WO2021128699A1 - 一种新型磁控溅射阴极 - Google Patents

一种新型磁控溅射阴极 Download PDF

Info

Publication number
WO2021128699A1
WO2021128699A1 PCT/CN2020/089435 CN2020089435W WO2021128699A1 WO 2021128699 A1 WO2021128699 A1 WO 2021128699A1 CN 2020089435 W CN2020089435 W CN 2020089435W WO 2021128699 A1 WO2021128699 A1 WO 2021128699A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic coil
magnetic field
magnet structure
target
magnetron sputtering
Prior art date
Application number
PCT/CN2020/089435
Other languages
English (en)
French (fr)
Inventor
胡琅
徐平
侯立涛
冯杰
胡强
方威
黄星星
尤晶
Original Assignee
季华实验室
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 季华实验室 filed Critical 季华实验室
Publication of WO2021128699A1 publication Critical patent/WO2021128699A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering

Definitions

  • the invention relates to vacuum sputtering technology, in particular to a new type of magnetron sputtering cathode.
  • Vacuum sputtering coating technology is widely used in various industries, such as semiconductor, solar energy, optics and aerospace.
  • magnetron sputtering technology as a common technology of physical vapor deposition (Physical Vapor Deposition, PVD), has the characteristics of low process temperature, fast sputtering speed, simple equipment, easy control, large coating area and strong adhesion. It is suitable for long-term batch production, especially the rectangular magnetron sputtering cathode is widely used in the preparation of metal, semiconductor, insulator and other multi-material flat panels and solar energy industries.
  • the sputtering target material has very high requirements for the purity of the material, so it is expensive.
  • the commonly used magnetron sputtering flat cathode is separated by the target and conductive copper blocks between the target surface and the magnet, the intensity of the magnetic field reaching the target surface is relatively weak; and the magnet located at the center of the cathode and the magnets at the edges on both sides
  • the horizontal component of the magnetic field formed by the magnetic circuit composed of different polarities is weak and the magnetic field distribution is not uniform. Therefore, the current consumption of the general rectangular sputtering target material accounts for 20-25% of the entire target material, that is to say, the target material cannot continue to be used when 25% of the entire target material is consumed, and the production line must be stopped to replace the target material. , Which not only increases production costs, but also reduces production efficiency.
  • the purpose of the present invention is to provide a new type of magnetron sputtering cathode, which aims to solve the problems of low ratio of the existing rectangular sputtering target material to the entire target material, high production cost, and low production efficiency.
  • a new type of magnetron sputtering cathode which includes a target, a first magnet structure and a second magnet structure.
  • the first magnet structure generates a first magnetic field line loop to form a first magnetic field;
  • the second magnet structure generates a second magnetic field line
  • the first magnetic field will cause the target material to be located in the first magnetic field line loop to form a first plasma zone to achieve sputtering;
  • the second magnetic field will cause the target material to be located in the second magnetic field line loop
  • the inner area forms a second plasma zone to achieve sputtering; the superimposed area of the second plasma zone and the first plasma zone does not completely overlap.
  • the sputtering use area of the target material can be increased, so as to improve the utilization rate of the target material.
  • the first magnetic field is designed to be parallel to the surface of the target material.
  • it further includes a cathode base and a copper guide plate, the first magnet structure is arranged in the cathode base; the copper guide plate is arranged on the top of the cathode base, the copper guide plate is located above the first magnet structure, and the target is arranged On the copper guide plate.
  • the first magnet structure includes at least two sets of magnets arranged in a horizontal direction in the cathode holder, and each set of magnets includes at least one magnet arranged in a vertical direction. Set along the vertical direction, the magnetic pole directions of all the magnets in the same magnet group are the same, the number of magnets in the two adjacent magnet groups are the same and the setting positions are one-to-one, and the magnetic pole directions of the magnets in the adjacent two magnet groups in contrast.
  • the first magnetic field only the part of the magnetic field parallel to the target surface of the target can play a magnetron function.
  • the larger the magnetic field level the greater the magnetron function and the greater the rate of magnetron sputtering.
  • the largest horizontal magnetic field in the first magnetic field is at the center of the two sets of magnets, where the actual target material is sputtered at the highest rate; under the action of the first magnetic field, the surface morphology of the target material after sputtering becomes V-shaped, the utilization rate is generally 20-25%.
  • the second magnet structure includes a first electromagnetic coil disposed on one side of the first magnet structure and a second electromagnetic coil disposed on the other side of the first magnet structure, the first electromagnetic coil Connected in series with the second electromagnetic coil, the horizontal center plane of the first electromagnetic coil, the horizontal center plane of the second electromagnetic coil and the surface of the target are parallel to each other; the first electromagnetic coil and the second electromagnetic coil generate a second magnetic field line loop after being energized, forming The second magnetic field.
  • the second magnet structure By superimposing the second magnet structure on the basis of the first magnet structure, the second magnet structure can generate a magnetic field parallel to the surface of the target material.
  • the first electromagnetic coil and the second electromagnetic coil are connected in series, and the first electromagnetic coil and the second electromagnetic coil generate With the magnetic field in the same direction, through the superimposition of the magnetic field, the surface morphology of the sputtering target can be changed from V-shaped to U-shaped, and the utilization rate of the target can be increased from the traditional 20-25% to 30-35%.
  • the first electromagnetic coil and the second electromagnetic coil are connected to a programmable power source, and the programmable power source provides a controllable and variable power source.
  • the first electromagnetic coil and the second electromagnetic coil can generate a magnetic field after being energized.
  • the first electromagnetic coil and the second electromagnetic coil can be provided with a controllable variable power supply, and the change mode of the controllable variable power supply can be set accordingly.
  • the position of the horizontal magnetic field can change the position of the strongest sputtering rate of the target material, thereby improving the utilization rate of the target material.
  • the second magnetic field is designed to be parallel to the surface of the target material.
  • the second magnet structure includes a third electromagnetic coil disposed under the first magnet structure and a fourth electromagnetic coil disposed under the first magnet structure, the third electromagnetic coil and the fourth electromagnetic coil
  • the electromagnetic coils are connected in series, the vertical center plane of the third electromagnetic coil, the vertical center plane of the fourth electromagnetic coil and the surface of the target are perpendicular to each other; the third electromagnetic coil and the fourth electromagnetic coil generate a second magnetic field line loop after being energized to form a second magnetic field .
  • the second magnet structure By superimposing the second magnet structure on the first magnet structure, the second magnet structure can generate a magnetic field perpendicular to the surface of the target.
  • the third electromagnetic coil and the fourth electromagnetic coil are connected in series, and the third electromagnetic coil and the fourth electromagnetic coil generate With the magnetic field in the same direction, through the superimposition of the magnetic field, the surface morphology of the sputtering target can be changed from V-shaped to U-shaped, and the utilization rate of the target can be increased from the traditional 20-25% to 30-35%.
  • the third electromagnetic coil and the fourth electromagnetic coil can move in the left and right directions to change the position where the second magnetic field acts on the target.
  • the third electromagnetic coil and the fourth electromagnetic coil can generate a magnetic field after being energized.
  • the third electromagnetic coil and the fourth electromagnetic coil are controlled during the sputtering process of the target material.
  • the coil moves in the left and right directions, and the position of the strongest magnetic field can be changed to realize the change of the position of the strongest sputtering rate of the target material, thereby improving the utilization rate of the target material.
  • the second magnetic field is designed to be perpendicular to the surface of the target.
  • the present invention provides a new type of magnetron sputtering cathode, including a target, a first magnet structure and a second magnet structure; the first magnet structure generates a first magnetic field line loop to form a first magnetic field; The magnet structure generates a second magnetic field line loop to form a second magnetic field; when sputtering is started, the first magnetic field acts to make the target located in the first magnetic field line loop to form a first plasma zone, and the second magnetic field acts to make the target located in the second The area in the magnetic field line loop forms a second plasma zone to achieve sputtering; the overlapping area of the second plasma zone and the first plasma zone does not completely overlap; by superimposing the second magnet structure on the basis of the first magnet structure, the target material can be increased Sputtering use area, the surface morphology of the sputtering target can be changed from V-shaped to U-shaped, and the utilization rate of the target can be increased from the traditional 20-25% to 30-35%, which improves the
  • Fig. 1 is a schematic diagram of the structure of a novel magnetron sputtering cathode in the present invention.
  • Fig. 2 is a schematic structural diagram of the second magnet structure of the present invention adopting embodiment 1.
  • Fig. 3 is a schematic structural diagram of the second magnet structure of the present invention adopting Embodiment 2.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the present invention, “plurality” means two or more than two, unless otherwise specifically defined.
  • the "above” or “below” of the first feature of the second feature may include direct contact between the first and second features, or may include the first and second features Not in direct contact but through other features between them.
  • “above”, “above” and “above” the second feature of the first feature include the first feature being directly above and obliquely above the second feature, or it simply means that the level of the first feature is higher than that of the second feature.
  • the “below”, “below” and “below” the first feature of the second feature include the first feature directly below and obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.
  • a new type of magnetron sputtering cathode includes: a cathode base 30, at least two sets of magnets arranged in the cathode base 30 in a horizontal direction, each set of magnets includes at least one set along the vertical
  • the magnets 10 are arranged in the front and rear direction.
  • the magnetic poles of the magnets 10 are arranged in the vertical direction.
  • the magnetic poles of all the magnets 10 in the same magnet group are the same.
  • the number of magnets 10 in the two adjacent magnet groups is the same and the setting positions are one by one.
  • the magnetic poles of the magnets 10 in the adjacent two sets of magnet groups are opposite (as shown in Figure 2, the magnets 10 in the first row of magnet groups are all with N poles up and S poles down; The magnets 10 have the S pole up and the N pole down; the magnets 10 in the first row of magnet groups have the N pole up and the S pole down...);
  • the copper guide plate 20 is arranged on the top of the cathode base 30 and located above the magnet 10;
  • the target material 40 is set on the copper guide plate 20;
  • a first magnetic field line loop is generated between the two adjacent sets of magnets to form a first magnetic field 60.
  • the first magnetic field 60 acts to make the target 40 located in the area of the first magnetic field line loop to form a plasma zone to achieve sputtering ;
  • the second magnet structure also includes a second magnet structure superimposed on the first magnetic field 60.
  • the second magnet structure generates a second magnetic field line loop to form a second magnetic field; when sputtering is started, the second magnetic field acts to position the target 40 in the second magnetic field line
  • the area in the loop forms a second plasma zone to achieve sputtering; the overlapping area of the second plasma zone and the first plasma zone does not completely overlap.
  • the sputtering use area of the target material 40 can be increased, so as to improve the utilization rate of the target material 40.
  • the first magnetic field is designed to be parallel to the surface of the target material.
  • the second magnet structure can be configured as follows:
  • the second magnet structure includes a first electromagnetic coil 51 disposed on one side of the first magnet structure and a first electromagnetic coil 51 disposed on the other side of the first magnet structure.
  • Two electromagnetic coils 52, the first electromagnetic coil 51 and the second electromagnetic coil 52 are connected in series, the horizontal center plane of the first electromagnetic coil 51, the horizontal center plane of the second electromagnetic coil 52 and the surface of the target 40 are parallel to each other; After the electromagnetic coil 51 and the second electromagnetic coil 52 are energized, a second magnetic field line loop is generated to form a second magnetic field 70.
  • the first electromagnetic coil 51 and the second electromagnetic coil 52 are connected to a programmable power source, and the programmable power source provides a controllable and variable power source. Among them, the first electromagnetic coil 51 and the second electromagnetic coil 52 can generate a magnetic field after being energized.
  • the first electromagnetic coil 51 and the second electromagnetic coil 52 are provided with a controllable variable power supply, and by setting the change mode of the controllable variable power supply, Correspondingly, the change mode of the magnetron magnetic field of the first electromagnetic coil 51 and the second electromagnetic coil 52 can be set; by superimposing the orderly changing second magnetic field 70 on the magnetic field generated by the permanent magnet, sputtering on the target 40 During the process, the position of the strongest horizontal magnetic field can be changed to realize the change of the position of the strongest sputtering rate of the target material 40, thereby improving the utilization rate of the target material 40.
  • the second magnetic field 70 is designed to be parallel to the surface of the target material.
  • the second magnet structure includes a third electromagnetic coil 53 disposed under the first magnet structure and a fourth electromagnetic coil 54 disposed under the first magnet structure, so The third electromagnetic coil 53 and the fourth electromagnetic coil 54 are connected in series, the vertical center plane of the third electromagnetic coil 53, the vertical center plane of the fourth electromagnetic coil 54 and the surface of the target 40 are perpendicular to each other; the third electromagnetic coil 53 and the fourth electromagnetic coil After the electromagnetic coil 54 is energized, a second magnetic field line loop is generated to form a second magnetic field 71.
  • the third electromagnetic coil 53 and the fourth electromagnetic coil 54 can move in the left and right directions to change the position where the second magnetic field 71 acts on the target 40.
  • the third electromagnetic coil 53 and the fourth electromagnetic coil 54 can generate a magnetic field after being energized.
  • the third electromagnetic coil is controlled during the sputtering process of the target 40 53 and the fourth electromagnetic coil 54 move in the left and right directions to change the position of the strongest magnetic field, so as to realize the change of the position of the strongest sputtering rate of the target material 40, thereby improving the utilization rate of the target material 40.
  • the second magnetic field 71 is designed to be perpendicular to the surface of the target 40.
  • the surface morphology of the sputtering target 40 after sputtering can be changed from V shape to U shape, and the utilization rate of the target material 40 can be improved. Increase from the traditional 20-25% to 30-35%.
  • Embodiment 1 and Embodiment 2 can be set separately according to actual needs, or set at the same time, so as to improve the utilization rate of the target 40.
  • Magnet 10 copper guide plate 20; cathode holder 30; target material 40; first electromagnetic coil 51; second electromagnetic coil 52; third electromagnetic coil 53; fourth electromagnetic coil 54; first magnetic field 60; Magnetic field 70; the second magnetic field 71 in the second embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种磁控溅射阴极,包括靶材(40)、第一磁体结构和第二磁体结构;第一磁体结构产生第一磁力线回路,形成第一磁场(60);第二磁体结构产生第二磁力线回路,形成第二磁场(70,71);当启动溅射时,第一磁场(60)作用使靶材(40)位于第一磁力线回路内的区域形成第一等离子区,第二磁场(70,71)作用使靶材(40)位于第二磁力线回路内的区域形成第二等离子区,实现溅射;第二等离子区和第一等离子区叠加区域不完全重合;通过在第一磁体结构的基础上叠加第二磁体结构,可以增大靶材(40)的溅射使用面积,溅射靶材(40)的溅射后表面形态可以由V形变成U形,靶材(40)的利用率可以从传统的20~25%增加到30~35%,提高靶材(40)的利用率。

Description

一种新型磁控溅射阴极 技术领域
本发明涉及真空溅射技术,尤其涉及的是一种新型磁控溅射阴极。
背景技术
真空溅射镀膜技术广泛地应用在各种行业,半导体、太阳能、光学及航空航天等领域。其中磁控溅射技术作为物理气相沉积(Physical Vapor Deposition,PVD)的一种常见技术,具有工艺温度低、溅射速度快、设备简单、易于控制、镀膜面积大及附着力强等特性,非常适合于长时间批量化生产,特别是矩形磁控溅射阴极大量应用在制备金属、半导体、绝缘体等多材料的平板及太阳能行业。
溅射靶材对材料的纯度要求非常高,因此价格昂贵。但是常用的磁控溅射平面阴极由于靶材表面与磁铁之间被靶材和导电铜块隔离,到达靶材表面的磁场强度比较弱;且位于阴极中心位置的磁铁和两侧边缘位置的磁铁因极性不同构成的磁路形成的磁场水平分量较弱且磁场分布不均匀。故此目前一般的矩形溅射靶材的使用量占整个靶材的20~25%,也就是说,靶材在消耗掉整个靶材的25%时就不能继续使用,必须停止生产线进行靶材更换,这不仅增加了生产成本,也降低了生产效率。
因此,现有技术还有待于改进和发展。
发明内容
本发明的目的在于提供一种新型磁控溅射阴极,旨在解决现有的矩形溅射靶材的使用量占整个靶材的比例较低,生产成本大,生产效率低的问题。
本发明的技术方案如下:
一种新型磁控溅射阴极,其中,包括靶材、第一磁体结构和第二磁体结构,所述第一磁体结构产生第一磁力线回路,形成第一磁场;第二磁体结构产生第二磁力线回路,形成第二磁场;当启动溅射时,第一磁场作用使靶材位于第一磁力线回路内的区域形成第一等离子区,实现溅射;第二磁场作用使靶材位于第二磁力线回路内的区域形成第二等离子区,实现溅射;所述第二等离子区和第一等离子区叠加区域不完全重合。
通过在第一磁体结构的基础上再叠加第二磁体结构,可以增大靶材的溅射使用面积,以提高靶材的利用率。
在某些具体实施例中,所述第一磁场设计为与靶材表面互相平行。
在某些具体实施例中,还包括阴极座和铜导板,所述第一磁体结构设置在阴极座内;铜导板设置在阴极座的顶端,铜导板位于第一磁体结构的上方,靶材设置在铜导板上。
在某些具体实施例中,所述第一磁体结构包括至少两组沿水平方向依次排列在阴极座内的磁体组,每组磁体组包括至少一个沿垂直方向前后排列的磁体,磁体的磁极方向沿竖直方向设置,同一组磁体组内的所有磁体的磁极方向一致,相邻两组磁体组中的磁体的数量一致且设置位置一一对应,相邻两组磁体组中的磁体的磁极方向相反。
其中,在第一磁场中,只有和靶材的靶面平行的磁场部分才能起到磁控作用,磁场水平部分越大,磁控作用越大,磁控溅射的速率也越大。第一磁场中最大的水平磁场部分在两组磁体组的中心,实际的靶材也是在此处被溅射的速率也最大;在第一磁场的作用下,靶材溅射后的表面形态成V状,利用率一般在20~25%。
在某些具体实施例中,所述第二磁体结构包括设置在第一磁体结构一侧的第一电磁线圈和设置在第一磁体结构另一侧的第二电磁线圈,所述第一电磁线圈和第二电磁线圈串联连接,第一电磁线圈的水平中心面、第二电磁线圈的水平中心面和靶材表面互相平行;第一电磁线圈和第二电磁线圈通电后产生第二磁力线回路,形成第二磁场。
通过在第一磁体结构的基础上叠加第二磁体结构,第二磁体结构可以产生和靶材表面平行的磁场,第一电磁线圈和第二电磁线圈串联,第一电磁线圈和第二电磁线圈产生同一方向的磁场,通过磁场的叠加作用,溅射靶材的溅射后表面形态可以由V形变成U形,靶材的利用率可以从传统的20~25%增加到30~35%。
在某些具体实施例中,所述第一电磁线圈和第二电磁线圈与可编程电源连接,由可编程电源提供可控变化电源。
其中,第一电磁线圈和第二电磁线圈通电后可以产生磁场,通过采用可控变化电源为第一电磁线圈和第二电磁线圈提供电源,通过设置可控变化电源的变化方式,相应地就可以设置第一电磁线圈和第二电磁线圈的磁控磁场的变化方式;通过将有序变化的第二磁场叠加在永磁磁铁产生的磁场上,在靶材溅射的过程中,可以改变最强水平磁场的位置,以实现靶材最强溅射速率位置的改变,从而提高靶材的利用率。
在某些具体实施例中,所述第二磁场设计为与靶材表面互相平行。
在某些具体实施例中,所述第二磁体结构包括设置在第一磁体结构下方的第三电磁线圈和设置在第一磁体结构下方的第四电磁线圈,所述第三电磁线圈和第四电磁线圈串联连接,第三电磁线圈的垂直中心面、第四电磁线圈的垂直中心面和靶材表面互相垂直;第三电磁线圈和第四电磁线圈通电后产生第二磁力线回路,形成第二磁场。
通过在第一磁体结构的基础上叠加第二磁体结构,第二磁体结构可以产生和靶材表面垂直的磁场,第三电磁线圈和第四电磁线圈串联,第三电磁线圈和第四电磁线圈产生同一方向的磁场,通过磁场的叠加作用,溅射靶材的溅射后表面形态可以由V形变成U形,靶材的利用率可以从传统的20~25%增加到30~35%。
在某些具体实施例中,所述第三电磁线圈和第四电磁线圈可沿作用左右方向移动以改变第二磁场作用在靶材上的位置。
其中,第三电磁线圈和第四电磁线圈通电后可以产生磁场,通过将第二磁场叠加在永磁磁铁产生的磁场上,在靶材溅射的过程中,控制第三电磁线圈和第四电磁线圈沿作用左右方向移动,可以改变最强磁场的位置,以实现靶材最强溅射速率位置的改变,从而提高靶材的利用率。
在某些具体实施例中,所述第二磁场设计为与靶材表面互相垂直。
本发明的有益效果:本发明通过提供一种新型磁控溅射阴极,包括靶材、第一磁体结构和第二磁体结构;第一磁体结构产生第一磁力线回路,形成第一磁场;第二磁体结构产生第二磁力线回路,形成第二磁场;当启动溅射时,第一磁场作用使靶材位于第一磁力线回路内的区域形成第一等离子区,第二磁场作用使靶材位于第二磁力线回路内的区域形成第二等离子区,实现溅射;第二等离子区和第一等离子区叠加区域不完全重合;通过在第一磁体结构的基础上叠加第二磁体结构,可以增大靶材的溅射使用面积,溅射靶材的溅射后表面形态可以由V形变成U形,靶材的利用率可以从传统的20~25%增加到30~35%,提高靶材的利用率。
附图说明
图1是本发明中新型磁控溅射阴极的结构示意图。
图2是本发明中第二磁体结构采用实施例1的结构示意图。
图3是本发明中第二磁体结构采用实施例2的结构示意图。
具体实施方式
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是 可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
如图1至图3所示,一种新型磁控溅射阴极,包括:阴极座30,至少两组沿水平方向依次排列在阴极座30内的磁体组,每组磁体组包括至少一个沿垂直方向前后排列的磁体10,磁体10的磁极方向沿竖直方向设置,同一组磁体组内的所有磁体10的磁极方向一致,相邻两组磁体组中的磁体10的数量一致且设置位置一一对应,相邻两组磁体组中的磁体10的磁极方向相反(如图2所示,第一排磁体组中的磁体10均是N极向上,S极向下;第二排磁体组中的磁体10均是S极向上,N极向下;第一排磁体组中的磁体10均是N极向上,S极向下......);
铜导板20,设置在阴极座30的顶部,位于磁体10的上方;
靶材40,设置在铜导板20上;
相邻两组磁体组之间产生第一磁力线回路,形成第一磁场60,当启动溅射时,第一磁场60作用使靶材40位于第一磁力线回路内的区域形成等离子区,实现溅射;
还包括叠加在第一磁场60上的第二磁体结构,所述第二磁体结构产生第二磁力线回路,形成第二磁场;当启动溅射时,第二磁场作用使靶材40位于第二磁力线回路内的区域形成第二等离子区,实现溅射;所述第二等离子区和第一等离子区叠加区域不完全重合。
通过在第一磁体结构的基础上再叠加第二磁体结构,可以增大靶材40的溅射使用面积,以提高靶材40的利用率。
在某些具体实施例中,所述第一磁场设计为与靶材表面互相平行。
其中,所述第二磁体结构可以采用如下设置:
实施例1:
如图1和图2所示,在某些具体实施例中,所述第二磁体结构包括设置在第一磁体结构一侧的第一电磁线圈51和设置在第一磁体结构另一侧的第二电磁线圈52,所述第一电磁线圈51和第二电磁线圈52串联连接,第一电磁线圈51的水平中心面、第二电磁线圈52的水平中心面和靶材40表面互相平行;第一电磁线圈51和第二电磁线圈52通电后产生第二磁力线回路,形成第二磁场70。
在某些具体实施例中,所述第一电磁线圈51和第二电磁线圈52与可编程电源连接,由可编程电源提供可控变化电源。其中,第一电磁线圈51和第二电磁线圈52通电后可以产生磁场,通过采用可控变化电源为第一电磁线圈51和第二电磁线圈52提供电源,通过设置可控变化电源的变化方式,相应地就可以设置第一电磁线圈51和第二电磁线圈52的磁控磁场的变化方式;通过将有序变化的第二磁场70叠加在永磁磁铁产生的磁场上,在靶材40溅射的过程中,可以改变最强水平磁场的位置,以实现靶材40最强溅射速率位置的改变,从而提高靶材40的利用率。
在某些具体实施例中,所述第二磁场70设计为与靶材表面互相平行。
实施例2:
如图3所示,在某些具体实施例中,所述第二磁体结构包括设置在第一磁体结构下方的第三电磁线圈53和设置在第一磁体结构下方的第四电磁线圈54,所述第三电磁线圈53和第四电磁线圈54串联连接,第三电磁线圈53的垂直中心面、第四电磁线圈54的垂直中心面和靶材40表面互相垂直;第三电磁线圈53和第四电磁线圈54通电后产生第二磁力线回路,形成第二磁场71。
在某些具体实施例中,所述第三电磁线圈53和第四电磁线圈54可沿作用左右方向移动以改变第二磁场71作用在靶材40上的位置。其中,第三电磁线圈53和第四电磁线圈54通电后可以产生磁场,通过将第二磁场71叠加在永磁磁铁产生的磁场上,在靶材40溅射的过程中,控制第三电磁线圈53和第四电磁线圈54沿作用左右方向移动,可以改变最强磁场的位置,以实现靶材40最强溅射速率位置的改变,从而提高靶材40的利用率。
在某些具体实施例中,所述第二磁场71设计为与靶材40表面互相垂直。通过实施例1和实施例2,在第一磁体结构的基础上叠加第二磁体结构,溅射靶材40的溅射后表面形态可以由V形变成U形,靶材40的利用率可以从传统的20~25%增加到30~35%。
其中,实施例1和实施例2可以根据实际需要单独设置,也可以同时设置,以提高靶材40的利用率。
在本说明书的描述中,参考术语“一个实施方式”、“某些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者 特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。
附图标号
磁体10;铜导板20;阴极座30;靶材40;第一电磁线圈51;第二电磁线圈52;第三电磁线圈53;第四电磁线圈54;第一磁场60;实施例1中第二磁场70;实施例2中第二磁场71。

Claims (10)

  1. 一种新型磁控溅射阴极,其特征在于,包括靶材(40)、第一磁体结构和第二磁体结构;所述第一磁体结构产生第一磁力线回路,形成第一磁场(60);第二磁体结构产生第二磁力线回路,形成第二磁场;当启动溅射时,第一磁场(60)作用使靶材(40)位于第一磁力线回路内的区域形成第一等离子区,实现溅射;第二磁场作用使靶材(40)位于第二磁力线回路内的区域形成第二等离子区,实现溅射;所述第二等离子区和第一等离子区叠加区域不完全重合。
  2. 根据权利要求1所述的新型磁控溅射阴极,其特征在于,所述第一磁场(60)设计为与靶材(40)表面互相平行。
  3. 根据权利要求2所述的新型磁控溅射阴极,其特征在于,还包括阴极座(30)和铜导板(20),所述第一磁体结构设置在阴极座(30)内;铜导板(20)设置在阴极座(30)的顶端,铜导板(20)位于第一磁体结构的上方,靶材(40)设置在铜导板(20)上。
  4. 根据权利要求3所述的新型磁控溅射阴极,其特征在于,所述第一磁体结构包括至少两组沿水平方向依次排列在阴极座内的磁体组,每组磁体组包括至少一个沿垂直方向前后排列的磁体(10),磁体(10)的磁极方向沿竖直方向设置,同一组磁体组内的所有磁体(10)的磁极方向一致,相邻两组磁体组中的磁体(10)的数量一致且设置位置一一对应,相邻两组磁体组中的磁体(10)的磁极方向相反。
  5. 根据权利要求1-4任一所述的新型磁控溅射阴极,其特征在于,所述第二磁体结构包括设置在第一磁体结构一侧的第一电磁线圈(51)和设置在第一磁体结构另一侧的第二电磁线圈(52),所述第一电磁线圈(51)和第二电磁线圈(52)串联连接,第一电磁线圈(51)的水平中心面、第二电磁线圈(52)的水平中心面和靶材(40)表面互相平行;第一电磁线圈(51)和第二电磁线圈(52)通电后产生第二磁力线回路,形成第二磁场(70)。
  6. 根据权利要求5所述的新型磁控溅射阴极,其特征在于,所述第一电磁线圈(51)和第二电磁线圈(52)与可编程电源连接,由可编程电源提供可控变化电源。
  7. 根据权利要求5所述的新型磁控溅射阴极,其特征在于,所述第二磁场(70)设计为与靶材(40)表面互相平行。
  8. 根据权利要求1-4任一所述的新型磁控溅射阴极,其特征在于,所述第二磁体结构包括设置在第一磁体结构下方的第三电磁线圈(53)和设置在第一磁体结构下方的第四电磁线圈(54),所述第三电磁线圈(53)和第四电磁线圈(54)串联连接,第三电磁线圈(53)的垂直中心面、第四电磁线圈(54)的垂直中心面和靶材(40)表面互相垂直;第三电磁线圈(53)和第四电磁线圈(54)通电后产生第二磁力线回路,形成第二磁场(71)。
  9. 根据权利要求8所述的新型磁控溅射阴极,其特征在于,所述第三电磁线圈(53)和第四电磁线圈(54)可沿作用左右方向移动以改变第二磁场(71)作用在靶材(40)上的位置。
  10. 根据权利要求8所述的新型磁控溅射阴极,其特征在于,所述第二磁场(71)设计为与靶材(40)表面互相垂直。
PCT/CN2020/089435 2019-12-27 2020-05-09 一种新型磁控溅射阴极 WO2021128699A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911382863.9A CN111172504B (zh) 2019-12-27 2019-12-27 一种磁控溅射阴极
CN201911382863.9 2019-12-27

Publications (1)

Publication Number Publication Date
WO2021128699A1 true WO2021128699A1 (zh) 2021-07-01

Family

ID=70655817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089435 WO2021128699A1 (zh) 2019-12-27 2020-05-09 一种新型磁控溅射阴极

Country Status (2)

Country Link
CN (1) CN111172504B (zh)
WO (1) WO2021128699A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113755809A (zh) * 2021-09-28 2021-12-07 北海惠科半导体科技有限公司 磁控溅射装置及其控制方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113416936B (zh) * 2021-06-25 2022-08-26 北京卫星环境工程研究所 镀膜系统与方法
CN113737143A (zh) * 2021-08-24 2021-12-03 北海惠科半导体科技有限公司 磁控溅射装置
CN113862628A (zh) * 2021-09-28 2021-12-31 北海惠科半导体科技有限公司 磁控溅射装置
CN113755808A (zh) * 2021-09-28 2021-12-07 北海惠科半导体科技有限公司 磁控溅射装置及其控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103046009A (zh) * 2011-10-13 2013-04-17 鸿富锦精密工业(深圳)有限公司 平面磁控溅射阴极
CN103993278A (zh) * 2014-05-22 2014-08-20 京东方科技集团股份有限公司 一种平面靶材的磁场结构及其使用方法和磁控溅射设备
CN106435501A (zh) * 2016-10-15 2017-02-22 凯盛光伏材料有限公司 双闭环磁控溅射阴极
CN206033870U (zh) * 2016-10-15 2017-03-22 凯盛光伏材料有限公司 双闭环磁控溅射阴极
CN107083537A (zh) * 2017-05-02 2017-08-22 霍尔果斯迅奇信息科技有限公司 新型高靶材利用率平面磁控溅射阴极
US20180374689A1 (en) * 2015-12-21 2018-12-27 IonQuest LLC Electrically and Magnetically Enhanced Ionized Physical Vapor Deposition Unbalanced Sputtering Source
CN109881167A (zh) * 2019-04-17 2019-06-14 合肥科赛德真空技术有限公司 一种高效率磁控溅射平面阴极
CN209836293U (zh) * 2019-04-17 2019-12-24 合肥科赛德真空技术有限公司 一种高效率磁控溅射平面阴极

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100596312C (zh) * 2006-12-31 2010-03-31 中国科学院金属研究所 一种磁控管溅射装置
CN204803398U (zh) * 2015-07-09 2015-11-25 深圳新南亚技术开发有限公司 一种提高磁控溅射靶材利用率的结构
CN207918946U (zh) * 2018-03-29 2018-09-28 北京铂阳顶荣光伏科技有限公司 磁控溅射设备及其阴极装置
CN109306456A (zh) * 2018-10-17 2019-02-05 深圳精匠云创科技有限公司 阴极电磁场装置及镀膜设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103046009A (zh) * 2011-10-13 2013-04-17 鸿富锦精密工业(深圳)有限公司 平面磁控溅射阴极
CN103993278A (zh) * 2014-05-22 2014-08-20 京东方科技集团股份有限公司 一种平面靶材的磁场结构及其使用方法和磁控溅射设备
US20180374689A1 (en) * 2015-12-21 2018-12-27 IonQuest LLC Electrically and Magnetically Enhanced Ionized Physical Vapor Deposition Unbalanced Sputtering Source
CN106435501A (zh) * 2016-10-15 2017-02-22 凯盛光伏材料有限公司 双闭环磁控溅射阴极
CN206033870U (zh) * 2016-10-15 2017-03-22 凯盛光伏材料有限公司 双闭环磁控溅射阴极
CN107083537A (zh) * 2017-05-02 2017-08-22 霍尔果斯迅奇信息科技有限公司 新型高靶材利用率平面磁控溅射阴极
CN109881167A (zh) * 2019-04-17 2019-06-14 合肥科赛德真空技术有限公司 一种高效率磁控溅射平面阴极
CN209836293U (zh) * 2019-04-17 2019-12-24 合肥科赛德真空技术有限公司 一种高效率磁控溅射平面阴极

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113755809A (zh) * 2021-09-28 2021-12-07 北海惠科半导体科技有限公司 磁控溅射装置及其控制方法

Also Published As

Publication number Publication date
CN111172504A (zh) 2020-05-19
CN111172504B (zh) 2021-11-02

Similar Documents

Publication Publication Date Title
WO2021128699A1 (zh) 一种新型磁控溅射阴极
US9359670B2 (en) Sputtering device for forming thin film and method for making thin film
CN101363114B (zh) 一种磁场增强电弧离子镀沉积工艺
EP2553138B1 (en) Target utilization improvement for rotatable magnetrons
CN107779836B (zh) 一种磁控溅射装置及其磁场分布调节方法
CN102953035B (zh) 多模式交变耦合磁场辅助电弧离子镀沉积弧源设备
CN101348897B (zh) 利用磁约束磁控溅射方法制备的磁控溅射装置
CN102420091A (zh) 一种复合式磁控溅射阴极
JP2008184625A (ja) スパッタ方法及びスパッタ装置
KR101353411B1 (ko) 자석 유닛, 및 마그네트론 스퍼터링 장치
CN202492570U (zh) 用于太阳能电池的磁控溅射镀膜装置
CN202945315U (zh) 一种高效动态耦合磁控弧源装置
CN201158701Y (zh) 耦合磁场辅助电弧离子镀沉积装置
CN103290378A (zh) 磁控溅射镀膜阴极机构
JPH0881769A (ja) スパッタ装置
CN102677008B (zh) 在线制备太阳能电池导电极膜层的装置
CN103882394B (zh) 磁控管以及磁控管溅射设备
CN208649457U (zh) 一种阴极体组件、磁控溅射阴极及磁控溅射装置
CN211170860U (zh) 一种复合扫描弧源磁场装置
CN202595260U (zh) 一种用于连续磁控溅射镀膜的阴极装置
TW201837223A (zh) 磁鐵結構體、磁鐵單元及包括此的磁控管濺射裝置
CN101928928B (zh) 磁控溅射靶座及具有该磁控溅射靶座的磁控溅射装置
CN109385607B (zh) 弧源装置及该弧源装置的弧源磁场的调节方法
CN108977787B (zh) 一种磁控溅射镀膜阴极结构
EP2485241A1 (en) Magnet array for a physical vapor deposition system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20905693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC , EPO FORM 1205A DATED 02.12.22.

122 Ep: pct application non-entry in european phase

Ref document number: 20905693

Country of ref document: EP

Kind code of ref document: A1