WO2021129245A1 - 一种通信方法和装置 - Google Patents

一种通信方法和装置 Download PDF

Info

Publication number
WO2021129245A1
WO2021129245A1 PCT/CN2020/129866 CN2020129866W WO2021129245A1 WO 2021129245 A1 WO2021129245 A1 WO 2021129245A1 CN 2020129866 W CN2020129866 W CN 2020129866W WO 2021129245 A1 WO2021129245 A1 WO 2021129245A1
Authority
WO
WIPO (PCT)
Prior art keywords
subband
frequency domain
indication information
uplink signal
uplink
Prior art date
Application number
PCT/CN2020/129866
Other languages
English (en)
French (fr)
Inventor
黄秋萍
陈润华
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to KR1020227024337A priority Critical patent/KR20220114066A/ko
Priority to US17/786,981 priority patent/US20230040978A1/en
Priority to JP2022539246A priority patent/JP2023508203A/ja
Priority to EP20904607.7A priority patent/EP4084549A4/en
Publication of WO2021129245A1 publication Critical patent/WO2021129245A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to a communication method and device.
  • the multiple input and output (MIMO) transmission of the uplink signal only supports broadband pre-transmission. Coding, sub-band precoding is not supported.
  • the base station can only indicate the broadband uplink sounding reference signal (Sounding Reference Signal, SRS) to the user equipment (User Equipment, UE) Resource, precoding matrix and number of transmission streams.
  • SRS Signal
  • UE User Equipment
  • the SRS resource can be indicated by the SRS Resource Indicator (SRS Resource Indicator) field or Radio Resource Control (RRC) signaling in the Downlink Control Information (DCI)
  • RRC Radio Resource Control
  • the precoding matrix and the number of transmission streams can be indicated by The precoding information and number of layers (Precoding information and number of layers) field in DCI or RRC signaling indication.
  • the base station indicates a broadband SRS resource to the UE, for example, through the SRS resource indication field in the DCI or the RRC signaling SRS resource indication.
  • the UE transmits the PUSCH, it uses the same analog beamforming, precoding matrix, and number of transmission streams on all scheduled frequency domain resources.
  • Subband precoding can bring frequency domain selective precoding gain and improve the performance of uplink signal transmission.
  • 3rd Generation Partnership Project 3rd Generation Partnership Project, 3GPP
  • 3GPP 3rd Generation Partnership Project
  • the present disclosure provides a communication method and device for improving the transmission gain of uplink signals.
  • the present disclosure provides a communication method, which includes:
  • the terminal device determines, in the uplink resource, at least one first subband used to transmit the uplink signal
  • the terminal device transmits the uplink signal according to the received indication information of the uplink signal sent by the network device and the determined at least one first subband, where the indication information is used to indicate the transmission parameter and/or of the uplink signal Or transmission antenna.
  • the terminal can determine the first subband for transmitting the uplink signal on the uplink resource, and transmit the uplink signal with the network device on the determined first subband according to the indication information of the uplink signal, which can improve the transmission of the uplink signal. Gain.
  • the determination by the terminal device in the uplink resource to be used for transmitting the uplink signal at least one first subband includes:
  • the terminal device determines the start position of the first frequency domain
  • the terminal device determines the at least one first subband on the uplink resource according to the first frequency domain starting position.
  • the terminal device can determine the first subband in the uplink resource according to the start position of the first frequency domain, which is easy to implement.
  • the terminal device determining the at least one first subband according to the first frequency domain starting position includes:
  • the terminal device determines multiple second subbands on the uplink resource according to the first frequency domain start position and subband width, and determines the at least one first subband in the multiple second subbands. Subband; or,
  • the terminal device determines the at least one first subband according to the first frequency domain starting position, the subband width, and the frequency domain resources allocated by the network device for the uplink signal; or,
  • the terminal device determines the at least one first subband according to the start position of the first frequency domain, the width of the subband, and the number of subbands.
  • the terminal device can accurately determine the first subband for transmitting the uplink signal in the uplink resource
  • the implementation method is simple, and the transmission gain of the uplink signal can be improved by transmitting the uplink signal through the determined first subband.
  • the frequency domain start position of any one of the at least one first subband is equal to the first frequency domain start position plus an offset of an integer multiple of the subband width; or ,
  • the frequency domain start positions of the subbands other than the designated subband in the at least one first subband are all equal to the first frequency domain start position plus an offset of an integer multiple of the subband width.
  • the frequency domain start position of each first subband can be determined by the first frequency domain start position and the subband width, so that the terminal device can more accurately determine each first subband.
  • the determining, by the terminal device, the at least one first subband among the multiple second subbands includes:
  • the terminal device determines the subband corresponding to the frequency domain resource among the plurality of second subbands according to the frequency domain resource allocated by the network device for the uplink signal, as the at least one first subband ;or,
  • the terminal device determines the at least one first subband according to the frequency domain resource allocated by the network device for the uplink signal and the overlapping frequency domain resource of the plurality of second subbands.
  • the terminal device when the terminal device determines multiple second subbands on the uplink resource, it can determine the first subband for transmitting the uplink signal among the multiple second subbands through the frequency domain resources allocated by the network device.
  • the indication information includes control information corresponding to all or part of the second subband included in the uplink resource; or,
  • the indication information includes the control information of the at least one first subband used to transmit the uplink signal; the control information respectively indicates all or part of the at least one first subband; or,
  • the indication information includes control information of a designated subband; wherein, the designated subband is instructed by the network device or agreed in advance by the network device and the terminal device.
  • control information includes some or all of the following:
  • Precoding matrix indication information transmission stream number indication information, space related information, uplink sounding reference signal SRS resource indication information, transmitting antenna indication information or antenna panel indication information.
  • the determination by the terminal device of the multiple second subbands on the uplink resource includes:
  • the terminal device uses the first frequency domain start position as the frequency domain start position of the lowest frequency subband, and determines the amount of the uplink resource according to the frequency domain start position of the lowest frequency subband.
  • Second subband Second subband
  • the determining, by the terminal device, the at least one first subband includes:
  • the terminal device uses the first frequency domain start position as the frequency domain start position of the lowest frequency subband, and determines the at least one subband according to the frequency domain start position of the lowest frequency subband;
  • the first frequency domain starting position is the starting position of the frequency domain resource corresponding to the indication information; the frequency domain resource corresponding to the indication information is on the frequency domain resource of the uplink signal, or on the uplink resource on.
  • the above method enables the terminal device to determine the frequency domain start position of at least one first subband or the frequency domain start positions of multiple second subbands according to the frequency domain start position of the lowest frequency subband. simple.
  • the first frequency domain starting position is a frequency domain position of a designated common resource block CRB; or,
  • the first frequency domain start position is the frequency domain position of the designated physical resource block PRB of the initial uplink bandwidth part BWP; or,
  • the first frequency domain starting position is the frequency domain position of the designated PRB in the BWP used to transmit the uplink signal; or,
  • the first frequency domain starting position is the frequency domain position of the designated PRB in the activated uplink BWP when the scheduling information of the uplink signal is transmitted; or,
  • the first frequency domain starting position is the frequency domain position of the designated PRB in the BWP used to transmit the indication information; or,
  • the first frequency domain starting position is the frequency domain position of the designated PRB in the designated BWP; or,
  • the first frequency domain starting position is the frequency domain position of the designated PRB in the frequency domain resources allocated by the network device for the uplink signal; or,
  • the first frequency domain starting position is the frequency domain position of the PRB indicated by the network device through signaling.
  • the above method can determine the PRB at the start position of the first frequency domain, so that the terminal device can determine the PRB used to transmit the uplink signal.
  • the at least one first subband includes multiple PRBs
  • PRBs included in the at least one first subband are continuous; or,
  • the at least one first subband includes a subband including non-contiguous PRBs.
  • the terminal device transmitting the uplink signal according to the received indication information of the uplink signal sent by the network device and the determined at least one first subband includes:
  • the terminal device uses the transmission parameter and/or the transmission antenna to transmit the uplink signal through the at least one first subband.
  • the terminal device after determining at least one first subband for transmitting the uplink signal, can determine the transmission parameter and the transmission antenna corresponding to the at least one first subband according to the instruction information, and transmit the uplink signal through the transmission parameter and the transmission antenna , Can improve the transmission gain of the uplink signal.
  • the present disclosure also provides another communication method, which includes:
  • the network device determines the subband in the uplink resource of the terminal device
  • the indication information is used to indicate the transmission parameter and/or the transmission antenna of the uplink signal
  • the network device sends the instruction information to the terminal device.
  • the network device determining the subband in the uplink resource of the terminal device includes:
  • the network device determines the start position of the first frequency domain
  • the network device determines the subband in the uplink resource according to the first frequency domain starting position.
  • the network device determining the subband according to the first frequency domain starting position includes:
  • the network device determines, on the uplink resource, at least one first subband used by the terminal device to transmit the uplink signal according to the first frequency domain starting position and the subband width; or,
  • the network device determines, according to the first frequency domain starting position and the subband width, at least one first sub-band used by the terminal device to transmit the uplink signal. Band; the frequency domain resource allocated for the uplink signal of the terminal device is on the uplink resource; or,
  • the network device determines, on the uplink resource, at least one first subband for transmitting the uplink signal according to the first frequency domain starting position, the subband width, and the number of subbands; or,
  • the network device determines multiple second subbands on the uplink resource according to the first frequency domain starting position.
  • the number of the subbands is multiple:
  • the frequency domain start position of any one of the subbands is equal to the first frequency domain start position plus an offset of an integer multiple of the subband width; or,
  • the frequency domain start positions of the subbands except the designated subband in the subbands are all equal to the first frequency domain start position plus an offset of an integer multiple of the subband width.
  • the indication information includes control information corresponding to all or part of the second subband on the uplink resource; or,
  • the indication information includes control information of the at least one first subband; the control information respectively indicates all or part of the at least one first subband; or,
  • the indication information includes control information of a designated subband; wherein the designated subband is pre-appointed by the network device and the terminal device or determined by the network device.
  • control information includes some or all of the following:
  • Precoding matrix indication information transmission stream number indication information, space related information, SRS resource indication information, transmission antenna indication information, or antenna panel indication information.
  • that the network device determines at least one first subband on the uplink resource includes:
  • the network device uses the first frequency domain start position as the frequency domain start position of the lowest frequency subband, and determines the at least one subband according to the frequency domain start position of the lowest frequency subband;
  • the determining by the network device of multiple second subbands on the uplink resource includes:
  • the network device uses the first frequency domain start position as the frequency domain start position of the lowest frequency subband, and determines the amount of the uplink resource according to the frequency domain start position of the lowest frequency subband.
  • Second subband Second subband
  • the first frequency domain starting position is the starting position of the frequency domain resource corresponding to the indication information; the frequency domain resource corresponding to the indication information is on the frequency domain resource of the uplink signal, or on the uplink resource on.
  • the first frequency domain starting position is a frequency domain position of a designated CRB; or,
  • the first frequency domain starting position is the frequency domain position of the designated physical resource block PRB of the initial uplink BWP; or,
  • the first frequency domain starting position is the frequency domain position of the designated PRB in the BWP used to transmit the uplink signal; or,
  • the first frequency domain start position is the frequency domain position of the designated PRB in the activated uplink BWP when the scheduling information of the uplink signal is transmitted; or,
  • the first frequency domain starting position is the frequency domain position of the designated PRB in the BWP used to transmit the indication information; or,
  • the first frequency domain starting position is the frequency domain position of the designated PRB in the designated BWP; or,
  • the first frequency domain starting position is the frequency domain position of the designated PRB in the frequency domain resources allocated by the network device for the uplink signal.
  • the method further includes:
  • the network device receives the uplink signal sent by the terminal device; the uplink signal is sent by the terminal device using the transmission parameter and/or the transmission antenna through a subband used to transmit the uplink signal.
  • the present disclosure provides a communication device, which includes:
  • a first determining module configured to determine at least one first subband used to transmit an uplink signal in an uplink resource
  • the transmission module is configured to transmit the uplink signal according to the received indication information of the uplink signal sent by the network device and the determined at least one first subband, wherein the indication information is used to indicate the transmission parameters and parameters of the uplink signal. /Or transmission antenna.
  • the first determining module is further configured to determine a first frequency domain start position, and determine the at least one first subband according to the first frequency domain start position on the uplink resource .
  • the first determining module is further configured to:
  • the at least one first subband is determined according to the start position of the first frequency domain, the width of the subband, and the number of subbands.
  • the frequency domain start position of any one of the at least one first subband is equal to the first frequency domain start position plus an offset of an integer multiple of the subband width; or ,
  • the frequency domain start positions of the subbands other than the designated subband in the at least one first subband are all equal to the first frequency domain start position plus an offset of an integer multiple of the subband width.
  • the first determining module is further configured to:
  • the network device According to the frequency domain resource allocated by the network device for the uplink signal, determine the subband corresponding to the frequency domain resource among the plurality of second subbands as the at least one first subband; or,
  • the at least one first subband is determined according to the frequency domain resource allocated by the network device for the uplink signal and the overlapping frequency domain resource of the plurality of second subbands.
  • the indication information includes control information corresponding to all or part of the second subband included in the uplink resource; or,
  • the indication information includes the control information of the at least one first subband used to transmit the uplink signal; the control information respectively indicates all or part of the at least one first subband; or,
  • the indication information includes control information of a designated subband; wherein, the designated subband is instructed by the network device or agreed in advance by the network device and the terminal device.
  • control information includes some or all of the following:
  • Precoding matrix indication information transmission stream number indication information, space related information, SRS resource indication information, transmission antenna indication information, or antenna panel indication information.
  • the first frequency domain start position is taken as the frequency domain start position of the lowest frequency subband, and the frequency domain start position of the lowest frequency subband is determined.
  • the first frequency domain starting position is the starting position of the frequency domain resource corresponding to the indication information; the frequency domain resource corresponding to the indication information is on the frequency domain resource of the uplink signal, or on the uplink resource on.
  • the first frequency domain starting position is a frequency domain position of a designated CRB; or,
  • the first frequency domain starting position is the frequency domain position of the designated PRB of the initial uplink BWP; or,
  • the first frequency domain starting position is the frequency domain position of the designated PRB in the BWP used to transmit the uplink signal; or,
  • the first frequency domain starting position is the frequency domain position of the designated PRB in the activated uplink BWP when the scheduling information of the uplink signal is transmitted; or,
  • the first frequency domain starting position is the frequency domain position of the designated PRB in the BWP used to transmit the indication information; or,
  • the first frequency domain starting position is the frequency domain position of the designated PRB in the designated BWP; or,
  • the first frequency domain starting position is the frequency domain position of the designated PRB in the frequency domain resources allocated by the network device for the uplink signal; or,
  • the first frequency domain starting position is the frequency domain position of the PRB indicated by the network device through signaling.
  • the at least one first subband includes multiple PRBs
  • PRBs included in the at least one first subband are continuous; or,
  • the at least one first subband includes a subband including non-contiguous PRBs.
  • the first determining module module is further configured to:
  • the transmission module is further configured to use the transmission parameters and/or the transmission antenna to transmit the uplink signal through the at least one first subband.
  • the present disclosure also provides another communication device, which includes:
  • the second determining module is configured to determine the subband in the uplink resource of the terminal device, and determine the indication information of the uplink signal in the subband; the indication information is used to indicate the transmission parameter and/or the transmission antenna of the uplink signal ;
  • the sending module is used to send the instruction information to the terminal device.
  • the second determining module is further configured to:
  • the second determining module is further configured to:
  • On the frequency domain resources allocated for the uplink signal of the terminal device determine at least one first subband used by the terminal device to transmit the uplink signal according to the first frequency domain starting position and the subband width;
  • the frequency domain resource allocated for the uplink signal of the terminal device is on the uplink resource; or,
  • Determining at least one first subband for transmitting the uplink signal on the uplink resource according to the first frequency domain starting position, the subband width, and the number of subbands; or,
  • the number of the subbands is multiple:
  • the frequency domain start position of any one of the subbands is equal to the first frequency domain start position plus an offset of an integer multiple of the subband width; or,
  • the frequency domain start positions of the subbands except the designated subband in the subbands are all equal to the first frequency domain start position plus an offset of an integer multiple of the subband width.
  • the indication information includes control information corresponding to all or part of the second subband on the uplink resource; or,
  • the indication information includes control information of the at least one first subband; the control information respectively indicates all or part of the at least one first subband; or,
  • the indication information includes control information of a designated subband; wherein the designated subband is pre-appointed by the network device and the terminal device or determined by the network device.
  • control information includes some or all of the following:
  • Precoding matrix indication information transmission stream number indication information, space related information, SRS resource indication information, transmission antenna indication information, or antenna panel indication information.
  • the first frequency domain start position is taken as the frequency domain start position of the lowest frequency subband, and the frequency domain start position of the lowest frequency subband is determined. At least one subband; or,
  • the first frequency domain start position is taken as the frequency domain start position of the lowest frequency subband, and the multiple second subbands on the uplink resource are determined according to the frequency domain start position of the lowest frequency subband. Bring; or,
  • the first frequency domain starting position is the starting position of the frequency domain resource corresponding to the indication information; the frequency domain resource corresponding to the indication information is on the frequency domain resource of the uplink signal, or on the uplink resource on.
  • the first frequency domain starting position is a frequency domain position of a designated common resource block CRB; or,
  • the first frequency domain starting position is the frequency domain position of the designated physical resource block PRB of the initial uplink BWP; or,
  • the first frequency domain starting position is the frequency domain position of the designated PRB in the BWP used to transmit the uplink signal; or,
  • the first frequency domain starting position is the frequency domain position of the designated PRB in the activated uplink BWP when the scheduling information of the uplink signal is transmitted; or,
  • the first frequency domain starting position is the frequency domain position of the designated PRB in the BWP used to transmit the indication information; or,
  • the first frequency domain starting position is the frequency domain position of the designated PRB in the designated BWP; or,
  • the first frequency domain starting position is the frequency domain position of the designated PRB in the frequency domain resources allocated by the network device for the uplink signal.
  • the device further includes:
  • the receiving module is configured to receive the uplink signal sent by the terminal device; the uplink signal is sent by the terminal device using the transmission parameter and/or the transmission antenna through the subband used for transmitting the uplink signal.
  • the present disclosure also provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processing unit, the steps of the method described in the first aspect or the second aspect are implemented.
  • the present disclosure also provides a communication device including a processor and a memory, wherein the memory is used to store computer-executable instructions, and when the processor executes the computer-executable instructions, the device Perform the steps of the method described in the first or second aspect.
  • FIG. 1 is an architecture diagram of a communication system provided by an embodiment of the disclosure
  • FIG. 2 is one of the flowcharts of a communication method provided by an embodiment of the disclosure
  • FIG. 3 is one of the flowcharts of a communication method provided by an embodiment of the disclosure.
  • FIG. 4 is one of the flowcharts of a communication method provided by an embodiment of the disclosure.
  • FIG. 5 is one of the schematic diagrams of subbands on an uplink resource provided by an embodiment of the disclosure.
  • FIG. 6 is one of schematic diagrams of subbands on an uplink resource provided by an embodiment of the disclosure.
  • FIG. 7 is one of schematic diagrams of subbands on an uplink resource provided by an embodiment of the disclosure.
  • FIG. 8 is one of schematic diagrams of subbands on an uplink resource provided by an embodiment of the disclosure.
  • FIG. 9 is one of schematic diagrams of subbands on an uplink resource provided by an embodiment of the disclosure.
  • FIG. 10 is one of schematic diagrams of subbands on an uplink resource provided by an embodiment of the disclosure.
  • FIG. 11 is one of the schematic diagrams of a communication device provided by an embodiment of the disclosure.
  • FIG. 12 is one of the schematic diagrams of a communication device provided by an embodiment of the disclosure.
  • FIG. 13 is one of the schematic diagrams of a communication device provided by an embodiment of the disclosure.
  • FIG. 14 is one of the schematic diagrams of a communication device provided by an embodiment of the disclosure.
  • LTE Long Term Evolution
  • WiMAX Worldwide Interoperability for Microwave Access
  • 5G future 5th Generation
  • NRAT New Radio Access Technology
  • 6G sixth generation
  • the term "exemplary” is used to mean serving as an example, illustration, or illustration. Any embodiment or design solution described as an "example” in this disclosure should not be construed as being more preferable or advantageous than other embodiments or design solutions. Rather, the term example is used to present the concept in a concrete way.
  • information Information
  • signal Signal
  • message Message
  • channel Channel
  • the embodiments of the present disclosure can be applied to both traditional typical networks and future UE-centric networks.
  • the UE-centric network introduces a non-cell network architecture, that is, a large number of small stations are deployed in a specific area to form a hyper cell, and each small station is a transmission point of the Hyper cell ( Transmission Point, TP) or Transmission and Reception Point (TRP), and is connected to a centralized controller (Controller).
  • TP Transmission Point
  • TRP Transmission and Reception Point
  • Controller centralized controller
  • the network-side device When the UE moves within the Hypercell, the network-side device always selects a new sub-cluster for the UE to serve it, thereby avoiding real cell switching and realizing the continuity of UE services.
  • the network side device includes a wireless network device.
  • multiple network-side devices such as small stations
  • Each small station can independently schedule users.
  • FIG. 1 shows a schematic diagram of a communication system suitable for the communication method of an embodiment of the present disclosure.
  • the communication system 100 includes a network device 102 and a terminal device 106.
  • the network device 102 may be configured with multiple antennas, and the terminal device may also be configured with multiple antennas.
  • the communication system may further include a network device 104, and the network device 104 may also be configured with multiple antennas.
  • the network device 102 or the network device 104 may also include multiple components related to signal transmission and reception (for example, a processor, a modulator, a multiplexer, a demodulator, or a demultiplexer, etc.).
  • the network device is a device with a wireless transceiver function or a chip that can be installed in the device.
  • the device includes, but is not limited to: evolved Node B (evolved Node B, eNB), radio network controller (Radio Network Controller, RNC) , Node B (Node B, NB), Base Station Controller (BSC), Base Transceiver Station (BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband The unit (Baseband Unit, BBU), the access point (AP), wireless relay node, wireless backhaul node, TRP or TP in the wireless fidelity (Wireless Fidelity, WIFI) system, etc., can also be 5G, For example, NR, gNB in the system, or TRP or TP, one or a group of antenna panels (including multiple antenna panels) of the base station in the 5G system, or it can also be a network node that constitutes a gNB or transmission point, such as B
  • Terminal equipment may also be referred to as UE, access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or user device.
  • the terminal device in the embodiments of the present disclosure may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (VR) terminal device, and an augmented reality (Augmented Reality, AR) terminal Equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety ( The wireless terminal in transportation safety, the wireless terminal in the smart city, the wireless terminal in the smart home, and so on.
  • the embodiments of the present disclosure do not limit the application scenarios.
  • terminal devices with wireless transceiving functions and chips that can be installed in the aforementioned terminal devices are collectively referred to as terminal devices.
  • both the network device 102 and the network device 104 can communicate with multiple terminal devices (for example, the terminal device 106 shown in the figure).
  • the network device 102 and the network device 104 may communicate with one or more terminal devices similar to the terminal device 106.
  • the terminal device communicating with the network device 102 and the terminal device communicating with the network device 104 may be the same or different.
  • the terminal device 106 shown in FIG. 1 can communicate with the network device 102 and the network device 104 at the same time, but this only shows one possible scenario. In some scenarios, the terminal device may only communicate with the network device 102 or the network device 104. 104 communications, this disclosure does not limit this.
  • FIG. 1 is only a simplified schematic diagram of an example for ease of understanding, and the communication system may also include other network devices or other terminal devices, which are not shown in FIG. 1.
  • the communication system may include at least one network device and at least one terminal device.
  • Wireless air interface communication may correspond to the network device 102 and the network device 106 shown in FIG. 1, and the terminal device may correspond to the terminal device 104 shown in FIG.
  • FIG. 2 is a schematic flowchart of a communication method on the terminal device side in an embodiment of the disclosure, which may include the following steps:
  • Step 201 The terminal device determines at least one first subband for transmitting the uplink signal in the uplink resource.
  • the uplink resource here can be an uplink bandwidth part (BandWidth Part, BWP) resource, can be a component carrier (Component Carrier, CC) resource, can also be the total uplink resource, or the uplink signal Uplink resources of the serving cell.
  • BWP BandWidth Part
  • CC component carrier
  • Step 202 The terminal device transmits the uplink signal according to the received indication information of the uplink signal sent by the network device and the determined at least one first subband.
  • the indication information is used to indicate transmission parameters and/or transmission antennas of the uplink signal.
  • the indication information may include all or part of the transmission parameters and/or transmission antennas of the first subband.
  • FIG. 3 it is a flowchart of a communication method on the network device side in an embodiment of the present disclosure, which may include the following steps:
  • Step 301 The network device determines the subband in the uplink resource of the terminal device.
  • the network device may also send the uplink resource information to the terminal device through signaling.
  • Step 302 The network device determines the indication information of the uplink signal in the subband; the indication information is used to indicate the transmission parameter and/or the transmission antenna of the uplink signal.
  • the network device may determine the indication information of some or all of the subbands of the uplink signal in the subbands.
  • Step 303 The network device sends the instruction information to the terminal device.
  • the network device may send indication information for each subband separately, or may carry the indication information for each subband in the same signaling and send it to the terminal device.
  • the terminal device may be a terminal device in a wireless communication system that has a wireless connection relationship with the network device. It is understandable that the network device may transmit data packets based on the same technical solution with multiple terminal devices in a wireless connection relationship in the wireless communication system. This disclosure does not limit this.
  • Fig. 4 is an exemplary flowchart of a communication method provided by an embodiment of the present disclosure, shown from the perspective of device interaction. As shown in Figure 4, the method may include the following steps:
  • Step 401 The network device determines the subband in the uplink resource of the terminal device.
  • Step 402 The network device determines the indication information of the uplink signal in the subband.
  • the indication information of the uplink signal may be information used to indicate the transmission parameter of the uplink signal.
  • the indication information of the uplink signal may be information used to indicate the transmission antenna of the uplink signal.
  • Step 403 The network device sends the indication information of the uplink signal of the terminal device to the terminal device.
  • the network device may also send the resource allocation information of the uplink signal to the terminal device. It should be noted that the network device may send the indication information and the information of the uplink resource to the terminal device at the same time, or the network device may also send the indication information to the terminal device first, and then send the information of the uplink resource to the terminal device. Information, or the network device may also preferentially send the uplink resource information to the terminal device, and then send the instruction information to the terminal device.
  • Step 404 The terminal device determines in the uplink resource at least one first subband for transmitting the uplink signal.
  • step 403 may be performed first and then step 404, or step 404 may be performed first and then step 403, or step 403 and step 404 may also be performed simultaneously, which is not specifically limited in the present disclosure.
  • Step 405 The terminal device transmits an uplink signal according to the received indication information and the determined at least one first subband.
  • the terminal device can determine the subband for transmitting the uplink signal on the uplink resource allocated by the network device, and transmit the uplink signal with the network device through the determined subband, which can increase the transmission gain of the uplink signal.
  • the determining by the network device of the subband in the uplink resource may include determining the frequency domain of the subband by the network device.
  • the implementation may include the following.
  • the network device determines multiple second subbands on the uplink resource according to the start position of the first frequency domain.
  • the network device divides the uplink resource into multiple second subbands according to the start position of the first frequency domain and the subband width.
  • the first frequency domain start position may be the frequency domain start position of the subband with the lowest frequency among the plurality of second subbands.
  • the uplink resources are Physical Resource Blocks (PRB) 0-PRB14, the start position of the first frequency domain is 0, and the subband width is 5. Therefore, the terminal device may divide the uplink resource into multiple second subbands, respectively, subband 1: PRB0-PRB4, subband 2: PRB5-PRB9, and subband 3: PRB10-PRB14.
  • PRB Physical Resource Blocks
  • the network device determines all or part of the indication information of the second subband in the second subband and sends it to the terminal device.
  • the indication information includes control information corresponding to all or part of the second subband determined by the network device.
  • the network device sends the frequency domain resources allocated for the uplink signal of the terminal device to the terminal device.
  • the first frequency domain start position may be the start position of the subband with the lowest frequency in the second subband. Then, the network device can determine the frequency domain start position of each second subband on the uplink resource according to the first frequency domain start position and the subband width. Wherein, the frequency domain start position of any subband in the second subband is equal to the first frequency domain start position plus an offset of an integer multiple of the subband width; or, the second subband is divided by The frequency domain start positions of the subbands outside the designated subband are all equal to the first frequency domain start position plus an offset of an integer multiple of the subband width.
  • the network device determines all or part of the instruction information of the second subband and sends it to the terminal device.
  • the indication information includes all or part of the control information corresponding to the second subband determined by the network device.
  • the network device sends the frequency domain resources allocated for the uplink signal of the terminal device to the terminal device.
  • the network device separately sends indication information for each second subband in all or part of the second subband.
  • the determination by the network device of the first frequency domain starting position refers to the network device determining the starting position of the frequency domain resource corresponding to the indication information of the subband.
  • the terminal device may determine the frequency domain resources corresponding to the indication information of the subbands according to the first frequency domain starting position, etc., and thereby determine the transmission parameters and/or transmission antennas of the uplink signals corresponding to these frequency domain resources.
  • the indication information of the uplink signal includes subband indication information, the subband indication information has a mapping relationship with all or part of the subband in the second subband, and the subband indication information indicates the The transmission parameters of the uplink signal in the subband and/or the indication information of the transmission antenna.
  • each subband in all or part of the second subband has a one-to-one correspondence with the subband indication information.
  • the frequency domain resource of the uplink signal may be carried in configuration information or scheduling information sent by the network device.
  • the frequency domain resource used for the uplink signal transmission may be indicated by the frequency domain resource assignment in the downlink control information DCI.
  • the frequency domain resources used for the uplink signal transmission may be indicated by frequency domain resource allocation signaling (frequencyDomainAllocation) in RRC signaling.
  • the subband size (that is, the number of frequency domain resources included in the subband, or referred to as the subband width) may be predetermined. For example, it is instructed by the network device, or negotiated by the network device and the terminal device, or agreed upon by a protocol, or determined by the terminal-side device according to a specified rule, which is not specifically limited in the present disclosure.
  • the second type is the first type:
  • the network device determines, on the uplink resource, at least one first subband used by the terminal device to transmit the uplink signal according to the first frequency domain starting position and the subband width.
  • the network device divides the uplink resource into multiple second subbands according to the start position of the first frequency domain and the subband width.
  • the first frequency domain start position may be the frequency domain start position of the subband with the lowest frequency among the plurality of second subbands.
  • the uplink resources are PRB0-PRB14, the start position of the first frequency domain is 0, and the subband width is 5. Therefore, the terminal device may divide the uplink resource into multiple second subbands, respectively, subband 1: PRB0-PRB4, subband 2: PRB5-PRB9, and subband 3: PRB10-PRB14.
  • the width of the subband may be predetermined, or may also be specified by the protocol, or the width of the subband may be negotiated with the terminal device.
  • the network device allocates frequency domain resources of the uplink signal to the terminal device.
  • the network device determines the subband corresponding to the frequency domain resource among the plurality of second subbands as the at least one first subband; or, the network device compares the frequency domain resource of the uplink signal with the frequency domain resource.
  • the two second subbands overlap the frequency domain and serve as the at least one first subband.
  • the network device determines the indication information for all or part of each first subband in the at least one first subband, and sends it to the terminal device.
  • the indication information includes control information corresponding to all or part of the first subband determined by the network device, and the control information indicates one by one for all or part of the first subband.
  • the network device separately sends indication information for each first subband in all or part of the first subband.
  • the indication information of the uplink signal includes subband indication information, and the subband indication information has a mapping relationship with all or part of the at least one first subband, and the subband indication information is an indication The transmission parameter of the uplink signal in the subband and/or the indication information of the transmission antenna.
  • each subband in all or part of the at least one first subband has a one-to-one correspondence with the subband indication information.
  • the first frequency domain start position may be the start position of the subband with the lowest frequency in the second subband. Then, the network device can determine the frequency domain start position of each second subband on the uplink resource according to the first frequency domain start position and the subband width. Wherein, the frequency domain start position of any subband in the second subband is equal to the first frequency domain start position plus an offset of an integer multiple of the subband width; or, the second subband is divided by The frequency domain start positions of the subbands outside the designated subband are all equal to the first frequency domain start position plus an offset of an integer multiple of the subband width.
  • the network device allocates frequency domain resources of the uplink signal to the terminal device.
  • the network device determines the subband corresponding to the frequency domain resource among the plurality of second subbands as the at least one first subband; or, the network device compares the frequency domain resource of the uplink signal with the frequency domain resource.
  • the two second subbands overlap the frequency domain and serve as the at least one first subband.
  • the network device After determining the at least one first subband, the network device determines indication information for all or part of the first subband in the at least one first subband, and sends it to the terminal device.
  • the indication information includes all or part of the control information corresponding to the first subband determined by the network device, and the control information is respectively indicated for the first subband.
  • the network device separately sends indication information for each first subband in all or part of the first subband.
  • the indication information of the uplink signal includes subband indication information, and the subband indication information has a mapping relationship with all or part of the at least one first subband, and the subband indication information is an indication The transmission parameter of the uplink signal in the subband and/or the indication information of the transmission antenna.
  • each subband in all or part of the at least one first subband has a one-to-one correspondence with the subband indication information.
  • the third type is the third type.
  • the network device determines, according to the first frequency domain starting position and the subband width, at least one first sub-band used by the terminal device to transmit the uplink signal. Band;
  • the frequency domain resource allocated for the uplink signal of the terminal device is on the uplink resource.
  • the first frequency domain starting position may be the starting position of the subband with the lowest frequency in the at least one first subband. Then, the network device may determine the frequency domain start position of each first subband on the frequency domain resource according to the first frequency domain start position and the subband width. Wherein, the frequency domain start position of any subband in the first subband is equal to the first frequency domain start position plus an offset of an integer multiple of the subband width; or, the first subband is divided by The frequency domain start positions of the subbands outside the designated subband are all equal to the first frequency domain start position plus an offset of an integer multiple of the subband width.
  • the network device After determining the first subband, determines indication information for all or part of the first subband in the at least one first subband, and sends it to the terminal device.
  • the indication information includes control information corresponding to all or part of the first subband determined by the network device, and the control information is respectively indicated for the first subband.
  • the network device separately sends indication information for each first subband in all or part of the first subband.
  • the indication information of the uplink signal includes subband indication information, and the subband indication information has a mapping relationship with all or part of the at least one first subband, and the subband indication information is an indication The transmission parameter of the uplink signal in the subband and/or the indication information of the transmission antenna.
  • each subband in all or part of the at least one first subband has a one-to-one correspondence with the subband indication information.
  • the network device can determine the number of subbands of the first subband on the frequency domain resource through the frequency domain resource and the subband width of the uplink signal.
  • the network device may determine the first subband on the frequency domain resource according to the first frequency domain starting position, the subband width, and the number of subbands.
  • the number of first subbands may be the same as the number of subbands, or the number of first subbands may be less than the number of subbands.
  • the width of the subband here may be predetermined, or may also be stipulated by the agreement, or the width of the subband may be negotiated with the terminal device.
  • the network device After determining the first subband, determines indication information for all or part of the first subband in the at least one first subband, and sends it to the terminal device.
  • the indication information includes control information corresponding to all or part of the first subband determined by the network device, and the control information is separately indicated for the first subband.
  • the network device separately sends indication information for each first subband in all or part of the first subband.
  • the network equipment can determine that the first subband on the frequency domain resource is subband 1: PRB14- PRB17, subband 2: PRB18-PRB21, subband 3: PRB22-PRB25, and subband 4: PRB26-PRB28.
  • the network device separately determines indication information for subband 1-subband 4, and sends the indication information to the terminal device.
  • the indication information of the uplink signal includes subband indication information, and the subband indication information has a mapping relationship with all or part of the at least one first subband, and the subband indication information is an indication The transmission parameter of the uplink signal in the subband and/or the indication information of the transmission antenna.
  • each subband in all or part of the at least one first subband has a one-to-one correspondence with the subband indication information.
  • the fourth type is the fourth type.
  • the network device determines, on the uplink resource, at least one first subband used by the terminal device to transmit the uplink signal according to the first frequency domain starting position, the subband width, and the number of subbands.
  • the number of subbands here may be predetermined, or may also be stipulated by the agreement, or may also be negotiated with the terminal device.
  • the subband width may be predetermined, or may be determined by the network device according to a preset rule, for example, determined according to the size of the uplink resource. Or, the width of the subband may also be negotiated with the terminal device, or agreed upon in an agreement.
  • the first frequency domain starting position may be the starting position of the subband with the lowest frequency in the at least one first subband. Then, the network device may determine the frequency domain starting position of each first subband on the uplink resource according to the first frequency domain starting position and the subband width. Wherein, the frequency domain start position of any subband in the first subband is equal to the first frequency domain start position plus an offset of an integer multiple of the subband width; or, the first subband is divided by The frequency domain start positions of the subbands outside the designated subband are all equal to the first frequency domain start position plus an offset of an integer multiple of the subband width.
  • the uplink resources of the terminal equipment include PRB0-PRB19, the subband width is 5 PRBs, and the number of subbands is 4. Then the network device can determine that the frequency domain start position of subband 1 is PRB0 according to the first frequency domain start position PRB0 and the subband width, the frequency domain start position of subband 2 is PRB5, and the frequency domain start position of subband 3 It is PRB10, and the frequency domain starting position of subband 4 is PRB15. Then, subband 1: PRB0-PRB4, subband 2: PRB5-PRB9, subband 3: PRB10-PRB14, and subband 4: PRB15-PRB19.
  • the network device determines indication information for all or part of the first subband in at least one first subband and sends it to the terminal device, where the indication information includes control information corresponding to the first subband, and the control information is specific to all or part of the first subband.
  • One sub-band indicates separately.
  • the network device separately sends indication information for each first subband in all or part of the first subband.
  • the indication information of the uplink signal includes subband indication information, and the subband indication information has a mapping relationship with all or part of the at least one first subband, and the subband indication information is an indication The transmission parameter of the uplink signal in the subband and/or the indication information of the transmission antenna.
  • each subband in all or part of the at least one first subband has a one-to-one correspondence with the subband indication information.
  • the first frequency domain start position may be the start position of the subband with the lowest frequency in the at least one first subband. Then, the network device may determine each first subband on the uplink resource according to the start position of the first frequency domain, the width of the subband, and the number of subbands.
  • the uplink resources of the terminal equipment include PRB0-PRB19, the subband width is 5 PRBs, and the number of subbands is 4. Then the network device can determine that the subbands on the uplink resources are subband 1: PRB0-PRB4, subband 2: PRB5-PRB9, subband 3: PRB10-PRB14, and subband 4: PRB15-PRB19.
  • the network device determines indication information for all or part of the first subband in at least one first subband and sends it to the terminal device, where the indication information includes control information corresponding to the first subband, and the control information is specific to all or part of the first subband.
  • One sub-band indicates separately.
  • the network device separately sends indication information for each first subband in all or part of the first subband.
  • the indication information of the uplink signal includes subband indication information, and the subband indication information has a mapping relationship with all or part of the at least one first subband, and the subband indication information is an indication The transmission parameter of the uplink signal in the subband and/or the indication information of the transmission antenna.
  • each subband in all or part of the at least one first subband has a one-to-one correspondence with the subband indication information.
  • control information includes some or all of the following: precoding matrix indication information, transmission stream number indication information, space-related information, SRS resource indication information, transmitting antenna indication information, or antenna panel indication information.
  • the indication information of the uplink signal includes subband indication information, the subband indication information has a mapping relationship with the at least one first subband, and the subband indication information indicates that the uplink signal is in a subband
  • this mapping relationship is a one-to-one correspondence.
  • the network device can determine the subband in the uplink resource, and send the determined indication information for the determined subband to the terminal device, so that the terminal device can pass the subband and indicate when transmitting the uplink signal.
  • Information transmission improve the transmission gain of the uplink signal.
  • the following describes a method for the terminal device to determine at least one first subband for transmitting the uplink signal in the uplink resource.
  • the terminal device determining the at least one first subband for transmitting the uplink signal in the uplink resource may include the terminal device determining the subband size of the at least one first subband, and the terminal device The number of subbands of the at least one first subband is determined, and the terminal device determines one or more of the frequency domain positions of the at least one first subband.
  • determining the at least one first subband in the uplink resource by the terminal device may include determining a frequency domain position of the at least one first subband.
  • the terminal device may determine a first frequency domain start position in the uplink resource, and determine the frequency domain position of the at least one first subband according to the first frequency domain start position. The first frequency domain start position is used to determine a frequency domain start position of the at least one first subband.
  • the terminal device may determine multiple second subbands on the uplink resource according to the first frequency domain starting position, and determine the at least one first subband in the multiple second subbands.
  • the terminal device first determines a plurality of second subbands on the uplink resource according to the start position of the first frequency domain.
  • the uplink resource here may be a resource of an uplink BWP, a resource of a CC, a total uplink resource, or an uplink resource of a serving cell where the uplink signal is located.
  • the first frequency domain start position may be the frequency domain start position of the subband with the lowest frequency among the plurality of second subbands.
  • the terminal device may determine the use of the multiple second subbands according to the frequency domain resources allocated to the uplink signal by the network device for transmitting the uplink signal.
  • the subband corresponding to the frequency domain resource for transmitting the uplink signal transmission is used as the at least one first subband.
  • the terminal receives instruction information sent by the network device for all or part of the second subband, where the instruction information includes control information corresponding to all or part of the second subband determined by the network device.
  • the network device separately sends indication information for each second subband in all or part of the second subband.
  • the terminal can determine the transmission parameters and/or the transmission antennas of all or part of the uplink signal corresponding to the second subband according to the start position of the first frequency domain, etc. And further determine the transmission parameter and/or the transmission antenna of the uplink signal on the at least one subband according to the transmission parameter and/or the transmission antenna of the uplink signal corresponding to these frequency domain resources.
  • an uplink BWP includes 20 PRBs, and the terminal divides these 20 PRBs into 4 subbands, namely subband 1: PRB 0-4, subband 2: PRB5-9, and subband 3: PRB 10- 14.
  • an uplink BWP includes 20 PRBs, and the terminal divides these 20 PRBs into 4 subbands, namely subband 1: PRB 0-4, subband 2: PRB5-9, and subband 3: PRB 10- 14.
  • the terminal determines that the at least one first subband includes 3 subbands, which are subbands composed of PRB4, and PRB5- The subband composed of 9 and the subband composed of PRB10-13.
  • the uplink resource allocated by the network device to the terminal device includes PRB0-PRB28, and indicates that the subband width is 5 PRBs.
  • the terminal device determines that the frequency domain start position of the lowest frequency subband is PRB4, and the subband width is 5 PRBs, then the terminal device divides the uplink resource into 5 subbands.
  • PRB4-PRB8 are subband 1
  • PRB9-PRB13 are subband 2
  • PRB14-PRB18 are subband 3
  • PRB19-PRB23 are subband 4
  • PRB24-PRB28 are subband 5.
  • the frequency domain resources used to transmit the uplink signal sent by the network device to the terminal device are PRB6-PRB18, and the terminal device can determine that the at least one first subband used to transmit the uplink signal is subband 1, subband 2, and subband. Take 3.
  • the indication information of the uplink signal includes subband indication information, and the subband indication information has a mapping relationship with all or part of the at least one first subband, and the subband indication information is an indication The transmission parameter of the uplink signal in the subband and/or the indication information of the transmission antenna.
  • each subband in all or part of the at least one first subband has a one-to-one correspondence with the subband indication information.
  • the terminal can determine the transmission parameters and/or the transmission antenna of the uplink signal on the frequency domain resources corresponding to the subbands according to the subband indication information and the correspondence between the subbands. And further determine the transmission parameter and/or the transmission antenna of the uplink signal on the at least one subband according to the transmission parameter and/or the transmission antenna of the uplink signal corresponding to these frequency domain resources.
  • the terminal device determines the at least one first subband according to the first frequency domain starting position, the subband width, and the number of subbands of the at least one first subband.
  • the indication information may include control information corresponding to at least one first subband used to transmit the uplink signal.
  • the terminal device may determine the quantity of the at least one first subband according to the control information included in the indication information.
  • the bit width of the control information is proportional to the number of at least one first subband, and the terminal can determine the number of at least one first subband according to the bit width of the control information.
  • the terminal device determines the frequency domain start position of the lowest frequency subband in the uplink resource according to the first frequency domain start position, and determines the frequency domain start position in the uplink resource according to the subband width and the number of the at least one first subband. At least one first subband for transmitting uplink signals.
  • the terminal determines the transmission parameter and/or the transmission antenna of the uplink signal on the at least one subband according to the start position of the first frequency domain.
  • the subband width may be predetermined according to empirical values, or may also be instructed by the network device, or may also be negotiated between the network device and the terminal device, which is not specifically limited in the present disclosure.
  • the sub-band widths of the aforementioned at least one first sub-band may be completely the same.
  • the subband width is the subband width of the at least one first subband (that is, the size of the frequency domain resource occupied by the subband).
  • the terminal may determine at least one first subband for transmitting uplink signals.
  • the bands are subband 1: PRB7-PRB10, subband 2: PRB11-PRB14, subband 3: PRB15-PRB18, and subband 4: PRB19-PRB22. This has nothing to do with the uplink resources allocated by the network equipment to the uplink signal.
  • the indication information of the uplink signal includes subband indication information, and the subband indication information has a mapping relationship with all or part of the at least one first subband, and the subband indication information is an indication The transmission parameter of the uplink signal in the subband and/or the indication information of the transmission antenna.
  • each subband in all or part of the at least one first subband has a one-to-one correspondence with the subband indication information.
  • the terminal may determine the transmission parameter and/or the transmission antenna of the uplink signal on the at least one subband according to the correspondence between the subband indication information and the subband.
  • the terminal device determines the subband start position of the at least one first subband according to the first frequency domain start position, where the first frequency domain start position may be in the first subband The start position of the frequency domain of the lowest frequency subband.
  • the terminal device first determines a subband size, and the frequency domain start position of any subband in the at least one first subband is equal to the first frequency domain start position plus an offset of an integer multiple of the subband size. That is, Ns is used to denote the start position of the first frequency domain, the start position of any one of the at least one first subband in the frequency domain is equal to Ns+M*N sub , where M and N sub respectively represent at least one first subband.
  • M is a positive integer.
  • the terminal device first determines the size of a subband, and in the at least one first subband, except for the designated subband (for example, the first subband), the start positions of the frequency domains of the other subbands are equal to the start of the first frequency domain.
  • the start position of the frequency domain of the first subband is equal to the start position of the frequency domain resource allocated by the network device for the uplink signal.
  • the frequency domain end position of the last subband is equal to the position of the last resource of the frequency domain resources allocated by the network device for the uplink signal.
  • the designated subband may be pre-arranged by the terminal device and the network device, or may also be agreed upon by a protocol, or may also be negotiated between the terminal device and the network device, or determined by the terminal device according to an agreed rule. In addition, the designated subband may also be instructed by the network device.
  • the indication information of the uplink signal includes subband indication information, and the subband indication information has a mapping relationship with all or part of the at least one first subband, and the subband indication information is an indication The transmission parameter of the uplink signal in the subband and/or the indication information of the transmission antenna.
  • each subband in all or part of the at least one first subband has a one-to-one correspondence with the subband indication information.
  • the terminal may determine the transmission parameter and/or the transmission antenna of the uplink signal on the at least one subband according to the correspondence between the subband indication information and the subband.
  • the frequency domain resource used to transmit the uplink signal may be carried in configuration information or scheduling information sent by the network device.
  • the frequency domain resource used for the uplink signal transmission may be indicated by the frequency domain resource assignment in the downlink control information DCI.
  • the frequency domain resources used for the uplink signal transmission may be indicated by frequency domain resource allocation signaling (Frequency Domain Allocation) in RRC signaling.
  • the size of the subband (that is, the number of frequency domain resources included in the subband, or called the subband width) may be predetermined according to empirical values, or may be instructed by a network device, or may also be a network device. The equipment negotiated with the terminal equipment, etc.
  • the terminal device determines the at least one first subband according to the first frequency domain starting position, the subband width, and the frequency domain resources allocated by the network device for the uplink signal.
  • the terminal device determines the at least one first subband according to the start position of the first frequency domain and the width of the subband.
  • the first frequency domain start position is the frequency domain start position of the subband with the lowest frequency in the at least one first subband.
  • the subband size here is the subband size configured by the network device for the uplink signal, and is not the actual size of the at least one first subband.
  • the subband size configured by the network device for a PUSCH is 4 PRBs, but the frequency domain resource allocated for the PUSCH is 18 PRBs, assuming that the first frequency domain starting position is the frequency domain resource allocated by the network side for the PUSCH starting position N 0, one possibility is the first sub-band comprises at least one sub-band 5, wherein the size of a subband is 2PRB, 4 sub-band size is 4PRB.
  • the size of any subband of the at least one first subband is the same as the size of the subband configured by the network device for the uplink signal.
  • the frequency domain resource allocated by the base station for the uplink signal needs to be an integer multiple of the subband size.
  • the terminal device determines the at least one first subband according to the first frequency domain starting position and the number of subbands (or referred to as the number of subbands).
  • the first frequency domain start position may be the frequency domain start position of the subband with the lowest frequency in the first subband.
  • the number of subbands may be instructed by the network-side device to the terminal device, or determined by the terminal according to a predefined rule, or pre-appointed by the network-side device and the terminal (for example, protocol regulations).
  • the terminal device determines the at least one first subband according to a predefined rule.
  • the first frequency domain starting position is the starting position of the frequency domain resource corresponding to the indication information.
  • the frequency domain resource corresponding to the indication information is on the frequency domain resource of the uplink signal. For example, if the frequency domain resource corresponding to the indication information is PRB12-PRB21, then the first frequency domain starting position is PRB12.
  • the terminal equipment determines that the first frequency domain starting position is PRB5.
  • the terminal determines at least one first subband on the frequency domain resources of the uplink signal according to the determined first frequency domain starting position and subband width, which are subband 1: PRB5-PRB9, subband 2: PRB10-PRB14, subband Band 3: PRB15-PRB19, subband 4: PRB20-PRB24.
  • the number of subbands is determined by the terminal device according to the number of resources included in the frequency domain resources allocated by the network device for the uplink signal and the width of the subband included in each subband.
  • the number of subbands is equal to the number of resources included in the frequency domain resources allocated by the network device for the uplink signal divided by the number of frequency domain resources included in each subband, and the value is rounded up to an integer.
  • the number of subbands is the number of subbands of the at least one first subband.
  • mapping relationship between the at least one first subband and the indication information of the uplink signal.
  • This mapping relationship can be pre-appointed or instructed by the network device to the terminal.
  • the indication information of the uplink signal includes indication information for all or part of the multiple second subbands.
  • the indication information of the uplink signal is separately indicated for each subband in all or part of the subband in the second subband. That is, different information can be indicated for different subbands.
  • the indication information of the uplink signal includes subband indication information, the subband indication information has a mapping relationship with the at least one first subband, and the subband indication information indicates that the uplink signal is in a subband
  • the transmission parameters and/or the indication information of the transmission antenna are included in each subband in all or part of the at least one first subband.
  • the terminal may determine the transmission parameter and/or the transmission antenna of the uplink signal on the at least one subband according to the correspondence between the subband indication information and the subband.
  • the terminal device determines multiple second subbands on the uplink resource according to the first frequency domain starting position and the subband width, and determines the at least one first subband in the multiple second subbands .
  • the first frequency domain starting position is the frequency domain starting position of the subband with the lowest frequency among the plurality of second subbands.
  • the terminal device determines the frequency domain start position of each second subband on the uplink resource according to the first frequency domain start position and the subband width. Wherein, the frequency domain start position of any subband in the second subband is equal to the first frequency domain start position plus an offset of an integer multiple of the subband width; or, the second subband is divided by The frequency domain start positions of the subbands outside the designated subband are all equal to the first frequency domain start position plus an offset of an integer multiple of the subband width. Then, the terminal device may determine multiple second subbands on the uplink resource according to the frequency domain start position and subband width of each second subband.
  • the uplink resources of the terminal equipment include PRB0-PRB19, and the subband width is 5 PRBs. Then the terminal device can determine that the frequency domain starting position of each second subband on the uplink resource is PRB0, PRB5, PRB10, and PRB15, respectively. Then the terminal device can determine that the subbands on the uplink resource are subband 1: PRB0-PRB4, subband 2: PRB5-PRB9, subband 3: PRB10-PRB14, and subband 4: PRB15-PRB19.
  • the terminal device determines at least one first subband for transmitting the uplink signal among the multiple second subbands according to the frequency domain resources of the uplink signal allocated by the network device. Wherein, the terminal device determines the subband corresponding to the frequency domain resource among the plurality of second subbands according to the frequency domain resource allocated by the network device for the uplink signal, as the at least one first subband Subband; or, the terminal device determines the at least one first subband according to the overlapping frequency domain of the frequency domain resource allocated by the network device for the uplink signal and the plurality of second subbands.
  • the first frequency domain start position is the frequency domain start position of the subband with the lowest frequency among the plurality of second subbands.
  • the terminal device can calculate the number of subbands of the second subband on the uplink resource according to the uplink resource and the width of the subband. Then, the terminal device determines a plurality of second subbands in the uplink resource according to the start position of the first frequency domain, the width of the subband and the number of subbands. The terminal device then determines at least one first subband for transmitting the uplink signal among the multiple second subbands according to the frequency domain resources of the uplink signal allocated by the network device.
  • the terminal device determines the subband corresponding to the frequency domain resource among the plurality of second subbands according to the frequency domain resource allocated by the network device for the uplink signal, as the at least one first subband Subband; or, the terminal device determines the at least one first subband according to the overlapping frequency domain of the frequency domain resource allocated by the network device for the uplink signal and the plurality of second subbands.
  • the uplink resources of the terminal equipment include PRB0-PRB19, and the subband width is 5 PRBs.
  • the terminal device can calculate the number of subbands to be 5 according to the PRB included in the uplink resource and the width of the subband. Then the terminal device can determine that the subbands on the uplink resources are subband 1: PRB0-PRB4, subband 2: PRB5-PRB9, subband 3: PRB10-PRB14, and subband 4: PRB15-PRB19.
  • the terminal device can determine the first subband used to transmit the uplink signal in the uplink resource, and transmit the uplink signal through the first subband and the indication information corresponding to the first subband, which can improve the uplink signal The transmission gain.
  • the first subband proposed in the embodiment of the present disclosure is introduced.
  • the starting position of the frequency domain can be the following cases 1 to 8.
  • Case 1 The starting position of the frequency domain is a designated common resource block (Common Resource Block, CRB).
  • CRB Common Resource Block
  • it may be subcarrier 0 of CRBO.
  • the aforementioned starting position of the frequency domain is subcarrier 0 of CRB0 where the subcarrier used for transmitting the uplink signal is located.
  • the aforementioned frequency domain start position is the subcarrier used when the terminal device receives the frequency domain resource used for transmitting the uplink signal sent by the network device It is the subcarrier 0 of CRB0.
  • Case 2 The start position of the frequency domain is the designated PRB of the initial uplink BWP.
  • it may be PRB0 or PRB1 of the initial uplink.
  • the starting position of the frequency domain may also be a designated subcarrier of the designated PRB of the initial uplink.
  • it may be subcarrier 0 of PRB0 of the initial uplink bandwidth part (initial uplink bandwidth part).
  • Case 3 The starting position of the frequency domain is a designated PRB in the uplink BWP used to transmit the uplink signal.
  • it may be the PRB with the lowest number of the BWP used to transmit the uplink signal, such as PRB0.
  • the starting position of the frequency domain may also be a designated subcarrier of a designated PRB of the BWP used to transmit the uplink signal.
  • it may be subcarrier 0 of PRB0 of the BWP used to transmit the uplink signal.
  • Case 4 The starting position of the frequency domain is a designated PRB in the BWP used to transmit the scheduling information of the uplink signal; the scheduling information indicates the frequency domain resource for the terminal device to transmit the uplink signal.
  • the starting position of the frequency domain may be the PRB with the lowest number in the BWP used when transmitting the scheduling information, such as PRB0.
  • the starting position in the frequency domain may also be a designated subcarrier of a designated PRB in the BWP used when transmitting the scheduling information, for example, subcarrier 0 of PRB0.
  • Case 5 The start position of the frequency domain is a designated PRB in the BWP used to transmit the indication information.
  • the starting position of the frequency domain may be the lowest-numbered PRB in the BWP used to transmit the indication information, such as PRB0.
  • the starting position of the frequency domain may also be a designated subcarrier of a designated PRB in the BWP used to transmit the indication information, for example, subcarrier 0 of PRB0.
  • Case 6 The start position of the frequency domain is the designated PRB in the designated BWP.
  • it may be the PRB with the lowest number in the designated BWP, such as PRB0.
  • the starting position of the frequency domain may also be a designated subcarrier of a designated PRB in a designated BWP, for example, subcarrier 0 of PRB0.
  • the designated BWP may be indicated by the network device through signaling.
  • the network device may indicate the designated BWP through RRC signaling, Media Access Control (MAC) signaling, or DCI.
  • MAC Media Access Control
  • the designated BWP may be reported by the terminal device to the network device.
  • Case 7 The starting position of the frequency domain is a designated PRB in the uplink resource.
  • it may be PRB0 or PRB10 in the uplink resource.
  • the starting position in the frequency domain may also be a designated subcarrier of a designated PRB in the uplink resource, for example, subcarrier 0 of PRB0.
  • Case 8 The starting position of the frequency domain is the PRB indicated by the network device through signaling.
  • the network device may indicate the start position of the frequency domain through RRC signaling, MAC signaling, or DCI.
  • the starting position of the frequency domain is PRB0, or PRB3.
  • the first frequency domain starting position is a frequency domain position agreed upon by the network device and the terminal device.
  • the first frequency domain starting position is the frequency domain starting position indicated to the UE by the network device.
  • the network device indicates a method for determining the first frequency domain start position to the UE, and the UE determines the first frequency domain start position according to the method.
  • PRBs included in each subband may be continuous. Or, there is a subband including a non-contiguous PRB in the plurality of second subbands or at least one first subband.
  • the uplink resources of the terminal equipment allocated by the network equipment are PRB0-PRB10 and PRB22-PRB35.
  • the terminal device divides the uplink resource into multiple second subbands, namely subband 1: PRB0-PRB4, subband 2: PRB5-PRB9, subband 3: PRB10, PRB22-PRB25, and subband 4: PRB26- PRB30, subband 5: PRB31-PRB35.
  • the PRBs included in the subband 3 in the foregoing multiple second subbands are non-continuous, while the PRBs included in the subband 1, subband 2, subband 4, and subband 5 are all continuous.
  • the uplink resources of the terminal equipment allocated by the network equipment are PRB0-PRB14.
  • the terminal device divides the uplink resource into multiple second subbands, which are respectively subband 1: PRB0-PRB4, subband 2: PRB5-PRB9, and subband 3: PRB10-PRB14. It can be understood that the PRBs included in subband 1 to subband 3 in the foregoing multiple second subbands are all continuous.
  • the virtual resource blocks (Virtual Resource Block, VRB) included in each subband may be continuous, and the PRB corresponding to the VRB may be It is continuous or non-continuous.
  • one subband includes multiple consecutive VRBs, and when these VRBs are mapped to PRBs, each PRB may be non-contiguous.
  • a specific embodiment is used to further introduce the method of transmitting an uplink signal according to the indication information through the subband determined on the uplink resource in the embodiment of the present disclosure.
  • the horizontal axis represents uplink resources (PRB), TPMIsub 1, TPMIsub 2, ..., TPMIsub L represents the precoding of the subbands in the control information included in the indication information, and their values may be the same or different.
  • the frequency domain start position of the subband with the lowest frequency indicated by the indication information is subcarrier 0 of common resource block 0, and each subband corresponds to multiple consecutive PRBs.
  • the UE may determine multiple second subbands in the uplink resource according to the indication information and the width of the subband.
  • the indication information (precoding matrix indication information) of the subband corresponds to the second subband in a one-to-one correspondence.
  • the terminal can determine the precoding matrix of each PRB of the uplink resource, thereby determining the precoding matrix of each subband in the at least one first subband used to transmit the uplink signal.
  • the precoding used for transmission of the physical uplink shared channel PUSCH is the precoding corresponding to the subband of each PRB used to transmit the uplink signal in the PUSCH.
  • subband width of each subband in FIG. 5 is the same, but it is understandable that the subband width of each subband in the communication method provided by the embodiment of the present disclosure may be the same or different.
  • the horizontal axis represents uplink resources (PRB), TPMIsub 1, TPMIsub 2, ..., TPMIsub L represents the precoding of the subbands in the control information included in the indication information, and their values may be the same or different.
  • the terminal device determines that the frequency domain start position (first frequency domain start position) of the lowest frequency subband is subcarrier 0 of PRB 0 that activates the BWP, and each subband corresponds to multiple consecutive PRBs.
  • the indication information (precoding matrix indication information) of the subband corresponds to the second subband in a one-to-one correspondence.
  • the terminal device may determine multiple second subbands in the uplink resource according to the start position of the first frequency domain and the subband width (the terminal device may also determine the second subband based on the number of second subbands or the bandwidth of the BWP). According to the corresponding relationship between the indication information of the subband and the second subband, the terminal can determine the precoding matrix of each PRB of the uplink resource, thereby determining the precoding of at least one first subband used to transmit the uplink signal, then the PUSCH
  • the precoding used for transmission is the precoding corresponding to the subband where each PRB used to transmit the uplink signal in the PUSCH is located.
  • the BWP in FIG. 6 is the BWP for transmitting the PUSCH.
  • the BWP in FIG. 2 is the uplink activated BWP when the PUSCH is scheduled.
  • the BWP in FIG. 6 is the uplink active BWP when the indication information is sent.
  • the BWP in FIG. 6 is a designated BWP, and the specific BWP is known in advance, for example, it is indicated by the network device to the terminal device through signaling.
  • the designated BWP is reported to the base station by the terminal device through signaling.
  • subband width of each subband in FIG. 6 is the same, it is understandable that the subband width of each subband in the communication method provided by the embodiment of the present disclosure may be the same or different.
  • the horizontal axis represents uplink resources (PRB), TPMIsub 1, TPMIsub 2, ..., TPMIsub L represents the precoding of the subbands in the control information included in the indication information, and their values may be the same or different.
  • the first frequency domain start position is the frequency domain start position of the lowest frequency subband in the second subband, and it is assumed that the first frequency domain start position is the lowest number among the frequency domain resources used to transmit uplink signals in the PUSCH.
  • each subband corresponds to multiple consecutive PRBs.
  • the indication information (precoding matrix indication information) of the subband corresponds to the second subband in a one-to-one correspondence.
  • the terminal device may determine multiple second subbands according to the start position of the first frequency domain and the subband width of each subband, and determine the PRBs corresponding to the multiple second subbands according to the precoding matrix indication information of the subbands.
  • Encoding matrix The first subband is a PRB that overlaps the second subband in the frequency domain resources used for uplink signal transmission in the PUSCH.
  • the mth first subband is the same as the mth second subband, m is less than L, and the Lth first subband is a part of the Lth second subband. Then the terminal can determine the precoding matrix corresponding to at least one first subband, and the precoding used for PUSCH transmission is the precoding corresponding to the subband of each PRB used to transmit the uplink signal in the PUSCH.
  • subband width of each subband in FIG. 7 is the same, but it is understandable that the subband width of each subband in the communication method provided by the embodiment of the present disclosure may be the same or different.
  • the terminal device cannot determine the subband precoding information of all PRBs in the PUSCH used to transmit the uplink signal according to an instruction of the network device. For these PRBs, the terminal equipment can determine their precoding information according to the subband precoding information previously indicated by the network equipment, or use wideband precoding as their precoding.
  • the first frequency domain start position is the frequency domain start position of the lowest frequency subband in the second subband. Assuming that the first frequency domain start position is subcarrier 0 of CRB 0, the subband pre The indication information of the coding matrix corresponds to the second subband on a one-to-one basis.
  • the terminal device can only determine the subband precoding matrix of 3 second subbands, and the terminal device can only determine the location of a part of the PRB used to transmit the uplink signal in the PUSCH.
  • the terminal device needs to use other methods to determine the precoding of other PRBs. For example, wideband precoding can be used.
  • uplink resource includes multiple second subbands, where the first frequency domain start position of the second subband (the frequency domain start position of the subband with the lowest frequency of the second subband) is the subcarrier 0 of PRB 0 of the initial BWP .
  • Each sub-band includes several consecutive PRBs, and the sub-band width of each sub-band is the same.
  • the indication information sent by the network device indicates the precoding matrix of at least one first subband used to transmit the PUSCH.
  • the first frequency domain start position of the first subband (the frequency domain start position of the subband with the lowest frequency of the first subband) is the lowest frequency domain position of the PUSCH frequency domain resource allocation.
  • the first subband has a one-to-one correspondence with the precoding indication information (control) of the subband.
  • the terminal device can determine the precoding matrix of each first subband according to the control information, that is, determine the precoding of each PRB used to transmit the uplink signal.
  • the terminal can use these precoding matrices to transmit PUSCH.
  • the BWP may be the BWP where the PUSCH is located.
  • the horizontal axis represents uplink resources
  • TPMIsub 1, TPMIsub 2, TPMIsub 3, and TPMIsub 4 represent the precoding of the subbands in the control information included in the indication information, and their values may be the same or different.
  • the subband width of each subband is 4 PRBs
  • the frequency domain starting position of the lowest frequency subband is the PRB with the lowest number in the PUSCH.
  • the first frequency domain start position is the frequency domain start position of the lowest frequency subband in the first subband. It is assumed that the terminal and the network device agree to be the PRB with the lowest frequency of the frequency domain resources allocated to the PUSCH.
  • the lowest frequency subcarrier (subcarrier 0).
  • the PRBs of the second and first subbands are not continuous, in the frequency domain resources allocated for the PUSCH are PRBs with continuous VRB numbers.
  • the first subband has a one-to-one correspondence with the precoding indication information (control information) of the subband. It is assumed that the resources allocated by the network equipment for the PUSCH are not continuous in the frequency domain (from PRB 3 to PRB 9 and PRB 15 to PRB 23).
  • the terminal device can determine at least one first subband for transmitting the uplink signal according to the start position of the first frequency domain (of course, it can be determined in combination with some other information, such as the size of the first subband, the number of the first subband, etc.)
  • the precoding matrix of each subband can be determined, and the precoding used for PUSCH transmission is the precoding corresponding to the subband of each PRB used to transmit the uplink signal in the PUSCH.
  • the embodiments of the present disclosure also provide a communication device. Since the communication device is the communication device in the method in the embodiment of the present disclosure, and the principle of the communication device to solve the problem is similar to the method, the implementation of the communication device can refer to the implementation of the method, and the repetition will not be repeated.
  • a communication device includes:
  • the processor 11100 the memory 11101, and the transceiver 11102.
  • the processor 11100 is responsible for managing the bus architecture and general processing, and the memory 11101 can store data used by the processor 11100 when performing operations.
  • the transceiver 11102 is used to receive and send data under the control of the processor 11100.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors 11100 represented by the processor 11100 and various circuits of the memory represented by the memory 11101 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further descriptions are provided herein.
  • the bus interface provides the interface.
  • the processor 11100 is responsible for managing the bus architecture and general processing, and the memory 11101 can store data used by the processor 11100 when performing operations.
  • the processes disclosed in the embodiments of the present disclosure may be applied to the processor 11100 or implemented by the processor 11100.
  • each step of the signal processing flow can be completed by an integrated logic circuit of hardware in the processor 11100 or instructions in the form of software.
  • the processor 11100 may be a general-purpose processor 11100, a digital signal processor 11100, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and can implement or execute the implementation of the present disclosure The methods, steps and logic block diagrams disclosed in the examples.
  • the general-purpose processor 11100 may be a microprocessor 11100 or any conventional processor 11100 or the like.
  • the steps of the method disclosed in the embodiments of the present disclosure may be directly embodied as being executed and completed by the hardware processor 11100, or executed by a combination of hardware and software modules in the processor 11100.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory 11101, and the processor 11100 reads the information in the memory 11101, and completes the steps of the signal processing flow in combination with its hardware.
  • the processor 11100 is configured to read a program in the memory 11101 and execute the following process:
  • the uplink signal is transmitted through the transceiver 11102 according to the received indication information of the uplink signal sent by the network device and the determined at least one first subband, where the indication information is used to indicate the transmission parameter and/or of the uplink signal Or transmission antenna.
  • the processor is further configured to determine a first frequency domain start position, and determine the at least one first subband according to the first frequency domain start position.
  • the processor is further configured to determine a plurality of second subbands on the uplink resource according to the first frequency domain starting position, and determine the at least one among the plurality of second subbands A first subband; or,
  • the at least one first subband is determined according to the start position of the first frequency domain, the width of the subband, and the number of subbands.
  • the frequency domain start position of any subband in the at least one first subband is equal to the first frequency domain start position plus an offset of an integer multiple of the subband width; or,
  • the frequency domain start positions of the subbands other than the designated subband in the at least one first subband are all equal to the first frequency domain start position plus an offset of an integer multiple of the subband width.
  • the processor is further configured to: determine, among the plurality of second subbands, the subband corresponding to the frequency domain resource according to the frequency domain resource allocated by the network device for the uplink signal, as The at least one first subband; or,
  • the at least one first subband is determined according to the frequency domain resource allocated by the network device for the uplink signal and the overlapping frequency domain resource of the plurality of second subbands.
  • the indication information includes control information corresponding to all or part of the second subband included in the uplink resource; or,
  • the indication information includes the control information of the at least one first subband used to transmit the uplink signal; the control information respectively indicates the at least one first subband; or,
  • the indication information includes control information of a designated subband; wherein, the designated subband is instructed by the network device or agreed in advance by the network device and the terminal device.
  • control information includes some or all of the following:
  • Precoding matrix indication information transmission stream number indication information, space related information, SRS resource indication information, transmission antenna indication information, or antenna panel indication information.
  • the first frequency domain start position is taken as the frequency domain start position of the lowest frequency subband, and the frequency domain start position of the lowest frequency subband is determined according to the frequency domain start position of the uplink resource.
  • Second subband or,
  • the first frequency domain starting position is the starting position of the frequency domain resource corresponding to the indication information; the frequency domain resource corresponding to the indication information is on the frequency domain resource of the uplink signal, or on the uplink resource on.
  • the first frequency domain starting position is a frequency domain position of a designated CRB; or,
  • the first frequency domain starting position is the frequency domain position of the designated physical resource block PRB of the initial uplink BWP; or,
  • the first frequency domain starting position is the frequency domain position of the designated PRB in the BWP used to transmit the uplink signal; or,
  • the first frequency domain starting position is the frequency domain position of the designated PRB in the activated uplink BWP when the scheduling information of the uplink signal is transmitted; or,
  • the first frequency domain starting position is the frequency domain position of the designated PRB in the BWP used to transmit the indication information; or,
  • the first frequency domain starting position is the frequency domain position of the designated PRB in the designated BWP; or,
  • the first frequency domain starting position is the frequency domain position of the designated PRB in the frequency domain resources allocated by the network device for the uplink signal; or,
  • the first frequency domain starting position is the frequency domain position of the PRB indicated by the network device through signaling.
  • the processor is further configured to:
  • the at least one first subband is adopted by the transceiver 11102, and the uplink signal is transmitted using the transmission parameter and/or the transmission antenna.
  • another communication device is provided in the embodiment of the present disclosure. Since the device is the device in the method in the embodiment of the present disclosure, and the principle of the device to solve the problem is similar to the method, the The implementation of the device can refer to the implementation of the method, and the repetition will not be repeated.
  • an embodiment of the present disclosure further provides a communication device, which includes:
  • the first determining module 1201 is configured to determine at least one first subband used to transmit an uplink signal in an uplink resource
  • the transmission module 1202 is configured to transmit the uplink signal according to the received indication information of the uplink signal sent by the network device and the determined at least one first subband, wherein the indication information is used to indicate the transmission parameter of the uplink signal And/or transmission antenna.
  • the first determining module is further configured to determine a first frequency domain start position, and determine the at least one first subband according to the first frequency domain start position.
  • the first determining module is further configured to:
  • the at least one first subband is determined according to the start position of the first frequency domain, the width of the subband, and the number of subbands.
  • the frequency domain start position of any subband in the at least one first subband is equal to the first frequency domain start position plus an offset of an integer multiple of the subband width; or,
  • the frequency domain start positions of the subbands other than the designated subband in the at least one first subband are all equal to the first frequency domain start position plus an offset of an integer multiple of the subband width.
  • the first determining module is further configured to:
  • the network device According to the frequency domain resource allocated by the network device for the uplink signal, determine the subband corresponding to the frequency domain resource among the plurality of second subbands as the at least one first subband; or,
  • the at least one first subband is determined according to the frequency domain resource allocated by the network device for the uplink signal and the overlapping frequency domain resource of the plurality of second subbands.
  • the indication information includes control information corresponding to all or part of the second subband included in the uplink resource; or,
  • the indication information includes the control information of the at least one first subband used to transmit the uplink signal; the control information respectively indicates the at least one first subband; or,
  • the indication information includes control information of a designated subband; wherein, the designated subband is instructed by the network device or agreed in advance by the network device and the terminal device.
  • control information includes some or all of the following:
  • Precoding matrix indication information transmission stream number indication information, space related information, SRS resource indication information, transmission antenna indication information, or antenna panel indication information.
  • the first frequency domain start position is taken as the frequency domain start position of the lowest frequency subband, and the frequency domain start position of the lowest frequency subband is determined according to the frequency domain start position of the uplink resource.
  • Second subband or,
  • the first frequency domain starting position is the starting position of the frequency domain resource corresponding to the indication information; the frequency domain resource corresponding to the indication information is on the frequency domain resource of the uplink signal, or on the uplink resource on.
  • the first frequency domain starting position is a frequency domain position of a designated common resource block CRB; or,
  • the first frequency domain starting position is the frequency domain position of the designated physical resource block PRB of the initial uplink BWP; or,
  • the first frequency domain starting position is the frequency domain position of the designated PRB in the BWP used to transmit the uplink signal; or,
  • the first frequency domain starting position is the frequency domain position of the designated PRB in the activated uplink BWP when the scheduling information of the uplink signal is transmitted; or,
  • the first frequency domain starting position is the frequency domain position of the designated PRB in the BWP used to transmit the indication information; or,
  • the first frequency domain starting position is the frequency domain position of the designated PRB in the designated BWP; or,
  • the first frequency domain starting position is the frequency domain position of the designated PRB in the frequency domain resources allocated by the network device for the uplink signal; or,
  • the first frequency domain starting position is the frequency domain position of the PRB indicated by the network device through signaling.
  • the at least one first subband includes multiple PRBs
  • PRBs included in the at least one first subband are continuous; or,
  • the at least one first subband includes a subband including non-contiguous PRBs.
  • the first determining module is further configured to:
  • the transmission module is further configured to use the transmission parameters and/or the transmission antenna to transmit the uplink signal through the at least one first subband.
  • the embodiment of the present disclosure also provides another communication device. Since the device is the device in the method in the embodiment of the disclosure, and the principle of the device to solve the problem is similar to that of the method, the device's The implementation can refer to the implementation of the method, and the repetition will not be repeated.
  • the device includes:
  • the processor 13100 the memory 13101, and the transceiver 13102.
  • the processor 13100 is responsible for managing the bus architecture and general processing, and the memory 13101 can store data used by the processor 13100 when performing operations.
  • the transceiver 13102 is used to receive and send data under the control of the processor 13100.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors 13100 represented by the processor 13100 and various circuits of the memory represented by the memory 13101 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further descriptions are provided herein.
  • the bus interface provides the interface.
  • the processor 13100 is responsible for managing the bus architecture and general processing, and the memory 13101 can store data used by the processor 13100 when performing operations.
  • the processes disclosed in the embodiments of the present disclosure may be applied to the processor 13100 or implemented by the processor 13100.
  • each step of the signal processing flow can be completed by hardware integrated logic circuits in the processor 13100 or instructions in the form of software.
  • the processor 13100 may be a general-purpose processor 13100, a digital signal processor 13100, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and can implement or execute the implementation of the present disclosure
  • the general-purpose processor 13100 may be a microprocessor 13100 or any conventional processor 13100 or the like.
  • the steps of the method disclosed in the embodiments of the present disclosure may be directly embodied as execution and completion by the hardware processor 13100, or executed and completed by a combination of hardware and software modules in the processor 13100.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory 13101, and the processor 13100 reads the information in the memory 13101, and completes the steps of the signal processing flow in combination with its hardware.
  • the processor 13100 is configured to read a program in the memory 13101 and execute the following process:
  • the indication information is used to indicate the transmission parameter and/or the transmission antenna of the uplink signal
  • the instruction information is sent to the terminal device through the transceiver 13102.
  • the processor is further configured to:
  • the first frequency domain starting position is determined, and the subband is determined according to the first frequency domain starting position.
  • the processor is also used for;
  • On the frequency domain resources allocated for the uplink signal of the terminal device determine at least one first subband used by the terminal device to transmit the uplink signal according to the first frequency domain starting position and the subband width;
  • the frequency domain resource allocated for the uplink signal of the terminal device is on the uplink resource; or,
  • Determining at least one first subband for transmitting the uplink signal on the uplink resource according to the first frequency domain starting position, the subband width, and the number of subbands; or,
  • the number of the subbands is multiple:
  • the frequency domain start position of any one of the subbands is equal to the first frequency domain start position plus an offset of an integer multiple of the subband width; or,
  • the frequency domain start positions of the subbands except the designated subband in the subbands are all equal to the first frequency domain start position plus an offset of an integer multiple of the subband width.
  • the indication information includes control information corresponding to all or part of the second subband on the uplink resource; or,
  • the indication information includes control information of the at least one first subband; the control information respectively indicates the at least one first subband; or,
  • the indication information includes control information of a designated subband; wherein the designated subband is pre-appointed by the network device and the terminal device or determined by the network device.
  • control information includes some or all of the following:
  • Precoding matrix indication information transmission stream number indication information, space related information, SRS resource indication information, transmission antenna indication information, or antenna panel indication information.
  • the first frequency domain start position is taken as the frequency domain start position of the lowest frequency subband, and the frequency domain start position of the lowest frequency subband is determined according to the frequency domain start position of the uplink resource.
  • Second subband or,
  • the first frequency domain starting position is the starting position of the frequency domain resource corresponding to the indication information; the frequency domain resource corresponding to the indication information is on the frequency domain resource of the uplink signal, or on the uplink resource on.
  • the first frequency domain starting position is a frequency domain position of a designated common resource block CRB; or,
  • the first frequency domain starting position is the frequency domain position of the designated physical resource block PRB of the initial uplink BWP; or,
  • the first frequency domain starting position is the frequency domain position of the designated PRB in the BWP used to transmit the uplink signal; or,
  • the first frequency domain starting position is the frequency domain position of the designated PRB in the activated uplink BWP when the scheduling information of the uplink signal is transmitted; or,
  • the first frequency domain starting position is the frequency domain position of the designated PRB in the BWP used to transmit the indication information; or,
  • the first frequency domain starting position is the frequency domain position of the designated PRB in the designated BWP; or,
  • the first frequency domain starting position is the frequency domain position of the designated PRB in the frequency domain resources allocated by the network device for the uplink signal.
  • the processor is further configured to receive the uplink signal sent by the terminal device through the transceiver 13102; the uplink signal is the subband used for transmitting the uplink signal by the terminal device, using the transmission parameters and / Or transmitted by the transmission antenna.
  • another communication device is provided in the embodiment of the present disclosure. Since the device is the device in the method in the embodiment of the present disclosure, and the principle of the device to solve the problem is similar to the method, the The implementation of the device can refer to the implementation of the method, and the repetition will not be repeated.
  • an embodiment of the present disclosure also provides a communication device, which includes:
  • the second determining module 1401 is configured to determine a subband in the uplink resource of the terminal device, and determine the indication information of the uplink signal in the subband; the indication information is used to indicate the transmission parameter and/or transmission of the uplink signal antenna;
  • the sending module 1402 is configured to send the instruction information to the terminal device.
  • the second determining module is further configured to:
  • the first frequency domain starting position is determined, and the subband is determined according to the first frequency domain starting position.
  • the second determining module is further configured to:
  • On the frequency domain resources allocated for the uplink signal of the terminal device determine at least one first subband used by the terminal device to transmit the uplink signal according to the first frequency domain starting position and the subband width;
  • the frequency domain resource allocated for the uplink signal of the terminal device is on the uplink resource; or,
  • Determining at least one first subband for transmitting the uplink signal on the uplink resource according to the first frequency domain starting position, the subband width, and the number of subbands; or,
  • the number of the subbands is multiple:
  • the frequency domain start position of any one of the subbands is equal to the first frequency domain start position plus an offset of an integer multiple of the subband width; or,
  • the frequency domain start positions of the subbands except the designated subband in the subbands are all equal to the first frequency domain start position plus an offset of an integer multiple of the subband width.
  • the indication information includes control information corresponding to all or part of the second subband on the uplink resource; or,
  • the indication information includes control information of the at least one first subband; the control information respectively indicates the at least one first subband; or,
  • the indication information includes control information of a designated subband; wherein the designated subband is pre-appointed by the network device and the terminal device or determined by the network device.
  • control information includes some or all of the following:
  • Precoding matrix indication information transmission stream number indication information, space related information, SRS resource indication information, transmission antenna indication information, or antenna panel indication information.
  • the first frequency domain start position is taken as the frequency domain start position of the lowest frequency subband, and the frequency domain start position of the lowest frequency subband is determined according to the frequency domain start position of the uplink resource.
  • Second subband or,
  • the first frequency domain starting position is the starting position of the frequency domain resource corresponding to the indication information; the frequency domain resource corresponding to the indication information is on the frequency domain resource of the uplink signal, or on the uplink resource on.
  • the first frequency domain starting position is a frequency domain position of a designated CRB; or,
  • the first frequency domain starting position is the frequency domain position of the designated PRB of the initial uplink BWP; or,
  • the first frequency domain starting position is the frequency domain position of the designated PRB in the BWP used to transmit the uplink signal; or,
  • the first frequency domain starting position is the frequency domain position of the designated PRB in the activated uplink BWP when the scheduling information of the uplink signal is transmitted; or,
  • the first frequency domain starting position is the frequency domain position of the designated PRB in the BWP used to transmit the indication information; or,
  • the first frequency domain starting position is the frequency domain position of the designated PRB in the designated BWP; or,
  • the first frequency domain starting position is the frequency domain position of the designated PRB in the frequency domain resources allocated by the network device for the uplink signal.
  • the device further includes:
  • the receiving module is configured to receive the uplink signal sent by the terminal device; the uplink signal is sent by the terminal device using the transmission parameter and/or the transmission antenna through the subband used for transmitting the uplink signal.
  • the embodiment of the present disclosure also provides a computer-readable non-volatile storage medium, including program code, when the program code runs on a computing terminal, the program code is used to make the computing terminal execute the above-mentioned implementation of the present disclosure Example of the steps of the communication method.
  • the present disclosure can also be implemented by hardware and/or software (including firmware, resident software, microcode, etc.).
  • the present disclosure may take the form of a computer program product on a computer-usable or computer-readable storage medium, which has a computer-usable or computer-readable program code implemented in the medium to be used or used by an instruction execution system. Used in conjunction with the instruction execution system.
  • a computer-usable or computer-readable medium can be any medium, which can include, store, communicate, transmit, or transfer a program for use by an instruction execution system, apparatus, or device, or in combination with an instruction execution system, Device or equipment use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供一种通信方法和装置,用以提高上行信号的传输增益,涉及无线通信技术领域。该方法包括:终端设备在上行资源中确定用于传输上行信号的至少一个第一子带;所述终端设备根据接收到的网络设备发送的上行信号的指示信息和确定的所述至少一个第一子带传输上行信号,其中,所述指示信息用于指示所述上行信号的传输参数和/或传输天线。上述方法,终端能够在上行资源上确定用于传输上行信号的第一子带,并根据上行信号的指示信息在确定出的第一子带上与网络设备传输上行信号,能够提高上行信号的传输增益。

Description

一种通信方法和装置
相关申请的交叉引用
本公开要求在2019年12月26日提交中国专利局、申请号为201911368904.9、申请名称为“一种通信方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及通信技术领域,尤其涉及一种通信方法和装置。
背景技术
在现有的无线通信系统中例如长期演进(Long Term Evolution,LTE)系统、新空口(New Radio,NR)系统,上行信号的多输入输出(Multiple Inpit Multiple Output,MIMO)传输都只支持宽带预编码,不支持子带预编码。
例如,在基于码本的物理上行共享信道(Physical Uplink Shared Channel,PUSCH)上行传输方案下,基站只能向用户设备(User Equipment,UE)指示宽带的上行探测参考信号(Sounding Reference Signal,SRS)资源、预编码矩阵和传输流数,UE在传输PUSCH时,在所有被调度的频域资源上使用相同的模拟波束赋形、预编码矩阵和传输流数。其中SRS资源可以通过下行控制信息(Downlink Control Information,DCI)中的SRS资源指示(SRS Resource Indicator)域或无线资源控制(Radio Resource Control,RRC)信令指示,预编码矩阵和传输流数可以通过DCI中的预编码信息和层数(Precoding information and number of layers)域或RRC信令指示。
再例如,在基于非码本的PUSCH上行传输方案下,基站向UE指示一个宽带的SRS资源,例如:通过DCI中的SRS资源指示域或RRC信令SRS资源指示。UE在传输PUSCH时,在所有被调度的频域资源上使用相同的模拟波束赋形、预编码矩阵和传输流数。
子带预编码可以带来频域选择性预编码增益,提高上行信号传输的性能。在第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)NR系统的讨论过程中,曾考虑对于上行PUSCH引入子带预编码。
然而,在现有技术中,基站指示上行信号的子带预编码的方法,以及UE在子带预编码传输时如何确定上行信号在所分配资源上的预编码的方法尚未有具体的方案。
发明内容
本公开提供一种通信方法和装置,用以提高上行信号的传输增益。
第一方面,本公开提供一种通信方法,该方法包括:
终端设备在上行资源中确定用于传输上行信号的至少一个第一子带;
所述终端设备根据接收到的网络设备发送的上行信号的指示信息和确定的所述至少一个第一子带传输上行信号,其中,所述指示信息用于指示所述上行信号的传输参数和/或传输天线。
上述方法,终端能够在上行资源上确定用于传输上行信号的第一子带,并根据上行信号的指示信息在确定出的第一子带上与网络设备传输上行信号,能够提高上行信号的传输增益。
在一种可能的实现方式中,所述终端设备在上行资源中确定用于传输上行信号的至少一个第一子带,包括:
所述终端设备确定第一频域起始位置;
所述终端设备在上行资源上根据第一频域起始位置确定所述至少一个第一子带。
上述方法,终端设备可以根据第一频域起始位置确定出上行资源中的第一子带,易于实现。
在一种可能的实现方式中,所述终端设备根据第一频域起始位置确定所述至少一个第一子带,包括:
所述终端设备根据所述第一频域起始位置确定所述上行资源上的多个第 二子带,并在所述多个第二子带中确定所述至少一个第一子带;或,
所述终端设备根据所述第一频域起始位置、子带宽度确定所述上行资源上的多个第二子带,并在所述多个第二子带中确定所述至少一个第一子带;或,
所述终端设备根据所述第一频域起始位置、子带宽度和所述网络设备为所述上行信号分配的频域资源确定所述至少一个第一子带;或,
所述终端设备根据所述第一频域起始位置、子带宽度和子带数量确定所述至少一个第一子带。
上述方法,终端设备能够准确的在上行资源中确定用于传输上行信号的第一子带,实现方法简单,并且通过确定出的第一子带传输上行信号能够提高上行信号的传输增益。
在一种可能的实现方式中,所述至少一个第一子带中任意一个子带的频域起始位置都等于第一频域起始位置加上子带宽度的整数倍的偏移;或者,
所述至少一个第一子带中除指定子带外的子带的频域起始位置都等于第一频域起始位置加上子带宽度的整数倍的偏移。
上述方法,通过第一频域起始位置和子带宽度能够确定出每一个第一子带的频域起始位置,使得终端设备能够更加准确的确定出各第一子带。
在一种可能的实现方式中,所述终端设备在所述多个第二子带中确定所述至少一个第一子带,包括:
所述终端设备根据所述网络设备为所述上行信号分配的频域资源,在所述多个第二子带中确定所述频域资源对应的子带,作为所述至少一个第一子带;或者,
所述终端设备根据所述网络设备为所述上行信号分配的频域资源与所述多个第二子带的重叠频域资源确定所述至少一个第一子带。
上述方法,终端设备在上行资源上确定出多个第二子带时,可以通过网络设备分配的频域资源,在多个第二子带中确定出用于传输上行信号的第一子带。
在一种可能的实现方式中,所述指示信息包括所述上行资源包括的第二子带中全部或部分子带对应的控制信息;或,
所述指示信息包括所述用于传输上行信号的所述至少一个第一子带的控制信息;所述控制信息针对所述至少一个第一子带中的全部或部分子带分别指示;或,
所述指示信息包括指定子带的控制信息;其中,所述指定子带是所述网络设备指示的或所述网络设备与所述终端设备预先约定的。
上述方法,通过指示信息终端设备能够确定出上行资源上部分或全部第二子带的控制信息,或者能够确定至少一个第一子带的控制信息,进而通过控制信息传输上行信号。
在一种可能的实现方式中,所述控制信息包括以下中的部分或全部:
预编码矩阵指示信息、传输流数指示信息、空间相关信息、上行探测参考信号SRS资源指示信息、发送天线指示信息或天线面板panel指示信息。
在一种可能的实现方式中,所述终端设备确定所述上行资源上的多个第二子带,包括:
所述终端设备将所述第一频域起始位置作为频率最低的子带的频域起始位置,并根据所述频率最低的子带的频域起始位置确定所述上行资源上的多个第二子带;
所述终端设备确定所述至少一个第一子带,包括:
所述终端设备将所述第一频域起始位置作为频率最低的子带的频域起始位置,并根据所述频率最低的子带的频域起始位置确定所述至少一个子带;
所述第一频域起始位置是所述指示信息对应的频域资源的起始位置;所述指示信息对应的频域资源在所述上行信号的频域资源上,或在所述上行资源上。
上述方法,使得终端设备能够根据频率最低的子带的频域起始位置确定出至少一个第一子带的频域起始位置,或者多个第二子带的频域起始位置,实现方法简单。
在一种可能的实现方式中,所述第一频域起始位置为指定公共资源块CRB的频域位置;或者,
所述第一频域起始位置为初始上行链路带宽部分BWP的指定物理资源块PRB的频域位置;或者,
所述第一频域起始位置为用于传输所述上行信号的BWP中的指定PRB的频域位置;或者,
所述第一频域起始位置为用于传输所述上行信号的调度信息时的激活上行BWP中的指定PRB的频域位置;或者,
所述第一频域起始位置为用于传输所述指示信息的BWP中的指定PRB的频域位置;或者,
所述第一频域起始位置为指定BWP中的指定PRB的频域位置;或者,
所述第一频域起始位置为所述网络设备为所述上行信号分配的频域资源中的指定PRB的频域位置;或者,
所述第一频域起始位置为所述网络设备通过信令指示的PRB的频域位置。
上述方法,能够确定出第一频域起始位置的PRB,进而使得终端设备能够确定出用于传输上行信号的PRB。
在一种可能的实现方式中,所述至少一个第一子带中包括多个PRB;
所述至少一个第一子带包括的PRB是连续的;或者,
所述至少一个第一子带中有包括非连续PRB的子带。
在一种可能的实现方式中,所述终端设备根据接收到的网络设备发送的上行信号的指示信息和确定的所述至少一个第一子带传输上行信号,包括:
所述终端设备根据所述指示信息确定所述至少一个第一子带对应的传输参数和/或传输天线;
所述终端设备通过所述至少一个第一子带,使用所述传输参数和/或传输天线传输所述上行信号。
上述方法,终端设备在确定出用于传输上行信号的至少一个第一子带后,能够根据指示信息确定至少一个第一子带对应的传输参数和传输天线,通过 传输参数和传输天线传输上行信号,能够提高上行信号的传输增益。
第二方面,本公开还提供另一种通信方法,该方法包括:
网络设备在终端设备的上行资源中确定子带;
所述网络设备确定上行信号在所述子带的指示信息;所述指示信息用于指示所述上行信号的传输参数和/或传输天线;
所述网络设备将所述指示信息发送给所述终端设备。
在一种可能的实现方式中,所述网络设备在终端设备的上行资源中确定子带,包括:
所述网络设备确定第一频域起始位置;
所述网络设备根据第一频域起始位置在所述上行资源中确定所述子带。
在一种可能的实现方式中,所述网络设备根据第一频域起始位置确定所述子带,包括:
所述网络设备在所述上行资源上根据所述第一频域起始位置、子带宽度确定所述终端设备用于传输上行信号的至少一个第一子带;或,
所述网络设备在为所述终端设备的上行信号分配的频域资源上,根据所述第一频域起始位置、子带宽度确定所述终端设备用于传输上行信号的至少一个第一子带;所述为所述终端设备的上行信号分配的频域资源在所述上行资源上;或者,
所述网络设备在上行资源上根据所述第一频域起始位置、子带宽度和子带数量确定用于传输所述上行信号的至少一个第一子带;或,
所述网络设备根据所述第一频域起始位置确定所述上行资源上的多个第二子带。
在一种可能的实现方式中,所述子带的数量为多个:
所述子带中任意一个子带的频域起始位置都等于第一频域起始位置加上子带宽度的整数倍的偏移;或,
所述子带中除指定子带外的子带的频域起始位置都等于第一频域起始位置加上子带宽度的整数倍的偏移。
在一种可能的实现方式中,所述指示信息包括上行资源上的第二子带中全部或部分子带对应的控制信息;或,
所述指示信息包括所述至少一个第一子带的控制信息;所述控制信息针对所述至少一个第一子带中的全部或部分子带分别指示;或,
所述指示信息包括指定子带的控制信息;其中,所述指定子带是所述网络设备与所述终端设备预先约定的或所述网络设备确定的。
在一种可能的实现方式中,所述控制信息包括以下中的部分或全部:
预编码矩阵指示信息、传输流数指示信息、空间相关信息、SRS资源指示信息、发送天线指示信息或天线面板panel指示信息。
在一种可能的实现方式中,所述网络设备在上行资源上确定至少一个第一子带,包括:
所述网络设备将所述第一频域起始位置作为频率最低的子带的频域起始位置,并根据所述频率最低的子带的频域起始位置确定所述至少一个子带;
所述网络设备确定上行资源上的多个第二子带,包括:
所述网络设备将所述第一频域起始位置作为频率最低的子带的频域起始位置,并根据所述频率最低的子带的频域起始位置确定所述上行资源上的多个第二子带;
所述第一频域起始位置是所述指示信息对应的频域资源的起始位置;所述指示信息对应的频域资源在所述上行信号的频域资源上,或在所述上行资源上。
在一种可能的实现方式中,所述第一频域起始位置为指定CRB的频域位置;或者,
所述第一频域起始位置为初始上行链路BWP的指定物理资源块PRB的频域位置;或者,
所述第一频域起始位置为用于传输所述上行信号的BWP中的指定PRB的频域位置;或者,
所述第一频域起始位置为用于传输所述上行信号的调度信息时的激活上 行BWP中的指定PRB的频域位置;或者,
所述第一频域起始位置为用于传输所述指示信息的BWP中的指定PRB的频域位置;或者,
所述第一频域起始位置为指定BWP中的指定PRB的频域位置;或者,
所述第一频域起始位置为所述网络设备为所述上行信号分配的频域资源中的指定PRB的频域位置。
在一种可能的实现方式中,所述方法还包括:
所述网络设备接收所述终端设备发送的上行信号;所述上行信号是所述终端设备通过用于传输上行信号的子带,使用所述传输参数和/或传输天线发送的。
第三方面,本公开提供一种通信装置,该装置包括:
第一确定模块,用于在上行资源中确定用于传输上行信号的至少一个第一子带;
传输模块,用于根据接收到的网络设备发送的上行信号的指示信息和确定的所述至少一个第一子带传输上行信号,其中,所述指示信息用于指示所述上行信号的传输参数和/或传输天线。
在一种可能的实现方式中,所述第一确定模块还用于,确定第一频域起始位置,并在上行资源上根据第一频域起始位置确定所述至少一个第一子带。
在一种可能的实现方式中,所述第一确定模块还用于:
根据所述第一频域起始位置确定所述上行资源上的多个第二子带,并在所述多个第二子带中确定所述至少一个第一子带;或,
根据所述第一频域起始位置、子带宽度确定所述上行资源上的多个第二子带,并在所述多个第二子带中确定所述至少一个第一子带;或,
根据所述第一频域起始位置、子带宽度和所述网络设备为所述上行信号分配的频域资源确定所述至少一个第一子带;或,
根据所述第一频域起始位置、子带宽度和子带数量确定所述至少一个第一子带。
在一种可能的实现方式中,所述至少一个第一子带中任意一个子带的频域起始位置都等于第一频域起始位置加上子带宽度的整数倍的偏移;或者,
所述至少一个第一子带中除指定子带外的子带的频域起始位置都等于第一频域起始位置加上子带宽度的整数倍的偏移。
在一种可能的实现方式中,所述第一确定模块还用于:
根据所述网络设备为所述上行信号分配的频域资源,在所述多个第二子带中确定所述频域资源对应的子带,作为所述至少一个第一子带;或者,
根据所述网络设备为所述上行信号分配的频域资源与所述多个第二子带的重叠频域资源确定所述至少一个第一子带。
在一种可能的实现方式中,所述指示信息包括所述上行资源包括的第二子带中全部或部分子带对应的控制信息;或,
所述指示信息包括所述用于传输上行信号的所述至少一个第一子带的控制信息;所述控制信息针对所述至少一个第一子带中的全部或部分子带分别指示;或,
所述指示信息包括指定子带的控制信息;其中,所述指定子带是所述网络设备指示的或所述网络设备与所述终端设备预先约定的。
在一种可能的实现方式中,所述控制信息包括以下中的部分或全部:
预编码矩阵指示信息、传输流数指示信息、空间相关信息、SRS资源指示信息、发送天线指示信息或天线面板panel指示信息。
在一种可能的实现方式中,将所述第一频域起始位置作为频率最低的子带的频域起始位置,并根据所述频率最低的子带的频域起始位置确定所述上行资源上的多个第二子带;或,
将所述第一频域起始位置作为频率最低的子带的频域起始位置,并根据所述频率最低的子带的频域起始位置确定所述至少一个子带;
所述第一频域起始位置是所述指示信息对应的频域资源的起始位置;所述指示信息对应的频域资源在所述上行信号的频域资源上,或在所述上行资源上。
在一种可能的实现方式中,所述第一频域起始位置为指定CRB的频域位置;或者,
所述第一频域起始位置为初始上行链路BWP的指定PRB的频域位置;或者,
所述第一频域起始位置为用于传输所述上行信号的BWP中的指定PRB的频域位置;或者,
所述第一频域起始位置为用于传输所述上行信号的调度信息时的激活上行BWP中的指定PRB的频域位置;或者,
所述第一频域起始位置为用于传输所述指示信息的BWP中的指定PRB的频域位置;或者,
所述第一频域起始位置为指定BWP中的指定PRB的频域位置;或者,
所述第一频域起始位置为所述网络设备为所述上行信号分配的频域资源中的指定PRB的频域位置;或者,
所述第一频域起始位置为所述网络设备通过信令指示的PRB的频域位置。
在一种可能的实现方式中,所述至少一个第一子带中包括多个PRB;
所述至少一个第一子带包括的PRB是连续的;或者,
所述至少一个第一子带中有包括非连续PRB的子带。
在一种可能的实现方式中,所述第一确定模块模块还用于:
根据所述指示信息确定所述至少一个第一子带对应的传输参数和/或传输天线;
所述传输模块还用于通过所述至少一个第一子带,使用所述传输参数和/或传输天线传输所述上行信号。
第四方面,本公开还提供另一种通信装置,该装置包括:
第二确定模块,用于在终端设备的上行资源中确定子带,并确定上行信号在所述子带的指示信息;所述指示信息用于指示所述上行信号的传输参数和/或传输天线;
发送模块,用于将所述指示信息发送给所述终端设备。
在一种可能的实现方式中,所述第二确定模块还用于:
确定第一频域起始位置,并根据第一频域起始位置在所述上行资源中确定所述子带。
在一种可能的实现方式中,所述第二确定模块还用于:
在所述上行资源上根据所述第一频域起始位置、子带宽度确定所述终端设备用于传输上行信号的至少一个第一子带;或,
在为所述终端设备的上行信号分配的频域资源上,根据所述第一频域起始位置、子带宽度确定所述终端设备用于传输上行信号的至少一个第一子带;所述为所述终端设备的上行信号分配的频域资源在所述上行资源上;或者,
在上行资源上根据所述第一频域起始位置、子带宽度和子带数量确定用于传输所述上行信号的至少一个第一子带;或,
根据所述第一频域起始位置确定所述上行资源上的多个第二子带。
在一种可能的实现方式中,所述子带的数量为多个:
所述子带中任意一个子带的频域起始位置都等于第一频域起始位置加上子带宽度的整数倍的偏移;或,
所述子带中除指定子带外的子带的频域起始位置都等于第一频域起始位置加上子带宽度的整数倍的偏移。
在一种可能的实现方式中,所述指示信息包括上行资源上的第二子带中全部或部分子带对应的控制信息;或,
所述指示信息包括所述至少一个第一子带的控制信息;所述控制信息针对所述至少一个第一子带中的全部或部分子带分别指示;或,
所述指示信息包括指定子带的控制信息;其中,所述指定子带是所述网络设备与所述终端设备预先约定的或所述网络设备确定的。
在一种可能的实现方式中,所述控制信息包括以下中的部分或全部:
预编码矩阵指示信息、传输流数指示信息、空间相关信息、SRS资源指示信息、发送天线指示信息或天线面板panel指示信息。
在一种可能的实现方式中,将所述第一频域起始位置作为频率最低的子 带的频域起始位置,并根据所述频率最低的子带的频域起始位置确定所述至少一个子带;或者,
将所述第一频域起始位置作为频率最低的子带的频域起始位置,并根据所述频率最低的子带的频域起始位置确定所述上行资源上的多个第二子带;或者,
所述第一频域起始位置是所述指示信息对应的频域资源的起始位置;所述指示信息对应的频域资源在所述上行信号的频域资源上,或在所述上行资源上。
在一种可能的实现方式中,所述第一频域起始位置为指定公共资源块CRB的频域位置;或者,
所述第一频域起始位置为初始上行链路BWP的指定物理资源块PRB的频域位置;或者,
所述第一频域起始位置为用于传输所述上行信号的BWP中的指定PRB的频域位置;或者,
所述第一频域起始位置为用于传输所述上行信号的调度信息时的激活上行BWP中的指定PRB的频域位置;或者,
所述第一频域起始位置为用于传输所述指示信息的BWP中的指定PRB的频域位置;或者,
所述第一频域起始位置为指定BWP中的指定PRB的频域位置;或者,
所述第一频域起始位置为所述网络设备为所述上行信号分配的频域资源中的指定PRB的频域位置。
在一种可能的实现方式中,所述装置还包括:
接收模块,用于接收所述终端设备发送的上行信号;所述上行信号是所述终端设备通过用于传输上行信号的子带,使用所述传输参数和/或传输天线发送的。
第五方面,本公开还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理单元执行时实现第一方面或第二方面所述方法的步骤。
第六方面,本公开还提供一种通信装置,包括处理器和存储器,其中,所述存储器用于存储计算机可执行指令,当所述处理器执行所述计算机可执行指令时,使所述装置执行第一方面或第二方面所述方法的步骤。
另外,第二方面至第六方面中任一种实现方式所带来的技术效果可参见第一方面中不同实现方式所带来的技术效果,此处不再赘述。
本公开的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本公开而了解。本公开的目的和其他优点可通过在所写的说明书、权利要求书、以及附图中所特别指出的结构来实现和获得。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例中所需要使用的附图作简单地介绍,显而易见地,下面所介绍的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的通信系统架构图;
图2为本公开实施例提供的一种通信方法流程图之一;
图3为本公开实施例提供的一种通信方法流程图之一;
图4为本公开实施例提供的一种通信方法流程图之一;
图5为本公开实施例提供的一种上行资源上的子带示意图之一;
图6为本公开实施例提供的一种上行资源上的子带示意图之一;
图7为本公开实施例提供的一种上行资源上的子带示意图之一;
图8为本公开实施例提供的一种上行资源上的子带示意图之一;
图9为本公开实施例提供的一种上行资源上的子带示意图之一;
图10为本公开实施例提供的一种上行资源上的子带示意图之一;
图11为本公开实施例提供的一种通信装置示意图之一;
图12为本公开实施例提供的一种通信装置示意图之一;
图13为本公开实施例提供的一种通信装置示意图之一;
图14为本公开实施例提供的一种通信装置示意图之一。
具体实施方式
下面将结合附图,对本公开中的技术方案进行描述。
本公开实施例的技术方案可以应用于各种通信系统,例如:LTE系统,全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统,未来的第五代(5th Generation,5G)系统,如新一代无线接入技术(New Radio Access Technology,NRAT),及未来的通信系统,如第六代(6th Generation,6G)系统等。
本公开将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本公开实施例中,“示例的”一词用于表示作例子、例证或说明。本公开中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本公开实施例中,信息(Information),信号(Signal),消息(Message),信道(Channel)有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。“的(of)”,“相应的(Corresponding,Relevant)”和“对应的(Corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
本公开实施例描述的网络架构以及业务场景是为了更加清楚的说明本公开实施例的技术方案,并不构成对于本公开实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本公开实施例提供的技术方案对于类似的技术问题,同样适用。
本公开实施例既可以应用在传统的典型网络中,也可以应用在未来的以UE为中心(UE-centric)的网络中。UE-centric网络引入无小区(Non-cell)的网络架构,即在某个特定的区域内部署大量小站,构成一个超级小区(Hyper cell),每个小站为Hyper cell的一个传输点(Transmission Point,TP)或传输接收点(Transmission and Reception Point,TRP),并与一个集中控制器(Controller)相连。当UE在Hyper cell内移动时,网络侧设备时时为UE选择新的子簇(sub-cluster)为其服务,从而避免真正的小区切换,实现UE业务的连续性。其中,网络侧设备包括无线网络设备。或者是,在以UE为中心的网络中,多个网络侧设备,如小站,可以有独立的控制器,如分布式控制器,各小站能够独立调度用户,小站之间在长期上存在交互信息,使得在为UE提供协作服务时,也能够有一定的灵活性。
为便于理解本公开实施例,首先以图1中示出的通信系统为例详细说明适用于本公开实施例的通信系统。图1示出了适用于本公开实施例的通信方法的通信系统的示意图。如图1所示,该通信系统100包括网络设备102和终端设备106,网络设备102可配置有多个天线,终端设备也可配置有多个天线。可选地,该通信系统还可包括网络设备104,网络设备104也可配置有多个天线。
应理解,网络设备102或网络设备104还可包括与信号发送和接收相关的多个部件(例如,处理器、调制器、复用器、解调器或解复用器等)。
其中,网络设备为具有无线收发功能的设备或可设置于该设备的芯片,该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(Radio Network Controller,RNC)、节点B(Node B,NB)、基站控制器(Base Station Controller,BSC)、基站收发台(Base Transceiver Station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(Baseband Unit,BBU),无线保真(Wireless Fidelity,WIFI)系统中的接入点(Access Point,AP)、无线中继节点、无线回传节点、TRP或者TP等,还可以为5G,如,NR,系统中的gNB,或,TRP或TP,5G系统中的基站的 一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如BBU,或,分布式单元(Distributed Unit,DU)等。
终端设备也可以称为UE、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本公开的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本公开的实施例对应用场景不做限定。本公开中将具有无线收发功能的终端设备及可设置于前述终端设备的芯片统称为终端设备。
在该通信系统100中,网络设备102和网络设备104均可以与多个终端设备(例如图中示出的终端设备106)通信。网络设备102和网络设备104可以与类似于终端设备106的一个或多个终端设备通信。但应理解,与网络设备102通信的终端设备和与网络设备104通信的终端设备可以是相同的,也可以是不同的。图1中示出的终端设备106可同时与网络设备102和网络设备104通信,但这仅示出了一种可能的场景,在某些场景中,终端设备可能仅与网络设备102或网络设备104通信,本公开对此不做限定。
应理解,图1仅为便于理解而示例的简化示意图,该通信系统中还可以包括其他网络设备或者还可以包括其他终端设备,图1中未予以画出。
下面结合附图详细说明本公开实施例。
应理解,本公开的技术方案可以应用于无线通信系统中,例如,图1中所示的通信系统100,该通信系统可以包括至少一个网络设备和至少一个终端设备,网络设备和终端设备可以通过无线空口通信。例如,该通信系统中的网络设备可以对应于图1中所示的网络设备102和网络设备106,终端设备可 以对应于图1中所示的终端设备104。
如图2所示为本公开实施例中一种终端设备侧的通信方法的流程示意图,可以包括以下步骤:
步骤201:终端设备在上行资源中确定用于传输上行信号的至少一个第一子带。
这里的上行资源可以是一个上行带宽部分(BandWidth Part,BWP)的资源,可以是一个成员载波(Component Carrier,CC)的资源,也可以是上行链路总的资源,也可以是所述上行信号所在的服务小区的上行资源。
步骤202:所述终端设备根据接收到的网络设备发送的上行信号的指示信息和确定的所述至少一个第一子带传输上行信号。
其中,所述指示信息用于指示所述上行信号的传输参数和/或传输天线。
实施时,指示信息可以包括全部或部分所述第一子带的传输参数和/或传输天线。
如图3所示,为本公开实施例中一种网络设备侧的通信方法流程图,可以包括以下步骤:
步骤301:网络设备在终端设备的上行资源中确定子带。
需要说明的是,网络设备在执行步骤301之前还可以通过信令向终端设备发送所述上行资源的信息。
步骤302:所述网络设备确定上行信号在所述子带的指示信息;所述指示信息用于指示所述上行信号的传输参数和/或传输天线。
在实施时,网络设备可以确定上行信号在所述子带中部分或全部子带的指示信息。
步骤303:所述网络设备将所述指示信息发送给所述终端设备。
实施时,网络设备可以为各子带分别发送指示信息,或者可以将各子带的指示信息携带在同一信令中发送给所述终端设备。
以下,不失一般性,以一个终端设备与网络设备之间的交互过程为例详细说明本公开实施例,该终端设备可以为处于无线通信系统中与网络设备具 有无线连接关系的终端设备。可以理解的是,网络设备可以与处于该无线通信系统中的具有无线连接关系的多个终端设备基于相同的技术方案来传输数据包。本公开对此并不做限定。
图4是从设备交互的角度示出的本公开实施例提供的通信方法的示例性流程图。如图4所示,该方法可以包括以下步骤:
步骤401:网络设备在终端设备的上行资源中确定子带。
步骤402:所述网络设备确定上行信号在所述子带的指示信息。
其中,所述上行信号的指示信息可以是用来指示上行信号的传输参数的信息。或者,所述上行信号的指示信息可以是用来指示上行信号的传输天线的信息。
步骤403:网络设备将终端设备的上行信号的指示信息发送给所述终端设备。
实施时,网络设备还可以将所述上行信号的资源分配信息发送给终端设备。需要说明的是,网络设备可以同时向终端设备发送所述指示信息和所述上行资源的信息,或者网络设备还可以优先向终端设备发送所述指示信息,而后向终端设备发送所述上行资源的信息,又或者网络设备还可以优先向终端设备发送所述上行资源的信息,而后向所述终端设备发送所述指示信息。
步骤404:所述终端设备在上行资源中确定用于传输所述上行信号的至少一个第一子带。
需要说明的是,在实施时,可以先执行步骤403再执行步骤404,或者还可以先执行步骤404再执行步骤403,或者还可以同时执行步骤403和步骤404,本公开不做具体限定。
步骤405:所述终端设备根据接收到的所述指示信息和确定的所述至少一个第一子带传输上行信号。
上述方法,终端设备可以在网络设备分配的上行资源上确定出用于传输上行信号的子带,并通过确定的子带与网络设备传输上行信号,能够提高上行信号的传输增益。
接下来介绍网络设备在上行资源中确定子带的方法以及为确定出的子带确定指示信息的方法。所述网络设备在上行资源中确定子带可以包括网络设备确定子带的频域。其中,实现方式可以包括以下几种。
第一种:
网络设备根据所述第一频域起始位置确定所述上行资源上的多个第二子带。
在一个可能的实现方式中,网络设备根据第一频域起始位置和子带宽度,将上行资源划分为多个第二子带。第一频域起始位置可以为所述多个第二子带中频率最低的子带的频域起始位置。例如,上行资源为物理资源块(Physical Resource Blocks,PRB)0-PRB14,第一频域起始位置为0,子带宽度为5。因此,终端设备可以将上行资源划分为多个第二子带分别为子带1:PRB0-PRB4,子带2:PRB5-PRB9,子带3:PRB10-PRB14。之后,网络设备确定第二子带中全部或部分第二子带的指示信息,并发送给终端设备。其中,指示信息包括网络设备确定的所述全部或部分第二子带对应的控制信息。此外,网络设备将为终端设备的上行信号分配的频域资源发送给终端设备。
另一种可能的实现方式中,第一频域起始位置可以是所述第二子带中频率最低的子带的起始位置。则,网络设备可以在上行资源上,根据第一频域起始位置和子带宽度确定出每一个第二子带的频域起始位置。其中,所述第二子带中任意一个子带的频域起始位置都等于第一频域起始位置加上子带宽度的整数倍的偏移;或,所述第二子带中除指定子带外的子带的频域起始位置都等于第一频域起始位置加上子带宽度的整数倍的偏移。
之后,网络设备确定全部或部分第二子带的指示信息,并发送给终端设备。其中,指示信息包括网络设备确定的全部或部分第二子带对应的控制信息。此外,网络设备将为终端设备的上行信号分配的频域资源发送给终端设备。可选地,网络设备为全部或部分第二子带中的各个第二子带分别发送指示信息。
可选的,网络设备确定第一频域起始位置是指网络设备确定所述子带的 指示信息对应的频域资源的起始位置。终端设备根据第一频域起始位置等可以确定出所述子带的指示信息对应的频域资源,从而确定出这些频域资源对应的上行信号的传输参数和/或传输天线。
可选地,所述上行信号的指示信息中包括子带指示信息,子带指示信息与所述第二子带中的全部或部分子带存在映射关系,所述子带指示信息为指示所述上行信号在子带的传输参数和/或传输天线的指示信息。可选地,所述第二子带中全部或部分子带中的每个子带与子带指示信息具有一一对应关系。
在本公开实施例中,所述上行信号的频域资源可以携带在所述网络设备发送的配置信息中或者调度信息中。例如,用于所述上行信号传输的频域资源可以通过下行控制信息DCI中的频域资源分配域(Frequency domain resource assignment)指示。再例如,用于所述上行信号传输的频域资源可以通过RRC信令中的频域资源分配信令指示(frequencyDomainAllocation)。需要说明的是,子带大小(即子带包括的频域资源的数目,或者称为子带宽度)可以是预先确定的。例如是网络设备指示的,或者是网络设备与终端设备协商的,或者是协议约定的,或者是终端侧设备根据指定规则确定的,本公开不做具体限定。
第二种:
网络设备在所述上行资源上根据所述第一频域起始位置、子带宽度确定所述终端设备用于传输上行信号的至少一个第一子带。
在一个可能的实现方式中,网络设备根据第一频域起始位置和子带宽度,将上行资源划分为多个第二子带。第一频域起始位置可以为所述多个第二子带中频率最低的子带的频域起始位置。例如,上行资源为PRB0-PRB14,第一频域起始位置为0,子带宽度为5。因此,终端设备可以将上行资源划分为多个第二子带分别为子带1:PRB0-PRB4,子带2:PRB5-PRB9,子带3:PRB10-PRB14。
可选的,子带宽度可以是预先确定的,或者还可以是协议规定的,又或者子带宽度可以是与终端设备协商得到的。
可选地,网络设备为终端设备分配上行信号的频域资源。网络设备在所述多个第二子带中确定所述频域资源对应的子带,作为所述至少一个第一子带;或者,网络设备将所述上行信号的频域资源与所述多个第二子带重叠频域,作为所述至少一个第一子带。
网络设备为至少一个第一子带中的全部或部分第一子带中的每一个第一子带确定指示信息,并发送给终端设备。其中,所述指示信息包括网络设备确定的所述全部或部分第一子带对应的控制信息,控制信息针对所述全部或部分第一子带一一指示。可选地,网络设备为全部或部分第一子带中的每个第一子带分别发送指示信息。
可选地,所述上行信号的指示信息中包括子带指示信息,子带指示信息与所述至少一个第一子带中的全部或部分子带存在映射关系,所述子带指示信息为指示所述上行信号在子带的传输参数和/或传输天线的指示信息。可选地,所述至少一个第一子带中全部或部分子带中的每个子带与子带指示信息具有一一对应关系。
另一种可能的实现方式中,第一频域起始位置可以是所述第二子带中频率最低的子带的起始位置。则,网络设备可以在上行资源上,根据第一频域起始位置和子带宽度确定出每一个第二子带的频域起始位置。其中,所述第二子带中任意一个子带的频域起始位置都等于第一频域起始位置加上子带宽度的整数倍的偏移;或,所述第二子带中除指定子带外的子带的频域起始位置都等于第一频域起始位置加上子带宽度的整数倍的偏移。
之后,网络设备为终端设备分配上行信号的频域资源。网络设备在所述多个第二子带中确定所述频域资源对应的子带,作为所述至少一个第一子带;或者,网络设备将所述上行信号的频域资源与所述多个第二子带重叠频域,作为所述至少一个第一子带。
网络设备在确定所述至少一个第一子带之后,为所述至少一个第一子带中的全部或部分第一子带确定指示信息,并发送给终端设备。其中,所述指示信息包括网络设备确定的全部或部分第一子带对应的控制信息,所述控制 信息针对第一子带分别指示。可选地,网络设备为全部或部分第一子带中的每个第一子带分别发送指示信息。
可选地,所述上行信号的指示信息中包括子带指示信息,子带指示信息与所述至少一个第一子带中的全部或部分子带存在映射关系,所述子带指示信息为指示所述上行信号在子带的传输参数和/或传输天线的指示信息。可选地,所述至少一个第一子带中全部或部分子带中的每个子带与子带指示信息具有一一对应关系。
第三种:
所述网络设备在为所述终端设备的上行信号分配的频域资源上,根据所述第一频域起始位置、子带宽度确定所述终端设备用于传输上行信号的至少一个第一子带;所述为所述终端设备的上行信号分配的频域资源在所述上行资源上。
在一种可能的实现方式中,第一频域起始位置可以是所述至少一个第一子带中频率最低的子带的起始位置。则,网络设备可以在频域资源上,根据第一频域起始位置和子带宽度确定出每一个第一子带的频域起始位置。其中,所述第一子带中任意一个子带的频域起始位置都等于第一频域起始位置加上子带宽度的整数倍的偏移;或,所述第一子带中除指定子带外的子带的频域起始位置都等于第一频域起始位置加上子带宽度的整数倍的偏移。
网络设备在确定所述第一子带之后,为所述至少一个第一子带中的全部或部分第一子带确定指示信息,并发送给终端设备。其中,所述指示信息包括网络设备确定的所述全部或部分第一子带对应的控制信息,所述控制信息针对第一子带分别指示。可选地,网络设备为全部或部分第一子带中的每个第一子带分别发送指示信息。
可选地,所述上行信号的指示信息中包括子带指示信息,子带指示信息与所述至少一个第一子带中的全部或部分子带存在映射关系,所述子带指示信息为指示所述上行信号在子带的传输参数和/或传输天线的指示信息。可选地,所述至少一个第一子带中全部或部分子带中的每个子带与子带指示信息 具有一一对应关系。
另一种可能的实现方式中,网络设备通过上行信号的频域资源与子带宽度能够确定出所述频域资源上第一子带的子带数量。网络设备则可以根据第一频域起始位置、子带宽度以及子带数量,在所述频域资源上确定所述第一子带。可选的,所述第一子带的数量可以与所述子带数量相同,或者第一子带的数量可以少于所述子带数量。
这里的子带宽度可以是预先确定的,或者还可以是协议规定的,又或者子带宽度可以是与终端设备协商得到的。
网络设备在确定所述第一子带之后,为至少一个第一子带中的全部或部分第一子带确定指示信息,并发送给终端设备。可选地,所述指示信息包括网络设备确定的所述全部或部分第一子带对应的控制信息,所述控制信息针对第一子带分别指示。可选地,网络设备为全部或部分第一子带中的各个第一子带分别发送指示信息。
例如,网络设备为终端设备的上行信号分配的频域资源包括PRB14-PRB28,子带宽度为4个PRB,则网络设备可以确定频域资源上的第一子带分别为子带1:PRB14-PRB17,子带2:PRB18-PRB21,子带3:PRB22-PRB25,子带4:PRB26-PRB28。网络设备为子带1-子带4分别确定指示信息,并将指示信息发送给终端设备。
可选地,所述上行信号的指示信息中包括子带指示信息,子带指示信息与所述至少一个第一子带中的全部或部分子带存在映射关系,所述子带指示信息为指示所述上行信号在子带的传输参数和/或传输天线的指示信息。可选地,所述至少一个第一子带中全部或部分子带中的每个子带与子带指示信息具有一一对应关系。
第四种:
所述网络设备在所述上行资源上根据所述第一频域起始位置、子带宽度和子带数量确定所述终端设备用于传输上行信号的至少一个第一子带。
这里的子带数量可以是预先确定的,或者还可以是协议规定的,或者还 可以是与终端设备协商得到的。子带宽度可以是预先确定的,或者可以是网络设备根据预设的规则确定的,例如根据上行资源的大小确定的。又或者,子带宽度还可以是与终端设备协商的,或者是协议约定的。
在一种可能的实现方式中,第一频域起始位置可以是所述至少一个第一子带中频率最低的子带的起始位置。则,网络设备可以在上行资源上,根据第一频域起始位置和子带宽度确定出每一个第一子带的频域起始位置。其中,所述第一子带中任意一个子带的频域起始位置都等于第一频域起始位置加上子带宽度的整数倍的偏移;或,所述第一子带中除指定子带外的子带的频域起始位置都等于第一频域起始位置加上子带宽度的整数倍的偏移。
例如,终端设备的上行资源包括PRB0-PRB19,子带宽度为5个PRB,子带数量为4个。则网络设备根据第一频域起始位置PRB0和子带宽度可以确定子带1的频域起始位置为PRB0,子带2的频域起始位置为PRB5,子带3的频域起始位置为PRB10,子带4的频域起始位置为PRB15。继而确定出子带1:PRB0-PRB4,子带2:PRB5-PRB9,子带3:PRB10-PRB14,子带4:PRB15-PRB19。
网络设备为至少一个第一子带中的全部或部分第一子带确定指示信息并发送给终端设备,其中,指示信息包括第一子带对应的控制信息,控制信息针对所述全部或部分第一子带分别指示。可选地,网络设备为全部或部分第一子带中的每个第一子带分别发送指示信息。
可选地,所述上行信号的指示信息中包括子带指示信息,子带指示信息与所述至少一个第一子带中的全部或部分子带存在映射关系,所述子带指示信息为指示所述上行信号在子带的传输参数和/或传输天线的指示信息。可选地,所述至少一个第一子带中全部或部分子带中的每个子带与子带指示信息具有一一对应关系。
另一种可能的实现方式中,第一频域起始位置可以是至少一个第一子带中频率最低的子带的起始位置。则,网络设备可以在上行资源上,根据第一频域起始位置、子带宽度以及子带数量确定出每一个第一子带。
例如,终端设备的上行资源包括PRB0-PRB19,子带宽度为5个PRB,子带数量为4个。则网络设备可以确定上行资源上的子带分别为子带1:PRB0-PRB4,子带2:PRB5-PRB9,子带3:PRB10-PRB14,子带4:PRB15-PRB19。
网络设备为至少一个第一子带中的全部或部分第一子带确定指示信息并发送给终端设备,其中,指示信息包括第一子带对应的控制信息,控制信息针对所述全部或部分第一子带分别指示。可选地,网络设备为全部或部分第一子带中的每个第一子带分别发送指示信息。
可选地,所述上行信号的指示信息中包括子带指示信息,子带指示信息与所述至少一个第一子带中的全部或部分子带存在映射关系,所述子带指示信息为指示所述上行信号在子带的传输参数和/或传输天线的指示信息。可选地,所述至少一个第一子带中全部或部分子带中的每个子带与子带指示信息具有一一对应关系。
在本公开实施例中,控制信息包括以下中的部分或全部:预编码矩阵指示信息、传输流数指示信息、空间相关信息、SRS资源指示信息、发送天线指示信息或天线面板panel指示信息。
可选地,所述上行信号的指示信息中包括子带指示信息,子带指示信息与所述至少一个第一子带存在映射关系,所述子带指示信息为指示所述上行信号在子带的传输参数和/或传输天线的指示信息。可选地,这种映射关系是一一对应关系。
通过上述方法1-方法4,网络设备可以在上行资源中确定出子带,并为确定出的子带确定指示信息发送给终端设备,以使得终端设备在传输上行信号时能够通过子带以及指示信息传输,提高上行信号的传输增益。
在介绍了网络设备在上行资源中确定子带以及为确定出的子带确定指示信息的方法之后,下面介绍终端设备在上行资源中确定用于传输上行信号的至少一个第一子带的方法。
其中,所述终端设备在上行资源中确定用于传输所述上行信号的至少一个第一子带可以包括所述终端设备确定出所述至少一个第一子带的子带大小、 所述终端设备确定出所述至少一个第一子带的子带数量、所述终端设备确定出所述至少一个第一子带的频域位置中的一个或多个。
在一种实现方式中,终端设备在上行资源中确定所述至少一个第一子带,可以包括确定所述至少一个第一子带的频域位置。实施时,所述终端设备可以在上行资源中确定一个第一频域起始位置,并根据第一频域起始位置确定所述至少一个第一子带的频域位置。第一频域起始位置是用来确定所述至少一个第一子带的一个频域起始位置。
具体的实现可以包括以下方法。
方法1:
终端设备可以根据第一频域起始位置确定上行资源上的多个第二子带,并在所述多个第二子带中确定所述至少一个第一子带。
一种可能的实现方式中,终端设备先根据第一频域起始位置在上行资源上确定多个第二子带。这里的上行资源可以是一个上行BWP的资源,可以是一个CC的资源,也可以是上行链路总的资源,也可以是所述上行信号所在的服务小区的上行资源。第一频域起始位置可以为所述多个第二子带中频率最低的子带的频域起始位置。终端设备在确定了上行资源的多个第二子带后,可以根据网络设备为所述上行信号分配的用于传输所述上行信号传输的频域资源,在多个第二子带中确定用于传输所述上行信号传输的频域资源对应的子带,作为所述至少一个第一子带。
可选地,终端接收网络设备为全部或部分第二子带发送的指示信息,所述指示信息包括网络设备确定的全部或部分第二子带对应的控制信息。可选地,网络设备为全部或部分第二子带中的各个第二子带分别发送指示信息。终端根据第一频域起始位置等可以确定出全部或部分第二子带对应的上行信号的传输参数和/或传输天线。并进一步根据这些频域资源对应的上行信号的传输参数和/或传输天线确定出所述至少一个子带上上行信号的传输参数和/或传输天线。
举例来说,一个上行BWP包括20个PRB,终端将这20个PRB分成了 4个子带,分别为子带1:PRB 0-4,子带2:PRB5-9,子带3:PRB 10-14,子带4:PRB15-19(其中PRB x表示标号为x的PRB,这里只是示意),若网络设备为所述上行信号分配的频域资源为PRB 4-13,则这些PRB与子带2,3,4有重叠,终端确定出所述至少一个第一子带包括3个子带,分别为子带2:PRB5-9、子带3:PRB 10-14、子带4:PRB15-19。另一种确定方法是网络设备为所述上行信号分配的频域资源与上行资源被划分的子带重叠的部分即为所述至少一个第一子带。举例来说,一个上行BWP包括20个PRB,终端将这20个PRB分成了4个子带,分别为子带1:PRB 0-4,子带2:PRB5-9,子带3:PRB 10-14,子带4:PRB15-19(其中PRB x表示标号为x的PRB,这里只是示意),若网络设备为所述上行信号分配的频域资源为PRB 4-13,则这些PRB与子带2,3,4有重叠,重叠的部分分别为PRB4,PRB5-9,PRB10-13,则终端确定出所述至少一个第一子带包括3个子带,分别为PRB4组成的子带,PRB5-9组成的子带和PRB10-13组成的子带。
又例如,网络设备给终端设备分配的上行资源包括PRB0-PRB28,并指示子带宽度为5个PRB。终端设备确定频率最低的子带的频域起始位置为PRB4,且子带宽度为5个PRB,则终端设备将上行资源划分为5个子带。其中,PRB4-PRB8为子带1,PRB9-PRB13为子带2,PRB14-PRB18为子带3,PRB19-PRB23为子带4,PRB24-PRB28为子带5。
网络设备向终端设备发送的用于传输上行信号的频域资源为PRB6-PRB18,则终端设备可以确定用于传输所述上行信号的至少一个第一子带为子带1、子带2、子带3。
可选地,所述上行信号的指示信息中包括子带指示信息,子带指示信息与所述至少一个第一子带中的全部或部分子带存在映射关系,所述子带指示信息为指示所述上行信号在子带的传输参数和/或传输天线的指示信息。可选地,所述至少一个第一子带中全部或部分子带中的每个子带与子带指示信息具有一一对应关系。
终端根据子带指示信息和子带的对应关系可以确定出这些子带对应的频 域资源上上行信号的传输参数和/或传输天线。并进一步根据这些频域资源对应的上行信号的传输参数和/或传输天线确定出所述至少一个子带上上行信号的传输参数和/或传输天线。
方法2:
终端设备根据第一频域起始位置、子带宽度和至少一个第一子带的子带数量确定所述至少一个第一子带。
在一种可能的是实现方式中,指示信息可以包括用于传输上行信号的至少一个第一子带对应的控制信息。可选地,终端设备可以根据所述指示信息包括的控制信息确定所述至少一个第一子带的数量。例如,控制信息的比特宽度与至少一个第一子带的数量成正比,则终端根据控制信息的比特宽度就可以确定出至少一个第一子带的数量。终端设备根据第一频域起始位置在上行资源中确定频率最低的子带的频域起始位置,在根据子带宽度和所述至少一个第一子带的数量,在上行资源中确定用于传输上行信号的至少一个第一子带。
可选的,终端根据第一频域起始位置确定出所述至少一个子带上上行信号的传输参数和/或传输天线。
需要说明的是,子带宽度可以是根据经验值预先确定的,或者还可以是网络设备指示的,或者还可以是网络设备与终端设备协商的,本公开不做具体限定。此外,前述至少一个第一子带的子带宽度可以完全相同。
可选地,所述子带宽度为所述至少一个第一子带的子带宽度(即子带占用频域资源的大小)。例如,假设所述子带宽度为4个PRB,所述至少一个第一子带的数量为4,第一频率起始位置为PRB 7,终端可以确定用于传输上行信号的至少一个第一子带分别为子带1:PRB7-PRB10,子带2:PRB11-PRB14,子带3:PRB15-PRB18,子带4:PRB19-PRB22。这与网络设备为所述上行信号分配的上行资源无关。
可选地,所述上行信号的指示信息中包括子带指示信息,子带指示信息与所述至少一个第一子带中的全部或部分子带存在映射关系,所述子带指示 信息为指示所述上行信号在子带的传输参数和/或传输天线的指示信息。可选地,所述至少一个第一子带中全部或部分子带中的每个子带与子带指示信息具有一一对应关系。
终端根据子带指示信息和子带的对应关系可以确定出所述至少一个子带上上行信号的传输参数和/或传输天线。
另一种可能的实现方式中,终端设备根据第一频域起始位置确定所述至少一个第一子带的子带起始位置,其中第一频域起始位置可以是第一子带中频率最低的子带的频域起始位置。终端设备首先确定一个子带大小,所述至少一个第一子带中任意一个子带的频域起始位置都等于第一频域起始位置加上子带大小的整数倍的偏移。即用Ns表示第一频域起始位置,则至少一个第一子带中任意一个子带的频域起始位置都等于Ns+M*N sub,其中M和N sub分别表示至少一个第一子带的子带数目和终端首先确定出的子带大小,M是正整数。
或者,终端设备首先确定一个子带大小,所述至少一个第一子带中除指定子带(例如第一个子带)外,其他子带的频域起始位置都等于第一频域起始位置加上子带大小的整数倍的偏移。可选地,第一个子带的频域起始位置等于网络设备为上行信号分配的频域资源的起始位置。可选地,最后一个子带的频域结束位置等于网络设备为上行信号分配的频域资源的最后一个资源的位置。
其中,指定子带可以是终端设备与网络设备预先约定的,或者还可以是协议约定的,又或者还可以是终端设备与网络设备协商得到的,又或者是终端设备根据约定的规则确定的。此外,指定子带还可以是网络设备指示的。
可选地,所述上行信号的指示信息中包括子带指示信息,子带指示信息与所述至少一个第一子带中的全部或部分子带存在映射关系,所述子带指示信息为指示所述上行信号在子带的传输参数和/或传输天线的指示信息。可选地,所述至少一个第一子带中全部或部分子带中的每个子带与子带指示信息具有一一对应关系。
终端根据子带指示信息和子带的对应关系可以确定出所述至少一个子带上上行信号的传输参数和/或传输天线。
在本公开实施例中,所述用于传输所述上行信号的频域资源可以携带在所述网络设备发送的配置信息中或者调度信息中。例如,用于所述上行信号传输的频域资源可以通过下行控制信息DCI中的频域资源分配域(Frequency domain resource assignment)指示。再例如,用于所述上行信号传输的频域资源可以通过RRC信令中的频域资源分配信令指示(Frequency Domain Allocation)。需要说明的是,子带大小(即子带包括的频域资源的数目,或者称为子带宽度)可以是根据经验值预先确定的,或者还可以是网络设备指示的,或者还可以是网络设备与终端设备协商的等。
方法3:
终端设备根据第一频域起始位置、子带宽度和网络设备为所述上行信号分配的频域资源确定所述至少一个第一子带。
一种可能的实现方式中,所述终端设备根据所述第一频域起始位置和子带宽度确定出所述至少一个第一子带。可选地,第一频域起始位置是所述至少一个第一子带中频率最低的子带的频域起始位置。
可选地,这里的子带大小是网络设备为所述上行信号配置的子带大小,并不是所述至少一个第一子带实际的大小。例如,网络设备为一个PUSCH配置的子带大小是4个PRB,但为该PUSCH分配的频域资源为18个PRB,假设第一频域起始位置是网络侧为该PUSCH分配的频域资源的起始位置N 0,一种可能是所述至少一个第一子带包括5个子带,其中一个子带的大小为2PRB,4个子带的大小为4PRB。
可选地,所述至少一个第一子带的任意一个子带的大小与网络设备为所述上行信号配置的子带大小相同。在这种情况下,基站为所述上行信号分配的频域资源需要是子带大小的整数倍。
另一种可能的实现方式中,所述终端设备根据第一频域起始位置和子带数量(或称为子带的数目)确定出所述至少一个第一子带。其中,第一频域 起始位置可以是第一子带中频率最低的子带的频域起始位置。所述子带个数可以是网络侧设备指示给终端设备的,也可以是终端按照预定义的规则确定的,或者网络侧设备和终端预先约定的(例如协议规定)。可选地,终端设备根据预定义的规则确定所述至少一个第一子带。例如,假设子带的个数为3,网络设备为一个PUSCH分配的频域资源为18个PRB,则终端确定出每个子带的PRB个数为18/3=6,每个子带包括的PRB连续,则再根据第一频域起始位置,就可以确定出3个子带具体的频域位置。
可选的,所述第一频域起始位置是所述指示信息对应的频域资源的起始位置。其中,所述指示信息对应的频域资源在所述上行信号的频域资源上。举例来说,指示信息对应的频域资源为PRB12-PRB21,则所述第一频域起始位置则为PRB12。
又例如,终端设备上行信号的频域资源为PRB0-PRB24,指示信息对应的频域资源为PRB5-PRB8,则终端设备确定第一频域起始位置为PRB5。终端根据确定的第一频域起始位置和子带宽度在上行信号的频域资源上,确定至少一个第一子带,分别为子带1:PRB5-PRB9,子带2:PRB10-PRB14,子带3:PRB15-PRB19,子带4:PRB20-PRB24。
可选地,子带数量是终端设备根据网络设备为所述上行信号分配的频域资源包括的资源数和每个子带包括的子带宽度确定的。子带数量等于网络设备为上行信号分配的频域资源包括的资源数除以每个子带包括的频域资源数后得到数值的向上取整数。
可选地,子带数量是所述至少一个第一子带的子带的数量。
可选地,所述至少一个第一子带与所述上行信号的指示信息存在映射关系。这个映射关系可以是预先约定的,或者网络设备指示给终端的。
可选地,所述至少一个第一子带包括多个第二子带时,所述上行信号的指示信息中包括针对这多个第二子带中全部或部分子带的指示信息。可选地,所述上行信号的指示信息针对第二子带中全部或部分子带中的每个子带分别指示。即可以针对不同的子带指示不同的信息。
可选地,所述上行信号的指示信息中包括子带指示信息,子带指示信息与所述至少一个第一子带存在映射关系,所述子带指示信息为指示所述上行信号在子带的传输参数和/或传输天线的指示信息。可选地,所述至少一个第一子带中全部或部分子带中的每个子带与子带指示信息具有一一对应关系。
终端根据子带指示信息和子带的对应关系可以确定出所述至少一个子带上上行信号的传输参数和/或传输天线。
方法4:
终端设备根据所述第一频域起始位置、子带宽度确定所述上行资源上的多个第二子带,并在所述多个第二子带中确定所述至少一个第一子带。
在一种可能的实现方式中,第一频域起始位置是所述多个第二子带中频率最低的子带的频域起始位置。终端设备根据第一频域起始位置和子带宽度,确定上行资源上的每一个第二子带的频域起始位置。其中,所述第二子带中任意一个子带的频域起始位置都等于第一频域起始位置加上子带宽度的整数倍的偏移;或者,所述第二子带中除指定子带外的子带的频域起始位置都等于第一频域起始位置加上子带宽度的整数倍的偏移。继而终端设备可以根据各第二子带的频域起始位置和子带宽度确定出上行资源上的多个第二子带。
例如,终端设备的上行资源包括PRB0-PRB19,子带宽度为5个PRB。则终端设备可以确定上行资源上的每一个第二子带的频域起始位置分别为,PRB0、PRB5、PRB10以及PRB15。继而终端设备可以确定上行资源上的子带分别为子带1:PRB0-PRB4,子带2:PRB5-PRB9,子带3:PRB10-PRB14,子带4:PRB15-PRB19。
终端设备再根据网络设备分配的上行信号的频域资源,在多个第二子带中确定用于传输上行信号的至少一个第一子带。其中,所述终端设备根据所述网络设备为所述上行信号分配的频域资源,在所述多个第二子带中确定所述频域资源对应的子带,作为所述至少一个第一子带;或者,所述终端设备根据所述网络设备为所述上行信号分配的频域资源与所述多个第二子带的重叠频域确定所述至少一个第一子带。
另一种可能的实现方式中,第一频域起始位置是所述多个第二子带中频率最低的子带的频域起始位置。终端设备可以根据上行资源和子带宽度计算得出上行资源上第二子带的子带数量。继而终端设备根据第一频域起始位置、子带宽度和子带数量在上行资源中确定出多个第二子带。终端设备再根据网络设备分配的上行信号的频域资源,在多个第二子带中确定用于传输上行信号的至少一个第一子带。其中,所述终端设备根据所述网络设备为所述上行信号分配的频域资源,在所述多个第二子带中确定所述频域资源对应的子带,作为所述至少一个第一子带;或者,所述终端设备根据所述网络设备为所述上行信号分配的频域资源与所述多个第二子带的重叠频域确定所述至少一个第一子带。
例如终端设备的上行资源包括PRB0-PRB19,子带宽度为5个PRB。终端设备可以根据上行资源包括的PRB,以及子带宽度计算得到子带数量为5个。则终端设备可以确定上行资源上的子带分别为子带1:PRB0-PRB4,子带2:PRB5-PRB9,子带3:PRB10-PRB14,子带4:PRB15-PRB19。
通过上述方法1-方法4终端设备能够在上行资源中确定出用于传输上行信号的第一子带,并通过第一子带和第一子带对应的指示信息传输上行信号,能够提高上行信号的传输增益。
在介绍了终端设备如何在上行资源上确定用于传输上行信号的至少一个第一子带后,接下来介绍本公开技术方案中提出的频域起始位置,本公开实施例中提出的第一频域起始位置可以是以下情况1-情况8。
情况1:所述频域起始位置为指定公共资源块(Common Resource Block,CRB)。
例如,可以是CRB0的子载波(subcarrier)0。
可选的,若各子载波的起始位置对应于不同的CRB,则前述频域起始位置为传输所述上行信号使用的子载波所在的CRB0的子载波0。
可选的,若各子载波的起始位置对应于不同的CRB,则前述频域起始位置为终端设备接收所述网络设备发送的用于传输上行信号的频域资源时所使 用的子载波所在的CRB0的子载波0。
情况2:所述频域起始位置为初始上行链路BWP的指定PRB。
例如,可以是初始上行链路的PRB0、或者是PRB1等。
可选的,频域起始位置还可以是所述初始上行链路的指定PRB的指定子载波。例如,可以是初始上行链路带宽部分(initial uplink bandwidth part)的PRB0的子载波0。
情况3:所述频域起始位置为用于传输所述上行信号的上行链路BWP中的指定PRB。
例如,可以是用于传输所述上行信号的BWP的编号最低的PRB,例如PRB0。
可选的,频域起始位置还可以是用于传输所述上行信号的BWP的指定PRB的指定子载波。例如,可以是用于传输所述上行信号的BWP的PRB0的子载波0。
情况4:所述频域起始位置为用于传输所述上行信号的调度信息的BWP中的指定PRB;所述调度信息指示所述终端设备传输所述上行信号的频域资源。
例如,频域起始位置可以是传输所述调度信息时使用的BWP中编号最低的PRB,例如PRB0。
可选的,频域起始位置还可以是传输所述调度信息时使用的BWP中指定PRB的指定子载波,例如PRB0的子载波0。
情况5:所述频域起始位置为用于传输所述指示信息的BWP中的指定PRB。
例如,频域起始位置可以是用于传输所述指示信息的BWP中的编号最低的PRB,例如PRB0。
可选的,频域起始位置还可以是用于传输所述指示信息的BWP中的指定PRB的指定子载波,例如PRB0的子载波0。
情况6:所述频域起始位置为指定BWP中的指定PRB。
例如,可以是指定BWP中的编号最低的PRB,例如PRB0。
可选的,频域起始位置还可以是指定BWP中的指定PRB的指定子载波,例如PRB0的子载波0。
一种可能的实现方式中,所述指定BWP可以是网络设备通过信令指示的。例如,网络设备可以通过RRC信令、介质访问控制(Media Access Control,MAC)信令或DCI指示所述指定BWP。
另一种可能的实现方式中,所述指定BWP可以是终端设备上报给网络设备的。
情况7:所述频域起始位置为所述上行资源中的指定PRB。
例如,可以是上行资源中的PRB0、或者PRB10等。
可选的,频域起始位置还可以是上行资源中指定PRB的指定子载波,例如PRB0的子载波0。
情况8:所述频域起始位置为所述网络设备通过信令指示的PRB。
其中,网络设备可以通过RRC信令、MAC信令或者DCI指示频域起始位置。例如,可以指示频域起始位置为PRB0,或PRB3等。
可选地,第一频域起始位置为网络设备和终端设备约定的频域位置。
可选地,第一频域起始位置为网络设备指示给UE的频域起始位置。
可选地,网络设备向UE指示第一频域起始位置的确定方法,UE根据该方法确定第一频域起始位置。
需要说明的是,针对前述多个第二子带,或者是针对前述至少一个第一子带,各子带包括的PRB可以是连续的。或者,所述多个第二子带或至少一个第一子带中存在包括非连续PRB的子带。
以下,不失一般性的以前述多个第二子带为例进行解释说明。举例来说,网络设备分配的终端设备的上行资源为PRB0-PRB10、以及PRB22-PRB35。终端设备将所述上行资源划分为多个第二子带,分别为子带1:PRB0-PRB4、子带2:PRB5-PRB9、子带3:PRB10、PRB22-PRB25、子带4:PRB26-PRB30、子带5:PRB31-PRB35。可以理解的是,前述多个第二子带中子带3包括的 PRB是非连续的,而子带1、子带2、子带4、子带5包括的PRB均为连续的。
又例如,网络设备分配的终端设备的上行资源为PRB0-PRB14。终端设备将所述上行资源划分为多个第二子带,分别为子带1:PRB0-PRB4、子带2:PRB5-PRB9、子带3:PRB10-PRB14。可以理解的是,前述多个第二子带中子带1-子带3包括的PRB均是连续的。
可选的,针对前述多个第二子带,或针对前述至少一个第一子带,各子带包括的虚拟资源块(Virtual Resource Block,VRB)可以是连续的,而VRB所对应的PRB可以是连续的,也可以是非连续的。举例来说,一个子带中包括多个连续的VRB,而这些VRB映射到PRB时,各个PRB可以是非连续的。
接下来以具体的实施例进一步介绍本公开实施例中通过上行资源上确定的子带根据指示信息传输上行信号的方法。
实施例1:
如图5所示,其中横轴表示上行资源(PRB),TPMIsub 1,TPMIsub 2,…,TPMIsub L表示指示信息包括的控制信息中的子带的预编码,它们的取值可以相同或不同。其中,指示信息指示的最低频率的子带的频域起始位置为common resource block 0的子载波0,每个子带对应于多个连续的PRB。UE可以根据指示信息和子带宽度确定出上行资源中的多个第二子带。在本实施例中,子带的指示信息(预编码矩阵指示信息)与第二子带一一对应。根据子带的指示信息与第二子带的对应关系,终端可以确定出上行资源的各个PRB的预编码矩阵,从而确定出用于传输上行信号的至少一个第一子带中各子带的预编码,则物理上行共享信道PUSCH传输使用的预编码为PUSCH中用于传输上行信号的各个PRB所在子带对应的预编码。
需要说明的是,在图5中每个子带的子带宽度是一样的,但可以理解的是本公开实施例提供的通信方法中各子带的子带宽度可以相同也可以不同。
实施例2:
如图6所示,其中横轴表示上行资源(PRB),TPMIsub 1,TPMIsub 2,…,TPMIsub L表示指示信息包括的控制信息中的子带的预编码,它们的取值可以 相同或不同。其中,终端设备确定最低频率的子带的频域起始位置(第一频域起始位置)为激活BWP的PRB 0的子载波0,每个子带对应于多个连续的PRB。在本实施例中,子带的指示信息(预编码矩阵指示信息)与第二子带一一对应。终端设备可以根据第一频域起始位置和子带宽度确定出上行资源中的多个第二子带(终端设备可能还基于第二子带的数量或BWP的带宽确定第二子带)。根据子带的指示信息与第二子带的对应关系,终端可以确定出上行资源的各个PRB的预编码矩阵,从而确定出用于传输上行信号的至少一个第一子带的预编码,则PUSCH传输使用的预编码为PUSCH中用于传输上行信号的各个PRB所在子带对应的预编码。
可选的,图6中的BWP为传输所述PUSCH的BWP。或者,图2中的BWP为调度PUSCH时的上行激活BWP。又或者,图6中的BWP为发送所述指示信息时的上行链路激活BWP。
可选的,图6中的BWP为指定BWP,所述特定的BWP是预先已知的,例如,是网络设备通过信令指示给终端设备的。或者,所述指定BWP是终端设备通过信令上报给基站的。
需要说明的是,虽然在图6中每个子带的子带宽度是一样的,但可以理解的是本公开实施例提供的通信方法中各子带的子带宽度可以相同也可以不同。
实施例3:
如图7所示,其中横轴表示上行资源(PRB),TPMIsub 1,TPMIsub 2,…,TPMIsub L表示指示信息包括的控制信息中的子带的预编码,它们的取值可以相同或不同。其中,第一频域起始位置为第二子带中频率最低的子带的频域起始位置,假设第一频域起始位置为PUSCH中用于传输上行信号的频域资源中编号最低的PRB,每个子带对应于多个连续的PRB。在本实施例中,子带的指示信息(预编码矩阵指示信息)与第二子带一一对应。终端设备可以根据第一频域起始位置和每个子带的子带宽度确定出多个第二子带,并根据子带的预编码矩阵指示信息确定出多个第二子带对应PRB的预编码矩阵。第一 子带为PUSCH中用于传输上行信号的频域资源中与第二子带重叠的PRB。在本实施例中,第m个第一子带跟第m个第二子带相同,m小于L,第L个第一子带是第L个第二子带的一部分。则终端可以确定出至少一个第一子带对应的预编码矩阵,则PUSCH传输使用的预编码为PUSCH中用于传输上行信号的各个PRB所在子带对应的预编码。
需要说明的是,在图7中每个子带的子带宽度是一样的,但可以理解的是本公开实施例提供的通信方法中各子带的子带宽度可以相同也可以不同。
实施例4:
终端设备无法根据网络设备的一次指示确定出PUSCH中用于传输上行信号的所有PRB的子带预编码信息。针对这些PRB,终端设备可以根据网络设备之前指示的子带预编码信息确定它们的预编码信息,或者使用宽带预编码作为它们的预编码。如图8所示,第一频域起始位置为第二子带中频率最低的子带的频域起始位置,假设第一频域起始位置为CRB 0的子载波0,子带预编码矩阵的指示信息与第二子带一一对应,终端设备只能确定出3个第二子带的子带预编码矩阵,则终端设备仅能确定PUSCH中用于传输上行信号的一部分PRB所在子带的预编码,终端设备需要采用其他方式确定其他PRB的预编码。例如,可以使用宽带预编码。
实施例5:
如图9所示,其中横向表示上行资源(PRB),TPMIsub 1,TPMIsub 2,…,TPMIsub s表示指示信息包括的控制信息中的子带的预编码,它们的取值可以相同或不同。上行资源包括多个第二子带,其中第二子带的第一频域起始位置(第二子带频率最低的子带的频域起始位置)为初始BWP的PRB 0的子载波0。每个子带包括若干个连续的PRB,且各个子带的子带宽度相同。
网络设备发送的指示信息指示用于传输PUSCH的至少一个第一子带的预编码矩阵。第一子带的第一频域起始位置(第一子带频率最低的子带的频域起始位置)为PUSCH频域资源分配的最低频域位置。在本实施例中,第一子带与子带的预编码指示信息(控制)一一对应。终端设备根据控制信息可 以确定出各个第一子带的预编码矩阵,即可以确定出用于传输上行信号的各PRB的预编码。终端可以使用这些预编码矩阵传输PUSCH。
其中,BWP可以是PUSCH所在的BWP。
实施例6:
如图10所示,其中横轴表示上行资源,TPMIsub 1,TPMIsub 2,TPMIsub 3,TPMIsub 4表示指示信息包括的控制信息中的子带的预编码,它们的取值可以相同或不同。假设每个子带的子带宽度为4个PRB,频率最低的子带的频域起始位置为PUSCH中编号最低的PRB。
在本实施例中,第一频域起始位置为第一子带中频率最低的子带的频域起始位置,假设终端和网络设备约定为PUSCH被分配的频域资源的频率最低的PRB的频率最低的子载波(子载波0)。虽然第2个第一子带的PRB不连续,但在PUSCH被分配的频域资源中为VRB编号连续的PRB。第一子带与子带的预编码指示信息(控制信息)一一对应。假设网络设备为PUSCH分配的资源在频域上不连续(从PRB 3到PRB 9以及PRB 15到PRB 23)。终端设备根据第一频域起始位置可以确定出用于传输上行信号的至少一个第一子带(当然可以结合一些其他信息确定,例如第一子带的大小、第一子带的数量等),根据控制信息可以确定出各个子带的预编码矩阵,则PUSCH传输使用的预编码为PUSCH中用于传输上行信号的各个PRB所在子带对应的预编码。
基于相同的发明构思,本公开实施例还提供一种通信装置。由于该通信装置即是本公开实施例中的方法中的通信装置,并且该通信装置解决问题的原理与该方法相似,因此该通信装置的实施可以参见方法的实施,重复之处不再赘述。
如图11所示,本公开实施例一种通信装置包括:
处理器11100、存储器11101和收发机11102。
处理器11100负责管理总线架构和通常的处理,存储器11101可以存储处理器11100在执行操作时所使用的数据。收发机11102用于在处理器11100的控制下接收和发送数据。
总线架构可以包括任意数量的互联的总线和桥,具体由处理器11100代表的一个或多个处理器11100和存储器11101代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。处理器11100负责管理总线架构和通常的处理,存储器11101可以存储处理器11100在执行操作时所使用的数据。
本公开实施例揭示的流程,可以应用于处理器11100中,或者由处理器11100实现。在实现过程中,信号处理流程的各步骤可以通过处理器11100中的硬件的集成逻辑电路或者软件形式的指令完成。处理器11100可以是通用处理器11100、数字信号处理器11100、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器11100可以是微处理器11100或者任何常规的处理器11100等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件处理器11100执行完成,或者用处理器11100中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器11101,处理器11100读取存储器11101中的信息,结合其硬件完成信号处理流程的步骤。
其中,处理器11100,用于读取存储器11101中的程序并执行下列过程:
在上行资源中确定用于传输上行信号的至少一个第一子带;
通过收发机11102根据接收到的网络设备发送的上行信号的指示信息和确定的所述至少一个第一子带传输上行信号,其中,所述指示信息用于指示所述上行信号的传输参数和/或传输天线。
可选的,所述处理器还用于确定第一频域起始位置,并根据第一频域起始位置确定所述至少一个第一子带。
可选的,所述处理器还用于根据所述第一频域起始位置确定所述上行资源上的多个第二子带,并在所述多个第二子带中确定所述至少一个第一子带; 或,
根据所述第一频域起始位置、子带宽度确定所述上行资源上的多个第二子带,并在所述多个第二子带中确定所述至少一个第一子带;或,
根据所述第一频域起始位置、子带宽度和所述网络设备为所述上行信号分配的频域资源确定所述至少一个第一子带;或,
根据所述第一频域起始位置、子带宽度和子带数量确定所述至少一个第一子带。
可选的,所述至少一个第一子带中任意一个子带的频域起始位置都等于第一频域起始位置加上子带宽度的整数倍的偏移;或者,
所述至少一个第一子带中除指定子带外的子带的频域起始位置都等于第一频域起始位置加上子带宽度的整数倍的偏移。
可选的,所述处理器还用于:根据所述网络设备为所述上行信号分配的频域资源,在所述多个第二子带中确定所述频域资源对应的子带,作为所述至少一个第一子带;或者,
根据所述网络设备为所述上行信号分配的频域资源与所述多个第二子带的重叠频域资源确定所述至少一个第一子带。
可选的,所述指示信息包括所述上行资源包括的第二子带中全部或部分子带对应的控制信息;或,
所述指示信息包括所述用于传输上行信号的所述至少一个第一子带的控制信息;所述控制信息针对所述至少一个第一子带分别指示;或,
所述指示信息包括指定子带的控制信息;其中,所述指定子带是所述网络设备指示的或所述网络设备与所述终端设备预先约定的。
可选的,所述控制信息包括以下中的部分或全部:
预编码矩阵指示信息、传输流数指示信息、空间相关信息、SRS资源指示信息、发送天线指示信息或天线面板panel指示信息。
可选的,将所述第一频域起始位置作为频率最低的子带的频域起始位置,并根据所述频率最低的子带的频域起始位置确定所述上行资源上的多个第二 子带;或,
将所述第一频域起始位置作为频率最低的子带的频域起始位置,并根据所述频率最低的子带的频域起始位置确定所述至少一个子带;
所述第一频域起始位置是所述指示信息对应的频域资源的起始位置;所述指示信息对应的频域资源在所述上行信号的频域资源上,或在所述上行资源上。
可选的,所述第一频域起始位置为指定CRB的频域位置;或者,
所述第一频域起始位置为初始上行链路BWP的指定物理资源块PRB的频域位置;或者,
所述第一频域起始位置为用于传输所述上行信号的BWP中的指定PRB的频域位置;或者,
所述第一频域起始位置为用于传输所述上行信号的调度信息时的激活上行BWP中的指定PRB的频域位置;或者,
所述第一频域起始位置为用于传输所述指示信息的BWP中的指定PRB的频域位置;或者,
所述第一频域起始位置为指定BWP中的指定PRB的频域位置;或者,
所述第一频域起始位置为所述网络设备为所述上行信号分配的频域资源中的指定PRB的频域位置;或者,
所述第一频域起始位置为所述网络设备通过信令指示的PRB的频域位置。
可选的,所述处理器还用于:
根据所述指示信息确定所述至少一个第一子带对应的传输参数和/或传输天线;
通过收发机11102采用所述至少一个第一子带,使用所述传输参数和/或传输天线传输所述上行信号。
基于相同的发明构思,本公开实施例中还提供了另一种通信装置,由于该装置即是本公开实施例中的方法中的装置,并且该装置解决问题的原理与该方法相似,因此该装置的实施可以参见方法的实施,重复之处不再赘述。
如图12所示,本公开实施例还提供一种通信装置,该装置包括:
第一确定模块1201,用于在上行资源中确定用于传输上行信号的至少一个第一子带;
传输模块1202,用于根据接收到的网络设备发送的上行信号的指示信息和确定的所述至少一个第一子带传输上行信号,其中,所述指示信息用于指示所述上行信号的传输参数和/或传输天线。
可选的,所述第一确定模块还用于,确定第一频域起始位置,并根据第一频域起始位置确定所述至少一个第一子带。
可选的,所述第一确定模块还用于:
根据所述第一频域起始位置确定所述上行资源上的多个第二子带,并在所述多个第二子带中确定所述至少一个第一子带;或,
根据所述第一频域起始位置、子带宽度确定所述上行资源上的多个第二子带,并在所述多个第二子带中确定所述至少一个第一子带;或,
根据所述第一频域起始位置、子带宽度和所述网络设备为所述上行信号分配的频域资源确定所述至少一个第一子带;或,
根据所述第一频域起始位置、子带宽度和子带数量确定所述至少一个第一子带。
可选的,所述至少一个第一子带中任意一个子带的频域起始位置都等于第一频域起始位置加上子带宽度的整数倍的偏移;或者,
所述至少一个第一子带中除指定子带外的子带的频域起始位置都等于第一频域起始位置加上子带宽度的整数倍的偏移。
可选的,所述第一确定模块还用于:
根据所述网络设备为所述上行信号分配的频域资源,在所述多个第二子带中确定所述频域资源对应的子带,作为所述至少一个第一子带;或者,
根据所述网络设备为所述上行信号分配的频域资源与所述多个第二子带的重叠频域资源确定所述至少一个第一子带。
可选的,所述指示信息包括所述上行资源包括的第二子带中全部或部分 子带对应的控制信息;或,
所述指示信息包括所述用于传输上行信号的所述至少一个第一子带的控制信息;所述控制信息针对所述至少一个第一子带分别指示;或,
所述指示信息包括指定子带的控制信息;其中,所述指定子带是所述网络设备指示的或所述网络设备与所述终端设备预先约定的。
可选的,所述控制信息包括以下中的部分或全部:
预编码矩阵指示信息、传输流数指示信息、空间相关信息、SRS资源指示信息、发送天线指示信息或天线面板panel指示信息。
可选的,将所述第一频域起始位置作为频率最低的子带的频域起始位置,并根据所述频率最低的子带的频域起始位置确定所述上行资源上的多个第二子带;或,
将所述第一频域起始位置作为频率最低的子带的频域起始位置,并根据所述频率最低的子带的频域起始位置确定所述至少一个子带;
所述第一频域起始位置是所述指示信息对应的频域资源的起始位置;所述指示信息对应的频域资源在所述上行信号的频域资源上,或在所述上行资源上。
可选的,所述第一频域起始位置为指定公共资源块CRB的频域位置;或者,
所述第一频域起始位置为初始上行链路BWP的指定物理资源块PRB的频域位置;或者,
所述第一频域起始位置为用于传输所述上行信号的BWP中的指定PRB的频域位置;或者,
所述第一频域起始位置为用于传输所述上行信号的调度信息时的激活上行BWP中的指定PRB的频域位置;或者,
所述第一频域起始位置为用于传输所述指示信息的BWP中的指定PRB的频域位置;或者,
所述第一频域起始位置为指定BWP中的指定PRB的频域位置;或者,
所述第一频域起始位置为所述网络设备为所述上行信号分配的频域资源中的指定PRB的频域位置;或者,
所述第一频域起始位置为所述网络设备通过信令指示的PRB的频域位置。
可选的,所述至少一个第一子带中包括多个PRB;
所述至少一个第一子带包括的PRB是连续的;或者,
所述至少一个第一子带中有包括非连续PRB的子带。
可选的,所述第一确定模块还用于:
根据所述指示信息确定所述至少一个第一子带对应的传输参数和/或传输天线;
所述传输模块还用于,通过所述至少一个第一子带,使用所述传输参数和/或传输天线传输所述上行信号。
基于相同的发明构思,本公开实施例还提供另一种通信装置,由于该装置即是本公开实施例中的方法中的装置,并且该装置解决问题的原理与该方法相似,因此该装置的实施可以参见方法的实施,重复之处不再赘述。
如图13所示,该装置包括:
处理器13100、存储器13101和收发机13102。
处理器13100负责管理总线架构和通常的处理,存储器13101可以存储处理器13100在执行操作时所使用的数据。收发机13102用于在处理器13100的控制下接收和发送数据。
总线架构可以包括任意数量的互联的总线和桥,具体由处理器13100代表的一个或多个处理器13100和存储器13101代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。处理器13100负责管理总线架构和通常的处理,存储器13101可以存储处理器13100在执行操作时所使用的数据。
本公开实施例揭示的流程,可以应用于处理器13100中,或者由处理器13100实现。在实现过程中,信号处理流程的各步骤可以通过处理器13100中 的硬件的集成逻辑电路或者软件形式的指令完成。处理器13100可以是通用处理器13100、数字信号处理器13100、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器13100可以是微处理器13100或者任何常规的处理器13100等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件处理器13100执行完成,或者用处理器13100中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器13101,处理器13100读取存储器13101中的信息,结合其硬件完成信号处理流程的步骤。
其中,处理器13100,用于读取存储器13101中的程序并执行下列过程:
在终端设备的上行资源中确定子带,并确定上行信号在所述子带的指示信息;所述指示信息用于指示所述上行信号的传输参数和/或传输天线;
通过收发机13102将所述指示信息发送给所述终端设备。
可选的,所述处理器还用于:
确定第一频域起始位置,并根据第一频域起始位置确定所述子带。
可选的,所述处理器还用于;
在所述上行资源上根据所述第一频域起始位置、子带宽度确定所述终端设备用于传输上行信号的至少一个第一子带;或,
在为所述终端设备的上行信号分配的频域资源上,根据所述第一频域起始位置、子带宽度确定所述终端设备用于传输上行信号的至少一个第一子带;所述为所述终端设备的上行信号分配的频域资源在所述上行资源上;或者,
在上行资源上根据所述第一频域起始位置、子带宽度和子带数量确定用于传输所述上行信号的至少一个第一子带;或,
根据所述第一频域起始位置确定所述上行资源上的多个第二子带。
可选的,所述子带的数量为多个:
所述子带中任意一个子带的频域起始位置都等于第一频域起始位置加上子带宽度的整数倍的偏移;或,
所述子带中除指定子带外的子带的频域起始位置都等于第一频域起始位置加上子带宽度的整数倍的偏移。
可选的,所述指示信息包括上行资源上的全部或部分第二子带对应的控制信息;或,
所述指示信息包括所述至少一个第一子带的控制信息;所述控制信息针对所述至少一个第一子带分别指示;或,
所述指示信息包括指定子带的控制信息;其中,所述指定子带是所述网络设备与所述终端设备预先约定的或所述网络设备确定的。
可选的,所述控制信息包括以下中的部分或全部:
预编码矩阵指示信息、传输流数指示信息、空间相关信息、SRS资源指示信息、发送天线指示信息或天线面板panel指示信息。
可选的,将所述第一频域起始位置作为频率最低的子带的频域起始位置,并根据所述频率最低的子带的频域起始位置确定所述上行资源上的多个第二子带;或,
将所述第一频域起始位置作为频率最低的子带的频域起始位置,并根据所述频率最低的子带的频域起始位置确定所述至少一个子带;
所述第一频域起始位置是所述指示信息对应的频域资源的起始位置;所述指示信息对应的频域资源在所述上行信号的频域资源上,或在所述上行资源上。
可选的,所述第一频域起始位置为指定公共资源块CRB的频域位置;或者,
所述第一频域起始位置为初始上行链路BWP的指定物理资源块PRB的频域位置;或者,
所述第一频域起始位置为用于传输所述上行信号的BWP中的指定PRB的频域位置;或者,
所述第一频域起始位置为用于传输所述上行信号的调度信息时的激活上行BWP中的指定PRB的频域位置;或者,
所述第一频域起始位置为用于传输所述指示信息的BWP中的指定PRB的频域位置;或者,
所述第一频域起始位置为指定BWP中的指定PRB的频域位置;或者,
所述第一频域起始位置为所述网络设备为所述上行信号分配的频域资源中的指定PRB的频域位置。
可选的,所述处理器还用于通过收发机13102接收所述终端设备发送的上行信号;所述上行信号是所述终端设备通过用于传输上行信号的子带,使用所述传输参数和/或传输天线发送的。
基于相同的发明构思,本公开实施例中还提供了另一种通信装置,由于该装置即是本公开实施例中的方法中的装置,并且该装置解决问题的原理与该方法相似,因此该装置的实施可以参见方法的实施,重复之处不再赘述。
如图14所示,本公开实施例还提供一种通信装置,该装置包括:
第二确定模块1401,用于在终端设备的上行资源中确定子带,并确定上行信号在所述子带的指示信息;所述指示信息用于指示所述上行信号的传输参数和/或传输天线;
发送模块1402,用于将所述指示信息发送给所述终端设备。
可选的,所述第二确定模块还用于:
确定第一频域起始位置,并根据第一频域起始位置确定所述子带。
可选的,所述第二确定模块还用于:
在所述上行资源上根据所述第一频域起始位置、子带宽度确定所述终端设备用于传输上行信号的至少一个第一子带;或,
在为所述终端设备的上行信号分配的频域资源上,根据所述第一频域起始位置、子带宽度确定所述终端设备用于传输上行信号的至少一个第一子带;所述为所述终端设备的上行信号分配的频域资源在所述上行资源上;或者,
在上行资源上根据所述第一频域起始位置、子带宽度和子带数量确定用 于传输所述上行信号的至少一个第一子带;或,
根据所述第一频域起始位置确定所述上行资源上的多个第二子带。
可选的,所述子带的数量为多个:
所述子带中任意一个子带的频域起始位置都等于第一频域起始位置加上子带宽度的整数倍的偏移;或,
所述子带中除指定子带外的子带的频域起始位置都等于第一频域起始位置加上子带宽度的整数倍的偏移。
可选的,所述指示信息包括上行资源上的全部或部分第二子带对应的控制信息;或,
所述指示信息包括所述至少一个第一子带的控制信息;所述控制信息针对所述至少一个第一子带分别指示;或,
所述指示信息包括指定子带的控制信息;其中,所述指定子带是所述网络设备与所述终端设备预先约定的或所述网络设备确定的。
可选的,所述控制信息包括以下中的部分或全部:
预编码矩阵指示信息、传输流数指示信息、空间相关信息、SRS资源指示信息、发送天线指示信息或天线面板panel指示信息。
可选的,将所述第一频域起始位置作为频率最低的子带的频域起始位置,并根据所述频率最低的子带的频域起始位置确定所述上行资源上的多个第二子带;或,
将所述第一频域起始位置作为频率最低的子带的频域起始位置,并根据所述频率最低的子带的频域起始位置确定所述至少一个子带;
所述第一频域起始位置是所述指示信息对应的频域资源的起始位置;所述指示信息对应的频域资源在所述上行信号的频域资源上,或在所述上行资源上。
可选的,所述第一频域起始位置为指定CRB的频域位置;或者,
所述第一频域起始位置为初始上行链路BWP的指定PRB的频域位置;或者,
所述第一频域起始位置为用于传输所述上行信号的BWP中的指定PRB的频域位置;或者,
所述第一频域起始位置为用于传输所述上行信号的调度信息时的激活上行BWP中的指定PRB的频域位置;或者,
所述第一频域起始位置为用于传输所述指示信息的BWP中的指定PRB的频域位置;或者,
所述第一频域起始位置为指定BWP中的指定PRB的频域位置;或者,
所述第一频域起始位置为所述网络设备为所述上行信号分配的频域资源中的指定PRB的频域位置。
可选的,所述装置还包括:
接收模块,用于接收所述终端设备发送的上行信号;所述上行信号是所述终端设备通过用于传输上行信号的子带,使用所述传输参数和/或传输天线发送的。
本公开实施例还提供一种计算机可读非易失性存储介质,包括程序代码,当所述程序代码在计算终端上运行时,所述程序代码用于使所述计算终端执行上述本公开实施例通信方法的步骤。
以上参照示出根据本公开实施例的方法、装置(系统)和/或计算机程序产品的框图和/或流程图描述本公开。应理解,可以通过计算机程序指令来实现框图和/或流程图示图的一个块以及框图和/或流程图示图的块的组合。可以将这些计算机程序指令提供给通用计算机、专用计算机的处理器和/或其它可编程数据处理装置,以产生机器,使得经由计算机处理器和/或其它可编程数据处理装置执行的指令创建用于实现框图和/或流程图块中所指定的功能/动作的方法。
相应地,还可以用硬件和/或软件(包括固件、驻留软件、微码等)来实施本公开。更进一步地,本公开可以采取计算机可使用或计算机可读存储介质上的计算机程序产品的形式,其具有在介质中实现的计算机可使用或计算机可读程序代码,以由指令执行系统来使用或结合指令执行系统而使用。在 本公开上下文中,计算机可使用或计算机可读介质可以是任意介质,其可以包括、存储、通信、传输、或传送程序,以由指令执行系统、装置或设备使用,或结合指令执行系统、装置或设备使用。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包括这些改动和变型在内。

Claims (42)

  1. 一种通信方法,其特征在于,所述方法包括:
    终端设备在上行资源中确定用于传输上行信号的至少一个第一子带;
    所述终端设备根据接收到的网络设备发送的上行信号的指示信息和确定的所述至少一个第一子带传输上行信号,其中,所述指示信息用于指示所述上行信号的传输参数和/或传输天线。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备在上行资源中确定用于传输上行信号的至少一个第一子带,包括:
    所述终端设备确定第一频域起始位置;
    所述终端设备在上行资源上根据第一频域起始位置确定所述至少一个第一子带。
  3. 根据权利要求2所述的方法,其特征在于,所述终端设备根据第一频域起始位置确定所述至少一个第一子带,包括:
    所述终端设备根据所述第一频域起始位置确定所述上行资源上的多个第二子带,并在所述多个第二子带中确定所述至少一个第一子带;或
    所述终端设备根据所述第一频域起始位置、子带宽度确定所述上行资源上的多个第二子带,并在所述多个第二子带中确定所述至少一个第一子带;或
    所述终端设备根据所述第一频域起始位置、子带宽度和所述网络设备为所述上行信号分配的频域资源,确定所述至少一个第一子带;或
    所述终端设备根据所述第一频域起始位置、子带宽度和子带数量确定所述至少一个第一子带。
  4. 根据权利要求2或3所述的方法,其特征在于,
    所述至少一个第一子带中任意一个子带的频域起始位置都等于第一频域起始位置加上子带宽度的整数倍的偏移;或者,
    所述至少一个第一子带中除指定子带外的子带的频域起始位置都等于第 一频域起始位置加上子带宽度的整数倍的偏移。
  5. 根据权利要求3所述的方法,其特征在于,所述终端设备在所述多个第二子带中确定所述至少一个第一子带,包括:
    所述终端设备根据所述网络设备为所述上行信号分配的频域资源,在所述多个第二子带中确定所述频域资源对应的子带,作为所述至少一个第一子带;或者,
    所述终端设备根据所述网络设备为所述上行信号分配的频域资源与所述多个第二子带的重叠频域资源确定所述至少一个第一子带。
  6. 根据权利要求1所述的方法,其特征在于,所述指示信息包括所述上行资源包括的第二子带中全部或部分子带对应的控制信息;或,
    所述指示信息包括所述用于传输上行信号的所述至少一个第一子带的控制信息;所述控制信息针对所述至少一个第一子带中的全部或部分子带分别指示;或,
    所述指示信息包括指定子带的控制信息;其中,所述指定子带是所述网络设备指示的或所述网络设备与所述终端设备预先约定的。
  7. 根据权利要求6所述的方法,其特征在于,所述控制信息包括以下中的部分或全部:
    预编码矩阵指示信息、传输流数指示信息、空间相关信息、上行探测参考信号SRS资源指示信息、发送天线指示信息或天线面板panel指示信息。
  8. 根据权利要求3所述的方法,其特征在于,所述终端设备确定所述上行资源上的多个第二子带,包括:
    所述终端设备将所述第一频域起始位置作为频率最低的子带的频域起始位置,并根据所述频率最低的子带的频域起始位置确定所述上行资源上的多个第二子带;
    所述终端设备确定所述至少一个第一子带,包括:
    所述终端设备将所述第一频域起始位置作为频率最低的子带的频域起始位置,并根据所述频率最低的子带的频域起始位置确定所述至少一个子带;
    所述第一频域起始位置是所述指示信息对应的频域资源的起始位置;所述指示信息对应的频域资源在所述上行信号的频域资源上,或在所述上行资源上。
  9. 根据权利要求2-3或5-8任一项所述的方法,其特征在于,
    所述第一频域起始位置为指定公共资源块CRB的频域位置;或者,
    所述第一频域起始位置为初始上行链路宽带部分UL BWP的指定物理资源块PRB的频域位置;或者,
    所述第一频域起始位置为用于传输所述上行信号的BWP中的指定PRB的频域位置;或者,
    所述第一频域起始位置为用于传输所述上行信号的调度信息时的激活上行BWP中的指定PRB的频域位置;或者,
    所述第一频域起始位置为用于传输所述指示信息的BWP中的指定PRB的频域位置;或者,
    所述第一频域起始位置为指定BWP中的指定PRB的频域位置;或者,
    所述第一频域起始位置为所述网络设备为所述上行信号分配的频域资源中的指定PRB的频域位置;或者,
    所述第一频域起始位置为所述网络设备通过信令指示的PRB的频域位置。
  10. 根据权利要求2-3或5-8任一项所述的方法,其特征在于,所述至少一个第一子带中包括多个PRB;
    所述至少一个第一子带包括的PRB是连续的;或者,
    所述至少一个第一子带中有包括非连续PRB的子带。
  11. 根据权利要求2-3或5-8任一项所述的方法,其特征在于,所述终端设备根据接收到的网络设备发送的上行信号的指示信息和确定的所述至少一个第一子带传输上行信号,包括:
    所述终端设备根据所述指示信息确定所述至少一个第一子带对应的传输参数和/或传输天线;
    所述终端设备通过所述至少一个第一子带,使用所述传输参数和/或传输 天线传输所述上行信号。
  12. 一种通信方法,其特征在于,所述方法包括:
    网络设备在终端设备的上行资源中确定子带;
    所述网络设备确定上行信号在所述子带的指示信息;所述指示信息用于指示所述上行信号的传输参数和/或传输天线;
    所述网络设备将所述指示信息发送给所述终端设备。
  13. 根据权利要求12所述的方法,其特征在于,所述网络设备在终端设备的上行资源中确定子带,包括:
    所述网络设备确定第一频域起始位置;
    所述网络设备根据第一频域起始位置在所述上行资源中确定所述子带。
  14. 根据权利要求13所述的方法,其特征在于,所述网络设备根据第一频域起始位置确定所述子带,包括:
    所述网络设备在所述上行资源上根据所述第一频域起始位置、子带宽度确定所述终端设备用于传输上行信号的至少一个第一子带;或,
    所述网络设备在为所述终端设备的上行信号分配的频域资源上,根据所述第一频域起始位置、子带宽度确定所述终端设备用于传输上行信号的至少一个第一子带;所述为所述终端设备的上行信号分配的频域资源在所述上行资源上;或者,
    所述网络设备在上行资源上根据所述第一频域起始位置、子带宽度和子带数量确定用于传输所述上行信号的至少一个第一子带;或,
    所述网络设备根据所述第一频域起始位置确定所述上行资源上的多个第二子带。
  15. 根据权利要求13或14所述的方法,其特征在于,所述子带的数量为多个:
    所述子带中任意一个子带的频域起始位置都等于第一频域起始位置加上子带宽度的整数倍的偏移;或,
    所述子带中除指定子带外的子带的频域起始位置都等于第一频域起始位 置加上子带宽度的整数倍的偏移。
  16. 根据权利要求14所述的方法,其特征在于,
    所述指示信息包括所述上行资源上的第二子带中全部或部分子带对应的控制信息;或,
    所述指示信息包括所述至少一个第一子带的控制信息;所述控制信息针对所述至少一个第一子带中的全部或部分子带分别指示;或,
    所述指示信息包括指定子带的控制信息;其中,所述指定子带是所述网络设备与所述终端设备预先约定的或所述网络设备确定的。
  17. 根据权利要求16所述的方法,其特征在于,所述控制信息包括以下中的部分或全部:
    预编码矩阵指示信息、传输流数指示信息、空间相关信息、SRS资源指示信息、发送天线指示信息或天线面板panel指示信息。
  18. 根据权利要求14所述的方法,其特征在于,所述网络设备在上行资源上确定至少一个第一子带,包括:
    所述网络设备将所述第一频域起始位置作为中频率最低的子带的频域起始位置,并根据所述频率最低的子带的频域起始位置确定所述至少一个子带;
    所述网络设备确定上行资源上的多个第二子带,包括:
    所述网络设备将所述第一频域起始位置作为频率最低的子带的频域起始位置,并根据所述频率最低的子带的频域起始位置确定所述上行资源上的多个第二子带;
    所述第一频域起始位置是所述指示信息对应的频域资源的起始位置;所述指示信息对应的频域资源在所述上行信号的频域资源上,或在所述上行资源上。
  19. 根据权利要求13-14或16-18任一项所述的方法,其特征在于:
    所述第一频域起始位置为指定公共资源块CRB的频域位置;或者,
    所述第一频域起始位置为初始上行链路BWP的指定物理资源块PRB的频域位置;或者,
    所述第一频域起始位置为用于传输所述上行信号的BWP中的指定PRB的频域位置;或者,
    所述第一频域起始位置为用于传输所述上行信号的调度信息时的激活上行BWP中的指定PRB的频域位置;或者,
    所述第一频域起始位置为用于传输所述指示信息的BWP中的指定PRB的频域位置;或者,
    所述第一频域起始位置为指定BWP中的指定PRB的频域位置;或者,
    所述第一频域起始位置为所述网络设备为所述上行信号分配的频域资源中的指定PRB的频域位置。
  20. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收所述终端设备发送的上行信号;所述上行信号是所述终端设备通过用于传输上行信号的子带,使用所述传输参数和/或传输天线发送的。
  21. 一种通信装置,其特征在于,包括处理器、存储器,其中,所述存储器用于存储计算机可执行指令,当所述处理器执行所述计算机可执行指令时,使所述装置执行:
    在上行资源中确定用于传输上行信号的至少一个第一子带;
    根据接收到的网络设备发送的上行信号的指示信息和确定的所述至少一个第一子带传输上行信号,其中,所述指示信息用于指示所述上行信号的传输参数和/或传输天线。
  22. 根据权利要求21所述的装置,其特征在于,所述处理器还用于:
    确定第一频域起始位置,并在上行资源上根据第一频域起始位置确定所述至少一个第一子带。
  23. 根据权利要求22所述的装置,其特征在于,所述处理器还用于:
    根据所述第一频域起始位置确定所述上行资源上的多个第二子带,并在所述多个第二子带中确定所述至少一个第一子带;或
    根据所述第一频域起始位置、子带宽度确定所述上行资源上的多个第二 子带,并在所述多个第二子带中确定所述至少一个第一子带;或
    根据所述第一频域起始位置、子带宽度和所述网络设备为所述上行信号分配的频域资源确定所述至少一个第一子带;或
    根据所述第一频域起始位置、子带宽度和子带数量确定所述至少一个第一子带。
  24. 根据权利要求22或23所述的装置,其特征在于,
    所述至少一个第一子带中任意一个子带的频域起始位置都等于第一频域起始位置加上子带宽度的整数倍的偏移;或者,
    所述至少一个第一子带中除指定子带外的子带的频域起始位置都等于第一频域起始位置加上子带宽度的整数倍的偏移。
  25. 根据权利要求23所述的装置,其特征在于,所述处理器还用于:
    根据所述网络设备为所述上行信号分配的频域资源,在所述多个第二子带中确定所述频域资源对应的子带,作为所述至少一个第一子带;或者,
    根据所述网络设备为所述上行信号分配的频域资源与所述多个第二子带的重叠频域资源确定所述至少一个第一子带。
  26. 根据权利要求21所述的装置,其特征在于,所述指示信息包括所述上行资源包括的第二子带中全部或部分子带对应的控制信息;或,
    所述指示信息包括所述用于传输上行信号的所述至少一个第一子带的控制信息;所述控制信息针对所述至少一个第一子带中的全部或部分子带分别指示;或,
    所述指示信息包括指定子带的控制信息;其中,所述指定子带是所述网络设备指示的或所述网络设备与所述终端设备预先约定的。
  27. 根据权利要求26所述的装置,其特征在于,所述控制信息包括以下中的部分或全部:
    预编码矩阵指示信息、传输流数指示信息、空间相关信息、SRS资源指示信息、发送天线指示信息或天线面板panel指示信息。
  28. 根据权利要求23所述的装置,其特征在于,所述处理器还用于:
    将所述第一频域起始位置作为频率最低的子带的频域起始位置,并根据所述频率最低的子带的频域起始位置确定所述上行资源上的多个第二子带;或,
    将所述第一频域起始位置作为频率最低的子带的频域起始位置,并根据所述频率最低的子带的频域起始位置确定所述至少一个子带;
    所述第一频域起始位置是所述指示信息对应的频域资源的起始位置;所述指示信息对应的频域资源在所述上行信号的频域资源上,或在所述上行资源上。
  29. 根据权利要求22-23或25-28任一项所述的装置,其特征在于:
    所述第一频域起始位置为指定CRB的频域位置;或者,
    所述第一频域起始位置为初始上行链路BWP的指定PRB的频域位置;或者,
    所述第一频域起始位置为用于传输所述上行信号的BWP中的指定PRB的频域位置;或者,
    所述第一频域起始位置为用于传输所述上行信号的调度信息时的激活上行BWP中的指定PRB的频域位置;或者,
    所述第一频域起始位置为用于传输所述指示信息的BWP中的指定PRB的频域位置;或者,
    所述第一频域起始位置为指定BWP中的指定PRB的频域位置;或者,
    所述第一频域起始位置为所述网络设备为所述上行信号分配的频域资源中的指定PRB的频域位置;或者,
    所述第一频域起始位置为所述网络设备通过信令指示的PRB的频域位置。
  30. 根据权利要求22-23或25-28任一项所述的装置,其特征在于,所述至少一个第一子带中包括多个PRB;
    所述至少一个第一子带包括的PRB是连续的;或者,
    所述至少一个第一子带中有包括非连续PRB的子带。
  31. 根据权利要求22-23或25-28任一项所述的装置,其特征在于,所述 处理器还用于:
    根据所述指示信息确定所述至少一个第一子带对应的传输参数和/或传输天线;
    所述传输模块还用于,通过所述至少一个第一子带,使用所述传输参数和/或传输天线传输所述上行信号。
  32. 一种通信装置,其特征在于,包括处理器和存储器,其中,所述存储器用于存储计算机可执行指令,当所述处理器执行所述计算机可执行指令时,使所述装置执行:
    在终端设备的上行资源中确定子带,并确定上行信号在所述子带的指示信息;所述指示信息用于指示所述上行信号的传输参数和/或传输天线;
    将所述指示信息发送给所述终端设备。
  33. 根据权利要求32所述的装置,其特征在于,所述处理器还用于:
    确定第一频域起始位置,并根据第一频域起始位置在所述上行资源中确定所述子带。
  34. 根据权利要求33所述的装置,其特征在于,所述处理器还用于:
    在所述上行资源上根据所述第一频域起始位置、子带宽度确定所述终端设备用于传输上行信号的至少一个第一子带;或,
    在为所述终端设备的上行信号分配的频域资源上,根据所述第一频域起始位置、子带宽度确定所述终端设备用于传输上行信号的至少一个第一子带;所述为所述终端设备的上行信号分配的频域资源在所述上行资源上;或者,在上行资源上根据所述第一频域起始位置、子带宽度和子带数量确定用于传输所述上行信号的至少一个第一子带;或,
    根据所述第一频域起始位置确定所述上行资源上的多个第二子带。
  35. 根据权利要求33或34所述的装置,其特征在于,所述子带的数量为多个:
    所述子带中任意一个子带的频域起始位置都等于第一频域起始位置加上子带宽度的整数倍的偏移;或,
    所述子带中除指定子带外的子带的频域起始位置都等于第一频域起始位置加上子带宽度的整数倍的偏移。
  36. 根据权利要求35所述的装置,其特征在于:
    所述指示信息包括上行资源上的第二子带中全部或部分子带对应的控制信息;或,
    所述指示信息包括所述至少一个第一子带的控制信息;所述控制信息针对所述至少一个第一子带中的全部或部分子带分别指示;或,
    所述指示信息包括指定子带的控制信息;其中,所述指定子带是所述网络设备与所述终端设备预先约定的或所述网络设备确定的。
  37. 根据权利要求36所述的装置,其特征在于,所述控制信息包括以下中的部分或全部:
    预编码矩阵指示信息、传输流数指示信息、空间相关信息、SRS资源指示信息、发送天线指示信息或天线面板panel指示信息。
  38. 根据权利要求34所述的装置,其特征在于,所述处理器还用于:
    将所述第一频域起始位置作为频率最低的子带的频域起始位置,并根据所述频率最低的子带的频域起始位置确定所述至少一个子带;或者,
    将所述第一频域起始位置作为频率最低的子带的频域起始位置,并根据所述频率最低的子带的频域起始位置确定所述上行资源上的多个第二子带;或者,
    所述第一频域起始位置是所述指示信息对应的频域资源的起始位置;所述指示信息对应的频域资源在所述上行信号的频域资源上,或在所述上行资源上。
  39. 根据权利要求33-34或36-38任一项所述的装置,其特征在于:
    所述第一频域起始位置为指定CRB的频域位置;或者,
    所述第一频域起始位置为初始上行链路BWP的指定PRB的频域位置;或者,
    所述第一频域起始位置为用于传输所述上行信号的BWP中的指定PRB 的频域位置;或者,
    所述第一频域起始位置为用于传输所述上行信号的调度信息时的激活上行BWP中的指定PRB的频域位置;或者,
    所述第一频域起始位置为用于传输所述指示信息的BWP中的指定PRB的频域位置;或者,
    所述第一频域起始位置为指定BWP中的指定PRB的频域位置;或者,
    所述第一频域起始位置为所述网络设备为所述上行信号分配的频域资源中的指定PRB的频域位置。
  40. 根据权利要求32所述的装置,其特征在于,所述处理器还用于:
    接收所述终端设备发送的上行信号;所述上行信号是所述终端设备通过用于传输上行信号的子带,使用所述传输参数和/或传输天线发送的。
  41. 一种通信装置,其特征在于,用于执行如权利要求1-11任一所述的方法或如权利要求12-20任一所述的方法。
  42. 一种计算机可读存储介质,其上存储有计算机程序或指令,其特征在于,所述计算机程序或指令被执行时使得处理器执行如权利要求1-11任一所述的方法或如权利要求12-20任一所述的方法。
PCT/CN2020/129866 2019-12-26 2020-11-18 一种通信方法和装置 WO2021129245A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227024337A KR20220114066A (ko) 2019-12-26 2020-11-18 통신 방법 및 장치
US17/786,981 US20230040978A1 (en) 2019-12-26 2020-11-18 Communication method and apparatus
JP2022539246A JP2023508203A (ja) 2019-12-26 2020-11-18 通信方法および装置
EP20904607.7A EP4084549A4 (en) 2019-12-26 2020-11-18 COMMUNICATION METHOD AND APPARATUS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911368904.9A CN113056003B (zh) 2019-12-26 2019-12-26 一种通信方法和装置
CN201911368904.9 2019-12-26

Publications (1)

Publication Number Publication Date
WO2021129245A1 true WO2021129245A1 (zh) 2021-07-01

Family

ID=76505541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129866 WO2021129245A1 (zh) 2019-12-26 2020-11-18 一种通信方法和装置

Country Status (6)

Country Link
US (1) US20230040978A1 (zh)
EP (1) EP4084549A4 (zh)
JP (1) JP2023508203A (zh)
KR (1) KR20220114066A (zh)
CN (1) CN113056003B (zh)
WO (1) WO2021129245A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023193233A1 (en) * 2022-04-08 2023-10-12 Lenovo (Beijing) Limited Method and apparatus for subband utilization in full duplex system
WO2023211144A1 (ko) * 2022-04-29 2023-11-02 주식회사 케이티 전이중통신을 위한 프레임 구조 설정 방법 및 장치

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115209556A (zh) * 2021-04-08 2022-10-18 维沃移动通信有限公司 传输资源确定方法和设备
US11937144B2 (en) * 2021-07-08 2024-03-19 Qualcomm Incorporated Cooperative user equipment switching

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108112075A (zh) * 2017-05-05 2018-06-01 中兴通讯股份有限公司 上行传输参数的确定方法及配置信息的发送方法
CN109075828A (zh) * 2016-04-26 2018-12-21 三星电子株式会社 用于实现上行链路mimo的方法和设备
WO2019108915A2 (en) * 2017-12-01 2019-06-06 Qualcomm Incorporated Subband based uplink access for nr-ss

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6504482B2 (ja) * 2015-01-30 2019-04-24 華為技術有限公司Huawei Technologies Co.,Ltd. サブバンドリソースを決定するための装置および方法
EP3866541B1 (en) * 2016-03-18 2023-12-27 Huawei Technologies Co., Ltd. Network node, user device and methods thereof
BR112019012810B1 (pt) * 2016-12-22 2024-01-16 Guangdong Oppo Mobile Telecommunications Corp., Ltd Método e dispositivo para transmitir informações de sistema
CN108668367B (zh) * 2017-04-01 2020-06-02 华为技术有限公司 一种数据传输方法、网络设备和终端
CN109150471B (zh) * 2017-06-16 2020-02-14 华为技术有限公司 信息传输方法、装置及存储介质
US20180367193A1 (en) * 2017-06-16 2018-12-20 Nokia Technologies Oy Determination of sub-band allocation parameters for wireless networks
CN116981066A (zh) * 2017-08-01 2023-10-31 日本电气株式会社 用户设备及其所进行的方法以及基站及其所进行的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109075828A (zh) * 2016-04-26 2018-12-21 三星电子株式会社 用于实现上行链路mimo的方法和设备
CN108112075A (zh) * 2017-05-05 2018-06-01 中兴通讯股份有限公司 上行传输参数的确定方法及配置信息的发送方法
WO2019108915A2 (en) * 2017-12-01 2019-06-06 Qualcomm Incorporated Subband based uplink access for nr-ss

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4084549A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023193233A1 (en) * 2022-04-08 2023-10-12 Lenovo (Beijing) Limited Method and apparatus for subband utilization in full duplex system
WO2023211144A1 (ko) * 2022-04-29 2023-11-02 주식회사 케이티 전이중통신을 위한 프레임 구조 설정 방법 및 장치

Also Published As

Publication number Publication date
KR20220114066A (ko) 2022-08-17
EP4084549A4 (en) 2023-02-08
CN113056003B (zh) 2024-03-22
CN113056003A (zh) 2021-06-29
US20230040978A1 (en) 2023-02-09
EP4084549A1 (en) 2022-11-02
JP2023508203A (ja) 2023-03-01

Similar Documents

Publication Publication Date Title
WO2021129245A1 (zh) 一种通信方法和装置
US10631296B2 (en) Resource allocation method, apparatus, and wireless access system
EP3576452A1 (en) Information transmission method and apparatus
JP7197700B2 (ja) ガード・バンド指示方法及び装置
JP2020535761A (ja) 通信方法、通信装置、およびデバイス
US11564181B2 (en) Method and apparatus for reporting power headroom report, and method and apparatus for obtaining power headroom report
US20220224465A1 (en) Uplink data transmission method and apparatus, and storage medium
KR20200130846A (ko) 빔 표시 방법, 디바이스 및 시스템
EP3675585A1 (en) Communication method and apparatus
US11903013B2 (en) Direct communication resource allocation method and apparatus
CN110831170B (zh) 一种通信方法和装置
WO2020215826A1 (zh) 预配置授权的确认方法、终端及网络侧设备
WO2021184170A1 (zh) 数据传输方法、装置、通信设备及存储介质
US20230063901A1 (en) Sidelink feedback method and terminal device
WO2020114237A1 (zh) 数据传输方法与通信装置
CN111586708A (zh) 一种传输探测参考信号的方法、装置和系统
CN111148233A (zh) 一种资源分配方法及基站
WO2021129229A1 (zh) 一种通信方法和装置
WO2020030152A1 (zh) 系统信息传输方法、相关设备及系统
WO2019129253A1 (zh) 一种通信方法及装置
WO2021135817A1 (zh) 重复传输激活的指示方法、通信设备、装置及存储介质
WO2022110188A1 (zh) 侧行链路载波管理方法、装置和系统
WO2018202168A1 (zh) 信息传输方法及装置
WO2020192444A1 (zh) 一种数据传输方法及设备
EP3876566B1 (en) Direct communication resource allocation method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20904607

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022539246

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227024337

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020904607

Country of ref document: EP

Effective date: 20220726