的其他子像素阵列,并基于所述第一子像素阵列,更新所述第一图像。
第三方面,提供了一种电子设备,所述电子设备包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第一方面所述的方法的步骤。
第四方面,提供了一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如第一方面所述的方法的步骤。
在本发明实施例中,通过预先将TOF传感器模组的像素阵列划分为多个子像素阵列,并在目标物体的成像处理过程中,仅开启部分必要的子像素阵列,实现所述目标物体的成像,从而能够有效降低所述TOF传感器模组的功耗。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是本发明的一个实施例提供的一种成像处理方法的流程示意图;
图2a是本发明的一个实施例提供的一种TOF传感器模组的发射传感器的子像素阵列划分的示意图;
图2b是本发明的另一个实施例提供的一种TOF传感器模组的发射传感器的子像素阵列划分的示意图;
图2c是本发明的一个实施例提供的一种TOF传感器模组的接收传感器的子像素阵列划分的示意图;
图2d是本发明的另一个实施例提供的一种TOF传感器模组的接收传感 器的子像素阵列划分的示意图;
图2e是本发明的一个实施例提供的一种包含目标物体的第一图像和第二图像的示意图;
图2f是本发明的一个实施例提供的一种包含目标物体的第三图像的示意图;
图3是本发明的一个实施例提供的一种电子设备的结构示意图;
图4是本发明的又一个实施例提供的一种电子设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面结合附图对本发明的各个实施例进行详细说明:
图1是本发明的一个实施例提供的一种成像处理方法的流程示意图,可由电子设备执行,参见图1,该方法具体可以包括如下步骤:
步骤102:获取目标物体在第一图像中的第一目标位置,所述第一图像由TOF传感器模组的处于开启状态的像素阵列生成。
其中,所述TOF传感器模组的像素阵列包括如图2a和图2b所示的发射传感器的像素阵列,以及如图2c至2f所示的接收传感器的像素阵列;所述目标物体可以是处于所述发射传感器和所述接收传感器的视场角重叠区域内的物体,也可以是处于所述视场角重叠区域外的物体;所述发射传感器的像素阵列中包括大量激光二极管,可以将电信号转换为光脉冲信号,并发射至目标物体,所述发射传感器可以是垂直腔面发射激光器(Vertical Cavity Surface Emitting Laser,VCSEL)芯片,还可以是分布布拉格反射器激光二极管和光栅耦合采样反射激光二极管等。
所述接收传感器的像素阵列中包括大量光电二极管,可以接收目标物体反射的光脉冲信号,并将所述光脉冲信号转换为电信号,并通过放大电路和模数转换电路,生成数字信号矩阵(即图像);所述接收传感器可以是与互补 金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)芯片相似的芯片,该芯片与CMOS芯片的区别在于通过电路设计实现在红外波段更高的量子效率(即该芯片的光电转换能力更强),且该芯片的曝光方式为全局曝光;所述第一图像为所述接收传感器的像素阵列生成的包含所述目标物体的图像。
需要说明的是,步骤102的一种实现方式可以为:
步骤1021:监测到TOF传感器模组开启时,开启所述TOF传感器模组的发射传感器的像素阵列和接收传感器的像素阵列;
步骤1022:基于所述发射传感器的像素阵列和所述接收传感器的像素阵列,生成包含目标物体的第一图像,并获取所述目标物体在第一图像中的第一目标位置。
步骤104:确定子像素阵列列表中与所述第一目标位置对应的第一子像素阵列,所述子像素阵列列表包括所述像素阵列的多个子像素阵列。
其中,所述子像素阵列列表包括:第一子像素阵列列表和第二子像素阵列列表,所述第一子像素阵列列表包括划分所述TOF传感器模组的接收传感器的像素阵列得到的多个子像素阵列(如图2c所示,分别占据像素阵列的A1区和B1区的两个子像素阵列;或者如图2d至2f所示,分别占据像素阵列的A1区、B1区、C1区和D1区的四个子像素阵列),所述第二子像素阵列列表包括划分所述TOF传感器模组的发射传感器的像素阵列得到的多个子像素阵列(如图2a所示,分别占据像素阵列的A区和B区的两个子像素阵列;如图2b所示,分别占据像素阵列的A区、B区、C区和D区的四个子像素阵列)。
需要说明的是,步骤104的一种实现方式可以为:
步骤1041:确定所述第一子像素阵列列表中与所述第一目标位置对应的第一接收子像素阵列,所述第一接收子像素阵列用于接收所述目标物体反射的光脉冲信号;
步骤1042:确定所述第二子像素阵列列表中与所述第一接收子像素阵列对应的第一发射子像素阵列,所述第一发射子像素阵列用于向所述目标物体发射所述光脉冲信号。
参见图2b和图2e,假设发射传感器为VCSEL芯片,发射传感器的像素阵列被划分为A区、B区、C区和D区的四个子像素阵列,接收传感器的像素阵列被划分为A1区、B1区、C1区和D1区的四个子像素阵列,目标物体是处于所述发射传感器和所述接收传感器的视场角重叠区域内的物体,则步骤1021、步骤1022、步骤1041和步骤1042具体可以示例为:
电子设备监测到TOF传感器模组由关闭状态转换为开启状态后,打开所述发射传感器的A区、B区、C区和D区的子像素阵列,以及所述接收传感器的A1区、B1区、C1区和D1区的子像素阵列;发射传感器的A区、B区、C区和D区的子像素阵列向目标物体“F”发射光脉冲信号,接收传感器的A1区、B1区、C1区和D1区的子像素阵列接收所述目标物体发射的所述光脉冲信号,并将所述光脉冲信号转换为电信号,通过逻辑电路区的放大电路和模数转换电路,生成数字信号矩阵(即如图2e中左图所示的包含目标物体“F”的第一图像),电子设备基于目标物体“F”在第一图像中的坐标,确定出第一目标位置,并确定出第一目标位置对应的接收传感器需要开启的第一接收子像素阵列为B1区的子像素阵列,并基于预建立的接收子像素阵列和发射子像素阵列的对应关系,确定出第一接收子像素阵列对应的第一发射子像素阵列为B区的子像素阵列。
由此可见,通过基于第一目标位置,确定其对应的第一接收子像素阵列,并基于第一接收子像素阵列,确定其对应的第一发射子像素阵列,从而能够更准确、高效地确定出能够保证所述目标物体完整成像的必要子像素阵列。
步骤106:关闭所述第一子像素阵列之外的其他子像素阵列,并基于所述第一子像素阵列,更新所述第一图像。
需要说明的是,步骤106中关闭其他子像素阵列和图像更新的一种实现方式可以为:
步骤1061:关闭所述第一接收子像素阵列和所述第一发射子像素阵列之外的其他子像素阵列;
步骤1062:基于所述第一接收子像素阵列和所述第一发射子像素阵列,更新所述第一图像。
参见图2b和图2e,假设第一接收子像素阵列为B1区的子像素阵列,第 一发射子像素阵列为B区的子像素阵列,则步骤1061和步骤1062具体可以示例为:
电子设备关闭A1区、C1区和D1区的子像素阵列,以及A区、C区和D区的子像素阵列,发射传感器的B区的子像素阵列向目标物体“F”发射光脉冲信号,接收传感器的B1区的子像素阵列接收所述目标物体发射的所述光脉冲信号,并将所述光脉冲信号转换为电信号,通过逻辑电路区的放大电路和模数转换电路,更新如图2e中左图所示的包含目标物体“F”的第一图像。
基于此,通过关闭其他非必要子像素阵列,并基于必要子像素阵列更新第一图像,从而能够在保证目标物体完整成像的基础上有效降低所述TOF传感器模组的功耗。
需要说明的是,步骤106中图像更新的一种实现方式可以为:
步骤1061’:基于所述第一子像素阵列,生成第二图像,所述第二图像为所述第一图像中包含所述目标物体的局部图像;
步骤1062’:更新所述目标物体在所述第二图像中的位置;
步骤1063’:若监测到所述目标物体移出所述第二图像,则开启所述第一子像素阵列之外的其他子像素阵列;
步骤1064’:基于所述子像素阵列列表,生成第三图像。
参见图2b、图2e和图2f,假设第一接收子像素阵列为B1区的子像素阵列,第一发射子像素阵列为B区的子像素阵列,则步骤1061’至步骤1064’具体可以示例为:
发射传感器的B区的子像素阵列向目标物体“F”发射光脉冲信号,接收传感器的B1区的子像素阵列接收所述目标物体发射的所述光脉冲信号,并将所述光脉冲信号转换为电信号,通过逻辑电路区的放大电路和模数转换电路,生成如图2e中右图所示的第二图像,第二图像为如图2e中左图所示的第一图像中包含目标物体“F”的局部图像;电子设备每隔预设时间更新一次目标物体“F”在第二图像中的位置,若监测到目标物体“F”移出第二图像,则重新开启A1区、C1区和D1区的子像素阵列,以及A区、C区和D区的子像素阵列;发射传感器的A区、B区、C区和D区的子像素阵列向目标物 体“F”发射光脉冲信号,接收传感器的A1区、B1区、C1区和D1区的子像素阵列接收所述目标物体发射的所述光脉冲信号,并将所述光脉冲信号转换为电信号,通过逻辑电路区的放大电路和模数转换电路,重新生成数字信号矩阵(即如图2f所示的包含目标物体“F”的第三图像)。
基于此,通过在监测到目标物体移出第二图像时,开启子像素阵列列表中的所有子像素阵列,以生成包含所述目标物体的第三图像,从而能够保证目标物体成像的完整性。
进一步地,在步骤106之后,方法还包括必要子像素阵列重确定步骤,该步骤的一种实现方式可以为:
S1:获取所述目标物体在所述第三图像中的第三目标位置;
S2:确定子像素阵列列表中与所述第三目标位置对应的第三子像素阵列,所述第三子像素阵列与所述第一子像素阵列不同;
S3:关闭所述第三子像素阵列之外的其他子像素阵列,并基于所述第三子像素阵列,更新所述第三图像。
需要说明的是,S2的一种实现方式可以为:
S21:确定所述第一子像素阵列列表中与所述第三目标位置对应的第三接收子像素阵列;
S22:确定所述第二子像素阵列列表中与所述第三接收子像素阵列对应的第三发射子像素阵列。
参见图2f,S1、S21、S22和S3具体可以示例为:
电子设备基于目标物体“F”在第三图像中的坐标,确定出第三目标位置;电子设备确定出第三目标位置对应的接收传感器需要开启的第三接收子像素阵列为C1区的子像素阵列,并基于预建立的接收子像素阵列和发射子像素阵列的对应关系,确定出第三接收子像素阵列对应的第三发射子像素阵列为C区的子像素阵列;电子设备关闭A1区、B1区和D1区的子像素阵列,以及A区、B区和D区的子像素阵列,发射传感器的C区的子像素阵列向目标物体“F”发射光脉冲信号,接收传感器的C1区的子像素阵列接收所述目标物体发射的所述光脉冲信号,并将所述光脉冲信号转换为电信号,通过逻辑电路区的放大电路和模数转换电路,更新如图2f中所示的包含目标物体“F” 的第三图像。
由此可见,通过基于目标物体更新后的第三目标位置,确定其对应的第三子像素阵列,并关闭其他非必要子像素阵列,基于必要子像素阵列更新第一图像,从而能够在保证目标物体完整成像的基础上降低所述TOF传感器模组的功耗。
可见,本实施例通过预先将TOF传感器模组的像素阵列划分为多个子像素阵列,并在目标物体的成像处理过程中,仅开启部分必要的子像素阵列,实现所述目标物体的成像,从而能够有效降低所述TOF传感器模组的功耗。
图3是本发明的一个实施例提供的一种电子设备的结构示意图,参见图3,该电子设备具体可以包括获取模块302、确定模块304和关闭模块306,其中:
获取模块302,用于获取目标物体在第一图像中的第一目标位置,所述第一图像由TOF传感器模组的处于开启状态的像素阵列生成;
确定模块304,用于确定子像素阵列列表中与所述第一目标位置对应的第一子像素阵列,所述子像素阵列列表包括所述像素阵列的多个子像素阵列;
关闭模块306,用于关闭所述第一子像素阵列之外的其他子像素阵列,并基于所述第一子像素阵列,更新所述第一图像。
可选地,所述子像素阵列列表包括:第一子像素阵列列表和第二子像素阵列列表,所述第一子像素阵列列表包括划分所述TOF传感器模组的接收传感器的像素阵列得到的多个子像素阵列,所述第二子像素阵列列表包括划分所述TOF传感器模组的发射传感器的像素阵列得到的多个子像素阵列;
其中,确定模块304,包括:
第一确定子模块,用于确定所述第一子像素阵列列表中与所述第一目标位置对应的第一接收子像素阵列,所述第一接收子像素阵列用于接收所述目标物体反射的光脉冲信号;
第二确定子模块,用于确定所述第二子像素阵列列表中与所述第一接收子像素阵列对应的第一发射子像素阵列,所述第一发射子像素阵列用于向所述目标物体发射所述光脉冲信号。
可选地,关闭模块306,包括:
关闭子模块,用于关闭所述第一接收子像素阵列和所述第一发射子像素阵列之外的其他子像素阵列;
更新子模块,用于基于所述第一接收子像素阵列和所述第一发射子像素阵列,更新所述第一图像。
可选地,关闭模块306,包括:
第一生成子模块,用于基于所述第一子像素阵列,生成第二图像,所述第二图像为所述第一图像中包含所述目标物体的局部图像;
更新子模块,用于更新所述目标物体在所述第二图像中的位置;
开启子模块,用于若监测到所述目标物体移出所述第二图像,则开启所述第一子像素阵列之外的其他子像素阵列;
第二生成子模块,用于基于所述子像素阵列列表,生成第三图像。
可选地,电子设备还包括:
第二获取模块,用于获取所述目标物体在所述第三图像中的第三目标位置;
第二确定模块,用于确定子像素阵列列表中与所述第三目标位置对应的第三子像素阵列,所述第三子像素阵列与所述第一子像素阵列不同;
第二关闭模块,用于关闭所述第三子像素阵列之外的其他子像素阵列,并基于所述第三子像素阵列,更新所述第三图像。
可见,本实施例通过预先将TOF传感器模组的像素阵列划分为多个子像素阵列,并在目标物体的成像处理过程中,仅开启部分必要的子像素阵列,实现所述目标物体的成像,从而能够有效降低所述TOF传感器模组的功耗。
本发明实施例提供的装置能够实现图1至图2f的方法实施例中装置实现的各个过程,为避免重复,这里不再赘述。而且,应当注意的是,在本发明的装置的各个部件中,根据其要实现的功能而对其中的部件进行了逻辑划分,但是,本发明不受限于此,可以根据需要对各个部件进行重新划分或者组合。
图4为实现本发明各个实施例的一种电子设备的硬件结构示意图,
该电子设备400包括但不限于:射频单元401、网络模块402、音频输出 单元403、输入单元404、传感器405、显示单元406、用户输入单元407、接口单元408、存储器409、处理器410、以及电源411等部件。本领域技术人员可以理解,图4中示出的电子设备结构并不构成对电子设备的限定,电子设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本发明实施例中,电子设备包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,射频单元401,用于获取目标物体在第一图像中的第一目标位置,所述第一图像由TOF传感器模组的处于开启状态的像素阵列生成;
处理器410,用于确定子像素阵列列表中与所述第一目标位置对应的第一子像素阵列,所述子像素阵列列表包括所述像素阵列的多个子像素阵列;
关闭所述第一子像素阵列之外的其他子像素阵列,并基于所述第一子像素阵列,更新所述第一图像。
通过预先将TOF传感器模组的像素阵列划分为多个子像素阵列,并在目标物体的成像处理过程中,仅开启部分必要的子像素阵列,实现所述目标物体的成像,从而能够有效降低所述TOF传感器模组的功耗。
应理解的是,本发明实施例中,射频单元401可用于收发信息或通话过程中,信号的接收和发送,具体地,将来自基站的下行数据接收后,给处理器410处理;另外,将上行的数据发送给基站。通常,射频单元401包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元401还可以通过无线通信系统与网络和其他设备通信。
电子设备通过网络模块402为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元403可以将射频单元401或网络模块402接收的或者在存储器409中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元403还可以提供与电子设备400执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元403包括扬声器、蜂鸣器以及受话器等。
输入单元404用于接收音频或视频信号。输入单元404可以包括图形处理器(Graphics Processing Unit,GPU)4041和麦克风4042,图形处理器4041 对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元406上。经图形处理器4041处理后的图像帧可以存储在存储器409(或其它存储介质)中或者经由射频单元401或网络模块402进行发送。麦克风4042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元401发送到移动通信基站的格式输出。
电子设备400还包括至少一种传感器405,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板4061的亮度,接近传感器可在电子设备400移动到耳边时,关闭显示面板4061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别电子设备姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器405还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元406用于显示由用户输入的信息或提供给用户的信息。显示单元406可包括显示面板4061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板4061。
用户输入单元407可用于接收输入的数字或字符信息,以及产生与电子设备的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元407包括触控面板4071以及其他输入设备4072。触控面板4071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板4071上或在触控面板4071附近的操作)。触控面板4071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送 给处理器410,接收处理器410发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板4071。除了触控面板4071,用户输入单元407还可以包括其他输入设备4072。具体地,其他输入设备4072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步地,触控面板4071可覆盖在显示面板4061上,当触控面板4071检测到在其上或附近的触摸操作后,传送给处理器410以确定触摸事件的类型,随后处理器410根据触摸事件的类型在显示面板4061上提供相应的视觉输出。虽然在图4中,触控面板4071与显示面板4061是作为两个独立的部件来实现电子设备的输入和输出功能,但是在某些实施例中,可以将触控面板4071与显示面板4061集成而实现电子设备的输入和输出功能,具体此处不做限定。
接口单元408为外部装置与电子设备400连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元408可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到电子设备400内的一个或多个元件或者可以用于在电子设备400和外部装置之间传输数据。
存储器409可用于存储软件程序以及各种数据。存储器409可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器409可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器410是电子设备的控制中心,利用各种接口和线路连接整个电子设备的各个部分,通过运行或执行存储在存储器409内的软件程序和/或模块,以及调用存储在存储器409内的数据,执行电子设备的各种功能和处理数据,从而对电子设备进行整体监控。处理器410可包括一个或多个处理单元;可 选地,处理器410可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器410中。
电子设备400还可以包括给各个部件供电的电源411(比如电池),可选地,电源411可以通过电源管理系统与处理器410逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,电子设备400包括一些未示出的功能模块,在此不再赘述。
可选地,本发明实施例还提供一种电子设备,包括处理器,存储器,存储在存储器上并可在所述处理器上运行的计算机程序,该计算机程序被处理器执行时实现上述成像处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本发明实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述成像处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光 盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本发明各个实施例所述的方法。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本发明的保护之内。

Claims (10)

  1. 一种成像处理方法,包括:
    获取目标物体在第一图像中的第一目标位置,所述第一图像由TOF传感器模组的处于开启状态的像素阵列生成;
    确定子像素阵列列表中与所述第一目标位置对应的第一子像素阵列,所述子像素阵列列表包括所述像素阵列的多个子像素阵列;
    关闭所述第一子像素阵列之外的其他子像素阵列,并基于所述第一子像素阵列,更新所述第一图像。
  2. 根据权利要求1所述的方法,其中,所述子像素阵列列表包括:第一子像素阵列列表和第二子像素阵列列表,所述第一子像素阵列列表包括划分所述TOF传感器模组的接收传感器的像素阵列得到的多个子像素阵列,所述第二子像素阵列列表包括划分所述TOF传感器模组的发射传感器的像素阵列得到的多个子像素阵列;
    其中,所述确定子像素阵列列表中与所述第一目标位置对应的第一子像素阵列,包括:
    确定所述第一子像素阵列列表中与所述第一目标位置对应的第一接收子像素阵列,所述第一接收子像素阵列用于接收所述目标物体反射的光脉冲信号;
    确定所述第二子像素阵列列表中与所述第一接收子像素阵列对应的第一发射子像素阵列,所述第一发射子像素阵列用于向所述目标物体发射所述光脉冲信号。
  3. 根据权利要求2所述的方法,所述关闭所述第一子像素阵列之外的其他子像素阵列,并基于所述第一子像素阵列,更新所述第一图像,包括:
    关闭所述第一接收子像素阵列和所述第一发射子像素阵列之外的其他子像素阵列;
    基于所述第一接收子像素阵列和所述第一发射子像素阵列,更新所述第一图像。
  4. 根据权利要求1所述的方法,其中,所述基于所述第一子像素阵列, 更新所述第一图像,包括:
    基于所述第一子像素阵列,生成第二图像,所述第二图像为所述第一图像中包含所述目标物体的局部图像;
    更新所述目标物体在所述第二图像中的位置;
    若监测到所述目标物体移出所述第二图像,则开启所述第一子像素阵列之外的其他子像素阵列;
    基于所述子像素阵列列表,生成第三图像。
  5. 根据权利要求4所述的方法,其中,在所述基于所述子像素阵列列表,生成第三图像之后,还包括:
    获取所述目标物体在所述第三图像中的第三目标位置;
    确定子像素阵列列表中与所述第三目标位置对应的第三子像素阵列,所述第三子像素阵列与所述第一子像素阵列不同;
    关闭所述第三子像素阵列之外的其他子像素阵列,并基于所述第三子像素阵列,更新所述第三图像。
  6. 一种电子设备,包括:
    获取模块,用于获取目标物体在第一图像中的第一目标位置,所述第一图像由TOF传感器模组的处于开启状态的像素阵列生成;
    确定模块,用于确定子像素阵列列表中与所述第一目标位置对应的第一子像素阵列,所述子像素阵列列表包括所述像素阵列的多个子像素阵列;
    关闭模块,用于关闭所述第一子像素阵列之外的其他子像素阵列,并基于所述第一子像素阵列,更新所述第一图像。
  7. 根据权利要求6所述的电子设备,其中,所述子像素阵列列表包括:第一子像素阵列列表和第二子像素阵列列表,所述第一子像素阵列列表包括划分所述TOF传感器模组的接收传感器的像素阵列得到的多个子像素阵列,所述第二子像素阵列列表包括划分所述TOF传感器模组的发射传感器的像素阵列得到的多个子像素阵列;
    所述确定模块,包括:
    第一确定子模块,用于确定所述第一子像素阵列列表中与所述第一目标位置对应的第一接收子像素阵列,所述第一接收子像素阵列用于接收所述目 标物体反射的光脉冲信号;
    第二确定子模块,用于确定所述第二子像素阵列列表中与所述第一接收子像素阵列对应的第一发射子像素阵列,所述第一发射子像素阵列用于向所述目标物体发射所述光脉冲信号。
  8. 根据权利要求7所述的电子设备,其中,所述关闭模块,包括:
    关闭子模块,用于关闭所述第一接收子像素阵列和所述第一发射子像素阵列之外的其他子像素阵列;
    更新子模块,用于基于所述第一接收子像素阵列和所述第一发射子像素阵列,更新所述第一图像。
  9. 一种电子设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至5中任一项所述的方法的步骤。
  10. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至5中任一项所述的方法的步骤。
PCT/CN2020/139208 2019-12-26 2020-12-25 成像处理方法和电子设备 WO2021129776A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911368178.0 2019-12-26
CN201911368178.0A CN111090104B (zh) 2019-12-26 2019-12-26 成像处理方法和电子设备

Publications (1)

Publication Number Publication Date
WO2021129776A1 true WO2021129776A1 (zh) 2021-07-01

Family

ID=70397711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/139208 WO2021129776A1 (zh) 2019-12-26 2020-12-25 成像处理方法和电子设备

Country Status (2)

Country Link
CN (1) CN111090104B (zh)
WO (1) WO2021129776A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111090104B (zh) * 2019-12-26 2022-11-11 维沃移动通信有限公司 成像处理方法和电子设备
CN113890962B (zh) * 2020-07-02 2023-03-24 华为技术有限公司 图像传感器、3d摄像头、图像传感器的控制方法
CN112038361A (zh) * 2020-09-08 2020-12-04 上海大芯半导体有限公司 距离传感器像素阵列结构、距离传感器及工作方法
CN113687386A (zh) * 2021-07-07 2021-11-23 曜芯科技有限公司 成像系统以及相关电子装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080007709A1 (en) * 2006-07-06 2008-01-10 Canesta, Inc. Method and system for fast calibration of three-dimensional (3D) sensors
CN102129152A (zh) * 2009-12-21 2011-07-20 微软公司 具有集成vcsel阵列的深度投影仪系统
CN105933532A (zh) * 2016-06-06 2016-09-07 广东欧珀移动通信有限公司 图像处理方法、装置和移动终端
CN107204012A (zh) * 2016-03-16 2017-09-26 美国亚德诺半导体公司 降低飞行时间深度成像的功耗
CN108431626A (zh) * 2015-12-20 2018-08-21 苹果公司 光检测和测距传感器
CN109031332A (zh) * 2018-08-07 2018-12-18 上海炬佑智能科技有限公司 飞行时间测距传感器及其控制方法
CN109714583A (zh) * 2019-01-22 2019-05-03 京东方科技集团股份有限公司 增强现实的显示方法及增强现实的显示系统
CN109819238A (zh) * 2019-02-22 2019-05-28 北京旷视科技有限公司 Tof图像采集模块的工作频率调节方法、装置和电子系统
CN111090104A (zh) * 2019-12-26 2020-05-01 维沃移动通信有限公司 成像处理方法和电子设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2395369A1 (en) * 2010-06-09 2011-12-14 Thomson Licensing Time-of-flight imager.
US9350928B2 (en) * 2012-05-02 2016-05-24 Semiconductor Components Industries, Llc Image data compression using stacked-chip image sensors
US10063757B2 (en) * 2012-11-21 2018-08-28 Infineon Technologies Ag Dynamic conservation of imaging power
US20150377964A1 (en) * 2014-06-30 2015-12-31 Texas Instruments Incorporated Programmable test pattern for a pixel array
KR102470223B1 (ko) * 2016-04-27 2022-11-23 주식회사 디비하이텍 이미지 센서 및 이미지 센서의 센싱 방법
CN107222664B (zh) * 2017-05-03 2020-03-06 Oppo广东移动通信有限公司 相机模组及电子装置
EP3573333B1 (en) * 2017-08-15 2021-05-19 Sony Semiconductor Solutions Corporation Solid-state imaging device and drive method thereof
CN108900750B (zh) * 2018-07-19 2020-08-28 维沃移动通信有限公司 一种图像传感器及移动终端
CN110501691B (zh) * 2019-08-13 2022-03-08 Oppo广东移动通信有限公司 Tof模组的噪声滤除方法、tof模组及装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080007709A1 (en) * 2006-07-06 2008-01-10 Canesta, Inc. Method and system for fast calibration of three-dimensional (3D) sensors
CN102129152A (zh) * 2009-12-21 2011-07-20 微软公司 具有集成vcsel阵列的深度投影仪系统
CN108431626A (zh) * 2015-12-20 2018-08-21 苹果公司 光检测和测距传感器
CN107204012A (zh) * 2016-03-16 2017-09-26 美国亚德诺半导体公司 降低飞行时间深度成像的功耗
CN105933532A (zh) * 2016-06-06 2016-09-07 广东欧珀移动通信有限公司 图像处理方法、装置和移动终端
CN109031332A (zh) * 2018-08-07 2018-12-18 上海炬佑智能科技有限公司 飞行时间测距传感器及其控制方法
CN109714583A (zh) * 2019-01-22 2019-05-03 京东方科技集团股份有限公司 增强现实的显示方法及增强现实的显示系统
CN109819238A (zh) * 2019-02-22 2019-05-28 北京旷视科技有限公司 Tof图像采集模块的工作频率调节方法、装置和电子系统
CN111090104A (zh) * 2019-12-26 2020-05-01 维沃移动通信有限公司 成像处理方法和电子设备

Also Published As

Publication number Publication date
CN111090104A (zh) 2020-05-01
CN111090104B (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
WO2021129776A1 (zh) 成像处理方法和电子设备
WO2020216129A1 (zh) 参数获取方法及终端设备
WO2020192219A1 (zh) 定位测量信息上报方法、终端和网络设备
US11316967B2 (en) Screen on and off state control method and mobile terminal
WO2019196691A1 (zh) 一种键盘界面显示方法和移动终端
US11582655B2 (en) Condition handover cancellation method and communication equipment
WO2020125278A1 (zh) 光线传输方法及装置
CN110300267B (zh) 拍照方法和终端设备
CN109639863B (zh) 一种语音处理方法及装置
WO2021012908A1 (zh) 消息发送方法及移动终端
WO2021121237A1 (zh) 视频流裁剪方法及电子设备
WO2021147911A1 (zh) 移动终端、拍摄模式的检测方法及存储介质
US20220367550A1 (en) Mobile terminal and image photographing method
WO2021129732A1 (zh) 显示处理方法及电子设备
WO2021185254A1 (zh) 内容共享方法及电子设备
WO2021190387A1 (zh) 检测结果输出的方法、电子设备及介质
WO2020216181A1 (zh) 终端设备及其控制方法
WO2021083091A1 (zh) 截图方法及终端设备
WO2021082772A1 (zh) 截屏方法及电子设备
US20230025705A1 (en) Display method and electronic device
CN109193975A (zh) 一种无线充电装置及终端
CN107782250A (zh) 一种深度信息测量方法、装置和移动终端
US20220367541A1 (en) Image sensor, mobile terminal, and image capturing method
CN108955641B (zh) 一种深度摄像方法、深度摄像设备及移动终端
CN110058424A (zh) 一种激光衍射装置、3d装置及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20905061

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20905061

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/01/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20905061

Country of ref document: EP

Kind code of ref document: A1