WO2021129701A1 - Pdcp实体的控制方法以及pdcp实体 - Google Patents

Pdcp实体的控制方法以及pdcp实体 Download PDF

Info

Publication number
WO2021129701A1
WO2021129701A1 PCT/CN2020/138817 CN2020138817W WO2021129701A1 WO 2021129701 A1 WO2021129701 A1 WO 2021129701A1 CN 2020138817 W CN2020138817 W CN 2020138817W WO 2021129701 A1 WO2021129701 A1 WO 2021129701A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdcp
rlc
entity
rlc entity
instruction
Prior art date
Application number
PCT/CN2020/138817
Other languages
English (en)
French (fr)
Inventor
肖芳英
刘仁茂
堀贵子
Original Assignee
夏普株式会社
肖芳英
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 夏普株式会社, 肖芳英 filed Critical 夏普株式会社
Publication of WO2021129701A1 publication Critical patent/WO2021129701A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the present disclosure relates to the field of wireless communication technology. More specifically, the present disclosure relates to a control method of a PDCP entity and a PDCP entity.
  • NTT DOCOMO proposed a new research project on 5G technical standards (see Non-Patent Document: RP-160671 : New SID Proposal: Study on New Radio Access Technology) and approved.
  • the purpose of this research project is to develop a new radio (New Radio: NR) access technology to meet all 5G application scenarios, requirements and deployment environments.
  • the network can configure the PDCP repetition function of the PDCP entity of the Packet Data Convergence Protocol.
  • the PDCP entity function at the transmitting end supports PDCP repetition (that is, a PDCP data PDU is submitted to the lower layer two or more times), and the PDCP entity function at the receiving end supports deleting duplicate PDCP PDU.
  • Both uplink and downlink support PDCP repetition.
  • PDCP repetitively uses PDCP protocol data unit (PDU) and/or service data unit (SDU) to send on two or more RLC entities/logical channels and allows repeated PDCP PDUs to pass through different carriers /Send by cell.
  • PDU PDCP protocol data unit
  • SDU service data unit
  • the present disclosure discusses the problems involved in switching/changing the RLC entity used to transmit PDCP data PDUs after the PDCP entity and/or the RLC entity are repeatedly deactivated or activated.
  • the present disclosure is proposed in response to the above problems, and its purpose is to provide a solution that can solve the problems involved in switching/changing the RLC entity used to transmit PDCP data PDUs after PDCP entities and/or RLC entities are repeatedly deactivated or activated.
  • the control method of the PDCP entity in question and the PDCP entity is proposed in response to the above problems, and its purpose is to provide a solution that can solve the problems involved in switching/changing the RLC entity used to transmit PDCP data PDUs after PDCP entities and/or RLC entities are repeatedly deactivated or activated.
  • a method for controlling a PDCP entity is proposed.
  • the PDCP entity is associated with two or more radio link control RLC entities, and the two or more RLC entities include a primary RLC entity and a secondary RLC entity
  • the PDCP entity receives an indication to activate PDCP repetition, or an indication to change a secondary RLC entity, or an indication to activate an RLC entity
  • the PDCP entity performs the following operations: activate PDCP repetition; and activate PDCP repetition for the indicated RLC entity.
  • the PDCP entity in the process that the PDCP is repeatedly activated, may perform the following operations upon receiving an instruction to deactivate the PDCP repetition: deactivate the PDCP repetition ; Deactivate PDCP repetition for the indicated RLC entity.
  • the PDCP entity may receive an instruction to change a secondary RLC entity or an instruction to activate an inactive RLC entity, Or in the case of an indication to activate an already activated RLC entity, perform the following operation: send a first indication to the associated RLC entity indicated as deactivation, where the first indication is used to indicate that the corresponding RLC entity is no longer Used for PDCP repetition or deactivation PDCP repetition or indicating that the corresponding RLC entity is deactivated.
  • the PDCP entity in the process that the PDCP is repeatedly activated, may receive an instruction to deactivate the PDCP repetition, or an instruction to change the secondary RLC entity, or to deactivate it.
  • the deactivated RLC entity or the deactivated secondary RLC entity is instructed to delete all repeated PDCP data PDUs.
  • the PDCP entity may receive the instruction to deactivate the PDCP repetition, or to change the instruction of the secondary RLC entity, or to activate the non-repetitive PDCP entity.
  • the PDCP entity performs at least one of the following operations: instructing the associated RLC entity to deactivate PDCP repetition; and indicating deactivation The RLC entity or the deactivated secondary RLC entity deletes all repeated PDCP data PDUs.
  • the PDCP entity may receive the instruction to deactivate the PDCP repetition, or to change the instruction of the secondary RLC entity, or to activate the non-repetitive PDCP entity.
  • the PDCP entity performs any one of the following operations: sending a first indication to the associated RLC entity indicated to be deactivated; to the indication Send the first instruction to the RLC entity that is repeatedly deactivated for PDCP; send the first instruction to the lower layer; send the first instruction to the RLC entity that is deactivated; send the first instruction to the RLC entity that is repeatedly deactivated for PDCP;
  • the first indication is used to indicate that the corresponding RLC entity is no longer used for PDCP repetition or to deactivate PDCP repetition or to indicate that the corresponding RLC entity is deactivated.
  • the PDCP entity when there are more than two RLC entities associated with the PDCP entity, when a secondary RLC entity is converted from a first-type RLC entity to a second-type RLC entity, The PDCP entity sends an indication or a first indication to the RLC entity to change the secondary RLC entity, where the first indication is used to indicate that the corresponding RLC entity is no longer used for PDCP repetition or deactivation of PDCP repetition or to indicate the corresponding RLC entity Is deactivated.
  • the RLC entity receives an instruction from an upper layer to delete a radio link control service data unit RLC SDU, or receives an instruction from an upper layer to deactivate an RLC entity, or
  • the first instruction, or the PDCP repeated instruction to deactivate the RLC entity, or the instruction to deactivate the secondary RLC entity perform the following operations: retransmit the (Radio Link Control Service Data Unit) RLC with the largest sequence number that has been submitted to the lower layer SDU; an inquiry is included in the corresponding AMD PDU.
  • the corresponding AMD PDU is the AMD PDU corresponding to the RLC SDU or RLC SDU segment
  • the AMD PDU includes an inquiry that means that the AMD PDU is The query bit field is set to 1, the variable PDU_WITHOUT_POLL is set to 0, and the variable BYTE_WITHOUT_POLL is set to 0.
  • a PDCP entity is proposed, and the PDCP entity executes the control method of the PDCP entity according to the context under the control of the upper layer.
  • Figure 1 shows a schematic diagram of packet repetition
  • Figure 2a shows a schematic diagram of a protocol architecture for repeated packet bearers in carrier aggregation
  • Figure 2b shows a schematic diagram of a protocol architecture for repeated packet bearers in dual connectivity
  • RRC Radio Resource Control, radio resource control.
  • PDCP Packet Data Convergence Protocol, packet data convergence protocol.
  • RLC Radio Link Control, radio link control.
  • the RLC entity may be an Unacknowledged Mode (UM) RLC entity or an Acknowledged Mode (AM) RLC entity.
  • the AM RLC entity includes the AM RLC entity transmitter and the AM RLC entity receiver.
  • the AM RLC entity transmitter of one AM RLC entity sends RLC PDUs (also called AMD PDUs) to the AM RLC entity receiver of another AM RLC entity.
  • the AM RLC entity receiving end sends a status report STATUS report (also referred to as status PDU) to the AM RLC entity sending end.
  • the AMD PDU may include a complete RLC SDU or RLC SDU segment.
  • the AM RLC entity or the AM RLC entity transmitter of the AM RLC entity and the AM RLC entity receiver of the another AM RLC entity or the another AM RLC entity are referred to as peer AM RLC entities (peerAM RLC). entity).
  • peerAM RLC peer AM RLC entities
  • the RLC PDU delivered by the AM RLC entity sender to the lower layer is called AMD PDU; the RLC PDU received by the AM RLC entity receiver from the lower layer is called AMD PDU.
  • MAC Medium Access Control, media access control.
  • SDU Service Data Unit, service data unit.
  • the PDU may be a data PDU and/or a control PDU.
  • the RLC PDU may be RLC data PDU and/or RLC control PDU (for example, STATUS report or STATUS PDU).
  • STATUS PDU is used by the AM RLC entity receiver to report to its peer AM RLC entity the RLC data PDU it correctly received and the RLC data PDU detected as missing (STATUS PDU is used by the receiving side of an AM RLC entity to inform the peer AM RLC entity about RLC data PDUs that are received successfully, and RLC data PDUs that are detected to be lost by the receiving side of an AM RLC entity.
  • each layer for example, PDCP or RLC
  • PDCP SDU the data received by the PDCP entity from the upper layer or the data transported by the upper layer
  • PDCP PDU the data received by the PDCP entity from the RLC entity or the data delivered to the RLC entity
  • Primary RLC entity Primary RLC entity, among the RLC entities that are repeatedly configured for PDCP, at least the RLC entity used to send PDCP control PDUs (regardless of whether PDCP is repeatedly activated or deactivated). In the case of carrier aggregation, the PDCP entity sends PDCP data PDUs to the primary RLC entity after the deactivation packet is repeated, and the primary RLC entity is one of the associated RLC entities.
  • the master RLC entity can be configured through RRC signaling.
  • the base station can use the information element primarypath carried in the RRC signaling (see 3GPP TS38.331 for the specific description of the information element) and the information element cellGroup and/or logical channel contained in the information element used to identify the cell group identity.
  • the identified information element logicalChannel is used to configure the main RLC entity for the user equipment UE or the DRB or PDCP entity that supports PDCP repetition.
  • the present disclosure refers to an RLC entity that is not designated as a primary RLC entity as a secondary RLC entity (Sencondary RLC entity) in order to describe the embodiments of the present disclosure.
  • the base station sets the data separation threshold for the separated bearer, for example, the data separation threshold is set by the cell ul-DataSplitThreshold (for detailed description of the cell, see 3GPP TS38.331 and TS38.323).
  • the PDCP entity submits the PDCP PDU to the associated primary RLC entity or secondary RLC entity; if the data separation threshold is not configured or if the sum of the total amount of PDCP data and the amount of data waiting for initial transmission in the two associated RLC entities is less than the set
  • the PDCP entity submits the PDCP PDU to the main RLC entity.
  • the PDCP entity submits the PDCP PDU to the main RLC entity; for dual In connection scenarios, if the sum of the total amount of PDCP data and the amount of data waiting for initial transmission in the associated primary RLC entity and activated secondary RLC entity is greater than or equal to the set data separation threshold, the PDCP entity submits the PDCP PDU to the associated The primary RLC entity or the activated secondary RLC entity; if the data separation threshold is not configured or if the total amount of PDCP data and the amount of data waiting for initial transmission in the associated primary RLC entity and the activated secondary RLC entity is less than the set data If the separation threshold is exceeded, the PDCP entity submits the PDCP PDU to the main RLC entity.
  • the activated RLC entity refers to an RLC entity that is configured or indicated to be used to separate bearer data
  • Packet duplication packet duplication or PDCP duplication, also known as PDCP duplication or duplication, means that the PDCP entity delivers the same PDCP PDU to the lower layer twice (or multiple times), and one of them is delivered to the main RLC entity (also called the main path) , And other submitted to the activated secondary RLC entity (also called secondary path).
  • main RLC entity also called the main path
  • secondary RLC entity also called secondary path
  • FIG. 1 shows a schematic diagram of packet repetition.
  • RRC can repeatedly configure two RLC entities for PDCP.
  • the PDCP entity sends the same PDCP PDU to the two associated lower-layer entities (ie RLC entities).
  • the PDCP entity delivers a PDCP PDU to the lower layer twice, once to the main RLC entity, and once to the lower layer.
  • Secondary RLC entity In order to enhance the reliability of URLLC, 3GPP will support scenarios where one PDCP entity is associated with at most 4 RLC entities in Release 16.
  • the PDCP entity when PDCP is repeatedly activated, the PDCP entity delivers the same PDCP PDU to the activated RLC entity.
  • RRC configures 4 RLC entities for a PDCP entity, and only 3 RLC entities are activated (this can be configured by RRC or indicated by the MAC control element)
  • the PDCP entity sends the same PDCP PDU to the associated and three RLC entities.
  • An activated lower-layer entity that is, an RLC entity
  • a PDCP entity submits a PDCP PDU to the lower layer three times, and then respectively submits it to the three activated RLC entities.
  • the RLC entity submitted to activation in this disclosure refers to the submission to the primary RLC entity and other activated secondary RLC entities. If a PDCP entity is only associated with two RLC entities, when PDCP is repeatedly activated, both associated RLC entities are activated.
  • an activated RLC entity (also referred to as an RLC entity that has activated PDCP repetition, or an RLC entity that is repeatedly activated for PDCP or an RLC entity that is repeatedly activated for PDCP) refers to the RLC
  • the PDCP of the entity is repeatedly activated, that is, the RLC entity is used to transmit PDCP data PDU (the PDCP entity delivers the PDCP data PDU to the activated RLC entity).
  • the PDCP entity will deliver PDCP data PDUs to it until the RLC entity is deactivated.
  • a deactivated RLC entity (also referred to as a deactivated PDCP repeated RLC entity or a PDCP repeated deactivated RLC entity or a PDCP repeated deactivated RLC entity) means that the RLC entity is no longer used to transmit PDCP data PDUs . In other words, after the RLC entity is deactivated, the PDCP entity no longer submits PDCP data PDUs to it until the RLC entity is activated.
  • the present disclosure takes the operations involved in the AM RLC entity as an example for description. However, the embodiments of the present disclosure are also applicable to UM RLC entities.
  • lower layer entity and “lower layer” are equivalent descriptions and can be used interchangeably.
  • Retransmission inquiry timer t-pollRetransmit The timer is used by the AM RLC entity sender for the purpose of retransmission inquiry (This timer is used by the transmitting side of an AM RLC entity in order to retransmit a poll).
  • Figure 2a shows the protocol architecture diagram of repeated packet bearer in the carrier aggregation scenario.
  • Figure 2b shows a protocol architecture diagram of packet duplication in a dual-connection scenario.
  • a PDCP entity carried by one bearer is associated with two RLC entities, two logical channels, and one MAC entity.
  • a separate bearer PDCP entity is associated with two RLC entities, two logical channels, and two MAC entities.
  • the information element pdcp-Duplication is carried in PDCP-Config, and is used to indicate whether the uplink repetition state is configured and activated when this information element (referred to as information element) is received.
  • the presence of this information element indicates that repetition is configured, and the value of this information element is TRUE to indicate that repetition is activated.
  • the PDCP-Config used to set configurable PDCP parameters for the SRB and/or DRB is included in an RRC message sent by the base station or the network to the UE, and the RRC message is used to configure the UE with a DRB that supports PDCP repetition.
  • the transmitting PDCP entity that is, the transmitting PDCP entity configured with PDCP duplication or pdcp-Duplication or pdcp-Duplication set to TRUE (for the data radio bearer DRB)
  • the transmitting PDCP entity (that is, a PDCP entity configured with PDCP repetition) performs at least one of the following:
  • the PDCP duplication is activated Either activate the PDCP duplication for the indicated RLC entity or activate the PDCP duplication for the indicated associated RLC entity or activate the PDCP duplication for the RLC entity indicated to be activated, and the RLC entity is The RLC entity repeatedly activated by PDCP, for example, the RLC entity indicated as activated in the RRC message or the RLC entity indicated as activated in the MAC CE;
  • the lower layer instructs to deactivate the associated RLC entity (if any Such RLC entity sends the indication) or indicates to the lower layer that the PDCP of the associated RLC entity is repeatedly deactivated (only sends the indication if there is such an RLC entity);
  • an instruction to deactivate PDCP repetition or an instruction to change the secondary RLC entity is received (for example, the MAC layer of the UE receives an instruction from the base station to change the PDCP repetition status of a DRB and/or the activated RLC entity Media Access Control Control Element MAC CE) or received an instruction to deactivate the RLC entity, instruct the secondary RLC entity or the deactivated RLC entity or the deactivated secondary RLC entity to delete all repeated PDCP data PDUs.
  • the first indication or the indication is sent to the associated RLC entity indicated as deactivation Send the first instruction to the RLC entity that is repeatedly deactivated for PDCP or send the first instruction to the lower layer or send the first instruction to the RLC entity that is deactivated or send the first instruction to the RLC entity that is repeatedly deactivated for PDCP (if such RLC entity).
  • an instruction to activate PDCP repetition is received (or an instruction to change the secondary RLC entity or an instruction to activate an RLC entity or an instruction to deactivate an RLC entity is received) and the PDCP entity is associated with more than two RLC entities
  • the PDCP entity sends an instruction or a first instruction to change the secondary RLC entity to the RLC entity.
  • the first type of RLC entity is an activated RLC entity
  • the second type of RLC entity is a deactivated RLC entity
  • the PDCP entity If an instruction to activate PDCP repetition is received and for the deactivated RLC entity associated with the PDCP entity, the PDCP entity sends an instruction to change the secondary RLC entity to the RLC entity.
  • the above-mentioned operation performed upon receipt of an instruction to activate or deactivate PDCP repetition is performed only when the PDCP entity is associated with more than two RLC entities. It can be specified that if the PDCP entity is only associated with two RLC entities, the following operations are performed: if an instruction to activate PDCP repetition is received, PDCP repetition is activated; if an instruction to deactivate PDCP repetition is received, PDCP repetition is deactivated.
  • the indications received by the PDCP entity in the foregoing embodiment all come from the lower layer (for example, the MAC layer) or the RRC layer.
  • the indication of changing the secondary RLC entity, the indication of activating the RLC entity, and the indication of deactivating the RLC entity may be received by the MAC layer for instructing DRB activation or deactivation of PDCP repetition and/or activation of the RLC entity.
  • the MAC control element that is, the lower layer of PDCP
  • the PDCP layer that is, the upper layer of MAC.
  • the instruction to change the secondary RLC entity is the instruction to change the activated (or deactivated) secondary RLC entity, or the instruction to switch the state of the secondary RLC entity, or the instruction to activate the secondary RLC entity, or to deactivate the secondary RLC entity Entity’s instructions.
  • the secondary RLC entity can also be replaced with an RLC entity, and vice versa.
  • AM RLC entity sender or UM RLC receives the instruction from the upper layer to deactivate the RLC entity or the first instruction or deactivating the PDCP repetitive instruction of the RLC entity or deactivating the secondary RLC entity or deactivating the PDCP repetitive instruction.
  • AM RLC entity sender or UM RLC sends The entity deletes all RLC SDUs, and the RLC SDU and its segments are not submitted to the lower layer (neither the RLC SDU nor a segment there of has not been submitted to the lower layers).
  • the AM RLC entity transmitter receives an instruction to delete an RLC SDU from an upper layer or receives an instruction to deactivate an RLC entity or a first instruction from an upper layer or an instruction to deactivate PDCP of an RLC entity or an instruction to deactivate a secondary RLC entity. Or after deactivating the PDCP repeated indication, perform one of the operations defined in the following embodiments 1-7:
  • the AM RLC entity sender (or AM RLC entity sender sends In the buffer area and retransmission buffer area) only contains (or contains and only contains) the RLC SDU or RLC SDU that has been transmitted and awaiting acknowledgements, then the retransmission has the largest sequence number that has been submitted to the lower layer
  • the RLC SDU (consider the RLC SDU with the highest SN always the RLC SDUs submitted to lower layer for retransmission), and the corresponding AMD PDU contains a query.
  • the corresponding AMD PDU is the AMD PDU corresponding to the RLC SDU or RLC SDU segment, that is, the load (also referred to as the data field) of the AMD PDU is the RLC SDU or RLC SDU segment.
  • including an inquiry in the AMD PDU refers to setting the polling bit field of the AMD PDU to 1 (indicating that the AM RLC entity sender requests a status report from its peer AM RLC entity ), set the variable PDU_WITHOUT_POLL to 0 and set the variable BYTE_WITHOUT_POLL to 0, where PDU_WITHOUT_POLL is a counter used to record the number of AMD PDUs sent (send) after the most recent transmission (transmit) query bit, its initial value is 0 ; BYTE_WITHOUT_POLL is a counter used to record the number of data bytes (data bytes) sent after the most recent transmission (transmit) of the inquiry bit, and its initial value is 0.
  • the AM RLC entity sender when the AM RLC entity sender submits an AMD PDU containing an inquiry to the lower layer, it performs the following operations: Set the value of POLL_SN to the maximum sequence number of the AMD PDU that has been submitted to the lower layer (that is, set the value of POLL_SN to the lower layer. The sequence number of the AMD PDU with the largest sequence number in the AMD PDU, set POLL_SN to the highest SN of the AMD PDU continuously the AMD PDUs submitted to lower layer. If t-PollRetransmit is not running, start t-PollRetransmit, otherwise restart t- PollRetransmit. For a more detailed description of setting the query bit, see 3GPP TS38.322 5.3.3.2.
  • the retransmission has the largest sequence that has been submitted to the lower layer No. RLC SDU, and a query is included in the corresponding AMD PDU.
  • the corresponding AMD PDU is the AMD PDU corresponding to the RLC SDU or RLC SDU segment, that is, the data field of the AMD PDU is the RLC SDU or RLC SDU segment.
  • Embodiment 3 if the transmission buffer and the retransmission buffer are both empty and/or there are (or at least one) RLC SDU or RLC SDU segment that has been sent and waiting to be confirmed, and the retransmission query timer t- If pollRetransmit is not running, the RLC SDU with the largest sequence number that has been submitted to the lower layer is retransmitted, and a query is included in the corresponding AMD PDU.
  • the corresponding AMD PDU is the AMD PDU corresponding to the RLC SDU or RLC SDU segment, that is, the data field of the AMD PDU is the RLC SDU or RLC SDU segment.
  • Embodiment 4 if the sending buffer and the retransmission buffer are both empty (except for the RLC SDU or RLC SDU segment that has been sent and waiting for confirmation) and/or there is (or at least one) that has been sent and waiting for confirmation If the RLC SDU or RLC SDU is segmented, and the retransmission query timer t-pollRetransmit is not running, the RLC SDU with the largest sequence number that has been submitted to the lower layer is retransmitted, and a query is included in the corresponding AMD PDU.
  • the corresponding AMD PDU is the AMD PDU corresponding to the RLC SDU or RLC SDU segment, that is, the data field of the AMD PDU is the RLC SDU or RLC SDU segment.
  • Embodiment 5 if the send buffer and retransmission buffer are both empty (except for the RLC SDU or RLC SDU segment that has been sent and awaiting confirmation) and/or there is or at least one RLC SDU that has been sent and awaiting confirmation Or the RLC SDU segment has not been queried, then the RLC SDU with the largest sequence number that has been submitted to the lower layer is retransmitted, and a query is included in the corresponding AMD PDU.
  • the corresponding AMD PDU is the AMD PDU corresponding to the RLC SDU or RLC SDU segment, that is, the data field of the AMD PDU is the RLC SDU or RLC SDU segment.
  • the RLC SDU or RLC SDU segment that has been sent and awaiting confirmation has not been queried means that the sent query is not used (or does not include) to request the peer AM RLC entity to confirm whether the RLC SDU or RLC SDU segment is successfully received (Or the status report sent by the requesting peer AM RLC entity must include the positive or negative confirmation of the RLC SDU or RLC SDU segment).
  • Embodiment 6 if the transmission buffer and retransmission buffer are both empty (except for the RLC SDU or RLC SDU segment that has been sent and awaiting confirmation) and/or there are (or at least one) that has been sent and awaiting confirmation If the RLC SDU or RLC SDU is segmented, and the POLL_SN is less than the maximum sequence number of the AMD PDU that has been submitted to the lower layer, the RLC SDU with the largest sequence number that has been submitted to the lower layer is retransmitted, and a query is included in the corresponding AMD PDU.
  • the corresponding AMD PDU is the AMD PDU corresponding to the RLC SDU or RLC SDU segment, that is, the data field of the AMD PDU is the RLC SDU or RLC SDU segment.
  • Embodiment 7 if the transmission buffer and the retransmission buffer are both empty and/or there are (or at least one) RLC SDU or RLC SDU that has been sent and waiting to be confirmed, and the POLL_SN is smaller than the one that has been submitted to the lower layer
  • the RLC SDU with the largest sequence number that has been submitted to the lower layer is retransmitted, and a query is included in the corresponding AMD PDU.
  • the corresponding AMD PDU is the AMD PDU corresponding to the RLC SDU or RLC SDU segment, that is, the data field of the AMD PDU is the RLC SDU or RLC SDU segment.
  • the sending buffer and retransmission buffer are both empty (except for the RLC SDU or RLC SDU segment that has been sent and waiting for confirmation). Unnecessary retransmissions. However, if PDCP is repeatedly deactivated or the current RLC entity (or secondary RLC entity) is deactivated, even if there is data awaiting transmission in the upper layer (data awaits in the upper layer), retransmission is performed, that is, the retransmission has been submitted to the lower layer. The RLC SDU with the largest sequence number, and a query is included in the corresponding AMD PDU.
  • the corresponding AMD PDU is the AMD PDU corresponding to the RLC SDU or RLC SDU segment, that is, the load of the AMD PDU is the RLC SDU or RLC SDU segment. Because, in this case, although the upper layer has data waiting to be transmitted, because the PDCP repetition has been deactivated or the current RLC entity has been deactivated, the PDCP entity will not send these data to the current RLC entity.
  • condition "if both the sending buffer and the retransmission buffer are empty and/or there is (or at least one) RLC SDU or RLC SDU segment that has been sent and waiting to be confirmed" can be replaced with a condition" If both the transmission buffer area and the retransmission buffer area are empty (except for the RLC SDU or RLC SDU segment that has been sent and awaiting confirmation), a new embodiment is formed, which is also the scope of implementation of the present disclosure.
  • both the sending buffer and the retransmission buffer are empty (except for the RLC SDU or RLC SDU segment that has been sent and waiting for confirmation), which means the AM RLC entity sender (or AM RLC entity sender send buffer) And the retransmission buffer) does not include other RLC SDU or RLC SDU segments except the RLC SDU or RLC SDU segment that has been sent and waiting to be confirmed.
  • retransmitting the RLC SDU with the largest sequence number submitted to the lower layer refers to using the RLC SDU with the largest sequence number submitted to the lower layer for retransmission or using the RLC SDU submitted to the lower layer with
  • the RLC SDU with the largest sequence number is used for retransmission, but when constructing the corresponding AMD PDU, the data field of the AMD PDU that needs to be constructed according to the amount of data that can be sent as indicated by the lower layer may contain the RLC SDU or its segments (that is, the structure
  • the AMD PDU should fit the total size of the AMD PDU indicated by the lower layer in a specific transmission opportunity).
  • the maximum sequence number of the RLC SDU or RLC SDU segment waiting to be confirmed or submitted to the lower layer in this disclosure refers to the one with the largest sequence number among the RLC SDU or RLC SDU segment waiting to be confirmed or submitted to the lower layer, waiting for confirmation or submitted to the lower layer.
  • the query state variable POLL_SN is used to hold the maximum value of the serial number of the AMD PDU that has been submitted to the lower layer during the query (specifically set according to section 5.3.3.2 of 3GPP TS38.322). variable holds the value of the highest SN of the AMD PDU always the AMD PDUs submitted to lower layer when POLL_SN is set according to sub clause 5.3.3.2).
  • the buffer area in the present disclosure may be a sending buffer area and/or a retransmission buffer area.
  • deactivate packet repetition "configure packet repetition but in a deactivated state”
  • an upper layer e.g., PDCP
  • lower layer e.g., MAC
  • the foregoing embodiments of the present disclosure may be implemented by software, hardware, or a combination of both software and hardware.
  • the various components inside the base station and user equipment in the above embodiments can be implemented by a variety of devices or circuits. These devices include but are not limited to: analog circuit devices, digital circuit devices, digital signal processing (DSP) circuits, Programming processor, application specific integrated circuit (ASIC), field programmable gate array (FPGA), programmable logic device (CPLD), etc.
  • DSP digital signal processing
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • CPLD programmable logic device
  • the embodiments of the present disclosure disclosed herein may be implemented on a computer program product.
  • the computer program product is a product that has a computer-readable medium with computer program logic encoded on the computer-readable medium, and when executed on a computing device, the computer program logic provides related operations to implement The above-mentioned technical solution of the present disclosure.
  • the computer program logic When executed on at least one processor of the computing system, the computer program logic causes the processor to perform the operations (methods) described in the embodiments of the present disclosure.
  • Such settings of the present disclosure are typically provided as software, code and/or other data structures set or encoded on computer-readable media such as optical media (e.g.
  • CD-ROM compact disc-read only memory
  • floppy disks or hard disks or such as one or more Firmware or microcode on a ROM or RAM or PROM chip, or downloadable software images, shared databases, etc. in one or more modules.
  • Software or firmware or such a configuration may be installed on a computing device, so that one or more processors in the computing device execute the technical solutions described in the embodiments of the present disclosure.
  • the embodiments of the present disclosure disclosed herein may be implemented as a program running on the device according to the present disclosure.
  • the program running on the device according to the present disclosure may be a program that causes the computer to implement the functions of the embodiments of the present disclosure by controlling a central processing unit (CPU).
  • the program or the information processed by the program can be temporarily stored in volatile memory (such as random access memory RAM), hard disk drive (HDD), non-volatile memory (such as flash memory), or other memory systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种PDCP实体的控制方法以及PDCP实体,所述PDCP实体的控制方法中,所述PDCP实体关联两个以上的无线链路控制RLC实体,所述两个以上的RLC实体包含主RLC实体和辅RLC实体,所述PDCP实体在接收到激活PDCP重复的指示、或者改变辅RLC实体的指示、或者激活RLC实体的指示的情况下,执行如下操作:激活PDCP重复;为指示的RLC实体激活PDCP重复。

Description

PDCP实体的控制方法以及PDCP实体 技术领域
本公开涉及无线通信技术领域。更具体地,本公开涉及PDCP实体的控制方法以及PDCP实体。
背景技术
2016年3月,在第三代合作伙伴计划(3rd Generation Partnership Project:3GPP)RAN#71次全会上,NTT DOCOMO提出了一个关于5G技术标准的新的研究项目(参见非专利文献:RP-160671:New SID Proposal:Study on New Radio Access Technology),并获批准。该研究项目的目的是开发一个新的无线(New Radio:NR)接入技术以满足5G的所有应用场景、需求和部署环境。
目前,网络可以配置分组数据汇聚协议PDCP实体的PDCP重复功能,发送端PDCP实体功能支持PDCP重复(即将一个PDCP数据PDU向下层递交两次或多次),且接收端PDCP实体功能支持删除重复PDCP PDU。上行和下行均支持PDCP重复,PDCP重复采用PDCP协议数据单元(PDU)和/或服务数据单元(SDU)在两个或多个RLC实体/逻辑信道上发送并使得重复的PDCP PDU通过不同的载波/小区发送。在现有的系统中,配置了PDCP重复的PDCP实体,如果接收到来自其关联的AM RLC实体中的一个AM RLC实体的PDCP数据PDU发送成功的指示,则指示其他AM RLC实体(或其他激活的AM RLC实体)删除这个重复的PDCP数据PDU;如果PDCP重复被去激活,指示辅RLC实体删除所有重复的PDCP数据PDU;如果辅RLC实体被去激活,指示被去激活的辅RLC实体删除所有重复的PDCP数据PDU。在3GPP版本16正在讨论的工业物联网(IIoT)项目中,一个支持PDCP重复的承载配置或关联的RLC实体可以多达4个,通过RRC消息或媒体访问控制控制元素来指示哪些RLC实体用于传输PDCP数据PDU。
本公开讨论PDCP实体和/或RLC实体在PDCP重复被去激活或被激活后切换/改变用于传输PDCP数据PDU的RLC实体所涉及的问题。
发明内容
本公开是针对上述问题而提出的,其目的在于提供一种能够解决PDCP实体和/或RLC实体在PDCP重复被去激活或被激活后切换/改变用于传输PDCP数据PDU的RLC实体所涉及的问题的PDCP实体的控制方法以及PDCP实体。
根据本公开的第一方面,提出了一种PDCP实体的控制方法,所述PDCP实体关联两个以上的无线链路控制RLC实体,所述两个以上的RLC实体包含主RLC实体和辅RLC实体,所述PDCP实体在接收到激活PDCP重复的指示、或者改变辅RLC实体的指示、或者激活RLC实体的指示的情况下,执行如下操作:激活PDCP重复;为指示的RLC实体激活PDCP重复。
在上述第一方面的PDCP实体的控制方法中,可以在所述PDCP重复被激活的过程中,所述PDCP实体在接收到去激活PDCP重复的指示的情况下,执行如下操作:去激活PDCP重复;为指示的RLC实体去激活PDCP重复。
在上述第一方面的PDCP实体的控制方法中,可以在所述PDCP重复被激活的过程中,所述PDCP实体在接收到改变辅RLC实体的指示、或者激活未被激活的RLC实体的指示、或者去激活已被激活的RLC实体的指示的情况下,执行如下操作:向指示为去激活的关联的RLC实体发送第一指示,其中,所述第一指示用于指示对应的RLC实体不再用于PDCP重复或去激活PDCP重复或指示对应的RLC实体被去激活。
在上述第一方面的PDCP实体的控制方法中,可以在所述PDCP重复被激活的过程中,所述PDCP实体在接收到去激活PDCP重复的指示、或者改变辅RLC实体的指示、或者去激活已被激活的RLC实体的指示的情况下,指示去激活的RLC实体或去激活的辅RLC实体删除所有重复的PDCP数据PDU。
在上述第一方面的PDCP实体的控制方法中,可以在所述PDCP重复被激活的过程中,所述PDCP实体在接收到去激活PDCP重复的指示、或者改变辅RLC实体的指示、或者激活未被激活的RLC实体的指示、或者去激活已被激活的RLC实体的指示的情况下,所述PDCP实体执行如下操作 的至少一个操作:指示关联的RLC实体去激活PDCP重复;和指示去激活的RLC实体或去激活的辅RLC实体删除所有重复的PDCP数据PDU。
在上述第一方面的PDCP实体的控制方法中,可以在所述PDCP重复被激活的过程中,所述PDCP实体在接收到去激活PDCP重复的指示、或者改变辅RLC实体的指示、或者激活未被激活的RLC的指示、或者去激活已被激活的RLC的指示的情况下,所述PDCP实体执行如下操作的任意一个操作:向指示为去激活的关联的RLC实体发送第一指示;向指示为去激活PDCP重复去激活的RLC实体发送第一指示;向下层发送第一指示;向去激活的RLC实体发送第一指示;向为PDCP重复去激活的RLC实体发送第一指示;其中,所述第一指示用于指示对应的RLC实体不再用于PDCP重复或去激活PDCP重复或指示对应的RLC实体被去激活。
在上述第一方面的PDCP实体的控制方法中,可以在所述PDCP实体关联的RLC实体超过两个的情况下,在一个辅RLC实体从第一类RLC实体转换为第二类RLC实体时,所述PDCP实体向所述RLC实体发送改变辅RLC实体的指示或第一指示,其中,第一指示用于指示对应的RLC实体不再用于PDCP重复或去激活PDCP重复或指示对应的RLC实体被去激活。
在上述第一方面的PDCP实体的控制方法中,所述RLC实体在接收到来自上层的删除无线链路控制服务数据单元RLC SDU的指示、或者接收到来自上层的去激活RLC实体的指示、或者第一指示、或者去激活RLC实体的PDCP重复的指示、或者去激活辅RLC实体的指示时,执行如下操作:重传已递交下层的具有最大序列号的(无线链路控制服务数据单元)RLC SDU;在对应的AMD PDU中包含一个询问。
在上述第一方面的PDCP实体的控制方法中,所述对应的AMD PDU是所述RLC SDU或RLC SDU分段对应的AMD PDU,所述AMD PDU中包含一个询问是指将所述AMD PDU的询问比特域置为1,设置变量PDU_WITHOUT_POLL值为0以及设置变量BYTE_WITHOUT_POLL值为0。
根据本公开的第二方面,提出了一种PDCP实体,所述PDCP实体在上层的控制下执行根据上下文所述的PDCP实体的控制方法。
附图说明
通过下文结合附图的详细描述,本公开的上述和其它特征将会变得更加明显,其中:
图1示出了分组重复示意图;
图2a示出了载波聚合中分组重复承载的协议架构示意图;
图2b示出了双连接中分组重复承载的协议架构示意图;
具体实施方式
下面结合附图和具体实施方式对本公开进行详细阐述。应当注意,本公开不应局限于下文所述的具体实施方式。另外,为了简便起见,省略了对与本公开没有直接关联的公知技术的详细描述,以防止对本公开的理解造成混淆。本公开实施例不但可以应用于LTE、NR,也可以应用于其他通信系统,例如6G。
下面简要描述本公开涉及的部分术语,所述术语在3GPP相关文档中有更为详细的描述。如未特别说明,本公开涉及的术语采用此处定义。
RRC:Radio Resource Control,无线资源控制。
PDCP:Packet Data Convergence Protocol,分组数据汇聚协议。
RLC:Radio Link Control,无线链路控制。
RLC实体可以是非确认模式(Unacknowledged Mode,UM)RLC实体或确认模式(Acknowledged Mode,AM)RLC实体。AM RLC实体包含AM RLC实体发送端和AM RLC实体接收端,一个AM RLC实体的AM RLC实体发送端向另一个AM RLC实体的AM RLC实体接收端发送RLC PDU(也称AMD PDU),且所述AM RLC实体接收端向所述AM RLC实体发送端发送状态报告STATUS report(也称为状态PDU)。所述AMD PDU可以包含一个完整的RLC SDU或RLC SDU的分段(segment)。所述AM RLC实体或所述AM RLC实体的AM RLC实体发送端和所述另一个AM RLC实体或所述另一个AM RLC实体的AM RLC实体接收端互称为对等AM RLC实体(peerAM RLC entity)。AM RLC实体发送端递交下层的RLC PDU称为AMD PDU;AM RLC实体接收端从下层接收的RLC PDU称为AMD PDU。
MAC:Medium Access Control,媒体访问控制。
SDU:Service Data Unit,服务数据单元。
PDU:Protocol Data Unit,协议数据单元。在本公开中,如未特别说明,PDU可以是数据PDU和/或控制PDU。例如,RLC PDU可以是RLC数据PDU和/或RLC控制PDU(例如状态报告STATUS report或STATUS PDU)。STATUS PDU是AM RLC实体接收端用于向其对等AM RLC实体报告其正确接收的RLC数据PDU和检测为丢失的RLC数据PDU(STATUS PDU is used by the receiving side of an AM RLC entity to inform the peer AM RLC entity about RLC data PDUs that are received successfully,and RLC data PDUs that are detected to be lost by the receiving side of an AM RLC entity)。
在本公开中,将从上层接收或运送(deliver)上层的数据称为SDU,将递交(submit)下层或从下层接收的数据称为PDU。在发送端,各层(例如PDCP或RLC)在接收到SDU后,按照预定义的规则将SDU封装为PDU,SDU或SDU分段作为PDU的负载。例如,PDCP实体从上层接收的数据或运送上层的数据称为PDCP SDU;PDCP实体从RLC实体接收到的数据或递交RLC实体的数据称为PDCP PDU(也就是RLC SDU)。
主RLC实体:Primary RLC entity,为PDCP重复配置的RLC实体中,至少用于发送PDCP控制PDU的RLC实体(无论PDCP重复被激活还是去激活)。在载波聚合情况下,去激活分组重复后PDCP实体将PDCP数据PDU发送到主RLC实体,所述主RLC实体是所关联的RLC实体中的一个RLC实体。主RLC实体可以通过RRC信令配置。
基站可通过RRC信令中携带的信元primarypath(所述信元的具体描述见3GPP TS38.331)以及包含在所述信元中的用于标识小区组标识的信元cellGroup和/或逻辑信道标识的信元logicalChannel等来为用户设备UE或支持PDCP重复的DRB或PDCP实体配置主RLC实体。本公开将不是指定为主RLC实体的RLC实体称为辅RLC实体(Sencondary RLC entity),以便于描述本公开实施例。
在双连接情况下,基站为分离承载设置数据分离门限,例如通过信元ul-DataSplitThreshold(所述信元的具体描述见3GPP TS38.331和TS38.323)设定数据分离门限。现有系统中,当PDCP重复被去激活或没有配置PDCP重复时,如果PDCP数据总量和其关联的两个RLC实体中等待初始传输的数据量的和大于或等于设定的数据分离门限,则PDCP实体将PDCP PDU提交所关联的主RLC实体或辅RLC实体;如果未配置数据分离门限或者如 果PDCP数据总量和其关联的两个RLC实体中等待初始传输的数据量的和小于设定的数据分离门限,则PDCP实体将PDCP PDU提交主RLC实体。在3GPP正在讨论的版本16中,由于一个PDCP实体可以被配置关联多达4个RLC实体,在PDCP重复被去激活时,对于载波聚合的场景,PDCP实体将PDCP PDU提交主RLC实体;对于双连接的场景,如果PDCP数据总量和其关联的主RLC实体和激活的辅RLC实体中等待初始传输的数据量的和大于或等于设定的数据分离门限,则PDCP实体将PDCP PDU提交所关联的主RLC实体或激活的辅RLC实体;如果未配置数据分离门限或者如果PDCP数据总量和其关联的主RLC实体和激活的辅RLC实体中等待初始传输的数据量的和小于设定的数据分离门限,则PDCP实体将PDCP PDU提交主RLC实体。这里,激活的RLC实体是指PDCP重复被去激活后被配置或指示为可用于分离承载数据传输的RLC实体。
分组重复:packet duplication或PDCP duplication,也称为PDCP重复或重复,是指PDCP实体将同一PDCP PDU两次(或多次)递交给下层,其中一次递交给主RLC实体(也称为主路径),其他递交给激活的辅RLC实体(也称为辅路径)。
在3GPP目前的协议版本15中(TS38.323、TS38.300以及TS38.331),RRC为PDCP重复配置两个RLC实体。图1示出了分组重复示意图,如图1所示,RRC可以为PDCP重复配置两个RLC实体。当PDCP重复被激活时,PDCP实体将同一PDCP PDU发送到关联的两个下层实体(即RLC实体),换言之PDCP实体将一个PDCP PDU向下层递交两次,一次递交给主RLC实体,一次递交给辅RLC实体。为了增强URLLC的可靠性,3GPP在版本16中将支持一个PDCP实体关联至多4个RLC实体的场景。在这种情况下,当PDCP重复被激活时,PDCP实体将同一PDCP PDU递交给激活的RLC实体。例如,假设RRC为一个PDCP实体配置了4个RLC实体,其中仅3个RLC实体被激活(这可以通过RRC配置或由MAC控制元素指示),则PDCP实体将同一PDCP PDU发送到关联的且三个激活的下层实体(即RLC实体),换言之PDCP实体将一个PDCP PDU向下层递交三次,分别递交给三个激活的RLC实体。需要说明的是,如果主RLC实体不能被去激活,则本公开中所述递交给激活的RLC实体是指递交给主RLC实体和其他激活的辅RLC实体。如果一个PDCP实体只关联了两个RLC实体,当PDCP重复被激活时,关联的两个RLC实体均被激活。
在本公开实施例中,如未特别说明,激活的RLC实体(也可称为激活了PDCP重复的RLC实体或为PDCP重复激活的RLC实体或PDCP重复被激活的RLC实体)是指所述RLC实体的PDCP重复被激活,即所述RLC实体用于传输PDCP数据PDU(PDCP实体将PDCP数据PDU递交给激活的RLC实体)。换言之,在PDCP重复被激活的情况下,激活RLC实体后,PDCP实体将向其递交PDCP数据PDU直到这个RLC实体被去激活。去激活的RLC实体(也可称为去激活PDCP重复的RLC实体或为PDCP重复去激活的RLC实体或PDCP重复被去激活的RLC实体)是指所述RLC实体不再用于传输PDCP数据PDU。换言之,在去激活RLC实体后,PDCP实体不再向其递交PDCP数据PDU直到这个RLC实体被激活。
本公开以AM RLC实体所涉及的操作为例进行说明。但是,本公开实施例也适用于UM RLC实体。
本公开中,所述“下层实体”和“下层”是等价描述,可互换使用。
重传询问定时器t-pollRetransmit:所述定时器被AM RLC实体发送端用于重传询问的目的(This timer is used by the transmitting side of an AM RLC entity in order to retransmit a poll)。
以PDCP PDU或SDU重复发送两次为例(即一个PDCP实体关联两个RLC实体和/或两个逻辑信道),作为示例,图2a示出了载波聚合场景下分组重复承载的协议架构图,而图2b示出了双连接场景下分组重复的协议架构图。在图2a所示示意图中,一个承载的PDCP实体关联到两个RLC实体和两个逻辑信道、一个MAC实体。在图2b所示示意图中,一个分离承载的PDCP实体关联到两个RLC实体和两个逻辑信道、两个MAC实体。但本公开所述的技术方案并不限于PDCP PDU或SDU重复发送两次的场景,本领域技术人员可以容易地扩展到重复发送多次的场景(即一个PDCP实体关联多个RLC实体和/或多个逻辑信道)。
信息元素pdcp-Duplication是携带在PDCP-Config中,用于指示在接收到这个信息元素(简称信元)时上行重复的状态是否被配置并被激活。这个信息元素出现,表示配置了重复,且这个信息元素取值为TRUE表示重复被激活。所述用于为SRB和/或DRB设置可配置的PDCP参数的PDCP-Config是包含在由基站或网络发送给UE的RRC消息中,所述RRC消息用于为UE配置支持PDCP重复的DRB。
下面描述配置了PDCP重复或pdcp-Duplication或pdcp-Duplication被设置为TRUE的PDCP实体(即发送PDCP实体)执行的操作(对数据无线承载DRB而言),发送PDCP实体(the transmitting PDCP entity)(即配置了PDCP重复的PDCP实体)执行以下至少一项:
(一)如果收到激活PDCP重复的指示(the activation of PDCP duplication is indicated)或收到改变辅RLC实体的指示或收到激活RLC实体的指示或收到去激活RLC实体的指示,激活PDCP重复或为指示的RLC实体激活PDCP重复或者为指示的关联的RLC实体激活PDCP重复(activate the PDCP duplication for the indicated associated RLC entities)或为指示为激活的RLC实体激活PDCP重复,所述RLC实体是为PDCP重复激活的RLC实体,例如RRC消息中指示为激活的RLC实体或MAC CE中指示为激活的RLC实体;
(二)如果收到激活PDCP重复的指示或者如果收到去激活PDCP重复的指示或收到改变辅RLC实体的指示或收到激活RLC实体的指示或收到去激活RLC实体的指示,向指示为去激活的关联的RLC实体发送第一指示或向指示为去激活PDCP重复去激活的RLC实体发送第一指示或向下层发送第一指示或向去激活的RLC实体发送第一指示或向为PDCP重复去激活的RLC实体发送第一指示(如果存在这样的RLC实体才发送所述一指示)。所述第一指示用于指示对应的RLC实体不再用于PDCP重复或去激活PDCP重复或指示对应的RLC实体被去激活;
(三)如果收到激活PDCP重复的指示或收到改变辅RLC实体的指示或收到激活RLC实体的指示或收到去激活RLC实体的指示,向下层指示去激活关联的RLC实体(如果存在这样的RLC实体才发送所述指示)或向下层指示关联的RLC实体的PDCP重复被去激活(如果存在这样的RLC实体才发送所述指示);
(四)如果收到去激活PDCP重复的指示(if the deactivation of PDCP duplication is indicated),去激活PDCP重复或为指示的RLC实体去激活PDCP重复或为指示为去激活的RLC实体去激活PDCP重复;
(五)如果收到去激活PDCP重复的指示或收到改变辅RLC实体的指示(例如,UE的MAC层接收到来自基站的用于指示改变一个DRB的PDCP重复状态和/或激活的RLC实体的媒体访问控制控制元素MAC CE)或收到 去激活RLC实体的指示,指示辅RLC实体或去激活的RLC实体或去激活的辅RLC实体删除所有重复的PDCP数据PDU。
(六)如果收到去激活PDCP重复的指示或收到改变辅RLC实体的指示或接收到激活RLC的指示或去激活RLC的指示,指示关联的RLC实体去激活PDCP重复或指示下层关联的RLC实体的PDCP重复被去激活;和/或指示辅RLC实体或去激活的RLC实体或去激活的辅RLC实体删除所有重复的PDCP数据PDU。
(七)如果去激活PDCP重复的指示或收到改变辅RLC实体的指示或接收到激活RLC的指示或去激活RLC的指示,向指示为去激活的关联的RLC实体发送第一指示或向指示为去激活PDCP重复去激活的RLC实体发送第一指示或向下层发送第一指示或向去激活的RLC实体发送第一指示或向为PDCP重复去激活的RLC实体发送第一指示(如果存在这样的RLC实体)。
(八)如果收到激活PDCP重复的指示(或收到改变辅RLC实体的指示或收到激活RLC实体的指示或收到去激活RLC实体的指示)且所述PDCP实体关联的RLC实体超过两个,如果一个辅RLC实体从第一类RLC实体转换为第二类RLC实体,PDCP实体向所述RLC实体发送改变辅RLC实体的指示或第一指示。所述第一类RLC实体是激活的RLC实体,所述第二类RLC实体是去激活的RLC实体;
(九)如果收到激活PDCP重复的指示且对于所述PDCP实体关联的去激活的RLC实体,PDCP实体向所述RLC实体发送改变辅RLC实体的指示。
可选的,上述收到激活或去激活PDCP重复的指示(或收到改变辅RLC实体的指示)时执行的操作仅在PDCP实体关联了两个以上的RLC实体才执行。可以规定,如果PDCP实体仅关联了两个RLC实体,执行以下操作:如果收到激活PDCP重复的指示,激活PDCP重复;如果收到去激活PDCP重复的指示,去激活PDCP重复。
可选的,如未特别说明的,上述实施例中PDCP实体接收到的指示均来自下层(例如,MAC层)或RRC层。
可选的,所述改变辅RLC实体的指示和激活RLC实体的指示以及去激活RLC实体的指示可以是MAC层在收到用于指示DRB激活或去激活 PDCP重复和/或激活的RLC实体的MAC控制元素时(即PDCP的下层)指示给PDCP层(即MAC的上层)。
在本公开实施例中,改变辅RLC实体的指示就是改变激活(或去激活)的辅RLC实体的指示,或转换辅RLC实体状态的指示,或者激活辅RLC实体的指示,或者去激活辅RLC实体的指示。所述辅RLC实体也可以替换为RLC实体,反之亦然。
下面描述RLC实体执行的操作实施例。
接收到来自上层的去激活RLC实体的指示或第一指示或去激活RLC实体的PDCP重复的指示或去激活辅RLC实体的指示或去激活PDCP重复的指示,AM RLC实体发送端或UM RLC发送实体删除所有RLC SDU,所述RLC SDU及其分段均未递交给下层(neither the RLC SDU nor a segment thereof has not been submitted to the lower layers)。
AM RLC实体发送端在接收到来自上层的删除RLC SDU的指示或接收到来自上层的去激活RLC实体的指示或第一指示或去激活RLC实体的PDCP重复的指示或去激活辅RLC实体的指示或去激活PDCP重复的指示后,执行以下实施例1~7定义的操作之一:
在实施例1中,如果发送缓存区和重传缓存区均为空(已发送且等待确认的RLC SDU或RLC SDU分段除外),换言之,AM RLC实体发送端(或AM RLC实体发送端发送缓存区和重传缓存区中)仅包含(或者包含且仅包含)已传输(transmitted)且等待确认(awaiting acknowledgements)的RLC SDU或RLC SDU分段,则重传已递交下层的具有最大序列号的RLC SDU(consider the RLC SDU with the highest SN among the RLC SDUs submitted to lower layer for retransmission),且在对应的AMD PDU中包含一个询问。所述对应的AMD PDU是所述RLC SDU或RLC SDU分段对应的AMD PDU,即所述AMD PDU的负载(也称数据域)为所述RLC SDU或RLC SDU分段。
在本公开实施例中,在AMD PDU中包含一个询问是指将所述AMD PDU的询问比特域(Polling bit field)置为1(表示AM RLC实体发送端向其对等AM RLC实体请求状态报告),设置变量PDU_WITHOUT_POLL值为0以及设置变量BYTE_WITHOUT_POLL值为0,其中 PDU_WITHOUT_POLL是一个计数器,用于记录从最近一次传输(transmit)询问比特后发送(send)的AMD PDU的数目,其初始值为0;BYTE_WITHOUT_POLL是一个计数器,用于记录从最近一次传输(transmit)询问比特后发送(send)的数据字节(data bytes)的数目,其初始值为0。此外,AM RLC实体发送端在递交一个包含询问的AMD PDU给下层时,执行以下操作:设置POLL_SN的值为已递交给下层的AMD PDU的最大序列号(即设置POLL_SN的值为已递交给下层的AMD PDU中序列号最大的AMD PDU的序列号,set POLL_SN to the highest SN of the AMD PDU among the AMD PDUs submitted to lower layer),如果t-PollRetransmit未运行,启动t-PollRetransmit,否则重启t-PollRetransmit。关于设置询问比特更详细的描述见3GPP TS38.322 5.3.3.2。
在实施例2中,如果发送缓存区和重传缓存区均为空但存在(或至少存在一个)已发送且等待确认的RLC SDU或RLC SDU分段,则重传已递交下层的具有最大序列号的RLC SDU,且在对应的AMD PDU中包含一个询问。所述对应的AMD PDU是所述RLC SDU或RLC SDU分段对应的AMD PDU,即所述AMD PDU的数据域为所述RLC SDU或RLC SDU分段。
在实施例3中,如果发送缓存区和重传缓存区均为空和/或存在(或至少存在一个)已发送且等待确认的RLC SDU或RLC SDU分段,并且重传询问定时器t-pollRetransmit未运行,则重传已递交下层的具有最大序列号的RLC SDU,且在对应的AMD PDU中包含一个询问。所述对应的AMD PDU是所述RLC SDU或RLC SDU分段对应的AMD PDU,即所述AMD PDU的数据域为所述RLC SDU或RLC SDU分段。
在实施例4中,如果发送缓存区和重传缓存区均为空(已发送且等待确认的RLC SDU或RLC SDU分段除外)和/或存在(或至少存在一个)已发送且等待确认的RLC SDU或RLC SDU分段,并且重传询问定时器t-pollRetransmit未运行,则重传已递交下层的具有最大序列号的RLC SDU,且在对应的AMD PDU中包含一个询问。所述对应的AMD PDU是所述RLC SDU或RLC SDU分段对应的AMD PDU,即所述AMD PDU的数据域为所述RLC SDU或RLC SDU分段。
在实施例5中,如果发送缓存区和重传缓存区均为空(已发送且等待确认的RLC SDU或RLC SDU分段除外)和/或存在或至少存在一个已发送且等待确认的RLC SDU或RLC SDU分段尚未被询问,则重传已递交下层的具有最大序列号的RLC SDU,且在对应的AMD PDU中包含一个询问。所述对应的AMD PDU是所述RLC SDU或RLC SDU分段对应的AMD PDU,即所述AMD PDU的数据域为所述RLC SDU或RLC SDU分段。所述存在发送且等待确认的RLC SDU或RLC SDU分段尚未被询问是指已发送的询问不用于(或不包含)请求对等AM RLC实体确认所述RLC SDU或RLC SDU分段是否成功接收(或请求对等AM RLC实体发送的状态报告中必须包含所述RLC SDU或RLC SDU分段的肯定确认或否定确认)。
在实施例6中,如果发送缓存区和重传缓存区均为空(已发送且等待确认的RLC SDU或RLC SDU分段除外)和/或存在(或存在至少一个)已发送且等待确认的RLC SDU或RLC SDU分段,并且POLL_SN小于已递交给下层的AMD PDU的最大序列号,则重传已递交下层的具有最大序列号的RLC SDU,且在对应的AMD PDU中包含一个询问。所述对应的AMD PDU是所述RLC SDU或RLC SDU分段对应的AMD PDU,即所述AMD PDU的数据域为所述RLC SDU或RLC SDU分段。
在实施例7中,如果发送缓存区和重传缓存区均为空和/或存在(或存在至少一个)已发送且等待确认的RLC SDU或RLC SDU分段,并且POLL_SN小于已递交给下层的AMD PDU的最大序列号,则重传已递交下层的具有最大序列号的RLC SDU,且在对应的AMD PDU中包含一个询问。所述对应的AMD PDU是所述RLC SDU或RLC SDU分段对应的AMD PDU,即所述AMD PDU的数据域为所述RLC SDU或RLC SDU分段。
在上述实施例1~7中,可进一步限制,如果上层有数据等待传输,发送缓存区和重传缓存区均为空(已发送且等待确认的RLC SDU或RLC SDU分段除外)不应该导致不必要的重传。但是,如果PDCP重复被去激活或当前RLC实体(或辅RLC实体)被去激活,即使上层有数据等待传输(data awaits in the upper layer),也执行重传,即重传已递交下层的具有最大序列号的RLC SDU,且在对应的AMD PDU中包含一个询问。所述对应的AMD PDU是所述RLC SDU或RLC SDU分段对应的AMD PDU,即所述AMD  PDU的负载为所述RLC SDU或RLC SDU分段。因为,在这种情况下,虽然上层有数据等待传输,但是因为PDCP重复已被去激活或当前RLC实体被去激活,PDCP实体不会将这些数据发送到当前RLC实体。
本公开实施例中,可以将条件“如果发送缓存区和重传缓存区均为空和/或存在(或存在至少一个)已发送且等待确认的RLC SDU或RLC SDU分段”替换为条件“如果发送缓存区和重传缓存区均为空(已发送且等待确认的RLC SDU或RLC SDU分段除外)”形成新的实施例,也是本公开的实施范围。本公开实施例中,发送缓存区和重传缓存区均为空(已发送且等待确认的RLC SDU或RLC SDU分段除外),表示AM RLC实体发送端(或AM RLC实体发送端发送缓存区和重传缓存区中)不包含除已发送且等待确认的RLC SDU或RLC SDU分段外的其他RLC SDU或RLC SDU分段。
此外,在本公开实施例中,重传已递交下层的具有最大序列号的RLC SDU是指将已递交下层的具有最大序列号的RLC SDU用于重传或将已递交下层的RLC SDU中具有最大序列号的RLC SDU用于重传,但是在构造对应的AMD PDU时,需要根据下层指示的可发送的数据量构建的AMD PDU的数据域可能包含所述RLC SDU或其分段(即构造的AMD PDU应适合下层在特定传输机会中指示的AMD PDU的总大小)。此外,将“重传已递交下层的具有最大序列号的RLC SDU”的操作替换为“重传任意一个尚未被肯定确认的RLC SDU(consider any RLC SDU which has not been positively acknowledged for retransmission)”或“重传已递交下层的具有最大序列号的RLC SDU,或者重传任意一个尚未被肯定确认的RLC SDU”所形成的实施例也是本公开的保护范围。
本公开所述等待确认或已递交下层的RLC SDU或RLC SDU分段的最大序列号是指等待确认或已递交下层的RLC SDU或RLC SDU分段中序列号最大的等待确认或已递交下层的RLC SDU或RLC SDU分段的序列号。
本公开实施例中,所述询问状态变量POLL_SN用于保存(hold)设置询问(具体根据3GPP TS38.322 5.3.3.2节设置)时已递交给下层的AMD PDU的序列号的最大值(This state variable holds the value of the highest SN of the AMD PDU among the AMD PDUs submitted to lower layer when  POLL_SN is set according to sub clause 5.3.3.2)。
根据上述实施例的方法,能够在接收到来自AM RLC实体接收端的状态报告时执行适当的操作,从而能够提高无线通信系统的通信效率以及可靠性。
需要指出的是,本公开在UE处执行的实施例也可以在基站处执行。
如未特别说明,本公开中的缓存区可以是发送缓存区和/或重传缓存区。
另外,本公开中的“去激活分组重复”、“配置了分组重复但处于去激活状态”以及“接收到来自上层(例如PDCP)或下层(例如MAC)的去激活分组重复的指示”可互换使用。
应该理解,本公开的上述实施例可以通过软件、硬件或者软件和硬件两者的结合来实现。例如,上述实施例中的基站和用户设备内部的各种组件可以通过多种器件或电路来实现,这些器件包括但不限于:模拟电路器件、数字电路器件、数字信号处理(DSP)电路、可编程处理器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、可编程逻辑器件(CPLD),等等。
此外,这里所公开的本公开的实施例可以在计算机程序产品上实现。更具体地,该计算机程序产品是如下的一种产品:具有计算机可读介质,计算机可读介质上编码有计算机程序逻辑,当在计算设备上执行时,该计算机程序逻辑提供相关的操作以实现本公开的上述技术方案。当在计算系统的至少一个处理器上执行时,计算机程序逻辑使得处理器执行本公开实施例所述的操作(方法)。本公开的这种设置典型地提供为设置或编码在例如光介质(例如CD-ROM)、软盘或硬盘等的计算机可读介质上的软件、代码和/或其他数据结构、或者诸如一个或多个ROM或RAM或PROM芯片上的固件或微代码的其他介质、或一个或多个模块中的可下载的软件图像、共享数据库等。软件或固件或这种配置可安装在计算设备上,以使得计算设备中的一个或多个处理器执行本公开实施例所描述的技术方案。
这里所公开的本公开的实施例可以实现为运行在根据本公开的设备上的程序。运行在根据本公开的设备上的程序可以是通过控制中央处理单元(CPU)来使计算机实现本公开的实施例功能的程序。该程序或由该程序处理的信息可以临时存储在易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器系统 中。
尽管以上已经结合本公开的优选实施例示出了本公开,但是本领域的技术人员将会理解,在不脱离本公开的精神和范围的情况下,可以对本公开进行各种修改、替换和改变。因此,本公开不应由上述实施例来限定,而应由所附权利要求及其等价物来限定。

Claims (10)

  1. 一种分组数据汇聚协议PDCP实体的控制方法,所述PDCP实体关联两个以上的无线链路控制RLC实体,所述两个以上的RLC实体包含主RLC实体和辅RLC实体,
    所述PDCP实体在接收到激活PDCP重复的指示、或者改变辅RLC实体的指示、或者激活RLC实体的指示的情况下,执行如下操作:
    激活PDCP重复;
    为指示的RLC实体激活PDCP重复。
  2. 根据权利要求1所述的控制方法,其中,
    在所述PDCP重复被激活的过程中,所述PDCP实体在接收到去激活PDCP重复的指示的情况下,执行如下操作:
    去激活PDCP重复;
    为指示的RLC实体去激活PDCP重复。
  3. 根据权利要求1或2所述的控制方法,其中,
    在所述PDCP重复被激活的过程中,所述PDCP实体在接收到改变辅RLC实体的指示、或者激活未被激活的RLC实体的指示、或者去激活已被激活的RLC实体的指示的情况下,执行如下操作:向指示为去激活的关联的RLC实体发送第一指示,
    其中,所述第一指示用于指示对应的RLC实体不再用于PDCP重复或去激活PDCP重复或指示对应的RLC实体被去激活。
  4. 根据权利要求1或2所述的控制方法,其中,
    在所述PDCP重复被激活的过程中,所述PDCP实体在接收到去激活PDCP重复的指示、或者改变辅RLC实体的指示、或者去激活已被激活的RLC实体的指示的情况下,指示去激活的RLC实体或去激活的辅RLC实体删除所有重复的PDCP数据PDU。
  5. 根据权利要求1或2所述的控制方法,其中,
    在所述PDCP重复被激活的过程中,所述PDCP实体在接收到去激活PDCP重复的指示、或者改变辅RLC实体的指示、或者激活未被激活的RLC实体的指示、或者去激活已被激活的RLC实体的指示的情况下,所述PDCP实体执行如下操作的至少一个操作:
    指示关联的RLC实体去激活PDCP重复;和
    指示去激活的RLC实体或去激活的辅RLC实体删除所有重复的PDCP数据PDU。
  6. 根据权利要求1或2所述的控制方法,其中,
    在所述PDCP重复被激活的过程中,所述PDCP实体在接收到去激活PDCP重复的指示、或者改变辅RLC实体的指示、或者激活未被激活的RLC的指示、或者去激活已被激活的RLC的指示的情况下,所述PDCP实体执行如下操作的任意一个操作:
    向指示为去激活的关联的RLC实体发送第一指示;
    向指示为去激活PDCP重复去激活的RLC实体发送第一指示;
    向下层发送第一指示;
    向去激活的RLC实体发送第一指示;
    向为PDCP重复去激活的RLC实体发送第一指示;
    其中,所述第一指示用于指示对应的RLC实体不再用于PDCP重复或去激活PDCP重复或指示对应的RLC实体被去激活。
  7. 根据权利要求1所述的控制方法,其中,
    在所述PDCP实体关联的RLC实体超过两个的情况下,在一个辅RLC实体从第一类RLC实体转换为第二类RLC实体时,所述PDCP实体向所述RLC实体发送改变辅RLC实体的指示或第一指示,
    其中,第一指示用于指示对应的RLC实体不再用于PDCP重复或去激活PDCP重复或指示对应的RLC实体被去激活。
  8. 根据权利要求1或2所述的控制方法,其中,
    所述RLC实体在接收到来自上层的删除无线链路控制服务数据单元RLC SDU的指示、或者接收到来自上层的去激活RLC实体的指示、或者第一指示、或者去激活RLC实体的PDCP重复的指示、或者去激活辅RLC实体的指示时,执行如下操作:
    重传已递交下层的具有最大序列号的(无线链路控制服务数据单元)RLC SDU;
    在对应的AMD PDU中包含一个询问。
  9. 根据权利要求8所述的控制方法,其中,
    所述对应的AMD PDU是所述RLC SDU或RLC SDU分段对应的AMD PDU,
    所述AMD PDU中包含一个询问是指将所述AMD PDU的询问比特域 置为1,设置变量PDU_WITHOUT_POLL值为0以及设置变量BYTE_WITHOUT_POLL值为0。
  10. 一种PDCP实体,所述PDCP实体在上层的控制下执行权利要求1~9的任意一项所述的控制方法。
PCT/CN2020/138817 2019-12-24 2020-12-24 Pdcp实体的控制方法以及pdcp实体 WO2021129701A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911352409.9 2019-12-24
CN201911352409.9A CN113038632A (zh) 2019-12-24 2019-12-24 Pdcp实体的控制方法以及pdcp实体

Publications (1)

Publication Number Publication Date
WO2021129701A1 true WO2021129701A1 (zh) 2021-07-01

Family

ID=76452328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138817 WO2021129701A1 (zh) 2019-12-24 2020-12-24 Pdcp实体的控制方法以及pdcp实体

Country Status (2)

Country Link
CN (1) CN113038632A (zh)
WO (1) WO2021129701A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115802406A (zh) * 2021-09-09 2023-03-14 夏普株式会社 状态报告发送方法、无线承载重传执行方法及用户设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180309660A1 (en) * 2017-04-24 2018-10-25 Motorola Mobility Llc Duplicating pdcp pdus for a radio bearer
WO2018231425A1 (en) * 2017-06-15 2018-12-20 Babaei Alireza Packet duplication control
CN109417716A (zh) * 2017-06-16 2019-03-01 联发科技(新加坡)私人有限公司 移动通信中处理数据重复的方法和装置
CN109983747A (zh) * 2017-03-24 2019-07-05 联发科技股份有限公司 5g无线电接入网络中用于分组数据汇聚协议复制的用户设备及其方法
WO2019136653A1 (en) * 2018-01-11 2019-07-18 Qualcomm Incorporated Impact of packet duplication on medium access control

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109983747A (zh) * 2017-03-24 2019-07-05 联发科技股份有限公司 5g无线电接入网络中用于分组数据汇聚协议复制的用户设备及其方法
US20180309660A1 (en) * 2017-04-24 2018-10-25 Motorola Mobility Llc Duplicating pdcp pdus for a radio bearer
WO2018231425A1 (en) * 2017-06-15 2018-12-20 Babaei Alireza Packet duplication control
CN109417716A (zh) * 2017-06-16 2019-03-01 联发科技(新加坡)私人有限公司 移动通信中处理数据重复的方法和装置
WO2019136653A1 (en) * 2018-01-11 2019-07-18 Qualcomm Incorporated Impact of packet duplication on medium access control

Also Published As

Publication number Publication date
CN113038632A (zh) 2021-06-25

Similar Documents

Publication Publication Date Title
US10405231B2 (en) Switching between packet duplication operating modes
AU2017389025B2 (en) Method for reporting multi-connection transmission capability, method for configuring multi-connection transmission mode, method for preventing retransmission of data, UE and base station
EP3031281B1 (en) Use of packet status report from secondary base station to master base station in wireless network
JP5357295B2 (ja) 無線通信システムにおけるエラー制御メッセージを処理するための方法及び装置
JP5885709B2 (ja) 非アクセス層再送の配信通知のための方法および装置
JP6336039B2 (ja) プロトコルデータユニットの配信
US9900798B2 (en) Polling and reporting mechanism
ES2294311T3 (es) Sistema para permitir el control de la purga de un nodo b por el controlador de servicio de red de radio.
EP2761802B1 (en) Interruptions in wireless communications
US20200267793A1 (en) Method and system for handling packet duplication and resumption of rbs in wireless communication system
US20100105334A1 (en) Radio link control status reporting and polling
CN114731560A (zh) 下一代无线通信系统中在daps移交期间驱动pdcp实体的方法和装置
WO2018201498A1 (zh) 一种数据接收状态报告方法及装置
WO2021129701A1 (zh) Pdcp实体的控制方法以及pdcp实体
WO2020155124A1 (zh) 复制数据的传输方法、终端设备及接入网设备
WO2022120744A1 (zh) 数据传输处理方法及相关装置
WO2021098638A1 (zh) 无线通信方法以及无线通信设备
WO2019193734A1 (ja) 通信装置
KR101969055B1 (ko) 이동통신 단말의 호 해제시 기지국 내 UE Context 제거방법
WO2019153937A1 (zh) 无线通信方法和设备
WO2019052174A1 (zh) 一种改变承载类型的方法及装置、计算机存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20907085

Country of ref document: EP

Kind code of ref document: A1