WO2021129421A1 - SiC功率器件驱动装置和牵引系统 - Google Patents

SiC功率器件驱动装置和牵引系统 Download PDF

Info

Publication number
WO2021129421A1
WO2021129421A1 PCT/CN2020/135833 CN2020135833W WO2021129421A1 WO 2021129421 A1 WO2021129421 A1 WO 2021129421A1 CN 2020135833 W CN2020135833 W CN 2020135833W WO 2021129421 A1 WO2021129421 A1 WO 2021129421A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
sic power
power device
voltage
switch
Prior art date
Application number
PCT/CN2020/135833
Other languages
English (en)
French (fr)
Inventor
王亮亮
梁海刚
屈斌
李艳伟
赵晨凯
王翠云
俞晓丽
Original Assignee
中车永济电机有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车永济电机有限公司 filed Critical 中车永济电机有限公司
Publication of WO2021129421A1 publication Critical patent/WO2021129421A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • H02M1/092Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices the control signals being transmitted optically
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to the technical field of power electronics, in particular to a SiC power device driving device and a traction system.
  • power equipment mainly adopts the conversion system based on silicon (Si) power devices to provide current conversion function for the power equipment.
  • Si silicon
  • a four-quadrant power unit composed of Si power devices provides a rectification function for power equipment
  • an inverter power unit composed of Si power devices provides power equipment with variable frequency and voltage conversion.
  • the existing 3300V class power device driving device adopts an analog driving mode, the driving resistance is single, and the signal transmission speed is slow, which cannot meet the needs of fast switching of SiC power devices. Therefore, when high-power SiC power devices are applied to the field of rail transit traction, how to drive high-power SiC power devices is an urgent problem to be solved.
  • the embodiment of the present invention provides a SiC power device driving device and a traction system, which can meet the requirement of fast switching of the SiC power device.
  • the present invention provides a SiC power device driving device, including: a voltage conversion circuit, a digital driving circuit, and a switch circuit;
  • the first input terminal of the digital drive circuit is connected with the output terminal of the traction control unit, the first output terminal of the digital drive circuit is connected with the first switch of the switch circuit, and the second output terminal of the digital drive circuit is connected.
  • the input end of the voltage conversion circuit is connected to the power supply end of the traction control unit, and the first output end of the voltage conversion circuit is connected to the traction transformer through the first switch of the switch circuit.
  • the drive end of the SiC power device of the inverter is connected, and the second output end of the voltage conversion circuit is connected to the drive end of the SiC power device through the second switch of the switch circuit;
  • the voltage conversion circuit is configured to perform voltage conversion on the supply voltage provided by the traction control unit to generate a first driving voltage and a second driving voltage, and the first driving voltage is used to drive the SiC power device to turn on, The second driving voltage is used to drive the SiC power device to turn off;
  • the digital drive circuit is used to control the first switch or the second switch to be turned on according to the drive control signal input by the traction control unit.
  • the device further includes: a detection circuit, the input terminal of the detection circuit is connected to the power terminal of the SiC power device, and the output terminal of the detection circuit is connected to the second input terminal of the digital drive circuit ;
  • the detection circuit is used to detect a current parameter when the SiC power device is turned on, and the current parameter is used to determine whether the SiC power device is short-circuited;
  • the digital driving circuit is used to control the second switch to be turned on when the SiC power device is short-circuited.
  • the current parameter is a current change rate
  • the detection circuit is also used to determine whether the SiC power device is short-circuited according to the current change rate when the SiC power device is turned on.
  • the third output terminal of the digital drive circuit is connected to the input terminal of the traction control unit;
  • the digital drive circuit is also used to report the operating status of the SiC power device to the traction control unit.
  • the device further includes: a photoelectric conversion circuit, the photoelectric conversion circuit is located between the digital drive circuit and the traction control unit, and is configured to communicate between the digital drive circuit and the traction control unit.
  • the transmitted signal undergoes photoelectric conversion.
  • the voltage conversion circuit includes: a direct current-direct current converter (DC-DC) and a voltage adjustment circuit;
  • DC-DC direct current-direct current converter
  • the DC-DC converter is used for voltage conversion of the supply voltage provided by the traction control unit, and outputting a preset voltage to the voltage regulation circuit;
  • the voltage adjustment circuit is used to adjust the preset voltage and output the first driving voltage and the second driving voltage.
  • the DC-DC converter is also used to electrically isolate the traction control unit and the traction converter.
  • the first switch and the second switch are both metal-oxide semiconductor field effect transistors.
  • the digital drive circuit includes a Field Programmable Gate Array (FPGA) chip.
  • FPGA Field Programmable Gate Array
  • the present invention provides a traction system, the traction system comprising: the SiC power device driving device according to any one of the first aspect, a traction control unit, and a traction converter;
  • the traction converter includes at least one SiC half-bridge module, the SiC half-bridge module includes at least two SiC power devices, and each SiC power device corresponds to one SiC power device driving device.
  • the SiC power device driving device is provided with a digital driving circuit. Therefore, the SiC power device can be driven in a digital manner to turn on or off, thereby satisfying the fast switching of the SiC power device. Therefore, it can be used in the field of rail transit traction, giving full play to its high-frequency and low-loss characteristics.
  • FIG. 1 is a schematic structural diagram of a SiC power device driving apparatus provided by an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of another SiC power device driving apparatus provided by an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of another SiC power device driving apparatus provided by an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a traction system provided by an embodiment of the present invention.
  • the present invention provides a SiC power device driving device.
  • the SiC power device can be driven on or off in a digital manner, so as to meet the needs of fast switching of the SiC power device. It can be applied to the field of rail transit traction, giving full play to its high-frequency and low-loss characteristics.
  • the SiC power device driving apparatus provided by the present invention can not only be used for driving high-power SiC power devices, but also be suitable for driving other SiC power devices. That is, the SiC power device driving device provided by the present invention does not limit the operating voltage of the SiC power device.
  • the SiC power device driving device provided by the present invention can be applied to the field of rail transit traction, and can also be applied to any other scenarios where SiC power devices are used. In order to facilitate the understanding of the SiC power device driving device, the following embodiments all take the application of the SiC power device in the traction field as an example for description.
  • SiC power device driving device according to the embodiment of the present invention will be described in detail below in conjunction with specific embodiments.
  • the following specific embodiments can be combined with each other, and the same or similar concepts or processes may not be repeated in some embodiments.
  • FIG. 1 is a schematic structural diagram of a SiC power device driving device provided by an embodiment of the present invention. As shown in FIG. 1, the driving device includes: a voltage conversion circuit, a digital driving circuit, and a switch circuit.
  • the first input terminal of the digital drive circuit is connected with the output terminal of the traction control unit, the first output terminal of the digital drive circuit is connected with the first switch of the switch circuit, and the second output terminal of the digital drive circuit is connected.
  • the input end of the voltage conversion circuit is connected to the power supply end of the traction control unit, and the first output end of the voltage conversion circuit is connected to the traction transformer through the first switch of the switch circuit.
  • the drive end of the SiC power device of the converter is connected, and the second output end of the voltage conversion circuit is connected to the drive end of the SiC power device through the second switch of the switch circuit.
  • the voltage conversion circuit is configured to perform voltage conversion on the supply voltage provided by the traction control unit to generate a first driving voltage and a second driving voltage, and the first driving voltage is used to drive the SiC power device to turn on, The second driving voltage is used to drive the SiC power device to turn off.
  • the first driving voltage may also be referred to as a high-level voltage or a turn-on voltage
  • the second driving voltage may also be referred to as a low-level voltage or a turn-off voltage.
  • the so-called high-level voltage here is relative to the second driving voltage.
  • the magnitude of the first driving voltage and the second driving voltage it can be determined according to the turn-on voltage and the turn-off voltage of the SiC power device.
  • the voltage conversion circuit can convert the voltage of 36V into the first driving voltage of 15V and ⁇
  • the second driving voltage of 10V is provided to the switching circuit.
  • the digital drive circuit is used to control the first switch or the second switch to be turned on according to the drive control signal input by the traction control unit.
  • the digital drive circuit can control the first switch or the second switch of the switch circuit to conduct based on the drive control signal after short pulse suppression, over-frequency protection, fault detection, etc., on the drive control signal.
  • the driving voltage of the SiC power device acts on the driving terminal (such as gate-emitter) of the SiC power device through the driving terminal to control the switching of the SiC power device, and give full play to the high-frequency and low-loss characteristics of the SiC power device.
  • the digital drive circuit can control the first switch of the switch circuit to conduct, so that the first drive voltage output by the voltage conversion circuit is turned on.
  • the first switch is delivered to the drive end of the SiC power device to drive the SiC power device of the traction converter to turn on.
  • the SiC power device of the traction converter When the SiC power device of the traction converter is turned on, it cooperates with other SiC power devices of the traction converter to provide traction for the equipment (such as rail vehicles) where the traction converter is located, so as to push the equipment forward or backward.
  • the second switch is in the off state. At this time, the second driving voltage output by the voltage conversion circuit is not transmitted to the SiC power device through the second switch.
  • the digitized drive circuit can control the second switch of the switch circuit to turn on, so that the second drive voltage output by the voltage conversion circuit passes through the turned-on first switch.
  • the two switches are delivered to the drive end of the SiC power device to drive the SiC power device of the traction converter to turn off.
  • the first switch is in the off state, and at this time, the first driving voltage output by the voltage conversion circuit is not transmitted to the SiC power device through the first switch.
  • the digital driving circuit involved in this embodiment can drive the SiC power device in a digital driving manner.
  • the digital driving circuit may include an FPGA chip and the peripheral circuit of the FPGA chip; or, include a complex programmable logic device (CPLD) chip, and the peripheral circuit of a CPLD chip; or, include a single-chip microcomputer, And, the peripheral circuits of the microcontroller, etc.
  • the digital driving method can drive SiC power devices more quickly, and can meet the needs of fast switching of SiC power devices.
  • the digital drive circuit can control the first switch and the second switch through voltage.
  • the digital driving circuit may input a turn-on voltage to the first switch and a turn-off voltage to the second switch.
  • the digital driving circuit may input a turn-on voltage to the second switch and a turn-off voltage to the first switch.
  • the first switch and the second switch may be, for example, any one of the following: a triode, or a metal-oxide semiconductor field effect transistor.
  • the third output terminal of the above-mentioned digital driving circuit is connected to the input terminal of the traction control unit.
  • the digital drive circuit is also used to report the operating status of the SiC power device to the traction control unit. In this way, the user located in the traction control unit can be informed of the operating status of the SiC power device in time.
  • the SiC power device driving apparatus may further include: a photoelectric conversion circuit.
  • the photoelectric conversion circuit is located between the digital drive circuit and the traction control unit, and is used for photoelectric conversion of signals transmitted between the digital drive circuit and the traction control unit.
  • the traction control unit is connected to the photoelectric conversion circuit through an optical fiber, and the photoelectric conversion circuit is connected to the digital drive circuit through a cable.
  • the photoelectric conversion circuit can convert the drive control signal sent by the traction control unit into an electrical signal, and then send it to the digital drive circuit.
  • the photoelectric conversion circuit converts the operating state of the SiC power device reported by the digital drive circuit into an optical signal and sends it to the traction control unit.
  • the SiC power device driving device is provided with a digital driving circuit. Therefore, the SiC power device can be driven on or off in a digital manner, thereby meeting the needs of fast switching of the SiC power device. It can be applied to the field of rail transit traction, giving full play to its high-frequency and low-loss characteristics.
  • FIG. 2 is a schematic structural diagram of another SiC power device driving apparatus provided by an embodiment of the present invention. As shown in FIG. 2, based on the driving device shown in FIG. 1, the driving device may further include a detection circuit.
  • the input terminal of the detection circuit is connected with the power terminal of the SiC power device, and the output terminal of the detection circuit is connected with the second input terminal of the digital drive circuit.
  • the detection circuit is used to detect a current parameter when the SiC power device is turned on, and the current parameter is used to determine whether the SiC power device is short-circuited.
  • the digital driving circuit is used to control the second switch to be turned on when the SiC power device is short-circuited, so as to protect the SiC power device from damage.
  • the detection circuit can send the detected current value to the digital drive circuit after detecting the current value when the SiC power device is turned on.
  • the digital drive circuit can judge whether the SiC power device is short-circuited according to the current value.
  • the digital drive circuit can obtain the rate of change of the current value for a period of time based on the current value for a period of time.
  • the rate of change is greater than the set corresponding speed threshold, it indicates that the SiC power device is short-circuited. On the contrary, it means that the SiC power device is not short-circuited.
  • the detection circuit can be any circuit capable of detecting current.
  • the detection circuit can obtain the current value change rate for this period of time based on the current value detected within a period of time. Then, the detection circuit can send the current value change rate to the digital drive circuit, and the digital drive circuit determines whether the SiC power device is short-circuited based on the current value change rate. Alternatively, the detection circuit can determine whether the SiC power device is short-circuited based on the current value change rate, and finally send the result of whether the SiC power device is short-circuited to the digital drive circuit. For judging the short-circuit mode based on the change rate of the current value, refer to the foregoing description, and will not be repeated. For example, the detection circuit may output a voltage signal that can represent the rate of change of the current value to the digital drive circuit, so as to send the rate of change of the current value to the digital drive circuit.
  • the current change rate can reflect its change trend, that is, the upward or downward trend, in some embodiments, based on the above-mentioned current change rate, it can also accurately identify whether a short circuit occurs, or predict whether there is a short circuit trend in advance. Thereby, it has the effect of rapid response and early protection of short-circuit protection, and improves the reliability of short-circuit protection. Especially for SiC power devices with short short-circuit withstand time, it has good short-circuit protection.
  • the SiC power device when the SiC power device is turned on, the current parameter when the SiC power device is turned on is detected by the detection circuit.
  • the digital drive circuit can control the SiC power device to turn off. In turn, the SiC power device is protected from damage.
  • the internal soft turn-off control strategy when the SiC power device is short-circuited by the digital drive circuit, for example, the internal soft turn-off control strategy can be used to quickly (for example, within 2 microseconds) and reliably turn off the SiC power device.
  • the digital drive circuit when the digital drive circuit receives a control signal from the traction control unit to instruct the digital drive circuit to drive the SiC power device to turn on, if it is confirmed that the SiC power is short-circuited at this time, the digital drive circuit will ignore the control signal and execute control The SiC power device is turned off to protect the SiC power device.
  • FIG. 3 is a schematic structural diagram of another SiC power device driving apparatus provided by an embodiment of the present invention.
  • the above voltage conversion circuit may Including: DC-DC converter and voltage regulating circuit.
  • Figure 3 is an example diagram based on Figure 2. It should be understood that it can also be based only on the basis shown in FIG. 1, and this will not be repeated here.
  • the DC-DC converter is used to perform voltage conversion on the supply voltage provided by the traction control unit, and output a preset voltage to the voltage regulation circuit.
  • the voltage adjustment circuit is used to adjust the preset voltage and output the first driving voltage and the second driving voltage. It should be understood that the voltage regulation circuit can be any circuit capable of voltage regulation. For example, a circuit provided with a variable resistance.
  • SiC power devices of different voltage levels require different driving voltages (i.e., turn-on voltage and/or turn-off voltage).
  • the turn-on voltage is between 15V and 20V
  • the turn-off voltage is between -5V and -10V.
  • a SiC power device of one voltage level requires a turn-on voltage of 15V and a turn-off voltage of -10V
  • another voltage grade SiC power device requires a turn-on voltage of 20V and a turn-off voltage of -5V. Wait.
  • the preset voltage output by the DC-DC converter can be adjusted by the voltage adjustment circuit, so that the voltage of the first driving voltage input to the switching circuit and the second driving voltage are equal to each other.
  • the voltage meets the requirements of the connected SiC power device.
  • the traction control unit provides a voltage of 9V ⁇ 36V, the required turn-on voltage of the SiC power device is 15V, and the turn-off voltage is -10V.
  • the DC-DC converter converts the 9V ⁇ 36V power provided by the traction control unit into DC24V and outputs it to
  • the voltage regulating circuit can convert the DC24V power supply into a first driving voltage of DC15V and a second driving voltage of DC-10V.
  • the SiC power device driving device can have a wider voltage input range and output range, thereby being able to adapt to SiC power devices of different voltage levels, and making the SiC power device driving device more compatible.
  • the DC-DC converter may also be used to electrically isolate the traction control unit and the traction converter.
  • the digital drive circuit is an intermediate bridge between the traction control unit and the SiC power device.
  • the SiC power device of the traction converter usually works in a high-voltage converter system of several kilovolts. If the digital drive circuit refers to the "ground" and the SiC device If the main power is connected to the E pole, the isolation DC-DC converter can electrically isolate the traction control unit and the traction converter to prevent the high-voltage system where the SiC power device connected to the digital drive circuit is located from affecting the traction The normal operation of the control unit circuit. That is, to ensure effective isolation between the high-voltage side of the power unit and the low-voltage side of the control unit. This structure can be applied in high-power scenarios to ensure the safety of the traction control unit.
  • the above-mentioned electrical isolation can also be described as electrically isolating the drive control signal and the drive voltage for driving the SiC power device.
  • the above-mentioned DC-DC converter can also ensure that the traction control unit and the drive are short-circuited when the SiC power device is short-circuited. Voltage (ie, the first driving voltage and the second driving voltage) isolation, etc.
  • FIG. 4 is a schematic diagram of the architecture of a traction system provided by an embodiment of the present invention.
  • the traction system includes: the SiC power device driving device and the traction control unit described in any one of FIGS. 1 to 3 , Traction converter;
  • the traction converter includes at least one SiC half-bridge module, and the SiC half-bridge module includes two SiC power devices, and each SiC power device corresponds to one SiC power device driving device.
  • the SiC half-bridge module may also be referred to as a full SiC power device packaged in a half-bridge structure.
  • each SiC power device corresponds to one SiC power device driving device. That is, each SiC power device needs to be driven by one SiC power device driving device.
  • a dual-channel design can be used to design the SiC power device driving device that drives the full SiC power device packaged in the half-bridge structure on the same drive board to drive the full SiC packaged in the half-bridge structure power component. For example, the arrangement of the SiC power device driving device shown in FIG. 4.
  • the traction control unit can supply power to the voltage conversion circuit designed on the SiC power device driving device on the same driving board through a power supply module on it. That is, the voltage conversion circuits on the two SiC power device driving devices on the same driving board can be connected to the same power supply terminal of the traction control unit. In another implementation manner, the traction control unit may also supply power to the voltage conversion circuits on the two SiC power device driving devices through two power supply modules, which is not limited.
  • Figure 4 is a schematic diagram of the power supply terminals of two power supply modules as an example.
  • an embodiment of the present invention also provides a power device, which may include the aforementioned SiC power device driving device.
  • an embodiment of the present invention also provides a power device, which may include the aforementioned traction system.
  • the SiC power device driving apparatus can also be applied to any other scenarios where SiC power devices are used.
  • the source of the drive control signal received by the SiC power device driving device can be determined according to the actual situation.
  • the function performed by the SiC power device driving device when the SiC power device is turned on can also be determined according to the actual situation. , I won’t repeat it here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

一种SiC功率器件驱动装置和牵引系统,该装置包括电压转换电路、数字化驱动电路、开关电路,电压转换电路将牵引控制单元提供的供电电压进行电压转换,生成用于驱动所述SiC功率器件导通的第一驱动电压和用于驱动所述SiC功率器件关断的第二驱动电压。数字化驱动电路根据牵引控制单元输入的驱动控制信号,控制开关电路的第一开关或第二开关导通。该SiC功率器件驱动装置和牵引系统,通过在SiC功率器件驱动装置中设置数字化驱动电路,因此,可以采用数字化的方式驱动SiC功率器件导通或关断,进而可以满足SiC功率器件快速开关的需求,使其可以应用于轨道交通牵引领域,发挥其高频和低损耗的特性。

Description

SiC功率器件驱动装置和牵引系统 技术领域
本发明涉及电力电子技术领域,尤其涉及一种SiC功率器件驱动装置和牵引系统。
背景技术
目前,电力设备主要采用基于硅(Si)功率器件的变流系统为电力设备提供变流功能。例如,使用Si功率器件构成的四象限功率单元为电力设备提供整流功能,或者,使用Si功率器件构成的逆变功率单元为电力设备提供变频变压的电能。
随着国内外高效节能、绿色、低碳环保的发展要求,越来越多的电力设备(如:光伏发电、风力发电、电动汽车和轨道交通等),对高效的功率能量转换提出了需求,催生了耐高温、耐高压、高频和低损耗特点的SiC功率器件的诞生。目前,在轨道交通牵引领域深入开展了大功率SiC功率器件的应用研究,对实现提高系统效率、减小牵引装置体积重量,为轨道交通达到高效节能、绿色环保起到积极作用。这里所说的大功率SiC功率器件的工作电压可达3300V。
然而,现有3300V等级的功率器件驱动装置,采用模拟驱动方式,驱动电阻单一,信号传输速度慢,无法满足SiC功率器件快速开关的需求。故,在将大功率SiC功率器件应用于轨道交通牵引领域时,如何驱动大功率SiC功率器件是一个亟待解决的问题。
发明内容
本发明实施例提供一种SiC功率器件驱动装置和牵引系统,能够满足SiC功率器件快速开关的需求。
第一方面,本发明提供一种SiC功率器件驱动装置,包括:电压转换电路、数字化驱动电路、开关电路;
所述数字化驱动电路的第一输入端与牵引控制单元的输出端连接,所述数字化驱动电路的第一输出端与所述开关电路的第一开关连接,所述数字化 驱动电路的第二输出端与所述开关电路的第二开关连接,所述电压转换电路的输入端与牵引控制单元的供电端连接,所述电压转换电路的第一输出端通过所述开关电路的第一开关与牵引变流器的SiC功率器件的驱动端连接,所述电压转换电路的第二输出端通过所述开关电路的第二开关与所述SiC功率器件的驱动端连接;
所述电压转换电路,用于对所述牵引控制单元提供的供电电压进行电压转换,生成第一驱动电压和第二驱动电压,所述第一驱动电压用于驱动所述SiC功率器件导通,所述第二驱动电压用于驱动所述SiC功率器件关断;
所述数字化驱动电路,用于根据所述牵引控制单元输入的驱动控制信号,控制所述第一开关或所述第二开关导通。
可选的,所述装置还包括:检测电路,所述检测电路的输入端与所述SiC功率器件的功率端连接,所述检测电路的输出端与所述数字化驱动电路的第二输入端连接;
所述检测电路,用于检测所述SiC功率器件导通时的电流参数,所述电流参数用于确定所述SiC功率器件是否短路;
所述数字化驱动电路,用于在所述SiC功率器件短路时,控制所述第二开关导通。
可选的,所述电流参数为电流变化率;
所述检测电路,还用于根据所述SiC功率器件导通时的电流变化率,确定所述SiC功率器件是否短路。
可选的,所述数字化驱动电路的第三输出端与所述牵引控制单元的输入端连接;
所述数字化驱动电路,还用于向所述牵引控制单元上报所述SiC功率器件的运行状态。
可选的,所述装置还包括:光电转换电路,所述光电转换电路位于所述数字化驱动电路与所述牵引控制单元之间,用于对所述数字化驱动电路与所述牵引控制单元之间传输的信号进行光电转换。
可选的,所述电压转换电路,包括:直流直流变换器(Direct current-Direct current converter,DC-DC)和电压调节电路;
所述直流直流变换器,用于对所述牵引控制单元提供的供电电压进行电 压转换,向所述电压调节电路输出预设电压;
所述电压调节电路,用于对所述预设电压进行调节,输出所述第一驱动电压和所述第二驱动电压。
可选的,所述直流直流变换器,还用于电气隔离所述牵引控制单元与所述牵引变流器。
可选的,所述第一开关和所述第二开关均为金属-氧化物半导体场效应晶体管。
可选的,所述数字化驱动电路包括现场可编程门阵列(Field Programmable Gate Array,FPGA)芯片。
第二方面,本发明提供一种牵引系统,该牵引系统包括:如第一方面任一项所述的SiC功率器件驱动装置、牵引控制单元、牵引变流器;
所述牵引变流器包括至少一个SiC半桥模块,所述SiC半桥模块包括至少两个SiC功率器件,每个SiC功率器件对应一个SiC功率器件驱动装置。
本发明提供的SiC功率器件驱动装置和牵引系统,SiC功率器件驱动装置设置有数字化驱动电路,因此,可以采用数字化的方式驱动SiC功率器件导通或关断,进而可以满足SiC功率器件快速开关的需求,使其可以应用于轨道交通牵引领域,发挥其高频和低损耗的特性。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1为本发明实施例提供的一种SiC功率器件驱动装置的结构示意图;
图2为本发明实施例提供的另一种SiC功率器件驱动装置的结构示意图;
图3为本发明实施例提供的又一种SiC功率器件驱动装置的结构示意图;
图4为本发明实施例提供的一种牵引系统的架构示意图。
通过上述附图,已示出本公开明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本公开构思的范围,而是通过参考特定实施例为本领域技术人员说明本公开的概念。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
目前,在轨道交通牵引领域深入开展了大功率SiC功率器件的应用研究,对实现提高系统效率、减小牵引装置体积重量,为轨道交通达到高效节能、绿色环保起到积极作用。这里所说的大功率SiC功率器件的工作电压可达3300V。然而,现有3300V等级的功率器件驱动装置,采用模拟驱动方式,驱动电阻单一,信号传输速度慢,无法满足SiC功率器件快速开关的需求。故,在将大功率SiC功率器件应用于轨道交通牵引领域时,如何驱动大功率SiC功率器件是一个亟待解决的问题。
考虑到上述问题,本发明提供了一种SiC功率器件驱动装置,通过数字化驱动电路,可以采用数字化的方式驱动SiC功率器件导通或关断,从而可以满足SiC功率器件快速开关的需求,使其可以应用于轨道交通牵引领域,发挥其高频和低损耗的特性。
应理解,本发明提供的SiC功率器件驱动装置不仅可以用于驱动大功率SiC功率器件的场景,也可以适用于驱动其他SiC功率器件的场景。即,本发明提供的SiC功率器件驱动装置,对SiC功率器件的工作电压并不进行限定。另外,本发明提供的SiC功率器件驱动装置可以应用于轨道交通牵引领域,也可以应用于其他任意使用SiC功率器件的场景。为了便于对SiC功率器件驱动装置的理解,下述实施例均以将SiC功率器件应用在牵引领域为例进行说明。
下面结合具体地实施例对本发明实施例的SiC功率器件驱动装置进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或者相似的概念或者过程可能在某些实施例不再赘述。
图1为本发明实施例提供的一种SiC功率器件驱动装置的结构示意图,如图1所示,该驱动装置包括:电压转换电路、数字化驱动电路、开关电路。
所述数字化驱动电路的第一输入端与牵引控制单元的输出端连接,所述数字化驱动电路的第一输出端与所述开关电路的第一开关连接,所述数字化 驱动电路的第二输出端与所述开关电路的第二开关连接,所述电压转换电路的输入端与牵引控制单元的供电端连接,所述电压转换电路的第一输出端通过所述开关电路的第一开关与牵引变流器的SiC功率器件的驱动端连接,所述电压转换电路的第二输出端通过所述开关电路的第二开关与所述SiC功率器件的驱动端连接。
所述电压转换电路,用于对所述牵引控制单元提供的供电电压进行电压转换,生成第一驱动电压和第二驱动电压,所述第一驱动电压用于驱动所述SiC功率器件导通,所述第二驱动电压用于驱动所述SiC功率器件关断。
在一些实施例中,第一驱动电压也可以称为高电平电压或导通电压,第二驱动电压也可以称为低电平电压或关断电压。应理解,这里所谓的高电平电压是相对于第二驱动电压来说的。关于第一驱动电压和第二驱动电压的大小,可以根据SiC功率器件的导通电压和关断电压确定。例如,假定牵引控制单元提供的供电电压为36V,SiC功率器件的导通电压为15V,关断电压为-10V,则电压转换电路可以将36V的电压分别转换为15V的第一驱动电压和-10V的第二驱动电压,提供给开关电路。
所述数字化驱动电路,用于根据所述牵引控制单元输入的驱动控制信号,控制所述第一开关或所述第二开关导通。
示例性的,所述数字化驱动电路可以对驱动控制信号经过短脉冲抑制、过频保护、故障检测等处理之后,基于该驱动控制信号控制开关电路的第一开关或第二开关导通,将合适的驱动电压通过驱动端作用于SiC功率器件的驱动端(例如栅-射极),以控制SiC功率器件的开关,充分发挥SiC功率器件高频、低损耗的特点。
例如,当牵引控制单元输入的驱动控制信号用于控制SiC功率器件导通时,则数字化驱动电路可以控制开关电路的第一开关导通,以使电压转换电路输出的第一驱动电压通过导通的第一开关输送至SiC功率器件的驱动端,以驱动牵引变流器的SiC功率器件导通。当牵引变流器的SiC功率器件导通时,与牵引变流器的其它SiC功率器件共同配合为牵引变流器所在的设备(例如轨道车辆)提供牵引力,以推动该设备前进或后退。在该实现方式下,第二开关处于关断状态,此时,电压转换电路输出的第二驱动电压不会通过第二开关输送至SiC功率器件。
当牵引控制单元输入的驱动控制信号用于控制SiC功率器件关断时,则数字化驱动电路可以控制开关电路的第二开关导通,以使电压转换电路输出的第二驱动电压通过导通的第二开关输送至SiC功率器件的驱动端,以驱动牵引变流器的SiC功率器件关断。在该实现方式下,第一开关处于关断状态,此时,电压转换电路输出的第一驱动电压不会通过第一开关输送至SiC功率器件。
应理解,本实施例所涉及的数字化驱动电路可以采用数字化的驱动方式驱动SiC功率器件。例如,该数字化驱动电路可以包括FPGA芯片,以及,FPGA芯片的外围电路;或者,包括复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)芯片,以及,CPLD芯片的外围电路;或者,包括单片机,以及,单片机的外围电路等。相比模拟驱动方式,数字化的驱动方式可以更加快速的驱动SiC功率器件,可以满足SiC功率器件快速开关的需求。
本实施例不限定上述数字化驱动电路控制第一开关和第二开关导通的方式,例如,数字化驱动电路可以通过电压控制第一开关和第二开关。示例性的,当数字化驱动电路需要控制第一开关导通时,数字化驱动电路可以向第一开关输入导通电压,向第二开关输入关断电压。当数字化驱动电路需要控制第二开关导通时,数字化驱动电路可以向第二开关输入导通电压,向第一开关输入关断电压。在该实现方式下,第一开关和第二开关例如可以为下述任一种:三极管、或者,金属-氧化物半导体场效应晶体管。
继续参照图1,可选的,在一些实施例中,上述数字化驱动电路的第三输出端与所述牵引控制单元的输入端连接。所述数字化驱动电路,还用于向所述牵引控制单元上报所述SiC功率器件的运行状态。通过这种方式,可以使位于牵引控制单元的用户及时的获知SiC功率器件的运行状态。
继续参照图1,可选的,在一些实施例中,所述SiC功率器件驱动装置还可以包括:光电转换电路。
所述光电转换电路位于所述数字化驱动电路与所述牵引控制单元之间,用于对所述数字化驱动电路与所述牵引控制单元之间传输的信号进行光电转换。
例如,牵引控制单元通过光纤与光电转换电路连接,光电转换电路通过 电缆与数字化驱动电路连接。在该场景下,光电转换电路可以将牵引控制单元发送的驱动控制信号转换为电信号后,发送给数字化驱动电路。相应地,光电转换电路将数字化驱动电路上报的SiC功率器件的运行状态转换为光信号后,发送给牵引控制单元。
通过上述方式,一方面实现了信号互联,另一方面,最大程度减小了干扰信号的影响。
本发明提供的SiC功率器件驱动装置,SiC功率器件驱动装置设置有数字化驱动电路,因此,可以采用数字化的方式驱动SiC功率器件导通或关断,进而可以满足SiC功率器件快速开关的需求,使其可以应用于轨道交通牵引领域,发挥其高频和低损耗的特性。
图2为本发明实施例提供的另一种SiC功率器件驱动装置的结构示意图。如图2所示,在上述图1所示的驱动装置的基础上,该驱动装置还可以包括:检测电路。
所述检测电路的输入端与所述SiC功率器件的功率端连接,所述检测电路的输出端与所述数字化驱动电路的第二输入端连接。
所述检测电路,用于检测所述SiC功率器件导通时的电流参数,所述电流参数用于确定所述SiC功率器件是否短路。
所述数字化驱动电路,用于在所述SiC功率器件短路时,控制所述第二开关导通,进而保护SiC功率器件不受损坏。
以电流参数为电流值为例,则在该实现方式下,检测电路可以在检测到SiC功率器件导通时的电流值之后,将该检测到的电流值发送给数字化驱动电路。数字化驱动电路可以根据电流值的大小判断SiC功率器件是否短路。
例如,当电流值大于设定的对应阈值时,说明SiC功率器件短路。反之,则说明SiC功率器件未短路。或者,数字化驱动电路可以基于一段时间的电流值,来获取这一段时间的电流值变化率,当变化速度大于设定的对应的速度阈值时,说明SiC功率器件短路。反之,则说明SiC功率器件未短路。
在该实现方式下,检测电路可以为任一能够检测电流的电路。
以电流参数为电流变化率为例,则在该实现方式下,检测电路可以基于一段时间内检测的电流值,来获取这一段时间的电流值变化率。然后,检测电路可以将电流值变化率发送给数字化驱动电路,由数字化驱动电路基于电 流值变化率判断SiC功率器件是否短路。或者,检测电路可以基于电流值变化率,自行判断SiC功率器件是否短路,最后将SiC功率器件是否短路的结果发送给数字化驱动电路。基于电流值变化率判断短路方式可以参见前述描述,不再赘述。例如,检测电路可以向数字化驱动电路输出能够表征电流值变化率的一个电压信号,以将电流值变化率发送给数字化驱动电路。
由于电流变化率能够反映其变化趋势,即上升或者下降的趋势,因此,在一些实施例中,基于上述电流变化率还可以准确识别出是否发生短路,或者,提前预判是否有短路的趋势,从而具有短路保护的快速反应和提前保护的效果,提高了短路保护的可靠性。尤其对于短路耐受时间短的SiC功率器件具有良好的短路保护作用。
本实施例中,在SiC功率器件导通时,通过检测电路检测所述SiC功率器件导通时的电流参数,可以在所述SiC功率器件短路时,由数字化驱动电路控制SiC功率器件关断,进而保护SiC功率器件不受损坏。在一些实施例中,数字化驱动电路在SiC功率器件发生短路时,例如可以通过内部软关断的控制策略,快速(例如可以在2微秒内)、且可靠地关断SiC功率器件,
进而完成SiC功率器件的可靠驱动和保护。
应理解,当数字化驱动电路接收来自牵引控制单元的控制信号,用于指示数字化驱动电路驱动SiC功率器件导通时,若此时确认SiC功率短路,则数字化驱动电路会忽略该控制信号,执行控制SiC功率器件关断的操作,以保护SiC功率器件。
图3为本发明实施例提供的又一种SiC功率器件驱动装置的结构示意图,如图3所示,在上述图1或2所示SiC功率器件驱动装置的基础上,上述电压转换电路,可以包括:直流直流变换器和电压调节电路。图3是以图2为基础的示例图。应理解,也可以仅在图1所示的基础上,对此不再赘述。
所述直流直流变换器,用于对所述牵引控制单元提供的供电电压进行电压转换,向所述电压调节电路输出预设电压。
所述电压调节电路,用于对所述预设电压进行调节,输出所述第一驱动电压和所述第二驱动电压。应理解,该电压调节电路可以为任一能够具有电压调整功能的电路。例如,设置有可变电阻的电路。
目前,不同电压等级的SiC功率器件所需的驱动电压(即导通电压和/关 断电压)不同。例如,导通电压位于15V至20V之间,关断电压位于-5V至-10V之间。示例性的,一个电压等级的SiC功率器件所需的导通电压为15V、关断电压为-10V,另一个电压等级的SiC功率器件所需的导通电压为20V、关断电压为-5V等。
考虑到该问题,本发明实施例中通过电压调节电路,可以对直流直流变换器输出的预设电压进行调节,以使输入至开关电路的第一驱动电压的电压和所述第二驱动电压的电压满足其所连接的SiC功率器件的要求。
例如,牵引控制单元提供9V~36V的电压,SiC功率器件所需的导通电压为15V,关断电压为-10V,直流直流变换器将牵引控制单元提供9V~36V的电源转化为DC24V输出至电压调节电路,电压调节电路可以将该DC24V电源转换为DC15V的第一驱动电压和DC-10V的第二驱动电压。
通过上述方式,可以使SiC功率器件驱动装置有较宽的电压输入范围和输出范围,从而能够适配不同电压等级的SiC功率器件,使SiC功率器件驱动装置的兼容性更高。
可选的,在一些实施例中,所述直流直流变换器,还可以用于电气隔离所述牵引控制单元与所述牵引变流器。
数字化驱动电路是牵引控制单元和SiC功率器件的中间桥梁,牵引变流器的SiC功率器件通常工作在几千伏的高压变流器系统中,若数字化驱动电路的参考“地”和SiC器件的主功率E极相连,则通过该带隔离作用的直流直流变换器,可以电气隔离所述牵引控制单元与所述牵引变流器,以避免数字化驱动电路连接的SiC功率器件所在的高压系统影响牵引控制单元电路的正常运行。即,保证功率单元高压侧和控制单元低压侧的有效隔离。该结构可以应用在大功率的场景下,以确保牵引控制单元的安全性。在一些实施例中,上述电气隔离也可以描述为电气隔离驱动控制信号和驱动SiC功率器件的驱动电压,这样,上述直流直流变流器还可以在SiC功率器件短路时,确保牵引控制单元与驱动电压(即第一驱动电压和第二驱动电压)的隔离等。
图4为本发明实施例提供的一种牵引系统的架构示意图,如图4所示,所述牵引系统包括:如图1-图3任一图所述的SiC功率器件驱动装置、牵引控制单元、牵引变流器;
所述牵引变流器包括至少一个SiC半桥模块,所述SiC半桥模块包括两 个SiC功率器件,每个SiC功率器件对应一个SiC功率器件驱动装置。在一些实施例中,SiC半桥模块也可以称为半桥结构封装的全SiC功率器件。
在本实施例中,每个SiC功率器件对应一个SiC功率器件驱动装置。即,每一个SiC功率器件需要一个SiC功率器件驱动装置驱动。作为一种可能的实现方式,可以采用双通道设计的方式,将驱动该半桥结构封装的全SiC功率器件的SiC功率器件驱动装置设计在同一驱动板上,以驱动半桥结构封装的全SiC功率器件。例如图4所示的SiC功率器件驱动装置的设置方式。
在该实现方式下,牵引控制单元可以通过其上的一个供电模块为设计在同一驱动板的SiC功率器件驱动装置上的电压转换电路供电。即,位于同一驱动板上的两个SiC功率器件驱动装置上的电压转换电路可以连接至牵引控制单元的同一供电端。在另一实现方式中,牵引控制单元也可以通过两个供电模块分别为该两个SiC功率器件驱动装置上的电压转换电路供电,对此不进行限定。图4是以两个供电模块的供电端为例的示意图。
关于该牵引系统的工作原理可以参见上述关于SiC功率器件驱动装置的描述,在此不再赘述。
另一方面,本发明实施例还提供了一种电力设备,该电力设备可以包括上述所说的SiC功率器件驱动装置。
再一方面,本发明实施例还提供了一种电力设备,该电力设备可以包括上述所说的牵引系统。
应理解,虽然上述实施例均以牵引场景为例对本发明实施例提供的SiC功率器件驱动装置进行了示例说明。但是,本领域技术人员可以理解的是,该SiC功率器件驱动装置还可以适用于其他任意使用SiC功率器件的场景。在该场景下,SiC功率器件驱动装置所接收到的驱动控制信号的来源可以根据实际情况确定,相应地,SiC功率器件驱动装置驱动SiC功率器件导通时所执行的功能也可以根据实际情况确定,在此不再赘述。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本发明旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本发明未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求书指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求书来限制。

Claims (10)

  1. 一种SiC功率器件驱动装置,其特征在于,包括:电压转换电路、数字化驱动电路、开关电路;
    所述数字化驱动电路的第一输入端与牵引控制单元的输出端连接,所述数字化驱动电路的第一输出端与所述开关电路的第一开关连接,所述数字化驱动电路的第二输出端与所述开关电路的第二开关连接,所述电压转换电路的输入端与牵引控制单元的供电端连接,所述电压转换电路的第一输出端通过所述开关电路的第一开关与牵引变流器的SiC功率器件的驱动端连接,所述电压转换电路的第二输出端通过所述开关电路的第二开关与所述SiC功率器件的驱动端连接;
    所述电压转换电路,用于对所述牵引控制单元提供的供电电压进行电压转换,生成第一驱动电压和第二驱动电压,所述第一驱动电压用于驱动所述SiC功率器件导通,所述第二驱动电压用于驱动所述SiC功率器件关断;
    所述数字化驱动电路,用于根据所述牵引控制单元输入的驱动控制信号,控制所述第一开关或所述第二开关导通。
  2. 根据权利要求1所述的装置,其特征在于,所述装置还包括:检测电路,所述检测电路的输入端与所述SiC功率器件的功率端连接,所述检测电路的输出端与所述数字化驱动电路的第二输入端连接;
    所述检测电路,用于检测所述SiC功率器件导通时的电流参数,所述电流参数用于确定所述SiC功率器件是否短路;
    所述数字化驱动电路,用于在所述SiC功率器件短路时,控制所述第二开关导通。
  3. 根据权利要求2所述的装置,其特征在于,所述电流参数为电流变化率;
    所述检测电路,还用于根据所述SiC功率器件导通时的电流变化率,确定所述SiC功率器件是否短路。
  4. 根据权利要求1所述的装置,其特征在于,所述数字化驱动电路的第三输出端与所述牵引控制单元的输入端连接;
    所述数字化驱动电路,还用于向所述牵引控制单元上报所述SiC功率器件的运行状态。
  5. 根据权利要求4所述的装置,其特征在于,所述装置还包括:光电转换电路,所述光电转换电路位于所述数字化驱动电路与所述牵引控制单元之间,用于对所述数字化驱动电路与所述牵引控制单元之间传输的信号进行光电转换。
  6. 根据权利要求1所述的装置,其特征在于,所述电压转换电路,包括:直流直流变换器和电压调节电路;
    所述直流直流变换器,用于对所述牵引控制单元提供的供电电压进行电压转换,向所述电压调节电路输出预设电压;
    所述电压调节电路,用于对所述预设电压进行调节,输出所述第一驱动电压和所述第二驱动电压。
  7. 根据权利要求6所述的装置,其特征在于,所述直流直流变换器,还用于电气隔离所述牵引控制单元与所述牵引变流器。
  8. 根据权利要求1所述的装置,其特征在于,所述第一开关和所述第二开关均为金属-氧化物半导体场效应晶体管。
  9. 根据权利要求1所述的装置,其特征在于,所述数字化驱动电路包括现场可编程门阵列FPGA芯片。
  10. 一种牵引系统,其特征在于,所述牵引系统包括:如权利要求1-9任一项所述的SiC功率器件驱动装置、牵引控制单元、牵引变流器;
    所述牵引变流器包括至少一个SiC半桥模块,所述SiC半桥模块包括两个SiC功率器件,每个SiC功率器件对应一个SiC功率器件驱动装置。
PCT/CN2020/135833 2019-12-24 2020-12-11 SiC功率器件驱动装置和牵引系统 WO2021129421A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911343396.9A CN113037058A (zh) 2019-12-24 2019-12-24 SiC功率器件驱动装置和牵引系统
CN201911343396.9 2019-12-24

Publications (1)

Publication Number Publication Date
WO2021129421A1 true WO2021129421A1 (zh) 2021-07-01

Family

ID=76451313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135833 WO2021129421A1 (zh) 2019-12-24 2020-12-11 SiC功率器件驱动装置和牵引系统

Country Status (2)

Country Link
CN (1) CN113037058A (zh)
WO (1) WO2021129421A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116743143A (zh) * 2022-03-04 2023-09-12 中车永济电机有限公司 一种碳化硅SiC功率器件的驱动装置及设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109061431A (zh) * 2018-08-22 2018-12-21 徐州中矿大传动与自动化有限公司 一种基于栅极电荷的SiC MOSFET栅极故障诊断系统及诊断方法
CN109240408A (zh) * 2018-10-31 2019-01-18 西安理工大学 SiCMOSFET门极驱动电压控制电路及其控制方法
CN109495102A (zh) * 2018-12-05 2019-03-19 徐州中矿大传动与自动化有限公司 一种SiC MOSFET一类短路电流抑制电路及方法
US20190115850A1 (en) * 2017-10-18 2019-04-18 Fuji Electric Co., Ltd. Silicon carbide mosfet inverter circuit
CN110271424A (zh) * 2019-06-28 2019-09-24 中车青岛四方车辆研究所有限公司 牵引逆变系统及其控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190115850A1 (en) * 2017-10-18 2019-04-18 Fuji Electric Co., Ltd. Silicon carbide mosfet inverter circuit
CN109061431A (zh) * 2018-08-22 2018-12-21 徐州中矿大传动与自动化有限公司 一种基于栅极电荷的SiC MOSFET栅极故障诊断系统及诊断方法
CN109240408A (zh) * 2018-10-31 2019-01-18 西安理工大学 SiCMOSFET门极驱动电压控制电路及其控制方法
CN109495102A (zh) * 2018-12-05 2019-03-19 徐州中矿大传动与自动化有限公司 一种SiC MOSFET一类短路电流抑制电路及方法
CN110271424A (zh) * 2019-06-28 2019-09-24 中车青岛四方车辆研究所有限公司 牵引逆变系统及其控制方法

Also Published As

Publication number Publication date
CN113037058A (zh) 2021-06-25

Similar Documents

Publication Publication Date Title
US9214877B2 (en) Gate driving circuit having a fault detecting circuit for a semiconductor switching device
US9166469B2 (en) System for optimizing switching dead-time and method of making same
WO2013174137A1 (zh) 绝缘栅双极型晶体管的驱动电路
CN105490511A (zh) 一种t型三电平igbt驱动电路
CN110365196A (zh) 三电平一体式SiC-Mosfet驱动系统及驱动控制方法
CN103036403A (zh) 一种基于数字控制的高压大功率igbt驱动器
WO2021129421A1 (zh) SiC功率器件驱动装置和牵引系统
CN110572011B (zh) 带短路保护的igbt驱动电路软开关装置
CN105720802A (zh) 一种h桥全功能igbt隔离驱动控制模块
CN108475998B (zh) 电力转换装置的控制系统
TWI787725B (zh) 逆變器系統
CN105207452A (zh) 一种igbt驱动电路
US20230327453A1 (en) Photovoltaic System, Protection Method, and Inverter System
CN110138186B (zh) 功率开关器件驱动电路及电力电子设备
CN103647437A (zh) 高压大电流igbt驱动系统
CN1462106A (zh) 用于dc/dc转换器的控制装置
CN105556819B (zh) 具有改进的击穿免疫性的逆变器
CN107689764A (zh) 带安全转矩关断功能的变频器控制装置以及安全变频器系统
CN209805663U (zh) 功率开关器件驱动电路及电力电子设备
CN102594099A (zh) 智能功率模块的栅极驱动电路
JP2013031267A (ja) スイッチング素子用ゲート駆動装置
JP2021065039A (ja) スイッチの駆動装置
CN113839653B (zh) 一种基于纯硬件器件过流保护的SiC MOSFET驱动电路
JP2020177875A (ja) 直流遮断装置
CN216598976U (zh) 智能功率模块的短路保护装置、变频器和伺服系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20905399

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20905399

Country of ref document: EP

Kind code of ref document: A1