WO2021129544A1 - 电压检测及适配方法、设备控制方法、装置及存储介质 - Google Patents

电压检测及适配方法、设备控制方法、装置及存储介质 Download PDF

Info

Publication number
WO2021129544A1
WO2021129544A1 PCT/CN2020/137808 CN2020137808W WO2021129544A1 WO 2021129544 A1 WO2021129544 A1 WO 2021129544A1 CN 2020137808 W CN2020137808 W CN 2020137808W WO 2021129544 A1 WO2021129544 A1 WO 2021129544A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power supply
working
zero
moment
Prior art date
Application number
PCT/CN2020/137808
Other languages
English (en)
French (fr)
Inventor
俞浩
Original Assignee
追创科技(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201911346278.3A external-priority patent/CN111025007B/zh
Priority claimed from CN201911347964.2A external-priority patent/CN111064174A/zh
Priority claimed from CN201911346238.9A external-priority patent/CN111148286B/zh
Application filed by 追创科技(苏州)有限公司 filed Critical 追创科技(苏州)有限公司
Priority to KR1020227021016A priority Critical patent/KR20220104215A/ko
Priority to JP2022538334A priority patent/JP2023500984A/ja
Priority to US17/776,586 priority patent/US20220385222A1/en
Priority to CA3158881A priority patent/CA3158881A1/en
Publication of WO2021129544A1 publication Critical patent/WO2021129544A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/14Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D20/00Hair drying devices; Accessories therefor
    • A45D20/04Hot-air producers
    • A45D20/08Hot-air producers heated electrically
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/10Measuring sum, difference or ratio
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • G01R19/16547Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies voltage or current in AC supplies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/175Indicating the instants of passage of current or voltage through a given value, e.g. passage through zero
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices

Definitions

  • This application relates to a voltage detection and adaptation method, equipment control method, device and storage medium, and belongs to the field of electronic technology.
  • the mains voltage is usually alternating current.
  • alternating current as a sine wave as an example, if the sine wave is used to control the heating component (such as heating wire) in the hair dryer, then the heating component is controlled to be turned on at a position far away from the zero position of the sine wave, which will have an impact on the heating component Current, once the impact current is too large, the heating device will be damaged.
  • This application provides a device control method, device and storage medium, which can solve the problem of easily damaging the heating device and reducing the service life of the target device when the designated device is controlled to be turned on at a position far from the voltage zero crossing point.
  • This application provides the following technical solutions:
  • a device control method includes:
  • the zero-crossing signal is a signal sent when the voltage zero-crossing detection component detects a voltage zero-crossing.
  • the obtaining compensation duration includes:
  • the voltage zero-crossing point detection component detects the voltage zero-crossing point, the time length between the time corresponding to the rising edge of the zero-crossing point signal and the actual voltage zero-crossing point is acquired to obtain the compensation time length.
  • the obtaining compensation duration includes:
  • the voltage zero-crossing point detection component detects the voltage zero-crossing point, acquiring the time length between the falling edge of the zero-crossing signal and the actual voltage zero-crossing point to obtain the delay time;
  • the compensation duration is determined based on the working period and the delay duration.
  • the determining the compensation duration based on the working period and the delay duration includes:
  • the difference between half of the working period and the delay duration is determined as the compensation duration.
  • the determining the compensation duration based on the working period and the delay duration includes:
  • the difference between the working period and the delay duration is determined as the compensation duration.
  • the designated device includes a heating device.
  • controlling the designated device in the target device to turn on or off after the compensation time period when the zero-crossing signal is received includes:
  • the designated device in the target device is controlled to turn on or off.
  • a device control device in a second aspect, includes:
  • a signal receiving module configured to receive a turn-on signal of a target device, the turn-on signal being used to trigger the target device to start working;
  • a time length acquisition module configured to acquire a compensation time length, where the compensation time length is used to offset the delay of the voltage zero-crossing point detection component detecting the voltage zero-crossing point;
  • the device control module is used to control the designated device in the target device to turn on or off after the compensation period when a zero-crossing signal is received, and the zero-crossing signal is that the voltage zero-crossing point is detected by the voltage zero-crossing point detection component The signal sent at the time.
  • a device control device in a third aspect, includes a processor and a memory; the memory stores a program, and the program is loaded and executed by the processor to implement the device control method described in the first aspect .
  • a computer-readable storage medium stores a program, and the program is loaded and executed by the processor to implement the device control method described in the first aspect.
  • the beneficial effects of this application are: by receiving the turn-on signal of the target device; obtaining the compensation duration; when the zero-crossing signal is received, the specified device in the target device is controlled to turn on or off after the compensation duration, and the zero-crossing signal is a voltage zero-crossing detection
  • the signal sent when the component detects the voltage zero-crossing point it can solve the problem that the heating device is easily damaged when the heating device is turned on at a position far from the voltage zero-crossing point, and the service life of the target equipment is reduced; due to the delay in the detection of the voltage zero-crossing point detection device .
  • By determining the compensation duration based on the delay combining the zero-crossing signal and the compensation duration to precisely control the specified device to turn on or off at the actual voltage zero-crossing point, which can ensure that no inrush current will damage the specified device; at the same time, it can improve the control designation
  • the accuracy of the device extends the service life of the specified device.
  • the designated device when the designated device is controlled to be turned on at a position far from the voltage zero crossing point, the current passing through the designated device will undergo a sudden change, which will affect the power supply voltage, thereby causing interference to other equipment powered by the power supply voltage; this application
  • By controlling the designated device to turn on or off at the actual zero-crossing point it can also avoid the problem of sudden currents affecting the supply voltage of the designated device, thereby reducing the interference (ie conduction interference) caused by the turning on and off of the designated device on other devices.
  • This application provides a power supply voltage detection method, device, and storage medium, which can solve the problem that when the motor is running, the switching tube in the driving circuit is periodically turned on and off, which will periodically pull down the power supply voltage of the power supply, resulting in detection The accuracy of the power supply voltage is not high.
  • This application provides the following technical solutions:
  • a method for detecting a power supply voltage includes:
  • the voltage value of the power supply is detected at the voltage detection moment to determine the power supply voltage of the power supply.
  • the determining the voltage detection time based on the difference between the working voltage of the power supply at each working time in the working cycle and the target voltage includes:
  • the voltage value detected at the time of the voltage detection is the power supply voltage of the power supply.
  • control signal of the motor is a square wave signal
  • determining the working time when the working voltage is the same as the target voltage in the working period includes:
  • the end time of the working period is determined as the working time.
  • the determining the voltage detection time based on the difference between the working voltage of the power supply at each working time in the working cycle and the target voltage includes:
  • the second working moment corresponding to the difference between the maximum voltage value and the preset value in the working voltage curve is determined as the voltage detection moment.
  • the detecting the voltage value of the power supply at the voltage detection moment to determine the power supply voltage of the power supply includes:
  • the sum between the voltage value and the preset value is determined as the power supply voltage of the power supply.
  • the obtaining the working period of the motor includes:
  • a power supply voltage detection device including:
  • the cycle acquisition module is used to acquire the working cycle of the motor
  • the time determination module is used to determine the voltage detection time based on the difference between the working voltage of the power supply at each working time in the working cycle and the target voltage, where the target voltage is when the power supply is used to supply power to the motor The power supply voltage when the motor is not turned on;
  • the voltage detection module is used to detect the voltage value of the power supply at the time of voltage detection to determine the power supply voltage of the power supply.
  • a power supply voltage detection device in a third aspect, includes a processor and a memory; the memory is stored with a program, and the program is loaded and executed by the processor to realize the power supply voltage described in the first aspect. Detection method.
  • a computer-readable storage medium is provided, and a program is stored in the storage medium, and the program is loaded and executed by the processor to implement the power supply voltage detection method described in the first aspect.
  • the beneficial effects of this application are: by obtaining the working period of the motor; determining the voltage detection time based on the difference between the working voltage of the power supply at each working time in the working cycle and the target voltage; detecting the voltage value of the power supply at the voltage detection time
  • the switching tube in the driving circuit periodically turns on and off, which will periodically pull down the power supply voltage of the power supply, resulting in low accuracy of the detected power supply voltage.
  • the processing component can control the voltage detection component to collect the working voltage of the power supply at a specified time, combined with the difference between the working voltage corresponding to the specified time and the target voltage, the working voltage that meets the target voltage can be determined, and the voltage detection can be improved Accuracy.
  • the purpose of the present invention is to provide a voltage adaptation method, device and storage medium, which can solve the problem of excessive power changes caused by specified devices under different power supply voltages.
  • the present invention provides the following technical solutions:
  • a voltage adaptation method includes the following steps:
  • the opening sequence of the designated device is determined based on the current supply voltage, and the opening sequence refers to a period of time during which the designated device remains on in each work cycle.
  • the determining the opening sequence of the designated device based on the power supply voltage at the current moment includes:
  • the determining the opening sequence of the designated device based on the power supply voltage at the current moment includes:
  • the opening sequence of the designated device is determined.
  • the method further includes:
  • the operation of the designated device is controlled according to the opening sequence to adjust the power of the designated device.
  • the method further includes:
  • sampling duration is the interval between the previous time and the current time
  • the supply voltage is sampled.
  • the method further includes:
  • processing the power supply voltage at the current moment includes:
  • a voltage adaptation device in a second aspect, includes:
  • the voltage difference determination module is used to determine the voltage difference between the power supply voltage at the current moment and the power supply voltage at the previous moment;
  • the opening sequence determination module is configured to determine the opening sequence of a designated device based on the current supply voltage when the voltage difference is greater than a preset threshold, and the opening sequence refers to the designated device in each work cycle The period of time to remain on.
  • a voltage adaptation device in a third aspect, includes a processor and a memory; the memory is stored with a program, and the program is loaded and executed by the processor to implement the voltage adaptation as described above method.
  • a computer-readable storage medium is provided, and a program is stored in the storage medium, and the program is used to implement the voltage adaptation method described above when the program is executed by a processor.
  • the beneficial effects of the present invention are: by determining the voltage difference between the supply voltage at the current moment and the supply voltage at the previous moment; when the voltage difference is greater than the preset threshold, the opening sequence of the specified device is determined based on the supply voltage at the current moment ,
  • the opening sequence refers to the period of time during which the specified device remains on during each work cycle, so as to prevent the specified device from causing excessive power changes in the environment of different supply voltages.
  • Fig. 1 is a schematic structural diagram of a device control system provided by an embodiment of the present application
  • Figure 2 is a flowchart of a device control method provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of determining the voltage zero-crossing point provided by an embodiment of the present application.
  • Fig. 4 is a block diagram of a device control device provided by an embodiment of the present application.
  • Fig. 5 is a block diagram of a device control apparatus provided by an embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of a power supply voltage detection system provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a change curve of the working voltage of the power supply during the operation of the motor according to an embodiment of the present application.
  • FIG. 8 is a flowchart of a method for detecting a power supply voltage according to an embodiment of the present application.
  • FIG. 9 is a block diagram of a power supply voltage detection device provided by an embodiment of the present application.
  • Fig. 10 is a block diagram of a power supply voltage detection device provided by an embodiment of the present application.
  • FIG. 11 is a flowchart of a voltage adaptation method provided by an embodiment of the present invention.
  • FIG. 12 is a specific flowchart of a voltage adaptation method provided by an embodiment of the present invention.
  • FIG. 13 is a block diagram of a voltage adaptation device provided by an embodiment of the present invention.
  • Fig. 14 is a voltage adaptation device provided by an embodiment of the present invention.
  • Negative Temperature Coefficient (NTC) temperature sensors generally refer to semiconductor materials or components with a large negative temperature coefficient. Its operating principle is: the resistance value drops rapidly as the temperature rises.
  • the external interrupt is an internal mechanism for the MCU to process external events in real time.
  • the interrupt system of the single-chip microcomputer will force the CPU to suspend the program being executed and turn to the interrupt event processing; after the interrupt processing is completed, it returns to the interrupted program and continues execution.
  • FIG. 1 is a schematic structural diagram of a device control system provided by an embodiment of the present application. As shown in FIG. 1, the system at least includes: a processing component 110, a voltage zero-crossing point detection component 120 and a designated device 130.
  • the device control system can be applied to a hair dryer.
  • it can also be applied to other devices having a processing component 110, a voltage zero-crossing detection component 120, and a designated device 130. This embodiment does not apply to the application scenario of the device control system. limited.
  • the voltage zero-crossing point detection component 120 and the designated device 130 are both communicatively connected to the processing component 110.
  • the voltage zero-crossing point detection component 120 is used to detect the voltage zero-crossing point of the power supply that supplies power to the target device.
  • the voltage zero-crossing detection component 120 can be implemented as hardware independent of the processing component 110; or, software integrated in the processing component 110 or other hardware devices; or a combination of software and hardware, this embodiment does not apply to the voltage zero-crossing detection component.
  • the implementation of 120 is limited.
  • the voltage zero-crossing detection component 120 may be an optocoupler detection device, a transformer detection device, etc., and the implementation of the voltage zero-crossing detection component 120 is not limited in this embodiment.
  • the designated device 130 refers to a device that is installed in the target device and directly uses alternating current to work.
  • the designated device 130 is a heating device in the target device, such as a heating wire.
  • the processing component 110 is used to receive the turn-on signal of the target device, the turn-on signal is used to trigger the target device to start working; to obtain the compensation duration; when the zero-crossing signal is received, the specified device in the target device is controlled to turn on or off after the compensation duration, and the zero-crossing point
  • the signal is the signal sent when the voltage zero-crossing point detection component detects the voltage zero-crossing point.
  • the compensation duration is used to offset the delay of the voltage zero-crossing point detection component detecting the voltage zero-crossing point.
  • the processing component 110 controls the startup or shutdown of the designated device at the zero-crossing point of the voltage of the power supply, which can avoid the problem of damage to the designated device due to inrush current.
  • the processing component 110 controls the startup or shutdown of the designated device at the zero-crossing point of the voltage of the power supply, which can avoid the problem of damage to the designated device due to inrush current.
  • the processing component 110 controls the startup or shutdown of the designated device at the zero-crossing point of the voltage of the power supply, which can avoid the problem of damage to the designated device due to inrush current.
  • the processing component 110 controls the startup or shutdown of the designated device at the zero-crossing point of the voltage of the power supply, which can avoid the problem of damage to the designated device due to inrush current.
  • the compensation time since there is a delay in the detection of the voltage zero-crossing point detection device 120, by determining the compensation time based on the delay, and combining the voltage zero-crossing point position and the compensation time to more accurately control the startup or shutdown of the designated device, the accuracy
  • the device control system may also include other components, such as a power supply, an NTC temperature sensor, a control circuit, etc., which are not listed here in this embodiment.
  • FIG. 2 is a flowchart of a device control method provided by an embodiment of the present application.
  • the method is applied to the device control system shown in FIG. 1, and the execution subject of each step is the processing component 110 in the system. Examples are explained.
  • the method includes at least the following steps:
  • Step 201 Receive a turn-on signal of the target device, and the turn-on signal is used to trigger the target device to start working.
  • the target device is provided with a switch control, and when a control operation acting on the switch control is received, the processing component will receive the start signal of the target device.
  • Step 202 Obtain a compensation duration, which is used to offset the delay of the voltage zero-crossing detection component detecting the voltage zero-crossing point.
  • the compensation time is determined based on the delay time of the voltage zero-crossing detection component detecting the voltage zero-crossing point, so as to offset the influence of the delay time to ensure that the processing component controls the designated device to start at the actual voltage zero-crossing point.
  • the processing component controls the specified device to start at the voltage zero crossing point of the sine wave.
  • the voltage zero-crossing point detection component triggers an external interrupt after detecting the voltage zero-crossing point, and the interrupt signal (zero-crossing point signal) is a pulse waveform.
  • the processing component determines the time 31 corresponding to the falling edge of the zero-crossing signal as the voltage zero-crossing point, the processing component controls the designated device to turn on or off with a delay, and the delay time is from the actual voltage zero-crossing point 32 to the falling edge corresponding The length of time between time 31.
  • the influence of the delay time can be eliminated by compensating the time length, so that the processing component turns on or off the designated device at the actual zero-crossing point 32.
  • obtaining the compensation time length includes: when the voltage zero-crossing point detection component detects the voltage zero-crossing point, obtaining the time length between the time corresponding to the rising edge of the zero-crossing signal and the actual voltage zero-crossing point to obtain the compensation time length.
  • the compensation duration corresponding to the same type of voltage zero-crossing point detection components is the same.
  • the target device has pre-stored the corresponding compensation time lengths of various types of voltage zero-crossing point detection components; the processing component determines the corresponding compensation time length according to the type of the current voltage zero-crossing point detection component.
  • obtaining the compensation duration includes obtaining the working period of the power supply of the target device, the power supply is alternating current; when the voltage zero-crossing detection component detects the voltage zero-crossing point, obtaining the falling edge of the zero-crossing signal and the actual voltage passing The time between zero points is the delay time; the compensation time is determined based on the working period and the delay time.
  • the delay time corresponding to the same type of voltage zero-crossing point detection components is the same.
  • the target device is pre-stored in the corresponding delay time of each type of voltage zero-crossing detection component; the processing component determines the corresponding delay time according to the type of the current voltage zero-crossing detection component.
  • the power supply is alternating current.
  • the compensation duration is determined based on the difference between half of the working period and the delay duration. For example: in Figure 3, when the voltage zero-crossing detection component detects the voltage zero-crossing point, the external interrupt of the processing component is triggered (the processing component receives the zero-crossing signal), and the time after the falling edge of the zero-crossing signal reaches half of the duty cycle and When the delay time is different (position 34), the processing component turns on or turns off the specified device. At this time, the compensation duration of the processing component after the falling edge is the actual voltage zero crossing point 34, which can eliminate the influence of the delay duration.
  • the processing component determines the difference between the working period and the delay period as the compensation period. For example: in Figure 3, the voltage zero-crossing detection component triggers an external interrupt of the processing component when the voltage zero-crossing point is detected (the processing component receives the zero-crossing signal), and the duration after the falling edge of the zero-crossing signal reaches the duty cycle and delay. When there is a difference in duration (position 35), the processing component turns on or turns off the specified device. At this time, the compensation duration of the processing component after the falling edge is the actual voltage zero crossing point 35, which can eliminate the influence of the delay duration.
  • the processing component may read the compensation duration from the storage medium. That is, the compensation duration is pre-stored in the target device.
  • step 202 can be performed after step 201; alternatively, it can be performed before step 201; or, it can also be performed simultaneously with step 201.
  • This embodiment does not limit the order of execution between steps 201 and 202.
  • Step 203 When the zero-crossing signal is received, the designated device in the target device is controlled to be turned on or off after the compensation time.
  • the zero-crossing signal is a signal sent when the voltage zero-crossing point detection component detects the voltage zero-crossing point.
  • the timer is triggered to start when the zero-crossing signal is received, and the timer's timing duration is the compensation duration; when the timer's duration reaches the timing duration, the specified device in the target device is controlled to turn on or off.
  • the designated device is a heating device
  • the target device stores a control method for the processing component to turn on and off the heating device, for example: in the sine wave shown in Figure 3, the half-wave control numbered 1, 2, and 3.
  • the heater is turned on; the half-wave control heaters numbered 4 and 5 are turned off (other control methods can be used in actual implementation, and this embodiment does not limit this); the processing component controls the heating after the compensation time is reached according to this control method
  • the device is turned on or off.
  • the device control method receives the turn-on signal of the target device; obtains the compensation duration; when the zero-crossing signal is received, the specified device in the target device is controlled to turn on or off after the compensation duration.
  • the zero-point signal is the signal sent when the voltage zero-crossing point detection component detects the voltage zero-crossing point; it can solve the problem that the heating device is easily damaged when the heating device is turned on at a position far from the voltage zero-crossing point, and the service life of the target device is reduced;
  • the zero-point detection device detects that there is a delay, by determining the compensation time based on the delay, and combining the zero-crossing signal and the compensation time to accurately control the specified device to turn on or off at the actual voltage zero-crossing point, which can ensure that no inrush current will damage the specified device ; At the same time, it can improve the accuracy of controlling the specified device and prolong the service life of the specified device.
  • the designated device when the designated device is controlled to be turned on at a position far from the voltage zero crossing point, the current passing through the designated device will undergo a sudden change, which will affect the power supply voltage, thereby causing interference to other equipment powered by the power supply voltage; this application
  • By controlling the designated device to turn on or off at the actual zero-crossing point it can also avoid the problem of sudden currents affecting the supply voltage of the designated device, thereby reducing the interference (ie conduction interference) caused by the turning on and off of the designated device on other devices.
  • FIG. 4 is a block diagram of a device control device provided by an embodiment of the present application.
  • the device is applied to the processing component 110 in the device control system shown in FIG. 1 as an example for description.
  • the device includes at least the following modules: a signal receiving module 410, a duration acquisition module 420, and a device control module 430.
  • the signal receiving module 410 is configured to receive a turn-on signal of the target device, where the turn-on signal is used to trigger the target device to start working;
  • the duration acquisition module 420 is configured to acquire the compensation duration, and the compensation duration is used to offset the delay of the voltage zero-crossing point detection component detecting the voltage zero-crossing point;
  • the device control module 430 is configured to control the specified device in the target device to turn on or off after the compensation time when a zero-crossing signal is received, and the zero-crossing signal is that the voltage zero-crossing detection component detects a voltage overshoot. The signal sent at zero.
  • the device control device provided in the above embodiment performs device control
  • only the division of the above functional modules is used as an example.
  • the above functions can be allocated by different functional modules according to needs. , That is, divide the internal structure of the equipment control device into different functional modules to complete all or part of the functions described above.
  • the device control device provided in the foregoing embodiment and the device control method embodiment belong to the same concept, and the specific implementation process is detailed in the method embodiment, which will not be repeated here.
  • Fig. 5 is a block diagram of a device control apparatus provided by an embodiment of the present application.
  • the device at least includes a processor 501 and a memory 502.
  • the processor 501 may include one or more processing cores, such as a 4-core processor, an 8-core processor, and so on.
  • the processor 501 may adopt at least one hardware form among DSP (Digital Signal Processing), FPGA (Field-Programmable Gate Array), and PLA (Programmable Logic Array, Programmable Logic Array). achieve.
  • the processor 501 may also include a main processor and a coprocessor.
  • the main processor is a processor used to process data in the awake state, also called a CPU (Central Processing Unit, central processing unit); the coprocessor is A low-power processor used to process data in the standby state.
  • the memory 502 may include one or more computer-readable storage media, which may be non-transitory.
  • the memory 502 may also include high-speed random access memory and non-volatile memory, such as one or more magnetic disk storage devices and flash memory storage devices.
  • the non-transitory computer-readable storage medium in the memory 502 is used to store at least one instruction, and the at least one instruction is used to be executed by the processor 501 to implement the device control provided in the method embodiment of the present application. method.
  • the device control apparatus may optionally further include: a peripheral device interface and at least one peripheral device.
  • the processor 501, the memory 502, and the peripheral device interface may be connected through a bus or a signal line.
  • Each peripheral device can be connected to the peripheral device interface through a bus, a signal line or a circuit board.
  • the peripheral devices include but are not limited to: audio circuits and power supplies.
  • the device control device may also include fewer or more components, which is not limited in this embodiment.
  • the present application also provides a computer-readable storage medium in which a program is stored, and the program is loaded and executed by a processor to implement the device control method of the foregoing method embodiment.
  • this application also provides a computer product that includes a computer-readable storage medium in which a program is stored, and the program is loaded and executed by a processor to implement the foregoing method embodiments ⁇ Device control method.
  • FIG. 6 is a schematic structural diagram of a power supply voltage detection system provided by an embodiment of the present application. As shown in FIG. 6, the system at least includes: a processing component 2110, a voltage detection component 2120 and a driving circuit 2130 that are communicatively connected with the processing component 2110 , The motor 2140 is communicatively connected with the drive circuit 2130, and the power supply 2150 is communicatively connected with the processing component 2110.
  • the power supply voltage detection system can be applied to a hair dryer, of course, it can also be applied to other devices that need to perform power supply voltage detection.
  • This embodiment does not limit the application scenarios of the power supply voltage detection system.
  • the power supply 2150 is direct current obtained by rectifying alternating current through a rectifier circuit.
  • the power supply 2150 is used to provide the motor 2140 with a DC voltage.
  • the voltage detection component 2120 is installed at the output end of the power supply 2150.
  • the voltage detection component 2120 is used to detect the power supply voltage of the power supply 2150 and send the detected power supply voltage to the processing component 2110.
  • the processing component 2110 is used to determine the voltage detection time of the voltage detection component 2120, and control the voltage detection component 2120 to detect the power supply voltage of the power supply 2150 at the voltage detection time.
  • the processing component 2110 is also used to control the driving circuit 2130 to drive the motor 2140 to operate.
  • the driving circuit 2130 controls the operation of the motor by outputting a control signal to the motor, and the control signal may be a square wave signal.
  • the square wave signal includes a sine wave, a rectangular wave, etc., and the type of the square wave signal is not limited in this embodiment.
  • the processing component 2110 is used to obtain the working cycle of the motor 2140; determine the voltage detection time based on the difference between the working voltage of the power supply 2150 and the target voltage at each working time in the working cycle; detect the power supply at the voltage detection time
  • the voltage value of 2150 is used to determine the power supply voltage of the power supply 2150.
  • the target voltage is the power supply voltage when the motor is not turned on when the power supply is used to power the motor.
  • the processing component 2110 can control the voltage detection component 2120 to collect the working voltage of the power supply 2150 at a specified time, and combine the voltage difference corresponding to the specified time to determine the working voltage that meets the target voltage and improve the voltage detection accuracy.
  • FIG. 8 is a flowchart of a power supply voltage detection method provided by an embodiment of the present application.
  • the method is applied to the power supply voltage detection system shown in FIG. 6, and the execution subject of each step is the processing component in the system 2110 is an example for description.
  • the method includes at least the following steps:
  • Step 2301 Obtain the working period of the motor.
  • the method of obtaining the working period of the motor includes but is not limited to: obtaining the control signal of the motor, and determining the period of the control signal as the working period; or obtaining the on-off period of the switch tube in the driving circuit of the control motor, and setting the on-off period Determined as the work cycle.
  • the working voltage in one working cycle of the motor, the working voltage first drops and then rises. At this time, the curve corresponding to the falling stage is the curve corresponding to the switching tube turn-on process, and the curve corresponding to the rising stage is the curve corresponding to the switching tube turn-off process.
  • Step 2302 Determine the voltage detection time based on the difference between the working voltage of the power supply at each working time in the working cycle and the target voltage.
  • the target voltage is the power supply voltage when the motor is not turned on when the power supply is used to power the motor.
  • the way to determine the voltage detection moment includes but is not limited to the following:
  • the first method is to determine the first working moment when the working voltage is the same as the target voltage in the working cycle, and determine the first working moment as the voltage detection moment.
  • control signal of the motor is a square wave signal
  • determining the working time when the working voltage is the same as the target voltage in the working cycle includes: determining the starting time of the working cycle as the working time; or, determining the end time of the working cycle Determined as working hours.
  • the time 71 at the end of the working period is determined as the working time.
  • the working voltage corresponding to the working time is the same as the power supply voltage when the motor is not working.
  • the second type Obtain the working voltage at each working moment in the working cycle; curve-fit the change of the working voltage to obtain the working voltage curve; correspond to the difference between the maximum value of the voltage in the working voltage curve and the preset value
  • the second working moment is determined as the voltage detection moment.
  • the preset value is the difference between the maximum value of the voltage and the minimum value of the voltage
  • the second working moment is the time 72 corresponding to the minimum value of the working voltage.
  • Step 2303 Detect the voltage value of the power supply at the moment of voltage detection to determine the power supply voltage of the power supply.
  • the voltage value detected at the voltage detection time is the supply voltage of the power supply.
  • the supply voltage is the working voltage detected at the voltage detection time +Preset value, the value obtained is the same as the supply voltage.
  • the power supply voltage detection method obtains the working period of the motor; determines the voltage detection time based on the difference between the working voltage of the power supply at each working time in the working cycle and the target voltage; Detect the voltage value of the power supply at the time of detection to determine the supply voltage of the power supply; it can be solved that when the motor is running, the switching tube in the drive circuit periodically turns on and off, which will periodically pull down the power supply voltage of the power supply, resulting in detection
  • the problem that the accuracy of the power supply voltage is not high; because the processing component can control the voltage detection component to collect the working voltage of the power supply at a specified time, combined with the difference between the working voltage corresponding to the specified time and the target voltage, it can be determined to meet the target The working voltage of the voltage improves the accuracy of voltage detection.
  • FIG. 9 is a block diagram of a power supply voltage detection device provided by an embodiment of the present application.
  • the device is applied to the processing component 2110 in the power supply voltage detection system shown in FIG. 6 as an example for description.
  • the device includes at least the following modules: a period acquisition module 2410, a time determination module 2420, and a voltage detection module 2430.
  • the period obtaining module 2410 is used to obtain the working period of the motor
  • the time determination module 2420 is configured to determine the voltage detection time based on the difference between the working voltage of the power supply at each working time in the working cycle and the target voltage, where the target voltage is the use of the power supply to supply power to the motor The power supply voltage when the motor is not turned on;
  • the voltage detection module 2430 is configured to detect the voltage value of the power supply at the time of voltage detection to determine the power supply voltage of the power supply.
  • the power supply voltage detection device provided in the above embodiment performs power supply voltage detection
  • only the division of the above-mentioned functional modules is used as an example for illustration.
  • the above-mentioned functions can be assigned to different functions according to needs.
  • Module completion that is, the internal structure of the power supply voltage detection device is divided into different functional modules to complete all or part of the functions described above.
  • the power supply voltage detection device provided in the foregoing embodiment and the power supply voltage detection method embodiment belong to the same concept, and the specific implementation process is detailed in the method embodiment, and will not be repeated here.
  • Fig. 10 is a block diagram of a power supply voltage detection device provided by an embodiment of the present application.
  • the device at least includes a processor 2501 and a memory 2502.
  • the processor 2501 may include one or more processing cores, such as a 4-core processor, an 8-core processor, and so on.
  • the processor 2501 can adopt at least one hardware form among DSP (Digital Signal Processing), FPGA (Field-Programmable Gate Array), and PLA (Programmable Logic Array, Programmable Logic Array). achieve.
  • the processor 2501 may also include a main processor and a coprocessor.
  • the main processor is a processor used to process data in the awake state, also called a CPU (Central Processing Unit, central processing unit); the coprocessor is A low-power processor used to process data in the standby state.
  • the memory 2502 may include one or more computer-readable storage media, which may be non-transitory.
  • the memory 2502 may also include high-speed random access memory and non-volatile memory, such as one or more magnetic disk storage devices and flash memory storage devices.
  • the non-transitory computer-readable storage medium in the memory 2502 is used to store at least one instruction, and the at least one instruction is used to be executed by the processor 2501 to implement the power supply voltage provided by the method embodiment of the present application. Detection method.
  • the power supply voltage detection device may optionally further include: a peripheral device interface and at least one peripheral device.
  • the processor 2501, the memory 2502, and the peripheral device interface may be connected by a bus or a signal line.
  • Each peripheral device can be connected to the peripheral device interface through a bus, a signal line or a circuit board.
  • the peripheral devices include but are not limited to: audio circuits and power supplies.
  • the power supply voltage detection device may also include fewer or more components, which is not limited in this embodiment.
  • the present application also provides a computer-readable storage medium in which a program is stored, and the program is loaded and executed by a processor to implement the power supply voltage detection method of the foregoing method embodiment.
  • this application also provides a computer product including a computer-readable storage medium in which a program is stored, and the program is loaded and executed by a processor to implement the above-mentioned method embodiments Power supply voltage detection method.
  • ADC Analog-to-digital converter
  • FIG. 11 is a flowchart of a voltage adaptation method provided by an embodiment of the present invention.
  • the voltage adaptation method of the present invention is applicable to devices such as hair dryers, and the present invention does not specifically limit the application of the voltage adaptation method.
  • the designated device in this embodiment is a heating device. It is true that in other embodiments, the designated device may also be other, which is not specifically limited here, and depends on the actual situation.
  • the method at least includes the following steps:
  • Step 3101 Determine the voltage difference between the power supply voltage at the current moment and the power supply voltage at the previous moment.
  • the processing of the power supply voltage at each moment includes: filtering the power supply voltage at each moment and processing of an averaging algorithm.
  • the averaging algorithm may include a K-means clustering algorithm, a natural average algorithm, and the like.
  • the voltage difference After processing and saving the supply voltage at each moment, the voltage difference can be determined.
  • the process of determining the voltage difference is: obtaining the power supply voltage at the current moment, and subtracting the power supply voltage at the current moment and the power supply voltage at the previous moment to obtain the voltage difference between the two. Among them, if the current moment is the first sampling moment, the power supply voltage at the previous moment is 0.
  • Step 3102 When the voltage difference is greater than a preset threshold, determine an opening sequence of a designated device based on the power supply voltage at the current moment, where the opening sequence refers to the time that the designated device remains on in each work cycle segment.
  • the opening sequence of the specified device at the current moment can be determined by the relationship between voltage and power, which specifically includes: determining the operating power at the current moment based on the power supply voltage at the current moment; determining the opening sequence of the specified device according to the working power at the current moment, through the array
  • the comparison matching power is closest to the control opening of the set power of the supply voltage.
  • the opening sequence of the designated device at the current moment can also be determined by the relationship between the voltage and the opening sequence, which specifically includes: obtaining the mapping relationship between the power supply voltage and the opening sequence; The supply voltage determines the opening sequence of the specified device.
  • the mapping relationship between the power supply voltage and the opening sequence is a one-to-one mapping relationship, and then the specified device is controlled to work according to the opening sequence to adjust the power of the specified device.
  • the method further includes: acquiring a sampling duration, where the sampling duration is the interval between the previous moment and the current moment; and when the sampling duration is greater than or equal to a preset duration, sampling the power supply voltage.
  • the time interval from the previous time exceeds the sampling time, the power supply voltage is sampled again to prevent large changes in the power supply voltage when the device is working, which may damage the specified components, or even cause hidden dangers in more serious cases.
  • the sampling duration is directly obtained to sample the supply voltage at the next moment.
  • the voltage distribution method of the present invention is described in a specific embodiment below.
  • the preset threshold is 3V
  • the sampling duration is 1s.
  • the current supply voltage is sampled through the analog-to-digital converter, and then the current supply voltage is filtered and processed by the averaging algorithm, and the processed current supply voltage is saved. Calculate the voltage difference between the current supply voltage and the previous supply voltage.
  • the voltage difference is greater than 3V
  • the current supply voltage is brought into the voltage-power relationship graph to determine the current working power ; Determine the opening sequence of the specified device according to the working power at the current moment.
  • the sampling duration is obtained.
  • the sampling duration is greater than or equal to 1s, the supply voltage at the next moment will be sampled. If the sampling duration is less than 1s, the power supply voltage at the next moment will not be sampled until the sampling duration is greater than or equal to 1s.
  • the opening sequence of the specified device is determined based on the supply voltage at the current moment.
  • the sequence refers to the period of time during which the specified device remains on during each work cycle, so as to prevent the specified device from causing excessive power changes in the environment of different supply voltages.
  • FIG. 13 is a block diagram of a voltage adaptation device provided by an embodiment of the present invention, and the device at least includes:
  • the voltage difference determining module 3301 is used to determine the voltage difference between the power supply voltage at the current moment and the power supply voltage at the previous moment;
  • the opening sequence determination module 3302 is configured to determine the opening sequence of a designated device based on the current supply voltage when the voltage difference is greater than a preset threshold, and the opening sequence refers to the designated device in each work cycle The period of time within which it remains open.
  • the voltage adaptation device provided in the above-mentioned embodiment performs voltage adaptation, only the division of the above-mentioned functional modules is used as an example. In practical applications, the above-mentioned functions can be assigned to different functions according to needs. Module completion, that is, divide the internal structure of the voltage adaptation device into different functional modules to complete all or part of the functions described above.
  • the voltage adaptation device provided in the foregoing embodiment and the voltage adaptation method embodiment belong to the same concept, and the specific implementation process is detailed in the method embodiment, which will not be repeated here.
  • FIG. 14 is a voltage adaptation device provided by an embodiment of the present invention.
  • the device includes at least a processor 1 and a memory 2.
  • the processor 1 may include one or more processing cores, such as a 4-core processor 1, an 8-core processor 1, and so on.
  • Processor 1 can adopt at least one hardware form among DSP (Digital Signal Processing), FPGA (Field-Programmable Gate Array), and PLA (Programmable Logic Array, Programmable Logic Array). achieve.
  • the processor 1 may also include a main processor and a coprocessor.
  • the main processor is a processor used to process data in the awake state, also called a CPU (Central Processing Unit, central processing unit); the coprocessor is A low-power processor used to process data in the standby state.
  • the memory 2 may include one or more computer-readable storage media, which may be non-transitory.
  • the memory 2 may also include a high-speed random access memory 2 and a non-volatile memory 2, such as one or more magnetic disk storage devices and flash memory storage devices.
  • the non-transitory computer-readable storage medium in the memory 2 is used to store at least one instruction, and the at least one instruction is used to be executed by the processor 1 to implement the voltage adaptation provided by the method embodiment of the present invention. ⁇ Matching method.
  • the voltage adaptation device may optionally further include: a peripheral device interface and at least one peripheral device.
  • the processor 1, the memory 2 and the peripheral device interface can be connected by a bus or a signal line.
  • Each peripheral device can be connected to the peripheral device interface through a bus, a signal line or a circuit board.
  • peripheral devices include but are not limited to: radio frequency circuits, touch screens, audio circuits, and power supplies.
  • the voltage adaptation device may also include fewer or more components, which is not limited in this embodiment.
  • the present application provides a computer-readable storage medium in which a program is stored, and the program is used to implement the voltage adaptation method described above when the program is executed by a processor.
  • this application also provides a computer product that includes a computer-readable storage medium in which a program is stored, and the program is loaded and executed by a processor to implement the foregoing method embodiments The voltage adaptation method.

Abstract

一种电压适配及检测方法、设备控制方法、装置及存储介质,属于电子技术领域,该方法包括:接收目标设备的开启信号;获取补偿时长,补偿时长用于抵消电压过零点检测组件(120)检测电压过零点的延时(202);在接收到过零点信号时在补偿时长后控制目标设备中的指定器件(130)开启或关闭(203),过零点信号是电压过零点检测组件(120)检测到电压过零点时发送的信号;可以解决在距离电压过零点较远的位置控制发热器件开启时容易损坏发热器件、减少目标设备使用寿命的问题;由于可以确定出实际电压过零点(32、34、35),在实际电压过零点(32、34、35)控制指定器件(130)开启或关闭,既可以保证不会产生冲击电流损坏指定器件(130);同时,可以提高控制指定器件(130)的精度、减小指定器件(130)的开启和关闭对其它设备的干扰。

Description

电压检测及适配方法、设备控制方法、装置及存储介质 技术领域
本申请涉及一种电压检测及适配方法、设备控制方法、装置及存储介质,属于电子技术领域。
背景技术
诸如家用电器等电子设备通常使用市电电压供电。市电电压通常为交流电。以交流电为正弦波为例,若使用该正弦波控制吹风机中的发热组件(比如:发热丝)工作,则在离正弦波零点位置较远的位置控制发热组件开启,会对该发热组件产生冲击电流,一旦冲击电流过大就会损坏该发热器件。
而且吹风机恒温和电压保护控制中需要精确获取供电电源输出的供电电压的大小。因此对电源供电电压进行精准的检测就很有必要,现有技术中吹风机在电压适配和检测方面的误差比较大。
发明内容
本申请提供了一种设备控制方法、装置及存储介质,可以解决在距离电压过零点较远的位置控制指定器件开启时容易损坏发热器件、减少目标设备使用寿命的问题。本申请提供如下技术方案:
第一方面,提供了一种设备控制方法,所述方法包括:
接收目标设备的开启信号,所述开启信号用于触发所述目标设备开始工作;
获取补偿时长,所述补偿时长用于抵消电压过零点检测组件检测电压过零点的延时;
在接收到过零点信号时在所述补偿时长后控制所述目标设备中的指定器件开启或关闭,所述过零点信号是所述电压过零点检测组件检测到电压过零点时发送的信号。
可选地,所述获取补偿时长,包括:
在所述电压过零点检测组件检测到电压过零点时,获取所述过零点信号的上升沿对应的时刻与实际电压过零点之间的时长,得到所述补偿时长。
可选地,所述获取补偿时长,包括:
获取所述目标设备的供电电源的工作周期,所述供电电源为交流电;
在所述电压过零点检测组件检测到电压过零点时,获取所述过零点信号的下降沿与实际电压过零点之间的时长,得到延时时长;
基于所述工作周期和所述延时时长确定所述补偿时长。
可选地,所述基于所述工作周期和所述延时时长确定所述补偿时长,包括:
将所述工作周期的一半与所述延时时长的差确定为所述补偿时长。
可选地,所述基于所述工作周期和所述延时时长确定所述补偿时长,包括:
将所述工作周期与所述延时时长的差确定为所述补偿时长。
可选地,所述指定器件包括发热器件。
可选地,所述在接收到过零点信号时在所述补偿时长后控制所述目标设备中的指定器件开启或关闭,包括:
在接收到所述过零点信号时触发定时器开启,所述定时器的定时时长为所述补偿时长;
在所述定时器的时长达到所述定时时长时控制所述目标设备中的指定器件开启或关闭。
第二方面,提供了一种设备控制装置,所述装置包括:
信号接收模块,用于接收目标设备的开启信号,所述开启信号用于触发所述目标设备开始工作;
时长获取模块,用于获取补偿时长,所述补偿时长用于抵消电压过零点检测组件检测电压过零点的延时;
器件控制模块,用于在接收到过零点信号时在所述补偿时长后控制所述目标设备中的指定器件开启或关闭,所述过零点信号是所述电压过零点检测组件检测到电压过零点时发送的信号。
第三方面,提供一种设备控制装置,所述装置包括处理器和存储器;所述存储器中存储有程序,所述程序由所述处理器加载并执行以实现第一方面所述的设备控制方法。
第四方面,提供一种计算机可读存储介质,所述存储介质中存储有程序,所述程序由所述处理器加载并执行以实现第一方面所述的设备控制方法。
本申请的有益效果在于:通过接收目标设备的开启信号;获取补偿时长;在接收到过零点信号时在补偿时长后控制目标设备中的指定器件开启或关闭,该过零点信号是电压过零点 检测组件检测到电压过零点时发送的信号;可以解决在距离电压过零点较远的位置控制发热器件开启时容易损坏发热器件、减少目标设备使用寿命的问题;由于电压过零点检测装置检测存在延时,通过基于该延时确定补偿时长,结合过零点信号和补偿时长精确地控制指定器件在实际电压过零点处开启或关闭,既可以保证不会产生冲击电流损坏指定器件;同时,可以提高控制指定器件的精度,延长指定器件的使用寿命。
另外,由于在距离电压过零点较远的位置控制指定器件开启时,经过指定器件的电流会发生突变,该电流突变会影响供电电压,从而对使用该供电电压供电的其它设备产生干扰;本申请通过控制指定器件在实际过零点除开启或关闭,还可以避免指定器件产生突变电流影响供电电压的问题,从而减小指定器件的开启和关闭对其它设备的干扰(即传导干扰)。
本申请提供了一种供电电压检测方法、装置及存储介质,可以解决电机运行时,驱动电路中的开关管周期性地导通和关断会周期性拉低供电电源的供电电压,导致检测到的供电电压精度不高的问题。本申请提供如下技术方案:
第一方面,提供了一种供电电压检测方法,所述方法包括:
获取电机的工作周期;
基于所述工作周期中各个工作时刻供电电源的工作电压与目标电压之间的差值,确定电压检测时刻,所述目标电压为使用所述供电电源为所述电机供电时所述电机未开启时的供电电压;
在所述电压检测时刻检测所述供电电源的电压值,以确定所述供电电源的供电电压。
可选地,所述基于所述工作周期中各个工作时刻供电电源的工作电压与目标电压之间的差值,确定电压检测时刻,包括:
确定所述工作周期中工作电压与所述目标电压相同的第一工作时刻,将所述第一工作时刻确定为所述电压检测时刻。
可选地,所述电压检测时刻检测到的电压值为所述供电电源的供电电压。
可选地,所述电机的控制信号为方波信号,所述确定所述工作周期中工作电压与目标电压相同的工作时刻,包括:
将所述工作周期的起始时刻确定为所述工作时刻;或者,
将所述工作周期的结束时刻确定为所述工作时刻。
可选地,所述基于所述工作周期中各个工作时刻供电电源的工作电压与目标电压之间的差值,确定电压检测时刻,包括:
获取所述工作周期中各个工作时刻的工作电压;
对所述工作电压的变化情况进行曲线拟合,得到工作电压曲线;
将所述工作电压曲线中电压最大值与预设数值之间的差值对应的第二工作时刻确定为所述电压检测时刻。
可选地,所述在所述电压检测时刻检测所述供电电源的电压值,以确定所述供电电源的供电电压,包括:
在所述电压检测时刻检测所述供电电源的电压值;
将所述电压值与所述预设数值之间的和确定为所述供电电源的供电电压。
可选地,所述获取电机的工作周期,包括:
获取所述电机的控制信号,将所述控制信号的周期确定为所述工作周期;
或者,
获取控制所述电机的驱动电路中开关管的通断周期,将所述通断周期确定为所述工作周期。
第二方面,提供了一种供电电压检测装置,所述装置包括:
周期获取模块,用于获取电机的工作周期;
时刻确定模块,用于基于所述工作周期中各个工作时刻供电电源的工作电压与目标电压之间的差值,确定电压检测时刻,所述目标电压为使用所述供电电源为所述电机供电时所述电机未开启时的供电电压;
电压检测模块,用于在所述电压检测时刻检测所述供电电源的电压值,以确定所述供电电源的供电电压。
第三方面,提供一种供电电压检测装置,所述装置包括处理器和存储器;所述存储器中存储有程序,所述程序由所述处理器加载并执行以实现第一方面所述的供电电压检测方法。
第四方面,提供一种计算机可读存储介质,所述存储介质中存储有程序,所述程序由所述处理器加载并执行以实现第一方面所述的供电电压检测方法。
本申请的有益效果在于:通过获取电机的工作周期;基于工作周期中各个工作时刻供电电源的工作电压与目标电压之间的差值,确定电压检测时刻;在电压检测时刻检测供电电源的电压值,以确定供电电源的供电电压;可以解决电机运行时,驱动电路中的开关管周期性地导通和关断会周期性拉低供电电源的供电电压,导致检测到的供电电压精度不高的问题;由于处理组件可以在指定时刻控制电压检测组件采集供电电源的工作电压,结合该指定时刻对应的工作电压与目标电压之间的差值,可以确定出符合目标电压的工作电压,提高电压检测精度。
本发明的目的在于提供一种电压适配方法、装置及存储介质,其可解决指定器件在不同的电源电压下而导致的功率变化过大的问题。
为达到上述目的,本发明提供如下技术方案:
第一方面,提供了一种电压适配方法,所述方法包括如下步骤:
确定当前时刻的供电电压与上一时刻的供电电压之间的电压差值;
在所述电压差值大于预设阈值时,基于所述当前时刻的供电电压确定指定器件的开口序列,所述开口序列是指所述指定器件在每个工作周期内保持开启的时间段。
可选地,所述基于所述当前时刻的供电电压确定指定器件的开口序列,包括:
基于当前时刻的供电电压以确定当前时刻的工作功率;
根据当前时刻的工作功率确定指定器件的开口序列。
可选地,所述基于所述当前时刻的供电电压确定指定器件的开口序列,包括:
获取供电电压与开口序列的映射关系;
基于所述映射关系及当前时刻的供电电压,确定指定器件的开口序列。
可选地,所述方法还包括:
按照所述开口序列控制所述指定器件工作,以调节所述指定器件的功率。
可选地,所述方法还包括:
获取采样时长,所述采样时长为上一时刻与当前时刻的间隔;
当所述采样时长大于或等于预设时长时,对供电电压进行采样。
可选地,所述方法还包括:
获取每一时刻的供电电压,对每一时刻的供电电压进行处理;
将处理后的每一时刻的供电电压保存。
可选地,所述对当前时刻的供电电压进行处理,包括:
对当前时刻的供电电压进行滤波及均值算法的处理。
第二方面,提供了一种电压适配装置,所述装置包括:
电压差值确定模块,用于确定当前时刻的供电电压与上一时刻的供电电压之间的电压差值;
开口序列确定模块,用于在所述电压差值大于预设阈值时,基于所述当前时刻的供电电压确定指定器件的开口序列,所述开口序列是指所述指定器件在每个工作周期内保持开启的时间段。
第三方面,提供了一种电压适配装置,所述装置包括处理器和存储器;所述存储器中存储有程序,所述程序由所述处理器加载并执行以实现如上所述的电压适配方法。
第四方面,提供了一种计算机可读存储介质,所述存储介质中存储有程序,所述程序被处理器执行时用于实现如上所述的电压适配方法。
本发明的有益效果在于:通过确定当前时刻的供电电压与上一时刻的供电电压之间的电压差值;在电压差值大于预设阈值时,基于当前时刻的供电电压确定指定器件的开口序列,开口序列是指指定器件在每个工作周期内保持开启的时间段,从而防止指定器件在不同供电电压的环境中导致功率变化过大。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,并可依照说明书的内容予以实施,以下以本申请的较佳实施例并配合附图详细说明如后。
附图说明
图1是本申请一个实施例提供的设备控制系统的结构示意图;
图2是本申请一个实施例提供的设备控制方法的流程图;
图3是本申请一个实施例提供的确定电压过零点的示意图;
图4是本申请一个实施例提供的设备控制装置的框图;
图5是本申请一个实施例提供的设备控制装置的框图。
图6是本申请一个实施例提供的供电电压检测系统的结构示意图;
图7是本申请一个实施例提供的电机工作过程中供电电源的工作电压的变化曲线的示意图;
图8是本申请一个实施例提供的供电电压检测方法的流程图;
图9是本申请一个实施例提供的供电电压检测装置的框图;
图10是本申请一个实施例提供的供电电压检测装置的框图。
图11为本发明实施例提供的一种电压适配方法的流程图。
图12为本发明实施例提供的一种电压适配方法的具体流程图。
图13为本发明实施例提供的一种电压适配装置的框图。
图14为本发明实施例提供的一种电压适配装置。
具体实施方式
下面结合附图和实施例,对本申请的具体实施方式作进一步详细描述。以下实施例用于说明本申请,但不用来限制本申请的范围。
首先,对本申请涉及的若干名词进行介绍:
负温度系数(Negative Temperature Coefficient,NTC)温度传感器泛指负温度系数很大的半导体材料或元器件。其运行原理为:电阻值随着温度上升而迅速下降。
外部中断是单片机实时地处理外部事件的一种内部机制。当某种外部事件发生时,单片机的中断系统将迫使CPU暂停正在执行的程序,转而去进行中断事件的处理;中断处理完毕后.又返回被中断的程序处,继续执行下去。
图1是本申请一个实施例提供的设备控制系统的结构示意图,如图1所示,该系统至少包括:处理组件110、电压过零点检测组件120和指定器件130。
可选地,设备控制系统可以应用于吹风机中,当然,也可以应用于其它具有处理组件110、电压过零点检测组件120和指定器件130的设备中,本实施例不对设备控制系统的应用场景作限定。
电压过零点检测组件120和指定器件130均与处理组件110通信相连。
电压过零点检测组件120用于检测为目标设备供电的供电电源的电压过零点。电压过零点检测组件120可以实现为与处理组件110相独立的硬件;或者,集成在处理组件110中或者其他硬件设备中的软件;或者是软硬件的结合,本实施例不对电压过零点检测组件120的实现方式作限定。
在一个示例中,电压过零点检测组件120可以是光耦检测器件、变压器检测器件等,本实施例不对电压过零点检测组件120的实现方式作限定。
可选地,指定器件130是指安装在目标设备中、且直接使用交流电工作的器件。比如:指定器件130为目标设备中的发热器件,如发热丝。
处理组件110用于接收目标设备的开启信号,开启信号用于触发目标设备开始工作;获取补偿时长;在接收到过零点信号时在补偿时长后控制目标设备中的指定器件开启或关闭,过零点信号是电压过零点检测组件检测到电压过零点时发送的信号。
其中,补偿时长用于抵消电压过零点检测组件检测电压过零点的延时。
本实施例中,处理组件110在供电电源的电压过零点处控制指定器件启动或关闭,可以避免指定器件由于冲击电流损坏的问题。另外,由于电压过零点检测装置120检测存在延时,通过基于该延时确定补偿时长,结合电压过零点位置和补偿时长更精确地控制指定器件启动或关闭,可以提高控制指定器件的精度,延长指定器件的使用寿命。
可选地,设备控制系统还可以包括其他组件,比如:供电电源、NTC温度传感器、控制电路等,本实施例在此不再一一列举。
图2是本申请一个实施例提供的设备控制方法的流程图,本实施例以该方法应用于图1所示的设备控制系统中,且各个步骤的执行主体为该系统中的处理组件110为例进行说明。该方法至少包括以下几个步骤:
步骤201,接收目标设备的开启信号,开启信号用于触发目标设备开始工作。
目标设备上设置有开关控件,在接收到作用于开关控件上的控制操作时,处理组件会接收到目标设备的开启信号。
步骤202,获取补偿时长,该补偿时长用于抵消电压过零点检测组件检测电压过零点的延时。
本实施中,补偿时长是基于电压过零点检测组件检测电压过零点的延时时长确定的,从而抵消该延时时长的影响,以保证处理组件在实际的电压过零点处控制指定器件启动。
比如:以供电电源的波形为正弦波为例,假设处理组件在正弦波的电压过零点控制指定器件启动。电压过零点检测组件检测到电压过零点之后触发外部中断,中断信号(过零点信号)为脉冲波形。参考图3,若处理组件将过零点信号的下降沿对应的时刻31确定为电压过零点,则处理组件控制指定器件开启或关闭存在延时,延时时长为实际电压过零点32至下降沿对应的时刻31之间的时长。本实施例中,通过补偿时长可以消除该延时时长的影响,以使处理组件在实际过零点32开启或关闭指定器件。
在一个示例中,获取补偿时长,包括:在电压过零点检测组件检测到电压过零点时,获取过零点信号的上升沿对应的时刻与实际电压过零点之间的时长,得到补偿时长。
参考图3,由于过零点信号的上升沿33对应的时刻在实际电压过零点之前,因此,通过在过零点信号的上升沿33对应的时刻之后的补偿时长控制指定器件开启或关闭,可以实现在实际电压过零点控制指定器件开启或关闭,提高指定器件的控制精度。
可选地,同一类型的电压过零点检测组件对应的补偿时长相同。目标设备中预存有各个类型的电压过零点检测组件对应的补偿时长;处理组件根据当前电压过零点检测组件的类型确定对应的补偿时长。
在另一个示例中,获取补偿时长,包括获取目标设备的供电电源的工作周期,供电电源为交流电;在电压过零点检测组件检测到电压过零点时,获取过零点信号的下降沿与实际电压过零点之间的时长,得到延时时长;基于工作周期和延时时长确定补偿时长。
可选地,同一类型的电压过零点检测组件对应的延时时长相同。目标设备中预存有各个类型的电压过零点检测组件对应的延时时长;处理组件根据当前电压过零点检测组件的类型确定对应的延时时长。
其中,供电电源为交流电。
可选地,处理组件在工作周期和延时时长确定补偿时长时,基于将工作周期的一半与延时时长的差确定为补偿时长。比如:在图3中,电压过零点检测组件检测到电压过零点时触发处理组件的外部中断(处理组件接收到过零点信号),在过零点信号的下降沿之后的时长达 到工作周期的一半与延时时长的差(位置34)时,处理组件开启或关闭指定器件。此时,处理组件在下降沿之后的补偿时长为实际电压过零点34,可以消除延时时长的影响。
或者,处理组件将工作周期与延时时长的差确定为补偿时长。比如:在图3中,电压过零点检测组件在检测到电压过零点时触发处理组件的外部中断(处理组件接收到过零点信号),在过零点信号的下降沿之后的时长达到工作周期与延时时长的差(位置35)时,处理组件开启或关闭指定器件。此时,处理组件在下降沿之后的补偿时长为实际电压过零点35,可以消除延时时长的影响。
在又一个示例中,处理组件可以从存储介质中读取补偿时长。即,补偿时长预存在目标设备中。
可选地,步骤202可以在步骤201之后执行;或者,也可以在步骤201之前执行;或者,还可以与步骤201同时执行,本实施例不对步骤201与202之间的执行顺序作限定
步骤203,在接收到过零点信号时在补偿时长后控制目标设备中的指定器件开启或关闭。
其中,过零点信号是电压过零点检测组件检测到电压过零点时发送的信号。
在接收到过零点信号时触发定时器开启,该定时器的定时时长为补偿时长;在定时器的时长达到定时时长时控制目标设备中的指定器件开启或关闭。
可选地,指定器件为发热器件,目标设备中存储有处理组件控制发热器件开启和关闭的控制方式,比如:在图3所示的正弦波中,编号为1、2、3的半波控制发热器开启;编号为4和5的半波控制发热器关闭(在实际实现时可以使用其他的控制方式,本实施例对此不作限定);处理组件按照该控制方式在补偿时长到达后控制发热器件开启或关闭。
综上所述,本实施例提供的设备控制方法,通过接收目标设备的开启信号;获取补偿时长;在接收到过零点信号时在补偿时长后控制目标设备中的指定器件开启或关闭,该过零点信号是电压过零点检测组件检测到电压过零点时发送的信号;可以解决在距离电压过零点较远的位置控制发热器件开启时容易损坏发热器件、减少目标设备使用寿命的问题;由于电压过零点检测装置检测存在延时,通过基于该延时确定补偿时长,结合过零点信号和补偿时长精确地控制指定器件在实际电压过零点处开启或关闭,既可以保证不会产生冲击电流损坏指定器件;同时,可以提高控制指定器件的精度,延长指定器件的使用寿命。
另外,由于在距离电压过零点较远的位置控制指定器件开启时,经过指定器件的电流会 发生突变,该电流突变会影响供电电压,从而对使用该供电电压供电的其它设备产生干扰;本申请通过控制指定器件在实际过零点除开启或关闭,还可以避免指定器件产生突变电流影响供电电压的问题,从而减小指定器件的开启和关闭对其它设备的干扰(即传导干扰)。
图4是本申请一个实施例提供的设备控制装置的框图,本实施例以该装置应用于图1所示的设备控制系统中的处理组件110为例进行说明。该装置至少包括以下几个模块:信号接收模块410、时长获取模块420和器件控制模块430。
信号接收模块410,用于接收目标设备的开启信号,所述开启信号用于触发所述目标设备开始工作;
时长获取模块420,用于获取补偿时长,所述补偿时长用于抵消电压过零点检测组件检测电压过零点的延时;
器件控制模块430,用于在接收到过零点信号时在所述补偿时长后控制所述目标设备中的指定器件开启或关闭,所述过零点信号是所述电压过零点检测组件检测到电压过零点时发送的信号。
相关细节参考上述方法实施例。
需要说明的是:上述实施例中提供的设备控制装置在进行设备控制时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将设备控制装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的设备控制装置与设备控制方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
图5是本申请一个实施例提供的设备控制装置的框图。该装置至少包括处理器501和存储器502。
处理器501可以包括一个或多个处理核心,比如:4核心处理器、8核心处理器等。处理器501可以采用DSP(Digital Signal Processing,数字信号处理)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)、PLA(Programmable Logic Array,可编程逻辑阵列)中的至少一种硬件形式来实现。处理器501也可以包括主处理器和协处理器,主 处理器是用于对在唤醒状态下的数据进行处理的处理器,也称CPU(Central Processing Unit,中央处理器);协处理器是用于对在待机状态下的数据进行处理的低功耗处理器。
存储器502可以包括一个或多个计算机可读存储介质,该计算机可读存储介质可以是非暂态的。存储器502还可包括高速随机存取存储器,以及非易失性存储器,比如一个或多个磁盘存储设备、闪存存储设备。在一些实施例中,存储器502中的非暂态的计算机可读存储介质用于存储至少一个指令,该至少一个指令用于被处理器501所执行以实现本申请中方法实施例提供的设备控制方法。
在一些实施例中,设备控制装置还可选包括有:外围设备接口和至少一个外围设备。处理器501、存储器502和外围设备接口之间可以通过总线或信号线相连。各个外围设备可以通过总线、信号线或电路板与外围设备接口相连。示意性地,外围设备包括但不限于:音频电路和电源等。
当然,设备控制装置还可以包括更少或更多的组件,本实施例对此不作限定。
可选地,本申请还提供有一种计算机可读存储介质,所述计算机可读存储介质中存储有程序,所述程序由处理器加载并执行以实现上述方法实施例的设备控制方法。
可选地,本申请还提供有一种计算机产品,该计算机产品包括计算机可读存储介质,所述计算机可读存储介质中存储有程序,所述程序由处理器加载并执行以实现上述方法实施例的设备控制方法。
图6是本申请一个实施例提供的供电电压检测系统的结构示意图,如图6所示,该系统至少包括:处理组件2110、与所述处理组件2110通信相连的电压检测组件2120和驱动电路2130、与驱动电路2130通信相连电机2140、与处理组件2110通信相连的供电电源2150。
可选地,供电电压检测系统可以应用于吹风机中,当然,也可以应用于其它需要进行供电电压检测的设备中,本实施例不对供电电压检测系统的应用场景作限定。
可选地,供电电源2150是将交流电经过整流电路整流得到的直流电。供电电源2150用于为电机2140提供直流电压。
电压检测组件2120安装在供电电源2150的输出端。电压检测组件2120用于检测供电电源2150的供电电压,并将检测到供电电压发送至处理组件2110。
处理组件2110用于确定电压检测组件2120的电压检测时刻,并在该电压检测时刻控制 电压检测组件2120检测供电电源2150的供电电压。
处理组件2110还用于控制驱动电路2130驱动电机2140运行。可选地,驱动电路2130通过向电机输出控制信号控制电机运行,该控制信号可以为方波信号。方波信号包括正弦波、矩形波等,本实施例不对方波信号的类型作限定。
电机运行时,驱动电路2130中的开关管会周期性导通和关断,此时,会周期性拉低供电电源2150的供电电压(或称母线电压),比如:参考图7所示的电机工作过程中供电电源的工作电压的变化曲线。基于此技术问题,处理组件2110用于获取电机2140的工作周期;基于工作周期中各个工作时刻供电电源2150的工作电压与目标电压之间的差值确定电压检测时刻;在电压检测时刻检测供电电源2150的电压值,以确定该供电电源2150的供电电压。其中,目标电压为使用供电电源为电机供电时电机未开启时的供电电压。这样,处理组件2110可以在指定时刻控制电压检测组件2120采集供电电源2150的工作电压,结合该指定时刻对应的电压差值,可以确定出符合目标电压的工作电压,提高电压检测精度。
图8是本申请一个实施例提供的供电电压检测方法的流程图,本实施例以该方法应用于图6所示的供电电压检测系统中,且各个步骤的执行主体为该系统中的处理组件2110为例进行说明。该方法至少包括以下几个步骤:
步骤2301,获取电机的工作周期。
其中,获取电机的工作周期的方式包括但不限于:获取电机的控制信号,将控制信号的周期确定为工作周期;或者,获取控制电机的驱动电路中开关管的通断周期,将通断周期确定为工作周期。
以图7所示的工作电压曲线为例,电机的一个工作周期内,工作电压先下降,再上升。此时,下降阶段对应的曲线为开关管导通过程对应的曲线,上升阶段对应的曲线为开关管关断过程对应的曲线。
步骤2302,基于工作周期中各个工作时刻供电电源的工作电压与目标电压之间的差值,确定电压检测时刻。
目标电压为使用供电电源为电机供电时电机未开启时的供电电压。
可选地,基于工作周期中各个工作时刻供电电源的工作电压与目标电压之间的差值,确定电压检测时刻的方式包括但不限于以下几种:
第一种:确定工作周期中工作电压与目标电压相同的第一工作时刻,将第一工作时刻确定为电压检测时刻。
在一个示例中,电机的控制信号为方波信号,确定工作周期中工作电压与目标电压相同的工作时刻,包括:将工作周期的起始时刻确定为工作时刻;或者,将工作周期的结束时刻确定为工作时刻。
比如:对于图7所示的工作电压曲线,将工作周期的结束的时刻71确定为工作时刻,此时,该工作时刻对应的工作电压与电机未工作时的供电电压相同。
第二种:获取工作周期中各个工作时刻的工作电压;对工作电压的变化情况进行曲线拟合,得到工作电压曲线;将工作电压曲线中电压最大值与预设数值之间的差值对应的第二工作时刻确定为电压检测时刻。
假设工作电压的变化情况如图7所示,预设数值为电压最大值与电压最小值之间的差值,则第二工作时刻为工作电压最小值对应的时刻72。
步骤2303,在电压检测时刻检测供电电源的电压值,以确定供电电源的供电电压。
对于第一种电压检测时刻确定方式,电压检测时刻检测到的电压值为供电电源的供电电压。
对于第二种电压检测时刻确定方式:在电压检测时刻检测供电电源的电压值;将电压值与预设数值之间的和确定为供电电源的供电电压。
比如:在预设数值为工作电压曲线上电压最大值与电压最小值之间的差值、且电压检测时刻为电压最小值对应的工作时刻时,则供电电压为电压检测时刻检测到的工作电压+预设数值,得到的值与供电电压相同。
综上所述,本实施例提供的供电电压检测方法,通过获取电机的工作周期;基于工作周期中各个工作时刻供电电源的工作电压与目标电压之间的差值,确定电压检测时刻;在电压检测时刻检测供电电源的电压值,以确定供电电源的供电电压;可以解决电机运行时,驱动电路中的开关管周期性地导通和关断会周期性拉低供电电源的供电电压,导致检测到的供电电压精度不高的问题;由于处理组件可以在指定时刻控制电压检测组件采集供电电源的工作 电压,结合该指定时刻对应的工作电压与目标电压之间的差值,可以确定出符合目标电压的工作电压,提高电压检测精度。
图9是本申请一个实施例提供的供电电压检测装置的框图,本实施例以该装置应用于图6所示的供电电压检测系统中的处理组件2110为例进行说明。该装置至少包括以下几个模块:周期获取模块2410、时刻确定模块2420和电压检测模块2430。
周期获取模块2410,用于获取电机的工作周期;
时刻确定模块2420,用于基于所述工作周期中各个工作时刻供电电源的工作电压与目标电压之间的差值,确定电压检测时刻,所述目标电压为使用所述供电电源为所述电机供电时所述电机未开启时的供电电压;
电压检测模块2430,用于在所述电压检测时刻检测所述供电电源的电压值,以确定所述供电电源的供电电压。
相关细节参考上述方法实施例。
需要说明的是:上述实施例中提供的供电电压检测装置在进行供电电压检测时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将供电电压检测装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的供电电压检测装置与供电电压检测方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
图10是本申请一个实施例提供的供电电压检测装置的框图。该装置至少包括处理器2501和存储器2502。
处理器2501可以包括一个或多个处理核心,比如:4核心处理器、8核心处理器等。处理器2501可以采用DSP(Digital Signal Processing,数字信号处理)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)、PLA(Programmable Logic Array,可编程逻辑阵列)中的至少一种硬件形式来实现。处理器2501也可以包括主处理器和协处理器,主处理器是用于对在唤醒状态下的数据进行处理的处理器,也称CPU(Central Processing Unit,中央处理器);协处理器是用于对在待机状态下的数据进行处理的低功耗处理器。
存储器2502可以包括一个或多个计算机可读存储介质,该计算机可读存储介质可以是非暂态的。存储器2502还可包括高速随机存取存储器,以及非易失性存储器,比如一个或多个磁盘存储设备、闪存存储设备。在一些实施例中,存储器2502中的非暂态的计算机可读存储介质用于存储至少一个指令,该至少一个指令用于被处理器2501所执行以实现本申请中方法实施例提供的供电电压检测方法。
在一些实施例中,供电电压检测装置还可选包括有:外围设备接口和至少一个外围设备。处理器2501、存储器2502和外围设备接口之间可以通过总线或信号线相连。各个外围设备可以通过总线、信号线或电路板与外围设备接口相连。示意性地,外围设备包括但不限于:音频电路和电源等。
当然,供电电压检测装置还可以包括更少或更多的组件,本实施例对此不作限定。
可选地,本申请还提供有一种计算机可读存储介质,所述计算机可读存储介质中存储有程序,所述程序由处理器加载并执行以实现上述方法实施例的供电电压检测方法。
可选地,本申请还提供有一种计算机产品,该计算机产品包括计算机可读存储介质,所述计算机可读存储介质中存储有程序,所述程序由处理器加载并执行以实现上述方法实施例的供电电压检测方法。
模数转换器(ADC),是指一个将模拟信号转变为数字信号的电子元件。
图11为本发明实施例提供的一种电压适配方法的流程图,本发明的电压适配方法适用于吹风机等设备,本发明对电压适配方法的应用不做具体限定。相应的,本实施例中的指定器件为发热器件。诚然,在其他实施例中,该指定器件也可为其他,在此不做具体限定,根据实际情况而定。其中,所述方法至少包括如下步骤:
步骤3101,确定当前时刻的供电电压与上一时刻的供电电压之间的电压差值。
获取每一时刻的供电电压,每一时刻的供电电压通过模数转换器采样获得。对每一时刻的供电电压进行处理,将处理后的每一时刻的供电电压保存。可选地,所述对每一时刻的供电电压进行处理,包括:对每一时刻的供电电压进行滤波及均值算法的处理,均值算法可包括K均值聚类算法、自然均值算法等。通过对每一时刻的供电电压进行滤波及均值算法的处理,从而消除外界对获取的每一时刻的供电电压的干扰。诚然,在其他实施例中,对每一时 刻的供电电压也可进行其他处理,在此不做具体限定,根据实际情况而定,只要达到相应的效果即可。
通过对每一时刻的供电电压进行处理并保存后,以确定电压差值。电压差值的确定过程为:获取当前时刻的供电电压,并将当前时刻的供电电压与上一时刻的供电电压之间作减法以得到两者之间的电压差值。其中,如果当前时刻为第一次采样时刻,则上一时刻的供电电压为0。
步骤3102,在所述电压差值大于预设阈值时,基于所述当前时刻的供电电压确定指定器件的开口序列,所述开口序列是指所述指定器件在每个工作周期内保持开启的时间段。
当前时刻的指定器件的开口序列可通过电压与功率的关系进行确定,具体包括:基于当前时刻的供电电压以确定当前时刻的工作功率;根据当前时刻的工作功率确定指定器件的开口序列,通过数组比较匹配功率最接近供电电压设定功率的控制开度。
诚然,在其他实施例中,当前时刻的指定器件的开口序列也可通过电压与开口序列的关系进行确定,具体包括:获取供电电压与开口序列的映射关系;基于所述映射关系及当前时刻的供电电压,确定指定器件的开口序列。供电电压与开口序列的映射关系为一一对应的映射关系,然后按照所述开口序列控制所述指定器件工作,以调节所述指定器件的功率。
可选地,所述方法还包括:获取采样时长,所述采样时长为上一时刻与当前时刻的间隔;当所述采样时长大于或等于预设时长时,以对供电电压进行采样。当与上一时刻的时长间隔超过采样时长时,对供电电压再一次进行采样,以防止设备在工作的时候电源电压发生大的变化,进而对指定器件造成损坏,更严重者会造成使用隐患。
当电压差值小于或等于该预设阈值时,则直接获取采样时长,以对下一时刻的供电电压进行采样。
请参见图12,下面以一个具体实施例对本发明的电压分配方法进行阐述,在本实施例中,预设阈值为3V,采样时长为1s。通过模数转换器对当前时刻的供电电压进行采样,然后对当前时刻的供电电压进行滤波、均值算法的处理,并将处理后的当前时刻的供电电压进行保存。计算当前时刻的供电电压与上一时刻的供电电压的电压差值,当电压差值大于3V时,则将当前时刻的供电电压带入至电压-功率的关系图中以确定当前时刻的工作功率;根据当前时刻的工作功率确定指定器件的开口序列。假使电压差值不大于3V时,则获取采样时长,当采样时 长大于或等于1s时,则对下一时刻的供电电压进行采样。若采样时长小于1s,则不对下一时刻的供电电压进行采样,直至采样时长大于或等于1s。
综上所述:通过确定当前时刻的供电电压与上一时刻的供电电压之间的电压差值;在电压差值大于预设阈值时,基于当前时刻的供电电压确定指定器件的开口序列,开口序列是指指定器件在每个工作周期内保持开启的时间段,从而防止指定器件在不同供电电压的环境中导致功率变化过大。
图13为本发明实施例提供的一种电压适配装置的框图,所述装置至少包括:
电压差值确定模块3301,用于确定当前时刻的供电电压与上一时刻的供电电压之间的电压差值;
开口序列确定模块3302,用于在所述电压差值大于预设阈值时,基于所述当前时刻的供电电压确定指定器件的开口序列,所述开口序列是指所述指定器件在每个工作周期内保持开启的时间段。
相关细节参考上述方法实施例。
需要说明的是:上述实施例中提供的电压适配装置在进行电压适配时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将电压适配装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的电压适配装置与电压适配方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
图14为本发明实施例提供的一种电压适配装置,所述装置至少包括处理器1和存储器2。
处理器1可以包括一个或多个处理核心,比如:4核心处理器1、8核心处理器1等。处理器1可以采用DSP(Digital Signal Processing,数字信号处理)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)、PLA(Programmable Logic Array,可编程逻辑阵列)中的至少一种硬件形式来实现。处理器1也可以包括主处理器和协处理器,主处理器是用于对在唤醒状态下的数据进行处理的处理器,也称CPU(Central Processing Unit,中央处理器);协处理器是用于对在待机状态下的数据进行处理的低功耗处理器。
存储器2可以包括一个或多个计算机可读存储介质,该计算机可读存储介质可以是非暂 态的。存储器2还可包括高速随机存取存储器2,以及非易失性存储器2,比如一个或多个磁盘存储设备、闪存存储设备。在一些实施例中,存储器2中的非暂态的计算机可读存储介质用于存储至少一个指令,该至少一个指令用于被处理器1所执行以实现本发明中方法实施例提供的电压适配方法。
在一些实施例中,电压适配装置还可选包括有:外围设备接口和至少一个外围设备。处理器1、存储器2和外围设备接口之间可以通过总线或信号线相连。各个外围设备可以通过总线、信号线或电路板与外围设备接口相连。示意性地,外围设备包括但不限于:射频电路、触摸显示屏、音频电路、和电源等。
当然,电压适配装置还可以包括更少或更多的组件,本实施例对此不作限定。
可选地,本申请提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有程序,所述程序被处理器执行时用于实现如上所述的电压适配方法。
可选地,本申请还提供有一种计算机产品,该计算机产品包括计算机可读存储介质,所述计算机可读存储介质中存储有程序,所述程序由处理器加载并执行以实现上述方法实施例的电压适配方法。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (30)

  1. 一种设备控制方法,其特征在于,所述方法包括:
    接收目标设备的开启信号,所述开启信号用于触发所述目标设备开始工作;
    获取补偿时长,所述补偿时长用于抵消电压过零点检测组件检测电压过零点的延时;
    在接收到过零点信号时在所述补偿时长后控制所述目标设备中的指定器件开启或关闭,所述过零点信号是所述电压过零点检测组件检测到电压过零点时发送的信号。
  2. 根据权利要求1所述的方法,其特征在于,所述获取补偿时长,包括:
    在所述电压过零点检测组件检测到电压过零点时,获取所述过零点信号的上升沿对应的时刻与实际电压过零点之间的时长,得到所述补偿时长。
  3. 根据权利要求1所述的方法,其特征在于,所述获取补偿时长,包括:
    获取所述目标设备的供电电源的工作周期,所述供电电源为交流电;
    在所述电压过零点检测组件检测到电压过零点时,获取所述过零点信号的下降沿与实际电压过零点之间的时长,得到延时时长;
    基于所述工作周期和所述延时时长确定所述补偿时长。
  4. 根据权利要求3所述的方法,其特征在于,所述基于所述工作周期和所述延时时长确定所述补偿时长,包括:
    将所述工作周期的一半与所述延时时长的差确定为所述补偿时长。
  5. 根据权利要求3所述的方法,其特征在于,所述基于所述工作周期和所述延时时长确定所述补偿时长,包括:
    将所述工作周期与所述延时时长的差确定为所述补偿时长。
  6. 根据权利要求1至5任一所述的方法,其特征在于,所述指定器件包括发热器件。
  7. 根据权利要求1至5任一所述的方法,其特征在于,所述在接收到过零点信号时在所述补偿时长后控制所述目标设备中的指定器件开启或关闭,包括:
    在接收到所述过零点信号时触发定时器开启,所述定时器的定时时长为所述补偿时长;
    在所述定时器的时长达到所述定时时长时控制所述目标设备中的指定器件开启或关闭。
  8. 一种设备控制装置,其特征在于,所述装置包括:
    信号接收模块,用于接收目标设备的开启信号,所述开启信号用于触发所述目标设备开始工作;
    时长获取模块,用于获取补偿时长,所述补偿时长用于抵消电压过零点检测组件检测电压过零点的延时;
    器件控制模块,用于在接收到过零点信号时在所述补偿时长后控制所述目标设备中的指定器件开启或关闭,所述过零点信号是所述电压过零点检测组件检测到电压过零点时发送的信号。
  9. 一种设备控制装置,其特征在于,所述装置包括处理器和存储器;所述存储器中存储有程序,所述程序由所述处理器加载并执行以实现如权利要求1至7任一项所述的设备控制方法。
  10. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有程序,所述程序被处理器执行时用于实现如权利要求1至7任一项所述的设备控制方法。
  11. 一种供电电压检测方法,其特征在于,所述方法包括:
    获取电机的工作周期;
    基于所述工作周期中各个工作时刻供电电源的工作电压与目标电压之间的差值,确定电压检测时刻,所述目标电压为使用所述供电电源为所述电机供电时所述电机未开启时的供电电压;
    在所述电压检测时刻检测所述供电电源的电压值,以确定所述供电电源的供电电压。
  12. 根据权利要求11所述的方法,其特征在于,所述基于所述工作周期中各个工作时刻供电电源的工作电压与目标电压之间的差值,确定电压检测时刻,包括:
    确定所述工作周期中工作电压与所述目标电压相同的第一工作时刻,将所述第一工作时刻确定为所述电压检测时刻。
  13. 根据权利要求12所述的方法,其特征在于,所述电压检测时刻检测到的电压值为所述供电电源的供电电压。
  14. 根据权利要求12所述的方法,其特征在于,所述电机的控制信号为方波信号,所述确定所述工作周期中工作电压与目标电压相同的工作时刻,包括:
    将所述工作周期的起始时刻确定为所述工作时刻;或者,
    将所述工作周期的结束时刻确定为所述工作时刻。
  15. 根据权利要求11所述的方法,其特征在于,所述基于所述工作周期中各个工作时刻供电电源的工作电压与目标电压之间的差值,确定电压检测时刻,包括:
    获取所述工作周期中各个工作时刻的工作电压;
    对所述工作电压的变化情况进行曲线拟合,得到工作电压曲线;
    将所述工作电压曲线中电压最大值与预设数值之间的差值对应的第二工作时刻确定为所述电压检测时刻。
  16. 根据权利要求15所述的方法,其特征在于,所述在所述电压检测时刻检测所述供电电源的电压值,以确定所述供电电源的供电电压,包括:
    在所述电压检测时刻检测所述供电电源的电压值;
    将所述电压值与所述预设数值之间的和确定为所述供电电源的供电电压。
  17. 根据权利要求11至16任一所述的方法,其特征在于,所述获取电机的工作周期,包括:
    获取所述电机的控制信号,将所述控制信号的周期确定为所述工作周期;
    或者,
    获取控制所述电机的驱动电路中开关管的通断周期,将所述通断周期确定为所述工作周期。
  18. 一种供电电压检测装置,其特征在于,所述装置包括:
    周期获取模块,用于获取电机的工作周期;
    时刻确定模块,用于基于所述工作周期中各个工作时刻供电电源的工作电压与目标电压之间的差值,确定电压检测时刻,所述目标电压为使用所述供电电源为所述电机供电时所述电机未开启时的供电电压;
    电压检测模块,用于在所述电压检测时刻检测所述供电电源的电压值,以确定所述供电电源的供电电压。
  19. 一种供电电压检测装置,其特征在于,所述装置包括处理器和存储器;所述存储器中存储有程序,所述程序由所述处理器加载并执行以实现如权利要求11至17任一项所述的供电电压检测方法。
  20. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有程序,所述程序被 处理器执行时用于实现如权利要求11至17任一项所述的供电电压检测方法。
  21. 一种电压适配方法,其特征在于,所述方法包括如下步骤:
    确定当前时刻的供电电压与上一时刻的供电电压之间的电压差值;
    在所述电压差值大于预设阈值时,基于所述当前时刻的供电电压确定指定器件的开口序列,所述开口序列是指所述指定器件在每个工作周期内保持开启的时间段。
  22. 如权利要求21所述的方法,其特征在于,所述基于所述当前时刻的供电电压确定指定器件的开口序列,包括:
    基于当前时刻的供电电压以确定当前时刻的工作功率;
    根据当前时刻的工作功率确定指定器件的开口序列。
  23. 如权利要求21所述的方法,其特征在于,所述基于所述当前时刻的供电电压确定指定器件的开口序列,包括:
    获取供电电压与开口序列的映射关系;
    基于所述映射关系及当前时刻的供电电压,确定指定器件的开口序列。
  24. 如权利要求21所述的方法,其特征在于,所述方法还包括:
    按照所述开口序列控制所述指定器件工作,以调节所述指定器件的功率。
  25. 如权利要求21所述的方法,其特征在于,所述方法还包括:
    获取采样时长,所述采样时长为上一时刻与当前时刻的间隔;
    当所述采样时长大于或等于预设时长时,对供电电压进行采样。
  26. 如权利要求21所述的方法,其特征在于,所述方法还包括:
    获取每一时刻的供电电压,对每一时刻的供电电压进行处理;
    将处理后的每一时刻的供电电压保存。
  27. 如权利要求26所述的方法,其特征在于,所述对当前时刻的供电电压进行处理,包括:
    对每一时刻的供电电压进行滤波及均值算法的处理。
  28. 一种电压适配装置,其特征在于,所述装置包括:
    电压差值确定模块,用于确定当前时刻的供电电压与上一时刻的供电电压之间的电压差值;
    开口序列确定模块,用于在所述电压差值大于预设阈值时,基于所述当前时刻的供电电压确定指定器件的开口序列,所述开口序列是指所述指定器件在每个工作周期内保持开启的时间段。
  29. 一种电压适配装置,其特征在于,所述装置包括处理器和存储器;所述存储器中存储有程序,所述程序由所述处理器加载并执行以实现如权利要求21至27项中任一项所述的电压适配方法。
  30. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有程序,所述程序被处理器执行时用于实现如权利要求21至27项中任一项所述的电压适配方法。
PCT/CN2020/137808 2019-12-24 2020-12-19 电压检测及适配方法、设备控制方法、装置及存储介质 WO2021129544A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227021016A KR20220104215A (ko) 2019-12-24 2020-12-19 전압 검출 및 적응 방법, 디바이스 제어 방법, 장치, 및 저장 매체
JP2022538334A JP2023500984A (ja) 2019-12-24 2020-12-19 設備制御方法、設備制御装置並びに記憶媒体
US17/776,586 US20220385222A1 (en) 2019-12-24 2020-12-19 Voltage detection and adaptation method, device control method, apparatus, and storage medium
CA3158881A CA3158881A1 (en) 2019-12-24 2020-12-19 Voltage detection and adaptation method, device control method, apparatus, and storage medium

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201911347964.2 2019-12-24
CN201911346278.3A CN111025007B (zh) 2019-12-24 2019-12-24 供电电压检测方法、装置及存储介质
CN201911347964.2A CN111064174A (zh) 2019-12-24 2019-12-24 电压适配方法、装置及存储介质
CN201911346278.3 2019-12-24
CN201911346238.9A CN111148286B (zh) 2019-12-24 2019-12-24 设备控制方法、装置及存储介质
CN201911346238.9 2019-12-24

Publications (1)

Publication Number Publication Date
WO2021129544A1 true WO2021129544A1 (zh) 2021-07-01

Family

ID=76575622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137808 WO2021129544A1 (zh) 2019-12-24 2020-12-19 电压检测及适配方法、设备控制方法、装置及存储介质

Country Status (5)

Country Link
US (1) US20220385222A1 (zh)
JP (1) JP2023500984A (zh)
KR (1) KR20220104215A (zh)
CA (1) CA3158881A1 (zh)
WO (1) WO2021129544A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115561665B (zh) * 2022-12-06 2023-03-03 苏州浪潮智能科技有限公司 一种电源检测方法、装置、设备、介质及电路

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204317817U (zh) * 2014-12-12 2015-05-13 青岛科技大学 智能电吹风
CN207183168U (zh) * 2017-09-25 2018-04-03 奥普家居股份有限公司 一种具有过零控制电路的继电器
CN108923377A (zh) * 2018-08-28 2018-11-30 海信(山东)空调有限公司 一种pfc电路的igbt过流保护装置及方法
US20190131825A1 (en) * 2017-10-31 2019-05-02 Wiliot, LTD. High sensitivity energy harvester
CN209435117U (zh) * 2019-04-03 2019-09-24 舟山市海大科学技术研究院有限责任公司 一种吹风机控制电路
CN111025007A (zh) * 2019-12-24 2020-04-17 追觅科技(上海)有限公司 供电电压检测方法、装置及存储介质
CN111064174A (zh) * 2019-12-24 2020-04-24 追觅科技(上海)有限公司 电压适配方法、装置及存储介质
CN111148286A (zh) * 2019-12-24 2020-05-12 追觅科技(上海)有限公司 设备控制方法、装置及存储介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3397607B2 (ja) * 1996-12-24 2003-04-21 キヤノン株式会社 加熱装置、及びこれを備えた画像形成装置
JP2005123977A (ja) * 2003-10-17 2005-05-12 Sharp Corp ゼロクロスポイント検出装置及びそれを用いたヒーター制御装置
JP4630576B2 (ja) * 2004-06-03 2011-02-09 キヤノン株式会社 電力制御装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204317817U (zh) * 2014-12-12 2015-05-13 青岛科技大学 智能电吹风
CN207183168U (zh) * 2017-09-25 2018-04-03 奥普家居股份有限公司 一种具有过零控制电路的继电器
US20190131825A1 (en) * 2017-10-31 2019-05-02 Wiliot, LTD. High sensitivity energy harvester
CN108923377A (zh) * 2018-08-28 2018-11-30 海信(山东)空调有限公司 一种pfc电路的igbt过流保护装置及方法
CN209435117U (zh) * 2019-04-03 2019-09-24 舟山市海大科学技术研究院有限责任公司 一种吹风机控制电路
CN111025007A (zh) * 2019-12-24 2020-04-17 追觅科技(上海)有限公司 供电电压检测方法、装置及存储介质
CN111064174A (zh) * 2019-12-24 2020-04-24 追觅科技(上海)有限公司 电压适配方法、装置及存储介质
CN111148286A (zh) * 2019-12-24 2020-05-12 追觅科技(上海)有限公司 设备控制方法、装置及存储介质

Also Published As

Publication number Publication date
JP2023500984A (ja) 2023-01-17
CA3158881A1 (en) 2021-07-01
KR20220104215A (ko) 2022-07-26
US20220385222A1 (en) 2022-12-01

Similar Documents

Publication Publication Date Title
US9325254B2 (en) SCR dimming circuit and dimming control method
US9397577B2 (en) Switching mode power supplies with primary side regulation and associated methods of control
US9755421B2 (en) Control circuit applied to a power converter and operation method thereof
US10897204B2 (en) Control method and control circuit for improving dynamic response of switching power supply
TW201448431A (zh) 功率轉換器、其控制器及感測一功率轉換器之一輸入之方法
US20110210712A1 (en) AC or DC POWER SUPPLY EMPLOYING SAMPLING POWER CIRCUIT
JP6234461B2 (ja) スイッチング電源装置、半導体装置、及びac/dcコンバータ
WO2021129544A1 (zh) 电压检测及适配方法、设备控制方法、装置及存储介质
CN111934557B (zh) 一种同步整流电路及电源转换装置
US8830706B2 (en) Soft-start circuit
US10938202B2 (en) System and method for minimizing inrush current
JP5995186B2 (ja) ゼロクロス検出回路
CN111148286B (zh) 设备控制方法、装置及存储介质
CN108418432B (zh) 改善负载动态响应的控制电路、控制方法和开关电源
JP6347144B2 (ja) 電力計測装置
CN111025007B (zh) 供电电压检测方法、装置及存储介质
WO2021129211A1 (zh) 吹风机控制方法、装置及存储介质
US9584009B2 (en) Line current reference generator
KR101039435B1 (ko) 전동기의 제어 장치 및 방법
US9350348B1 (en) Power management system for integrated circuits
CN111366778B (zh) 用于检测电信号的过零时刻的方法和设备、电子调节设备
JP5973192B2 (ja) 推定電圧データ演算装置
CN114665729A (zh) 用于控制整流器的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907982

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3158881

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022538334

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227021016

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20907982

Country of ref document: EP

Kind code of ref document: A1