WO2021129226A1 - 冷水机组 - Google Patents

冷水机组 Download PDF

Info

Publication number
WO2021129226A1
WO2021129226A1 PCT/CN2020/128951 CN2020128951W WO2021129226A1 WO 2021129226 A1 WO2021129226 A1 WO 2021129226A1 CN 2020128951 W CN2020128951 W CN 2020128951W WO 2021129226 A1 WO2021129226 A1 WO 2021129226A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling water
refrigerant
condenser
tube group
evaporator
Prior art date
Application number
PCT/CN2020/128951
Other languages
English (en)
French (fr)
Inventor
任滔
柴婷
宋强
王冰
Original Assignee
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Publication of WO2021129226A1 publication Critical patent/WO2021129226A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/06Superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/28Means for preventing liquid refrigerant entering into the compressor

Definitions

  • the invention belongs to the technical field of water chillers, and specifically provides a water chiller.
  • Water chillers include air-cooled chillers and water-cooled chillers.
  • refrigerants such as R134a (gases with higher greenhouse effect) are widely used. Both water-cooled screw units and water-cooled magnetic levitation units are required
  • R134a gases with higher greenhouse effect
  • Both water-cooled screw units and water-cooled magnetic levitation units are required
  • a large amount of refrigerant charge can ensure the normal operation of the system.
  • the refrigerant charge is 200kg to 1000kg.
  • about 90% of the refrigerant is distributed in the evaporator and condenser.
  • the way to reduce the refrigerant charge is to convert the traditional flooded evaporator into a falling film evaporator.
  • This method can reduce the refrigerant charge of the system by about 25%, which is very limited.
  • the main reason is that about 50% of the refrigerant in the system is in the condenser (this is because the refrigerant needs to be subcooled at the bottom of the condenser, resulting in accumulation of a large amount of refrigerant, and if there is no bottom subcooling, the energy efficiency of the system will be reduced.
  • the present invention provides a water chiller, which includes an evaporator and a condensing unit.
  • the condenser, the compressor, the subcooler and the superheater, the condenser, the subcooler, the evaporator, the superheater and the compressor constitute a closed-loop refrigerant circulation loop.
  • the chiller also includes a first cooling water inlet pipe and a second cooling water inlet.
  • the water pipe, the first cooling water connection pipe and the second cooling water connection pipe, the first cooling water inlet pipe is connected to the condenser and the subcooler respectively, and the first cooling water connection pipe is connected between the subcooler and the condenser.
  • the two cooling water inlet pipes are respectively connected with the evaporator and the superheater, and the second cooling water connecting pipe is connected between the superheater and the evaporator.
  • the subcooler includes a first shell and a first tube set arranged in the first shell, and the first shell is provided with a first refrigerant inlet, a first refrigerant outlet, and a second A cooling water inlet and a first cooling water outlet, the inlet of the first tube group is communicated with the refrigerant outlet of the condenser through the first refrigerant inlet, and the outlet of the first tube group is communicated with the refrigerant inlet of the evaporator through the first refrigerant outlet.
  • a cooling water inlet is connected with the first cooling water inlet pipe, the first cooling water outlet is connected with the first cooling water connecting pipe, the first refrigerant inlet is arranged close to the first cooling water outlet, and the first refrigerant outlet is arranged close to the first cooling water inlet , So that the flow direction of the cooling water in the first shell is opposite to the flow direction of the refrigerant in the first tube group.
  • the superheater includes a second shell and a second tube set arranged in the second shell, and the second shell is provided with a second refrigerant inlet, a second refrigerant outlet, and a second refrigerant outlet.
  • Cooling water inlet and second cooling water outlet the inlet of the second pipe group is connected to the second cooling water inlet pipe through the second cooling water inlet, and the outlet of the second pipe group is connected to the second cooling water connecting pipe through the second cooling water outlet
  • the second refrigerant inlet is in communication with the refrigerant outlet of the evaporator
  • the second refrigerant outlet is in communication with the inlet of the compressor.
  • the second refrigerant inlet is arranged close to the second cooling water outlet and the second refrigerant outlet is arranged close to the second cooling water inlet, so that the flow direction of the refrigerant in the second casing is consistent with the second tube set The flow direction of the cooling water is reversed.
  • the second refrigerant inlet is arranged close to the second cooling water inlet and the second refrigerant outlet is arranged close to the second cooling water outlet, so that the flow direction of the refrigerant in the second housing is the same as that of the second tube set.
  • the cooling water flows in the same direction.
  • the condenser includes a first condenser tube group, a second condenser tube group, and a first communication structure that connects the first condenser tube group with the second condenser tube group.
  • the first cooling water inlet pipe is in communication
  • the first communication structure is in communication with the first cooling water connecting pipe.
  • the first condenser tube group is arranged above the second condenser tube group.
  • the evaporator includes a first evaporation tube group, a second evaporation tube group, and a second communication structure that connects the first evaporation tube group with the second evaporation tube group.
  • the second cooling water inlet pipe is in communication, and the second communication structure is in communication with the second cooling water connecting pipe.
  • the first evaporation tube group is arranged above the second evaporation tube group.
  • the evaporator is a shell and tube evaporator
  • the condenser is a shell and tube condenser
  • the subcooler can supercool the low dryness refrigerant that is not completely condensed after the condenser comes out to make it It becomes a fully liquid refrigerant to avoid affecting the energy efficiency and stability of the system.
  • the superheater can overheat the high-dryness refrigerant that has not been completely overheated after the evaporator comes out of the evaporator, turning it into a fully gaseous refrigerant, and avoiding liquid shock from the compressor.
  • the cooling water passes heat exchange with the low-dryness two-phase refrigerant and then enters the condenser to further exchange heat with the refrigerant in the condenser; part of the cooling water is introduced to the superheater, The cooling water passes heat exchange with the high-dryness two-phase refrigerant and then enters the evaporator to further exchange heat with the refrigerant in the evaporator.
  • the condenser does not need to be equipped with a separate subcooling tube, the condenser does not need to accumulate liquid, and the evaporator does not need to set up a full liquid zone.
  • the refrigerant in the condenser and the evaporator can be significantly reduced, thereby making The refrigerant charge of the system is greatly reduced, which significantly reduces greenhouse gas emissions.
  • the subcooler adopts a counter-current direction (that is, the flow direction of the refrigerant is opposite to the flow direction of the cooling water), so as to ensure sufficient subcooling, and the refrigerant in the subcooler passes through the tube side and the cooling water passes through the shell side, thereby facilitating adjustment
  • the pipe diameter and the number of winding pipes are designed to facilitate the design of a reasonable flow rate, strengthen the heat exchange between the liquid refrigerant and the pipe, and the pipe diameter can be reduced as much as possible, so that the volume in the entire subcooler can be small, thus ensuring the subcooling
  • the cooler has a small heat exchange area and ensures the supercooling degree of the refrigerant outlet, and at the same time reduces the refrigerant charge.
  • the superheater adopts a forward flow direction (that is, the flow direction of the refrigerant is the same as the flow direction of the cooling water) or a countercurrent direction (that is, the flow direction of the refrigerant is opposite to the flow direction of the cooling water), so as to ensure an appropriate degree of superheat, and the cooling in the superheater
  • a forward flow direction that is, the flow direction of the refrigerant is the same as the flow direction of the cooling water
  • a countercurrent direction that is, the flow direction of the refrigerant is opposite to the flow direction of the cooling water
  • the resistance on the shell side is small, it is not It will affect the heat exchange efficiency of the system, so as to ensure that the superheater has a small heat exchange area and ensure the overheating of the refrigerant outlet, while reducing the refrigerant charge.
  • Figure 1 is a schematic diagram of the structure of the chiller of the present invention.
  • Figure 2 is a schematic diagram of the structure of the subcooler of the present invention (countercurrent trend);
  • Figure 3 is a schematic diagram of the structure of the superheater of the present invention (countercurrent trend);
  • Fig. 4 is a schematic diagram of the structure of the superheater of the present invention (downstream direction).
  • the terms “set”, “connected”, and “connected” should be understood in a broad sense, for example, they may be fixed connections or It is a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the specific meaning of the above-mentioned terms in the present invention can be understood according to specific circumstances.
  • the present invention provides a chiller, which aims to greatly reduce the refrigerant charge of the chiller. To reduce greenhouse gas emissions.
  • the chiller of the present invention includes an evaporator 1, a condenser 2, a compressor 3, a subcooler 4, and a superheater 5.
  • the condenser 2, the subcooler 4, the evaporator 1, the superheater The device 5 and the compressor 3 form a closed-loop refrigerant circulation circuit.
  • the chiller also includes a first cooling water inlet pipe 6, a second cooling water inlet pipe 7, a first cooling water connecting pipe 8 and a second cooling water connecting pipe 9, and A cooling water inlet pipe 6 is respectively connected to the condenser 2 and the subcooler 4, the first cooling water connection pipe 8 is connected between the subcooler 4 and the condenser 2, and the second cooling water inlet pipe 7 is connected to the evaporator 1 respectively. It is connected to the superheater 5, and the second cooling water connecting pipe 9 is connected between the superheater 5 and the evaporator 1.
  • the evaporator 1 is a shell and tube evaporator, and the condenser 2 is a shell and tube condenser.
  • the condenser 2, the subcooler 4, the evaporator 1, the superheater 5, and the compressor 3 are connected in sequence to form a refrigerant circulation circuit.
  • an electronic expansion valve such as Throttle element.
  • the subcooler 4 can supercool the refrigerant flowing out of the condenser 2, so that the low dryness refrigerant is all converted into liquid refrigerant, so as to avoid affecting the energy efficiency and stability of the system.
  • the superheater 5 can overheat the refrigerant flowing out of the evaporator 1, so that All the high-dryness refrigerants are converted into gaseous refrigerants to avoid the occurrence of liquid hammer in the compressor 3.
  • the water in the first cooling water inlet pipe 6 (generally 30 degrees Celsius but not limited to this temperature) enters the condenser 2 and the subcooler 4 respectively, and the cooling water in the subcooler 4 is in the same temperature as the subcooler 4
  • the refrigerant enters the condenser 2 through the first cooling water connecting pipe 8 to continue to exchange heat with the refrigerant in the condenser 2. Since the supercooler 4 is provided, the condenser 2 does not need to be provided with a supercooling pipe. Reduce the amount of refrigerant in the condenser 2.
  • the water in the second cooling water inlet pipe 7 (generally 12 degrees Celsius but not limited to this temperature) enters the evaporator 1 and the superheater 5 respectively, and the cooling water in the superheater 5 exchanges heat with the refrigerant in the superheater 5 Then it enters the evaporator 1 through the second cooling water connecting pipe 9 and continues to exchange heat with the refrigerant in the evaporator 1. Because of the superheater 5, there is no need to set a full liquid area in the evaporator 1, which can reduce the evaporator 1. The amount of refrigerant. Therefore, the amount of refrigerant in the chiller is greatly reduced due to the reduction of the refrigerant in the evaporator 1 and the refrigerant in the condenser 2 together.
  • the supercooler 4 includes a first housing 41 and a first tube group 42 arranged in the first housing 41.
  • the first housing 41 is provided with a first refrigerant inlet 411 and a second A refrigerant outlet 412, a first cooling water inlet 413, and a first cooling water outlet 414.
  • the inlet of the first tube group 42 communicates with the refrigerant outlet of the condenser 2 through the first refrigerant inlet 411, and the outlet of the first tube group 42 passes through the A refrigerant outlet 412 is in communication with the refrigerant inlet of the evaporator 1, the first cooling water inlet 413 is in communication with the first cooling water inlet pipe 6, the first cooling water outlet 414 is in communication with the first cooling water connecting pipe 8, and the first refrigerant inlet 411 It is arranged close to the first cooling water outlet 414 and the first refrigerant outlet 412 is arranged close to the first cooling water inlet 413 so that the flow direction of the cooling water in the first housing 41 is opposite to the flow direction of the refrigerant in the first tube group 42.
  • the low-quality refrigerant flowing out of the condenser 2 enters the first tube group 42 through the refrigerant outlet of the condenser 2, the first refrigerant inlet 411, and the inlet of the first tube group 42 in sequence.
  • the refrigerant in turn enters the evaporator 1 through the outlet of the first tube group 42, the first refrigerant outlet 412, and the refrigerant inlet of the evaporator 1, a part of the water in the first cooling water inlet pipe 6 enters the condenser 2, and the other A part of it enters the first housing 41 through the first cooling water inlet 413, and the cooling water in the first housing 41 enters the first cooling water connecting pipe 8 through the first cooling water outlet 414.
  • the refrigerant takes the pipe side (i.e. inside the pipe)
  • the cooling water takes the shell side (i.e. outside the pipe inside the housing)
  • the first refrigerant inlet 411 is located close to the first cooling water outlet 414 and the first refrigerant inlet 411 is located close to the first cooling water outlet 414.
  • the refrigerant outlet 412 is arranged close to the first cooling water inlet 413, so that the flow direction of the cooling water in the first housing 41 is opposite to the flow direction of the refrigerant in the first tube group 42, that is, by setting the flow direction of the refrigerant and the cooling water to be opposite, Greatly increase the degree of subcooling, generally 3 to 5 degrees Celsius.
  • All the pipelines of the first tube group 42 can be in the form of spirally wound tubes, so as to achieve sufficient heat exchange between the refrigerant in the pipelines and the cooling water in the first shell 41.
  • all the pipes of the first pipe group 42 can also adopt other pipe winding forms (for example, a multi-planar arrangement).
  • the superheater 5 includes a second housing 51 and a second tube group 52 arranged in the second housing 51, and the second housing 51 is provided with a second refrigerant inlet 511, The second refrigerant outlet 512, the second cooling water inlet 513, and the second cooling water outlet 514.
  • the inlet of the second pipe group 52 is connected to the second cooling water inlet pipe 7 through the second cooling water inlet 513.
  • the outlet communicates with the second cooling water connecting pipe 9 through the second cooling water outlet 514, the second refrigerant inlet 511 communicates with the refrigerant outlet of the evaporator 1, and the second refrigerant outlet 512 communicates with the inlet of the compressor 3.
  • the high-quality refrigerant flowing out of the evaporator 1 enters the second housing 51 through the refrigerant outlet of the evaporator 1 and the second refrigerant inlet 511 in sequence, and the refrigerant in the second housing 51 sequentially passes through the second refrigerant outlet.
  • All the pipelines of the second tube group 52 can be in the form of spirally wound tubes, so as to achieve sufficient heat exchange between the cooling water in the pipelines and the refrigerant in the second shell 51.
  • all the pipes of the second pipe group 52 can also adopt other pipe winding forms (for example, a multi-planar arrangement).
  • the second refrigerant inlet 511 is arranged close to the second cooling water outlet 514 and the second refrigerant outlet 512 is arranged close to the second cooling water inlet 513, so that the refrigerant in the second housing 51
  • the flow direction of is opposite to the flow direction of the cooling water in the second tube group 52.
  • FIG. 3 the second refrigerant inlet 511 is arranged close to the second cooling water outlet 514 and the second refrigerant outlet 512 is arranged close to the second cooling water inlet 513, so that the refrigerant in the second housing 51
  • the flow direction of is opposite to the flow direction of the cooling water in the second tube group 52.
  • the second refrigerant inlet 511 is arranged close to the second cooling water inlet 513 and the second refrigerant outlet 512 is arranged close to the second cooling water outlet 514, so that the The flow direction of the refrigerant is the same as the flow direction of the cooling water in the second tube group 52.
  • the superheating degree of the superheater 5 (generally 1 to 3 degrees Celsius) is not as strict as that of the subcooler 4, so the superheater 5 can adopt a countercurrent flow direction or a downstream flow direction.
  • the condenser 2 includes a first condenser tube group 21, a second condenser tube group 22, and a first communication structure 23 that communicates the first condenser tube group 21 with the second condenser tube group 22.
  • the first condenser tube group 21 is connected to the The first cooling water inlet pipe 6 is in communication, the first communication structure 23 is in communication with the first cooling water connecting pipe 8, and the second condenser pipe group 22 is in communication with the cooling water outlet of the condenser 2.
  • the first condenser tube group 21 forms the first condensing process of the condenser 2
  • the second condenser tube group 22 forms the second condensing process of the condenser 2.
  • the cooling water that passes through the subcooler 4 heat exchange passes through the first cooling water connecting pipe 8 Enters the first communication structure 23 and mixes with the cooling water after heat exchange in the first condensing tube group 21 in the first communication structure 23, and the cooling water mixed in the first communication structure 23 enters the second condensing tube at the same time Group 22 continues to exchange heat with the refrigerant.
  • the first communication structure 23 may be a communication cavity formed in the shell of the condenser 2 or a communication box circumscribed to the shell of the condenser 2.
  • the first connecting structure 23 may not be provided, and the first cooling water connecting pipe 8 is directly connected between the first condenser tube group 21 and the second condenser tube group 22.
  • the first condenser tube group 21 is arranged above the second condenser tube group 22.
  • the evaporator 1 includes a first evaporation tube group 11, a second evaporation tube group 12, and a second communication structure 13 connecting the first evaporation tube group 11 and the second evaporation tube group 12, and the first evaporation tube group 11 is connected to the
  • the second cooling water inlet pipe 7 is in communication, and the second communication structure 13 is in communication with the second cooling water connecting pipe 9.
  • the first evaporation tube group 11 forms the first evaporation process of the evaporator 1
  • the second evaporation tube group 12 forms the second evaporation process of the evaporator 1.
  • the cooling water passing through the superheater 5 heat exchange enters through the second cooling water connecting pipe 9 Into the second communication structure 13, and in the second communication structure 13, it is mixed with the cooling water after the heat exchange of the first evaporation tube group 11, and the cooling water mixed in the first communication structure 23 enters the second evaporation tube group at the same time 12 China and Israel continue to exchange heat with the refrigerant.
  • the first communication structure 23 may be a communication cavity formed in the shell of the evaporator 1 or a communication box circumscribed on the shell of the evaporator 1.
  • the second connecting structure 13 may not be provided, and the second cooling water connecting pipe 9 may be directly connected between the first evaporation tube group 11 and the second evaporation tube group 12.
  • the first evaporation tube group 11 is arranged above the second evaporation tube group 12.
  • the evaporator 1 is preferably a full falling film evaporator
  • the condenser 2 is preferably a two-phase film condenser.
  • the chiller of the present invention is adopted. Compared with the existing chillers using flooded evaporators and conventional condensers, the refrigerant charge can be reduced by up to 90%.
  • the chillers using the present invention are compared with the existing falling film evaporators and conventional condensers.
  • the refrigerant charge of the chiller of the condenser can be reduced by at least 80%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

一种冷水机组,包括蒸发器(1)、冷凝器(2)、压缩机(3)、过冷器(4)和过热器(5),冷凝器(2)、过冷器(4)、蒸发器(1)、过热器(5)和压缩机(3)构成闭环的冷媒循环回路,冷水机组还包括第一冷却水进水管(6)、第二冷却水进水管(7)、第一冷却水连接管(8)和第二冷却水连接管(9),第一冷却水进水管(6)分别与冷凝器(2)和过冷器(4)连接,第一冷却水连接管(8)连接于过冷器(4)与冷凝器(2)之间,第二冷却水进水管(7)分别与蒸发器(1)和过热器(5)连接,第二冷却水连接管(9)连接于过热器(5)与蒸发器(1)之间。能够降低冷水机组的冷媒充注量,降低温室气体排放。

Description

冷水机组 技术领域
本发明属于冷水机组技术领域,具体提供一种冷水机组。
背景技术
冷水机组包括风冷式冷水机组和水冷式冷水机组,在水冷式冷水机组中,广泛采用诸如R134a的制冷剂(具有较高温室效应的气体),无论是水冷螺杆机组还是水冷磁悬浮机组,都需要大量的冷媒充注量才能保证系统的正常运行,通常冷媒灌注量在200kg至1000kg,而在水冷螺杆机组和水冷磁悬浮机组中,约90%的冷媒分布于蒸发器和冷凝器中。通过降低系统中的冷媒充注量,可以显著降低温室气体排放。
现有技术中,降低冷媒充注量的方式是将传统的满液式蒸发器转变为降膜式蒸发器,这种方式可以降低系统约25%的冷媒充注量,非常有限。主要的原因是系统中有50%左右的冷媒是在冷凝器中(这是由于制冷剂需要在冷凝器的底部过冷,导致累积大量的制冷剂,而如果没有底部过冷,系统的能效会显著下降,并且由于气液两相流进入电子膨胀阀,会导致系统不稳定),更换降膜蒸发器并不能改变冷凝器中的冷媒量,而且,即便采用了降膜式蒸发器,蒸发器中同样有一定的满液区,仍然大量的冷媒(这是由于如果直接去掉满液区域,制冷剂从进入高干度后,换热很差,并且气体容易携带液体颗粒进入压缩机,导致压缩机发生液击)。
因此,本领域需要一种新的冷水机组来解决上述问题。
发明内容
为了解决现有技术中的上述问题,即为了解决现有冷水机组采用降膜式蒸发器并不能显著降低冷媒充注量的问题,本发明提供了一种冷水机组,冷水机组包括蒸发器、冷凝器、压缩机、过冷器和过热器,冷凝器、过冷器、蒸发器、过热器和压缩机构成闭环的冷媒循环回路,冷水机组还包括第一冷却水进水管、第二冷却水进水管、第一冷却水连 接管和第二冷却水连接管,第一冷却水进水管分别与冷凝器和过冷器连接,第一冷却水连接管连接于过冷器与冷凝器之间,第二冷却水进水管分别与蒸发器和过热器连接,第二冷却水连接管连接于过热器与蒸发器之间。
在上述冷水机组的优选技术方案中,过冷器包括第一壳体和设置在第一壳体中的第一管组,第一壳体上设置有第一冷媒入口、第一冷媒出口、第一冷却水入口和第一冷却水出口,第一管组的入口通过第一冷媒入口与冷凝器的冷媒出口连通,第一管组的出口通过第一冷媒出口与蒸发器的冷媒入口连通,第一冷却水入口与第一冷却水进水管连通,第一冷却水出口与第一冷却水连接管连通,第一冷媒入口靠近第一冷却水出口设置且第一冷媒出口靠近第一冷却水入口设置,以使得第一壳体中的冷却水的流向与第一管组中的冷媒的流向相反。
在上述冷水机组的优选技术方案中,过热器包括第二壳体和设置在第二壳体中的第二管组,第二壳体上设置有第二冷媒入口、第二冷媒出口、第二冷却水入口和第二冷却水出口,第二管组的入口通过第二冷却水入口与第二冷却水进水管连通,第二管组的出口通过第二冷却水出口与第二冷却水连接管连通,第二冷媒入口与蒸发器的冷媒出口连通,第二冷媒出口与压缩机的进口连通。
在上述冷水机组的优选技术方案中,第二冷媒入口靠近第二冷却水出口设置且第二冷媒出口靠近第二冷却水入口设置,以使得第二壳体中的冷媒的流向与第二管组中的冷却水的流向相反。
在上述冷水机组的优选技术方案中,第二冷媒入口靠近第二冷却水入口设置且第二冷媒出口靠近第二冷却水出口设置,以使得第二壳体中的冷媒的流向与第二管组中的冷却水的流向相同。
在上述冷水机组的优选技术方案中,冷凝器包括第一冷凝管组、第二冷凝管组以及将第一冷凝管组与第二冷凝管组连通的第一连通结构,第一冷凝管组与第一冷却水进水管连通,第一连通结构与第一冷却水连接管连通。
在上述冷水机组的优选技术方案中,第一冷凝管组设置在第二冷凝管组的上方。
在上述冷水机组的优选技术方案中,蒸发器包括第一蒸发管组、第二蒸发管组以及将第一蒸发管组与第二蒸发管组连通的第二连通结构,第一蒸发管组与第二冷却水进水管连通,第二连通结构与第二冷却水连接管连通。
在上述冷水机组的优选技术方案中,第一蒸发管组设置在第二蒸发管组的上方。
在上述冷水机组的优选技术方案中,蒸发器为壳管式蒸发器,冷凝器为壳管式冷凝器。
本领域技术人员能够理解的是,在本发明的优选技术方案中,通过设置过冷器和过热器,过冷器可以对冷凝器出来后未完全冷凝的低干度冷媒进行过冷,使之变为全液态冷媒,避免影响系统能效和稳定性,过热器可以对蒸发器出来后未完全过热的高干度冷媒进行过热,使之变为全气态冷媒,避免压缩机发生液击。同时,将冷却水引一部分给过冷器,该冷却水通过与低干度的两相态冷媒换热后再进入冷凝器中与冷凝器中的冷媒进一步换热;将冷却水引一部分给过热器,该冷却水通过与高干度的两相态冷媒换热后再进入蒸发器中与蒸发器中的冷媒进一步换热。通过这样的设置,冷凝器不需要再单独设置过冷管,冷凝器中不需要积液,蒸发器中不需要再设置满液区,冷凝器和蒸发器中的冷媒都可以显著降低,从而使系统的冷媒充注量大幅度降低,显著地降低温室气体排放。
进一步地,过冷器采用逆流走向(即冷媒的流向与冷却水的流向相反),从而保证足够的过冷度,且过冷器中的冷媒走管侧,冷却水走壳侧,从而便于调整管径以及绕管数目,以便于设计合理的流速,强化液态冷媒和管的换热,且管径可以尽可能降低,使得整个过冷器内的容积可以做到很小,从而既保证过冷器具有较小的换热面积又保证冷媒出口过冷度,同时降低冷媒充注量。
进一步地,过热器采用顺流走向(即冷媒的流向与冷却水的流向相同)或逆流走向(即冷媒的流向与冷却水的流向相反),从而保证适当的过热度,且过热器中的冷却水走管侧,冷媒走壳侧,使得随着换热的进行,高干度的液态冷媒逐渐蒸发为气体,这样过热器内部就不会有冷媒积聚,同时由于壳侧的阻力较小,不会影响系统的换热效率, 从而既保证过热器具有较小的换热面积又保证冷媒出口过热度,同时降低冷媒充注量。
附图说明
图1是本发明的冷水机组的结构示意图;
图2是本发明的过冷器的结构示意图(逆流走向);
图3是本发明的过热器的结构示意图(逆流走向);
图4是本发明的过热器的结构示意图(顺流走向)。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。
需要说明的是,在本发明的描述中,术语“中”、“上”、“下”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“设置”、“连通”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
基于背景技术指出的现有冷水机组采用降膜式蒸发器并不能显著降低冷媒充注量的问题,本发明提供了一种冷水机组,旨在大幅度地降低冷水机组的冷媒充注量,显著地降低温室气体排放。
具体地,如图1所示,本发明的冷水机组包括蒸发器1、冷凝器2、压缩机3、过冷器4和过热器5,冷凝器2、过冷器4、蒸发器1、过热器5和压缩机3构成闭环的冷媒循环回路,冷水机组还包括第一冷 却水进水管6、第二冷却水进水管7、第一冷却水连接管8和第二冷却水连接管9,第一冷却水进水管6分别与冷凝器2和过冷器4连接,第一冷却水连接管8连接于过冷器4与冷凝器2之间,第二冷却水进水管7分别与蒸发器1和过热器5连接,第二冷却水连接管9连接于过热器5与蒸发器1之间。蒸发器1为壳管式蒸发器,冷凝器2为壳管式冷凝器。参见图1,冷凝器2、过冷器4、蒸发器1、过热器5和压缩机3依次连接共同构成了冷媒循环回路,过冷器4和蒸发器1之间设置有诸如电子膨胀阀的节流元件。过冷器4可以对冷凝器2流出的冷媒进行过冷,使得低干度冷媒全部转变为液态冷媒,避免影响系统能效和稳定性,过热器5可以对蒸发器1流出的冷媒进行过热,使得高干度冷媒全部转变为气态冷媒,避免压缩机3发生液击。第一冷却水进水管6中的水(一般为30摄氏度但不限于该温度)分别进入到冷凝器2和过冷器4中,过冷器4中的冷却水在与过冷器4中的冷媒换热后又经由第一冷却水连接管8进入到冷凝器2中继续与冷凝器2中的冷媒换热,由于设置了过冷器4,因此冷凝器2中无需设置过冷管,可以降低冷凝器2的冷媒量。第二冷却水进水管7中的水(一般为12摄氏度但不限于该温度)分别进入到蒸发器1和过热器5中,过热器5中的冷却水在与过热器5中的冷媒换热后又经由第二冷却水连接管9进入到蒸发器1中继续与蒸发器1中的冷媒换热,由于设置了过热器5,因此蒸发器1中无需设置满液区,可以降低蒸发器1的冷媒量。因此,冷水机组中的冷媒量由于蒸发器1中冷媒和冷凝器2中冷媒的共同降低而大幅降低。
优选地,如图2所示,过冷器4包括第一壳体41和设置在第一壳体41中的第一管组42,第一壳体41上设置有第一冷媒入口411、第一冷媒出口412、第一冷却水入口413和第一冷却水出口414,第一管组42的入口通过第一冷媒入口411与冷凝器2的冷媒出口连通,第一管组42的出口通过第一冷媒出口412与蒸发器1的冷媒入口连通,第一冷却水入口413与第一冷却水进水管6连通,第一冷却水出口414与第一冷却水连接管8连通,第一冷媒入口411靠近第一冷却水出口414设置且第一冷媒出口412靠近第一冷却水入口413设置,以使得第一壳体41中的冷却水的流向与第一管组42中的冷媒的流向相反。也就是说,冷凝器2流出的低干度冷媒依次经由冷凝器2的冷媒出口、第一冷媒入口411 和第一管组42的入口进入到第一管组42中,第一管组42中的冷媒依次经由第一管组42的出口、第一冷媒出口412和蒸发器1的冷媒入口进入到蒸发器1中,第一冷却水进水管6中的一部分水进入到冷凝器2中,另一部分经由第一冷却水入口413进入到第一壳体41中,第一壳体41中的冷却水经由第一冷却水出口414进入到第一冷却水连接管8中。由此,对于过冷器4而言,冷媒走管侧(即管内),冷却水走壳侧(即壳内管外),且第一冷媒入口411靠近第一冷却水出口414设置且第一冷媒出口412靠近第一冷却水入口413设置,以使得第一壳体41中的冷却水的流向与第一管组42中的冷媒的流向相反,即通过设置冷媒与冷却水的流向相反,可以极大地提高过冷度,一般为3至5摄氏度。第一管组42的所有管路可以采用螺旋绕管形式,从而实现管路中冷媒与第一壳体41中的冷却水的充分换热。当然,第一管组42的所有管路还可以采用其他绕管形式(例如多平面排布式)。
优选地,如图3和4所示,过热器5包括第二壳体51和设置在第二壳体51中的第二管组52,第二壳体51上设置有第二冷媒入口511、第二冷媒出口512、第二冷却水入口513和第二冷却水出口514,第二管组52的入口通过第二冷却水入口513与第二冷却水进水管7连通,第二管组52的出口通过第二冷却水出口514与第二冷却水连接管9连通,第二冷媒入口511与蒸发器1的冷媒出口连通,第二冷媒出口512与压缩机3的进口连通。也就是说,蒸发器1流出的高干度冷媒依次经过蒸发器1的冷媒出口和第二冷媒入口511进入到第二壳体51中,第二壳体51中的冷媒依次经过第二冷媒出口512和压缩机3的进气口进入到压缩机3中,第二冷却水进水管7的一部分水进入到蒸发器1中,另一部分水依次经过第二冷却水入口513和第二管组52的入口进入到第二管组52中,第二管组52中的冷却水依次经过第二管组52的出口和第二冷却水出口514进入到第二冷却水连接管9中。由此,对于过热器5而言,冷却水走管侧(即管内),冷媒走壳侧(即壳内管外)。第二管组52的所有管路可以采用螺旋绕管形式,从而实现管路中冷却水与第二壳体51中的冷媒的充分换热。当然,第二管组52的所有管路还可以采用其他绕管形式(例如多平面排布式)。在一种可能的情形中,参见图3,第二冷媒入口511靠近第二冷却水出口514设置且第二冷媒出口512靠近第二冷 却水入口513设置,以使得第二壳体51中的冷媒的流向与第二管组52中的冷却水的流向相反。在另一种可能的情形中,参见图4,第二冷媒入口511靠近第二冷却水入口513设置且第二冷媒出口512靠近第二冷却水出口514设置,以使得第二壳体51中的冷媒的流向与第二管组52中的冷却水的流向相同。需要说明的是,相较于过冷器4,过热器5的过热度(一般为1至3摄氏度)没有过冷器4的要求严格,所以过热器5可以采用逆流走向,也可以采用顺流走向。
优选地,冷凝器2包括第一冷凝管组21、第二冷凝管组22以及将第一冷凝管组21与第二冷凝管组22连通的第一连通结构23,第一冷凝管组21与第一冷却水进水管6连通,第一连通结构23与第一冷却水连接管8连通,第二冷凝管组22与冷凝器2的冷却水出口连通。第一冷凝管组21形成冷凝器2的第一冷凝流程,第二冷凝管组22形成冷凝器2的第二冷凝流程,经过过冷器4换热的冷却水经由第一冷却水连接管8进入到第一连通结构23中,并在第一连通结构23中与第一冷凝管组21换热后的冷却水混合,第一连通结构23中混合的冷却水又同时进入到第二冷凝管组22中以与冷媒继续换热。第一连通结构23可以为形成于冷凝器2外壳中的连通腔,或者外接于冷凝器2外壳上的连通盒。替代性地,还可以不设置第一连通结构23,而将第一冷却水连接管8直接连接于第一冷凝管组21与第二冷凝管组22之间。在一种优选的情形中,第一冷凝管组21设置在第二冷凝管组22的上方。
优选地,蒸发器1包括第一蒸发管组11、第二蒸发管组12以及将第一蒸发管组11与第二蒸发管组12连通的第二连通结构13,第一蒸发管组11与第二冷却水进水管7连通,第二连通结构13与第二冷却水连接管9连通。第一蒸发管组11形成蒸发器1的第一蒸发流程,第二蒸发管组12形成蒸发器1的第二蒸发流程,经过过热器5换热的冷却水经由第二冷却水连接管9进入到第二连通结构13中,并在第二连通结构13中与第一蒸发管组11换热后的冷却水混合,第一连通结构23中混合的冷却水又同时进入到第二蒸发管组12中以与冷媒继续换热。第一连通结构23可以为形成于蒸发器1外壳中的连通腔,或者外接于蒸发器1外壳上的连通盒。替代性地,还可以不设置第二连通结构13,而将第二 冷却水连接管9直接连接于第一蒸发管组11与第二蒸发管组12之间。在一种优选的情形中,第一蒸发管组11设置在第二蒸发管组12的上方。
在本发明中,蒸发器1优选的是采用全降膜式蒸发器,冷凝器2优选的是采用两相膜状冷凝器,经过发明人反复地实验、分析和对比,采用本发明的冷水机组相比于现有的采用满液式蒸发器和常规冷凝器的冷水机组其冷媒充注量可以最高降低90%,采用本发明的冷水机组相比于现有的采用降膜式蒸发器和常规冷凝器的冷水机组其冷媒充注量可以至少降低80%。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种冷水机组,其特征在于,所述冷水机组包括蒸发器、冷凝器、压缩机、过冷器和过热器,所述冷凝器、所述过冷器、所述蒸发器、所述过热器和所述压缩机构成闭环的冷媒循环回路,
    所述冷水机组还包括第一冷却水进水管、第二冷却水进水管、第一冷却水连接管和第二冷却水连接管,所述第一冷却水进水管分别与所述冷凝器和所述过冷器连接,所述第一冷却水连接管连接于所述过冷器与所述冷凝器之间,所述第二冷却水进水管分别与所述蒸发器和所述过热器连接,所述第二冷却水连接管连接于所述过热器与所述蒸发器之间。
  2. 根据权利要求1所述的冷水机组,其特征在于,所述过冷器包括第一壳体和设置在所述第一壳体中的第一管组,所述第一壳体上设置有第一冷媒入口、第一冷媒出口、第一冷却水入口和第一冷却水出口,所述第一管组的入口通过所述第一冷媒入口与所述冷凝器的冷媒出口连通,所述第一管组的出口通过所述第一冷媒出口与所述蒸发器的冷媒入口连通,所述第一冷却水入口与所述第一冷却水进水管连通,所述第一冷却水出口与所述第一冷却水连接管连通,
    所述第一冷媒入口靠近所述第一冷却水出口设置且所述第一冷媒出口靠近所述第一冷却水入口设置,以使得所述第一壳体中的冷却水的流向与所述第一管组中的冷媒的流向相反。
  3. 根据权利要求1所述的冷水机组,其特征在于,所述过热器包括第二壳体和设置在所述第二壳体中的第二管组,所述第二壳体上设置有第二冷媒入口、第二冷媒出口、第二冷却水入口和第二冷却水出口,所述第二管组的入口通过所述第二冷却水入口与所述第二冷却水进水管连通,所述第二管组的出口通过所述第二冷却水出口与所述第二冷却水连接管连通,所述第二冷媒入口与所述蒸发器的冷媒出口连通,所述第二冷媒出口与所述压缩机的进口连通。
  4. 根据权利要求3所述的冷水机组,其特征在于,所述第二冷媒入 口靠近所述第二冷却水出口设置且所述第二冷媒出口靠近所述第二冷却水入口设置,以使得所述第二壳体中的冷媒的流向与所述第二管组中的冷却水的流向相反。
  5. 根据权利要求3所述的冷水机组,其特征在于,所述第二冷媒入口靠近所述第二冷却水入口设置且所述第二冷媒出口靠近所述第二冷却水出口设置,以使得所述第二壳体中的冷媒的流向与所述第二管组中的冷却水的流向相同。
  6. 根据权利要求1所述的冷水机组,其特征在于,所述冷凝器包括第一冷凝管组、第二冷凝管组以及将所述第一冷凝管组与所述第二冷凝管组连通的第一连通结构,所述第一冷凝管组与所述第一冷却水进水管连通,所述第一连通结构与所述第一冷却水连接管连通。
  7. 根据权利要求6所述的冷水机组,其特征在于,所述第一冷凝管组设置在所述第二冷凝管组的上方。
  8. 根据权利要求1所述的冷水机组,其特征在于,所述蒸发器包括第一蒸发管组、第二蒸发管组以及将所述第一蒸发管组与所述第二蒸发管组连通的第二连通结构,所述第一蒸发管组与所述第二冷却水进水管连通,所述第二连通结构与所述第二冷却水连接管连通。
  9. 根据权利要求8所述的冷水机组,其特征在于,所述第一蒸发管组设置在所述第二蒸发管组的上方。
  10. 根据权利要求1至9中任一项所述的冷水机组,其特征在于,所述蒸发器为壳管式蒸发器,所述冷凝器为壳管式冷凝器。
PCT/CN2020/128951 2019-12-24 2020-11-16 冷水机组 WO2021129226A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911348712.1 2019-12-24
CN201911348712.1A CN113028665A (zh) 2019-12-24 2019-12-24 冷水机组

Publications (1)

Publication Number Publication Date
WO2021129226A1 true WO2021129226A1 (zh) 2021-07-01

Family

ID=76452055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128951 WO2021129226A1 (zh) 2019-12-24 2020-11-16 冷水机组

Country Status (2)

Country Link
CN (1) CN113028665A (zh)
WO (1) WO2021129226A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2394139Y (zh) * 1999-11-15 2000-08-30 王全龄 太阳能、地热冷热水机组
CN2515605Y (zh) * 2001-12-28 2002-10-09 南京五洲制冷(集团)公司 水源热泵冷水机组
CN1438464A (zh) * 2003-03-21 2003-08-27 梁醒民 利用空气热能的蓄能式热水、冷水机组
CN201897345U (zh) * 2010-12-16 2011-07-13 张家港市江南利玛特设备制造有限公司 船用空调用三联型冷凝装置
CN103673145A (zh) * 2012-09-05 2014-03-26 苏州必信空调有限公司 紧凑型冷水机组及高层建筑的空调系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012204057A1 (de) * 2012-03-15 2013-09-19 BSH Bosch und Siemens Hausgeräte GmbH Wärmeübertrager für ein kältegerät
CN102927718B (zh) * 2012-11-05 2014-11-26 北京工业大学 一种新型双效双温高温热泵装置
CN103175347B (zh) * 2013-03-13 2014-11-05 南京金典制冷实业有限公司 一种可转换流程的换热器及其使用方法
EP3183514B1 (en) * 2014-08-21 2021-06-30 Carrier Corporation Chiller system
CN106766307A (zh) * 2016-12-20 2017-05-31 江苏世林博尔制冷设备有限公司 一种水冷螺杆机双机组水路串联、氟路过冷组合系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2394139Y (zh) * 1999-11-15 2000-08-30 王全龄 太阳能、地热冷热水机组
CN2515605Y (zh) * 2001-12-28 2002-10-09 南京五洲制冷(集团)公司 水源热泵冷水机组
CN1438464A (zh) * 2003-03-21 2003-08-27 梁醒民 利用空气热能的蓄能式热水、冷水机组
CN201897345U (zh) * 2010-12-16 2011-07-13 张家港市江南利玛特设备制造有限公司 船用空调用三联型冷凝装置
CN103673145A (zh) * 2012-09-05 2014-03-26 苏州必信空调有限公司 紧凑型冷水机组及高层建筑的空调系统

Also Published As

Publication number Publication date
CN113028665A (zh) 2021-06-25

Similar Documents

Publication Publication Date Title
KR100905995B1 (ko) 공기 조화 장치
WO2019091241A1 (zh) 空调制冷循环系统及空调器
CN203375758U (zh) 制冷循环系统
EP3364128B1 (en) Heat pump unit control system
ITRM20070158A1 (it) Impianto frigorifero per un ciclo transcritico con economizzatore e accumulatore a bassa pressione
CN100580345C (zh) 空调的二次节流再冷却装置
CN108361884A (zh) 空调系统
WO2019128519A1 (zh) 空调器系统
CN104236147B (zh) 冷水机组
CN202928188U (zh) 集成换热式双机双级螺杆制冷压缩系统
CN207230989U (zh) 喷射增效的双温蒸发制冷系统
CN210951945U (zh) 空调系统
TW201217729A (en) characterized by making the gas refrigerant from the second outer route and the inner route join at the refrigerant route to flow into the compressor
CN113654132A (zh) 热泵机组
WO2023236635A1 (zh) 回热器、回气管路系统、气路回热方法与制冷设备
WO2021129226A1 (zh) 冷水机组
TW201525389A (zh) 冷凍循環裝置
WO2019128517A1 (zh) 空调器系统
CN206803587U (zh) 一种水冷超低温保存箱
JP2012163243A (ja) 冷凍機
CN109539614B (zh) 一种空调系统及其能量调节方法
CN202598939U (zh) 制冷机组
CN217763960U (zh) 一种使用壳管式过冷却器的多机头并联式冷水机组
CN110206708A (zh) 一种用于油冷却器和压缩机连接回路
CN105674407B (zh) 空调制冷回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20906760

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20906760

Country of ref document: EP

Kind code of ref document: A1