WO2021098638A1 - 无线通信方法以及无线通信设备 - Google Patents

无线通信方法以及无线通信设备 Download PDF

Info

Publication number
WO2021098638A1
WO2021098638A1 PCT/CN2020/128999 CN2020128999W WO2021098638A1 WO 2021098638 A1 WO2021098638 A1 WO 2021098638A1 CN 2020128999 W CN2020128999 W CN 2020128999W WO 2021098638 A1 WO2021098638 A1 WO 2021098638A1
Authority
WO
WIPO (PCT)
Prior art keywords
rlc
rlc sdu
sdu
entity
pdcp
Prior art date
Application number
PCT/CN2020/128999
Other languages
English (en)
French (fr)
Inventor
肖芳英
堀贵子
Original Assignee
夏普株式会社
肖芳英
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 夏普株式会社, 肖芳英 filed Critical 夏普株式会社
Publication of WO2021098638A1 publication Critical patent/WO2021098638A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1874Buffer management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/188Time-out mechanisms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to the field of wireless communication technology. More specifically, the present disclosure relates to a wireless communication method and related equipment performed by an RLC entity in a wireless communication system.
  • NTT DOCOMO proposed a new research project on 5G technical standards (see Non-Patent Document: RP-160671 : New SID Proposal: Study on New Radio Access Technology) and approved.
  • the purpose of this research project is to develop a new radio (New Radio: NR) access technology to meet all 5G application scenarios, requirements and deployment environments.
  • the network can configure the PDCP repetition function of the PDCP entity.
  • the PDCP entity function at the transmitting end supports PDCP repetition (that is, a PDCP data PDU is submitted to the lower layer two or more times), and the PDCP entity function at the receiving end supports deleting duplicate PDCP PDUs. Both uplink and downlink support PDCP repetition.
  • PDCP repetitively uses Packet Data Convergence Protocol (PDCP) protocol data unit (PDU) and/or service data unit (SDU) to send on two or more logical channels and allow repeated PDCP PDUs to pass Different carrier transmission.
  • PDCP entity with repeated PDCP is configured.
  • This disclosure discusses the problems involved when the RLC entity receives an instruction to delete a specific RLC SDU from the upper layer.
  • the purpose of the present disclosure is to provide a wireless communication method and a wireless communication device that can perform appropriate operations upon receiving an instruction to delete a specific RLC SDU from an upper layer or receiving a status report, thereby improving the communication efficiency of the wireless communication system and reliability.
  • a wireless communication method including: a radio link control RLC entity receives an instruction from an upper layer to discard a specific RLC service data unit, that is, an RLC SDU; If it is not delivered to the lower layer, the RLC entity deletes the RLC SDU.
  • the RLC entity may also include: in the case that a given condition is met, the RLC entity retransmits the RLC SDU with the largest sequence number that has been submitted to the lower layer or retransmits any RLC that has not yet been positively confirmed SDU, and a query is included in the corresponding RLC protocol data unit, RLC PDU.
  • the given condition includes any one of the following conditions: the transmission buffer area and the retransmission buffer area do not include the RLC SDU or RLC SDU segment that has been sent and awaiting confirmation Other RLC SDU or RLC SDU segments; the sending buffer and retransmission buffer are empty but there are RLC SDU or RLC SDU segments that have been sent and waiting to be confirmed; the sending buffer and retransmission buffer are both empty but there are RLC SDU or RLC SDU segment that has been sent and awaiting confirmation, and the retransmission query timer is not running; the sending buffer and retransmission buffer do not include the RLC SDU or RLC SDU segment that has been sent and waiting for confirmation.
  • the RLC SDU or RLC SDU is segmented, and the retransmission query timer is not running; the transmission buffer area and the retransmission buffer area are empty, but there are RLC SDU or RLC SDU segments that have not been queried and are sent and waiting to be confirmed; the transmission buffer The area and the retransmission buffer area do not contain other RLC SDU or RLC SDU segments except the RLC SDU or RLC SDU segment that has been sent and waiting for confirmation, and the query state variable POLL_SN is less than the maximum sequence number of the RLC PDU that has been submitted to the lower layer .
  • the given condition may also include any one of the following conditions: there is no data waiting to be transmitted in the upper layer; there is data waiting to be transmitted in the upper layer but the packet is repeatedly deactivated or the RLC entity is deactivated. activation.
  • the corresponding RLC PDU includes an inquiry to indicate that the RLC entity requests a status report from its peer RLC entity.
  • a wireless communication method including: a radio link control RLC entity receives a status report from its peer RLC entity; where the status report includes an RLC whose sequence number is equal to the query status variable POLL_SN
  • the RLC entity retransmits the RLC with the largest sequence number that has been submitted to the lower layer SDU or retransmission of any RLC SDU that has not been positively confirmed, and a query is included in the corresponding RLC protocol data unit, namely RLC PDU.
  • the status report may be further including: in the case that the status report contains a positive or negative confirmation of the RLC SDU whose sequence number is equal to the POLL_SN, stopping and resetting the running retransmission query timer .
  • the given condition includes any one of the following conditions: the status report does not include a negative confirmation of the RLC SDU whose sequence number is less than or equal to the POLL_SN, and the buffer area is sent Both the retransmission buffer and the retransmission buffer are empty but contain and only contain RLC SDUs or RLC SDU segments that have been sent and waiting for confirmation; the transmission buffer and retransmission buffer are both empty, but contain at least one RLC that has been sent and waiting for confirmation The SDU or RLC SDU segment is not indicated as a positive confirmation by the status report; the status report does not include a negative confirmation of the RLC SDU whose sequence number is less than or equal to the POLL_SN, and the POLL_SN is less than the RLC that has been sent and is waiting for confirmation The maximum sequence number of the SDU or RLC SDU segment; the status report does not include a negative confirmation of the RLC SDU whose sequence number is less than or equal to the POLL_SN, and the POLL
  • the POLL_SN is used to store the maximum value of the sequence number of the RLC PDU that has been submitted to the lower layer during the setting inquiry.
  • a wireless communication device including: a processor; and a memory storing instructions; wherein the instructions execute the above-mentioned wireless communication method when run by the processor.
  • an appropriate operation can be performed when a specific RLC SDU deletion instruction from an upper layer is received or a status report is received, so that the communication efficiency and reliability of the wireless communication system can be improved.
  • Figure 1 shows a schematic diagram of packet repetition
  • Figure 2a shows a schematic diagram of a protocol architecture for repeated packet bearers in carrier aggregation
  • Figure 2b shows a schematic diagram of a protocol architecture for repeated packet bearers in dual connectivity
  • Fig. 3 shows a flowchart of a wireless communication method according to an embodiment of the present disclosure
  • Fig. 4 shows a flowchart of another wireless communication method according to an embodiment of the present disclosure
  • Fig. 5 shows a block diagram of a wireless communication device according to an embodiment of the present disclosure.
  • the terms given in the present disclosure may adopt different naming methods in NR, LTE, and eLTE, but the unified terminology is used in this disclosure, and when applied to a specific system, it can be replaced with the terms used in the corresponding system.
  • the present disclosure can be applied not only to NR, but also to other communication systems, such as 6G.
  • RRC Radio Resource Control, radio resource control.
  • PDCP Packet Data Convergence Protocol, packet data convergence protocol.
  • the RLC entity may be an unacknowledged mode (UM) RLC entity or an acknowledged mode (Acknowledged Mode, AM) RLC entity.
  • AM RLC entity includes AM RLC entity transmitter and AM RLC entity receiver.
  • the AM RLC entity transmitter of one AM RLC entity sends RLC PDU (also called AMD PDU) to the AM RLC entity receiver of another AM RLC entity.
  • the AM RLC entity receiving end sends a status report STATUS report (also referred to as status PDU) to the AM RLC entity sending end.
  • the AMD PDU may include a complete RLC SDU or RLC SDU segment.
  • the AM RLC entity or the AM RLC entity transmitter and the another AM RLC entity or the another AM RLC entity receiver are referred to as peer AM RLC entities (peer AM RLC entities).
  • peer AM RLC entities peer AM RLC entities
  • the RLC PDU delivered by the AM RLC entity sender to the lower layer is called AMD PDU; the RLC PDU received by the AM RLC entity receiver from the lower layer is called AMD PDU.
  • MAC Medium Access Control, media access control.
  • SDU Service Data Unit, service data unit.
  • the PDU may be a data PDU and/or a control PDU.
  • the RLC PDU may be RLC data PDU and/or RLC control PDU (for example, STATUS report or STATUS PDU).
  • STATUS PDU is used by the AM RLC entity receiver to report to its peer AM RLC entity the RLC data PDU it correctly received and the RLC data PDU detected as missing (STATUS PDU is used by the receiving side of an AM RLC entity to inform the peer AM RLC entity about RLC data PDUs that are received successfully, and RLC data PDUs that are detected to be lost by the receiving side of an AM RLC entity.
  • data received or delivered from the upper layer is referred to as SDU
  • data submitted or received from the lower layer is referred to as PDU
  • the data received by the PDCP entity from the upper layer or the data transported by the upper layer is called PDCP SDU
  • the data received by the PDCP entity from the RLC entity or the data delivered to the RLC entity is called PDCP PDU (that is, RLC SDU).
  • Primary RLC entity Primary RLC entity, among the RLC entities that are repeatedly configured for PDCP, at least the RLC entity used to send PDCP control PDUs (regardless of whether PDCP is repeatedly activated or deactivated).
  • the PDCP entity sends PDCP data PDUs to the primary RLC entity after the deactivation packet is repeated, and the primary RLC entity is one of the two associated RLC entities.
  • the master RLC entity is configured through RRC signaling, but in Release 16 and subsequent systems, it can be specified that the master RLC entity can also be specified or predefined through the MAC control element CE.
  • the base station uses the information element primarypath carried in the RRC signaling (see 3GPP TS38.331 for the specific description of the information element) and the information element used to identify the cell group identity contained in the information element.
  • the cell group and/or the cell logicalChannel identified by the logical channel are used to configure the main RLC entity for the user equipment UE.
  • the data separation threshold is also set through the cell ul-DataSplitThreshold (for detailed description of the cell, see 3GPP TS38.331 and TS38.323).
  • the PDCP entity will PDU is sent to the associated primary RLC entity or secondary RLC entity; if the data separation threshold is not configured or if the sum of the total amount of PDCP data and the amount of data waiting for initial transmission in the two associated RLC entities is less than the set data separation threshold , The PDCP entity sends the PDCP PDU to the main RLC entity.
  • the PDCP entity can send PDCP PDUs to the main RLC entity or The activated RLC entity; for dual connectivity scenarios, the PDCP entity can send PDCP PDUs to the activated RLC entity or send PDCP PDUs to the two activated RLC entities or the primary RLC entity and the activated secondary RLC entity according to the data transmission mode of separate bearers RLC entity.
  • This disclosure refers to an RLC entity that is not designated as a primary RLC entity as a secondary RLC entity (Sencondary RLC entity) in order to describe the embodiments of the present disclosure.
  • Packet duplication packet duplication or PDCP duplication, also known as PDCP duplication or duplication, means that the PDCP entity delivers the same PDCP PDU to the lower layer twice (or multiple times), and one of them is delivered to the main RLC entity (also called the main path) Others are delivered to the activated secondary RLC entity (also referred to as the secondary path), but in version 16, if the deactivation of the primary RLC entity is allowed, the PDCP PDUs are all delivered to the activated secondary RLC entity.
  • RRC repeatedly configures two RLC entities for PDCP, as shown in Figure 1.
  • the PDCP entity When PDCP is repeatedly activated, the PDCP entity sends the same PDCP PDU to the two associated lower-layer entities (ie RLC entities). In other words, the PDCP entity delivers a PDCP PDU to the lower layer twice, once to the main RLC entity, and once to the lower layer. Secondary RLC entity.
  • RLC entities the two associated lower-layer entities
  • Secondary RLC entity In order to enhance the reliability of URLLC, 3GPP will support scenarios where one PDCP entity is associated with at most 4 RLC entities in Release 16. In this case, when PDCP repetition is activated, the PDCP entity sends the same PDCP PDU to multiple associated lower-layer entities, and the lower-layer entities are activated for PDCP repetition.
  • the PDCP entity sends the same PDCP PDU to the associated and
  • the three activated lower-layer entities that is, RLC entities
  • the PDCP entity submits a PDCP PDU to the lower layers three times, and respectively submits them to the three activated RLC entities.
  • the RLC entity submitted to activation in this disclosure refers to the submission to the primary RLC entity and other activated secondary RLC entities.
  • Deactivating the master RLC entity means that the deactivated master RLC entity is no longer used to transmit PDCP data PDUs, or the PDCP entity no longer delivers PDCP data PDUs to the master RLC entity.
  • the deactivated master RLC entity can still be used to transmit PDCP control PDUs, that is, the PDCP entity still delivers the PDCP control PDU to the master RLC entity.
  • the activated RLC entity means that the PDCP of the RLC entity is repeatedly activated, that is, the RLC entity is used to transmit PDCP PDU (the PDCP entity delivers the PDCP PDU to the activated RLC entity). Because this disclosure mainly discusses the operations involved in the AM RLC entity, unless otherwise specified, the RLC entity in the embodiment of the present disclosure is the AM RLC entity.
  • Retransmission inquiry timer t-pollRetransmit The timer is used by the AM RLC entity sender for the purpose of retransmission inquiry (This timer is used by the transmitting side of an AM RLC entity in order to retransmit a poll).
  • Figure 2a shows the protocol architecture diagram of repeated packet bearer in the carrier aggregation scenario.
  • Figure 2b shows a protocol architecture diagram of packet duplication in a dual-connection scenario.
  • a PDCP entity carried by one bearer is associated with two RLC entities, two logical channels, and one MAC entity.
  • a PDCP entity carried by one bearer is associated with two RLC entities, two logical channels, and two MAC entities.
  • a PDCP entity configured with PDCP duplication or pdcp-Duplication or pdcp-Duplication set to TRUE, if it receives an indication that the PDCP data PDU from an AM RLC entity in its associated AM RLC entity has been successfully sent, it will instruct other AMs
  • the RLC entity (or other activated AM RLC entity) deletes this repeated PDCP data PDU; or instructs the PDCP entity to send this PDCP data PDU to other AM RLC entities to delete this repeated PDCP data PDU; or instructs the PDCP entity to send it to it
  • the other AM RLC entities that have sent this PDCP data PDU and are activated delete this duplicate PDCP data PDU.
  • PDCP is repeatedly deactivated, instruct other RLC entities (or secondary AM RLC entities) to delete all repeated PDCP data PDUs or instruct the PDCP entity to delete other AM RLC entities (or secondary AM RLC entities) to which this PDCP data PDU is sent
  • the information element pdcp-Duplication is carried in PDCP-Config, and is used to indicate whether the uplink repetition state is configured and activated when this information element (referred to as information element) is received.
  • the presence of this information element indicates that repetition is configured, and the value of this information element is TRUE to indicate that repetition is activated.
  • the PDCP-Config used to set configurable PDCP parameters for the SRB and/or DRB is included in the RRC message sent by the base station or the network to the UE.
  • Fig. 3 shows a flowchart of a wireless communication method according to an embodiment of the present disclosure.
  • the wireless communication method of the present disclosure includes step 301 and step 302.
  • step 301 the RLC entity receives an instruction from the upper layer to discard a specific RLC SDU.
  • step 302 in the case that the RLC SDU and its segments are not delivered to the lower layer, the RLC entity deletes the RLC SDU.
  • an appropriate operation can be performed when an instruction to delete a specific RLC SDU is received from an upper layer, so that the communication efficiency and reliability of the wireless communication system can be improved.
  • the following describes an embodiment of the operation performed by the transmitter of the AM RLC entity when the user equipment UE receives an instruction from the upper layer (ie, PDCP) to discard a specific RLC SDU (the embodiment may also be performed by the UM RLC entity).
  • the RLC entity may be a secondary RLC entity or a deactivated RLC entity.
  • an instruction from the upper layer (ie PDCP) to discard a specific RLC SDU is received. If the RLC SDU and its segments are not delivered to the lower layer, the AM RLC entity sender deletes the indicated RLC SDU (When indicated from upper layer (iePDCP) to discard a particular RLC SDU, the transmitting side of an AM RLC entity or the transmitting UM RLC entity shall discard the indicated RLC SDU, if not submitted to the RLC SDU, if not already submitted lower layers).
  • the AM RLC entity sender After deleting the RLC SDU (Upon discarding the RLC SDU), the AM RLC entity sender also performs the following operations: If the sending buffer and retransmission buffer are both empty (the RLC SDU or RLC SDU that has been sent and waiting to be confirmed) In other words, the AM RLC entity sender (or AM RLC entity sender's send buffer and retransmission buffer) only contains (or contains and only contains) the transmitted and awaiting acknowledgements RLC SDU or RLC SDU segment, then retransmit the RLC SDU (consider the RLC SDU with the highest SN) and the RLC SDUs submitted to the lower layer for retransmission that has been submitted to the lower layer with the largest sequence number, and in the corresponding AMD PDU Contains a query.
  • the corresponding AMD PDU is the AMD PDU corresponding to the RLC SDU or RLC SDU segment, that is, the load (also referred to as the data field) of the AMD PDU is the RLC SDU or R
  • including an inquiry in the AMD PDU refers to setting the polling bit field of the AMD PDU to 1 (indicating that the AM RLC entity sender requests a status report from its peer AM RLC entity ), set the variable PDU_WITHOUT_POLL to 0 and set the variable BYTE_WITHOUT_POLL to 0, where PDU_WITHOUT_POLL is a counter used to record the number of AMD PDUs sent (send) after the most recent transmission (transmit) query bit, its initial value is 0 ; BYTE_WITHOUT_POLL is a counter used to record the number of data bytes (data bytes) sent after the most recent transmission (transmit) of the inquiry bit, and its initial value is 0.
  • the AM RLC entity sender when the AM RLC entity sender submits an AMD PDU containing an inquiry to the lower layer, it performs the following operations: Set the value of POLL_SN to the maximum sequence number of the AMD PDU that has been submitted to the lower layer (that is, set the value of POLL_SN to the lower layer. The sequence number of the AMD PDU with the largest sequence number in the AMD PDU, set POLL_SN to the highest SN of the AMD PDU continuously the AMD PDUs submitted to lower layer. If t-PollRetransmit is not running, start t-PollRetransmit, otherwise restart t- PollRetransmit. For a more detailed description of setting the query bit, see 3GPP TS38.3225.3.3.2.
  • an instruction from the upper layer (ie, PDCP) to discard a specific RLC SDU is received, and if the RLC SDU and its segments are not delivered to the lower layer, the AM RLC entity sender deletes the indicated RLC SDU. After deleting the RLC SDU, the AM RLC entity sender also performs the following operations: If the sending buffer and retransmission buffer are both empty but there are (or at least one) RLC SDU or RLC SDU that has been sent and is waiting for confirmation. Segment, the RLC SDU with the largest sequence number that has been submitted to the lower layer is retransmitted, and a query is included in the corresponding AMD PDU.
  • the corresponding AMD PDU is the AMD PDU corresponding to the RLC SDU or RLC SDU segment, that is, the data field of the AMD PDU is the RLC SDU or RLC SDU segment.
  • Embodiment 3 an instruction from the upper layer (ie, PDCP) to discard a specific RLC SDU is received, and if the RLC SDU and its segments are not delivered to the lower layer, the AM RLC entity sender deletes the indicated RLC SDU.
  • the upper layer ie, PDCP
  • the AM RLC entity sender After deleting the RLC SDU, the AM RLC entity sender also performs the following operations: if the sending buffer and retransmission buffer are both empty and/or there is (or at least one) RLC SDU or RLC that has been sent and is waiting to be confirmed If the SDU is segmented and the retransmission query timer t-pollRetransmit is not running, the RLC SDU with the largest sequence number that has been submitted to the lower layer is retransmitted, and a query is included in the corresponding AMD PDU.
  • the corresponding AMD PDU is the AMD PDU corresponding to the RLC SDU or RLC SDU segment, that is, the data field of the AMD PDU is the RLC SDU or RLC SDU segment.
  • an instruction from the upper layer (ie, PDCP) to discard a specific RLC SDU is received, and if the RLC SDU and its segments are not delivered to the lower layer, the AM RLC entity sender deletes the indicated RLC SDU.
  • the AM RLC entity sender After deleting the RLC SDU, the AM RLC entity sender also performs the following operations: if the sending buffer and retransmission buffer are both empty (except for the RLC SDU or RLC SDU segment that has been sent and waiting for confirmation) and/or exists (Or at least one) RLC SDU or RLC SDU segment that has been sent and waiting to be confirmed, and the retransmission query timer t-pollRetransmit is not running, then the RLC SDU with the largest sequence number that has been submitted to the lower layer is retransmitted, and the corresponding RLC SDU is retransmitted.
  • the AMD PDU contains a query.
  • the corresponding AMD PDU is the AMD PDU corresponding to the RLC SDU or RLC SDU segment, that is, the data field of the AMD PDU is the RLC SDU or RLC SDU segment.
  • Embodiment 5 an instruction from the upper layer (ie, PDCP) to discard a specific RLC SDU is received, and if the RLC SDU and its segments are not delivered to the lower layer, the AM RLC entity sender deletes the indicated RLC SDU.
  • the upper layer ie, PDCP
  • the AM RLC entity sender After deleting the RLC SDU, the AM RLC entity sender also performs the following operations: if the sending buffer and retransmission buffer are both empty (except for the RLC SDU or RLC SDU segment that has been sent and waiting for confirmation) and/or exists Or there is at least one RLC SDU or RLC SDU segment that has been sent and awaiting confirmation that has not been queried, then the RLC SDU with the largest sequence number that has been submitted to the lower layer is retransmitted, and the corresponding AMD PDU includes a query.
  • the corresponding AMD PDU is the AMD PDU corresponding to the RLC SDU or RLC SDU segment, that is, the data field of the AMD PDU is the RLC SDU or RLC SDU segment.
  • the RLC SDU or RLC SDU segment that has been sent and awaiting confirmation has not been queried means that the sent query is not used (or does not include) to request the peer AM RLC entity to confirm whether the RLC SDU or RLC SDU segment is successfully received (Or the status report sent by the requesting peer AM RLC entity must include the positive or negative confirmation of the RLC SDU or RLC SDU segment).
  • Embodiment 6 an instruction from the upper layer (ie, PDCP) to discard a specific RLC SDU is received, and if the RLC SDU and its segments are not delivered to the lower layer, the AM RLC entity sender deletes the indicated RLC SDU.
  • the upper layer ie, PDCP
  • the AM RLC entity sender After deleting the RLC SDU, the AM RLC entity sender also performs the following operations: if the sending buffer and retransmission buffer are both empty (except for the RLC SDU or RLC SDU segment that has been sent and waiting for confirmation) and/or exists (Or there is at least one) RLC SDU or RLC SDU segment that has been sent and waiting to be confirmed, and the POLL_SN is less than the maximum sequence number of the AMD PDU that has been submitted to the lower layer, then the RLC SDU with the largest sequence number that has been submitted to the lower layer is retransmitted, And a query is included in the corresponding AMD PDU.
  • the corresponding AMD PDU is the AMD PDU corresponding to the RLC SDU or RLC SDU segment, that is, the data field of the AMD PDU is the RLC SDU or RLC SDU segment.
  • Embodiment 7 an instruction from the upper layer (ie, PDCP) to discard a specific RLC SDU is received, and if the RLC SDU and its segments are not delivered to the lower layer, the AM RLC entity sender deletes the indicated RLC SDU.
  • the upper layer ie, PDCP
  • the AM RLC entity sender After deleting the RLC SDU, the AM RLC entity sender also performs the following operations: If the sending buffer and the retransmission buffer are both empty and/or there is (or at least one) RLC SDU or RLC that has been sent and is waiting for confirmation If the SDU is segmented and the POLL_SN is less than the maximum sequence number of the AMD PDU that has been submitted to the lower layer, the RLC SDU with the largest sequence number that has been submitted to the lower layer is retransmitted, and a query is included in the corresponding AMD PDU.
  • the corresponding AMD PDU is the AMD PDU corresponding to the RLC SDU or RLC SDU segment, that is, the data field of the AMD PDU is the RLC SDU or RLC SDU segment.
  • the sending buffer and retransmission buffer are both empty (except for the RLC SDU or RLC SDU segment that has been sent and waiting for confirmation). Unnecessary retransmissions. However, if PDCP is repeatedly deactivated or the current RLC entity (or secondary RLC entity) is deactivated, even if there is data awaiting transmission in the upper layer (data awaits in the upper layer), retransmission is performed, that is, the retransmission has been submitted to the lower layer. The RLC SDU with the largest sequence number, and a query is included in the corresponding AMD PDU.
  • the corresponding AMD PDU is the AMD PDU corresponding to the RLC SDU or RLC SDU segment, that is, the load of the AMD PDU is the RLC SDU or RLC SDU segment. Because, in this case, although the upper layer has data waiting to be transmitted, because the PDCP repetition has been deactivated or the current RLC entity has been deactivated, the PDCP entity will not send these data to the current RLC entity.
  • condition "if both the sending buffer and the retransmission buffer are empty and/or there is (or at least one) RLC SDU or RLC SDU segment that has been sent and waiting to be confirmed" can be replaced with a condition" If both the transmission buffer area and the retransmission buffer area are empty (except for the RLC SDU or RLC SDU segment that has been sent and awaiting confirmation), a new embodiment is formed, which is also the scope of implementation of the present disclosure.
  • both the sending buffer and the retransmission buffer are empty (except for the RLC SDU or RLC SDU segment that has been sent and waiting for confirmation), which means the AM RLC entity sender (or AM RLC entity sender send buffer) And the retransmission buffer) does not include other RLC SDU or RLC SDU segments except the RLC SDU or RLC SDU segment that has been sent and waiting to be confirmed.
  • retransmitting the RLC SDU with the largest sequence number submitted to the lower layer refers to using the RLC SDU with the largest sequence number submitted to the lower layer for retransmission or using the RLC SDU submitted to the lower layer with
  • the RLC SDU with the largest sequence number is used for retransmission, but when constructing the corresponding AMD PDU, the data field of the AMD PDU that needs to be constructed according to the amount of data that can be sent as indicated by the lower layer may contain the RLC SDU or its segments (that is, the structure
  • the AMD PDU should fit the total size of the AMD PDU indicated by the lower layer in a specific transmission opportunity).
  • FIG. 4 shows a flowchart of the wireless communication method in this embodiment.
  • the AM RLC entity sender receives the status report (STATUS report) from the AM RLC entity receiver (also called the peer AM RLC entity), and performs the following operations:
  • step 401 if the status report contains a positive or negative confirmation of the RLC SDU whose sequence number is equal to POLL_SN, step 402 is executed;
  • step 402 if the retransmission query timer t-pollRetransmit is running, stop and reset the retransmission query timer t-pollRetransmit, and perform step 403;
  • step 403 if the status report does not contain a negative acknowledgement of RLC SDU with a sequence number less than or equal to POLL_SN, and the sending buffer and/or retransmission buffer are empty but contain and only contain RLCs that have been sent and are waiting for confirmation SDU or RLC SDU segment (that is, the sending buffer and/or retransmission buffer includes and only the RLC SDU or RLC SDU segment that has been sent and waiting to be confirmed, in other words, the sending buffer and/or retransmission buffer contains at least A RLC SDU or RLC SDU segment that has been sent and waiting to be confirmed), go to step 404;
  • step 403 can also be replaced with one of the following to form a new embodiment:
  • step 403 if the transmission buffer area and/or the retransmission buffer area are empty, but it contains at least one RLC SDU or RLC SDU segment that has been sent and awaiting confirmation and is not indicated as a positive confirmation by the status report, execute Step 404;
  • step 403 if the transmission buffer and/or retransmission buffer are empty, but it contains at least one RLC SDU or RLC SDU segment that has been sent and awaiting confirmation, it is not indicated as a positive confirmation or a negative confirmation by the status report , Then go to step 404;
  • step 403 if the status report does not include a negative acknowledgement of the RLC SDU whose sequence number is less than or equal to POLL_SN, and the POLL_SN is less than the maximum sequence number of the RLC SDU or RLC SDU segment that has been sent and awaiting confirmation, then step 404 is executed;
  • step 403 if the status report does not include a negative acknowledgement of RLC SDUs whose sequence number is less than or equal to POLL_SN and/or if the transmission buffer and retransmission buffer are both empty (RLC SDU or RLC SDU sent and waiting for confirmation) Except for segmentation), and POLL_SN is less than the maximum sequence number of the RLC SDU or RLC SDU segment that has been submitted to the lower layer, then go to step 404;
  • step 403 if the transmission buffer and retransmission buffer do not contain other RLC SDU or RLC SDU segments other than the RLC SDU or RLC SDU segment that has been sent and waiting for confirmation, and the query state variable POLL_SN is less than that which has been submitted to the lower layer For the maximum sequence number of the RLC PDU, go to step 404;
  • step 404 the RLC SDU (consider the RLC SDU with the highest SN and the RLC SDUs submitted to the lower layer for retransmission) with the largest sequence number that has been submitted to the lower layer is retransmitted, and the corresponding AMD PDU (or the RLC SDU) Or the AMD PDU corresponding to the RLC SDU segment, that is, the data field of the AMD PDU is the RLC SDU or the RLC SDU segment) including a query.
  • step 404 can be replaced with one of the following to form a new embodiment:
  • step 404 any RLC SDU (consider any RLC SDU which has not been positively acknowledged for retransmission) that has not yet been positively confirmed is retransmitted, and the corresponding AMD PDU (or the AMD PDU corresponding to the RLC SDU or RLC SDU segment) is retransmitted.
  • the load of the AMD PDU is the RLC SDU or RLC SDU segment) including an inquiry.
  • step 404 the RLC SDU with the largest sequence number that has been submitted to the lower layer is retransmitted or any RLC SDU that has not been confirmed positively is retransmitted, and the corresponding AMD PDU (or the AMD PDU corresponding to the RLC SDU or RLC SDU segment) is retransmitted.
  • the load of the AMD PDU is the RLC SDU or RLC SDU segment) including an inquiry.
  • step 403 in the foregoing embodiment can be changed to form a new embodiment. Specifically, when performing step 403, it is not necessary to determine whether the retransmission query timer t-pollRetransmit is running. In this case, if the status report contains the positive or negative confirmation of the RLC SDU whose sequence number is equal to POLL_SN (ie If the condition of step 401 is satisfied), then step 403 is executed. At this time, step 402 and step 403 are two parallel and independent steps. Step 402 can be executed first, and then step 403; or step 403 can be executed first, and then step 402 can be executed.
  • step 404 "the maximum sequence number of the RLC SDU or RLC SDU segment waiting to be confirmed” is replaced with "the maximum sequence number of the RLC SDU or RLC SDU segment that has been submitted to the lower layer” or "the maximum sequence number of the RLC SDU or RLC SDU segment that has been submitted to the lower layer” in step 404.
  • the new embodiment formed by the “maximum sequence number of the RLC SDU or RLC SDU segment waiting to be confirmed” is also within the protection scope of the present disclosure.
  • step 404 replace "the maximum sequence number of the RLC SDU or RLC SDU segment submitted to the lower layer” with "the maximum sequence number of the RLC SDU or RLC SDU segment waiting to be confirmed” or “the lower layer has been submitted and waiting for confirmation"
  • the new embodiment formed by "the largest sequence number of the RLC SDU or RLC SDU segment” is also within the protection scope of the present disclosure.
  • the maximum sequence number of the RLC SDU or RLC SDU segment waiting to be confirmed or submitted to the lower layer in this disclosure refers to the one with the largest sequence number among the RLC SDU or RLC SDU segment waiting to be confirmed or submitted to the lower layer, waiting for confirmation or submitted to the lower layer.
  • the sequence number of the RLC SDU or RLC SDU segment refers to the one with the largest sequence number among the RLC SDU or RLC SDU segment waiting to be confirmed or submitted to the lower layer, waiting for confirmation or submitted to the lower layer.
  • the query state variable POLL_SN is used to hold the maximum value of the serial number of the AMD PDU that has been submitted to the lower layer during the query (specifically set according to section 5.3.3.2 of 3GPP TS38.322). variable holds the value of the highest SN of the AMD PDU consistently the AMD PDUs submitted to lower layer when POLL_SN is set according to sub clause 5.3.3.2).
  • the buffer area in the present disclosure may be a sending buffer area and/or a retransmission buffer area.
  • deactivate packet repetition "configure packet repetition but in a deactivated state”
  • an upper layer e.g., PDCP
  • lower layer e.g., MAC
  • the wireless communication device 50 includes a processor 510 and a memory 520.
  • the processor 510 may include, for example, a microprocessor, a microcontroller, an embedded processor, and the like.
  • the memory 520 may include, for example, a volatile memory (such as a random access memory RAM), a hard disk drive (HDD), a non-volatile memory (such as a flash memory), or other memories.
  • the memory 520 stores program instructions. When the instruction is executed by the processor 510, the above method described in detail in the present disclosure can be executed.
  • the above-mentioned embodiments of the present disclosure may be implemented by software, hardware, or a combination of both software and hardware.
  • the various components inside the base station and user equipment in the above embodiments can be implemented by a variety of devices or circuits. These devices include but are not limited to: analog circuit devices, digital circuit devices, digital signal processing (DSP) circuits, Programming processor, application specific integrated circuit (ASIC), field programmable gate array (FPGA), programmable logic device (CPLD), etc.
  • DSP digital signal processing
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • CPLD programmable logic device
  • the embodiments of the present disclosure disclosed herein may be implemented on a computer program product.
  • the computer program product is a product that has a computer-readable medium with computer program logic encoded on the computer-readable medium, and when executed on a computing device, the computer program logic provides related operations to implement The above-mentioned technical solution of the present disclosure.
  • the computer program logic When executed on at least one processor of the computing system, the computer program logic causes the processor to perform the operations (methods) described in the embodiments of the present disclosure.
  • Such settings of the present disclosure are typically provided as software, code and/or other data structures set or encoded on computer-readable media such as optical media (e.g.
  • CD-ROM compact disc-read only memory
  • floppy disks or hard disks or such as one or more Firmware or microcode on a ROM or RAM or PROM chip, or downloadable software images, shared databases, etc. in one or more modules.
  • Software or firmware or such a configuration may be installed on the computing device, so that one or more processors in the computing device execute the technical solutions described in the embodiments of the present disclosure.
  • the embodiments of the present disclosure disclosed herein may be implemented as a program running on the device according to the present disclosure.
  • the program running on the device according to the present disclosure may be a program that causes the computer to implement the functions of the embodiments of the present disclosure by controlling a central processing unit (CPU).
  • the program or the information processed by the program can be temporarily stored in volatile memory (such as random access memory RAM), hard disk drive (HDD), non-volatile memory (such as flash memory), or other memory systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种无线通信方法以及无线通信设备,无线通信方法包括:无线链路控制RLC实体接收来自上层的丢弃特定RLC服务数据单元即RLC SDU的指示;在所述RLC SDU及其分段均未递交给下层的情况下,所述RLC实体删除所述RLC SDU。由此,能够提高无线通信系统的通信效率以及可靠性。

Description

无线通信方法以及无线通信设备 技术领域
本公开涉及无线通信技术领域。更具体地,本公开涉及无线通信系统中的RLC实体所执行的无线通信方法和相关的设备。
背景技术
2016年3月,在第三代合作伙伴计划(3rd Generation Partnership Project:3GPP)RAN#71次全会上,NTT DOCOMO提出了一个关于5G技术标准的新的研究项目(参见非专利文献:RP-160671:New SID Proposal:Study on New Radio Access Technology),并获批准。该研究项目的目的是开发一个新的无线(New Radio:NR)接入技术以满足5G的所有应用场景、需求和部署环境。
目前,网络可以配置PDCP实体的PDCP重复功能,发送端PDCP实体功能支持PDCP重复(即将一个PDCP数据PDU向下层递交两次或多次),且接收端PDCP实体功能支持删除重复PDCP PDU。上行和下行均支持PDCP重复,PDCP重复采用分组数据汇聚协议(PDCP)协议数据单元(PDU)和/或服务数据单元(SDU)在两个或多个逻辑信道上发送并使得重复的PDCP PDU通过不同的载波发送。在现有的系统中,配置了PDCP重复的PDCP实体,如果接收到来自其关联的AM RLC实体中的一个AM RLC实体的PDCP数据PDU发送成功的指示,则指示其他AM RLC实体(或其他激活的AM RLC实体)删除这个重复的PDCP数据PDU;如果PDCP重复被去激活,指示辅RLC实体删除所有重复的PDCP数据PDU;如果辅RLC实体被去激活,指示被去激活的辅RLC实体删除所有重复的PDCP数据PDU。
本公开讨论RLC实体在接收到来自上层的删除特定RLC SDU指示时涉及的问题。
发明内容
本公开的目的在于,提供一种无线通信方法以及无线通信设备,能够在接收到来自上层的删除特定RLC SDU指示或接收到状态报告时执行适当的操作,从而能够提高无线通信系统的通信效率以及可靠性。根据本公开的第一方面,提供了一种无线通信方法,包括:无线链路控制RLC实体接收来自上层的丢弃特定RLC服务数据单元即RLC SDU的指示;在所述RLC SDU及其分段均未递交给下层的情况下,所述RLC实体删除所述RLC SDU。
在上述无线通信方法中,可以是,还包括:在满足给定条件的情况下,所述RLC实体重传已递交下层的具有最大序列号的RLC SDU或者重传任意一个尚未被肯定确认的RLC SDU,并且在对应的RLC协议数据单元即RLC PDU中包含一个询问。
在上述无线通信方法中,可以是,所述给定条件包括下述条件中的任意一项:发送缓存区和重传缓存区不包含除已发送且等待确认的RLC SDU或RLC SDU分段外的其他RLC SDU或RLC SDU分段;发送缓存区和重传缓存区均为空但存在已发送且等待确认的RLC SDU或RLC SDU分段;发送缓存区和重传缓存区均为空但存在已发送且等待确认的RLC SDU或RLC SDU分段,并且重传询问定时器未运行;发送缓存区和重传缓存区不包含除已发送且等待确认的RLC SDU或RLC SDU分段外的其他RLC SDU或RLC SDU分段,并且重传询问定时器未运行;发送缓存区和重传缓存区均为空但存在尚未被询问的已发送且等待确认的RLC SDU或RLC SDU分段;发送缓存区和重传缓存区不包含除已发送且等待确认的RLC SDU或RLC SDU分段外的其他RLC SDU或RLC SDU分段,并且询问状态变量POLL_SN小于已递交给下层的RLC PDU的最大序列号。
在上述无线通信方法中,可以是,所述给定条件还包括下述条件中的任意一项:上层没有数据等待传输;上层有数据等待传输但分组重复被去激活或所述RLC实体被去激活。
在上述无线通信方法中,可以是,在对应的RLC PDU中包含一个询问表示所述RLC实体向其对等RLC实体请求状态报告。
根据本公开的第二方面,提供了一种无线通信方法,包括:无线链路 控制RLC实体接收来自其对等RLC实体的状态报告;在所述状态报告包含序列号等于询问状态变量POLL_SN的RLC服务数据单元即RLC SDU的肯定确认或否定确认的情况下,判断是否满足给定条件;在满足所述给定条件的情况下,所述RLC实体重传已递交下层的具有最大序列号的RLC SDU或者重传任意一个尚未被肯定确认的RLC SDU,并且在对应的RLC协议数据单元即RLC PDU中包含一个询问。
在上述无线通信方法中,可以是,还包括:在所述状态报告包含序列号等于所述POLL_SN的RLC SDU的肯定确认或否定确认的情况下,停止和重置正在运行的重传询问定时器。
在上述无线通信方法中,可以是,所述给定条件包括下述条件中的任意一项:所述状态报告不包含序列号小于或等于所述POLL_SN的RLC SDU的否定确认,并且发送缓存区和重传缓存区均为空但包含且仅包含已发送且等待确认的RLC SDU或RLC SDU分段;发送缓存区和重传缓存区均为空,但包含至少一个已发送且等待确认的RLC SDU或RLC SDU分段未被所述状态报告指示为肯定确认;所述状态报告不包含序列号小于或等于所述POLL_SN的RLC SDU的否定确认,并且所述POLL_SN小于已发送且等待确认的RLC SDU或RLC SDU分段的最大序列号;所述状态报告不包含序列号小于或等于所述POLL_SN的RLC SDU的否定确认,并且所述POLL_SN小于已递交下层的RLC SDU或RLC SDU分段的最大序列号;发送缓存区和重传缓存区不包含除已发送且等待确认的RLC SDU或RLC SDU分段外的其他RLC SDU或RLC SDU分段,并且所述POLL_SN小于已递交给下层的RLC PDU的最大序列号。
在上述无线通信方法中,可以是,所述POLL_SN用于保存设置询问时已递交下层的RLC PDU的序列号的最大值。
根据本公开的第三方面,提供了一种无线通信设备,包括:处理器;以及存储器,存储有指令;其中,所述指令在由所述处理器运行时执行上述无线通信方法。
发明效果
根据本公开的无线通信方法以及无线通信设备,能够在接收到来自上层的删除特定RLC SDU指示或接收到状态报告时执行适当的操作,从而能 够提高无线通信系统的通信效率以及可靠性。
附图说明
通过下文结合附图的详细描述,本公开的上述和其它特征将会变得更加明显,其中:
图1示出了分组重复示意图;
图2a示出了载波聚合中分组重复承载的协议架构示意图;
图2b示出了双连接中分组重复承载的协议架构示意图;
图3示出了根据本公开实施例的无线通信方法的流程图;
图4示出了根据本公开实施例的另一无线通信方法的流程图;
图5示出了根据本公开实施例的无线通信设备的框图。
具体实施方式
下面结合附图和具体实施方式对本公开进行详细阐述。应当注意,本公开不应局限于下文所述的具体实施方式。另外,为了简便起见,省略了对与本公开没有直接关联的公知技术的详细描述,以防止对本公开的理解造成混淆。
下面描述本公开涉及的部分术语,如未特别说明,本公开涉及的术语采用此处定义。本公开给出的术语在NR、LTE和eLTE中可能采用不同的命名方式,但本公开中采用统一的术语,在应用到具体的系统中时,可以替换为相应系统中采用的术语。本公开不但可以应用于NR,也可以应用于其他通信系统,例如6G。
RRC:Radio Resource Control,无线资源控制。
PDCP:Packet Data Convergence Protocol,分组数据汇聚协议。
RLC:Radio Link Control,无线链路控制。RLC实体可以是非确认模式(Unacknowledged Mode,UM)RLC实体或确认模式(Acknowledged Mode,AM)RLC实体。AM RLC实体包含AM RLC实体发送端和AM RLC实体接收端,一个AM RLC实体的AM RLC实体发送端向另一个AM RLC实体的AM RLC实体接收端发送RLC PDU(也称AMD PDU),且所述AM  RLC实体接收端向所述AM RLC实体发送端发送状态报告STATUS report(也称为状态PDU)。所述AMD PDU可以包含一个完整的RLC SDU或RLC SDU的分段(segment)。所述AM RLC实体或所述AM RLC实体发送端和所述另一个AM RLC实体或所述另一个AM RLC实体接收端互称为对等AM RLC实体(peer AM RLC entity)。AM RLC实体发送端递交下层的RLC PDU称为AMD PDU;AM RLC实体接收端端从下层接收的RLC PDU称为AMD PDU。
MAC:Medium Access Control,媒体访问控制。
SDU:Service Data Unit,服务数据单元。
PDU:Protocol Data Unit,协议数据单元。在本公开中,如未特别说明,PDU可以是数据PDU和/或控制PDU。例如,RLC PDU可以是RLC数据PDU和/或RLC控制PDU(例如状态报告STATUS report或STATUS PDU)。STATUS PDU是AM RLC实体接收端用于向其对等AM RLC实体报告其正确接收的RLC数据PDU和检测为丢失的RLC数据PDU(STATUS PDU is used by the receiving side of an AM RLC entity to inform the peer AM RLC entity about RLC data PDUs that are received successfully,and RLC data PDUs that are detected to be lost by the receiving side of an AM RLC entity)。
在本公开中,将从上层接收或运送(deliver)上层的数据称为SDU,将递交(submit)下层或从下层接收的数据称为PDU。例如,PDCP实体从上层接收的数据或运送上层的数据称为PDCP SDU;PDCP实体从RLC实体接收到的数据或递交RLC实体的数据称为PDCP PDU(也就是RLC SDU)。
主RLC实体:Primary RLC entity,为PDCP重复配置的RLC实体中,至少用于发送PDCP控制PDU的RLC实体(无论PDCP重复被激活还是去激活)。在现有的系统中,在载波聚合情况下,去激活分组重复后PDCP实体将PDCP数据PDU发送到主RLC实体,所述主RLC实体是所关联的两个RLC实体中的一个RLC实体。在现有的系统中,主RLC实体通过RRC信令配置,但是在版本16及后续系统中,可以规定主RLC实体也可通过MAC控制元素CE指定或预定义。在现有的系统中,在双连接情况下,对于未配置分组重复的分离承载,如果配置了数据分离门限且PDCP数据量和其关联的两个RLC实体的数据量的和小于设定的数据分离门限,则PDCP实体将PDCP PDU发送到主RLC实体。在现有系统中,具体的,基站通过 RRC信令中携带的信元primarypath(所述信元的具体描述见3GPP TS38.331)以及包含在所述信元中的用于标识小区组标识的信元cellGroup和/或逻辑信道标识的信元logicalChannel等来为用户设备UE配置主RLC实体。在双连接情况下,还通过信元ul-DataSplitThreshold(所述信元的具体描述见3GPP TS38.331和TS38.323)设定数据分离门限。当PDCP重复被去激活或没有配置PDCP重复时,如果PDCP数据总量和其关联的两个RLC实体中等待初始传输的数据量的和大于或等于设定的数据分离门限,则PDCP实体将PDCP PDU发送到所关联的主RLC实体或辅RLC实体;如果未配置数据分离门限或者如果PDCP数据总量和其关联的两个RLC实体中等待初始传输的数据量的和小于设定的数据分离门限,则PDCP实体将PDCP PDU发送主RLC实体。在3GPP正在讨论的版本16中,由于一个PDCP实体可以被配置关联多达4个RLC实体,在PDCP重复被去激活时,对于载波聚合的场景,PDCP实体可以将PDCP PDU发送到主RLC实体或激活的RLC实体;对于双连接的场景,PDCP实体可以将PDCP PDU发送到激活的RLC实体或按照分离承载的数据发送方式将PDCP PDU发送到激活的两个RLC实体或主RLC实体和激活的辅RLC实体。
本公开将不是指定为主RLC实体的RLC实体称为辅RLC实体(Sencondary RLC entity),以便于描述本公开实施例。
分组重复:packet duplication或PDCP duplication,也称为PDCP重复或重复,是指PDCP实体将同一PDCP PDU两次(或多次)递交给下层,其中一次递交给主RLC实体(也称为主路径),其他递交给激活的辅RLC实体(也称为辅路径),但是在版本16中,如果允许去激活主RLC实体,则PDCP PDU均递交给激活的辅RLC实体。在3GPP目前的协议版本15中(TS38.323、TS38.300以及TS38.331),RRC为PDCP重复配置两个RLC实体,如图1所示。当PDCP重复被激活时,PDCP实体将同一PDCP PDU发送到关联的两个下层实体(即RLC实体),换言之PDCP实体将一个PDCP PDU向下层递交两次,一次递交给主RLC实体,一次递交给辅RLC实体。为了增强URLLC的可靠性,3GPP在版本16中将支持一个PDCP实体关联至多4个RLC实体的场景。在这种情况下,当PDCP重复被激活时,PDCP实体将同一PDCP PDU发送到关联的多个下层实体,所述下层实体被激活用于PDCP重复。例如,假设RRC为一个PDCP实体配置了4个RLC实 体,当时仅3个RLC实体被激活(这可以通过RRC配置或由MAC控制元素指示),则,PDCP实体将同一PDCP PDU发送到关联的且激活的三个下层实体(即RLC实体),换言之PDCP实体将一个PDCP PDU向下层递交三次,分别递交给三个激活的RLC实体。需要说明的是,如果主RLC实体不能被去激活,则本公开中所述递交给激活的RLC实体是指递交给主RLC实体和其他激活的辅RLC实体。去激活主RLC实体是指去激活后的主RLC实体不再用于传输PDCP数据PDU,或者PDCP实体不再将PDCP数据PDU递交给主RLC实体。去激活的主RLC实体仍然可用于传输PDCP控制PDU,即PDCP实体仍然将PDCP控制PDU递交给主RLC实体。
在本公开实施例中,激活的RLC实体是指所述RLC实体的PDCP重复被激活,即所述RLC实体用于传输PDCP PDU(PDCP实体将PDCP PDU递交给激活的RLC实体)。因为本公开主要讨论AM RLC实体所涉及的操作,如未特别说明,本公开实施例中RLC实体就是AM RLC实体。
本公开中所述“下层实体”和“下层”是等价描述,可互换使用。
重传询问定时器t-pollRetransmit:所述定时器被AM RLC实体发送端用于重传询问的目的(This timer is used by the transmitting side of an AM RLC entity in order to retransmit a poll)。
以PDCP PDU或SDU重复发送两次为例(即一个PDCP实体关联两个RLC实体和/或两个逻辑信道),作为示例,图2a示出了载波聚合场景下分组重复承载的协议架构图,而图2b示出了双连接场景下分组重复的协议架构图。在图2a所示示意图中,一个承载的PDCP实体关联到两个RLC实体和两个逻辑信道、一个MAC实体。在图2b所示示意图中,一个承载的PDCP实体关联到两个RLC实体和两个逻辑信道、两个MAC实体。但本公开所述的技术方案并不限于PDCP PDU或SDU重复发送两次的场景,本领域技术人员可以容易地扩展到重复发送多次的场景(即一个PDCP实体关联多个RLC实体和/或多个逻辑信道)。
下面描述配置了PDCP重复或pdcp-Duplication或pdcp-Duplication被设置为TRUE的PDCP实体执行的操作:
配置了PDCP重复或pdcp-Duplication或pdcp-Duplication被设置为TRUE的PDCP实体,如果接收到来自其关联的AM RLC实体中的某个AM  RLC实体的PDCP数据PDU发送成功的指示,则指示其他AM RLC实体(或其他激活的AM RLC实体)删除这个重复的PDCP数据PDU;或者指示PDCP实体向其发送了这个PDCP数据PDU的其他AM RLC实体删除这个重复的PDCP数据PDU;或者指示PDCP实体向其发送了这个PDCP数据PDU且被激活的其他AM RLC实体删除这个重复的PDCP数据PDU。如果PDCP重复被去激活,指示其他RLC实体(或辅AM RLC实体)删除所有重复的PDCP数据PDU或指示PDCP实体向其发送了这个PDCP数据PDU的其他AM RLC实体(或辅AM RLC实体)删除这个重复的PDCP数据PDU或指示PDCP实体向其发送了这个PDCP数据PDU且被激活的其他AM RLC实体(或辅AM RLC实体)删除这个重复的PDCP数据PDU;如果辅AM RLC实体被去激活(或PDCP实体接收到来自MAC层的切换激活的AM RLC实体的指示),指示被去激活的AM RLC实体删除所有重复的PDCP数据PDU。
信息元素pdcp-Duplication是携带在PDCP-Config中,用于指示在接收到这个信息元素(简称信元)时上行重复的状态是否被配置并被激活。这个信息元素出现,表示配置了重复,且这个信息元素取值为TRUE表示重复被激活。所述用于为SRB和/或DRB设置可配置的PDCP参数的PDCP-Config是包含在由基站或网络发送给UE的RRC消息中。
图3示出了根据本公开实施例的无线通信方法的流程图。
如图3所示,本公开的无线通信方法包括步骤301和步骤302。
在步骤301中,RLC实体接收来自上层的丢弃特定RLC SDU的指示。
在步骤302中,在所述RLC SDU及其分段均未递交给下层的情况下,所述RLC实体删除所述RLC SDU。
根据上述方法,能够在接收到来自上层的删除特定RLC SDU指示时执行适当的操作,从而能够提高无线通信系统的通信效率以及可靠性。
下面描述用户设备UE中接收来自上层(即PDCP)丢弃特定RLC SDU的指示,AM RLC实体发送端执行的操作的实施例(所述实施例也可以在发送UM RLC实体执行)。所述RLC实体可以是辅RLC实体或者是去激活的RLC实体。
需要指出的是,本公开在UE处执行的实施例也可以在基站处执行。
在实施例1中,接收来自上层(即PDCP)丢弃特定RLC SDU的指示,如果所述RLC SDU及其分段均没有递交给下层,则AM RLC实体发送端删除所述指示的RLC SDU(When indicated from upper layer(i.e.PDCP)to discard a particular RLC SDU,the transmitting side of an AM RLC entity or the transmitting UM RLC entity shall discard the indicated RLC SDU,if neither the RLC SDU nor a segment thereof has been submitted to the lower layers)。在删除所述RLC SDU后(Upon discarding the RLC SDU),AM RLC实体发送端还执行以下操作:如果发送缓存区和重传缓存区均为空(已发送且等待确认的RLC SDU或RLC SDU分段除外),换言之,AM RLC实体发送端(或AM RLC实体发送端发送缓存区和重传缓存区中)仅包含(或者包含且仅包含)已传输(transmitted)且等待确认(awaiting acknowledgements)的RLC SDU或RLC SDU分段,则重传已递交下层的具有最大序列号的RLC SDU(consider the RLC SDU with the highest SN among the RLC SDUs submitted to lower layer for retransmission),且在对应的AMD PDU中包含一个询问。所述对应的AMD PDU是所述RLC SDU或RLC SDU分段对应的AMD PDU,即所述AMD PDU的负载(也称数据域)为所述RLC SDU或RLC SDU分段。
在本公开实施例中,在AMD PDU中包含一个询问是指将所述AMD PDU的询问比特域(Poiling bit field)置为1(表示AM RLC实体发送端向其对等AM RLC实体请求状态报告),设置变量PDU_WITHOUT_POLL值为0以及设置变量BYTE_WITHOUT_POLL值为0,其中PDU_WITHOUT_POLL是一个计数器,用于记录从最近一次传输(transmit)询问比特后发送(send)的AMD PDU的数目,其初始值为0;BYTE_WITHOUT_POLL是一个计数器,用于记录从最近一次传输(transmit)询问比特后发送(send)的数据字节(data bytes)的数目,其初始值为0。此外,AM RLC实体发送端在递交一个包含询问的AMD PDU给下层时,执行以下操作:设置POLL_SN的值为已递交给下层的AMD PDU的最大序列号(即设置POLL_SN的值为已递交给下层的AMD PDU中序列号最大的 AMD PDU的序列号,set POLL_SN to the highest SN of the AMD PDU among the AMD PDUs submitted to lower layer),如果t-PollRetransmit未运行,启动t-PollRetransmit,否则重启t-PollRetransmit。关于设置询问比特更详细的描述见3GPP TS38.3225.3.3.2。
在实施例2中,接收来自上层(即PDCP)丢弃特定RLC SDU的指示,如果所述RLC SDU及其分段均没有递交给下层,则AM RLC实体发送端删除所述指示的RLC SDU。在删除所述RLC SDU后,AM RLC实体发送端还执行以下操作:如果发送缓存区和重传缓存区均为空但存在(或至少存在一个)已发送且等待确认的RLC SDU或RLC SDU分段,则重传已递交下层的具有最大序列号的RLC SDU,且在对应的AMD PDU中包含一个询问。所述对应的AMD PDU是所述RLC SDU或RLC SDU分段对应的AMD PDU,即所述AMD PDU的数据域为所述RLC SDU或RLC SDU分段。
在实施例3中,接收来自上层(即PDCP)丢弃特定RLC SDU的指示,如果所述RLC SDU及其分段均没有递交给下层,则AM RLC实体发送端删除所述指示的RLC SDU。在删除所述RLC SDU后,AM RLC实体发送端还执行以下操作:如果发送缓存区和重传缓存区均为空和/或存在(或至少存在一个)已发送且等待确认的RLC SDU或RLC SDU分段,并且重传询问定时器t-pollRetransmit未运行,则重传已递交下层的具有最大序列号的RLC SDU,且在对应的AMD PDU中包含一个询问。所述对应的AMD PDU是所述RLC SDU或RLC SDU分段对应的AMD PDU,即所述AMD PDU的数据域为所述RLC SDU或RLC SDU分段。
在实施例4中,接收来自上层(即PDCP)丢弃特定RLC SDU的指示,如果所述RLC SDU及其分段均没有递交给下层,则AM RLC实体发送端删除所述指示的RLC SDU。在删除所述RLC SDU后,AM RLC实体发送端还执行以下操作:如果发送缓存区和重传缓存区均为空(已发送且等待确认的RLC SDU或RLC SDU分段除外)和/或存在(或至少存在一个)已发送且等待确认的RLC SDU或RLC SDU分段,并且重传询问定时器t-pollRetransmit未运行,则重传已递交下层的具有最大序列号的RLC SDU,且在对应的AMD PDU中包含一个询问。所述对应的AMD PDU是所述RLC  SDU或RLC SDU分段对应的AMD PDU,即所述AMD PDU的数据域为所述RLC SDU或RLC SDU分段。
在实施例5中,接收来自上层(即PDCP)丢弃特定RLC SDU的指示,如果所述RLC SDU及其分段均没有递交给下层,则AM RLC实体发送端删除所述指示的RLC SDU。在删除所述RLC SDU后,AM RLC实体发送端还执行以下操作:如果发送缓存区和重传缓存区均为空(已发送且等待确认的RLC SDU或RLC SDU分段除外)和/或存在或至少存在一个已发送且等待确认的RLC SDU或RLC SDU分段尚未被询问,则重传已递交下层的具有最大序列号的RLC SDU,且在对应的AMD PDU中包含一个询问。所述对应的AMD PDU是所述RLC SDU或RLC SDU分段对应的AMD PDU,即所述AMD PDU的数据域为所述RLC SDU或RLC SDU分段。所述存在发送且等待确认的RLC SDU或RLC SDU分段尚未被询问是指已发送的询问不用于(或不包含)请求对等AM RLC实体确认所述RLC SDU或RLC SDU分段是否成功接收(或请求对等AM RLC实体发送的状态报告中必须包含所述RLC SDU或RLC SDU分段的肯定确认或否定确认)。
在实施例6中,接收来自上层(即PDCP)丢弃特定RLC SDU的指示,如果所述RLC SDU和其分段均没有递交给下层,则AM RLC实体发送端删除所述指示的RLC SDU。在删除所述RLC SDU后,AM RLC实体发送端还执行以下操作:如果发送缓存区和重传缓存区均为空(已发送且等待确认的RLC SDU或RLC SDU分段除外)和/或存在(或存在至少一个)已发送且等待确认的RLC SDU或RLC SDU分段,并且POLL_SN小于已递交给下层的AMD PDU的最大序列号,则重传已递交下层的具有最大序列号的RLC SDU,且在对应的AMD PDU中包含一个询问。所述对应的AMD PDU是所述RLC SDU或RLC SDU分段对应的AMD PDU,即所述AMD PDU的数据域为所述RLC SDU或RLC SDU分段。
在实施例7中,接收来自上层(即PDCP)丢弃特定RLC SDU的指示,如果所述RLC SDU和其分段均没有递交给下层,则AM RLC实体发送端删除所述指示的RLC SDU。在删除所述RLC SDU后,AM RLC实体发送端还执行以下操作:如果发送缓存区和重传缓存区均为空和/或存在(或存在至少一个)已发送且等待确认的RLC SDU或RLC SDU分段,并且 POLL_SN小于已递交给下层的AMD PDU的最大序列号,则重传已递交下层的具有最大序列号的RLC SDU,且在对应的AMD PDU中包含一个询问。所述对应的AMD PDU是所述RLC SDU或RLC SDU分段对应的AMD PDU,即所述AMD PDU的数据域为所述RLC SDU或RLC SDU分段。
在上述实施例1~7中,可进一步限制,如果上层有数据等待传输,发送缓存区和重传缓存区均为空(已发送且等待确认的RLC SDU或RLC SDU分段除外)不应该导致不必要的重传。但是,如果PDCP重复被去激活或当前RLC实体(或辅RLC实体)被去激活,即使上层有数据等待传输(data awaits in the upper layer),也执行重传,即重传已递交下层的具有最大序列号的RLC SDU,且在对应的AMD PDU中包含一个询问。所述对应的AMD PDU是所述RLC SDU或RLC SDU分段对应的AMD PDU,即所述AMD PDU的负载为所述RLC SDU或RLC SDU分段。因为,在这种情况下,虽然上层有数据等待传输,但是因为PDCP重复已被去激活或当前RLC实体被去激活,PDCP实体不会将这些数据发送到当前RLC实体。
本公开实施例中,可以将条件“如果发送缓存区和重传缓存区均为空和/或存在(或存在至少一个)已发送且等待确认的RLC SDU或RLC SDU分段”替换为条件“如果发送缓存区和重传缓存区均为空(已发送且等待确认的RLC SDU或RLC SDU分段除外)”形成新的实施例,也是本公开的实施范围。本公开实施例中,发送缓存区和重传缓存区均为空(已发送且等待确认的RLC SDU或RLC SDU分段除外),表示AM RLC实体发送端(或AM RLC实体发送端发送缓存区和重传缓存区中)不包含除已发送且等待确认的RLC SDU或RLC SDU分段外的其他RLC SDU或RLC SDU分段。
此外,在本公开实施例中,重传已递交下层的具有最大序列号的RLC SDU是指将已递交下层的具有最大序列号的RLC SDU用于重传或将已递交下层的RLC SDU中具有最大序列号的RLC SDU用于重传,但是在构造对应的AMD PDU时,需要根据下层指示的可发送的数据量构建的AMD PDU的数据域可能包含所述RLC SDU或其分段(即构造的AMD PDU应适合下层在特定传输机会中指示的AMD PDU的总大小)。此外,将“重传 已递交下层的具有最大序列号的RLC SDU”的操作替换为“重传任意一个尚未被肯定确认的RLC SDU(consider any RLC SDU which has not been positively acknowledged for retransmission)”或“重传已递交下层的具有最大序列号的RLC SDU,或者重传任意一个尚未被肯定确认的RLC SDU”所形成的实施例也是本公开的保护范围。
下面描述AM RLC实体发送端接收到来自AM RLC实体接收端的状态报告时执行的操作实施例,图4示出了该实施例的无线通信方法的流程图。
AM RLC实体发送端接收到来自AM RLC实体接收端(也称对等AM RLC实体)的状态报告(STATUS report),执行以下操作:
在步骤401,如果状态报告包含序列号等于POLL_SN的RLC SDU的肯定确认或否定确认,执行步骤402;
在步骤402,如果重传询问定时器t-pollRetransmit正在运行,则停止和重置重传询问定时器t-pollRetransmit,并执行步骤403;
在步骤403,如果所述状态报告不包含序列号小于或等于POLL_SN的RLC SDU的否定确认,并且发送缓存区和/或重传缓存区均为空但包含且仅包含已发送且等待确认的RLC SDU或RLC SDU分段(即发送缓存区和/或重传缓存区包含且仅包含已发送且等待确认的RLC SDU或RLC SDU分段,换言之,发送缓存区和/或重传缓存区包含至少一个已发送且等待确认的RLC SDU或RLC SDU分段),则执行步骤404;
需要说明的是步骤403也可以替换为以下之一,从而形成新的实施例:
在步骤403,如果发送缓存区和/或重传缓存区均为空,但其中包含至少一个已发送且等待确认的RLC SDU或RLC SDU分段未被所述状态报告指示为肯定确认,则执行步骤404;
在步骤403,如果发送缓存区和/或重传缓存区均为空,但其中包含至少一个已发送且等待确认的RLC SDU或RLC SDU分段未被所述状态报告指示为肯定确认或否定确认,则执行步骤404;
在步骤403,如果所述状态报告不包含序列号小于或等于POLL_SN的RLC SDU的否定确认,并且POLL_SN小于已发送且等待确认的RLC SDU或RLC SDU分段的最大序列号,则执行步骤404;
在步骤403,如果所述状态报告不包含序列号小于或等于POLL_SN的RLC SDU的否定确认和/或如果发送缓存区和重传缓存区均为空(已发送且等待确认的RLC SDU或RLC SDU分段除外),并且POLL_SN小于已递交下层的RLC SDU或RLC SDU分段的最大序列号,则执行步骤404;
在步骤403,如果发送缓存区和重传缓存区不包含除已发送且等待确认的RLC SDU或RLC SDU分段外的其他RLC SDU或RLC SDU分段,并且询问状态变量POLL_SN小于已递交给下层的RLC PDU的最大序列号,则执行步骤404;
在步骤404,重传已递交下层的具有最大序列号的RLC SDU(consider the RLC SDU with the highest SN among the RLC SDUs submitted to lower layer for retransmission),且在对应的AMD PDU(或所述RLC SDU或RLC SDU分段对应的AMD PDU,即所述AMD PDU的数据域为所述RLC SDU或RLC SDU分段)中包含一个询问。
上述步骤404可以替换为以下之一,从而形成新的实施例:
在步骤404,重传任意尚未被肯定确认的RLC SDU(consider any RLC SDU which has not been positively acknowledged for retransmission),且在对应的AMD PDU(或所述RLC SDU或RLC SDU分段对应的AMD PDU,即所述AMD PDU的负载为所述RLC SDU或RLC SDU分段)中包含一个询问。
在步骤404,重传已递交下层的具有最大序列号的RLC SDU或者重传任意尚未被肯定确认的RLC SDU,且在对应的AMD PDU(或所述RLC SDU或RLC SDU分段对应的AMD PDU,即所述AMD PDU的负载为所述RLC SDU或RLC SDU分段)中包含一个询问。
需要说明的是,可以改变上述实施例中执行步骤403的条件从而形成新的实施例。具体的,执行步骤403时不需要判断是否满足重传询问定时器t-pollRetransmit正在运行的条件,在这种情况下,如果状态报告包含序列号等于POLL_SN的RLC SDU的肯定确认或否定确认(即满足步骤401的条件),则执行步骤403。此时,步骤402和步骤403是两个并列且相互 独立的步骤,可以先执行步骤402,再执行步骤403;也可以先执行步骤403,再执行步骤402。
在上述实施例中,将步骤404中“等待确认的RLC SDU或RLC SDU分段的最大序列号”替换为“已递交下层的RLC SDU或RLC SDU分段的最大序列号”或“已递交下层且等待确认的RLC SDU或RLC SDU分段的最大序列号”所形成新的实施例也是本公开保护的范围。同样的,将步骤404中“已递交下层的RLC SDU或RLC SDU分段的最大序列号”替换为“等待确认的RLC SDU或RLC SDU分段的最大序列号”或“已递交下层且等待确认的RLC SDU或RLC SDU分段的最大序列号”所形成新的实施例也是本公开保护的范围。本公开所述等待确认或已递交下层的RLC SDU或RLC SDU分段的最大序列号是指等待确认或已递交下层的RLC SDU或RLC SDU分段中序列号最大的等待确认或已递交下层的RLC SDU或RLC SDU分段的序列号。
本公开实施例中,所述询问状态变量POLL_SN用于保存(hold)设置询问(具体根据3GPP TS38.322 5.3.3.2节设置)时已递交给下层的AMD PDU的序列号的最大值(This state variable holds the value ofthe highest SN of the AMD PDU among the AMD PDUs submitted to lower layer when POLL_SN is set according to sub clause 5.3.3.2)。
根据上述实施例的方法,能够在接收到来自AM RLC实体接收端的状态报告时执行适当的操作,从而能够提高无线通信系统的通信效率以及可靠性。
如未特别说明,本公开中的缓存区可以是发送缓存区和/或重传缓存区。
另外,本公开中的“去激活分组重复”、“配置了分组重复但处于去激活状态”以及“接收到来自上层(例如PDCP)或下层(例如MAC)的去激活分组重复的指示”可互换使用。
图5示出了根据本公开实施例的无线通信设备的框图。如图5所示,无线通信设备50包括处理器510和存储器520。处理器510例如可以包括 微处理器、微控制器、嵌入式处理器等。存储器520例如可以包括易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器等。存储器520上存储有程序指令。该指令在由处理器510运行时,可以执行本公开详细描述的上述方法。
应该理解,本公开的上述实施例可以通过软件、硬件或者软件和硬件两者的结合来实现。例如,上述实施例中的基站和用户设备内部的各种组件可以通过多种器件或电路来实现,这些器件包括但不限于:模拟电路器件、数字电路器件、数字信号处理(DSP)电路、可编程处理器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、可编程逻辑器件(CPLD),等等。
此外,这里所公开的本公开的实施例可以在计算机程序产品上实现。更具体地,该计算机程序产品是如下的一种产品:具有计算机可读介质,计算机可读介质上编码有计算机程序逻辑,当在计算设备上执行时,该计算机程序逻辑提供相关的操作以实现本公开的上述技术方案。当在计算系统的至少一个处理器上执行时,计算机程序逻辑使得处理器执行本公开实施例所述的操作(方法)。本公开的这种设置典型地提供为设置或编码在例如光介质(例如CD-ROM)、软盘或硬盘等的计算机可读介质上的软件、代码和/或其他数据结构、或者诸如一个或多个ROM或RAM或PROM芯片上的固件或微代码的其他介质、或一个或多个模块中的可下载的软件图像、共享数据库等。软件或固件或这种配置可安装在计算设备上,以使得计算设备中的一个或多个处理器执行本公开实施例所描述的技术方案。
这里所公开的本公开的实施例可以实现为运行在根据本公开的设备上的程序。运行在根据本公开的设备上的程序可以是通过控制中央处理单元(CPU)来使计算机实现本公开的实施例功能的程序。该程序或由该程序处理的信息可以临时存储在易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器系统中。
尽管以上已经结合本公开的优选实施例示出了本公开,但是本领域的技术人员将会理解,在不脱离本公开的精神和范围的情况下,可以对本公开进行各种修改、替换和改变。因此,本公开不应由上述实施例来限定, 而应由所附权利要求及其等价物来限定。

Claims (10)

  1. 一种无线通信方法,包括:
    无线链路控制RLC实体接收来自上层的丢弃特定RLC服务数据单元即RLC SDU的指示;
    在所述RLC SDU及其分段均未递交给下层的情况下,所述RLC实体删除所述RLC SDU。
  2. 根据权利要求1所述的无线通信方法,其中,还包括:
    在满足给定条件的情况下,所述RLC实体重传已递交下层的具有最大序列号的RLC SDU或者重传任意一个尚未被肯定确认的RLC SDU,并且在对应的RLC协议数据单元即RLC PDU中包含一个询问。
  3. 根据权利要求2所述的无线通信方法,其中,
    所述给定条件包括下述条件中的任意一项:
    发送缓存区和重传缓存区不包含除已发送且等待确认的RLC SDU或RLC SDU分段外的其他RLC SDU或RLC SDU分段;
    发送缓存区和重传缓存区均为空但存在已发送且等待确认的RLC SDU或RLC SDU分段;
    发送缓存区和重传缓存区均为空但存在已发送且等待确认的RLC SDU或RLC SDU分段,并且重传询问定时器未运行;
    发送缓存区和重传缓存区不包含除已发送且等待确认的RLC SDU或RLC SDU分段外的其他RLC SDU或RLC SDU分段,并且重传询问定时器未运行;
    发送缓存区和重传缓存区均为空但存在尚未被询问的已发送且等待确认的RLC SDU或RLC SDU分段;
    发送缓存区和重传缓存区不包含除已发送且等待确认的RLC SDU或RLC SDU分段外的其他RLC SDU或RLC SDU分段,并且询问状态变量POLL_SN小于已递交给下层的RLC PDU的最大序列号。
  4. 根据权利要求3所述的无线通信方法,其中,
    所述给定条件还包括下述条件中的任意一项:
    上层没有数据等待传输;
    上层有数据等待传输但分组重复被去激活或所述RLC实体被去激活。
  5. 根据权利要求2所述的无线通信方法,其中,
    在对应的RLC PDU中包含一个询问表示所述RLC实体向其对等RLC实体请求状态报告。
  6. 一种无线通信方法,包括:
    无线链路控制RLC实体接收来自其对等RLC实体的状态报告;
    在所述状态报告包含序列号等于询问状态变量POLL_SN的RLC服务数据单元即RLC SDU的肯定确认或否定确认的情况下,判断是否满足给定条件;
    在满足所述给定条件的情况下,所述RLC实体重传已递交下层的具有最大序列号的RLC SDU或者重传任意一个尚未被肯定确认的RLC SDU,并且在对应的RLC协议数据单元即RLC PDU中包含一个询问。
  7. 根据权利要求6所述的无线通信方法,其中,还包括:
    在所述状态报告包含序列号等于所述POLL_SN的RLC SDU的肯定确认或否定确认的情况下,停止和重置正在运行的重传询问定时器。
  8. 根据权利要求6所述的无线通信方法,其中,
    所述给定条件包括下述条件中的任意一项:
    所述状态报告不包含序列号小于或等于所述POLL_SN的RLC SDU的否定确认,并且发送缓存区和重传缓存区均为空但包含且仅包含已发送且等待确认的RLC SDU或RLC SDU分段;
    发送缓存区和重传缓存区均为空,但包含至少一个已发送且等待确认的RLC SDU或RLC SDU分段未被所述状态报告指示为肯定确认;
    所述状态报告不包含序列号小于或等于所述POLL_SN的RLC SDU的否定确认,并且所述POLL_SN小于已发送且等待确认的RLC SDU或RLC SDU分段的最大序列号;
    所述状态报告不包含序列号小于或等于所述POLL_SN的RLC SDU的否定确认,并且所述POLL_SN小于已递交下层的RLC SDU或RLC SDU分段的最大序列号;
    发送缓存区和重传缓存区不包含除已发送且等待确认的RLC SDU或RLC SDU分段外的其他RLC SDU或RLC SDU分段,并且所述POLL_SN小于已递交给下层的RLC PDU的最大序列号。
  9. 根据权利要求3、6、8所述的无线通信方法,其中,
    所述POLL_SN用于保存设置询问时已递交下层的RLC PDU的序列号的最大值。
  10. 一种无线通信设备,包括:
    处理器;以及
    存储器,存储有指令;
    其中,所述指令在由所述处理器运行时执行根据权利要求1至9中任一项所述的无线通信方法。
PCT/CN2020/128999 2019-11-22 2020-11-16 无线通信方法以及无线通信设备 WO2021098638A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911163256.3A CN112838912A (zh) 2019-11-22 2019-11-22 无线通信方法以及无线通信设备
CN201911163256.3 2019-11-22

Publications (1)

Publication Number Publication Date
WO2021098638A1 true WO2021098638A1 (zh) 2021-05-27

Family

ID=75922117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128999 WO2021098638A1 (zh) 2019-11-22 2020-11-16 无线通信方法以及无线通信设备

Country Status (2)

Country Link
CN (1) CN112838912A (zh)
WO (1) WO2021098638A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102316516A (zh) * 2010-06-30 2012-01-11 重庆重邮信科通信技术有限公司 一种lte上行数据传输结构及控制方法
CN104837163A (zh) * 2014-02-08 2015-08-12 夏普株式会社 用于删除无线链路控制服务数据单元的方法和基站
CN108476435A (zh) * 2017-06-19 2018-08-31 北京小米移动软件有限公司 数据处理方法及装置、用户设备和计算机可读存储介质
CN110167146A (zh) * 2018-02-12 2019-08-23 维沃移动通信有限公司 一种sdu的处理方法和通信设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102316516A (zh) * 2010-06-30 2012-01-11 重庆重邮信科通信技术有限公司 一种lte上行数据传输结构及控制方法
CN104837163A (zh) * 2014-02-08 2015-08-12 夏普株式会社 用于删除无线链路控制服务数据单元的方法和基站
CN108476435A (zh) * 2017-06-19 2018-08-31 北京小米移动软件有限公司 数据处理方法及装置、用户设备和计算机可读存储介质
CN110167146A (zh) * 2018-02-12 2019-08-23 维沃移动通信有限公司 一种sdu的处理方法和通信设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Radio Link Control (RLC) protocol specification (Release 15)", 3GPP STANDARD; TECHNICAL SPECIFICATION; 3GPP TS 38.322, vol. RAN WG2, no. V15.5.0, 9 April 2019 (2019-04-09), pages 1 - 33, XP051723352 *
SHARP: "Impacts of PDCP duplication on PDCP SDU discard procedure", 3GPP DRAFT; R2-1800564 IMPACTS OF PDCP DUPLICATION ON PDCP SDU DISCARD PROCEDURE, vol. RAN WG2, 12 January 2018 (2018-01-12), Vancouver, Canada, pages 1 - 4, XP051386225 *

Also Published As

Publication number Publication date
CN112838912A (zh) 2021-05-25

Similar Documents

Publication Publication Date Title
JP4965713B2 (ja) 無線通信システムにおけるエラー制御メッセージを処理するための方法及び装置
KR102299118B1 (ko) 신규 무선 접속 기술에서의 중복 및 rlc 동작
JP6336039B2 (ja) プロトコルデータユニットの配信
US9900798B2 (en) Polling and reporting mechanism
JP6321607B2 (ja) 無線リンク制御パケットの破棄および無線リンク制御の再確立をトリガする方法および装置
EP2681880B1 (en) Controlling network device behavior
ES2294311T3 (es) Sistema para permitir el control de la purga de un nodo b por el controlador de servicio de red de radio.
EP3031281B1 (en) Use of packet status report from secondary base station to master base station in wireless network
TWI454096B (zh) Mac層重置後b節點緩衝資料之高效回復系統
US20100105334A1 (en) Radio link control status reporting and polling
KR20190139887A (ko) 패킷 복제 동작 모드들 간의 스위칭
KR101550161B1 (ko) 비액세스 계층 재송신의 전달 통지를 위한 방법 및 장치
US20090175163A1 (en) Method and apparatus of performing packet data convergence protocol re-establishment
WO2015066923A1 (zh) 数据传输方法及装置
WO2018201498A1 (zh) 一种数据接收状态报告方法及装置
WO2020156569A1 (zh) 发送rlc状态报告的方法、设备和存储介质
WO2019019120A1 (zh) 传输数据的方法、终端设备和网络设备
KR102323799B1 (ko) 무선 통신 시스템에서 단말, 기지국 및 이의 통신 방법
WO2021129701A1 (zh) Pdcp实体的控制方法以及pdcp实体
WO2020151648A1 (zh) 适配实体和rlc实体的无线通信方法及通信设备
WO2019042032A1 (zh) 一种数据传输方法、rlc实体及pdcp实体
WO2020155124A1 (zh) 复制数据的传输方法、终端设备及接入网设备
WO2021098638A1 (zh) 无线通信方法以及无线通信设备
WO2019062760A1 (zh) 服务数据单元处理方法、丢弃方法、相应的用户设备和计算机可读介质
WO2022120744A1 (zh) 数据传输处理方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20890677

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20890677

Country of ref document: EP

Kind code of ref document: A1