WO2021128710A1 - 一种电池开机电路 - Google Patents

一种电池开机电路 Download PDF

Info

Publication number
WO2021128710A1
WO2021128710A1 PCT/CN2020/091099 CN2020091099W WO2021128710A1 WO 2021128710 A1 WO2021128710 A1 WO 2021128710A1 CN 2020091099 W CN2020091099 W CN 2020091099W WO 2021128710 A1 WO2021128710 A1 WO 2021128710A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
terminal
switching device
dual
power supply
Prior art date
Application number
PCT/CN2020/091099
Other languages
English (en)
French (fr)
Inventor
刘明
李番军
施璐
姚斌
Original Assignee
上海派能能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海派能能源科技股份有限公司 filed Critical 上海派能能源科技股份有限公司
Priority to JP2022539106A priority Critical patent/JP2023508421A/ja
Priority to AU2020414768A priority patent/AU2020414768B2/en
Priority to BR112022009863A priority patent/BR112022009863A2/pt
Priority to EP20905577.1A priority patent/EP3985462A4/en
Priority to MX2022008027A priority patent/MX2022008027A/es
Priority to US17/788,405 priority patent/US20230029478A1/en
Publication of WO2021128710A1 publication Critical patent/WO2021128710A1/zh
Priority to ZA2022/06130A priority patent/ZA202206130B/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0036Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using connection detecting circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0024Parallel/serial switching of connection of batteries to charge or load circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/005Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting using a power saving mode
    • H02J9/007Detection of the absence of a load
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • inventive embodiments of the present invention relate to the field of battery technology, and in particular to a battery startup circuit.
  • the inventive embodiment of the present invention provides a battery power-on circuit to realize automatic power-on of the battery power supply unit when the load is connected.
  • the inventive embodiment of the present invention provides a battery startup circuit, which includes a power supply circuit and a switch circuit;
  • the power supply circuit includes a battery power supply unit, a first voltage dividing resistor, a second voltage dividing resistor, and a fourth switching device.
  • the anode of the battery power unit is connected to the first end of the first voltage dividing resistor, and the battery
  • the negative pole of the power supply unit is electrically connected to the first terminal of the second voltage dividing resistor and the input terminal of the fourth switching device, respectively, and the second terminal of the first voltage dividing resistor and the second terminal of the second voltage dividing resistor are electrically connected to each other.
  • the second terminal is electrically connected and then connected to the output terminal of the fourth switching device.
  • the switch circuit includes a dual-channel voltage comparison unit and a power-on control unit.
  • the dual-channel voltage comparison unit includes a first input terminal and a first output terminal that are relatively disposed, and a second input terminal and a second output terminal that are relatively disposed.
  • the first input terminal is electrically connected to the positive electrode of the battery power supply unit
  • the first output terminal is electrically connected to the first control terminal of the boot control unit
  • the second input terminal is electrically connected to the output terminal of the fourth switching device.
  • the second output terminal is electrically connected with the second control terminal of the boot control unit; the output terminal of the switch control unit is electrically connected with the control terminal of the fourth switching device.
  • the dual-channel voltage comparison unit is used to transmit a first control signal to the first control terminal of the switch control unit when the positive voltage of the battery power supply unit is lower than the reference voltage, so that the switch control unit controls the first control terminal.
  • the four switching devices are turned off, and are also used to transmit a second control signal to the second control terminal of the switching control unit when the output terminal voltage of the fourth switching device is higher than the reference voltage, so that the switching control unit The fourth switching device is controlled to be turned on.
  • the battery startup circuit further includes a chip operating power supply
  • the dual-channel voltage comparison unit includes a dual-channel comparator
  • the dual-channel comparator is preset with the reference voltage
  • the dual-channel comparator includes The power supply terminal is electrically connected to the chip working power supply.
  • the dual-channel voltage comparison unit further includes a third voltage dividing resistor and a fourth voltage dividing resistor;
  • the dual-channel comparator includes a first input terminal and a first output terminal that are relatively arranged;
  • the first end of the third voltage dividing resistor is electrically connected to the positive electrode of the battery power supply unit, the first end of the fourth voltage dividing resistor is connected to the ground terminal, and the second end of the third voltage dividing resistor is connected to the ground.
  • the second end of the fourth voltage dividing resistor is electrically connected to and connected to the first input end of the dual-channel comparator;
  • the dual-channel comparator is used for transmitting the first control signal to the first control terminal of the switch control unit through the first output terminal when detecting that the voltage of the first input terminal is lower than the reference voltage.
  • the dual-channel voltage comparison unit further includes a fifth voltage dividing resistor and a sixth voltage dividing resistor;
  • the first end of the fifth voltage dividing resistor is electrically connected to the output end of the fourth switching device, and the first end of the sixth voltage dividing resistor is electrically connected to the second end of the fifth voltage dividing resistor.
  • the dual-channel comparator is used to transmit the second control signal to the second control terminal of the switch control unit through the second output terminal when detecting that the voltage at the second input terminal thereof is higher than the reference voltage.
  • the dual-channel comparison unit further includes a reference voltage unit, and the dual-channel comparator includes a first reference voltage terminal and a second reference voltage terminal;
  • the output terminal of the reference voltage unit is electrically connected to the first reference voltage terminal and the second reference voltage terminal, and the reference voltage unit is used to control the first reference voltage terminal and the second reference voltage Both terminals maintain the reference voltage.
  • the reference voltage unit includes a reference voltage device and a seventh resistor
  • the reference voltage device includes a reference terminal that is electrically connected to the chip operating power supply through the seventh resistor, and the reference terminal is also connected to the first reference voltage terminal and the second reference voltage terminal, respectively. Electric connection.
  • the power-on control unit includes a first switching device, a second switching device, a third switching device, a pull-down resistor, and a pull-up resistor;
  • the gate of the second switching device is electrically connected to the second output terminal of the dual-channel voltage comparison unit, the source of the second switching device is connected to the ground terminal, and the drain of the second switching device is connected to the The first end of the pull-down resistor is connected;
  • the gate of the third switching device is electrically connected to the first output terminal of the dual-channel voltage comparison unit, the source of the third switching device is connected to the ground, and the drain of the third switching device is connected to the The second output terminal of the dual-channel voltage comparison unit is electrically connected;
  • the second end of the pull-down resistor is electrically connected to the first end of the pull-up resistor and the gate of the first switching device, and the source of the first switching device is connected to the second end of the pull-up resistor.
  • the terminal is electrically connected to and connected to a first voltage power supply, and the drain of the first switching device is electrically connected to the control terminal of the fourth switching device.
  • the first switching device is PMOS
  • the second switching device, the third switching device, and the fourth switching device are all NMOS.
  • the output voltage of the first voltage power supply is 12V.
  • the output voltage of the battery power supply unit is 12V and the initial floating voltage of the output terminal of the fourth switching device is 5V.
  • the inventive embodiment of the present invention discloses a battery startup circuit.
  • the battery startup circuit includes a power supply circuit and a switching circuit.
  • the power supply circuit includes a battery power supply unit, a first voltage dividing resistor, a second voltage dividing resistor, and a fourth switching device. It includes a dual-channel voltage comparison unit and a start-up control unit. The first input end of the dual-channel voltage comparison unit is electrically connected to the positive electrode of the battery power supply unit, and the second input end is electrically connected to the output end of the fourth switching device.
  • the dual-channel voltage comparison unit It is used to transmit the first control signal to the first control terminal of the switch control unit when the positive voltage of the battery power supply unit is lower than the reference voltage so that the switch control unit controls the fourth switching device to turn off, and is also used to switch off the output of the fourth switching device.
  • the second control signal is transmitted to the second control terminal of the switch control unit to enable the switch control unit to control the fourth switch device to turn on, so as to realize the automatic startup of the battery power unit when the load is connected.
  • FIG. 1 is a power supply circuit diagram of a battery startup circuit provided by an inventive embodiment of the present invention
  • Fig. 2 is a circuit diagram of a battery start-up circuit switch circuit provided by an inventive embodiment of the present invention. Detailed ways
  • Fig. 1 is a power supply circuit diagram of a battery start-up circuit provided by an inventive embodiment of the present invention.
  • Fig. 2 is a switch circuit diagram of a battery start-up circuit provided by an inventive embodiment of the present invention. As shown in Figs. 1 and 2, the battery start-up circuit includes a power supply circuit. And the switching circuit,
  • the power supply circuit includes a battery power supply unit 11, a first voltage dividing resistor R1, a second voltage dividing resistor R2, and a fourth switching device Q4.
  • the anode of the battery power unit 11 is connected to the first end of the first voltage dividing resistor R1.
  • the negative electrode of the battery power supply unit 11 is electrically connected to the first end of the second voltage dividing resistor R2 and the input end of the fourth switching device Q4, the second end of the first voltage dividing resistor R1 and the second end of the second voltage dividing resistor R2
  • the two terminals are electrically connected and then connected to the output terminal of the fourth switching device Q4.
  • the switch circuit includes a dual-channel voltage comparison unit 21 and a start-up control unit 22.
  • the dual-channel voltage comparison unit 21 includes a first input terminal PACK+ and a first output terminal a7 arranged oppositely, and a second input terminal PACK- arranged oppositely. And the second output terminal a1, in conjunction with FIGS.
  • the first input terminal PACK+ is electrically connected to the anode of the battery power supply unit 11
  • the first output terminal a7 is electrically connected to the first control terminal of the boot control unit 22
  • the The second input terminal PACK- is electrically connected to the output terminal of the fourth switching device Q4,
  • the second output terminal a1 is electrically connected to the second control terminal of the boot control unit 22;
  • the output terminal 12V POWR_SEC of the switch control unit 22 is connected to the fourth switch
  • the control terminal of the device Q4 is electrically connected.
  • the dual-channel voltage comparison unit 21 is used to transmit a first control signal to the first control terminal of the switch control unit 22 when the positive voltage of the battery power supply unit 11 is lower than the reference voltage, so that the switch control unit 22 controls the fourth switching device Q4 to turn off It is also used to transmit a second control signal to the second control terminal of the switch control unit 22 when the output terminal voltage of the fourth switch device Q4 is higher than the reference voltage, so that the switch control unit 22 controls the fourth switch device Q4 to be turned on.
  • the fourth switching device Q4 when the load is not connected, the fourth switching device Q4 is turned off, and the voltage signal of the battery power supply unit 11 is divided by the first voltage dividing resistor R1 and the second voltage dividing resistor R2, and the output terminal of the fourth switching device Q4 The initial floating voltage is output.
  • the battery power supply unit 11 provides a voltage of 12V, and the initial floating voltage is 5V.
  • the dual-channel voltage comparison unit 21 transmits a second control signal to the second control terminal of the switch control unit 22 to turn on the fourth switching device Q4; when the positive voltage of the battery power supply unit 11 is insufficient, the positive voltage of the battery power supply unit 11 is low Based on the reference voltage, the dual-channel voltage comparison unit 21 transmits a first control signal to the first control terminal of the switch control unit 22 to turn off the fourth switch device Q4.
  • the battery power supply unit 11 when the load is connected, when the voltage at the output terminal of the fourth switching device Q4 is consistent with the positive voltage of the battery power supply unit 11, the battery power supply unit 11 is connected to the external load, and when the battery power supply unit 11 has insufficient power or is not connected to the load When the battery power supply unit 11 is disconnected from the external load, the battery power supply unit 11 is automatically turned on when the load is connected, thereby avoiding the power loss caused by the battery standby for a long time.
  • the battery startup circuit further includes a chip operating power supply P3V3 STBY.
  • the dual-channel voltage comparison unit 21 includes a dual-channel comparator U2.
  • the dual-channel comparator U2 is preset with a reference voltage.
  • the dual-channel comparator U2 includes a power supply terminal a8.
  • the chip working power supply P3V3 STBY is electrically connected to the power supply terminal a8 of the dual-channel comparator to supply power to the dual-channel comparator U2.
  • the chip working power supply P3V3 STBY provides 3.3V DC power for dual-channel comparison
  • the continuous power supply of the device U2 enables the dual-channel comparator U2 to maintain a working state without consuming the power of the battery power supply unit.
  • the dual-channel comparison unit 21 further includes a reference voltage unit 212, and the dual-channel comparator U2 includes a first reference voltage terminal a2 and a second reference voltage terminal a5;
  • the output terminals of the reference voltage unit 212 are respectively electrically connected to the first reference voltage terminal a2 and the second reference voltage terminal a5.
  • the reference voltage unit 212 is used to control the first reference voltage terminal a2 and the second reference voltage terminal a5 to maintain the reference voltage.
  • the reference voltage unit 212 includes a reference voltage device U1 and a seventh resistor R7;
  • the reference voltage device U1 includes a reference terminal, the reference terminal b1 is electrically connected to the chip operating power supply P3V3 STBY through a seventh resistor R7, and the reference terminal b1 is also electrically connected to the first reference voltage terminal a2 and the second reference voltage terminal a5, respectively.
  • the chip working power supply P3V3 STBY is electrically connected to the reference terminal b1 of the reference voltage device U1 through the seventh resistor R7 to supply power to the reference voltage device U1.
  • the chip working power supply P3V3 STBY provides a direct current of 3.3V.
  • the chip working power supply P3V3 STBY is used as a backup power supply to save the power consumption of the battery power supply unit 11, and continues to supply power to the reference voltage unit U2.
  • the reference voltage unit 212 provides a 2.5V reference voltage.
  • the output terminals of the reference voltage unit 212 are electrically connected to the first reference voltage terminal a2 and the second reference voltage terminal a5.
  • the first reference voltage terminal in the dual-channel comparator U2 A2 and the second reference voltage terminal a5 maintain the reference voltage value of 2.5V.
  • the dual-channel voltage comparison unit 21 further includes a third voltage dividing resistor R3 and a fourth voltage dividing resistor R4;
  • the dual-channel comparator U2 includes a first input terminal a6 and a first output terminal a7 that are arranged oppositely;
  • the first end of the third voltage dividing resistor R3 is electrically connected to the positive electrode of the battery power supply unit 11, the first end of the fourth voltage dividing resistor R4 is connected to the ground terminal, and the second end of the third voltage dividing resistor R3 is connected to the fourth voltage dividing resistor.
  • the second terminal of R4 is electrically connected to and connected to the first input terminal a6 of the dual-channel comparator U2;
  • the dual-channel comparator U2 is used to transmit the first control signal to the first control terminal of the switch control unit 22 through the first output terminal a7 when detecting that the voltage of the first input terminal a6 is lower than the reference voltage.
  • the dual-channel voltage comparison unit 21 further includes a fifth voltage dividing resistor R5 and a sixth voltage dividing resistor R6;
  • the first end of the fifth voltage dividing resistor R5 is electrically connected to the output end of the fourth switching device Q4, the first end of the sixth voltage dividing resistor R6 and the second end of the fifth voltage dividing resistor R5 are electrically connected and compared with the dual channel
  • the dual-channel comparator 211 is used to transmit a second control signal to the second control terminal of the switch control unit 22 through the second output terminal a1 when detecting that the voltage of the second input terminal a3 is higher than the reference voltage.
  • the power-on control unit 22 includes a first switching device Q1, a second switching device Q2, a third switching device Q3, a pull-down resistor R8, and a pull-up resistor R9;
  • the gate of the second switching device Q2 is electrically connected to the second output terminal a1 of the dual-channel voltage comparison unit 21, the source of the second switching device Q2 is connected to the ground terminal, and the drain of the second switching device Q2 is connected to the second output terminal a1 of the pull-down resistor R8. Connected at one end
  • the gate of the third switching device Q3 is electrically connected to the first output terminal a7 of the dual-channel voltage comparing unit 21, the source of the third switching device Q3 is connected to the ground terminal, and the drain of the third switching device Q3 is connected to the dual-channel voltage comparing unit.
  • the second output terminal of 21 is electrically connected to a1;
  • the second end of the pull-down resistor R8 is electrically connected to the first end of the pull-up resistor R9 and the gate of the first switching device Q1, and the source of the first switching device Q1 is electrically connected to the second end of the pull-up resistor R9.
  • the drain 12V POWR_SEC of the first switching device Q1 is electrically connected to the control terminal of the fourth switching device Q4.
  • the pull-down resistor R8 and the pull-up resistor R9 play the role of current limiting.
  • the working principle of the battery startup circuit is: when the load is connected, the positive and negative electrodes of the battery power supply unit 11 are short-circuited, and the output terminal of the fourth switching device Q4 outputs a larger voltage signal, and then passes through the third The voltage divided by the voltage dividing resistor R3 and the fourth voltage dividing resistor R4 is given to the second input terminal a3 of the dual-channel comparator U2, so that the voltage at the second input terminal a3 of the dual-channel comparator U2 is higher than the second reference voltage terminal a2
  • the second output terminal a1 of the dual-channel comparator U2 outputs a high level, drives the second switching device Q2 to turn on, and pulls down the voltage of the gate of the first switching device.
  • the first switching device Q1 is turned on. ON, the voltage signal of the first voltage source 12V POWR is output to the gate of the fourth switching device Q4 through the first switching device Q1, and the fourth switching device is turned on, realizing the automatic startup of the battery power unit.
  • the voltage divided by the fifth voltage dividing resistor R5 and the sixth voltage dividing resistor R6 is given to the first input of the dual-channel comparator U2 Terminal a6, so that the voltage of the first input terminal a6 of the dual-channel comparator U2 is higher than the voltage value of the first reference voltage terminal a5, and the first output terminal a7 of the dual-channel comparator U2 outputs a high level to drive the third switching device Q3 Turn on, pull down the voltage of the gate of the second switching device Q2, at this time, the second switching device Q2 is turned off, the pull-up resistor R9 pulls up the voltage of the gate of the first switching device, and the first switching device Q1 is turned off , The first switching power supply 12V POWR_SEC cannot transmit the voltage signal to the fourth switching device Q4, the fourth switching device Q4 is turned off, and the battery power supply unit is in the shutdown state.
  • the first switching device Q1 is PMOS
  • the second switching device Q2, the third switching device Q3, and the fourth switching device Q4 are all NMOS.
  • the output voltage of the first voltage power supply is 12V.
  • the output voltage of the battery power supply unit 11 is 12V
  • the fourth switching device when the load is not connected, the fourth switching device turns off Q4; when the load is connected, the voltage at the output terminal of the fourth switching device Q4 rises, and the voltage of the dual-channel comparator U2 is compared by the voltage of the dual-channel comparator U2.
  • the second output terminal a1 outputs a high voltage and controls the second switching device Q2 to turn on, thereby pulling down the gate voltage of the first switching device Q1, the first switching device Q1 is turned on, and then the first voltage power supply 12V POWR passes through the first switch
  • the device Q1 outputs a voltage signal to the gate of the fourth switching device Q4, and controls the fourth switching device Q4 to conduct, so as to realize the conduction between the battery power supply unit and the load; when the battery power supply unit 11 is insufficient, that is, the battery power supply unit 11
  • the second output terminal a7 of the dual-channel comparator outputs a high level to control the third switching device to turn on, thereby pulling down the control terminal of the second switching device ,
  • the second switching device is disconnected from the first switching device, the first voltage power supply 12V POWR cannot output a voltage signal to the gate of the fourth switching device Q4, and the fourth switching device Q4 is disconnected, which realizes that the battery is

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Secondary Cells (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Electronic Switches (AREA)

Abstract

一种电池开机电路,电池开机电路包括供电电路和开关电路,供电电路包括电池电源单元(11)、第一分压电阻(R1)、第二分压电阻(R2)和第四开关器件(Q4),开关电路包括双通道电压比较单元(21)及开机控制单元(22),双通道电压比较单元(21)第一输入端(PACK+)与电池电源单元(11)的正极电连接,其第二输入端((PACK-)与第四开关器件(Q4)的输出端电连接,双通道电压比较单元(21)用于在电池电源单元(11)的正极电压低于基准电压时向开机控制单元(22)的第一控制端传输第一控制信号使第四开关器件(Q4)断开,还用于在第四开关器件(Q4)的输出端电压高于基准电压时向开机控制单元(22)的第二控制端传输第二控制信号使第四开关器件(Q4)导通。实现了当负载接入时电池电源单元(11)的自动开机。

Description

一种电池开机电路 技术领域
本发明创造实施例涉及电池技术领域,尤其涉及一种电池开机电路。
背景技术
目前,随着锂电池作为许多电子设备的储能设备朝着高功率、低成本和低待机功耗的方向发展,电池长时间待机时电量容易损耗完,无法满足电子设备长时间待机的功能。为避免电池长时间待机造成的功率损耗,现有的电池在关机后,需要额外增加按钮等一些机械开关才能将电池开机,
发明内容
本发明创造实施例提供了一种电池开机电路,以实现当负载接入时电池电源单元的自动开机。
本发明创造实施例提供了一种电池开机电路,该电池开机电路包括供电电路和开关电路;
所述供电电路包括电池电源单元、第一分压电阻、第二分压电阻和第四开关器件,所述电池电源单元的正极与所述第一分压电阻的第一端相连,所述电池电源单元的负极分别与所述第二分压电阻的第一端和所述第四开关器件的输入端电连接,所述第一分压电阻的第二端和所述第二分压电阻的第二端电连接再并接入所述第四开关器件的输出端。
所述开关电路包括双通道电压比较单元及开机控制单元,所述双通道电压 比较单元包括相对设置的第一输入端和第一输出端以及相对设置的第二输入端和第二输出端,该第一输入端与所述电池电源单元的正极电连接,该第一输出端与所述开机控制单元的第一控制端电连接,该第二输入端与所述第四开关器件的输出端电连接,该第二输出端与所述开机控制单元的第二控制端电连接;所述开关控制单元的输出端与所述第四开关器件的控制端电连接。
所述双通道电压比较单元用于在所述电池电源单元的正极电压低于基准电压时向所述开关控制单元的第一控制端传输第一控制信号以使所述开关控制单元控制所述第四开关器件断开,还用于在所述第四开关器件的输出端电压高于所述基准电压时向所述开关控制单元的第二控制端传输第二控制信号以使所述开关控制单元控制所述第四开关器件导通。
可选的,所述电池开机电路还包括芯片工作电源,所述双通道电压比较单元包括双通道比较器,所述双通道比较器中预设有所述基准电压,所述双通道比较器包括供电端,所述供电端与所述芯片工作电源电连接。
可选的,所述双通道电压比较单元还包括第三分压电阻和第四分压电阻;
所述双通道比较器包括相对设置的第一输入端和第一输出端;
所述第三分压电阻的第一端与所述电池电源单元的正极电连接,所述第四分压电阻的第一端连接接地端,所述第三分压电阻的第二端和所述第四分压电阻的第二端电连接并接入所述双通道比较器的第一输入端;
所述双通道比较器用于在检测到其第一输入端的电压低于所述基准电压时通过其第一输出端向所述开关控制单元的第一控制端传输所述第一控制信号。
可选的,所述双通道电压比较单元还包括第五分压电阻和第六分压电阻;
所述第五分压电阻的第一端与所述第四开关器件的输出端电连接,所述第 六分压电阻的第一端和所述第五分压电阻的第二端电连接并与所述双通道比较器的第二输入端;
所述双通道比较器用于在检测到其第二输入端的电压高于所述基准电压时通过其第二输出端向所述开关控制单元的第二控制端传输所述第二控制信号。
可选的,所述双通道比较单元还包括基准电压单元,所述双通道比较器包括第一基准电压端和第二基准电压端;
所述基准电压单元的输出端分别与所述第一基准电压端和所述第二基准电压端电连接,所述基准电压单元用于控制所述第一基准电压端和所述第二基准电压端均保持所述基准电压。
可选的,所述基准电压单元包括基准电压器和第七电阻;
所述基准电压器包括基准端,所述基准端通过所述第七电阻与所述芯片工作电源电连接,所述基准端还分别与所述第一基准电压端和所述第二基准电压端电连接。
可选的,所述开机控制单元包括第一开关器件、第二开关器件、第三开关器件、下拉电阻和上拉电阻;
所述第二开关器件的栅极与所述双通道电压比较单元的第二输出端电连接,所述第二开关器件的源级连接接地端,所述第二开关器件的漏级与所述下拉电阻的第一端相连;
所述第三开关器件的栅极与所述双通道电压比较单元的第一输出端电连接,所述第三开关器件的源级连接接地端,所述第三开关器件的漏级与所述双通道电压比较单元的第二输出端电连接;
所述下拉电阻的第二端分别与所述上拉电阻的第一端和所述第一开关器件 的栅级电连接,所述第一开关器件的源级与所述上拉电阻的第二端电连接并接入第一电压电源,所述第一开关器件的漏级与所述第四开关器件的控制端电连接。
可选的,所述第一开关器件为PMOS,所述第二开关器件、所述第三开关器件和所述第四开关器件均为NMOS。
可选的,所述第一电压电源的输出电压为12V。
可选的,所述电池电源单元的输出电压为12V以及所述第四开关器件的输出端的初始悬空电压为5V。
本发明创造实施例公开了一种电池开机电路,该电池开机电路包括供电电路和开关电路,供电电路包括电池电源单元、第一分压电阻、第二分压电阻和第四开关器件,开关电路包括双通道电压比较单元及开机控制单元,双通道电压比较单元第一输入端与电池电源单元的正极电连接,其第二输入端与第四开关器件的输出端电连接,双通道电压比较单元用于在电池电源单元的正极电压低于基准电压时向开关控制单元的第一控制端传输第一控制信号使开关控制单元控制第四开关器件断开,还用于在第四开关器件的输出端电压高于基准电压时向开关控制单元的第二控制端传输第二控制信号使开关控制单元控制第四开关器件导通,以实现当负载接入时电池电源单元的自动开机。
附图说明
图1是本发明创造实施例提供的一种电池开机电路供电电路图;
图2是本发明创造实施例提供的一种电池开机电路开关电路图。具体实施方式
下面结合附图和实施例对本发明创造实施例作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明创造实施例,而非对本发明创造实施例的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明创造实施例相关的部分而非全部结构。
实施例
图1是本发明创造实施例提供的一种电池开机电路供电电路图,图2是本发明创造实施例提供的一种电池开机电路开关电路图,如图1和图2,该电池开机电路包括供电电路和开关电路,
参照图1,供电电路包括电池电源单元11、第一分压电阻R1、第二分压电阻R2和第四开关器件Q4,电池电源单元11的正极与第一分压电阻R1的第一端相连,电池电源单元11的负极分别与第二分压电阻R2的第一端和第四开关器件Q4的输入端电连接,第一分压电阻R1的第二端和第二分压电阻R2的第二端电连接再并接入第四开关器件Q4的输出端。
参照图2,开关电路包括双通道电压比较单元21及开机控制单元22,双通道电压比较单元21包括相对设置的第一输入端PACK+和第一输出端a7以及相对设置的第二输入端PACK-和第二输出端a1,结合图1和图2,该第一输入端PACK+与电池电源单元11的正极电连接,该第一输出端a7与开机控制单元22的第一控制端电连接,该第二输入端PACK-与第四开关器件Q4的输出端电连接,该第二输出端a1与开机控制单元22的第二控制端电连接;开关控制单元22的输出端12V POWR_SEC与第四开关器件Q4的控制端电连接。
双通道电压比较单元21用于在电池电源单元11的正极电压低于基准电压时向开关控制单元22的第一控制端传输第一控制信号以使开关控制单元22控 制第四开关器件Q4断开,还用于在第四开关器件Q4的输出端电压高于基准电压时向开关控制单元22的第二控制端传输第二控制信号以使开关控制单元22控制第四开关器件Q4导通。
其中,未接入负载时,第四开关器件Q4断开,电池电源单元11的电压信号经过第一分压电阻R1和第二分压电阻R2的分压后,第四开关器件Q4的输出端输出初始悬空电压。示例性的,电池电源单元11提供12V电压,初始悬空电压为5V。
当接入负载时,电池电源单元11的正极和负极短接,第四开关器件Q4的输出端输出的电压和电池电源单元11的正极电压一致,第四开关器件Q4的输出端电压大于基准电压,双通道电压比较单元21向开关控制单元22的第二控制端传输第二控制信号使第四开关器件Q4导通;当电池电源单元11的正极电压不足时,电池电源单元11的正极电压低于基准电压,双通道电压比较单元21向开关控制单元22的第一控制端传输第一控制信号使第四开关器件Q4断开。这样通过接入负载时,第四开关器件Q4输出端电压与电池电源单元11的正极电压一致时,电池电源单元11与外部负载导通,而当电池电源单元11电量不够时或未接入负载时,电池电源单元11与外部负载的断开,以实现当负载接入时电池电源单元11的自动开机,避免了电池长时间待机造成的功率损耗。
进一步的,在上述实施例的基础上,可选的,电池开机电路还包括芯片工作电源P3V3 STBY。
继续参照图2,双通道电压比较单元21包括双通道比较器U2,双通道比较器U2中预设有基准电压,双通道比较器U2包括供电端a8,供电端a8与芯片工作电源P3V3 STBY电连接。
其中,芯片工作电源P3V3 STBY与双通道比较器的供电端a8电连接,用于对双通道比较器U2进行供电,示例性的,该芯片工作电源P3V3 STBY提供3.3V的直流电,为双通道比较器U2持续供电,使得双通道比较器U2保持工作状态,不消耗电池电源单元的电量。
可选的,双通道比较单元21还包括基准电压单元212,双通道比较器U2包括第一基准电压端a2和第二基准电压端a5;
基准电压单元212的输出端分别与第一基准电压端a2和第二基准电压端a5电连接,基准电压单元212用于控制第一基准电压端a2和第二基准电压端a5均保持基准电压。
可选的,基准电压单元212包括基准电压器U1和第七电阻R7;
基准电压器U1包括基准端,基准端b1通过第七电阻R7与芯片工作电源P3V3 STBY电连接,基准端b1还分别与第一基准电压端a2和第二基准电压端a5电连接。
其中,芯片工作电源P3V3 STBY通过第七电阻R7和基准电压器U1的基准端b1电连接,用于对基准电压器U1进行供电,示例性的,该芯片工作电源P3V3 STBY提供3.3V的直流电,芯片工作电源P3V3 STBY作为一备用电源节省了电池电源单元11电量的消耗,持续为基准电压器U2供电。
其中,基准电压单元212提供一2.5V的基准电压,基准电压单元212的输出端分别与第一基准电压端a2和第二基准电压端a5电连接,双通道比较器U2中第一基准电压端a2和第二基准电压端a5维持基准电压值为2.5V。
参照图2,可选的,双通道电压比较单元21还包括第三分压电阻R3和第四分压电阻R4;
双通道比较器U2包括相对设置的第一输入端a6和第一输出端a7;
第三分压电阻R3的第一端与电池电源单元11的正极电连接,第四分压电阻R4的第一端连接接地端,第三分压电阻R3的第二端和第四分压电阻R4的第二端电连接并接入双通道比较器U2的第一输入端a6;
双通道比较器U2用于在检测到其第一输入端a6的电压低于基准电压时通过其第一输出端a7向开关控制单元22的第一控制端传输第一控制信号。
可选的,双通道电压比较单元21还包括第五分压电阻R5和第六分压电阻R6;
第五分压电阻R5的第一端与第四开关器件Q4的输出端电连接,第六分压电阻R6的第一端和第五分压电阻R5的第二端电连接并与双通道比较器U2的第二输入端a3;
双通道比较器211用于在检测到其第二输入端a3的电压高于基准电压时通过其第二输出端a1向开关控制单元22的第二控制端传输第二控制信号。
可选的,开机控制单元22包括第一开关器件Q1、第二开关器件Q2、第三开关器件Q3、下拉电阻R8和上拉电阻R9;
第二开关器件Q2的栅极与双通道电压比较单元21的第二输出端a1电连接,第二开关器件Q2的源级连接接地端,第二开关器件Q2的漏级与下拉电阻R8的第一端相连;
第三开关器件Q3的栅极与双通道电压比较单元21的第一输出端a7电连接,第三开关器件Q3的源级连接接地端,第三开关器件Q3的漏级与双通道电压比较单元21的第二输出端电a1连接;
下拉电阻R8的第二端分别与上拉电阻R9的第一端和第一开关器件Q1的栅 级电连接,第一开关器件Q1的源级与上拉电阻R9的第二端电连接并接入第一电压电源12V POWR,第一开关器件Q1的漏级12V POWR_SEC与第四开关器件Q4的控制端电连接。
其中,下拉电阻R8和上拉电阻R9起到限流的作用。
需要说明的是,该电池开机电路的工作原理为:当接入负载时,电池电源单元11的正极和负极短接,第四开关器件Q4的输出端输出较大的电压信号,然后经过第三分压电阻R3和第四分压电阻R4的分压后给到双通道比较器U2的第二输入端a3,这样双通道比较器U2的第二输入端a3电压高于第二基准电压端a2的电压值,双通道比较器U2的第二输出端a1输出高电平,驱动第二开关器件Q2导通,拉低第一开关器件的栅极的电压,此时,第一开关器件Q1导通,第一电压源12V POWR的电压信号通过第一开关器件Q1输出到第四开关器件Q4的栅级,第四开关器件导通,实现了电池电源单元的自动开机。当电池电源单元11的电量不足时,即电池电源单元11的正极电压不足时,经过第五分压电阻R5和第六分压电阻R6的分压后给到双通道比较器U2的第一输入端a6,这样双通道比较器U2的第一输入端a6电压高于第一基准电压端a5的电压值,双通道比较器U2的第一输出端a7输出高电平,驱动第三开关器件Q3导通,拉低第二开关器件Q2的栅极的电压,此时,第二开关器件Q2断开,上拉电阻R9上拉第一开关器件的栅极的电压,第一开关器件Q1断开,第一开关电源12V POWR__SEC无法传输给电压信号给第四开关器件Q4,第四开关器件Q4断开,电池电源单元处于关机状态。
可选的,第一开关器件Q1为PMOS,第二开关器件Q2、第三开关器件Q3和第四开关器件Q4均为NMOS。
可选的,第一电压电源的输出电压为12V。
可选的,电池电源单元11的输出电压为12V
本技术方案,未接入负载时,第四开关器件断开Q4;当接入负载,第四开关器件Q4输出端的电压升高,通过双通道比较器U2的电压比较,双通道比较器U2的第二输出端a1输出高电压,控制第二开关器件Q2导通,从而拉低第一开关器件Q1的栅级电压,第一开关器件Q1导通,然后第一电压电源12V POWR经过第一开关器件Q1输出电压信号给第四开关器件Q4的栅级,控制第四开关器件Q4导通,实现了电池电源单元与负载的导通;当电池电源单元11电量不足时,即电池电源单元11的正极电压小于基准电压时,通过双通道比较器U2的电压比较,双通道比较器的第二输出端a7输出高电平,控制第三开关器件导通,从而拉低第二开关器件的控制端,第二开关器件和第一开关器件断开,第一电压电源12V POWR无法输出电压信号给第四开关器件Q4的栅级,第四开关器件Q4断开,这样实现了当负载接入时电池电源单元的自动开机,避免了电池长时间待机造成的功率损耗。
注意,上述仅为本发明创造的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明创造不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明创造的保护范围。因此,虽然通过以上实施例对本发明创造进行了较为详细的说明,但是本发明创造不仅仅限于以上实施例,在不脱离本发明创造构思的情况下,还可以包括更多其他等效实施例,而本发明创造的范围由所附的权利要求范围决定

Claims (10)

  1. 一种电池开机电路,其特征在于,包括:供电电路和开关电路;
    所述供电电路包括电池电源单元、第一分压电阻、第二分压电阻和第四开关器件,所述电池电源单元的正极与所述第一分压电阻的第一端相连,所述电池电源单元的负极分别与所述第二分压电阻的第一端和所述第四开关器件的输入端电连接,所述第一分压电阻的第二端和所述第二分压电阻的第二端电连接再并接入所述第四开关器件的输出端;
    所述开关电路包括双通道电压比较单元及开机控制单元,所述双通道电压比较单元包括相对设置的第一输入端和第一输出端以及相对设置的第二输入端和第二输出端,该第一输入端与所述电池电源单元的正极电连接,该第一输出端与所述开机控制单元的第一控制端电连接,该第二输入端与所述第四开关器件的输出端电连接,该第二输出端与所述开机控制单元的第二控制端电连接;所述开关控制单元的输出端与所述第四开关器件的控制端电连接;
    所述双通道电压比较单元用于在所述电池电源单元的正极电压低于基准电压时向所述开关控制单元的第一控制端传输第一控制信号以使所述开关控制单元控制所述第四开关器件断开,还用于在所述第四开关器件的输出端电压高于所述基准电压时向所述开关控制单元的第二控制端传输第二控制信号以使所述开关控制单元控制所述第四开关器件导通。
  2. 根据权利要求1所述的电池开机电路,其特征在于,所述电池开机电路还包括芯片工作电源;
    所述双通道电压比较单元包括双通道比较器,所述双通道比较器中预设有所述基准电压,所述双通道比较器包括供电端,所述供电端与所述芯片工作电源电连接。
  3. 根据权利要求1所述的电池开机电路,其特征在于,所述双通道电压比较单元还包括第三分压电阻和第四分压电阻;
    所述双通道比较器包括相对设置的第一输入端和第一输出端;
    所述第三分压电阻的第一端与所述电池电源单元的正极电连接,所述第四分压电阻的第一端连接接地端,所述第三分压电阻的第二端和所述第四分压电阻的第二端电连接并接入所述双通道比较器的第一输入端;
    所述双通道比较器用于在检测到其第一输入端的电压低于所述基准电压时通过其第一输出端向所述开关控制单元的第一控制端传输所述第一控制信号。
  4. 根据权利要求1所述的电池开机电路,其特征在于,所述双通道电压比较单元还包括第五分压电阻和第六分压电阻;
    所述第五分压电阻的第一端与所述第四开关器件的输出端电连接,所述第六分压电阻的第一端和所述第五分压电阻的第二端电连接并与所述双通道比较器的第二输入端;
    所述双通道比较器用于在检测到其第二输入端的电压高于所述基准电压时通过其第二输出端向所述开关控制单元的第二控制端传输所述第二控制信号。
  5. 根据权利要求2所述的电池开机电路,其特征在于,所述双通道比较单元还包括基准电压单元,所述双通道比较器包括第一基准电压端和第二基准电压端;
    所述基准电压单元的输出端分别与所述第一基准电压端和所述第二基准电压端电连接,所述基准电压单元用于控制所述第一基准电压端和所述第二基准电压端均保持所述基准电压。
  6. 根据权利要求5所述的电池开机电路,其特征在于,所述基准电压单元 包括基准电压器和第七电阻;
    所述基准电压器包括基准端,所述基准端通过所述第七电阻与所述芯片工作电源电连接,所述基准端还分别与所述第一基准电压端和所述第二基准电压端电连接。
  7. 根据权利要求1所述的电池开机电路,其特征在于,所述开机控制单元包括第一开关器件、第二开关器件、第三开关器件、下拉电阻和上拉电阻;
    所述第二开关器件的栅极与所述双通道电压比较单元的第二输出端电连接,所述第二开关器件的源级连接接地端,所述第二开关器件的漏级与所述下拉电阻的第一端相连;
    所述第三开关器件的栅极与所述双通道电压比较单元的第一输出端电连接,所述第三开关器件的源级连接接地端,所述第三开关器件的漏级与所述双通道电压比较单元的第二输出端电连接;
    所述下拉电阻的第二端分别与所述上拉电阻的第一端和所述第一开关器件的栅级电连接,所述第一开关器件的源级与所述上拉电阻的第二端电连接并接入第一电压电源,所述第一开关器件的漏级与所述第四开关器件的控制端电连接。
  8. 根据权利要求7所述的电池开机电路,其特征在于,所述第一开关器件为PMOS,所述第二开关器件、所述第三开关器件和所述第四开关器件均为NMOS。
  9. 根据权利要求6所述的电池开机电路,其特征在于,所述第一电压电源的输出电压为12V。
  10. 根据权利要求1所述的电池开机电路,其特征在于,所述基准电压为 2.5V,所述电池电源单元的输出电压为12V以及所述第四开关器件的输出端的初始悬空电压为5V。
PCT/CN2020/091099 2019-12-26 2020-05-19 一种电池开机电路 WO2021128710A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2022539106A JP2023508421A (ja) 2019-12-26 2020-05-19 電池起動回路
AU2020414768A AU2020414768B2 (en) 2019-12-26 2020-05-19 Battery power-on circuit
BR112022009863A BR112022009863A2 (pt) 2019-12-26 2020-05-19 Circuito de acionamento de bateria
EP20905577.1A EP3985462A4 (en) 2019-12-26 2020-05-19 BATTERY CIRCUIT
MX2022008027A MX2022008027A (es) 2019-12-26 2020-05-19 Circuito de encendido de la bateria.
US17/788,405 US20230029478A1 (en) 2019-12-26 2020-05-19 Battery switch-on circuit
ZA2022/06130A ZA202206130B (en) 2019-12-26 2022-06-01 Battery power-on circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201922414950.XU CN210924256U (zh) 2019-12-26 2019-12-26 一种电池开机电路
CN201922414950.X 2019-12-26

Publications (1)

Publication Number Publication Date
WO2021128710A1 true WO2021128710A1 (zh) 2021-07-01

Family

ID=71369125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/091099 WO2021128710A1 (zh) 2019-12-26 2020-05-19 一种电池开机电路

Country Status (9)

Country Link
US (1) US20230029478A1 (zh)
EP (1) EP3985462A4 (zh)
JP (1) JP2023508421A (zh)
CN (1) CN210924256U (zh)
AU (1) AU2020414768B2 (zh)
BR (1) BR112022009863A2 (zh)
MX (1) MX2022008027A (zh)
WO (1) WO2021128710A1 (zh)
ZA (1) ZA202206130B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4019119A (en) * 1975-04-17 1977-04-19 Applied Motors, Inc. DC to AC voltage converter with automatic start-stop control of motor-generator set
JPS63272962A (ja) * 1987-04-30 1988-11-10 Matsushita Electric Ind Co Ltd 車両用エンジンの自動始動装置
CN201251698Y (zh) * 2008-04-25 2009-06-03 杨富志 安全节能的分压借电开关
CN203759164U (zh) * 2014-03-22 2014-08-06 深圳市伟文无线通讯技术有限公司 一种检测usb负载设备接入状态的电路
CN205485902U (zh) * 2016-01-28 2016-08-17 深圳宽洋网络发展有限公司 一种自动开机电路以及电子设备
CN206790181U (zh) * 2017-06-09 2017-12-22 宁德时代新能源科技股份有限公司 一种开关机电路
KR20180029184A (ko) * 2016-09-10 2018-03-20 (주)오토쓰루 자동차 배터리 전압을 이용한 시동 상태 확인 시스템
CN110138200A (zh) * 2019-06-24 2019-08-16 深圳前海云充科技有限公司 一种自动感应负载、自动开机的逆变器省电方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001037078A (ja) * 1999-07-16 2001-02-09 Alps Electric Co Ltd 低消費電力型車載制御機器
CN103375850B (zh) * 2012-04-17 2016-08-10 珠海格力电器股份有限公司 便携式空调器
CN103699199B (zh) * 2013-12-20 2016-05-04 青岛歌尔声学科技有限公司 一种电子设备的通断电控制装置和一种电子设备
KR102519118B1 (ko) * 2016-02-24 2023-04-05 삼성에스디아이 주식회사 배터리 보호 회로
CN208188613U (zh) * 2018-03-29 2018-12-04 深圳市道通智能航空技术有限公司 用于降低功耗的供电系统及电子设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4019119A (en) * 1975-04-17 1977-04-19 Applied Motors, Inc. DC to AC voltage converter with automatic start-stop control of motor-generator set
JPS63272962A (ja) * 1987-04-30 1988-11-10 Matsushita Electric Ind Co Ltd 車両用エンジンの自動始動装置
CN201251698Y (zh) * 2008-04-25 2009-06-03 杨富志 安全节能的分压借电开关
CN203759164U (zh) * 2014-03-22 2014-08-06 深圳市伟文无线通讯技术有限公司 一种检测usb负载设备接入状态的电路
CN205485902U (zh) * 2016-01-28 2016-08-17 深圳宽洋网络发展有限公司 一种自动开机电路以及电子设备
KR20180029184A (ko) * 2016-09-10 2018-03-20 (주)오토쓰루 자동차 배터리 전압을 이용한 시동 상태 확인 시스템
CN206790181U (zh) * 2017-06-09 2017-12-22 宁德时代新能源科技股份有限公司 一种开关机电路
CN110138200A (zh) * 2019-06-24 2019-08-16 深圳前海云充科技有限公司 一种自动感应负载、自动开机的逆变器省电方法

Also Published As

Publication number Publication date
US20230029478A1 (en) 2023-02-02
AU2020414768B2 (en) 2024-02-01
MX2022008027A (es) 2022-07-27
EP3985462A4 (en) 2022-10-19
BR112022009863A2 (pt) 2022-08-02
CN210924256U (zh) 2020-07-03
ZA202206130B (en) 2023-06-28
EP3985462A1 (en) 2022-04-20
AU2020414768A1 (en) 2022-06-09
JP2023508421A (ja) 2023-03-02

Similar Documents

Publication Publication Date Title
KR102202012B1 (ko) 배터리팩 및 그것을 포함하는 전력 시스템
CN102320275A (zh) 一种电动汽车用整车控制器的断电延时电路
US9244509B2 (en) Uninterruptible power system and power control system thereof
CN105811747A (zh) 具有使能控制的高压电源系统
CN107769317B (zh) 控制电路、具有该控制电路的电池及电池控制方法
JP2008022605A (ja) キャパシタ一体型電池
WO2023016574A1 (zh) 开关电路、电池管理系统、电池包、用电设备及控制方法
TW201509043A (zh) 保護電路及具有該保護電路之電子裝置
WO2022105159A1 (zh) 智能连接装置、启动电源以及电瓶夹
WO2021128710A1 (zh) 一种电池开机电路
CN104159358A (zh) 一种手电筒驱动电路及移动终端
JP3277871B2 (ja) 二次電池パック
CN103107577B (zh) 电池管理电路及终端
CN112600283B (zh) 一种开关机电路
CN104159359A (zh) 一种手电筒驱动电路及移动终端
CN209805473U (zh) 一种供电的控制电路及充电器
CN203166621U (zh) 高效环保的停电备用应急电源电路
CN111987775A (zh) 一种电源控制电路及热敏打印机
WO2022105578A1 (zh) 智能连接装置、启动电源设备以及电瓶夹设备
CN216016467U (zh) 低压保护电路、装置及电器设备
CN204597625U (zh) 一种双供电电源电路
CN219370311U (zh) 一种加固笔记本电脑的电源管理系统
CN110311429A (zh) 低功耗电源管理系统及管理方法
CN104600797A (zh) 电池管理电路及终端
CN215185914U (zh) 一种应用在电池供电设备中的待机零功耗电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20905577

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020905577

Country of ref document: EP

Effective date: 20220114

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022009863

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020414768

Country of ref document: AU

Date of ref document: 20200519

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022539106

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112022009863

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220520