WO2021128782A1 - 一种nbiot的频域时频同步方法 - Google Patents

一种nbiot的频域时频同步方法 Download PDF

Info

Publication number
WO2021128782A1
WO2021128782A1 PCT/CN2020/098438 CN2020098438W WO2021128782A1 WO 2021128782 A1 WO2021128782 A1 WO 2021128782A1 CN 2020098438 W CN2020098438 W CN 2020098438W WO 2021128782 A1 WO2021128782 A1 WO 2021128782A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
data
frequency domain
domain
time
Prior art date
Application number
PCT/CN2020/098438
Other languages
English (en)
French (fr)
Inventor
景振海
李宇
丁杰伟
张为民
周俊
Original Assignee
江苏科大亨芯半导体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏科大亨芯半导体技术有限公司 filed Critical 江苏科大亨芯半导体技术有限公司
Publication of WO2021128782A1 publication Critical patent/WO2021128782A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2669Details of algorithms characterised by the domain of operation
    • H04L27/2672Frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2662Symbol synchronisation
    • H04L27/2663Coarse synchronisation, e.g. by correlation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2662Symbol synchronisation
    • H04L27/2665Fine synchronisation, e.g. by positioning the FFT window
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2669Details of algorithms characterised by the domain of operation
    • H04L27/2671Time domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks

Definitions

  • the present invention relates to the field of NB-IoT communication technology, and particularly relates to a time-frequency synchronization method of an NB-IoT system.
  • Narrow Band Internet of Things (NB-IoT, Narrow Band Internet of Things) is a cellular communication system with low power consumption, low cost, large capacity, and wide coverage. People's attention.
  • the first step of NB IoT communication is the initial synchronization process, including obtaining time synchronization and frequency synchronization.
  • the existing synchronization method uses the terminal to construct the time domain master synchronization signal locally, using the correlation of the time domain master synchronization sequence with each time point.
  • the time point of the signal with high cross-correlation is considered to be the main synchronization, it is limited by the complexity of the implementation.
  • the coarse time frequency synchronization at the sampling rate of 240KH is used in the time domain, and then 1.92MHz Fine time and frequency synchronization at the sampling rate. If a large frequency offset needs to be captured, several master synchronization signals with frequency offsets need to be prepared locally for time cross-correlation. This method consumes a lot of cross-correlation calculations and is complicated.
  • the purpose of the present invention is to provide a frequency-domain time-frequency synchronization method that can obtain accurate time synchronization and frequency synchronization NBIOT by sampling different sub-carrier signals and using only one cross-correlation operation. It adopts the following technical solutions:
  • a NBIOT frequency domain time-frequency synchronization method which includes the following steps:
  • each set of data includes 11 pieces of data, and each piece of data is 128 points in length, and performs 8 times lower secondary down-sampling and performs 16-point FFT to get the frequency domain signal;
  • S30 Fetch 5 types of frequency domain data from the frequency domain signal according to 5 different subcarrier offset modes, and each type of frequency domain data includes 11 frequency domain subcarrier data;
  • step S10 specifically includes:
  • the data sample point form of the secondary downsampling in the step S20 is as follows:
  • n 0, 1, 2
  • the frequency domain signal D m,k,i obtained after FFT is:
  • the frequency domain data Y m, k, b, j taken from the frequency domain signal D m, k, i in the step S30 is expressed as:
  • the cross-correlation result data is C m,k,b :
  • the result to be determined is ⁇ m,b :
  • ⁇ ⁇ is the weighting coefficient
  • Is the t-1th time delay autocorrelation result
  • is the IIR filter coefficient
  • the NB-IoT synchronization information obtained in step S60 is:
  • the fractional frequency offset is calculated as follows:
  • T is the symbol length
  • the final frequency offset is expressed as:
  • the frequency-domain time-frequency synchronization method of the NBIOT of the present invention cleverly obtains sub-carrier signals with different frequency offsets by sampling sub-carrier signals at different positions in the frequency domain, and can obtain precise time synchronization and frequency synchronization with only one cross-correlation operation.
  • the frequency-domain correlation method can suppress out-of-band interference to the greatest extent and improve the detection ability of the weak signal of the system.
  • frequency domain correlation technology is adopted, which has better autocorrelation performance and lower mutual performance than time domain correlation, thereby increasing detection reliability.
  • the method can perform initial synchronization in the frequency domain for cells in a scene with a low signal-to-noise ratio and a large frequency offset, and complete coarse synchronization and fine synchronization at one time, thereby realizing a complete cell synchronization process.
  • the calculation process is simplified, the calculation time is saved, and the calculation efficiency is improved.
  • Fig. 1 is a flowchart of a frequency domain time-frequency synchronization method of NBIOT in an embodiment of the present invention.
  • a frequency domain time-frequency synchronization method of NBIOT includes the following steps:
  • each set of data includes 11 pieces of data, and each piece of data is 128 points in length, and performs 8 times lower secondary down-sampling and performs 16-point FFT to get the frequency domain signal;
  • the data sample form of the secondary downsampling is as follows:
  • n 0, 1, 2
  • the frequency domain signal D m,k,i obtained after FFT is:
  • S30 Fetch 5 types of frequency domain data from the frequency domain signal according to 5 different subcarrier offset modes, and each type of frequency domain data includes 11 frequency domain subcarrier data;
  • the frequency domain data Y m, k, b, j taken from the frequency domain signal D m, k, i is expressed as:
  • i b mod([b, b+1,..., b+4, b+10, b+11,..., b+15], 16),
  • the cross-correlation result data is C m,k,b :
  • ⁇ ⁇ is the weighting coefficient
  • Is the t-1th time delay autocorrelation result
  • is the IIR filter coefficient
  • the obtained NB-IoT synchronization information is:
  • fractional frequency offset is calculated as follows:
  • T is the symbol length
  • the final frequency offset is expressed as:

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

本发明公开了一种NBIOT的频域时频同步方法,包括:进行一次采样,并和本地的时域PSS做匹配滤波后寻找前3大峰值及其对应的3个位置;分别以3个位置为起始位置,从一次采样的数据中取三组数据,二次降采样并作16点FFT得到频域信号;按照5种不同的子载波偏移方式从频域信号中取5种频域数据;将5种频域数据和本地频域PSS信号互相关,得到互相关结果数据;将互相关结果数据做延时滑动自相关并加权累加,得到待判决结果;在待判决结果中找到最大值并和门限比较,超过门限则得到NB-IoT同步信息;取过门限的峰值位置数据,计算频偏,完成小区时频同步。本发明能够在频域对低信噪比大频偏的场景下的小区进行初始同步,并且一次完成粗同步和精细同步。

Description

一种NBIOT的频域时频同步方法 技术领域
本发明涉及NB-IoT通信技术领域,特别涉及NB-IoT系统的时频同步方法。
背景技术
窄带物联网(NB-IoT,Narrow Band Internet of Things)是低功耗、低成本、大容量、广覆盖的蜂窝通信系统,并且伴随着大规模物联网需求的产生及不断发展,越来越受到人们的关注。
NB IoT通信的第一步是初始同步过程,包括获得时间同步和频率同步,现有的同步方法通过终端在本地构造时域主同步信号,利用时域主同步序列的相关性与每个时间点的接收信号进行互相关,互相关性高的信号所在的时间点认为是主同步时,受限于实现的复杂度,一般在时间域采用240KH采样率下的粗时间频率同步,然后是1.92MHz采样率下的精细时间和频率同步。如果需要捕获较大的频率偏移需要在本地准备数个带有频率偏移的主同步信号进行时间互相关,这种方法会消耗大量的互相关运算运算复杂。
发明内容
针对现有技术的不足,本发明目的在于提供一种通过取样不同子载波信号,只采用一次互相关运算就能得到精确的时间同步和频率同步NBIOT的频域时频同步方法。其采用如下技术方案:
一种NBIOT的频域时频同步方法,其包括以下步骤:
S10、接收1.92MHz采样信号,进行8倍下一次采样,并和本地的时域PSS做匹配滤波后寻找前3大峰值及其对应的3个位置;
S20、分别以所述3个位置为起始位置,从一次采样的数据中取三组数据,每组数据包括11段数据,每段数据长128点,进行8倍下二次降采样并作16点FFT得到频域信号;
S30、按照5种不同的子载波偏移方式从所述频域信号中取5种频域数据,每种频域数据包括11个频域子载波数据;
S40、将所述5种频域数据和本地频域PSS信号互相关,得到互相关结果数据;
S50、将所述互相关结果数据做延时滑动自相关并加权累加,得到待判决结果;
S60、在所述待判决结果中找到最大值并和门限比较,超过门限则得到NB-IoT同步信息;
S70、取过门限的峰值位置数据,计算小数倍频偏,完成小区时频同步。
作为本发明的进一步改进,所述步骤S10具体包括:
S11、缓存1.92MHz信号r n,n=0,1,..,19200-1,同时对r n进行8倍下采样得到r m′,m′=0,1,...2400-1;
S12、记本地PSS时域信号为s m,m=0,1,..,187,r m′和s m做匹配滤波结果记为q m,m=0,1,2400-1;
S13、从q m中找出前3大峰值对应的位置记为p n,n=0,1,2。
作为本发明的进一步改进,所述步骤S20中二次降采样的数据样点形式如下:
Figure PCTCN2020098438-appb-000001
l k=m+137k+9+(k=3)+(k>3)+8i,
k=0,1,...10,
i=0,...,15,
m=8p n-40,..,8p n+40,
n=0,1,2
在作FFT后得到的频域信号D m,k,i为:
D m,k,j=FFT(d m,k,i),
i=0,1,...,15;j=0,1,...,15。
作为本发明的进一步改进,所述步骤S30中从所述频域信号D m,k,i取的频域数据Y m,k,b,j表示为:
Figure PCTCN2020098438-appb-000002
i b=mod([b,n+1,...,b+4,b+10,b+11,...,b+15],16),
b=0,+1,-1,+2,-2
j=0,1,...10。
作为本发明的进一步改进,所述互相关结果数据为C m,k,b
Figure PCTCN2020098438-appb-000003
其中,L k,j是本地存储的带扰码的PSS频域信号,k=0,1,...10,j=0,1,...10。
作为本发明的进一步改进,所述待判决结果为ρ m,b
Figure PCTCN2020098438-appb-000004
Figure PCTCN2020098438-appb-000005
Figure PCTCN2020098438-appb-000006
其中,ω γ为加权系数,
Figure PCTCN2020098438-appb-000007
为第t-1次的延时自相关结果,λ为IIR滤波器系数。
作为本发明的进一步改进,所述步骤S60中得到NB-IoT同步信息为:
Figure PCTCN2020098438-appb-000008
Figure PCTCN2020098438-appb-000009
其中
Figure PCTCN2020098438-appb-000010
是估计的定时偏移和整数频率偏移索引。
作为本发明的进一步改进,所述小数倍频偏计算如下:
Figure PCTCN2020098438-appb-000011
其中T为符号长度;
最终的频率偏移表示为:
Figure PCTCN2020098438-appb-000012
其中,
Figure PCTCN2020098438-appb-000013
本发明的有益效果:
本发明NBIOT的频域时频同步方法通过在频域取样不同位置的子载波信号,巧妙的得到不同频偏的子载波信号,只采用一次互相关运算就能得到精确的时间同步和频率同步。通过频域相关的方法能够最大限度抑制带外干扰,提高系统微弱信号的检测能力。同时采用频域相关技术,比采用时域相关拥有更好的自相关性能和低的互相性能,从而增加检测可靠性。该方法能够在频域对低信噪比大频偏的场景下的小区进行初始同步,并且一次完成粗同步和精细同步,实现完整小区同步过程。简化了运算过程,节省了运算时间,提高了运算效率。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例,并配合附图,详细说明如下。
附图说明
图1是本发明中实施例中NBIOT的频域时频同步方法的流程图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
实施例
如图1所示,一种NBIOT的频域时频同步方法,其包括以下步骤:
S10、接收1.92MHz采样信号,进行8倍下一次采样,并和本地的时域PSS做匹配滤波后寻找前3大峰值及其对应的3个位置;具体包括:
S11、缓存1.92MHz信号r n,n=0,1,..,19200-1,同时对r n进行8倍下采样得到r m′,m′=0,1,...2400-1;
S12、记本地PSS时域信号为s m,m=0,1,..,187,r m′和s m做匹配滤波结果记为q m,m=0,1,2400-1;
S13、从q m中找出前3大峰值对应的位置记为p n,n=0,1,2。
S20、分别以所述3个位置为起始位置,从一次采样的数据中取三组数据,每组数据包括11段数据,每段数据长128点,进行8倍下二次降采样并作16点FFT得到频域信号;
其中,二次降采样的数据样点形式如下:
Figure PCTCN2020098438-appb-000014
l k=m+137k+9+(k==3)+(k>3)+8i,
k=0,1,...10,
i=0,...,15,
m=8p n-40,..,8p n+40,
n=0,1,2
在作FFT后得到的频域信号D m,k,i为:
D m,k,j=FFT(d m,k,i),
i=0,1,...,15;j=0,1,...,15。
S30、按照5种不同的子载波偏移方式从所述频域信号中取5种频域数据,每种频域数据包括11个频域子载波数据;
其中,从所述频域信号D m,k,i取的频域数据Y m,k,b,j表示为:
Figure PCTCN2020098438-appb-000015
i b=mod([b,b+1,...,b+4,b+10,b+11,...,b+15],16),
b=0,+1,-1,+2,-2
j=0,1,...10。
S40、将所述5种频域数据和本地频域PSS信号互相关,得到互相关结果数 据;
具体的,互相关结果数据为C m,k,b
Figure PCTCN2020098438-appb-000016
其中,L k,j是本地存储的带扰码的PSS频域信号,k=0,1,...10,j=0,1,...10。
S50、将所述互相关结果数据做延时滑动自相关并加权累加,得到待判决结果;
具体的,待判决结果为ρ m,b
Figure PCTCN2020098438-appb-000017
Figure PCTCN2020098438-appb-000018
Figure PCTCN2020098438-appb-000019
其中,ω γ为加权系数,
Figure PCTCN2020098438-appb-000020
为第t-1次的延时自相关结果,λ为IIR滤波器系数。
S60、在所述待判决结果中找到最大值并和门限比较,超过门限则得到NB-IoT同步信息;
具体的,得到NB-IoT同步信息为:
Figure PCTCN2020098438-appb-000021
Figure PCTCN2020098438-appb-000022
其中
Figure PCTCN2020098438-appb-000023
是估计的定时偏移和整数频率偏移索引。
S70、取过门限的峰值位置数据,计算小数倍频偏,完成小区时频同步。
具体的,小数倍频偏计算如下:
Figure PCTCN2020098438-appb-000024
其中T为符号长度;
最终的频率偏移表示为:
Figure PCTCN2020098438-appb-000025
其中,
Figure PCTCN2020098438-appb-000026
以上实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (8)

  1. 一种NBIOT的频域时频同步方法,其特征在于,包括以下步骤:
    S10、接收1.92MHz采样信号,进行8倍下一次采样,并和本地的时域PSS做匹配滤波后寻找前3大峰值及其对应的3个位置;
    S20、分别以所述3个位置为起始位置,从一次采样的数据中取三组数据,每组数据包括11段数据,每段数据长128点,进行8倍下二次降采样并作16点FFT得到频域信号;
    S30、按照5种不同的子载波偏移方式从所述频域信号中取5种频域数据,每种频域数据包括11个频域子载波数据;
    S40、将所述5种频域数据和本地频域PSS信号互相关,得到互相关结果数据;
    S50、将所述互相关结果数据做延时滑动自相关并加权累加,得到待判决结果;
    S60、在所述待判决结果中找到最大值并和门限比较,超过门限则得到NB-IoT同步信息;
    S70、取过门限的峰值位置数据,计算小数倍频偏,完成小区时频同步。
  2. 如权利要求1所述的NBIOT的频域时频同步方法,其特征在于,所述步骤S10具体包括:
    S11、缓存1.92MHz信号r n,n=0,1,..,19200-1,同时对r n进行8倍下采样得到r m′,m′=0,1,...2400-1;
    S12、记本地PSS时域信号为s m,m=0,1,..,187,r m′和s m做匹配滤波结果记为q m,m=0,1,2400-1;
    S13、从q m中找出前3大峰值对应的位置记为p n,n=0,1,2。
  3. 如权利要求2所述的NBIOT的频域时频同步方法,其特征在于,所述步骤S20中二次降采样的数据样点形式如下:
    Figure PCTCN2020098438-appb-100001
    l k=m+137k+9+(k==3)+(k>3)+8i,
    k=0,1,...10,
    i=0,..,15,
    m=8p n-40,..,8p n+40,
    n=1,1,2
    在作FFT后得到的频域信号D m,k,i为:
    D m,k,j=FFT(d m,k,i),
    i=0,1,...,15;j=0,1,...15。
  4. 如权利要求3所述的NBIOT的频域时频同步方法,其特征在于,所述步骤S30中从所述频域信号D m,k,i取的频域数据Y m,k,b,j表示为:
    Figure PCTCN2020098438-appb-100002
    i b=mod([b,b+1,...,b+4,b+10,b+11,...,b+15],16),
    b=0,+1,-1,+2,-2
    j=0,1,...10。
  5. 如权利要求4所述的NBIOT的频域时频同步方法,其特征在于,所述互相关结果数据为C m,k,b
    Figure PCTCN2020098438-appb-100003
    其中,L k,j是本地存储的带扰码的PSS频域信号,k=0,1,...10,j=0,1,...10。
  6. 如权利要求5所述的NBIOT的频域时频同步方法,其特征在于,所述待判决结果为ρ m,b
    Figure PCTCN2020098438-appb-100004
    Figure PCTCN2020098438-appb-100005
    Figure PCTCN2020098438-appb-100006
    其中,ω γ为加权系数,
    Figure PCTCN2020098438-appb-100007
    为第t-1次的延时自相关结果,λ为IIR滤波 器系数。
  7. 如权利要求6所述的NBIOT的频域时频同步方法,其特征在于,所述步骤S60中得到NB-IoT同步信息为:
    Figure PCTCN2020098438-appb-100008
    Figure PCTCN2020098438-appb-100009
    其中
    Figure PCTCN2020098438-appb-100010
    是估计的定时偏移和整数频率偏移索引。
  8. 如权利要求7所述的NBIOT的频域时频同步方法,其特征在于,所述小数倍频偏计算如下:
    Figure PCTCN2020098438-appb-100011
    其中T为符号长度;
    最终的频率偏移表示为:
    Figure PCTCN2020098438-appb-100012
    其中,
    Figure PCTCN2020098438-appb-100013
PCT/CN2020/098438 2019-12-26 2020-06-28 一种nbiot的频域时频同步方法 WO2021128782A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911370641.5 2019-12-26
CN201911370641.5A CN111030959B (zh) 2019-12-26 2019-12-26 一种NB-IoT的频域时频同步方法

Publications (1)

Publication Number Publication Date
WO2021128782A1 true WO2021128782A1 (zh) 2021-07-01

Family

ID=70214014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/098438 WO2021128782A1 (zh) 2019-12-26 2020-06-28 一种nbiot的频域时频同步方法

Country Status (2)

Country Link
CN (1) CN111030959B (zh)
WO (1) WO2021128782A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114584277A (zh) * 2022-05-07 2022-06-03 武汉高德红外股份有限公司 一种通信系统时域同步方法和系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111030959B (zh) * 2019-12-26 2021-05-11 江苏科大亨芯半导体技术有限公司 一种NB-IoT的频域时频同步方法
CN112187693B (zh) * 2020-09-15 2022-10-18 上海微波技术研究所(中国电子科技集团公司第五十研究所) 5g系统中pss定时同步的方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180041976A1 (en) * 2016-08-08 2018-02-08 Electronics And Telecommunications Research Institue Method and apparatus for secondary synchronization in internet of things
CN108123774A (zh) * 2017-12-27 2018-06-05 中山大学花都产业科技研究院 一种窄带物联网下行同步方法及其系统
CN108605304A (zh) * 2016-02-15 2018-09-28 瑞典爱立信有限公司 采用降低的采样率的NB-IoT装置中的下行链路时间跟踪
CN109428847A (zh) * 2017-08-29 2019-03-05 苏州优尼赛信息科技有限公司 NB-IoT系统中下行次同步信号的检测与同步方法及装置
CN111030959A (zh) * 2019-12-26 2020-04-17 江苏科大亨芯半导体技术有限公司 一种nbiot的频域时频同步方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102130883B (zh) * 2011-04-15 2013-07-17 重庆邮电大学 一种用于td-lte系统时频同步的方法
CN111106924B (zh) * 2017-02-05 2022-03-04 吴洁 应用于窄带无线通信系统终端的同步检测装置
CN107231326B (zh) * 2017-05-19 2020-04-14 大连理工大学 一种NB-IoT系统下行链路中的小区搜索系统
CN107370699B (zh) * 2017-07-07 2021-02-02 大连理工大学 一种NB-IoT小区搜索系统
CN109428848B (zh) * 2017-08-29 2021-03-26 苏州优尼赛信息科技有限公司 一种NB-loT系统中下行主同步信号精同步的检测和估计方法
CN108377174B (zh) * 2018-02-27 2019-11-19 武汉虹信通信技术有限责任公司 一种nb-iot同频小区的检测方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108605304A (zh) * 2016-02-15 2018-09-28 瑞典爱立信有限公司 采用降低的采样率的NB-IoT装置中的下行链路时间跟踪
US20180041976A1 (en) * 2016-08-08 2018-02-08 Electronics And Telecommunications Research Institue Method and apparatus for secondary synchronization in internet of things
CN109428847A (zh) * 2017-08-29 2019-03-05 苏州优尼赛信息科技有限公司 NB-IoT系统中下行次同步信号的检测与同步方法及装置
CN108123774A (zh) * 2017-12-27 2018-06-05 中山大学花都产业科技研究院 一种窄带物联网下行同步方法及其系统
CN111030959A (zh) * 2019-12-26 2020-04-17 江苏科大亨芯半导体技术有限公司 一种nbiot的频域时频同步方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "NB-PSS and NB-SSS Design (Revised)", 3GPP DRAFT; R1-161981 NB-PSS AND NB-SSS DESIGN, vol. RAN WG1, 22 March 2016 (2016-03-22), Sophia Antipolis, France, pages 1 - 24, XP051081092 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114584277A (zh) * 2022-05-07 2022-06-03 武汉高德红外股份有限公司 一种通信系统时域同步方法和系统
CN114584277B (zh) * 2022-05-07 2022-09-20 武汉高德红外股份有限公司 一种通信系统时域同步方法和系统

Also Published As

Publication number Publication date
CN111030959A (zh) 2020-04-17
CN111030959B (zh) 2021-05-11

Similar Documents

Publication Publication Date Title
WO2021128782A1 (zh) 一种nbiot的频域时频同步方法
EP2690915B1 (en) Method for robust downlink timing synchronization of a lte system
CN113612527B (zh) 一种低轨卫星移动通信系统初始同步方法
CN104717162B (zh) Ofdm超宽带系统非线性失真恢复与信道估计高效联合方法
WO2011091671A1 (zh) 一种实现自动频率控制的方法和装置
CN108055221B (zh) Cpfsk信号载波频率捕获方法
WO2021139163A1 (zh) 射频指纹提取方法、装置、无线接收机及存储介质
CN111935046B (zh) 一种低复杂度的频移键控信号符号率估计方法
CN112738000B (zh) 一种pss分块互相关检测方法
CN108923877B (zh) 一种pcma定时捕获和跟踪方法
CN113820731A (zh) 一种卫星导航接收机无周期长码信号的捕获方法及系统
WO2010148785A1 (zh) 一种去除窄带干扰的方法和自适应滤波器
CN113009413A (zh) 基于正交频分复用波形的网络节点间测距方法
CN107707499B (zh) 一种Alpha稳定分布噪声下OFDM信号调制参数估计方法
CN110286392B (zh) 一种基于降采样的频域抗窄带干扰实现方法
CN113132075A (zh) 一种帧同步方法和帧同步模块
CN111865854B (zh) 突发ofdm系统的帧捕获及同步方法
CN111371719B (zh) 一种循环序列的无线通信系统定时同步方法
CN109168186B (zh) 一种实现lte系统中搜索频点的方法
CN114422313B (zh) 一种帧检测方法
CN110417699A (zh) 一种基于机器学习的ofdm系统符号定时同步的方法
CN116647251B (zh) 适合mc-cdma系统的信号捕获方法
CN113191317B (zh) 一种基于极点构造低通滤波器的信号包络提取方法和装置
CN117118791B (zh) 频偏估计方法、装置、计算机设备和存储介质
CN115514606B (zh) 一种基于互质采样的高精度定时估计方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20904414

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20904414

Country of ref document: EP

Kind code of ref document: A1