WO2021128424A1 - 绝对电角度检测方法、系统及计算机可读存储介质 - Google Patents

绝对电角度检测方法、系统及计算机可读存储介质 Download PDF

Info

Publication number
WO2021128424A1
WO2021128424A1 PCT/CN2019/130656 CN2019130656W WO2021128424A1 WO 2021128424 A1 WO2021128424 A1 WO 2021128424A1 CN 2019130656 W CN2019130656 W CN 2019130656W WO 2021128424 A1 WO2021128424 A1 WO 2021128424A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
electrical angle
preset
compensation
cosine
Prior art date
Application number
PCT/CN2019/130656
Other languages
English (en)
French (fr)
Inventor
毕超
毕磊
Original Assignee
峰岹科技(深圳)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 峰岹科技(深圳)股份有限公司 filed Critical 峰岹科技(深圳)股份有限公司
Publication of WO2021128424A1 publication Critical patent/WO2021128424A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/07Hall effect devices
    • G01R33/072Constructional adaptation of the sensor to specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/07Hall effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/091Constructional adaptation of the sensor to specific applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/007Encoders, e.g. parts with a plurality of alternating magnetic poles

Definitions

  • This application relates to the technical field of electromagnetic structures and signal processing, and in particular to a magnetic encoder, an absolute electrical angle detection method, system, and readable storage medium.
  • magnetic encoders that use magnetoresistive sensor chips (MR) and anisotropic magnetoresistive sensor chips (AMR) for angular position detection have been set up in a variety of control systems.
  • the MR and AMR magnetoresistive sensors are only sensitive to the magnitude of the magnetic field, but not to its polarity, when the magnetic field of the measured magnetic steel rotates by 360° electrical angle, that is, when the magnetic field undergoes a periodic change, the magnetoresistance The output signal of the sensor changes in two cycles. Therefore, the signal of the magnetoresistive sensor is not the absolute electrical angle signal of the measured magnetic field, that is, the existing magnetic encoder cannot measure the absolute electrical angle of the measured magnetic steel.
  • the main purpose of this application is to provide a magnetic encoder, an absolute electrical angle detection method, system, and readable storage medium, aiming to solve the problem that the existing magnetic encoder cannot accurately measure the absolute electrical angle of the measured magnetic steel.
  • the present application proposes a method for detecting the absolute electrical angle of a magnetic encoder.
  • the magnetic encoder includes a magnetoresistive sensor configured to detect a magnetic component in a first direction, and a magneto-resistive sensor configured to detect a magnetic component in a second direction. And a Hall sensor in a polar position, or a magnetoresistive sensor arranged to detect a first direction magnetic component and a second direction magnetic component and a Hall sensor arranged to detect a polar position, the first direction magnetic component and the second direction magnetic component
  • the absolute electrical angle is calculated.
  • the calibration compensation formula is:
  • V sc ( ⁇ ) is the calibration compensation sine signal
  • V cc ( ⁇ ) is the calibration cosine compensation signal
  • V s ( ⁇ ) is the angle sine signal
  • V c ( ⁇ ) is the angle cosine signal
  • V s0 is The offset error of the preset sine signal
  • V c0 is the offset error of the preset cosine signal
  • V s1 is the harmonic amplitude compensation of the preset sine signal
  • V c1 is the harmonic amplitude compensation of the preset cosine signal.
  • the present application also provides an absolute electrical angle detection system.
  • the absolute electrical angle detection system includes a magnetic encoder and a control device.
  • the magnetic encoder includes a magnetoresistive sensor configured to detect a magnetic component in a first direction, and A Hall sensor with a second direction magnetic component and a polar position, or a magnetoresistive sensor arranged to detect the first direction magnetic component and a second direction magnetic component, and a Hall sensor arranged to detect the polar position, the first
  • the direction of the directional magnetic component and the second directional magnetic component are perpendicular;
  • the control device includes a processor, a memory, and computer-readable instructions stored on the memory that can be executed by the processor, wherein the computer can When the read instruction is executed by the processor, the steps of the above-mentioned absolute electrical angle detection method are realized.
  • the present application also provides a computer-readable storage medium on which computer-readable instructions are stored.
  • the computer-readable instructions are executed by a processor, the above-mentioned absolute electrical angle detection is realized. Method steps.
  • the signal detected by the magnetic encoder is corrected by the calibration compensation formula to avoid the influence of offset error and higher harmonics, thereby improving the calculated relative electrical angle and absolute electrical angle;
  • the sensor can distinguish the N pole or the S pole of the magnet to be measured on the surface of the magnetic encoder, and calculate the absolute electrical angle of the magnet to be measured.
  • FIG. 1 is a schematic flowchart of the first embodiment of the absolute electrical angle detection method according to this application;
  • FIG. 2 is a schematic diagram of a part of the flow of the second embodiment of the absolute electrical angle detection method of this application;
  • FIG. 3 is a schematic diagram of the hardware structure of the system involved in the solution of the embodiment of the application.
  • FIG. 4 is a schematic diagram of the detection state of the magnetic encoder and the magnetic steel to be tested in an embodiment of the application.
  • the absolute electrical angle detection method involved in the embodiments of the application should be mainly set as an absolute electrical angle test system, which is set to detect the absolute electrical angle of the rotor magnet.
  • the absolute electrical angle test system includes a magnetic encoder, a system controller, and a memory.
  • FIG. 3 is a schematic diagram of the system structure involved in the solution of the embodiment of this application.
  • the controller may include a processor 1001 (for example, a CPU), a communication bus 1002, a user interface 1003, a network interface 1004, and a memory 1005.
  • the communication bus 1002 is set to realize the connection and communication between these components;
  • the user interface 1003 may include a display screen (Display), an input unit such as a keyboard (Keyboard);
  • the network interface 1004 may optionally include a standard wired interface, a wireless interface (Such as WI-FI interface);
  • the memory 1005 can be a high-speed RAM memory, or a non-volatile memory (non-volatile memory), such as a disk memory.
  • the memory 1005 can optionally be a storage device independent of the aforementioned processor 1001 .
  • the magnetic encoder includes a magnetoresistive sensor that is configured to detect a magnetic component in a first direction, and a Hall sensor that is configured to detect a magnetic component in a second direction and a polar position, or includes a magnetic component that is configured to detect a magnetic component in the first direction and a second magnetic component.
  • the direction of the magnetoresistive sensor of the directional magnetic component and the Hall sensor arranged to detect the polarity position, the direction of the first directional magnetic component and the second directional magnetic component are perpendicular.
  • the magnetic encoder includes a magnetoresistive sensor and a Hall sensor.
  • the magnetoresistive sensor is an MR sensor or AMR sensor that detects a single direction, and the magnetoresistive sensor is a planar component.
  • the number of magnetoresistive sensors is two.
  • One magnetoresistive sensor only measures the magnetic component in one direction, and two magnetoresistive sensors measure two magnetic components in orthogonal directions respectively, so that the magnetic encoder can achieve two
  • the direction of the magnetic component detected by the two magnetoresistive sensors can be in the same direction as the tangential and axial directions of the measured magnet, or in the same direction as the radial and tangential direction of the measured magnet, or with the measured magnet.
  • the radial and axial directions of the magnetic steel are measured in the same direction.
  • the magnetic component in the first direction and the magnetic component in the second direction may be the tangential magnetic component and the axial magnetic component of the measured magnetic steel, respectively.
  • the magnetic encoder includes a magnetoresistive sensor and a Hall sensor, where the magnetoresistive sensor is an MR sensor or AMR sensor that detects a single direction, and the magnetoresistive sensor is a planar component.
  • the number of magnetoresistive sensors is one.
  • a magnetoresistive sensor only measures the magnetic component in one direction.
  • the magnetoresistive sensor and the Hall sensor measure two magnetic components in orthogonal directions respectively, so that the magnetic encoder can be Realize the measurement of two-dimensional magnetic field.
  • the magnetic encoder includes a magnetoresistive sensor and a Hall sensor, wherein the magnetoresistive sensor is an MR sensor or AMR sensor that detects two orthogonal directions, and the magnetoresistive sensor is a planar component.
  • the number of magnetoresistive sensors is one, so that the magnetic encoder can measure two-dimensional magnetic fields. Since the number of cycles of the Hall signal generated by the Hall sensor detecting the measured magnet is the same as the number of cycles of the measured magnet’s magnetic field, the Hall signal can be used to determine the polarity position of the magnetic encoder facing the measured magnet. N pole or S pole. As shown in Fig. 4, the position of the magnetic encoder 1 and the measured magnet 4 are opposite. In the coordinate system of Fig. 4(c), the I direction is the tangential direction, the II direction is the axial direction, and the III direction is the radial direction. Among them, the measured magnet 4 is a rotor, and the magnetoresistive sensor and the Hall sensor may be separate devices, or may be integrated devices in an integrated manner.
  • This application can use magnetoresistive sensors to detect the magnetic components of the measured magnet 4 in two directions, and use signal processing technology to calculate the relative electrical angle of the measured magnet 4; or further use Hall sensors and signals The processing technology calculates the absolute electrical angle of the measured magnet 4.
  • the magnetic encoder can detect a two-dimensional magnetic field, that is, it can be the tangential-axial magnetic component of the measured magnet, or the radial-tangential magnetic component of the measured magnet, or it can be For measuring the radial-axial magnetic component of a magnetic steel, for the convenience of description, in the following embodiments of the present application, a magnetoresistive sensor detects the axial-tangential magnetic component as an example for description.
  • a magnetoresistive sensor detects the axial-tangential magnetic component as an example for description.
  • the tangential magnetic field, the axial magnetic field, and the radial magnetic field all represent the distribution of tangential magnetic component, axial magnetic component, and radial magnetic component in the magnetic field, rather than independent magnetic fields.
  • FIG. 3 does not constitute a limitation on the device, and may include more or less components than shown in the figure, or a combination of certain components, or different component arrangements.
  • the memory 1005 as a computer-readable storage medium in FIG. 3 may include an operating system, a network communication module, and computer-readable instructions.
  • the processor 1001 may call computer-readable instructions stored in the memory 1005, and execute the following steps:
  • the calibration compensation formula is: In the formula, V sc ( ⁇ ) is the calibration compensation sine signal, V cc ( ⁇ ) is the calibration cosine compensation signal, V s ( ⁇ ) is the angle sine signal, V c ( ⁇ ) is the angle cosine signal, and V s0 is The offset error of the preset sine signal, V c0 is the offset error of the preset cosine signal, V s1 is the harmonic amplitude compensation of the preset sine signal, and V c1 is the harmonic amplitude compensation of the preset cosine signal.
  • processor 1001 may call computer-readable instructions stored in the memory 1005, and execute the following steps:
  • the periodic voltage signal including a predetermined sine signal corresponding to the magnetic component in the first direction and a predetermined cosine signal corresponding to the magnetic component in the second direction;
  • N is the number of signal cycles
  • n is the nth harmonic
  • is the relative electrical angle of the measured magnet
  • V s0 is the bias error of the preset sine signal
  • V c0 is the bias of the preset cosine signal Error
  • V s ( ⁇ ) is the pre-scaled sine signal of the periodic voltage signal
  • V c ( ⁇ ) is the calibrated cosine signal of the periodic voltage signal
  • V sn is the harmonic amplitude compensation of the preset sine signal
  • V cn is the pre-scaled sine signal.
  • processor 1001 may call computer-readable instructions stored in the memory 1005, and execute the following steps:
  • the relative electrical angle value of the measured magnet is calculated according to the following formula:
  • the relative electrical angle value of the measured magnet is calculated according to the following formula:
  • is the relative electrical angle of the measured magnetic steel
  • Vsc( ⁇ ) is the calibration compensation sine signal
  • Vcc( ⁇ ) is the calibration cosine compensation signal.
  • processor 1001 may call computer-readable instructions stored in the memory 1005, and execute the following steps:
  • the iterative electrical angle value of the measured magnet is calculated iteratively according to the following formula:
  • the iterative electrical angle value of the measured magnet is calculated iteratively according to the following formula:
  • the iterative electrical angle value of the measured magnet is calculated iteratively according to the following formula:
  • the iterative electrical angle value of the measured magnet is calculated iteratively according to the following formula:
  • is the relative electric angle of the measured magnet calculated in the nth iteration
  • ⁇ n+1 is the relative electric angle of the measured magnet calculated in the n+1th iteration
  • V sc ( ⁇ ) is the calibration compensation Sine signal
  • V cc ( ⁇ ) is a scaled cosine compensation signal
  • K 1 , K 2 , K 3 , K 4 , L 1 , L 2 , L 3 , L 4 , L 5 and L 6 are preset constants.
  • processor 1001 may call computer-readable instructions stored in the memory 1005, and execute the following steps:
  • the iterative electrical angle value ⁇ n+1 is set as the relative electrical angle value of the measured magnet.
  • processor 1001 may call computer-readable instructions stored in the memory 1005, and execute the following steps:
  • the iterative electrical angle value ⁇ n+1 is set as the relative electrical angle value of the measured magnet.
  • processor 1001 may call computer-readable instructions stored in the memory 1005, and execute the following steps:
  • the absolute electrical angle is calculated according to the first angle calculation formula
  • the absolute electrical angle is calculated according to the second angle calculation formula.
  • is the absolute electrical angle
  • ⁇ c is the relative electrical angle value.
  • the absolute electrical angle detection method includes the following steps:
  • Step S100 Obtain an angular sine signal corresponding to the magnetic component in the first direction and an angular cosine signal corresponding to the magnetic component in the second direction;
  • the magnetic encoder is installed in the magnetic field area of the measured magnet, and the magnetic encoder described above is used to detect the magnetic field of the measured magnet.
  • the magnetic encoder can output a corresponding voltage signal.
  • Step S200 Calculate the calibration compensation sine signal and the calibration compensation cosine signal according to the angle sine signal, the angle cosine signal and the calibration compensation formula.
  • the calibration compensation formula is: In the formula, V sc ( ⁇ ) is the calibration compensation sine signal, V cc ( ⁇ ) is the calibration cosine compensation signal, V s ( ⁇ ) is the angle sine signal, V c ( ⁇ ) is the angle cosine signal, and V s0 is The offset error of the preset sine signal, V c0 is the offset error of the preset cosine signal, V s1 is the harmonic amplitude compensation of the preset sine signal, and V c1 is the harmonic amplitude compensation of the preset cosine signal.
  • the output voltage signal often contains more high-order harmonics, and also contains offset errors caused by the influence of the control circuit.
  • the offset error of the encoder and the higher harmonics in the output voltage signal are processed.
  • the angle sine signal and the angle cosine signal are corrected by the calibration compensation formula, and the calibration compensation sine signal and the calibration compensation cosine signal are generated to improve the accuracy of the relative electrical angle and the absolute electrical angle obtained by the actuarial calculation. .
  • the bias error V s0 of the preset sine signal, the bias error V c0 of the preset cosine signal, the harmonic amplitude compensation V s1 of the preset sine signal, and the harmonic amplitude compensation V c1 of the preset cosine signal can be After the magnetic encoder is powered on for the first time, a person skilled in the art inputs and stores it in advance, or it can be input by a person skilled in the art every time the magnetic encoder performs detection.
  • the harmonic amplitude compensation of the preset sinusoidal signal is represented by V s1 and V sn .
  • V s1 is the harmonic amplitude compensation of the first harmonic preset sinusoidal signal
  • V sn is the nth harmonic. Wave presets the harmonic amplitude compensation of the sinusoidal signal.
  • Those skilled in the art can preset the harmonic amplitude compensation of the cosine signal by analogy.
  • Step S300 Determine the angle interval corresponding to the calibration compensation sine signal and the calibration compensation cosine signal, and calculate the relative electrical angle value of the measured magnet according to the preset trigonometric function corresponding to the angle interval;
  • Step S400 acquiring a Hall signal detected by the Hall sensor, and determining the polarity position of the magnetic encoder according to the Hall signal;
  • the Hall signal can be used to determine the polarity position of the magnetic encoder facing the measured magnet. N pole or S pole.
  • Step S500 calculating an absolute electrical angle according to the relative electrical angle value and the polarity position.
  • the absolute electrical angle is calculated according to the first angle calculation formula
  • the absolute electrical angle is calculated according to the second angle calculation formula.
  • is the absolute electrical angle
  • ⁇ c is the relative electrical angle value.
  • the signal detected by the magnetic encoder is corrected by the calibration compensation formula to avoid the influence of offset error and higher harmonics, thereby improving the calculated relative electrical angle and absolute electrical angle;
  • the sensor can distinguish the N pole or the S pole of the magnet to be measured on the surface of the magnetic encoder, and calculate the absolute electrical angle of the magnet to be measured.
  • FIG. 2 is a schematic diagram of a part of the process in the second embodiment of the absolute electrical angle detection method according to the present application; based on the above embodiment, it includes:
  • Step S600 Obtain a periodic voltage signal of one revolution of the measured magnetic steel.
  • the periodic voltage signal includes a predetermined sine signal corresponding to the magnetic component in the first direction and a predetermined cosine signal corresponding to the magnetic component in the second direction. ;
  • Step S700 Substituting the periodic voltage signal into the offset error calculation formula and the harmonic amplitude compensation calculation formula to obtain the offset error and harmonic amplitude compensation of the voltage signal, and store them as preset sinusoidal signals. Offset error V s0 , preset offset error V c0 of the cosine signal;
  • N is the number of signal cycles
  • n is the nth harmonic
  • is the relative electrical angle of the measured magnet
  • V s0 is the bias error of the preset sine signal
  • V c0 is the bias of the preset cosine signal Error
  • V s ( ⁇ ) is the predetermined sine signal of the periodic voltage signal
  • V c ( ⁇ ) is the calibrated cosine signal of the periodic voltage signal
  • V sn is the harmonic amplitude compensation of the nth preset sine signal
  • V cn is the harmonic amplitude compensation of the nth preset cosine signal.
  • the magnetic encoder measures the voltage signal of the measured magnetic steel in this week as a periodic voltage signal, and then substitutes the periodic voltage signal into the offset error calculation formula and the harmonic amplitude compensation calculation formula, and then Store the calculated offset error and harmonic amplitude to use to correct the signal detected by the subsequent magnetic encoder.
  • step S300 in the third embodiment of the absolute electrical angle detection method of the present application includes:
  • the relative electrical angle value of the measured magnet is calculated according to the following formula:
  • the relative electrical angle value of the measured magnet is calculated according to the following formula:
  • is the relative electrical angle of the measured magnetic steel
  • Vsc( ⁇ ) is the calibration compensation sine signal
  • Vcc( ⁇ ) is the calibration cosine compensation signal.
  • step S300 includes:
  • the method provided by this embodiment is used to weaken the influence of higher harmonics and speed up the calculation.
  • the angle of one revolution of the measured magnet is divided into 4 angle intervals, corresponding to (-45°, 45°], (45°, 135°], (135°, 225°), (225°, 315°], Similarly, by scaling the value of the compensated sine signal Vsc( ⁇ ) and/or the value of the scaled cosine compensation signal Vcc( ⁇ ), it is determined in which angle interval the angles corresponding to the scaled-compensated sine signal and the scaled-compensated cosine signal are within .
  • the iterative electrical angle value of the measured magnet is calculated iteratively according to the following formula:
  • K 1 and K 2 are calculated by the following formula:
  • the iterative electrical angle value of the measured magnet is calculated iteratively according to the following formula:
  • K 3 and K 4 are calculated by the following formula:
  • the iterative electrical angle value of the measured magnet is calculated iteratively according to the following formula:
  • L 1 , L 2 , L 3 are calculated by the following formula:
  • the iterative electrical angle value of the measured magnet is calculated iteratively according to the following formula:
  • L 4 , L 5 and L 6 are calculated by the following formula:
  • the iterative electrical angle value ⁇ n+1 is set as the relative value of the measured magnetic steel.
  • the steps of electrical angle value include:
  • the iterative electrical angle value ⁇ n+1 is set as the relative electrical angle value of the measured magnet.
  • the iterative electrical angle value ⁇ n+1 is set as the value of the relative electrical angle value of the measured magnet.
  • the steps include:
  • the iterative electrical angle value ⁇ n+1 is set as the relative electrical angle value of the measured magnet.
  • the first preset threshold is set to determine whether the error of the iterative electrical angle value calculated from two adjacent iterations is within a preset range, so as to control whether the iteration continues.
  • the second preset threshold is set to determine whether the total number of iterations reaches the preset number, so as to control whether the iteration continues.
  • this application also provides a computer-readable storage medium.
  • the computer-readable storage medium of the present application stores computer-readable instructions, wherein when the computer-readable instructions are executed by the processor, the steps of the above-mentioned absolute electrical angle detection method are realized.
  • the method implemented when the computer-readable instruction is executed please refer to the various embodiments of the absolute electrical angle detection method of the present application, which will not be repeated here.
  • this application can be provided as methods, systems, or computer program products. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • This application is described with reference to flowcharts and/or block diagrams of methods, devices (systems), and computer program products according to embodiments of this application.
  • each process and/or block in the flowchart and/or block diagram, and the combination of processes and/or blocks in the flowchart and/or block diagram can be realized by computer program instructions.
  • These computer program instructions can be provided to the processors of general-purpose computers, special-purpose computers, embedded processors, or other programmable data processing equipment to generate a machine, so that the instructions executed by the processor of the computer or other programmable data processing equipment generate settings A device for realizing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps that are set to implement functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

一种绝对电角度检测方法,包括:获取与第一方向磁分量对应的角度正弦信号和与第二方向磁分量对应的角度余弦信号(S100);根据角度正弦信号、角度余弦信号和定标补偿公式计算定标补偿正弦信号和定标补偿余弦信号(S200);确定定标补偿正弦信号和定标补偿余弦信号对应的角度区间,并根据角度区间对应的预设三角函数计算被测磁钢的相对电角度值(S300);获取霍尔传感器检测的霍尔信号,并根据霍尔信号确定磁编码器的极性位置(S400);根据相对电角度值和极性位置,计算获得绝对电角度(S500)。还公开了绝对电角度检测系统及计算机可读存储介质。

Description

绝对电角度检测方法、系统及计算机可读存储介质
本申请要求于2019年12月23日提交中国专利局、申请号为201911338800.3、发明名称为“绝对电角度检测方法、系统及计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在申请中。
技术领域
本申请涉及电磁结构及信号处理技术领域,尤其涉及一种磁编码器、绝对电角度检测方法、系统及可读存储介质。
背景技术
目前,利用磁阻传感器芯片(MR)和各向异性磁阻传感器芯片(AMR)进行角度位置检测的磁编码器已经被设置为多种控制系统中,该种磁编码器对被测旋转磁场在切向-轴向平面,或者切向-径向平面,或者径向-轴向平面的磁场分量进行检测,并输出电压信号。但是,由于MR和AMR磁阻传感器只对磁场的量值敏感,而对其极性不敏感,当被测磁钢的磁场旋转360°电角度,即磁场进行一个周期的变化的时候,磁阻传感器的输出信号有两个周期的变化。因此,磁阻传感器的这种信号不是被测磁场的绝对电角度信号,即,现有的磁编码器也就无法对被测磁钢的绝对电角度进行测量。
发明内容
本申请的主要目的是提供一种磁编码器、绝对电角度检测方法、系统及可读存储介质,旨在解决现有磁编码器无法对被测磁钢的绝对电角度进行精确测量的问题。
为实现上述目的,本申请提出的一种磁编码器的绝对电角度的检测方法,所述磁编码器包括设置为检测第一方向磁分量的磁阻传感器、以及设置为检测第二方向磁分量和极性位置的霍尔传感器,或包括设置为检测第一方向磁分量和第二方向磁分量的磁阻传感器和设置为检测极性位置的霍尔传感器,所述第一方向磁分量和第二方向磁分量的方向垂直;所述绝对电角度的检测方法包括:
获取与所述第一方向磁分量对应的角度正弦信号和与所述第二方向磁分量对应的角度余弦信号;
根据所述角度正弦信号、所述角度余弦信号和定标补偿公式计算定标补偿正弦信号和定标补偿余弦信号;
确定所述定标补偿正弦信号和定标补偿余弦信号对应的角度区间,并根据所述角度区间对应的预设三角函数计算被测磁钢的相对电角度值;
获取所述霍尔传感器检测的霍尔信号,并根据所述霍尔信号确定所述磁编码器的极性位置;
根据所述相对电角度值和所述极性位置,计算获得绝对电角度。其中,所述定标补偿公式为:
Figure PCTCN2019130656-appb-000001
式中,V sc(θ)为定标补偿正弦信号,V cc(θ)为定标余弦补偿信号,V s(θ)为角度 正弦信号,V c(θ)为角度余弦信号,V s0为预设正弦信号的偏置误差,V c0为预设余弦信号的偏置误差,V s1为预设正弦信号的谐波幅值补偿,V c1为预设余弦信号的谐波幅值补偿。
本申请还提供一种绝对电角度检测系统,所述绝对电角度检测系统包括磁编码器以及控制装置,所述磁编码器包括设置为检测第一方向磁分量的磁阻传感器、以及设置为检测第二方向磁分量和极性位置的霍尔传感器,或包括设置为检测第一方向磁分量和第二方向磁分量的磁阻传感器和设置为检测极性位置的霍尔传感器,所述第一方向磁分量和第二方向磁分量的方向垂直;所述控制装置包括处理器、存储器、以及存储在所述存储器上的可被所述处理器执行的计算机可读指令,其中,所述计算机可读指令被所述处理器执行时,实现如上述的绝对电角度检测方法的步骤。
本申请还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机可读指令,其中,所述计算机可读指令被处理器执行时,实现如上所述的绝对电角度检测方法的步骤。
本申请技术方案中,通过定标补偿公式对磁编码器检测的信号进行修正,避免偏置误差和高次谐波的影响,从而提高计算得到的相对电角度和绝对电角度;通过设置霍尔传感器,从而可判别出磁编码器面对待测磁钢的N极还是S极,计算得出被测磁钢的绝对电角度。
附图说明
图1为本申请绝对电角度检测方法第一实施例的流程示意图;
图2为本申请绝对电角度检测方法第二实施例的部分流程示意图;
图3为本申请实施例方案中涉及的系统的硬件结构示意图;
图4为本申请一种实施例中磁编码器与待测磁钢的检测状态示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不设置为限定本申请。本申请实施例涉及的绝对电角度检测方法主要应设置为绝对电角度测试系统,设置为检测转子磁钢的绝对电角度,绝对电角度测试系统包括磁编码器、系统控制器、存储器。
参照图3,图3为本申请实施例方案中涉及的系统结构示意图。本申请实施例中,控制器可以包括处理器1001(例如CPU),通信总线1002,用户接口1003,网络接口1004,存储器1005。其中,通信总线1002设置为实现这些组件之间的连接通信;用户接口1003可以包括显示屏(Display)、输入单元比如键盘(Keyboard);网络接口1004可选的可以包括标准的有线接口、无线接口(如WI-FI接口);存储器1005可以是高速RAM存储器,也可以是稳定的存储器(non-volatile memory),例如磁盘存储器,存储器1005可选的还可以是独立于前述处理器1001的存储装置。
所述磁编码器包括设置为检测第一方向磁分量的磁阻传感器、以及设置 为检测第二方向磁分量和极性位置的霍尔传感器,或包括设置为检测第一方向磁分量和第二方向磁分量的磁阻传感器和设置为检测极性位置的霍尔传感器,所述第一方向磁分量和第二方向磁分量的方向垂直。在一实施例中,磁编码器包括磁阻传感器和霍尔传感器,其中,磁阻传感器为检测单一方向的MR传感器或AMR传感器,磁阻传感器为平面式元器件。磁阻传感器的数量为两个,一个磁阻传感器仅对一个方向的磁分量进行测量,两个磁阻传感器分别对两个呈正交方向的磁分量进行测量,从而使得磁编码器可实现二维磁场的测量,两个磁阻传感器检测的磁分量方向可以与被测磁钢的切向和轴向同向,也可以与被测磁钢的径向和切向同向,还可以与被测磁钢的径向和轴向同向。在本实施例中的所述第一方向磁分量和第二方向磁分量可以分别为被测磁钢的切向磁分量和轴向磁分量。在另一实施例中,磁编码器包括磁阻传感器和霍尔传感器,其中,磁阻传感器为检测单一方向的MR传感器或AMR传感器,磁阻传感器为平面式元器件。磁阻传感器的数量为一个,一个磁阻传感器仅对一个方向的磁分量进行测量,该磁阻传感器与霍尔传感器分别对两个呈正交方向的磁分量进行测量,从而使得磁编码器可实现二维磁场的测量。在又一实施例中,磁编码器包括磁阻传感器和霍尔传感器,其中,磁阻传感器为检测两个正交方向的MR传感器或AMR传感器,磁阻传感器为平面式元器件。磁阻传感器的数量为一个,从而使得磁编码器可实现二维磁场的测量。由于霍尔传感器检测被测磁钢生成的霍尔信号的周期数和被测磁钢磁场的周期数相同,因而可以利用霍尔信号确定磁编码器所面对被测磁钢的极性位置是N极还是S极。如图4所示,磁编码器1与被测磁钢4的位置相对,图4(c)的坐标系中I方向为切向,II方向为轴向,III方向为径向。其中,被测磁钢4为转子,磁阻传感器和霍尔传感器可以是分开的器件,也可以是通过集成的方式集成在一起的器件。
本申请能够利用磁阻传感器对被测磁钢4的两个方向的磁分量进行检测,并且利用信号处理技术计算出被测磁钢4的相对电角度的值;或者进一步利用霍尔传感器和信号处理技术计算出被测磁钢4绝对电角度。
在本申请中,磁编码器可检测二维磁场,即可以是被测磁钢的切向-轴向磁分量,也可以是被测磁钢的径向-切向磁分量,还可以是被测磁钢的径向-轴向磁分量,为描述方便,本申请以下实施例中,以磁阻传感器检测轴向-切向磁分量为例进行说明。本领域技术人员可以理解的是,本申请在针对径向-切向磁分量或径向-轴向磁分量进行检测时,仅需要调整磁阻传感器的检测平面与被测磁分量在同一平面,并适应性的调整霍尔传感器与被测磁钢相对位置关系即可实现。为描述方便,本申请以下实施例中,切向磁场、轴向磁场和径向磁场均表示磁场中切向磁分量分布、轴向磁分量分布和径向磁分量分布,而非独立存在的磁场。
本领域技术人员可以理解,图3中示出的硬件结构并不构成对设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
继续参照图3,图3中作为一种计算机可读存储介质的存储器1005可以包括操作系统、网络通信模块以及计算机可读指令。
在图1中,处理器1001可以调用存储器1005中存储的计算机可读指令,并执行以下步骤:
获取与所述第一方向磁分量对应的角度正弦信号和与所述第二方向磁分量对应的角度余弦信号;
根据所述角度正弦信号、所述角度余弦信号和定标补偿公式计算定标补偿正弦信号和定标补偿余弦信号;
确定所述定标补偿正弦信号和定标补偿余弦信号对应的角度区间,并根据所述角度区间对应的预设三角函数计算被测磁钢的相对电角度值;
获取所述霍尔传感器检测的霍尔信号,并根据所述霍尔信号确定所述磁编码器的极性位置;
根据所述相对电角度值和所述极性位置,计算获得绝对电角度。其中,所述定标补偿公式为:
Figure PCTCN2019130656-appb-000002
式中,V sc(θ)为定标补偿正弦信号,V cc(θ)为定标余弦补偿信号,V s(θ)为角度正弦信号,V c(θ)为角度余弦信号,V s0为预设正弦信号的偏置误差,V c0为预设余弦信号的偏置误差,V s1为预设正弦信号的谐波幅值补偿,V c1为预设余弦信号的谐波幅值补偿。
进一步地,处理器1001可以调用存储器1005中存储的计算机可读指令,并执行以下步骤:
获取被测磁钢旋转一周的周期电压信号,所述周期电压信号包括与所述第一方向磁分量对应的预定标正弦信号和与所述第二方向磁分量对应的预定标余弦信号;
将所述周期电压信号代入偏置误差计算公式和谐波幅值补偿计算公式中,获得所述电压信号的偏置误差和谐波幅值补偿,并分别存储为预设正弦信号的偏置误差V s0,预设余弦信号的偏置误差V c0,预设正弦信号的谐波幅值补偿V sn,预设余弦信号的谐波幅值补偿V cn
所述偏置误差计算公式为
Figure PCTCN2019130656-appb-000003
所述谐波幅值补偿计算公式为
Figure PCTCN2019130656-appb-000004
其中,N为信号的周期数,n为第n次谐波,θ为被测磁钢的相对电角度,V s0为预设正弦信号的偏置误差,V c0为预设余弦信号的偏置误差,V s(θ)为周期电压信号的预定标正弦信号,V c(θ)为周期电压信号的定标余弦信号,V sn为预设正弦信号的谐波幅值补偿,V cn为预设余弦信号的谐波幅值补偿。
进一步地,处理器1001可以调用存储器1005中存储的计算机可读指令, 并执行以下步骤:
确定所述定标补偿正弦信号和定标补偿余弦信号对应的角度区间;
若所述定标补偿正弦信号和定标补偿余弦信号对应的角度区间为-45°至45°/或135°至225°,则根据以下公式计算被测磁钢的相对电角度值:
Figure PCTCN2019130656-appb-000005
若所述定标补偿正弦信号和定标补偿余弦信号对应的角度区间为-45°至45°,则根据以下公式计算被测磁钢的相对电角度值:
Figure PCTCN2019130656-appb-000006
其中,θ为被测磁钢的相对电角度;Vsc(θ)为定标补偿正弦信号,Vcc(θ)为定标余弦补偿信号。
进一步地,处理器1001可以调用存储器1005中存储的计算机可读指令,并执行以下步骤:
确定所述定标补偿正弦信号和定标补偿余弦信号对应的角度区间;
若所述定标补偿正弦信号和定标补偿余弦信号对应的角度区间为-45°至45°,则根据以下公式迭代计算被测磁钢的迭代电角度值:
Figure PCTCN2019130656-appb-000007
若所述定标补偿正弦信号和定标补偿余弦信号对应的角度区间为135°至225°,则根据以下公式迭代计算被测磁钢的迭代电角度值:
Figure PCTCN2019130656-appb-000008
若所述定标补偿正弦信号和定标补偿余弦信号对应的角度区间为45°至135°,则根据以下公式迭代计算被测磁钢的迭代电角度值:
Figure PCTCN2019130656-appb-000009
若所述定标补偿正弦信号和定标补偿余弦信号对应的角度区间为225°至315°,则根据以下公式迭代计算被测磁钢的迭代电角度值:
Figure PCTCN2019130656-appb-000010
当相对电角度或迭代次数是否符合预设迭代规则,设置迭代电角度值θ n+1为被测磁钢的相对电角度值;
其中,θ为第n次迭代计算的被测磁钢的相对电角度;θ n+1为第n+1次迭代计算的被测磁钢的相对电角度;V sc(θ)为定标补偿正弦信号,V cc(θ)为定标余弦补偿信号;K 1、K 2、K 3、K 4、L 1、L 2、L 3、L 4、L 5和L 6为预设常数。
进一步地,处理器1001可以调用存储器1005中存储的计算机可读指令,并执行以下步骤:
判断迭代电角度θ n+1与迭代电角度θ n的差值是否小于第一预设阈值;
若迭代电角度θ n+1与迭代电角度θ n的差值小于所述第一预设阈值,则设置迭代电角度值θ n+1为被测磁钢的相对电角度值。
进一步地,处理器1001可以调用存储器1005中存储的计算机可读指令,并执行以下步骤:
判断迭代次数n+1是否等于第二预设阈值;
若迭代次数等于第二预设阈值,则设置迭代电角度值θ n+1为被测磁钢的相对电角度值。
进一步地,处理器1001可以调用存储器1005中存储的计算机可读指令,并执行以下步骤:
若所述极性位置为所述磁编码器位于被测磁钢的N极侧,根据第一角度计算公式计算获得绝对电角度;
若所述极性位置为所述磁编码器位于被测磁钢的S极侧,根据第二角度计算公式计算获得绝对电角度。其中,第一角度计算公式为:θ=θ c/2,第二角度计算公式为:θ=θ c/2+180°,θ为绝对电角度,θ c为相对电角度值。
本申请提供一种绝对电角度检测方法,请参照图1,在本申请第一实施例中,绝对电角度检测方法包括以下步骤:
步骤S100,获取与所述第一方向磁分量对应的角度正弦信号和与所述第二方向磁分量对应的角度余弦信号;
将磁编码器安装于被测磁钢的磁场区域,采用上文所述的磁编码器对被测磁钢的磁场进行检测,磁编码器能够输出对应的电压信号,该电压信号包括与所述第一方向磁分量对应的角度正弦信号和与所述第二方向磁分量对应的角度余弦信号。
步骤S200,根据所述角度正弦信号、所述角度余弦信号和定标补偿公式计算定标补偿正弦信号和定标补偿余弦信号。其中,所述定标补偿公式为:
Figure PCTCN2019130656-appb-000011
式中,V sc(θ)为定标补偿正弦信号,V cc(θ)为定标余弦补偿信号,V s(θ)为角度正弦信号,V c(θ)为角度余弦信号,V s0为预设正弦信号的偏置误差,V c0为预设余弦信号的偏置误差,V s1为预设正弦信号的谐波幅值补偿,V c1为预设余弦信号的谐波幅值补偿。
实际上,在采用磁编码器进行检测时,输出的电压信号中往往含有较多高次谐波,同时还含有因为控制电路的影响导致的偏置误差,为了提高检测的精度,有必要对磁编码器的偏置误差和输出电压信号中的高次谐波进行处理。在本实施例中,通过定标补偿公式对角度正弦信号和角度余弦信号进行修正,生成定标补偿正弦信号和定标补偿余弦信号,以提高精算得到的相对电角度和绝对电角度的精确度。其中,预设正弦信号的偏置误差V s0、预设余弦信号的偏置误差V c0、预设正弦信号的谐波幅值补偿V s1、预设余弦信号的谐波幅值补偿V c1可以在磁编码器第一次上电后由本领域技术人员预先输入并存储,也可以在每次磁编码器进行检测时由本领域技术人员输入。在本申请中,预设正弦信号的谐波幅值补偿中采用V s1和V sn表示,V s1为第一次谐波预设正弦信号的谐波幅值补偿,V sn为第n次谐波预设正弦信号的谐波幅值补偿。本领域技术人员可以依此类推预设余弦信号的谐波幅值补偿。
步骤S300,确定所述定标补偿正弦信号和定标补偿余弦信号对应的角度区间,并根据所述角度区间对应的预设三角函数计算被测磁钢的相对电角度值;
步骤S400,获取所述霍尔传感器检测的霍尔信号,并根据所述霍尔信号确定所述磁编码器的极性位置;
由于霍尔传感器检测被测磁钢生成的霍尔信号的周期数和被测磁钢磁场的周期数相同,因而可以利用霍尔信号确定磁编码器所面对被测磁钢的极性位置是N极还是S极。
步骤S500,根据所述相对电角度值和所述极性位置,计算获得绝对电角度。
若所述极性位置为所述磁编码器位于被测磁钢的N极侧,根据第一角度计算公式计算获得绝对电角度;
若所述极性位置为所述磁编码器位于被测磁钢的S极侧,根据第二角度计算公式计算获得绝对电角度。其中,第一角度计算公式为:θ=θ c/2,第二角度计算公式为:θ=θ c/2+180°,θ为绝对电角度,θ c为相对电角度值。
本申请技术方案中,通过定标补偿公式对磁编码器检测的信号进行修正,避免偏置误差和高次谐波的影响,从而提高计算得到的相对电角度和绝对电角度;通过设置霍尔传感器,从而可判别出磁编码器面对待测磁钢的N极还是S极,计算得出被测磁钢的绝对电角度。
请参照图2,图2为本申请绝对电角度检测方法第二实施例中部分流程示意图;基于上述实施例,在步骤S100之前包括:
步骤S600,获取被测磁钢旋转一周的周期电压信号,所述周期电压信号包括与所述第一方向磁分量对应的预定标正弦信号和与所述第二方向磁分量对应的预定标余弦信号;
步骤S700,将所述周期电压信号代入偏置误差计算公式和谐波幅值补偿计算公式中,获得所述电压信号的偏置误差和谐波幅值补偿,并分别存储为预设正弦信号的偏置误差V s0,预设余弦信号的偏置误差V c0
所述偏置误差计算公式为
Figure PCTCN2019130656-appb-000012
所述谐波幅值补偿计算公式为
Figure PCTCN2019130656-appb-000013
其中,N为信号的周期数,n为第n次谐波,θ为被测磁钢的相对电角度,V s0为预设正弦信号的偏置误差,V c0为预设余弦信号的偏置误差,V s(θ)为周期电压信号的预定标正弦信号,V c(θ)为周期电压信号的定标余弦信号,V sn为第n次预设正弦信号的谐波幅值补偿,V cn为第n次预设余弦信号的谐波幅值补偿。
可以控制被测磁钢转动一周,磁编码器测量被测磁钢在这一周的电压信号为周期电压信号,再将周期电压信号代入偏置误差计算公式和谐波幅值补 偿计算公式中,再将计算出来的偏置误差和谐波幅值存储起来,以用来对后续磁编码器检测的信号进行修正。
基于上述实施例,本申请绝对电角度检测方法第三实施例中步骤S300包括:
判断所述定标补偿正弦信号和定标补偿余弦信号对应的角度是否在预设角度区间内,所述预设角度区间为-45°至45°以及135°至225°;
通过定标补偿正弦信号Vsc(θ)和/或定标余弦补偿信号Vcc(θ)的数值,判断所述定标补偿正弦信号和定标补偿余弦信号对应的角度是否在预设角度区间(-45°,45°)、(135°,225°)内。
若所述定标补偿正弦信号和定标补偿余弦信号对应的角度在所述预设角度区间内,则根据以下公式计算被测磁钢的相对电角度值:
Figure PCTCN2019130656-appb-000014
若所述定标补偿正弦信号和定标补偿余弦信号对应的角度不在所述预设角度区间内,则根据以下公式计算被测磁钢的相对电角度值:
Figure PCTCN2019130656-appb-000015
其中,θ为被测磁钢的相对电角度;Vsc(θ)为定标补偿正弦信号,Vcc(θ)为定标余弦补偿信号。
进一步地,本申请绝对电角度检测方法第四实施例中步骤S300包括:
确定所述定标补偿正弦信号和定标补偿余弦信号对应的角度区间;
由于高次谐波的影响,采用第三实施例提供的方法计算相对电角度,结果会有较大的误差,并且采用反三角函数计算量大。采用本实施例提供的方法以削弱高次谐波的影响并加快计算速度。被测磁钢旋转一周的角度分为4个角度区间,分别对应(-45°,45°]、(45°,135°]、(135°,225°]、(225°,315°],同样的,通过定标补偿正弦信号Vsc(θ)和/或定标余弦补偿信号Vcc(θ)的数值,判断所述定标补偿正弦信号和定标补偿余弦信号对应的角度在哪个角度区间内。
若所述定标补偿正弦信号和定标补偿余弦信号对应的角度区间为-45°至45°,则根据以下公式迭代计算被测磁钢的迭代电角度值:
Figure PCTCN2019130656-appb-000016
其中,K 1、K 2通过以下公式计算得到:
Figure PCTCN2019130656-appb-000017
Figure PCTCN2019130656-appb-000018
若所述定标补偿正弦信号和定标补偿余弦信号对应的角度区间为135°至225°,则根据以下公式迭代计算被测磁钢的迭代电角度值:
Figure PCTCN2019130656-appb-000019
其中,K 3、K 4通过以下公式计算得到:
Figure PCTCN2019130656-appb-000020
Figure PCTCN2019130656-appb-000021
若所述定标补偿正弦信号和定标补偿余弦信号对应的角度区间为45°至135°,则根据以下公式迭代计算被测磁钢的迭代电角度值:
Figure PCTCN2019130656-appb-000022
其中,L 1、L 2、L 3、通过以下公式计算得到:
Figure PCTCN2019130656-appb-000023
Figure PCTCN2019130656-appb-000024
Figure PCTCN2019130656-appb-000025
若所述定标补偿正弦信号和定标补偿余弦信号对应的角度区间为225°至315°,则根据以下公式迭代计算被测磁钢的迭代电角度值:
Figure PCTCN2019130656-appb-000026
其中,L 4、L 5和L 6通过以下公式计算得到:
Figure PCTCN2019130656-appb-000027
Figure PCTCN2019130656-appb-000028
Figure PCTCN2019130656-appb-000029
当相对电角度或迭代次数是否符合预设迭代规则,设置迭代电角度值θ n+1为被测磁钢的相对电角度值;其中,θ为第n次迭代计算的被测磁钢的相对电角度;θ n+1为第n+1次迭代计算的迭代电角度值;V sc(θ)为定标补偿正弦信号,V cc(θ)为定标余弦补偿信号;K 1、K 2、K 3、K 4、L 1、L 2、L 3、L 4、L 5和L 6为预设常数。在本实施例中,通过设置4个不同的角度区间,并采用对应的迭代公式计算相对电角度,从而可减小高次谐波的影响,并且减小反三角函数使用,提高计算速度。
基于上述实施例,本申请绝对电角度检测方法第五实施例中,所述当相对电角度或迭代次数是否符合预设迭代规则,设置迭代电角度值θ n+1为被测磁钢的相对电角度值的步骤包括:
判断迭代电角度θ n+1与迭代电角度θ n的差值是否小于第一预设阈值;
若迭代电角度θ n+1与迭代电角度θ n的差值小于所述第一预设阈值,则设置迭代电角度值θ n+1为被测磁钢的相对电角度值。
在本申请绝对电角度检测方法第六实施例中,所述当相对电角度或迭代次数是否符合预设迭代规则,设置迭代电角度值θ n+1为被测磁钢的相对电角度值的步骤包括:
判断迭代次数n+1是否等于第二预设阈值;
若迭代次数等于第二预设阈值,则设置迭代电角度值θ n+1为被测磁钢的相对电角度值。
第五实施例通过设置第一预设阈值以判断相邻两次迭代计算得到的迭代电角度值的误差是否在预设范围内,从而可控制迭代是否继续。第六实施例通过设置第二预设阈值以判断迭代的总次数是否达到预设次数,从而可控制迭代是否继续。本领域技术人员可根据实际需求自行设置第一预设阈值和第二预设阈值,并可采用第五实施例和第六实施例中的任意一种方法决定迭代是否继续。
此外,本申请还提供一种计算机可读存储介质。本申请计算机可读存储介质上存储有计算机可读指令,其中,计算机可读指令被处理器执行时,实现如上述的绝对电角度检测方法的步骤。其中,计算机可读指令被执行时所实现的方法可参照本申请绝对电角度检测方法的各个实施例,此处不再赘述。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生设置为实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供设置为实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。以上所述仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是在本申请的发明构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (20)

  1. 一种磁编码器的绝对电角度的检测方法,其中,所述磁编码器包括设置为检测第一方向磁分量的磁阻传感器、以及设置为检测第二方向磁分量和极性位置的霍尔传感器,或包括设置为检测第一方向磁分量和第二方向磁分量的磁阻传感器和设置为检测极性位置的霍尔传感器,所述第一方向磁分量和第二方向磁分量的方向垂直;所述绝对电角度的检测方法包括:
    获取与所述第一方向磁分量对应的角度正弦信号和与所述第二方向磁分量对应的角度余弦信号;
    根据所述角度正弦信号、所述角度余弦信号和定标补偿公式计算定标补偿正弦信号和定标补偿余弦信号;
    确定所述定标补偿正弦信号和定标补偿余弦信号对应的角度区间,并根据所述角度区间对应的预设三角函数计算被测磁钢的相对电角度值;
    获取所述霍尔传感器检测的霍尔信号,并根据所述霍尔信号确定所述磁编码器的极性位置;
    根据所述相对电角度值和所述极性位置,计算获得绝对电角度;其中,所述定标补偿公式为:
    Figure PCTCN2019130656-appb-100001
    式中,V sc(θ)为定标补偿正弦信号,V cc(θ)为定标余弦补偿信号,V s(θ)为角度正弦信号,V c(θ)为角度余弦信号,V s0为预设正弦信号的偏置误差,V c0为预设余弦信号的偏置误差,V s1为预设正弦信号的谐波幅值补偿,V c1为预设余弦信号的谐波幅值补偿。
  2. 如权利要求1所述的绝对电角度检测方法,其中,所述获取与所述第一方向磁分量对应的角度正弦信号和与所述第二方向磁分量对应的角度余弦信号的步骤,还包括:
    获取被测磁钢旋转一周的周期电压信号,所述周期电压信号包括与所述第一方向磁分量对应的预定标正弦信号和与所述第二方向磁分量对应的预定标余弦信号;
    将所述周期电压信号代入偏置误差计算公式和谐波幅值补偿计算公式中,获得所述电压信号的偏置误差和谐波幅值补偿,并分别存储为预设正弦信号的偏置误差V s0,预设余弦信号的偏置误差V c0,预设正弦信号的谐波幅值补偿V sn,预设余弦信号的谐波幅值补偿V cn
    所述偏置误差计算公式为
    Figure PCTCN2019130656-appb-100002
    所述谐波幅值补偿计算公式为
    Figure PCTCN2019130656-appb-100003
    其中,N为信号的周期数,n为第n次谐波,θ为被测磁钢的相对电角度,V s0 为预设正弦信号的偏置误差,V c0为预设余弦信号的偏置误差,V s(θ)为周期电压信号的预定标正弦信号,V c(θ)为周期电压信号的定标余弦信号,V sn为第n次预设正弦信号的谐波幅值补偿,V cn为第n次预设余弦信号的谐波幅值补偿。
  3. 如权利要求2所述的绝对电角度检测方法,其中,所述确定所述定标补偿正弦信号和定标补偿余弦信号对应的角度区间,并根据所述角度区间对应的预设三角函数计算被测磁钢的相对电角度值的步骤包括:
    判断所述定标补偿正弦信号和定标补偿余弦信号对应的角度是否在预设角度区间内,所述预设角度区间为-45°至45°以及135°至225°;
    若所述定标补偿正弦信号和定标补偿余弦信号对应的角度在所述预设角度区间内,则根据以下公式计算被测磁钢的相对电角度值:
    Figure PCTCN2019130656-appb-100004
    若所述定标补偿正弦信号和定标补偿余弦信号对应的角度不在所述预设角度区间内,则根据以下公式计算被测磁钢的相对电角度值:
    Figure PCTCN2019130656-appb-100005
    其中,θ为被测磁钢的相对电角度;Vsc(θ)为定标补偿正弦信号,Vcc(θ)为定标余弦补偿信号。
  4. 如权利要求2所述的绝对电角度检测方法,其中,所述确定所述定标补偿正弦信号和定标补偿余弦信号对应的角度区间,并根据所述角度区间对应的预设三角函数计算被测磁钢的相对电角度值的步骤包括:
    确定所述定标补偿正弦信号和定标补偿余弦信号对应的角度区间;
    若所述定标补偿正弦信号和定标补偿余弦信号对应的角度区间为(-45°,45°],则根据以下公式迭代计算被测磁钢的迭代电角度值:
    Figure PCTCN2019130656-appb-100006
    若所述定标补偿正弦信号和定标补偿余弦信号对应的角度区间为(45°,135°],则根据以下公式迭代计算被测磁钢的迭代电角度值:
    Figure PCTCN2019130656-appb-100007
    若所述定标补偿正弦信号和定标补偿余弦信号对应的角度区间为(135°,225°],则根据以下公式迭代计算被测磁钢的迭代电角度值:
    Figure PCTCN2019130656-appb-100008
    若所述定标补偿正弦信号和定标补偿余弦信号对应的角度区间为(225°,315°],则根据以下公式迭代计算被测磁钢的迭代电角度值:
    Figure PCTCN2019130656-appb-100009
    当相对电角度或迭代次数是否符合预设迭代规则,设置迭代电角度值θ n+1为被测磁钢的相对电角度值;
    其中,θ为第n次迭代计算的被测磁钢的相对电角度;θ n+1为第n+1次迭代计算的被测磁钢的相对电角度;V sc(θ)为定标补偿正弦信号,V cc(θ)为定标余弦补偿信号;K 1、K 2、K 3、K 4、L 1、L 2、L 3、L 4、L 5和L 6为预设常数。
  5. 如权利要求4所述的绝对电角度检测方法,其中,所述预设常数K 1、K 2、K 3、K 4、L 1、L 2、L 3、L 4、L 5和L 6分别通过以下公式计算得到:
    Figure PCTCN2019130656-appb-100010
    Figure PCTCN2019130656-appb-100011
    Figure PCTCN2019130656-appb-100012
    Figure PCTCN2019130656-appb-100013
    Figure PCTCN2019130656-appb-100014
    Figure PCTCN2019130656-appb-100015
    Figure PCTCN2019130656-appb-100016
    Figure PCTCN2019130656-appb-100017
    Figure PCTCN2019130656-appb-100018
    Figure PCTCN2019130656-appb-100019
  6. 如权利要求4所述的绝对电角度检测方法,其中,所述当迭代电角度或迭代次数是否符合预设迭代规则,设置迭代电角度值θ n+1为被测磁钢的相对电角度值的步骤,包括:
    判断迭代电角度θ n+1与迭代电角度θ n的差值是否小于第一预设阈值;
    若迭代电角度θ n+1与迭代电角度θ n的差值小于所述第一预设阈值,则设置迭代电角度值θ n+1为被测磁钢的相对电角度值。
  7. 如权利要求4所述的绝对电角度检测方法,其中,所述当迭代电角度 或迭代次数是否符合预设迭代规则,设置迭代电角度值θ n+1为被测磁钢的相对电角度值的步骤,包括:
    判断迭代次数n+1是否等于第二预设阈值;
    若迭代次数等于第二预设阈值,则设置迭代电角度值θ n+1为被测磁钢的相对电角度值。
  8. 如权利要求1所述的绝对电角度检测方法,其中,所述根据所述相对电角度值和所述极性位置,计算获得绝对电角度的步骤包括:
    若所述极性位置为所述磁编码器位于被测磁钢的N极侧,根据第一角度计算公式计算获得绝对电角度;
    若所述极性位置为所述磁编码器位于被测磁钢的S极侧,根据第二角度计算公式计算获得绝对电角度;其中,第一角度计算公式为:θ=θ c/2,第二角度计算公式为:θ=θ c/2+180°,θ为绝对电角度,θ c为相对电角度值。
  9. 一种绝对电角度检测系统,其中,所述绝对电角度检测系统包括磁编码器以及控制装置,所述磁编码器包括设置为检测第一方向磁分量的磁阻传感器、以及设置为检测第二方向磁分量和极性位置的霍尔传感器,或包括设置为检测第一方向磁分量和第二方向磁分量的磁阻传感器和设置为检测极性位置的霍尔传感器,所述第一方向磁分量和第二方向磁分量的方向垂直;所述控制装置包括处理器、存储器、以及存储在所述存储器上的可被所述处理器执行的计算机可读指令,其中,所述计算机可读指令被所述处理器执行时,实现如下步骤:
    获取与所述第一方向磁分量对应的角度正弦信号和与所述第二方向磁分量对应的角度余弦信号;
    根据所述角度正弦信号、所述角度余弦信号和定标补偿公式计算定标补偿正弦信号和定标补偿余弦信号;
    确定所述定标补偿正弦信号和定标补偿余弦信号对应的角度区间,并根据所述角度区间对应的预设三角函数计算被测磁钢的相对电角度值;
    获取所述霍尔传感器检测的霍尔信号,并根据所述霍尔信号确定所述磁编码器的极性位置;
    根据所述相对电角度值和所述极性位置,计算获得绝对电角度;其中,所述定标补偿公式为:
    Figure PCTCN2019130656-appb-100020
    式中,V sc(θ)为定标补偿正弦信号,V cc(θ)为定标余弦补偿信号,V s(θ)为角度正弦信号,V c(θ)为角度余弦信号,V s0为预设正弦信号的偏置误差,V c0为预设余弦信号的偏置误差,V s1为预设正弦信号的谐波幅值补偿,V c1为预设余弦信号的谐波幅值补偿。
  10. 如权利要求9所述的绝对电角度检测系统,其中,所述计算机可读指令被所述处理器执行时,还实现如下步骤:
    获取被测磁钢旋转一周的周期电压信号,所述周期电压信号包括与所述第一方向磁分量对应的预定标正弦信号和与所述第二方向磁分量对应的预定 标余弦信号;
    将所述周期电压信号代入偏置误差计算公式和谐波幅值补偿计算公式中,获得所述电压信号的偏置误差和谐波幅值补偿,并分别存储为预设正弦信号的偏置误差V s0,预设余弦信号的偏置误差V c0,预设正弦信号的谐波幅值补偿V sn,预设余弦信号的谐波幅值补偿V cn
    所述偏置误差计算公式为
    Figure PCTCN2019130656-appb-100021
    所述谐波幅值补偿计算公式为
    Figure PCTCN2019130656-appb-100022
    其中,N为信号的周期数,n为第n次谐波,θ为被测磁钢的相对电角度,V s0为预设正弦信号的偏置误差,V c0为预设余弦信号的偏置误差,V s(θ)为周期电压信号的预定标正弦信号,V c(θ)为周期电压信号的定标余弦信号,V sn为第n次预设正弦信号的谐波幅值补偿,V cn为第n次预设余弦信号的谐波幅值补偿。
  11. 如权利要求10所述的绝对电角度检测系统,其中,所述计算机可读指令被所述处理器执行时,还实现如下步骤:
    判断所述定标补偿正弦信号和定标补偿余弦信号对应的角度是否在预设角度区间内,所述预设角度区间为-45°至45°以及135°至225°;
    若所述定标补偿正弦信号和定标补偿余弦信号对应的角度在所述预设角度区间内,则根据以下公式计算被测磁钢的相对电角度值:
    Figure PCTCN2019130656-appb-100023
    若所述定标补偿正弦信号和定标补偿余弦信号对应的角度不在所述预设角度区间内,则根据以下公式计算被测磁钢的相对电角度值:
    Figure PCTCN2019130656-appb-100024
    其中,θ为被测磁钢的相对电角度;Vsc(θ)为定标补偿正弦信号,Vcc(θ)为定标余弦补偿信号。
  12. 如权利要求10所述的绝对电角度检测系统,其中,所述计算机可读指令被所述处理器执行时,还实现如下步骤:
    确定所述定标补偿正弦信号和定标补偿余弦信号对应的角度区间;
    若所述定标补偿正弦信号和定标补偿余弦信号对应的角度区间为(-45°,45°],则根据以下公式迭代计算被测磁钢的迭代电角度值:
    Figure PCTCN2019130656-appb-100025
    若所述定标补偿正弦信号和定标补偿余弦信号对应的角度区间为(45°,135°],则根据以下公式迭代计算被测磁钢的迭代电角度值:
    Figure PCTCN2019130656-appb-100026
    若所述定标补偿正弦信号和定标补偿余弦信号对应的角度区间为(135°,225°],则根据以下公式迭代计算被测磁钢的迭代电角度值:
    Figure PCTCN2019130656-appb-100027
    若所述定标补偿正弦信号和定标补偿余弦信号对应的角度区间为(225°,315°],则根据以下公式迭代计算被测磁钢的迭代电角度值:
    Figure PCTCN2019130656-appb-100028
    当相对电角度或迭代次数是否符合预设迭代规则,设置迭代电角度值θ n+1为被测磁钢的相对电角度值;
    其中,θ为第n次迭代计算的被测磁钢的相对电角度;θ n+1为第n+1次迭代计算的被测磁钢的相对电角度;V sc(θ)为定标补偿正弦信号,V cc(θ)为定标余弦补偿信号;K 1、K 2、K 3、K 4、L 1、L 2、L 3、L 4、L 5和L 6为预设常数。
  13. 如权利要求12所述的绝对电角度检测系统,其中,所述预设常数K 1、K 2、K 3、K 4、L 1、L 2、L 3、L 4、L 5和L 6分别通过以下公式计算得到:
    Figure PCTCN2019130656-appb-100029
    Figure PCTCN2019130656-appb-100030
    Figure PCTCN2019130656-appb-100031
    Figure PCTCN2019130656-appb-100032
    Figure PCTCN2019130656-appb-100033
    Figure PCTCN2019130656-appb-100034
    Figure PCTCN2019130656-appb-100035
    Figure PCTCN2019130656-appb-100036
    Figure PCTCN2019130656-appb-100037
    Figure PCTCN2019130656-appb-100038
    Figure PCTCN2019130656-appb-100039
  14. 如权利要求12所述的绝对电角度检测系统,其中,所述当迭代电角度或迭代次数是否符合预设迭代规则,设置迭代电角度值θ n+1为被测磁钢的相对电角度值的步骤,包括:
    判断迭代电角度θ n+1与迭代电角度θ n的差值是否小于第一预设阈值;
    若迭代电角度θ n+1与迭代电角度θ n的差值小于所述第一预设阈值,则设置迭代电角度值θ n+1为被测磁钢的相对电角度值。
  15. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机可读指令,其中,所述计算机可读指令被处理器执行时,实现如下步骤:
    获取与所述第一方向磁分量对应的角度正弦信号和与所述第二方向磁分量对应的角度余弦信号;
    根据所述角度正弦信号、所述角度余弦信号和定标补偿公式计算定标补偿正弦信号和定标补偿余弦信号;
    确定所述定标补偿正弦信号和定标补偿余弦信号对应的角度区间,并根据所述角度区间对应的预设三角函数计算被测磁钢的相对电角度值;
    获取所述霍尔传感器检测的霍尔信号,并根据所述霍尔信号确定所述磁编码器的极性位置;
    根据所述相对电角度值和所述极性位置,计算获得绝对电角度;其中,所述定标补偿公式为:
    Figure PCTCN2019130656-appb-100040
    式中,V sc(θ)为定标补偿正弦信号,V cc(θ)为定标余弦补偿信号,V s(θ)为角度正弦信号,V c(θ)为角度余弦信号,V s0为预设正弦信号的偏置误差,V c0为预设余弦信号的偏置误差,V s1为预设正弦信号的谐波幅值补偿,V c1为预设余弦信号的谐波幅值补偿。
  16. 如权利要求15所述的计算机可读存储介质,其中,所述计算机可读指令被处理器执行时,还实现如下步骤:
    获取被测磁钢旋转一周的周期电压信号,所述周期电压信号包括与所述第一方向磁分量对应的预定标正弦信号和与所述第二方向磁分量对应的预定标余弦信号;
    将所述周期电压信号代入偏置误差计算公式和谐波幅值补偿计算公式中,获得所述电压信号的偏置误差和谐波幅值补偿,并分别存储为预设正弦信号的偏置误差V s0,预设余弦信号的偏置误差V c0,预设正弦信号的谐波幅值补偿V sn,预设余弦信号的谐波幅值补偿V cn
    所述偏置误差计算公式为
    Figure PCTCN2019130656-appb-100041
    所述谐波幅值补偿计算公式为
    Figure PCTCN2019130656-appb-100042
    其中,N为信号的周期数,n为第n次谐波,θ为被测磁钢的相对电角度,V s0为预设正弦信号的偏置误差,V c0为预设余弦信号的偏置误差,V s(θ)为周期电压信号的预定标正弦信号,V c(θ)为周期电压信号的定标余弦信号,V sn为第n次预设正弦信号的谐波幅值补偿,V cn为第n次预设余弦信号的谐波幅值补偿。
  17. 如权利要求16所述的计算机可读存储介质,其中,所述计算机可读指令被处理器执行时,还实现如下步骤:
    判断所述定标补偿正弦信号和定标补偿余弦信号对应的角度是否在预设角度区间内,所述预设角度区间为-45°至45°以及135°至225°;
    若所述定标补偿正弦信号和定标补偿余弦信号对应的角度在所述预设角度区间内,则根据以下公式计算被测磁钢的相对电角度值:
    Figure PCTCN2019130656-appb-100043
    若所述定标补偿正弦信号和定标补偿余弦信号对应的角度不在所述预设角度区间内,则根据以下公式计算被测磁钢的相对电角度值:
    Figure PCTCN2019130656-appb-100044
    其中,θ为被测磁钢的相对电角度;Vsc(θ)为定标补偿正弦信号,Vcc(θ)为定标余弦补偿信号。
  18. 如权利要求17所述的计算机可读存储介质,其中,所述计算机可读指令被处理器执行时,还实现如下步骤:
    确定所述定标补偿正弦信号和定标补偿余弦信号对应的角度区间;
    若所述定标补偿正弦信号和定标补偿余弦信号对应的角度区间为(-45°,45°],则根据以下公式迭代计算被测磁钢的迭代电角度值:
    Figure PCTCN2019130656-appb-100045
    若所述定标补偿正弦信号和定标补偿余弦信号对应的角度区间为(45°,135°],则根据以下公式迭代计算被测磁钢的迭代电角度值:
    Figure PCTCN2019130656-appb-100046
    若所述定标补偿正弦信号和定标补偿余弦信号对应的角度区间为(135°,225°],则根据以下公式迭代计算被测磁钢的迭代电角度值:
    Figure PCTCN2019130656-appb-100047
    若所述定标补偿正弦信号和定标补偿余弦信号对应的角度区间为(225°,315°],则根据以下公式迭代计算被测磁钢的迭代电角度值:
    Figure PCTCN2019130656-appb-100048
    当相对电角度或迭代次数是否符合预设迭代规则,设置迭代电角度值θ n+1为被测磁钢的相对电角度值;
    其中,θ为第n次迭代计算的被测磁钢的相对电角度;θ n+1为第n+1次迭代计算的被测磁钢的相对电角度;V sc(θ)为定标补偿正弦信号,V cc(θ)为定标余弦补偿信号;K 1、K 2、K 3、K 4、L 1、L 2、L 3、L 4、L 5和L 6为预设常数。
  19. 如权利要求18所述的计算机可读存储介质,其中,所述预设常数K 1、K 2、K 3、K 4、L 1、L 2、L 3、L 4、L 5和L 6分别通过以下公式计算得到:
    Figure PCTCN2019130656-appb-100049
    Figure PCTCN2019130656-appb-100050
    Figure PCTCN2019130656-appb-100051
    Figure PCTCN2019130656-appb-100052
    Figure PCTCN2019130656-appb-100053
    Figure PCTCN2019130656-appb-100054
    Figure PCTCN2019130656-appb-100055
    Figure PCTCN2019130656-appb-100056
    Figure PCTCN2019130656-appb-100057
    Figure PCTCN2019130656-appb-100058
  20. 如权利要求18所述的计算机可读存储介质,其中,所述计算机可读指令被处理器执行时,还实现如下步骤:
    判断迭代电角度θ n+1与迭代电角度θ n的差值是否小于第一预设阈值;
    若迭代电角度θ n+1与迭代电角度θ n的差值小于所述第一预设阈值,则设置迭代电角度值θ n+1为被测磁钢的相对电角度值。
PCT/CN2019/130656 2019-12-23 2019-12-31 绝对电角度检测方法、系统及计算机可读存储介质 WO2021128424A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911338800.3A CN110793430B (zh) 2019-12-23 2019-12-23 绝对电角度检测方法、系统及计算机可读存储介质
CN201911338800.3 2019-12-23

Publications (1)

Publication Number Publication Date
WO2021128424A1 true WO2021128424A1 (zh) 2021-07-01

Family

ID=69448642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130656 WO2021128424A1 (zh) 2019-12-23 2019-12-31 绝对电角度检测方法、系统及计算机可读存储介质

Country Status (3)

Country Link
US (1) US11060842B1 (zh)
CN (1) CN110793430B (zh)
WO (1) WO2021128424A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110793430B (zh) * 2019-12-23 2020-05-05 峰岹科技(深圳)有限公司 绝对电角度检测方法、系统及计算机可读存储介质
CN111721329B (zh) * 2020-07-07 2021-11-23 哈尔滨理工大学 一种三霍尔磁电编码器及免反正切计算角度解算方法
CN112556569B (zh) * 2020-11-17 2022-05-31 西人马帝言(北京)科技有限公司 传感器温度补偿的方法、装置、设备及存储介质
CN114157102B (zh) * 2020-12-31 2023-07-18 德马科技集团股份有限公司 电机的角度测量方法、系统、装置及计算机可读存储介质
CN112904261B (zh) * 2021-01-11 2024-03-19 深圳麦歌恩科技有限公司 谐波校准系统及方法、误差谐波分量系数计算系统及方法
CN113541555B (zh) * 2021-07-23 2023-04-18 义乌吉利自动变速器有限公司 针对电涡流传感器的电机转子角度检测方法、装置及介质
CN115900775A (zh) * 2021-08-20 2023-04-04 美的威灵电机技术(上海)有限公司 编码器及其位置补偿方法、装置和存储介质
CN113720982B (zh) * 2021-08-23 2022-05-24 中国水利水电科学研究院 一种水下生物量监测装置
CN114877922B (zh) * 2022-06-01 2024-02-09 大连探索者科技有限公司 一种绝对式光电角度传感器译码方法
CN115165211B (zh) * 2022-06-02 2023-08-08 哈尔滨理工大学 一种用于机械臂的单霍尔编码器转动惯量计算方法
CN115388925A (zh) * 2022-07-27 2022-11-25 山东麦格智芯机电科技有限公司 磁编码器码盘的性能检测方法、装置、设备及介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030090265A1 (en) * 2001-11-15 2003-05-15 Honeywell International Inc. 360-degree rotary position sensor having a magnetoresistive sensor and a hall sensor
JP2003240598A (ja) * 2002-02-13 2003-08-27 Asahi Kasei Corp デジタル角度測定システム
CN101918796A (zh) * 2008-01-04 2010-12-15 阿莱戈微系统公司 用于角度传感器的方法和装置
CN102654567A (zh) * 2011-03-01 2012-09-05 霍尼韦尔国际公司 360度角传感器
CN108474669A (zh) * 2015-11-02 2018-08-31 霍尼韦尔国际公司 用于amr360度传感器的差分霍尔磁体极性检测
CN109696559A (zh) * 2017-10-20 2019-04-30 英飞凌科技股份有限公司 磁场传感器装置及测量外部磁场的方法
CN109889114A (zh) * 2019-02-15 2019-06-14 广州极飞科技有限公司 磁编码器的校准方法和校准装置、电机、蠕动泵和灌药机
CN110793430A (zh) * 2019-12-23 2020-02-14 峰岹科技(深圳)有限公司 绝对电角度检测方法、系统及计算机可读存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2265010B (en) * 1992-03-13 1995-08-09 British Gas Plc Motion transducer
CN101398316B (zh) * 2007-09-25 2010-09-08 奇瑞汽车股份有限公司 一种电机转子位置传感器的标定方法
CN103837169B (zh) * 2014-02-28 2016-05-11 哈尔滨工业大学 用于磁电编码器的自校正装置和方法以及磁电编码器
DE202014004425U1 (de) * 2014-04-28 2014-09-12 Infineon Technologies Ag Halleffekt-Sensoranordnung
US10509082B2 (en) * 2018-02-08 2019-12-17 Nxp B.V. Magnetoresistive sensor systems with stray field cancellation utilizing auxiliary sensor signals

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030090265A1 (en) * 2001-11-15 2003-05-15 Honeywell International Inc. 360-degree rotary position sensor having a magnetoresistive sensor and a hall sensor
JP2003240598A (ja) * 2002-02-13 2003-08-27 Asahi Kasei Corp デジタル角度測定システム
CN101918796A (zh) * 2008-01-04 2010-12-15 阿莱戈微系统公司 用于角度传感器的方法和装置
CN102654567A (zh) * 2011-03-01 2012-09-05 霍尼韦尔国际公司 360度角传感器
CN108474669A (zh) * 2015-11-02 2018-08-31 霍尼韦尔国际公司 用于amr360度传感器的差分霍尔磁体极性检测
CN109696559A (zh) * 2017-10-20 2019-04-30 英飞凌科技股份有限公司 磁场传感器装置及测量外部磁场的方法
CN109889114A (zh) * 2019-02-15 2019-06-14 广州极飞科技有限公司 磁编码器的校准方法和校准装置、电机、蠕动泵和灌药机
CN110793430A (zh) * 2019-12-23 2020-02-14 峰岹科技(深圳)有限公司 绝对电角度检测方法、系统及计算机可读存储介质

Also Published As

Publication number Publication date
US20210190472A1 (en) 2021-06-24
US11060842B1 (en) 2021-07-13
CN110793430A (zh) 2020-02-14
CN110793430B (zh) 2020-05-05

Similar Documents

Publication Publication Date Title
WO2021128424A1 (zh) 绝对电角度检测方法、系统及计算机可读存储介质
JP5834292B2 (ja) 電流センサ
US10041780B2 (en) Position sensor
US8368393B2 (en) Measurement method, sensor arrangement and measurement system
CN103941309B (zh) 地磁传感器校准设备及其方法
US20150042320A1 (en) Systems and Methods for Computing a Position of a Magnetic Target
KR101485142B1 (ko) 자체 보정 멀티-자기력계 플랫폼을 위한 시스템 및 방법
EP3469384A1 (en) Magnetic field sensor having alignment error correction
CN112344968A (zh) 用于校准角度传感器的装置和方法
WO2021128419A1 (zh) 磁编码器、绝对电角度检测方法、系统及可读存储介质
US20240168109A1 (en) Device and method for determining an orientation of a magnet, and a joystick
CN107229020B (zh) 磁性传感器
JP5176208B2 (ja) 回転角度検出方法および回転角度センサ
JP2021001879A (ja) 回転角センサ、角度信号算出方法及びプログラム
CN115900528A (zh) 用于无全旋转安全测量的角度传感器校准方法
CN108827190B (zh) 基于双自准直仪的高精度测角误差检测装置及其检测方法
US11644297B2 (en) Three-dimensional position sensor systems and methods
TWI597475B (zh) 用於薄膜量測的方法、裝置及電腦程式產品
JP2003240598A (ja) デジタル角度測定システム
KR20180114743A (ko) 앱솔루트 엔코더, 앱솔루트 엔코더의 직교 정현파의 룩업테이블 생성 방법 및 이를 이용한 절대각도 검출방법
CN116399374A (zh) Mems陀螺仪传感器补偿方法、装置、终端及存储介质
US11448713B1 (en) Angle sensor
CN104006781B (zh) 曲面法矢测量精度的计算方法
KR20210057292A (ko) 지자기 센서를 이용한 초기 방위각 정확도 결정 방법 및 장치
JP2008304222A (ja) 磁気検出方法およびその装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19957395

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19957395

Country of ref document: EP

Kind code of ref document: A1