WO2021128294A1 - 指纹检测装置、背光模组、显示屏和电子设备 - Google Patents
指纹检测装置、背光模组、显示屏和电子设备 Download PDFInfo
- Publication number
- WO2021128294A1 WO2021128294A1 PCT/CN2019/129273 CN2019129273W WO2021128294A1 WO 2021128294 A1 WO2021128294 A1 WO 2021128294A1 CN 2019129273 W CN2019129273 W CN 2019129273W WO 2021128294 A1 WO2021128294 A1 WO 2021128294A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dielectric layer
- fingerprint detection
- opening
- backlight
- reflective film
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/12—Fingerprints or palmprints
- G06V40/13—Sensors therefor
- G06V40/1318—Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/10—Image acquisition
- G06V10/12—Details of acquisition arrangements; Constructional details thereof
- G06V10/14—Optical characteristics of the device performing the acquisition or on the illumination arrangements
- G06V10/145—Illumination specially adapted for pattern recognition, e.g. using gratings
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/10—Image acquisition
- G06V10/12—Details of acquisition arrangements; Constructional details thereof
- G06V10/14—Optical characteristics of the device performing the acquisition or on the illumination arrangements
- G06V10/147—Details of sensors, e.g. sensor lenses
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/12—Fingerprints or palmprints
- G06V40/13—Sensors therefor
- G06V40/1324—Sensors therefor by using geometrical optics, e.g. using prisms
Definitions
- the embodiments of the present application relate to the field of under-screen fingerprint identification, and more specifically, to a fingerprint detection device, a backlight module, a display screen, and electronic equipment.
- a liquid crystal display (LCD) screen includes a backlight module and a liquid crystal panel.
- the backlight module provides a uniform light source for the screen, and the liquid crystal panel plays an image display role.
- the under-screen optical fingerprint recognition solution based on the LCD screen is to place the fingerprint recognition module under the backlight module to achieve optical fingerprint recognition.
- the backlight module is a multilayer film structure, and the deformation between the films is prone to contact The problem of unevenness results in the formation of interference lines (thin film interference). In this way, the fingerprint image collected by the fingerprint recognition module will have interference lines, which affects the fingerprint recognition performance.
- a fingerprint detection device a backlight module, a display screen and electronic equipment are provided, which can reduce or even eliminate interference lines, thereby improving the performance of optical fingerprint detection under the LCD screen.
- a fingerprint detection device which is suitable for electronic equipment with a liquid crystal display LCD screen, the LCD screen including a backlight module;
- the fingerprint detection device includes:
- the fingerprint detection module is configured to be arranged below the backlight module, the fingerprint detection module is configured to receive light signals emitted by an external light source that return through a finger and pass through the backlight module , The optical signal is used to obtain fingerprint information of the finger;
- the backlight module includes a light guide plate, a reflective film, and a backlight plate from top to bottom.
- the backlight plate is provided with a first opening above the fingerprint detection module, and the first opening is used for The light signal reflected by the finger is transmitted to the fingerprint detection module, a first dielectric layer is provided between the light guide plate and the reflective film, and the first dielectric layer is used to increase the The gap between the light guide plate and the reflective film above the opening.
- the reflective film above the first opening is not supported and deforms, for example, near the lower surface of the light guide plate.
- a curved surface with a radius of curvature, the structure composed of the light guide plate and the deformed reflective film is similar to the structure composed of the inner surface of the plane mirror and the convex lens used to generate the Newton ring.
- the gap between the light guide plate and the reflective film located above the first opening can be increased. Accordingly, It will increase the optical path difference of the light reflected between the lower surface of the light guide plate and the upper surface of the reflective film, thereby reducing the distance of the Newton ring, so that the interference fringes of the fingerprint image detected by the fingerprint detection module are reduced Even disappear, thereby improving the fingerprint detection effect and the performance of the fingerprint detection device.
- the formation condition of the Newton ring can be destroyed, so as to improve the fingerprint detection effect and the performance of the fingerprint detection device.
- the lower surface of the light guide plate is connected to the upper surface of the reflective film through the first dielectric layer in an area located above the surrounding area of the first opening.
- the first dielectric layer is arranged between the light guide plate and the reflective film, and is located on the upper surface of the area around the first opening of the backlight plate, which can ensure that the reflective film is easily deformed There is a sufficient gap between the area and the light guide plate; the sufficient gap can ensure that the formation conditions of the Newton ring are broken, and further, the fingerprint detection effect and the performance of the fingerprint detection device are improved.
- the lower surface of the light guide plate is in contact with the upper surface of the reflective film in an area located outside the first dielectric layer.
- the lower surface of the light guide plate is configured to be in contact with the upper surface of the reflective film in the area outside the first dielectric layer, which is equivalent to adding only the guide located above the first opening.
- the gap between the light plate and the reflective film can not only improve the fingerprint detection effect and the performance of the fingerprint detection device, but also reduce the occupied space of the first medium layer and reduce the cost of the backlight module.
- the first dielectric layer includes a plurality of discrete dielectric layers.
- the upper surface of the backlight plate extends in a direction away from the reflective film in the surrounding area of the first opening.
- the upper surface of the backlight plate is configured to extend in the direction away from the reflective film in the area around the first opening, which can not only provide a receiving space for the first dielectric layer, but also provide a space for the light guide plate
- the gap between the reflective film and the reflective film provides an adjustment space.
- the backlight panel includes a first upper surface located in an area surrounding the first opening and a second upper surface spaced apart from the first upper surface.
- the first upper surface It is parallel to the second upper surface, and the first upper surface is connected to the second upper surface through an inclined surface.
- the upper surface between the first upper surface and the second upper surface of the backlight plate is designed as a slope, which can not only prevent the area between the first upper surface and the second upper surface from damaging the reflector
- the film can also reduce the resistance generated by the backlight plate when the reflective film moves in a direction away from the light guide plate.
- the thickness of the backlight plate in the area surrounding the first opening is smaller than the thickness of the backlight plate in other areas.
- the thickness of the backlight plate in the area surrounding the first opening is configured to be smaller than the thickness of the backlight plate in other areas, which is equivalent to reducing the backlight module around the first opening
- the thickness of the area can not only provide an accommodation space for the first dielectric layer, but also provide an adjustment space for the gap between the light guide plate and the reflective film.
- the lower surface of the backlight plate is parallel to the lower surface of the light guide plate.
- Constructing the lower surface of the backlight plate parallel to the lower surface of the light guide plate is equivalent to constructing the lower surface of the backlight plate as a plane, which can not only increase the aesthetics of the backlight plate, but also reduce the installation cost.
- the complexity of the backlight module is described.
- the thickness of each area of the backlight plate is the same.
- Constructing the thickness of each area of the backlight plate to be the same thickness not only can ensure that each area of the backlight plate has the same intensity, but also can reduce the problem of the backlight module when the first dielectric layer is not provided.
- the area occupies space and reduces the cost of the backlight module.
- the lower surface of the light guide plate is connected to the upper surface of the reflective film through the first dielectric layer, and the first dielectric layer is used to increase the light guide plate and the reflective film.
- the first dielectric layer is provided with a second opening above the first opening, and the diameter of the second opening is greater than or equal to the diameter of the first opening.
- Constructing the first dielectric layer as a dielectric layer covering the reflective film can make the first dielectric layer have sufficient strength to ensure the gap between the light guide plate and the reflective film, thereby ensuring all The performance of the fingerprint detection device is described.
- designing the aperture of the second opening to be greater than or equal to the aperture of the first opening can not only transmit the light signal reflected by the finger to the fingerprint detection module, but also expand the fingerprint detection
- the field of view and angle of view of the module enable the fingerprint detection module to receive enough light signals, thereby improving the effect of fingerprint recognition.
- the first medium layer is a transparent medium layer or a non-transparent medium layer.
- the first dielectric layer is a double-sided adhesive layer, or the material of the first dielectric layer includes at least one of the following materials: polycarbonate PC, acrylonitrile butadiene acrylic Ester copolymer ABA, polymethyl methacrylate PMMA and polyethylene terephthalate PET.
- Designing the first dielectric layer as a double-sided adhesive layer can not only ensure the gap between the light guide plate and the reflective film, but also make the reflective film less likely to be deformed, and avoid the
- the light guide plate and the reflective film form a structure for generating Newton's rings to ensure the performance of the fingerprint detection device and the fingerprint detection effect.
- a second dielectric layer is provided between the reflective film and the backlight plate, and the second dielectric layer is used to position the reflective film above the first opening. The area is fixed to the backlight board.
- the second dielectric layer between the reflective film and the backlight plate By designing the second dielectric layer between the reflective film and the backlight plate, and configuring the second dielectric layer as an area for the reflective film located above the first opening It is fixed to the backlight plate so that the reflective film is not easily deformed, and it is avoided as much as possible that the light guide plate and the reflective film form a structure for generating Newton's rings, so as to ensure the performance and performance of the fingerprint detection device. Fingerprint detection effect.
- the lower surface of the reflective film is fixed to the upper surface of the backlight plate through the second dielectric layer in an area located above the surrounding area of the first opening.
- the reflective film and the backlight plate are provided with a third dielectric layer in an area outside the second dielectric layer, and the lower surface of the reflective film is in contact with the third dielectric layer. ⁇ The backlight board.
- Disposing the third dielectric layer in the area outside the second dielectric layer of the reflective film and the backlight plate is equivalent to supporting the third dielectric layer and the second dielectric layer.
- the reflective film makes the force of the reflective film more uniform, avoids the deformation of the reflective film as much as possible, and prevents the light guide plate and the reflective film from forming a structure for generating Newton's rings to ensure the The performance of the fingerprint detection device and the effect of fingerprint detection.
- the thickness of the third dielectric layer is greater than the thickness of the second dielectric layer to increase the gap between the light guide plate and the reflective film.
- the thickness of the third dielectric layer is configured to be greater than the thickness of the second dielectric layer, which can effectively ensure the gap between the light guide plate and the reflective film, and the gap between the light guide plate and the reflective film is at least Including the gap of the third dielectric layer minus the gap of the second dielectric layer.
- the second dielectric layer includes a plurality of discrete dielectric layers.
- the lower surface of the reflective film is fixed to the upper surface of the backlight plate through the second dielectric layer, and the second dielectric layer is provided with a second dielectric layer above the first opening. There are three openings, and the diameter of the third opening is greater than or equal to the diameter of the first opening.
- the second dielectric layer is a double-sided adhesive layer.
- the middle frame of the electronic device is provided with a fourth opening, and the fourth opening is used to transmit the light signal reflected by the finger to the fingerprint detection module.
- the fingerprint detection module is fixed to the lower surface of the middle frame of the electronic device in the surrounding area of the fourth opening, so that the distance between the fingerprint detection module and the reflective film is in the range of 150um to 300um.
- the fingerprint detection module is installed through the middle frame, and the distance between the fingerprint detection module and the reflective film is configured to be in the range of 150um to 300um, which cannot guarantee the imaging distance of the fingerprint detection module. It is also possible to prevent the fingerprint detection module from not contacting the reflective film, which prevents the fingerprint detection module from damaging the reflective film when the electronic device sends a collision or vibration.
- the fingerprint detection module is an optical fingerprint detection module, and the optical fingerprint detection module includes at least one optical fingerprint sensor.
- a fingerprint detection device which is suitable for electronic equipment with a liquid crystal display LCD screen, the LCD screen including a backlight module;
- the fingerprint detection device includes:
- the fingerprint detection module is configured to be arranged below the backlight module, the fingerprint detection module is configured to receive light signals emitted by an external light source that return through a finger and pass through the backlight module , The optical signal is used to obtain fingerprint information of the finger;
- the backlight module includes a light guide plate, a reflective film, and a backlight plate from top to bottom.
- the backlight plate is provided with a first opening above the fingerprint detection module, and the first opening is used for The light signal reflected by the finger is transmitted to the fingerprint detection module, a second medium layer is arranged between the reflective film and the backlight plate, and the second medium layer is used to transfer the light signal located in the first The reflective film above the opening is fixed to the backlight plate.
- the second dielectric layer between the reflective film and the backlight plate By designing the second dielectric layer between the reflective film and the backlight plate, and configuring the second dielectric layer as an area for the reflective film located above the first opening It is fixed to the backlight plate so that the reflective film is not easily deformed, and it is avoided as much as possible that the light guide plate and the reflective film form a structure for generating Newton's rings, so as to ensure the performance and performance of the fingerprint detection device. Fingerprint detection effect.
- the lower surface of the reflective film is fixed to the upper surface of the backlight plate through the second dielectric layer in an area located above the surrounding area of the first opening.
- the reflective film and the backlight plate are provided with a third dielectric layer in an area outside the second dielectric layer, and the lower surface of the reflective film is in contact with the third dielectric layer. ⁇ The backlight board.
- Disposing the third dielectric layer in the area outside the second dielectric layer of the reflective film and the backlight plate is equivalent to supporting the third dielectric layer and the second dielectric layer.
- the reflective film makes the force of the reflective film more uniform, avoids the deformation of the reflective film as much as possible, and prevents the light guide plate and the reflective film from forming a structure for generating Newton's rings to ensure the The performance of the fingerprint detection device and the effect of fingerprint detection.
- the thickness of the third dielectric layer is greater than the thickness of the second dielectric layer to increase the gap between the light guide plate and the reflective film.
- the thickness of the third dielectric layer is configured to be greater than the thickness of the second dielectric layer, which can effectively ensure the gap between the light guide plate and the reflective film, and the gap between the light guide plate and the reflective film is at least Including the gap of the third dielectric layer minus the gap of the second dielectric layer.
- the second dielectric layer includes a plurality of discrete dielectric layers.
- the lower surface of the reflective film is fixed to the upper surface of the backlight plate through the second dielectric layer, and the second dielectric layer is provided with a second dielectric layer above the first opening. There are three openings, and the diameter of the third opening is greater than or equal to the diameter of the first opening.
- the second dielectric layer is a double-sided adhesive layer.
- the middle frame of the electronic device is provided with a fourth opening, and the fourth opening is used to transmit the light signal reflected by the finger to the fingerprint detection module.
- the fingerprint detection module is fixed to the lower surface of the middle frame of the electronic device in the surrounding area of the fourth opening, so that the distance between the fingerprint detection module and the reflective film is in the range of 150um to 300um.
- the fingerprint detection module is installed through the middle frame, and the distance between the fingerprint detection module and the reflective film is configured to be in the range of 150um to 300um, which cannot guarantee the imaging distance of the fingerprint detection module. It is also possible to prevent the fingerprint detection module from not contacting the reflective film, which prevents the fingerprint detection module from damaging the reflective film when the electronic device sends a collision or vibration.
- the fingerprint detection module is an optical fingerprint detection module, and the optical fingerprint detection module includes at least one optical fingerprint sensor.
- a backlight module is provided, which is suitable for electronic equipment with a liquid crystal display LCD screen, the LCD screen including a backlight module;
- the backlight module includes a light guide plate, a reflective film, and a backlight plate from top to bottom, the backlight plate is provided with a first opening, and a first dielectric layer is provided between the light guide plate and the reflective film The first dielectric layer is used to increase the gap between the light guide plate and the reflective film located above the first opening.
- the lower surface of the light guide plate is connected to the upper surface of the reflective film through the first dielectric layer in an area located above the surrounding area of the first opening.
- the lower surface of the light guide plate is in contact with the upper surface of the reflective film in an area located outside the first dielectric layer.
- the first dielectric layer includes a plurality of discrete dielectric layers.
- the upper surface of the backlight plate extends in a direction away from the reflective film in the surrounding area of the first opening.
- the backlight panel includes a first upper surface located in an area surrounding the first opening and a second upper surface spaced apart from the first upper surface.
- the first upper surface It is parallel to the second upper surface, and the first upper surface is connected to the second upper surface through an inclined surface.
- the thickness of the backlight plate in the area surrounding the first opening is smaller than the thickness of the backlight plate in other areas.
- the lower surface of the backlight plate is parallel to the lower surface of the light guide plate.
- the thickness of each area of the backlight plate is the same.
- the lower surface of the light guide plate is connected to the upper surface of the reflective film through the first dielectric layer, and the first dielectric layer is used to increase the light guide plate and the reflective film.
- the first dielectric layer is provided with a second opening above the first opening, and the diameter of the second opening is greater than or equal to the diameter of the first opening.
- the first medium layer is a transparent medium layer or a non-transparent medium layer.
- the first dielectric layer is a double-sided adhesive layer, or the material of the first dielectric layer includes at least one of the following materials: polycarbonate PC, acrylonitrile butadiene acrylic Ester copolymer ABA, polymethyl methacrylate PMMA and polyethylene terephthalate PET.
- a second dielectric layer is provided between the reflective film and the backlight plate, and the second dielectric layer is used to position the reflective film above the first opening. The area is fixed to the backlight board.
- the lower surface of the reflective film is fixed to the upper surface of the backlight plate through the second dielectric layer in an area located above the surrounding area of the first opening.
- the reflective film and the backlight plate are provided with a third dielectric layer in an area outside the second dielectric layer, and the lower surface of the reflective film is in contact with the third dielectric layer. ⁇ The backlight board.
- the thickness of the third dielectric layer is greater than the thickness of the second dielectric layer to increase the gap between the light guide plate and the reflective film.
- the second dielectric layer includes a plurality of discrete dielectric layers.
- the lower surface of the reflective film is fixed to the upper surface of the backlight plate through the second dielectric layer, and the second dielectric layer is provided with a second dielectric layer above the first opening. There are three openings, and the diameter of the third opening is greater than or equal to the diameter of the first opening.
- the second dielectric layer is a double-sided adhesive layer.
- the electronic device includes a fingerprint detection module
- the middle frame of the electronic device is provided with a fourth opening
- the fourth opening is used to transmit the light signal reflected by the finger
- the fingerprint detection module is fixed to the area around the fourth opening on the lower surface of the middle frame of the electronic device, so that the fingerprint detection module and the reflective film The distance between them is in the range of 150um ⁇ 300um.
- the fingerprint detection module is an optical fingerprint detection module, and the optical fingerprint detection module includes at least one optical fingerprint sensor.
- a backlight module is provided.
- it is suitable for electronic devices with a liquid crystal display LCD screen, the LCD screen including a backlight module;
- the backlight module includes a light guide plate, a reflective film, and a backlight plate from top to bottom.
- the backlight plate is provided with a first opening, and a second dielectric layer is provided between the reflective film and the backlight plate.
- the second medium layer is used to fix the backlight board to the backlight board.
- the lower surface of the reflective film is connected to the upper surface of the backlight board through the second dielectric layer in an area located above the surrounding area of the first opening.
- the reflective film and the backlight plate are provided with a third dielectric layer in an area outside the second dielectric layer, and the lower surface of the reflective film is in contact with the third dielectric layer. ⁇ The backlight board.
- the thickness of the third dielectric layer is greater than the thickness of the second dielectric layer to increase the gap between the light guide plate and the reflective film.
- the second dielectric layer includes a plurality of discrete dielectric layers.
- the lower surface of the reflective film is connected to the upper surface of the backlight plate through the second dielectric layer, and the second dielectric layer is provided with a second dielectric layer above the first opening. There are three openings, and the diameter of the third opening is greater than or equal to the diameter of the first opening.
- the second dielectric layer is a double-sided adhesive layer.
- the electronic device includes a fingerprint detection module
- the middle frame of the electronic device is provided with a fourth opening
- the fourth opening is used to transmit the light signal reflected by the finger
- the fingerprint detection module is fixed to the area around the fourth opening on the lower surface of the middle frame of the electronic device, so that the fingerprint detection module and the reflective film The distance between them is in the range of 150um ⁇ 300um.
- the fingerprint detection module is an optical fingerprint detection module, and the optical fingerprint detection module includes at least one optical fingerprint sensor.
- a display screen including the backlight module described in any possible implementation manner of the third aspect or the fourth aspect.
- an electronic device including the display screen of the fifth aspect.
- Fig. 1 is a schematic plan view of an electronic device to which the present application can be applied.
- Fig. 2 is a schematic cross-sectional view of the electronic device shown in Fig. 1.
- FIG. 3 is a schematic structural diagram of an electronic device including a backlight module according to an embodiment of the present application.
- FIG. 4 is a schematic structural diagram of the reflective film of the electronic device shown in FIG. 3 after being deformed.
- 5 to 21 are schematic block diagrams of an electronic device including a fingerprint detection device according to an embodiment of the present application.
- the technical solutions of the embodiments of the present application can be applied to various electronic devices.
- portable or mobile computing devices such as smartphones, notebook computers, tablet computers, and gaming devices, as well as other electronic devices such as electronic databases, automobiles, and bank automated teller machines (ATM).
- ATM bank automated teller machines
- the embodiment of the present application does not limit this.
- biometric recognition technologies include, but are not limited to, fingerprint recognition, palmprint recognition, iris recognition, face recognition, and living body recognition.
- fingerprint recognition technology for ease of description, the following uses fingerprint recognition technology as an example for description.
- the under-screen fingerprint recognition technology refers to the installation of the fingerprint detection module under the display screen, so as to realize the fingerprint recognition operation in the display area of the display screen, and there is no need to set a fingerprint collection area on the front of the electronic device except for the display area.
- the fingerprint detection module uses light returned from the top surface of the display assembly of the electronic device to perform fingerprint sensing and other sensing operations. This returned light carries information about objects (such as fingers) that are in contact with or close to the top surface of the display assembly.
- the fingerprint detection module located below the display assembly collects and detects this returned light to realize fingerprint recognition under the screen.
- the design of the fingerprint detection module can be to realize the desired optical imaging by appropriately configuring the optical elements for collecting and detecting the returned light, so as to detect the fingerprint information of the finger.
- in-display fingerprint recognition technology refers to the installation of fingerprint detection modules or part of the fingerprint detection modules inside the display screen, so that fingerprint recognition operations can be performed in the display area of the display screen without the need for electronic
- the fingerprint collection area is set in the area on the front of the device except the display area.
- Figures 1 and 2 show a schematic diagram of an electronic device 100 to which under-screen fingerprint recognition technology can be applied, wherein Figure 1 is a front schematic diagram of the electronic device 100, and Figures 2 and 3 are both parts of the electronic device 100 shown in Figure 1 Schematic diagram of the cross-sectional structure.
- the electronic device 100 may include a display screen 120 and a fingerprint detection module 130.
- the display screen 120 may be a non-self-luminous display screen.
- the display screen 120 may also be a liquid crystal display (LCD) or other passive light-emitting display screens.
- LCD liquid crystal display
- the display screen 120 may also be a touch-sensitive display screen, which can not only perform screen display, but also detect a user's touch or pressing operation, thereby providing a user with a human-computer interaction interface.
- the electronic device 100 may include a touch sensor, and the touch sensor may specifically be a touch panel (TP), which may be provided on the surface of the display screen 120, or may be partially integrated or The whole is integrated into the display screen 120 to form the touch display screen.
- TP touch panel
- the fingerprint detection module 130 may be an optical fingerprint detection module, such as an optical fingerprint sensor.
- the fingerprint detection module 130 may include a sensor chip with an optical sensing array (hereinafter also referred to as an optical fingerprint sensor).
- the optical sensing array includes a plurality of optical sensing units, and each optical sensing unit may specifically include a photodetector or a photoelectric sensor.
- the fingerprint detection module 130 may include a photodetector array (also referred to as a photodetector array or a photodetector array), which includes a plurality of photodetectors distributed in an array.
- the fingerprint detection module 130 may be arranged in a partial area below the display screen 120, so that the fingerprint collection area (or detection area) 103 of the fingerprint detection module 130 is at least partially located on the display screen 120. ⁇ display area 102.
- the fingerprint detection module 130 can also be arranged in other positions, such as the side of the display screen 120 or the non-transparent area of the edge of the electronic device 100.
- the optical signal of at least part of the display area of the display screen 120 can be guided to the fingerprint detection module 130 through the optical path design, so that the fingerprint collection area 103 is actually located in the display area of the display screen 120 .
- the fingerprint detection module 130 may include only one sensor chip. At this time, the fingerprint collection area 103 of the fingerprint detection module 130 has a small area and a fixed position. Therefore, the user needs to input the fingerprint The finger is pressed to a specific position of the fingerprint collection area 103, otherwise the fingerprint detection module 130 may not be able to collect the fingerprint image, resulting in poor user experience.
- the fingerprint detection module 130 may specifically include a plurality of sensor chips; the plurality of sensor chips may be arranged side by side under the display screen 120 in a splicing manner, and the plurality of sensors The sensing area of the chip together constitutes the fingerprint collection area 103 of the fingerprint detection module 130.
- the fingerprint collection area 103 of the fingerprint detection module 130 may include a plurality of sub-areas, and each sub-area corresponds to the sensing area of one of the sensor chips, so as to collect the fingerprint of the optical fingerprint detection module 130.
- the area 103 can be extended to the main area of the lower half of the display screen, that is, to the area where the finger is habitually pressed, so as to realize the blind fingerprint input operation.
- the fingerprint detection area 130 can also be extended to half of the display area or even the entire display area, thereby realizing half-screen or full-screen fingerprint detection.
- the multiple sensor chips may be individually packaged sensor chips, or multiple chips (Die) packaged in the same chip package.
- the multiple sensor chips can also be fabricated on different regions of the same chip by a semiconductor process.
- the area or light sensing range of the optical sensing array of the fingerprint detection module 130 corresponds to the fingerprint collection area 103 of the fingerprint detection module 130.
- the fingerprint collection area 103 of the fingerprint detection module 130 may be equal to or not equal to the area or light sensing range of the optical sensing array of the fingerprint detection module 130, which is not specifically limited in the embodiment of the present application.
- the area of the fingerprint collection area 103 of the fingerprint detection module 130 can be larger than the area of the fingerprint detection module 130 sensing array.
- the optical path design of the fingerprint detection module 130 is exemplarily described below.
- the fingerprint detection module 130 may be used to collect user fingerprint information (such as fingerprint image information).
- the excitation light source emits a beam of light to the finger above the fingerprint collection area 103, and this beam of light is on the surface of the finger
- the reflected light is reflected to form reflected light or scattered light is scattered inside the finger.
- the above-mentioned reflected light and scattered light are collectively referred to as reflected light. Because the ridge and valley of the fingerprint have different light reflection capabilities, the reflected light from the fingerprint ridge and the fingerprint ridge have different light intensities. After the reflected light passes through the display screen 120, it is affected by the fingerprint.
- the sensor chip in the detection module 130 receives and converts it into a corresponding electrical signal, that is, a fingerprint detection signal; based on the fingerprint detection signal, fingerprint image data can be obtained, and fingerprint matching verification can be further performed, so that the electronic device 100 realizes the optical fingerprint recognition function.
- the electronic device 100 when the user needs to perform fingerprint unlocking or other fingerprint verification on the electronic device 100, he only needs to press his finger on the fingerprint collection area 103 located on the display screen 120, and the fingerprint feature input operation can be realized. Since the fingerprint feature collection can be implemented inside the display area 102 of the display screen 120, the electronic device 100 adopting the above structure does not need to reserve a special space on the front to set a fingerprint button (such as a Home button), so a full screen solution can be adopted. Therefore, the display area 102 of the display screen 120 can substantially extend to the entire front surface of the electronic device 100.
- the excitation light source used for fingerprint identification can adopt a built-in light source or an external light source to provide a light signal for fingerprint detection and identification.
- the optical fingerprint system of the electronic device 100 may further include an excitation light source for optical fingerprint detection.
- the excitation light source may be specifically an infrared light source or a light source of non-visible light of a specific wavelength, which may be set on the liquid crystal display.
- the fingerprint detection module 130 can be set under the edge area of the liquid crystal panel or the protective cover and guided by the light path so that the fingerprint detection light can reach The fingerprint detection module 130; alternatively, the fingerprint detection module 130 may also be arranged under the backlight module, and the backlight module may open holes or other film layers such as diffusion sheet, brightness enhancement sheet, reflective sheet, etc.
- the optical design allows the fingerprint detection light to pass through the liquid crystal panel and the backlight module and reach the fingerprint detection module 130.
- the fingerprint detection module 130 adopts a built-in light source or an external light source to provide an optical signal for fingerprint detection, the detection principle may be the same.
- the electronic device 100 may further include a protective cover 110.
- the cover 110 may be specifically a transparent cover, such as a glass cover or a sapphire cover, which is located above the display screen 120 and covers the front surface of the electronic device 100, and the surface of the cover 110 may also be provided with a protective layer. Therefore, in the embodiments of the present application, the so-called finger pressing the display screen 120 may actually refer to the finger pressing the cover 110 above the display 120 or covering the surface of the protective layer of the cover 110.
- a circuit board 140 such as a flexible printed circuit (FPC) (Flexible Printed Circuit, FPC), may also be provided under the fingerprint detection module 130.
- FPC Flexible Printed Circuit
- the fingerprint detection module 130 may be soldered to the circuit board 140 through pads, and realize electrical interconnection and signal transmission with other peripheral circuits or other components of the electronic device 100 through the circuit board 140.
- the fingerprint detection module 130 can receive the control signal of the processing unit of the electronic device 100 through the circuit board 140, and can also output the fingerprint detection signal from the fingerprint detection module 130 to the processing unit of the electronic device 100 through the circuit board 140. Control unit, etc.
- Fig. 3 is a schematic structural diagram of an under-screen fingerprint identification device according to an embodiment of the present application.
- the fingerprint detection module 130 may be applied to an electronic device having a display screen (for example, the display screen 120 shown in FIG. 1 or FIG. 2).
- the display screen may include a backlight module 150.
- the group 150 may be the lowest structure of the display screen; the fingerprint detection module 130 is arranged below the backlight module 150; the fingerprint detection module 130 is used to receive the infrared light source 170 after irradiating the human finger The infrared light signal passing through the backlight module 150 is used to detect fingerprint information of the finger.
- the infrared light signal used for fingerprint recognition received by the fingerprint detection module 130 may be a light signal obtained by optically processing the infrared light signal emitted by the infrared light source by a human finger.
- the light signal received by the fingerprint detection module 130 may be the infrared light signal reflected by a human finger and passing through the backlight module 150, or it may be diffused by a human finger and passing through the backlight.
- the infrared light signal of the module 150 do not specifically limit this.
- the infrared light signal emitted by the infrared light source 170 may be used for fingerprint recognition, and the infrared light signal is invisible light.
- the light signal used for image display on the display screen is a visible light source.
- the visible light source may be any light source located behind or on the side of a liquid crystal display (LCD).
- the visible light source may be an electroluminescence (EL) backlight, a compact cold cathode fluorescent lamp (CCFL) or an LED backlight.
- the light signal used for fingerprint recognition is the infrared light signal emitted by the infrared light source 170
- the light signal used for displaying the image is the visible light signal emitted by the visible light source. Therefore, using the fingerprint detection module 130 to perform fingerprint detection can not only avoid the interference of visible light on fingerprint recognition, but also the infrared light signal is invisible light, which will not affect the displayed image.
- the infrared light source 170 may be pasted under the cover 110 through optical glue 180.
- the fingerprint detection module 130 can also be mechanically fixed under the cover 110.
- the fingerprint detection module 130 may be fixed under the cover 110 through a screw connection.
- the optical glue 180 may be any kind of optical liquid glue or optical solid glue.
- the optical refractive index of the optical glue 180 and the display screen are the same or similar, so that the utilization rate of the infrared light signal emitted by the infrared light source 170 can be improved as much as possible.
- the infrared light source 170 is integrated in the backlight module 150.
- the infrared light source 170 and the light source for displaying images in the backlight module 150 are integrated.
- the infrared light source 170 and the light source for displaying images in the backlight module 150 may be integrated in a parallel or non-parallel manner.
- the backlight module 150 may include a composite film 151, a brightness enhancement film 152, a diffusion film 153, a light guide plate 154, a reflective film 155, and a backlight plate. 156.
- the visible light emitted by the visible light source is transmitted to the diffusion film 153 after passing through the light guide plate 154, and the light diffused by the diffusion film 153 is transmitted to the brightness enhancement film 152, and the brightness enhancement film 152 is used to gain the received light signal , And send the gained light signal to the composite film 151, the composite film 151 receives the light signal for further gaining the received light signal, and transmits the gained light signal to the layer structure for displaying the image, Used for image display.
- the backlight module 150 may not include the backlight plate 156 and/or the reflective film 155.
- the light guide plate 154 can be printed with high-tech materials with extremely high reflectivity and non-light absorption using laser engraving technology or ultraviolet (Ultra-Violet Ray, UV) screen printing technology on the bottom surface of the optical grade acrylic sheet. light spot.
- the optical grade acrylic sheet is used to absorb the light emitted from the lamp and stays on the surface of the optical grade acrylic sheet. When the light hits each light guide point, the reflected light will spread to all angles, and then destroy the reflection condition and shoot out from the front of the light guide plate.
- the function of the light guide plate 154 is to guide the scattering direction of the light to improve the brightness of the panel and ensure the uniformity of the brightness of the panel.
- the visible light source can be located on the side of the light guide plate 154, and the emitted light is guided into the light guide plate 154 by reflection. When the light hits the diffusion point, the reflected light will diffuse at various angles, and then the light guide plate 154 front side Projected.
- various sparse and dense diffusion points of different sizes can be used to make the light guide plate 154 emit light uniformly.
- the electronic device 100 or the fingerprint detection module 130 may further include a visible light filter 160, and the visible light filter 160 may be disposed on the backlight Between the module 150 and the fingerprint detection module 130. In this way, the visible light transmitted to the visible light filter 160 can be filtered out, and the detection quality of the fingerprint detection module 130 can be further improved.
- the visible light filter 160 may specifically be used to filter out visible light wavelengths, for example, visible light used for image display.
- the filter 160 may specifically include one or more optical filters, and the one or more optical filters may be configured as, for example, a band-pass filter to filter out light emitted by a visible light source while not filtering out infrared light. signal.
- the one or more optical filters may be realized, for example, as an optical filter coating formed on one or more continuous interfaces, or may be realized as one or more discrete interfaces.
- the visible light filter 160 can be fabricated on the surface of any optical component, or along the optical path of the reflected light formed by the reflection of the finger to the fingerprint detection module 130.
- FIG. 3 only takes the visible light filter 160 disposed between the backlight plate 156 and the fingerprint detection module 130 as an example, but the application is not limited to this.
- the visible light filter 160 may be attached to the inside of the display screen, above the backlight plate 156, or inside the fingerprint detection module 130.
- the backlight plate 156 is formed with an opening 1561, the fingerprint detection module 130 is disposed below the opening 1561, and the fingerprint detection module 130 It is used for receiving the infrared light signal emitted by the infrared light source 170 after irradiating the human finger and passing through the opening 1561. It can be found that by forming the opening 1561 on the backlight plate 156, the visible light signal can be prevented from being transmitted in a direction away from the fingerprint detection module 130 as much as possible, and the infrared light signal used for fingerprint recognition can be effectively reduced. The energy loss when passing through the backlight panel 156.
- the reflective film 155 above the opening 1561 is not supported and deforms, for example, near the opening 1561.
- the lower surface of the light guide plate 154 produces a curved surface with a radius of curvature, and the structure composed of the light guide plate 154 and the deformed reflective film 155 is similar to the structure composed of the inner surface of the flat mirror and the convex lens used to generate the Newton ring.
- an embodiment of the present application provides a fingerprint detection device, which is suitable for electronic equipment with a liquid crystal display LCD screen, and the LCD screen includes a backlight module.
- the fingerprint detection device includes a fingerprint detection module, the fingerprint detection module is configured to be arranged below the backlight module, the fingerprint detection module is configured to receive an external light source to return through the finger and pass through the The light signal of the backlight module, the light signal is used to obtain the fingerprint information of the finger.
- the backlight module includes a light guide plate, a reflective film, and a backlight plate from top to bottom.
- the backlight plate is provided with a first opening above the fingerprint detection module, and the first opening is used for The light signal reflected by the finger is transmitted to the fingerprint detection module, a first dielectric layer is provided between the light guide plate and the reflective film, and the first dielectric layer is used to increase the The gap between the light guide plate and the reflective film above the opening.
- the gap between the light guide plate and the reflective film located above the first opening can be increased. Accordingly, It will increase the optical path difference of the light reflected between the lower surface of the light guide plate and the upper surface of the reflective film, thereby reducing the spacing of Newton's rings, so that the interference fringe spacing of the fingerprint image detected by the fingerprint detection module is reduced , The number decreases or even disappears, thereby improving the fingerprint detection effect and the performance of the fingerprint detection device.
- the formation condition of the Newton ring can be destroyed, so as to improve the fingerprint detection effect and the performance of the fingerprint detection device.
- FIGS. 5 to 21 are schematic block diagrams of an electronic device 300 including a fingerprint detection device 340 according to an embodiment of the present application.
- Figures 6 to 9 can be used as partial views of Figure 5
- Figure 11 can be used as partial views of Figure 10
- Figures 13 and 14 can be used as partial views of Figure 12
- Figures 16 to 18 can be used as partial views of Figure 15 Views
- Figs. 20 and 21 can be used as partial views of Fig. 19.
- the fingerprint detection module 340 may be the fingerprint detection module 140 shown in FIG. 2 or FIG. 3
- the electronic device may be the electronic device 100 shown in FIGS. 1-3. To avoid repetition, The description related to FIGS. 1 to 3 is omitted here.
- the display screen of the electronic device 300 may include some or all of the following from top to bottom: cover plate 311, optical glue 312, upper polarizer 313, composite film 314, thin film transistor 315, a lower polarizer 316, a black tape/air gap 317, an upper brightness enhancement film 318, a lower brightness enhancement film 319, a diffusion film 320, a light guide plate 321, a reflection film 322, and a backlight plate 323.
- the backlight plate 322 may form a first opening 3231 in the installation area of the fingerprint detection module 340, and the first opening 3231 is used to transmit the light signal reflected by the finger to the fingerprint detection module. Group 340, so that the fingerprint detection module 340 performs fingerprint detection.
- the black tape/air gap 317, the upper light-increasing film 318, the lower light-increasing film 319, the diffusion film 320, the light guide plate 321, the reflective film 322, and the backlight plate 323 can be used to form a similar as shown in Fig. 3
- the remaining part of the backlight module 150 shown can be used to form a liquid crystal panel for displaying images of a display screen. It should be understood that the layers/films/plates included in the liquid crystal panel in the display screen and the layers/films/plates included in the backlight module can be divided in a variety of ways. Application restrictions.
- the electronic device 300 may further include a light source 333, and the partial light source 333 may be used to emit light signals for displaying images.
- the external light source 333 may be arranged on the side of the backlight module.
- the electronic device 300 may further include a middle frame 332, and the middle frame 322 is used to support various components in the electronic device 300.
- the components include, but are not limited to, batteries, cameras, motherboards, display screens, and so on.
- the middle frame 332 of the electronic device 300 is provided with an opening, and the opening of the middle frame 332 is used to transmit the light signal reflected by the finger to the fingerprint detection module 340.
- the fingerprint detection module 340 is fixed to the lower surface of the middle frame 332 of the electronic device 300 in the area around the opening of the middle frame 332, so that the fingerprint detection module 340 and the The distance between the reflective films 322 is in the range of 150um to 300um.
- the fingerprint detection module 340 is installed through the middle frame, and the distance between the fingerprint detection module 340 and the reflective film 322 is configured to be in the range of 150um to 300um, which not only can ensure that the fingerprint detection module 340
- the imaging distance can also prevent the fingerprint detection module 340 from contacting the reflective film 322, and prevent the fingerprint detection module 340 from damaging the reflective film when the electronic device sends a collision or vibration.
- the fingerprint detection module 340 is an optical fingerprint detection module 340, and the optical fingerprint detection module includes at least one optical fingerprint sensor.
- the optical fingerprint detection module may include a bracket, a lens barrel, and a sensor chip.
- the lens barrel is provided with a lens
- the lens barrel is fixed to the bracket
- the bracket is fixed to the bottom of the middle frame 322.
- the surface area is located around the opening of the middle frame 332, so that the distance between the fingerprint detection module 340 and the reflective film 322 is in the range of 150um to 300um.
- the sensor chip may be arranged under the lens.
- the sensor chip may be provided in the lens barrel.
- the sensor chip may be arranged below the lens barrel, that is, the edge area of the sensor chip may be fixed to the lower surface of the lens barrel.
- the end area of the cover plate 311 may also be provided with infrared ink (IR INK) to improve the performance and user experience of the electronic device 300 .
- IR INK infrared ink
- the lower surface of the light guide plate 321 passes through the first dielectric layer 350 in an area above the surrounding area of the first opening 3231. Connected to the upper surface of the reflective film 322.
- the first dielectric layer 350 is disposed between the light guide plate 321 and the reflective film 322, and is located on the upper surface of the area around the first opening 3231 of the backlight plate 323, so as to ensure that the reflective film There is a sufficient gap between the area of 322 that is prone to deformation and the light guide plate 321; the sufficient gap can ensure the destruction of the formation conditions of the Newton ring, thereby improving the fingerprint detection effect and the performance of the fingerprint detection device.
- the lower surface of the light guide plate 321 is in contact with the upper surface of the reflective film 322 in an area located outside the first dielectric layer 350.
- the first dielectric layer 350 is not provided between the light guide plate 321 and the reflective film 322.
- the lower surface of the light guide plate 321 is configured to be in contact with the upper surface of the reflective film 322 in the area outside the first dielectric layer 350, which is equivalent to adding only the upper surface of the first opening 3231
- the gap between the light guide plate 321 and the reflective film 322 can not only improve the fingerprint detection effect and the performance of the fingerprint detection device, but also reduce the space occupied by the first dielectric layer 350 and reduce the backlight The cost of the module.
- the upper surface of the backlight plate 323 extends in a direction away from the reflective film 322 in the surrounding area of the first opening 3231.
- the upper surface of the backlight plate 323 at the surrounding area of the first opening 3231 is lower than the upper surface of the backlight plate 321 at other areas.
- the upper surface of the backlight plate 323 is configured to extend in the direction away from the reflective film 322 in the area surrounding the first opening 3231, which can not only provide a receiving space for the first dielectric layer 350, but also The gap between the light guide plate 321 and the reflective film 322 provides an adjustment space.
- the backlight board 323 includes a first upper surface located in the surrounding area of the first opening 3231 and a space between the first upper surface and the first upper surface.
- the first upper surface is parallel to the second upper surface, and the first upper surface is connected to the second upper surface by a slope.
- first upper surface and the second upper surface may also form a stepped structure, which is not specifically limited in this application.
- the upper surface between the first upper surface and the second upper surface of the backlight board 323 is designed as an inclined surface, which can not only prevent the area between the first upper surface and the second upper surface from damaging the
- the reflective film can also reduce the resistance of the backlight plate 323 when the reflective film 322 moves away from the light guide plate 321.
- the lower surface of the backlight plate 323 is parallel to the lower surface of the light guide plate 321.
- each area of the backlight plate 323 is the same.
- Constructing the bottom surface of the backlight plate 323 parallel to the bottom surface of the light guide plate 321 is equivalent to constructing the bottom surface of the backlight plate 323 as a plane, which can not only increase the aesthetics of the backlight plate 323, but also The complexity of installing the backlight module can be reduced.
- each area of the backlight board 323 is configured to be the same thickness, which not only can ensure that each area of the backlight board 323 has the same intensity, but also can reduce the number of cases where the backlight module is not provided with the first medium.
- the area of the layer 350 occupies space and reduces the cost of the backlight module.
- the thickness of the backlight plate 323 in the surrounding area of the first opening 3231 is smaller than the thickness of the backlight plate 323 in other areas.
- the area around the first opening 3231 of the backlight plate 323 can be reduced by a thinning process.
- the thickness of the backlight plate 323 in other areas can be increased by thickening.
- the thickness of the backlight plate 323 in the area surrounding the first opening 3231 is configured to be smaller than the thickness of the backlight plate 323 in other areas, which is equivalent to reducing the backlight module in the first opening.
- the thickness of the area around the hole 3231 can not only provide an accommodation space for the first dielectric layer 350, but also provide an adjustment space for the gap between the light guide plate 321 and the reflective film 322.
- the lower surface of the light guide plate 321 is connected to the upper surface of the reflective film 322 through the first medium layer 350, and the first medium The layer 350 is used to increase the gap between the light guide plate 321 and the reflective film 322, the first dielectric layer 350 is provided with a second opening 351 above the first opening 3231, and the second The aperture of the opening 351 is greater than or equal to the aperture of the first opening 3231.
- a first dielectric layer 350 provided with an opening or a window may be provided between the light guide plate 321 and the reflective film 322 to increase the gap between the light guide plate 321 and the reflective film 322.
- Constructing the first dielectric layer 350 as a dielectric layer covering the reflective film 322 can make the first dielectric layer 350 have sufficient strength to ensure the gap between the light guide plate 321 and the reflective film 322 The gap, thereby ensuring the performance of the fingerprint detection device.
- designing the aperture of the second opening 351 to be greater than or equal to the aperture of the first opening 3231 can not only transmit the light signal reflected by the finger to the fingerprint detection module 340, but also expand the The field of view and angle of view of the fingerprint detection module 340 enable the fingerprint detection module 340 to receive enough light signals, thereby improving the fingerprint recognition effect.
- the first medium layer 350 is a transparent medium layer or a non-transparent medium layer.
- the first dielectric layer 350 is a double-sided adhesive layer, or the material of the first dielectric layer 350 includes at least one of the following materials: polycarbonate (PC), acrylic Acrylonitrile-butadiene-acrylate ABA, polymethyl methacrylate (PMMA) and polyethylene terephthalate (PET).
- PC polycarbonate
- PMMA polymethyl methacrylate
- PET polyethylene terephthalate
- Designing the first dielectric layer 350 as a double-sided adhesive layer can not only ensure the gap between the light guide plate 321 and the reflective film 322, but also make the reflective film 322 less likely to be deformed. It is avoided that the light guide plate 321 and the reflective film 322 form a structure for generating a Newton ring, so as to ensure the performance of the fingerprint detection device and the fingerprint detection effect.
- the first dielectric layer 350 includes a plurality of discrete dielectric layers.
- the plurality of discrete dielectric layers may be arranged around the first opening 3231.
- the plurality of discrete dielectric layers may enclose a circle or a rectangle.
- the first dielectric layer 350 can also be used as a dielectric layer.
- the first dielectric layer 350 can be used as a continuous dielectric layer.
- first dielectric layer 350 as a continuous dielectric layer will be described below with reference to the accompanying drawings.
- the first dielectric layer 350 may be a strip-shaped dielectric layer disposed above the reflective film 322.
- the second dielectric layer 350 may be a rectangular dielectric layer with second openings 351.
- the second dielectric layer 350 can also be a rectangular frame.
- the first dielectric layer 350 may also be a plurality of strip-shaped dielectric layers disposed above the surrounding area of the first opening 3231.
- the shape and position of the first dielectric layer 350 may also have other deformed structures.
- the above-mentioned shapes and positions are only specific examples and should not be construed as limiting the application.
- the second dielectric layer between the reflective film 322 and the backlight plate 323 of the present application will be described below.
- a second dielectric layer is provided between the reflective film 322 and the backlight plate 323, and the second dielectric layer is used to position the reflective film 322 in the first opening.
- the area above the hole 3231 is fixed to the backlight board 323.
- the reflective film 322 is fixed on the upper surface of the backlight plate 323 through the second dielectric layer 360.
- the reflective film 322 may be fixed on the upper surface of the backlight plate 323 through the second dielectric layer 360 only in the area above the surrounding area of the first opening 3231.
- the entire lower surface of the reflective film 322 is directly fixed to the entire upper surface of the backlight plate 323 through the second dielectric layer 360.
- the second dielectric layer between the reflective film 322 and the backlight plate 323, and configuring the second dielectric layer to position the reflective film 322 in the first opening 3231 The area above the back light is fixed to the backlight plate 323, so that the reflective film 322 is not easily deformed, and as much as possible, the light guide plate 321 and the reflective film 322 are prevented from forming a structure for generating Newton's rings to ensure The performance and fingerprint detection effect of the fingerprint detection device.
- the lower surface of the reflective film 322 passes through the second dielectric layer 360 in an area above the surrounding area of the first opening 3231. It is fixed to the upper surface of the backlight board 323.
- the reflective film 322 and the backlight plate 323 are provided with a third dielectric layer 370 in an area outside the second dielectric layer 360, so The bottom surface of the reflective film 322 is in contact with the backlight plate 323 through the third dielectric layer 370.
- the third dielectric layer 370 is disposed in the area outside the second dielectric layer 360 of the reflective film 322 and the backlight plate 323, which is equivalent to passing through the third dielectric layer 370 and the second dielectric layer 360.
- the dielectric layer 360 supports the reflective film 322, so that the force of the reflective film 322 is more uniform, avoids the deformation of the reflective film 322 as much as possible, and avoids the formation of the light guide plate 321 and the reflective film 322. In order to generate a Newton ring structure to ensure the performance of the fingerprint detection device and the fingerprint detection effect.
- the thickness of the third dielectric layer 370 is greater than the thickness of the second dielectric layer 360, so as to increase the light guide plate 321 and the light reflector.
- the thickness of the third dielectric layer 370 is configured to be greater than the thickness of the second dielectric layer 360, which can effectively ensure the gap between the light guide plate 321 and the reflective film 322, and the light guide plate 321 and the reflective film
- the gap between 322 includes at least the gap of the third dielectric layer 370 minus the gap of the second dielectric layer 360.
- the second dielectric layer 360 includes a plurality of discrete dielectric layers.
- the second dielectric layer 360 can also serve as a dielectric layer.
- the second dielectric layer can also be used as a continuous dielectric layer.
- the lower surface of the reflective film 322 is fixed to the backlight plate through the second dielectric layer 360 323, the second dielectric layer 360 is provided with a third opening 361 above the first opening 3231, and the diameter of the third opening 361 is greater than or equal to that of the first opening 3231 Aperture.
- the second dielectric layer 360 may be disposed in an area above the surrounding area of the first opening 3231, wherein the second dielectric layer 360 may be a rectangular dielectric layer, The rectangular dielectric layer is provided with openings 361.
- the aperture of the opening of the rectangular dielectric layer is larger than the aperture of the first opening 3231.
- the second dielectric layer 360 may also be a ring-shaped dielectric layer; in other words, the second dielectric layer 360 may be a circular dielectric layer, and the circular medium The layer is provided with openings 361.
- the aperture of the opening of the circular dielectric layer is larger than the aperture of the first opening 3231.
- the third dielectric layer 370 may be disposed on both sides of the second dielectric layer 360.
- the shape and position of the second dielectric layer 360 may also have other deformed structures.
- the above-mentioned shapes and positions are only specific examples and should not be construed as limiting the present application.
- the second dielectric layer 360 is a double-sided adhesive layer.
- the second medium layer 360 may be any type of medium layer with an adhesive function.
- the second medium layer 360 may be an optical adhesive layer.
- the third dielectric layer 370 may be a double-sided adhesive layer, or the material of the first dielectric layer 350 may include at least one of the following materials: polycarbonate (PC), acrylonitrile butadiene acrylic Ester copolymer (Acrylonitrile-butadiene-acrylate ABA), polymethyl methacrylate (PMMA) and polyethylene terephthalate (PET).
- PC polycarbonate
- Acrylonitrile-butadiene-acrylate ABA acrylonitrile-butadiene acrylic Ester copolymer
- PMMA polymethyl methacrylate
- PET polyethylene terephthalate
- the embodiment of the present application does not limit the specific position and shape of the third dielectric layer 370.
- the backlight module may only be provided with the first dielectric layer 350, or only the second dielectric layer 360 may be provided, or the first dielectric layer 350 and the second dielectric layer 360 may be provided at the same time.
- the second dielectric layer 360 is not limited in the embodiment of the present application. Specifically, the implementation manner of the first dielectric layer 350 and the implementation manner of the second dielectric layer 360 can be referred to above, and in order to avoid repetition, details are not described herein again.
- the embodiments of the present application also provide a backlight module, which is suitable for electronic equipment with a liquid crystal display LCD screen, the LCD screen including a backlight module.
- the backlight module includes a light guide plate 321, a reflective film 322, and a backlight plate 323 from top to bottom.
- the backlight plate 323 is provided with a first opening 3231.
- a first dielectric layer 350 is provided therebetween, and the first dielectric layer 350 is used to increase the gap between the light guide plate 321 and the reflective film 322 located above the first opening 3231.
- the lower surface of the light guide plate 321 is connected to the upper surface of the reflective film 322 through the first dielectric layer 350 in the area above the surrounding area of the first opening 3231. surface.
- the lower surface of the light guide plate 321 is in contact with the upper surface of the reflective film 322 in an area located outside the first dielectric layer 350.
- the first dielectric layer 350 includes a plurality of discrete dielectric layers.
- the upper surface of the backlight plate 323 extends in a direction away from the reflective film 322 in the surrounding area of the first opening 3231.
- the backlight plate 323 includes a first upper surface located in the surrounding area of the first opening 3231 and a second upper surface spaced apart from the first upper surface.
- An upper surface is parallel to the second upper surface, and the first upper surface is connected to the second upper surface through an inclined surface.
- the thickness of the backlight plate 323 in the area surrounding the first opening 3231 is smaller than the thickness of the backlight plate 323 in other areas.
- the lower surface of the backlight plate 323 is parallel to the lower surface of the light guide plate 321.
- the thickness of each area of the backlight plate 323 is the same.
- the lower surface of the light guide plate 321 is connected to the upper surface of the reflective film 322 through the first dielectric layer 350, and the first dielectric layer 350 is used to increase the light guide plate.
- the first dielectric layer 350 is provided with a second opening 351 above the first opening 3231, and the aperture of the second opening 351 is greater than or equal to The diameter of the first opening 3231 is described.
- the first medium layer 350 is a transparent medium layer or a non-transparent medium layer.
- the first dielectric layer 350 is a double-sided adhesive layer, or the material of the first dielectric layer 350 includes at least one of the following materials: polycarbonate PC, acrylonitrile butadiene Diene acrylate copolymer ABA, polymethyl methacrylate PMMA and polyethylene terephthalate PET.
- a second dielectric layer 360 is provided between the reflective film 322 and the backlight plate 323, and the second dielectric layer 360 is used to position the reflective film 322 on the second dielectric layer.
- the area above an opening 3231 is fixed to the backlight board 323.
- the lower surface of the reflective film 322 is fixed to the backlight plate 323 through the second dielectric layer 360 in the area above the surrounding area of the first opening 3231. surface.
- the reflective film 322 and the backlight plate 323 are provided with a third dielectric layer 370 in an area outside the second dielectric layer 360, and the lower surface of the reflective film 322 passes through the The third dielectric layer 370 is in contact with the backlight plate 323.
- the thickness of the third dielectric layer 370 is greater than the thickness of the second dielectric layer 360 to increase the gap between the light guide plate 321 and the reflective film.
- the second dielectric layer 360 includes a plurality of discrete dielectric layers.
- the lower surface of the reflective film 322 is fixed to the upper surface of the backlight plate 323 through the second dielectric layer 360, and the second dielectric layer 360 is formed in the first opening.
- a third opening 361 is provided above the 3231, and the diameter of the third opening 361 is greater than or equal to the diameter of the first opening 3231.
- the second dielectric layer 360 is a double-sided adhesive layer.
- the middle frame of the electronic device is provided with a fourth opening, and the fourth opening is used to transmit the light signal reflected by the finger to the fingerprint detection module 340,
- the fingerprint detection module 340 is fixed to the lower surface of the middle frame of the electronic device in the surrounding area of the fourth opening, so that the distance between the fingerprint detection module 340 and the reflective film 322 is 150um ⁇ 300um range.
- the fingerprint detection module 340 is an optical fingerprint detection module 340, and the optical fingerprint detection module includes at least one optical fingerprint sensor.
- the embodiments of the present application also provide a backlight module.
- the LCD screen includes a backlight module.
- the backlight module includes a light guide plate 321, a reflective film 322, and a backlight plate 323 from top to bottom.
- the backlight plate 323 is provided with a first opening 3231, and the reflective film 322 and the backlight plate 323 are arranged between There is a second dielectric layer 360, and the second dielectric layer 360 is used to fix the backlight board 323 to the backlight board 323.
- the lower surface of the reflective film 322 is connected to the upper surface of the backlight plate 323 through the second dielectric layer 360 in the area above the surrounding area of the first opening 3231. surface.
- the reflective film 322 and the backlight plate 323 are provided with a third dielectric layer 370 in an area outside the second dielectric layer 360, and the lower surface of the reflective film 322 passes through the The third dielectric layer 370 is in contact with the backlight plate 323.
- the thickness of the third dielectric layer 370 is greater than the thickness of the second dielectric layer 360 to increase the gap between the light guide plate 321 and the reflective film.
- the second dielectric layer 360 includes a plurality of discrete dielectric layers.
- the lower surface of the reflective film 322 is connected to the upper surface of the backlight plate 323 through the second dielectric layer 360, and the second dielectric layer 360 is formed in the first opening.
- a third opening 361 is provided above the 3231, and the diameter of the third opening 361 is greater than or equal to the diameter of the first opening 3231.
- the second dielectric layer 360 is a double-sided adhesive layer.
- the middle frame of the electronic device is provided with a fourth opening, and the fourth opening is used to transmit the light signal reflected by the finger to the fingerprint detection module 340,
- the fingerprint detection module 340 is fixed to the area around the fourth opening on the lower surface of the middle frame of the electronic device, so that the distance between the fingerprint detection module 340 and the reflective film 322 is 150um ⁇ 300um range.
- the fingerprint detection module 340 is an optical fingerprint detection module 340, and the optical fingerprint detection module includes at least one optical fingerprint sensor.
- an embodiment of the present application also provides a display screen, the display screen includes the above-mentioned backlight module (for example, the backlight module 150 shown in FIG. 3, for example, as shown in FIG. 5 to FIG. 21 Part or all of 331-323).
- the electronic device further includes the above-mentioned display screen (for example, the display screen shown in FIG. 1, for example, the 331 shown in FIG. 5 to FIG. 21 -323 part or all).
- the disclosed system, device, and method can be implemented in other ways.
- the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
- the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
- the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
- the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
- the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
- the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
- the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disks or optical disks and other media that can store program codes. .
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Multimedia (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Vascular Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Optics & Photonics (AREA)
- Image Input (AREA)
- Planar Illumination Modules (AREA)
Abstract
提供了一种指纹检测装置、背光模组、显示屏和电子设备。所述指纹检测装置适用于具有液晶显示LCD屏的电子设备,所述LCD屏包括背光模组;所述指纹检测装置包括指纹检测模组,所述指纹检测模组用于设置在所述背光模组的下方,所述背光模组由上至下依次包括导光板、反射膜和背光板,所述背光板在所述指纹检测模组的上方设置有第一开孔,所述导光板和所述反射膜之间设置有第一介质层,所述第一介质层用于增加位于所述第一开孔的上方的所述导光板和所述反射膜之间的间隙。通过所述指纹检测装置检测指纹信息,能够减少甚至消除干扰纹路,从而提升LCD屏下光学指纹检测的性能。
Description
本申请实施例涉及屏下指纹识别领域,并且更具体地,涉及指纹检测装置、背光模组、显示屏和电子设备。
目前,液晶显示(Liquid Crystal Display,LCD)屏包括背光模组和液晶面板,其中背光模组为屏幕提供均匀的光源,液晶面板起图像显示作用。基于LCD屏的屏下光学指纹识别方案是将指纹识别模组设置在背光模组的下方以实现光学指纹识别,其中,背光模组为多层膜材结构,膜材之间的形变容易出现接触不均匀的问题,导致产生干扰纹路(薄膜干涉)的形成条件,这样,在指纹识别模组采集的指纹图像会存在干扰纹路,影响指纹识别性能。
因此,如何消除或减少干扰纹路以提升LCD屏下光学指纹识别的性能是一项亟需解决的问题。
发明内容
提供了一种指纹检测装置、背光模组、显示屏和电子设备,能够减少甚至消除干扰纹路,从而提升LCD屏下光学指纹检测的性能。
第一方面,提供了一种指纹检测装置,适用于具有液晶显示LCD屏的电子设备,所述LCD屏包括背光模组;
所述指纹检测装置包括:
指纹检测模组,所述指纹检测模组用于设置在所述背光模组的下方,所述指纹检测模组用于接收外部光源发出的经由手指返回并穿过所述背光模组的光信号,所述光信号用于获取所述手指的指纹信息;
其中,所述背光模组由上至下依次包括导光板、反射膜和背光板,所述背光板在所述指纹检测模组的上方设置有第一开孔,所述第一开孔用于将经由所述手指反射的光信号传输至所述指纹检测模组,所述导光板和所述反射膜之间设置有第一介质层,所述第一介质层用于增加位于所述第一开孔的上方的所述导光板和所述反射膜之间的间隙。
基于牛顿环的产生机理,如果所述背光板设置有所述第一开孔,所述第 一开孔的上方的反射膜得不到支撑进而产生形变,例如,靠近所述导光板下表面产生一个曲率半径的曲面,由所述导光板和产生形变的反射膜组成的结构类似于用于产生牛顿环的由平面镜内表面与凸透镜组成的结构。此时,若在所述导光板下表面和所述反射膜上表面之间发生反射的两列波(即光线或光信号)相遇,且相遇时的波程差是半波长的偶数倍,这两列波叠加后会增强进而出现亮条纹;若在所述导光板下表面和所述反射膜上表面之间发生反射的两列波相遇,且相遇时的波程差是半波长的奇数倍,这两列波叠加后会减弱进而出现暗条纹,由此,指纹检测装置检测到的指纹图像会出现明暗相间的条纹(即牛顿环)。
通过在所述导光板和所述反射膜之间设置所述第一基质层,能够增加位于所述第一开孔的上方的所述导光板和所述反射膜之间的间隙,相应的,会增加在所述导光板下表面和所述反射膜上表面之间发生反射的光线的光程差,进而减小牛顿环的间距,使得指纹检测模组检测到的指纹图像的干涉条纹减小甚至消失,进而提升指纹检测效果和所述指纹检测装置的性能。
换言之,通过增加位于所述第一开孔的上方的所述导光板和所述反射膜之间的间隙,能够破坏牛顿环的形成条件,以提升指纹检测效果和所述指纹检测装置的性能。
在一些可能的实现方式中,所述导光板的下表面在位于所述第一开孔的周围区域的上方的区域通过所述第一介质层连接至所述反射膜的上表面。
将所述第一介质层设置在所述导光板和所述反射膜之间,且位于所述背光板的第一开孔的周围区域的上表面,能够保证所述反射膜的容易产生形变的区域与所述导光板之间具有足够的间隙;所述足够的间隙能够保证破坏牛顿环的形成条件,进而,提升指纹检测效果和所述指纹检测装置的性能。
在一些可能的实现方式中,所述导光板的下表面在位于所述第一介质层的外侧的区域接触于所述反射膜的上表面。
将所述导光板的下表面在位于所述第一介质层的外侧的区域构造为接触于所述反射膜的上表面,相当于,仅增加位于所述第一开孔的上方的所述导光板和所述反射膜之间的间隙,不仅能够提升指纹检测效果和所述指纹检测装置的性能,还能够减少所述第一介质层的占用空间并减少所述背光模组的成本。
在一些可能的实现方式中,所述第一介质层包括多个离散的介质层。
在一些可能的实现方式中,所述背光板的上表面在所述第一开孔的周围区域向背离所述反射膜的方向延伸。
将所述背光板的上表面在所述第一开孔的周围区域构造为向背离所述反射膜的方向延伸,不仅能够为所述第一介质层提供容纳空间,还能够为所述导光板和所述反射膜之间的间隙提供调整空间。
在一些可能的实现方式中,所述背光板包括位于所述第一开孔的周围区域的第一上表面和与所述第一上表面存在间隔的第二上表面,所述第一上表面平行于所述第二上表面,且所述第一上表面通过斜面连接至所述第二上表面。
将所述背光板的第一上表面和所述第二上表面之间的上表面设计为斜面,不仅能够避免所述第一上表面和所述第二上表面之间的区域损坏所述反光膜,还能够降低所述反射膜向远离所述导光板的方向移动时所述背光板产生的阻力。
在一些可能的实现方式中,所述背光板在所述第一开孔的周围区域的厚度小于所述背光板在其他区域的厚度。
将所述背光板在所述第一开孔的周围区域的厚度构造为小于所述背光板在其他区域的厚度,相当于,通过减小所述背光模组在所述第一开孔的周围区域的厚度,不仅能够为所述第一介质层提供容纳空间,还能够为所述导光板和所述反射膜之间的间隙提供调整空间。
在一些可能的实现方式中,所述背光板的下表面平行于所述导光板的下表面。
将所述背光板的下表面构造为平行于所述导光板的下表面,相当于将所述背光板的下表面构造为平面,不仅能够增加所述背光板的美观性,还能够降低安装所述背光模组时的复杂度。
在一些可能的实现方式中,所述背光板的各个区域的厚度相同。
将所述背光板的各个区域的厚度构造为相同的厚度,不仅能够保证所述背光板的各个区域具有相同的强度,而且能够减少所述背光模组在未设置有所述第一介质层的区域的占用空间并减少所述背光模组的成本。
在一些可能的实现方式中,所述导光板的下表面通过所述第一介质层连接至所述反射膜的上表面,所述第一介质层用于增加所述导光板和所述反射膜之间的间隙,所述第一介质层在所述第一开孔的上方设置有第二开孔,所 述第二开孔的孔径大于或等于所述第一开孔的孔径。
将所述第一介质层构造为覆盖所述反射膜的介质层,能够使得所述第一介质层具有足够的强度,以保证所述导光板和所述反射膜之间的间隙,进而保证所述指纹检测装置的性能。
此外,将所述第二开孔的孔径设计为大于或等于所述第一开孔的孔径,不仅将经由手指反射的光信号能够传输至所述指纹检测模组,还能够扩大所述指纹检测模组的视场和视角,使得所述指纹检测模组能够接收到足够多的光信号,进而提升指纹识别效果。
在一些可能的实现方式中,所述第一介质层为透明介质层或非透明介质层。
在一些可能的实现方式中,所述第一介质层为双面胶层,或所述第一介质层的材料为包括以下材料中的至少一项:聚碳酸酯PC、丙烯腈丁二烯丙烯酸酯共聚物ABA、聚甲基丙烯酸甲酯PMMA以及聚对苯二甲酸乙二醇酯PET。
将所述第一介质层设计为双面胶层,不仅能够保证所述导光板和所述反射膜之间的间隙,还能够使得所述反射膜不容易产生形变,尽可能的避免了所述导光板和所述反射膜形成用于产生牛顿环的结构,以保证所述指纹检测装置的性能和指纹检测效果。
在一些可能的实现方式中,所述反射膜和所述背光板之间设置有第二介质层,所述第二介质层用于将所述反射膜的位于所述第一开孔的上方的区域固定至所述背光板。
通过在所述反射膜和所述背光板之间设计所述第二介质层,并将所述第二介质层构造为用于将所述反射膜的位于所述第一开孔的上方的区域固定至所述背光板,使得所述反射膜不容易产生形变,尽可能的避免了所述导光板和所述反射膜形成用于产生牛顿环的结构,以保证所述指纹检测装置的性能和指纹检测效果。
在一些可能的实现方式中,所述反射膜的下表面在位于所述第一开孔的周围区域的上方的区域通过所述第二介质层固定至所述背光板的上表面。
在一些可能的实现方式中,所述反射膜和所述背光板在所述第二介质层的外侧的区域设置有第三介质层,所述反射膜的下表面通过所述第三介质层接触于所述背光板。
将所述第三介质层设置在所述反射膜和所述背光板在所述第二介质层的外侧的区域,相当于,通过所述第三介质层和所述第二介质层支撑所述反射膜,使得所述反射膜的受力较为均匀,尽可能的避免了所述反射膜产生形变,避免了所述导光板和所述反射膜形成用于产生牛顿环的结构,以保证所述指纹检测装置的性能和指纹检测效果。
在一些可能的实现方式中,所述第三介质层的厚度大于所述第二介质层的厚度,以增大所述导光板和所述反光膜之间的间隙。
将所述第三介质层的厚度构造为大于所述第二介质层的厚度,能够有效保证所述导光板和反射膜之间的间隙,所述导光板和所述反射膜之间的间隙至少包括所述第三介质层的间隙减去所述第二介质层的间隙。
在一些可能的实现方式中,所述第二介质层包括多个离散的介质层。
在一些可能的实现方式中,所述反射膜的下表面通过所述第二介质层固定至所述背光板的上表面,所述第二介质层在所述第一开孔的上方设置有第三开孔,所述第三开孔的孔径大于或等于所述第一开孔的孔径。
在一些可能的实现方式中,所述第二介质层为双面胶层。
在一些可能的实现方式中,所述电子设备的中框设置有第四开孔,所述第四开孔用于将经由所述手指反射的光信号传输至所述指纹检测模组,所述指纹检测模组固定至所述电子设备的中框的下表面的位于所述第四开孔的周围区域,使得所述指纹检测模组与所述反射膜之间距离位于150um~300um范围内。
通过所述中框安装所述指纹检测模组,并将所述指纹检测模组与所述反射膜之间距离构造为位于150um~300um范围,不能能够保证所述指纹检测模组的成像距离,还能够避免所述指纹检测模组不接触所述反射膜,避免了在所述电子设备发送碰撞或震动时,所述指纹检测模组损坏所述反射膜。
在一些可能的实现方式中,所述指纹检测模组为光学指纹检测模组,所述光学指纹检测模组包括至少一个光学指纹传感器。
第二方面,提供了一种指纹检测装置,适用于具有液晶显示LCD屏的电子设备,所述LCD屏包括背光模组;
所述指纹检测装置包括:
指纹检测模组,所述指纹检测模组用于设置在所述背光模组的下方,所述指纹检测模组用于接收外部光源发出的经由手指返回并穿过所述背光模 组的光信号,所述光信号用于获取所述手指的指纹信息;
其中,所述背光模组由上至下依次包括导光板、反射膜和背光板,所述背光板在所述指纹检测模组的上方设置有第一开孔,所述第一开孔用于将经由所述手指反射的光信号传输至所述指纹检测模组,所述反射膜和所述背光板之间设置有第二介质层,所述第二介质层用于将位于所述第一开孔的上方的所述反射膜固定至所述背光板。
通过在所述反射膜和所述背光板之间设计所述第二介质层,并将所述第二介质层构造为用于将所述反射膜的位于所述第一开孔的上方的区域固定至所述背光板,使得所述反射膜不容易产生形变,尽可能的避免了所述导光板和所述反射膜形成用于产生牛顿环的结构,以保证所述指纹检测装置的性能和指纹检测效果。
在一些可能的实现方式中,所述反射膜的下表面在位于所述第一开孔的周围区域的上方的区域通过所述第二介质层固定至所述背光板的上表面。
在一些可能的实现方式中,所述反射膜和所述背光板在所述第二介质层的外侧的区域设置有第三介质层,所述反射膜的下表面通过所述第三介质层接触于所述背光板。
将所述第三介质层设置在所述反射膜和所述背光板在所述第二介质层的外侧的区域,相当于,通过所述第三介质层和所述第二介质层支撑所述反射膜,使得所述反射膜的受力较为均匀,尽可能的避免了所述反射膜产生形变,避免了所述导光板和所述反射膜形成用于产生牛顿环的结构,以保证所述指纹检测装置的性能和指纹检测效果。
在一些可能的实现方式中,所述第三介质层的厚度大于所述第二介质层的厚度,以增大所述导光板和所述反光膜之间的间隙。
将所述第三介质层的厚度构造为大于所述第二介质层的厚度,能够有效保证所述导光板和反射膜之间的间隙,所述导光板和所述反射膜之间的间隙至少包括所述第三介质层的间隙减去所述第二介质层的间隙。
在一些可能的实现方式中,所述第二介质层包括多个离散的介质层。
在一些可能的实现方式中,所述反射膜的下表面通过所述第二介质层固定至所述背光板的上表面,所述第二介质层在所述第一开孔的上方设置有第三开孔,所述第三开孔的孔径大于或等于所述第一开孔的孔径。
在一些可能的实现方式中,所述第二介质层为双面胶层。
在一些可能的实现方式中,所述电子设备的中框设置有第四开孔,所述第四开孔用于将经由所述手指反射的光信号传输至所述指纹检测模组,所述指纹检测模组固定至所述电子设备的中框的下表面的位于所述第四开孔的周围区域,使得所述指纹检测模组与所述反射膜之间距离位于150um~300um范围内。
通过所述中框安装所述指纹检测模组,并将所述指纹检测模组与所述反射膜之间距离构造为位于150um~300um范围,不能能够保证所述指纹检测模组的成像距离,还能够避免所述指纹检测模组不接触所述反射膜,避免了在所述电子设备发送碰撞或震动时,所述指纹检测模组损坏所述反射膜。
在一些可能的实现方式中,所述指纹检测模组为光学指纹检测模组,所述光学指纹检测模组包括至少一个光学指纹传感器。
第三方面,提供了一种背光模组,适用于具有液晶显示LCD屏的电子设备,所述LCD屏包括背光模组;
其中,所述背光模组由上至下依次包括导光板、反射膜和背光板,所述背光板设置有第一开孔,所述导光板和所述反射膜之间设置有第一介质层,所述第一介质层用于增加位于所述第一开孔的上方的所述导光板和所述反射膜之间的间隙。
在一些可能的实现方式中,所述导光板的下表面在位于所述第一开孔的周围区域的上方的区域通过所述第一介质层连接至所述反射膜的上表面。
在一些可能的实现方式中,所述导光板的下表面在位于所述第一介质层的外侧的区域接触于所述反射膜的上表面。
在一些可能的实现方式中,所述第一介质层包括多个离散的介质层。
在一些可能的实现方式中,所述背光板的上表面在所述第一开孔的周围区域向背离所述反射膜的方向延伸。
在一些可能的实现方式中,所述背光板包括位于所述第一开孔的周围区域的第一上表面和与所述第一上表面存在间隔的第二上表面,所述第一上表面平行于所述第二上表面,且所述第一上表面通过斜面连接至所述第二上表面。
在一些可能的实现方式中,所述背光板在所述第一开孔的周围区域的厚度小于所述背光板在其他区域的厚度。
在一些可能的实现方式中,所述背光板的下表面平行于所述导光板的下 表面。
在一些可能的实现方式中,所述背光板的各个区域的厚度相同。
在一些可能的实现方式中,所述导光板的下表面通过所述第一介质层连接至所述反射膜的上表面,所述第一介质层用于增加所述导光板和所述反射膜之间的间隙,所述第一介质层在所述第一开孔的上方设置有第二开孔,所述第二开孔的孔径大于或等于所述第一开孔的孔径。
在一些可能的实现方式中,所述第一介质层为透明介质层或非透明介质层。
在一些可能的实现方式中,所述第一介质层为双面胶层,或所述第一介质层的材料为包括以下材料中的至少一项:聚碳酸酯PC、丙烯腈丁二烯丙烯酸酯共聚物ABA、聚甲基丙烯酸甲酯PMMA以及聚对苯二甲酸乙二醇酯PET。
在一些可能的实现方式中,所述反射膜和所述背光板之间设置有第二介质层,所述第二介质层用于将所述反射膜的位于所述第一开孔的上方的区域固定至所述背光板。
在一些可能的实现方式中,所述反射膜的下表面在位于所述第一开孔的周围区域的上方的区域通过所述第二介质层固定至所述背光板的上表面。
在一些可能的实现方式中,所述反射膜和所述背光板在所述第二介质层的外侧的区域设置有第三介质层,所述反射膜的下表面通过所述第三介质层接触于所述背光板。
在一些可能的实现方式中,所述第三介质层的厚度大于所述第二介质层的厚度,以增大所述导光板和所述反光膜之间的间隙。
在一些可能的实现方式中,所述第二介质层包括多个离散的介质层。
在一些可能的实现方式中,所述反射膜的下表面通过所述第二介质层固定至所述背光板的上表面,所述第二介质层在所述第一开孔的上方设置有第三开孔,所述第三开孔的孔径大于或等于所述第一开孔的孔径。
在一些可能的实现方式中,所述第二介质层为双面胶层。
在一些可能的实现方式中,所述电子设备包括指纹检测模组,所述电子设备的中框设置有第四开孔,所述第四开孔用于将经由所述手指反射的光信号传输至所述指纹检测模组,所述指纹检测模组固定至所述电子设备的中框的下表面的位于所述第四开孔的周围区域,使得所述指纹检测模组与所述反 射膜之间距离位于150um~300um范围内。
在一些可能的实现方式中,所述指纹检测模组为光学指纹检测模组,所述光学指纹检测模组包括至少一个光学指纹传感器。
第四方面,提供了一种背光模组,在一些可能的实现方式中,适用于具有液晶显示LCD屏的电子设备,所述LCD屏包括背光模组;
其中,所述背光模组由上至下依次包括导光板、反射膜和背光板,所述背光板设置有第一开孔,所述反射膜和所述背光板之间设置有第二介质层,所述第二介质层用于将所述背光板固定至所述背光板。
在一些可能的实现方式中,所述反射膜的下表面在位于所述第一开孔的周围区域的上方的区域通过所述第二介质层连接至所述背光板的上表面。
在一些可能的实现方式中,所述反射膜和所述背光板在所述第二介质层的外侧的区域设置有第三介质层,所述反射膜的下表面通过所述第三介质层接触于所述背光板。
在一些可能的实现方式中,所述第三介质层的厚度大于所述第二介质层的厚度,以增大所述导光板和所述反光膜之间的间隙。
在一些可能的实现方式中,所述第二介质层包括多个离散的介质层。
在一些可能的实现方式中,所述反射膜的下表面通过所述第二介质层连接至所述背光板的上表面,所述第二介质层在所述第一开孔的上方设置有第三开孔,所述第三开孔的孔径大于或等于所述第一开孔的孔径。
在一些可能的实现方式中,所述第二介质层为双面胶层。
在一些可能的实现方式中,所述电子设备包括指纹检测模组,所述电子设备的中框设置有第四开孔,所述第四开孔用于将经由所述手指反射的光信号传输至所述指纹检测模组,所述指纹检测模组固定至所述电子设备的中框的下表面的位于所述第四开孔的周围区域,使得所述指纹检测模组与所述反射膜之间距离位于150um~300um范围内。
在一些可能的实现方式中,所述指纹检测模组为光学指纹检测模组,所述光学指纹检测模组包括至少一个光学指纹传感器。
第五方面,提供了一种显示屏,包括第三方面或第四方面中任一可能实现的方式中所述的背光模组。
第六方面,提供了一种电子设备,包括第五方面所述的显示屏。
图1是本申请可以适用的电子设备的平面示意图。
图2是图1所示的电子设备的剖面示意图。
图3是本申请实施例的包括背光模组的电子设备的示意性结构图。
图4是图3所示的电子设备的反射膜发送形变后的示意性结构图。
图5至图21是本申请实施例的包括指纹检测装置的电子设备的示意性框图。
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种电子设备。例如,智能手机、笔记本电脑、平板电脑、游戏设备等便携式或移动计算设备,以及电子数据库、汽车、银行自动柜员机(Automated Teller Machine,ATM)等其他电子设备。但本申请实施例对此并不限定。
本申请实施例的技术方案可以用于生物特征识别技术。其中,生物特征识别技术包括但不限于指纹识别、掌纹识别、虹膜识别、人脸识别以及活体识别等识别技术。为了便于说明,下文以指纹识别技术为例进行说明。
本申请实施例的技术方案可以用于屏下指纹识别技术和屏内指纹识别技术。
屏下指纹识别技术是指将指纹检测模组安装在显示屏下方,从而实现在显示屏的显示区域内进行指纹识别操作,不需要在电子设备正面除显示区域外的区域设置指纹采集区域。具体地,指纹检测模组使用从电子设备的显示组件的顶面返回的光来进行指纹感应和其他感应操作。这种返回的光携带与显示组件的顶面接触或者接近的物体(例如手指)的信息,位于显示组件下方的指纹检测模组通过采集和检测这种返回的光以实现屏下指纹识别。其中,指纹检测模组的设计可以为通过恰当地配置用于采集和检测返回的光的光学元件来实现期望的光学成像,从而检测出所述手指的指纹信息。
相应的,屏内(In-display)指纹识别技术是指将指纹检测模组或者部分指纹检测模组安装在显示屏内部,从而实现在显示屏的显示区域内进行指纹识别操作,不需要在电子设备正面除显示区域外的区域设置指纹采集区域。
图1和图2示出了屏下指纹识别技术可以适用的电子设备100的示意图, 其中图1为电子设备100的正面示意图,图2和图3均为图1所示的电子设备100的部分剖面结构示意图。
如图2所示,电子设备100可以包括显示屏120和指纹检测模组130。
显示屏120可以为非自发光显示屏。例如,显示屏120也可以为液晶显示屏(Liquid Crystal Display,LCD)或者其他被动发光显示屏。
此外,显示屏120还可以具体为触控显示屏,其不仅可以进行画面显示,还可以检测用户的触摸或者按压操作,从而为用户提供一个人机交互界面。比如,在一种实施例中,电子设备100可以包括触摸传感器,所述触摸传感器可以具体为触控面板(Touch Panel,TP),其可以设置在所述显示屏120表面,也可以部分集成或者整体集成到所述显示屏120内部,从而形成所述触控显示屏。
指纹检测模组130可以为光学指纹检测模组,比如包括光学指纹传感器。
具体来说,指纹检测模组130可以包括具有光学感应阵列的传感器芯片(后面也称为光学指纹传感器)。其中,光学感应阵列包括多个光学感应单元,每个光学感应单元可以具体包括光探测器或者光电传感器。或者说,指纹检测模组130可以包括光探测器(Photo detector)阵列(或称为光电探测器阵列、光电传感器阵列),其包括多个呈阵列式分布的光探测器。
如图2所示,指纹检测模组130可以设置在所述显示屏120的下方的局部区域,从而使得指纹检测模组130的指纹采集区域(或检测区域)103至少部分位于所述显示屏120的显示区域102内。
当然,在其他可替代实施例中,指纹检测模组130也可以设置在其他位置,比如显示屏120的侧面或者电子设备100的边缘非透光区域。这种情况下,可以通过光路设计将显示屏120的至少部分显示区域的光信号导引到指纹检测模组130,从而使得所述指纹采集区域103实际上位于所述显示屏120的显示区域内。
在本申请的一些实施例中,指纹检测模组130可以仅包括一个传感器芯片,此时指纹检测模组130的指纹采集区域103的面积较小且位置固定,因此用户在进行指纹输入时需要将手指按压到所述指纹采集区域103的特定位置,否则指纹检测模组130可能无法采集到指纹图像而造成用户体验不佳。
在本申请的另一些实施例中,指纹检测模组130可以具体包括多个传感器芯片;所述多个传感器芯片可以通过拼接方式并排设置在所述显示屏120 的下方,且所述多个传感器芯片的感应区域共同构成所述指纹检测模组130的指纹采集区域103。也即是说,所述指纹检测模组130的指纹采集区域103可以包括多个子区域,每个子区域分别对应于其中一个传感器芯片的感应区域,从而将所述光学指纹检测模组130的指纹采集区域103可以扩展到所述显示屏的下半部分的主要区域,即扩展到手指惯常按压区域,从而实现盲按式指纹输入操作。可替代地,当所述传感器芯片数量足够时,所述指纹检测区域130还可以扩展到半个显示区域甚至整个显示区域,从而实现半屏或者全屏指纹检测。
应理解,本申请实施例对所述多个传感器芯片的具体形式不做限定。
例如,所述多个传感器芯片可以分别是独立封装的传感器芯片,也可以是封装在同一个芯片封装体内的多个芯片(Die)。
又例如,还可以通过半导体工艺在同一个芯片的不同区域上制作形成所述多个传感器芯片。
如图2所示,指纹检测模组130的光学感应阵列的所在区域或者光感应范围对应所述指纹检测模组130的指纹采集区域103。其中,指纹检测模组130的指纹采集区域103可以等于或不等于指纹检测模组130的光学感应阵列的所在区域的面积或者光感应范围,本申请实施例对此不做具体限定。
这个方案要仅适用于OLED,本方案的LCD不适用,相关内容均删除。以下同。例如,通过微距镜头进行汇聚光线的光路设计或者反射光线的光路设计,可以使得所述指纹检测模组130的指纹采集区域103的面积大于所述指纹检测模组130感应阵列的面积。
下面对指纹检测模组130的光路设计进行示例性说明。
指纹检测模组130可以用于采集用户的指纹信息(比如指纹图像信息)。
当手指触摸、按压或者接近(为便于描述,在本申请中统称为按压)在指纹采集区域103时,激励光源向指纹采集区域103上方的手指发出一束光,这一束光在手指的表面发生反射形成反射光或者经过手指的内部散射后而形成散射光,为便于描述,上述反射光和散射光统称为反射光。由于指纹的嵴(ridge)与峪(vally)对于光的反射能力不同,因此,来自指纹嵴的反射光和来自指纹峪的发生过具有不同的光强,反射光经过显示屏120后,被指纹检测模组130中的传感器芯片所接收并转换为相应的电信号,即指纹检测信号;基于所述指纹检测信号便可以获得指纹图像数据,并且可以进一步进 行指纹匹配验证,从而在所述电子设备100实现光学指纹识别功能。
由此可见,用户需要对电子设备100进行指纹解锁或者其他指纹验证的时候,只需要将手指按压在位于显示屏120的指纹采集区域103,便可以实现指纹特征的输入操作。由于指纹特征的采集可以在显示屏120的显示区域102的内部实现,采用上述结构的电子设备100无需其正面专门预留空间来设置指纹按键(比如Home键),因而可以采用全面屏方案。因此,所述显示屏120的显示区域102可以基本扩展到所述电子设备100的整个正面。
其中,用于指纹识别的激励光源可以采用内置光源或者外置光源来提供用于进行指纹检测识别的光信号。在这种情况下,电子设备100的光学指纹系统还可以包括用于光学指纹检测的激励光源,所述激励光源可以具体为红外光源或者特定波长非可见光的光源,其可以设置在所述液晶显示屏的背光模组下方或者设置在电子设备100的保护盖板下方的边缘区域,而指纹检测模组130可以设置液晶面板或者保护盖板的边缘区域下方并通过光路引导以使得指纹检测光可以到达所述指纹检测模组130;或者,指纹检测模组130也可以设置在所述背光模组下方,且所述背光模组通过对扩散片、增亮片、反射片等膜层进行开孔或者其他光学设计以允许指纹检测光穿过液晶面板和背光模组并到达指纹检测模组130。当采用所述指纹检测模组130采用内置光源或者外置光源来提供用于进行指纹检测的光信号时,其检测原理可以相同。
如图2所示,电子设备100还可以包括保护盖板110。
盖板110可以具体为透明盖板,比如玻璃盖板或者蓝宝石盖板,其位于显示屏120的上方并覆盖所述电子设备100的正面,且盖板110表面还可以设置有保护层。因此,本申请实施例中,所谓的手指按压显示屏120实际上可以是指手指按压在显示屏120上方的盖板110或者覆盖所述盖板110的保护层表面。
如图2所示,指纹检测模组130的下方还可以设置有电路板140,比如软性电路板(Flexible Printed Circuit,FPC)。
指纹检测模组130可以通过焊盘焊接到电路板140,并通过电路板140实现与其他外围电路或者电子设备100的其他元件的电性互连和信号传输。比如,指纹检测模组130可以通过电路板140接收电子设备100的处理单元的控制信号,并且还可以通过电路板140将来自指纹检测模组130的指纹检 测信号输出给电子设备100的处理单元或者控制单元等。
图3是本申请实施例的屏下指纹识别装置的示意性结构图。
如图3所示,指纹检测模组130可应用于具有显示屏(例如图1或图2所示的显示屏120)的电子设备,所述显示屏可以包括背光模组150,所述背光模组150可以为所述显示屏最下方的结构;所述指纹检测模组130设置在所述背光模组150的下方;所述指纹检测模组130用于接收红外光源170发出的照射人体手指后并穿过所述背光模组150的所述红外光信号,所述红外光信号用于检测所述手指的指纹信息。
应理解,本申请实施例中,所述指纹检测模组130接收到的用于进行指纹识别的红外光信号可以是人体手指对红外光源发出的红外光信号的进行光学处理的光信号。例如,所述指纹检测模组130接收到的光信号可以是进行经由人体手指反射并穿过所述背光模组150的所述红外光信号,也可以经由人体手指漫射并穿过所述背光模组150的所述红外光信号。本申请实施例对此不做具体限定。
需要说明的是,本申请实施例中,所述红外光源170发出的红外光信号可以用于进行指纹识别,所述红外光信号是不可见光。而用于所述显示屏进行图像显示的光信号为可见光源,具体地,所述可见光源可以是位于液晶显示器(LCD)背后或侧部的任一种光源。例如,所述可见光源可以是电致发光(EL)背光源、小型冷阴极荧光灯(CCFL)或者LED背光源。
换言之,用于指纹识别的光信号采用的是红外光源170发出的红外光信号,用于显示图像的光信号采用的是可见光源发出的可见光信号。因此,利用所述指纹检测模组130进行指纹检测,不仅能够避开可见光对指纹识别的干扰,而且红外光信号为不可见光,不会对显示图像产生影响。
如图3所示,在本申请的一些实施例中,所述红外光源170可以通过光学胶180粘贴在所述盖板110的下方。类似地,所述指纹检测模组130也可以通过机械方式固定在所述盖板110的下方。例如,所述指纹检测模组130可以通过螺纹连接的方式固定在所述盖板110的下方。
所述光学胶180可以是任一种光学液态胶或者光学固态胶。可选地,所述光学胶180和所述显示屏的光学折射率相同或者近似,由此,能够尽可能的提高所述红外光源170发出的红外光信号的利用率。可选地,所述红外光源170集成在所述背光模组150内。可选地,所述红外光源170和所述背光 模组150内的用于显示图像的光源集成设置。例如,所述红外光源170和所述背光模组150内的用于显示图像的光源可以采用并列或非并列的方式集成设置。
如图3所示,在本申请的一些实施例中,所述背光模组150可以包括复合膜151、增光膜152、扩散膜153、导光板(light guide plate)154、反射膜155以及背光板156。具体地,可见光源发出的可见光经过导光板154之后传输至扩散膜153,经过所述扩散膜153扩散后的光线传输至所述增光膜152,所述增光膜152用于增益接收到的光信号,并将增益后的光信号发送至复合膜151,所述复合膜151接收到光信号用于进一步增益接收到的光信号,并将增益后的光信号传输至用于显示图像的层结构,用于进行图像显示。
可替代地,所述背光模组150可以不包括背光板156和/或反射膜155。
所述导光板154可以利用具有极高反射率且不吸光的高科技材料,在光学级的亚克力板材底面用激光雕刻技术或者紫外线(Ultra-Violet Ray,UV)网版印刷技术等技术印上导光点。利用光学级亚克力板材吸取从灯发出来的光在光学级亚克力板材表面的停留,当光线射到各个导光点时,反射光会往各个角度扩散,然后破坏反射条件由导光板正面射出。所述导光板154的作用在于引导光的散射方向,用来提高面板的亮度,并确保面板亮度的均匀性。具体地,可见光源可以位于导光板154的侧边,其发出的光利用反射导入导光板154的内部,当光线射到扩散点时,反射光会往各个角度扩散,然后由导光板154的正面射出。可选地,可以利用各种疏密、大小不一的扩散点,使得导光板154均匀发光。
如图3所示,在本申请的一些实施例中,所述电子设备100或所述指纹检测模组130还可以包括可见光滤光片160,所述可见光滤光片160可以设置在所述背光模组150和所述指纹检测模组130之间。由此,可以对传输至可见光滤光片160处的可见光进行滤除,能够进一步提高指纹检测模组130的检测质量。
所述可见光滤光片160具体可以用于过滤掉可见光波长,例如,用于图像显示的可见光等。所述滤光片160具体地可以包括一个或多个光学过滤器,所述一个或多个光学过滤器可以配置为例如带通过滤器,以滤除可见光光源发射的光,同时不滤除红外光信号。所述一个或多个光学过滤器可以实现为例如光学过滤涂层,该光学过滤涂层形成在一个或多个连续界面上,或可以 实现为一个或多个离散的界面上。
应理解,所述可见光滤光片160可以制作在任何光学部件的表面上,或者沿着到经由手指反射形成的反射光至指纹检测模组130的光学路径上。图3仅以所述可见光滤光片160设置在背光板156和指纹检测模组130之间为例,但本申请不限于此。例如,所述可见光滤光片160可以贴合在包括显示屏内、背光板156的上方或所述指纹检测模组130的内部等。
如图3所示,在本申请的一些实施例中,所述背光板156形成有开孔1561,所述指纹检测模组130设置在所述开孔1561的下方,所述指纹检测模组130用于接收所述红外光源170发出的照射人体手指后并穿过所述开孔1561的所述红外光信号。可以发现,通过在所述背光板156上形成所述开孔1561,能够尽可能的阻止可见光信号向背离所述指纹检测模组130的方向传输,并能够有效降低用于指纹识别的红外光信号在经过所述背光板156时的能量损耗。
如图4所示,基于牛顿环的产生机理,如果所述背光板156设置有所述开孔1561,所述开孔1561的上方的反射膜155得不到支撑进而产生形变,例如,靠近所述导光板154下表面产生一个曲率半径的曲面,由所述导光板154和产生形变的反射膜155组成的结构类似于用于产生牛顿环的由平面镜内表面与凸透镜组成的结构。此时,若在所述导光板154下表面和所述反射膜155上表面之间发生反射的两列波(即光线或光信号)相遇,且相遇时的波程差是半波长的偶数倍,这两列波叠加后会增强进而出现亮条纹;若在所述导光板154下表面和所述反射膜155上表面之间发生反射的两列波相遇,且相遇时的波程差是半波长的奇数倍,这两列波叠加后会减弱进而出现暗条纹,由此,指纹检测装置检测到的指纹图像会出现明暗相间的条纹(即牛顿环)。
为了降低牛顿环对指纹检测效果的影响,本申请实施例提供了一种指纹检测装置,适用于具有液晶显示LCD屏的电子设备,所述LCD屏包括背光模组。所述指纹检测装置包括指纹检测模组,所述指纹检测模组用于设置在所述背光模组的下方,所述指纹检测模组用于接收外部光源发出的经由手指返回并穿过所述背光模组的光信号,所述光信号用于获取所述手指的指纹信息。
其中,所述背光模组由上至下依次包括导光板、反射膜和背光板,所述 背光板在所述指纹检测模组的上方设置有第一开孔,所述第一开孔用于将经由所述手指反射的光信号传输至所述指纹检测模组,所述导光板和所述反射膜之间设置有第一介质层,所述第一介质层用于增加位于所述第一开孔的上方的所述导光板和所述反射膜之间的间隙。
通过在所述导光板和所述反射膜之间设置所述第一介质层,能够增加位于所述第一开孔的上方的所述导光板和所述反射膜之间的间隙,相应的,会增加在所述导光板下表面和所述反射膜上表面之间发生反射的光线的光程差,进而减少牛顿环的间距,使得指纹检测模组检测到的指纹图像的干涉条纹间距减小,数量减少甚至消失,进而提升指纹检测效果和所述指纹检测装置的性能。
换言之,通过增加位于所述第一开孔的上方的所述导光板和所述反射膜之间的间隙,能够破坏牛顿环的形成条件,以提升指纹检测效果和所述指纹检测装置的性能。
图5至图21是本申请实施例的包括指纹检测装置340的电子设备300的示意性框图。具体地,图6至图9可以作为图5的局部视图,图11可以作为图10的局部视图,图13和图14可以作为图12的局部视图,图16至图18可以作为图15的局部视图,图20和图21可以作为图19的局部视图。应理解,所述指纹检测模组340可以是如图2或图3所示的指纹检测模组140,所述电子设备可以是如图1-图3所示的电子设备100,为避免重复,此处省略与图1-图3相关的描述。
如图5至图21所示,所述电子设备300的显示屏由上至下依次可包括以下中的部分或全部:盖板311、光学胶312、上层偏振片313、复合膜314、薄膜晶体管315、下层偏振片316、黑色胶带层(black tape)/空隙层(air gap)317、上层增光膜318、下层增光膜319、扩散膜320、导光板321、反射膜322以及背光板323。可选地,所述背光板322可在所述指纹检测模组340的安装区域形成第一开孔3231,所述第一开孔3231用于将手指反射的光信号传输至所述指纹检测模组340,以便所述指纹检测模组340进行指纹检测。其中,黑色胶带层(black tape)/空隙层(air gap)317、上层增光膜318、下层增光膜319、扩散膜320、导光板321、反射膜322以及背光板323可用于形成类似如图3所示的背光模组150,其余部分可用于形成显示屏的用于显示图像的液晶面板。应理解,所述显示屏中的液晶面板包括的层/膜/板与 所述背光模组包括的层/膜/板可以由多种划分方式,上述划分方式仅为示例,不应理解为对本申请的限制。
如图5至图21所示,在本申请的一些实施例中,所述电子设备300还可以包括光源333,所述部光源333可以用于发射用于显示图像的光信号。例如,所述外部光源333可设置在背光模组的侧面。
如图5至图21所示,在本申请的一些实施例中,所述电子设备300还可包括中框332,所述中框322用于支撑所述电子设备300中的各种零器件。所述零器件包括但不限于电池、摄像头、主板以及显示屏等等。可选地,所述电子设备300的中框332设置有开孔,所述中框332的开孔用于将经由所述手指反射的光信号传输至所述指纹检测模组340。可选地,所述指纹检测模组340固定至所述电子设备300的中框332的下表面的位于所述中框332的开孔的周围区域,使得所述指纹检测模组340与所述反射膜322之间距离位于150um~300um范围内。
通过所述中框安装所述指纹检测模组340,并将所述指纹检测模组340与所述反射膜322之间距离构造为位于150um~300um范围,不仅能够保证所述指纹检测模组340的成像距离,还能够避免所述指纹检测模组340不接触所述反射膜322,避免了在所述电子设备发送碰撞或震动时,所述指纹检测模组340损坏所述反射膜。
如图5至图21所示,在本申请的一些实施例中,所述指纹检测模组340为光学指纹检测模组340,所述光学指纹检测模组包括至少一个光学指纹传感器。例如,所述光学指纹检测模组可以包括支架、镜筒和传感器芯片,所述镜筒内设置有镜头,所述镜筒固定至所述支架,所述支架固定至所述中框322的下表面的位于所述中框332的开孔的周围区域,使得所述指纹检测模组340与所述反射膜322之间距离位于150um~300um范围内。可选地,所述传感器芯片可以设置在所述镜头的下方。例如,所述传感器芯片可设置在所述镜筒内。又例如,所述传感器芯片可设置在所述镜筒的下方,即所述传感器芯片的边缘区域可与所述镜筒的下表面固定。
如图5至图21所示,在本申请的一些实施例中,所述盖板311的端部区域还可以设置有红外油墨(IR INK),以提升所述电子设备300的性能和用户体验。
下面就所述反射膜322和所述导光板321之间的第一介质层的实现方式 进行说明。
如图5或图6所示,在本申请的一些实施例中,所述导光板321的下表面在位于所述第一开孔3231的周围区域的上方的区域通过所述第一介质层350连接至所述反射膜322的上表面。
将所述第一介质层350设置在所述导光板321和所述反射膜322之间,且位于所述背光板323的第一开孔3231的周围区域的上表面,能够保证所述反射膜322的容易产生形变的区域与所述导光板321之间具有足够的间隙;所述足够的间隙能够保证破坏牛顿环的形成条件,进而,提升指纹检测效果和所述指纹检测装置的性能。
如图5或图6所示,在本申请的一些实施例中,所述导光板321的下表面在位于所述第一介质层350的外侧的区域接触于所述反射膜322的上表面。
换言之,在位于所述第一介质层350的外侧的区域,所述导光板321和所述反射膜322之间不设置所述第一介质层350。
将所述导光板321的下表面在位于所述第一介质层350的外侧的区域构造为接触于所述反射膜322的上表面,相当于,仅增加位于所述第一开孔3231的上方的所述导光板321和所述反射膜322之间的间隙,不仅能够提升指纹检测效果和所述指纹检测装置的性能,还能够减少所述第一介质层350的占用空间并减少所述背光模组的成本。
如图5至图11所示,在本申请的一些实施例中,所述背光板323的上表面在所述第一开孔3231的周围区域向背离所述反射膜322的方向延伸。
换言之,在所述第一开孔3231的周围区域处所述背光板323的上表面低于在其他区域处的所述背光板321的上表面。
将所述背光板323的上表面在所述第一开孔3231的周围区域构造为向背离所述反射膜322的方向延伸,不仅能够为所述第一介质层350提供容纳空间,还能够为所述导光板321和所述反射膜322之间的间隙提供调整空间。
如图5至图11所示,在本申请的一些实施例中,所述背光板323包括位于所述第一开孔3231的周围区域的第一上表面和与所述第一上表面存在间隔的第二上表面,所述第一上表面平行于所述第二上表面,且所述第一上表面通过斜面连接至所述第二上表面。
当然,可替代地,所述第一上表面和所述第二上表面也可以形成台阶结构,本申请对此不做具体限定。
将所述背光板323的第一上表面和所述第二上表面之间的上表面设计为斜面,不仅能够避免所述第一上表面和所述第二上表面之间的区域损坏所述反光膜,还能够降低所述反射膜322向远离所述导光板321的方向移动时所述背光板323产生的阻力。
如图5或图6所示,在本申请的一些实施例中,所述背光板323的下表面平行于所述导光板321的下表面。
例如,所述背光板323的各个区域的厚度相同。
将所述背光板323的下表面构造为平行于所述导光板321的下表面,相当于将所述背光板323的下表面构造为平面,不仅能够增加所述背光板323的美观性,还能够降低安装所述背光模组时的复杂度。
将所述背光板323的各个区域的厚度构造为相同的厚度,不仅能够保证所述背光板323的各个区域具有相同的强度,而且能够减少所述背光模组在未设置有所述第一介质层350的区域的占用空间并减少所述背光模组的成本。
如图10或图11所示,在本申请的一些实施例中,所述背光板323在所述第一开孔3231的周围区域的厚度小于所述背光板323在其他区域的厚度。
例如,可以通过减薄处理减小所述背光板323在所述第一开孔3231的周围区域。又例如,可以通过加厚处理增加所述背光板323在其他区域的厚度。
将所述背光板323在所述第一开孔3231的周围区域的厚度构造为小于所述背光板323在其他区域的厚度,相当于,通过减小所述背光模组在所述第一开孔3231的周围区域的厚度,不仅能够为所述第一介质层350提供容纳空间,还能够为所述导光板321和所述反射膜322之间的间隙提供调整空间。
如图12至图18所示,在本申请的一些实施例中,所述导光板321的下表面通过所述第一介质层350连接至所述反射膜322的上表面,所述第一介质层350用于增加所述导光板321和所述反射膜322之间的间隙,所述第一介质层350在所述第一开孔3231的上方设置有第二开孔351,所述第二开孔351的孔径大于或等于所述第一开孔3231的孔径。
换言之,所述导光板321和所述反射膜322之间可以设置有一个设置有开口或开窗的第一介质层350,以增加所述导光板321和所述反射膜322之间的间隙。
将所述第一介质层350构造为覆盖所述反射膜322的介质层,能够使得所述第一介质层350具有足够的强度,以保证所述导光板321和所述反射膜322之间的间隙,进而保证所述指纹检测装置的性能。
此外,将所述第二开孔351的孔径设计为大于或等于所述第一开孔3231的孔径,不仅将经由手指反射的光信号能够传输至所述指纹检测模组340,还能够扩大所述指纹检测模组340的视场和视角,使得所述指纹检测模组340能够接收到足够多的光信号,进而提升指纹识别效果。
在本申请的一些实施例中,所述第一介质层350为透明介质层或非透明介质层。
在本申请的一些实施例中,所述第一介质层350为双面胶层,或所述第一介质层350的材料为包括以下材料中的至少一项:聚碳酸酯(PC)、丙烯腈丁二烯丙烯酸酯共聚物(Acrylonitrile-butadiene-acrylate ABA)、聚甲基丙烯酸甲酯(PMMA)以及聚对苯二甲酸乙二醇酯(PET)。
将所述第一介质层350设计为双面胶层,不仅能够保证所述导光板321和所述反射膜322之间的间隙,还能够使得所述反射膜322不容易产生形变,尽可能的避免了所述导光板321和所述反射膜322形成用于产生牛顿环的结构,以保证所述指纹检测装置的性能和指纹检测效果。
在本申请的一些实施例中,所述第一介质层350包括多个离散的介质层。
换言之,可以围绕所述第一开孔3231设置所述多个离散的介质层。例如,所述多个离散的介质层可以围城一个圆形或矩形。
当然,所述第一介质层350也可以作为一个介质层。换言之,所述第一介质层350可以作为一个连续的介质层。
下面结合附图对第一介质层350作为连续介质层的实现方式进行说明。
如图7所示,在本申请的一些实施例中,所述第一介质层350可以是设置在所述反射膜322上方的一个条状介质层。可选地,如图14所示,所述第二介质层350可以是具有第二开孔351的矩形介质层。甚至于,如图17所示,所述第二介质层350还可以是一个矩形边框。可选地,如图18所示,所述第一介质层350还可以是设置在所述第一开孔3231的周围区域的上方的多个条状介质层。
当然,所述第一介质层350的形状和位置也可以有其他变形结构,上述形状和位置仅为具体示例,不应理解为对本申请的限制。
下面对本申请的反射膜322和背光板323之间的第二介质层进行说明。
在本申请的一些实施例中,所述反射膜322和所述背光板323之间设置有第二介质层,所述第二介质层用于将所述反射膜322的位于所述第一开孔3231的上方的区域固定至所述背光板323。
换言之,至少在所述第一开孔3231的周围区域的上方的区域,将所述反射膜322通过所述第二介质层360固定在所述背光板323的上表面。例如,可以仅在所述第一开孔3231的周围区域的上方的区域,将所述反射膜322通过所述第二介质层360固定在所述背光板323的上表面。又例如,将所述反射膜322的整个下表面通过所述第二介质层360直接固定在所述背光板323的整个上表面。
通过在所述反射膜322和所述背光板323之间设计所述第二介质层,并将所述第二介质层构造为用于将所述反射膜322的位于所述第一开孔3231的上方的区域固定至所述背光板323,使得所述反射膜322不容易产生形变,尽可能的避免了所述导光板321和所述反射膜322形成用于产生牛顿环的结构,以保证所述指纹检测装置的性能和指纹检测效果。
如图5或图6所示,在本申请的一些实施例中,所述反射膜322的下表面在位于所述第一开孔3231的周围区域的上方的区域通过所述第二介质层360固定至所述背光板323的上表面。
如图19至图21所示,在本申请的一些实施例中,所述反射膜322和所述背光板323在所述第二介质层360的外侧的区域设置有第三介质层370,所述反射膜322的下表面通过所述第三介质层370接触于所述背光板323。
将所述第三介质层370设置在所述反射膜322和所述背光板323在所述第二介质层360的外侧的区域,相当于,通过所述第三介质层370和所述第二介质层360支撑所述反射膜322,使得所述反射膜322的受力较为均匀,尽可能的避免了所述反射膜322产生形变,避免了所述导光板321和所述反射膜322形成用于产生牛顿环的结构,以保证所述指纹检测装置的性能和指纹检测效果。
如图19或图20所示,在本申请的一些实施例中,所述第三介质层370的厚度大于所述第二介质层360的厚度,以增大所述导光板321和所述反光膜之间的间隙。
将所述第三介质层370的厚度构造为大于所述第二介质层360的厚度, 能够有效保证所述导光板321和反射膜322之间的间隙,所述导光板321和所述反射膜322之间的间隙至少包括所述第三介质层370的间隙减去所述第二介质层360的间隙。
在本申请的一些实施例中,所述第二介质层360包括多个离散的介质层。
当然,所述第二介质层360也可以作为一层介质层。换言之,所述第二介质层也可以作为一个连续的介质层。
下面结合附图对第二介质层360作为连续介质层的实现方式进行说明。
如图5至图11所示,或者如图19至图21所示,在本申请的一些实施例中,所述反射膜322的下表面通过所述第二介质层360固定至所述背光板323的上表面,所述第二介质层360在所述第一开孔3231的上方设置有第三开孔361,所述第三开孔361的孔径大于或等于所述第一开孔3231的孔径。可选地,如图8所示,所述第二介质层360可以设置在所述第一开孔3231的周围区域的上方的区域,其中,所述第二介质层360可以一个矩形介质层,所述矩形介质层设置有开孔361。可选地,所述矩形介质层的开孔的孔径大于所述第一开孔3231的孔径。可选地,如图9所示,所述第二介质层360可以也可以是一个环状介质层;或者说,所述第二介质层360可以是一个圆形介质层,所述圆形介质层设置有开孔361。可选地,所述圆形介质层的开孔的孔径大于所述第一开孔3231的孔径。可选地,如图21所示,所述第三介质层370可以设置在所述第二介质层360的两侧。
当然,所述第二介质层360的形状和位置也可以有其他变形结构,上述形状和位置仅为具体示例,不应理解为对本申请的限制。
在本申请的一些实施例中,所述第二介质层360为双面胶层。
当然,所述第二介质层360可以是任意一种具有粘合功能的介质层,例如,所述第二介质层360可以是光学胶层。
类似地,所述第三介质层370可以为双面胶层,或所述第一介质层350的材料为包括以下材料中的至少一项:聚碳酸酯(PC)、丙烯腈丁二烯丙烯酸酯共聚物(Acrylonitrile-butadiene-acrylate ABA)、聚甲基丙烯酸甲酯(PMMA)以及聚对苯二甲酸乙二醇酯(PET)。类似地,本申请实施例对所述第三介质层370的具体位置和形状不做限定。
需要说明的是,本申请实施例中,所述背光模组可以仅设置上述第一介质层350,也可以仅设置所述第二介质层360,还可以同时设置所述第一介 质层350和所述第二介质层360,本申请实施例对此不做限定。具体地,所述第一介质层350的实现方式和所述第二介质层360的实现方式可以参考上文,为避免重复,此处不再赘述。
此外,本申请实施例还提供了一种背光模组,适用于具有液晶显示LCD屏的电子设备,所述LCD屏包括背光模组。
其中,所述背光模组由上至下依次包括导光板321、反射膜322和背光板323,所述背光板323设置有第一开孔3231,所述导光板321和所述反射膜322之间设置有第一介质层350,所述第一介质层350用于增加位于所述第一开孔3231的上方的所述导光板321和所述反射膜322之间的间隙。
在本申请的一些实施例中,所述导光板321的下表面在位于所述第一开孔3231的周围区域的上方的区域通过所述第一介质层350连接至所述反射膜322的上表面。
在本申请的一些实施例中,所述导光板321的下表面在位于所述第一介质层350的外侧的区域接触于所述反射膜322的上表面。
在本申请的一些实施例中,所述第一介质层350包括多个离散的介质层。
在本申请的一些实施例中,所述背光板323的上表面在所述第一开孔3231的周围区域向背离所述反射膜322的方向延伸。
在本申请的一些实施例中,所述背光板323包括位于所述第一开孔3231的周围区域的第一上表面和与所述第一上表面存在间隔的第二上表面,所述第一上表面平行于所述第二上表面,且所述第一上表面通过斜面连接至所述第二上表面。
在本申请的一些实施例中,所述背光板323在所述第一开孔3231的周围区域的厚度小于所述背光板323在其他区域的厚度。
在本申请的一些实施例中,所述背光板323的下表面平行于所述导光板321的下表面。
在本申请的一些实施例中,所述背光板323的各个区域的厚度相同。
在本申请的一些实施例中,所述导光板321的下表面通过所述第一介质层350连接至所述反射膜322的上表面,所述第一介质层350用于增加所述导光板321和所述反射膜322之间的间隙,所述第一介质层350在所述第一开孔3231的上方设置有第二开孔351,所述第二开孔351的孔径大于或等于所述第一开孔3231的孔径。
在本申请的一些实施例中,所述第一介质层350为透明介质层或非透明介质层。
在本申请的一些实施例中,所述第一介质层350为双面胶层,或所述第一介质层350的材料为包括以下材料中的至少一项:聚碳酸酯PC、丙烯腈丁二烯丙烯酸酯共聚物ABA、聚甲基丙烯酸甲酯PMMA以及聚对苯二甲酸乙二醇酯PET。
在本申请的一些实施例中,所述反射膜322和所述背光板323之间设置有第二介质层360,所述第二介质层360用于将所述反射膜322的位于所述第一开孔3231的上方的区域固定至所述背光板323。
在本申请的一些实施例中,所述反射膜322的下表面在位于所述第一开孔3231的周围区域的上方的区域通过所述第二介质层360固定至所述背光板323的上表面。
在本申请的一些实施例中,所述反射膜322和所述背光板323在所述第二介质层360的外侧的区域设置有第三介质层370,所述反射膜322的下表面通过所述第三介质层370接触于所述背光板323。
在本申请的一些实施例中,所述第三介质层370的厚度大于所述第二介质层360的厚度,以增大所述导光板321和所述反光膜之间的间隙。
在本申请的一些实施例中,所述第二介质层360包括多个离散的介质层。
在本申请的一些实施例中,所述反射膜322的下表面通过所述第二介质层360固定至所述背光板323的上表面,所述第二介质层360在所述第一开孔3231的上方设置有第三开孔361,所述第三开孔361的孔径大于或等于所述第一开孔3231的孔径。
在本申请的一些实施例中,所述第二介质层360为双面胶层。
在本申请的一些实施例中,所述电子设备的中框设置有第四开孔,所述第四开孔用于将经由所述手指反射的光信号传输至所述指纹检测模组340,所述指纹检测模组340固定至所述电子设备的中框的下表面的位于所述第四开孔的周围区域,使得所述指纹检测模组340与所述反射膜322之间距离位于150um~300um范围内。
在本申请的一些实施例中,所述指纹检测模组340为光学指纹检测模组340,所述光学指纹检测模组包括至少一个光学指纹传感器。
另外,本申请实施例还提供了一种背光模组,在本申请的一些实施例中, 适用于具有液晶显示LCD屏的电子设备,所述LCD屏包括背光模组。所述背光模组由上至下依次包括导光板321、反射膜322和背光板323,所述背光板323设置有第一开孔3231,所述反射膜322和所述背光板323之间设置有第二介质层360,所述第二介质层360用于将所述背光板323固定至所述背光板323。
在本申请的一些实施例中,所述反射膜322的下表面在位于所述第一开孔3231的周围区域的上方的区域通过所述第二介质层360连接至所述背光板323的上表面。
在本申请的一些实施例中,所述反射膜322和所述背光板323在所述第二介质层360的外侧的区域设置有第三介质层370,所述反射膜322的下表面通过所述第三介质层370接触于所述背光板323。
在本申请的一些实施例中,所述第三介质层370的厚度大于所述第二介质层360的厚度,以增大所述导光板321和所述反光膜之间的间隙。
在本申请的一些实施例中,所述第二介质层360包括多个离散的介质层。
在本申请的一些实施例中,所述反射膜322的下表面通过所述第二介质层360连接至所述背光板323的上表面,所述第二介质层360在所述第一开孔3231的上方设置有第三开孔361,所述第三开孔361的孔径大于或等于所述第一开孔3231的孔径。
在本申请的一些实施例中,所述第二介质层360为双面胶层。
在本申请的一些实施例中,所述电子设备的中框设置有第四开孔,所述第四开孔用于将经由所述手指反射的光信号传输至所述指纹检测模组340,所述指纹检测模组340固定至所述电子设备的中框的下表面的位于所述第四开孔的周围区域,使得所述指纹检测模组340与所述反射膜322之间距离位于150um~300um范围内。
在本申请的一些实施例中,所述指纹检测模组340为光学指纹检测模组340,所述光学指纹检测模组包括至少一个光学指纹传感器。
另外,本申请实施例还提供了一种显示屏,所述显示屏包括上文涉及的背光模组(例如,图3所示的背光模组150,又例如,图5至图21中所示的331-323中的部分或全部)。此外,本申请实施例还提供了一种电子设备,所述电子设备还包括上文涉及的显示屏(例如,图1所示的显示屏,又例如,图5至图21中所示的331-323中的部分或全部)。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。
Claims (62)
- 一种指纹检测装置,其特征在于,适用于具有液晶显示LCD屏的电子设备,所述LCD屏包括背光模组;所述指纹检测装置包括:指纹检测模组,所述指纹检测模组用于设置在所述背光模组的下方,所述指纹检测模组用于接收外部光源发出的经由手指返回并穿过所述背光模组的光信号,所述光信号用于获取所述手指的指纹信息;其中,所述背光模组由上至下依次包括导光板、反射膜和背光板,所述背光板在所述指纹检测模组的上方设置有第一开孔,所述第一开孔用于将经由所述手指反射的光信号传输至所述指纹检测模组,所述导光板和所述反射膜之间设置有第一介质层,所述第一介质层用于增加位于所述第一开孔的上方的所述导光板和所述反射膜之间的间隙。
- 根据权利要求1所述的指纹检测装置,其特征在于,所述导光板的下表面在位于所述第一开孔的周围区域的上方的区域通过所述第一介质层连接至所述反射膜的上表面。
- 根据权利要求2所述的指纹检测装置,其特征在于,所述导光板的下表面在位于所述第一介质层的外侧的区域接触于所述反射膜的上表面。
- 根据权利要求2或3所述的指纹检测装置,其特征在于,所述第一介质层包括多个离散的介质层。
- 根据权利要求2至4中任一项所述的指纹检测装置,其特征在于,所述背光板的上表面在所述第一开孔的周围区域向背离所述反射膜的方向延伸。
- 根据权利要求5所述的指纹检测装置,其特征在于,所述背光板包括位于所述第一开孔的周围区域的第一上表面和与所述第一上表面存在间隔的第二上表面,所述第一上表面平行于所述第二上表面,且所述第一上表面通过斜面连接至所述第二上表面。
- 根据权利要求2至6中任一项所述的指纹检测装置,其特征在于,所述背光板在所述第一开孔的周围区域的厚度小于所述背光板在其他区域的厚度。
- 根据权利要求7所述的指纹检测装置,其特征在于,所述背光板的下 表面平行于所述导光板的下表面。
- 根据权利要求2至6中任一项所述的指纹检测装置,其特征在于,所述背光板的各个区域的厚度相同。
- 根据权利要求1所述的指纹检测装置,其特征在于,所述导光板的下表面通过所述第一介质层连接至所述反射膜的上表面,所述第一介质层用于增加所述导光板和所述反射膜之间的间隙,所述第一介质层在所述第一开孔的上方设置有第二开孔,所述第二开孔的孔径大于或等于所述第一开孔的孔径。
- 根据权利要求1至10中任一项所述的指纹检测装置,其特征在于,所述第一介质层为透明介质层或非透明介质层。
- 根据权利要求1至11中任一项所述的指纹检测装置,其特征在于,所述第一介质层为双面胶层,或所述第一介质层的材料为包括以下材料中的至少一项:聚碳酸酯PC、丙烯腈丁二烯丙烯酸酯共聚物ABA、聚甲基丙烯酸甲酯PMMA以及聚对苯二甲酸乙二醇酯PET。
- 根据权利要求1至12中任一项所述的指纹检测装置,其特征在于,所述反射膜和所述背光板之间设置有第二介质层,所述第二介质层用于将所述反射膜的位于所述第一开孔的上方的区域固定至所述背光板。
- 根据权利要求13所述的指纹检测装置,其特征在于,所述反射膜的下表面在位于所述第一开孔的周围区域的上方的区域通过所述第二介质层固定至所述背光板的上表面。
- 根据权利要求14所述的指纹检测装置,其特征在于,所述反射膜和所述背光板在所述第二介质层的外侧的区域设置有第三介质层,所述反射膜的下表面通过所述第三介质层接触于所述背光板。
- 根据权利要求15所述的指纹检测装置,其特征在于,所述第三介质层的厚度大于所述第二介质层的厚度,以增大所述导光板和所述反光膜之间的间隙。
- 根据权利要求13至16中任一项所述的指纹检测装置,其特征在于,所述第二介质层包括多个离散的介质层。
- 根据权利要求13所述的指纹检测装置,其特征在于,所述反射膜的下表面通过所述第二介质层固定至所述背光板的上表面,所述第二介质层在所述第一开孔的上方设置有第三开孔,所述第三开孔的孔径大于或等于所述 第一开孔的孔径。
- 根据权利要求13至18中任一项所述的指纹检测装置,其特征在于,所述第二介质层为双面胶层。
- 根据权利要求1至19中任一项所述的指纹检测装置,其特征在于,所述电子设备的中框设置有第四开孔,所述第四开孔用于将经由所述手指反射的光信号传输至所述指纹检测模组,所述指纹检测模组固定至所述电子设备的中框的下表面的位于所述第四开孔的周围区域,使得所述指纹检测模组与所述反射膜之间距离位于150um~300um范围内。
- 根据权利要求1至20中任一项所述的指纹检测装置,其特征在于,所述指纹检测模组为光学指纹检测模组,所述光学指纹检测模组包括至少一个光学指纹传感器。
- 一种指纹检测装置,其特征在于,适用于具有液晶显示LCD屏的电子设备,所述LCD屏包括背光模组;所述指纹检测装置包括:指纹检测模组,所述指纹检测模组用于设置在所述背光模组的下方,所述指纹检测模组用于接收外部光源发出的经由手指返回并穿过所述背光模组的光信号,所述光信号用于获取所述手指的指纹信息;其中,所述背光模组由上至下依次包括导光板、反射膜和背光板,所述背光板在所述指纹检测模组的上方设置有第一开孔,所述第一开孔用于将经由所述手指反射的光信号传输至所述指纹检测模组,所述反射膜和所述背光板之间设置有第二介质层,所述第二介质层用于将位于所述第一开孔的上方的所述反射膜固定至所述背光板。
- 根据权利要求22所述的指纹检测装置,其特征在于,所述反射膜的下表面在位于所述第一开孔的周围区域的上方的区域通过所述第二介质层固定至所述背光板的上表面。
- 根据权利要求23所述的指纹检测装置,其特征在于,所述反射膜和所述背光板在所述第二介质层的外侧的区域设置有第三介质层,所述反射膜的下表面通过所述第三介质层接触于所述背光板。
- 根据权利要求24所述的指纹检测装置,其特征在于,所述第三介质层的厚度大于所述第二介质层的厚度,以增大所述导光板和所述反光膜之间的间隙。
- 根据权利要求23至25中任一项所述的指纹检测装置,其特征在于,所述第二介质层包括多个离散的介质层。
- 根据权利要求22所述的指纹检测装置,其特征在于,所述反射膜的下表面通过所述第二介质层固定至所述背光板的上表面,所述第二介质层在所述第一开孔的上方设置有第三开孔,所述第三开孔的孔径大于或等于所述第一开孔的孔径。
- 根据权利要求22至27中任一项所述的指纹检测装置,其特征在于,所述第二介质层为双面胶层。
- 根据权利要求22至28中任一项所述的指纹检测装置,其特征在于,所述电子设备的中框设置有第四开孔,所述第四开孔用于将经由所述手指反射的光信号传输至所述指纹检测模组,所述指纹检测模组固定至所述电子设备的中框的下表面的位于所述第四开孔的周围区域,使得所述指纹检测模组与所述反射膜之间距离位于150um~300um范围内。
- 根据权利要求22至29中任一项所述的指纹检测装置,其特征在于,所述指纹检测模组为光学指纹检测模组,所述光学指纹检测模组包括至少一个光学指纹传感器。
- 一种背光模组,其特征在于,适用于具有液晶显示LCD屏的电子设备,所述LCD屏包括背光模组;其中,所述背光模组由上至下依次包括导光板、反射膜和背光板,所述背光板设置有第一开孔,所述导光板和所述反射膜之间设置有第一介质层,所述第一介质层用于增加位于所述第一开孔的上方的所述导光板和所述反射膜之间的间隙。
- 根据权利要求31所述的背光模组,其特征在于,所述导光板的下表面在位于所述第一开孔的周围区域的上方的区域通过所述第一介质层连接至所述反射膜的上表面。
- 根据权利要求32所述的背光模组,其特征在于,所述导光板的下表面在位于所述第一介质层的外侧的区域接触于所述反射膜的上表面。
- 根据权利要求32或33所述的背光模组,其特征在于,所述第一介质层包括多个离散的介质层。
- 根据权利要求32至34中任一项所述的背光模组,其特征在于,所述背光板的上表面在所述第一开孔的周围区域向背离所述反射膜的方向延 伸。
- 根据权利要求35所述的背光模组,其特征在于,所述背光板包括位于所述第一开孔的周围区域的第一上表面和与所述第一上表面存在间隔的第二上表面,所述第一上表面平行于所述第二上表面,且所述第一上表面通过斜面连接至所述第二上表面。
- 根据权利要求32至36中任一项所述的背光模组,其特征在于,所述背光板在所述第一开孔的周围区域的厚度小于所述背光板在其他区域的厚度。
- 根据权利要求37所述的背光模组,其特征在于,所述背光板的下表面平行于所述导光板的下表面。
- 根据权利要求32至36中任一项所述的背光模组,其特征在于,所述背光板的各个区域的厚度相同。
- 根据权利要求31所述的背光模组,其特征在于,所述导光板的下表面通过所述第一介质层连接至所述反射膜的上表面,所述第一介质层用于增加所述导光板和所述反射膜之间的间隙,所述第一介质层在所述第一开孔的上方设置有第二开孔,所述第二开孔的孔径大于或等于所述第一开孔的孔径。
- 根据权利要求31至40中任一项所述的背光模组,其特征在于,所述第一介质层为透明介质层或非透明介质层。
- 根据权利要求31至41中任一项所述的背光模组,其特征在于,所述第一介质层为双面胶层,或所述第一介质层的材料为包括以下材料中的至少一项:聚碳酸酯PC、丙烯腈丁二烯丙烯酸酯共聚物ABA、聚甲基丙烯酸甲酯PMMA以及聚对苯二甲酸乙二醇酯PET。
- 根据权利要求31至42中任一项所述的背光模组,其特征在于,所述反射膜和所述背光板之间设置有第二介质层,所述第二介质层用于将所述反射膜的位于所述第一开孔的上方的区域固定至所述背光板。
- 根据权利要求43所述的背光模组,其特征在于,所述反射膜的下表面在位于所述第一开孔的周围区域的上方的区域通过所述第二介质层固定至所述背光板的上表面。
- 根据权利要求43所述的背光模组,其特征在于,所述反射膜和所述背光板在所述第二介质层的外侧的区域设置有第三介质层,所述反射膜的下表面通过所述第三介质层接触于所述背光板。
- 根据权利要求45所述的背光模组,其特征在于,所述第三介质层的厚度大于所述第二介质层的厚度,以增大所述导光板和所述反光膜之间的间隙。
- 根据权利要求43至46中任一项所述的背光模组,其特征在于,所述第二介质层包括多个离散的介质层。
- 根据权利要求43所述的背光模组,其特征在于,所述反射膜的下表面通过所述第二介质层固定至所述背光板的上表面,所述第二介质层在所述第一开孔的上方设置有第三开孔,所述第三开孔的孔径大于或等于所述第一开孔的孔径。
- 根据权利要求43至48中任一项所述的背光模组,其特征在于,所述第二介质层为双面胶层。
- 根据权利要求31至49中任一项所述的背光模组,其特征在于,所述电子设备包括指纹检测模组,所述电子设备的中框设置有第四开孔,所述第四开孔用于将经由所述手指反射的光信号传输至所述指纹检测模组,所述指纹检测模组固定至所述电子设备的中框的下表面的位于所述第四开孔的周围区域,使得所述指纹检测模组与所述反射膜之间距离位于150um~300um范围内。
- 根据权利要求50所述的背光模组,其特征在于,所述指纹检测模组为光学指纹检测模组,所述光学指纹检测模组包括至少一个光学指纹传感器。
- 一种背光模组,其特征在于,适用于具有液晶显示LCD屏的电子设备,所述LCD屏包括背光模组;其中,所述背光模组由上至下依次包括导光板、反射膜和背光板,所述背光板设置有第一开孔,所述反射膜和所述背光板之间设置有第二介质层,所述第二介质层用于将所述背光板固定至所述背光板。
- 根据权利要求52所述的背光模组,其特征在于,所述反射膜的下表面在位于所述第一开孔的周围区域的上方的区域通过所述第二介质层连接至所述背光板的上表面。
- 根据权利要求53所述的背光模组,其特征在于,所述反射膜和所述背光板在所述第二介质层的外侧的区域设置有第三介质层,所述反射膜的下表面通过所述第三介质层接触于所述背光板。
- 根据权利要求54所述的背光模组,其特征在于,所述第三介质层的 厚度大于所述第二介质层的厚度,以增大所述导光板和所述反光膜之间的间隙。
- 根据权利要求52至55中任一项所述的背光模组,其特征在于,所述第二介质层包括多个离散的介质层。
- 根据权利要求52所述的背光模组,其特征在于,所述反射膜的下表面通过所述第二介质层连接至所述背光板的上表面,所述第二介质层在所述第一开孔的上方设置有第三开孔,所述第三开孔的孔径大于或等于所述第一开孔的孔径。
- 根据权利要求52至57中任一项所述的背光模组,其特征在于,所述第二介质层为双面胶层。
- 根据权利要求52至58中任一项所述的背光模组,其特征在于,所述电子设备包括指纹检测模组,所述电子设备的中框设置有第四开孔,所述第四开孔用于将经由所述手指反射的光信号传输至所述指纹检测模组,所述指纹检测模组固定至所述电子设备的中框的下表面的位于所述第四开孔的周围区域,使得所述指纹检测模组与所述反射膜之间距离位于150um~300um范围内。
- 根据权利要求59所述的背光模组,其特征在于,所述指纹检测模组为光学指纹检测模组,所述光学指纹检测模组包括至少一个光学指纹传感器。
- 一种显示屏,其特征在于,包括:根据权利要求31至60中任一项所述的背光模组。
- 一种电子设备,其特征在于,包括:根据权利要求61所述的显示屏。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/129273 WO2021128294A1 (zh) | 2019-12-27 | 2019-12-27 | 指纹检测装置、背光模组、显示屏和电子设备 |
CN201980013621.4A CN111758101B (zh) | 2019-12-27 | 2019-12-27 | 指纹检测装置、背光模组、显示屏和电子设备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/129273 WO2021128294A1 (zh) | 2019-12-27 | 2019-12-27 | 指纹检测装置、背光模组、显示屏和电子设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021128294A1 true WO2021128294A1 (zh) | 2021-07-01 |
Family
ID=72673090
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/129273 WO2021128294A1 (zh) | 2019-12-27 | 2019-12-27 | 指纹检测装置、背光模组、显示屏和电子设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111758101B (zh) |
WO (1) | WO2021128294A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113014760B (zh) * | 2021-02-18 | 2023-02-24 | 维沃移动通信有限公司 | 电子设备 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201440175U (zh) * | 2009-06-09 | 2010-04-21 | 洋华光电股份有限公司 | 透明叠层板的抗牛顿环与抗亮点结构 |
US20120154712A1 (en) * | 2010-12-16 | 2012-06-21 | Shang-Wen Yu | Liquid crystal display device and backlight module thereof |
TW201901525A (zh) * | 2017-05-19 | 2019-01-01 | 致伸科技股份有限公司 | 光學式指紋辨識模組 |
CN109872626A (zh) * | 2017-12-01 | 2019-06-11 | 群创光电股份有限公司 | 电子装置 |
CN209728383U (zh) * | 2019-10-25 | 2019-12-03 | 深圳阜时科技有限公司 | 光学检测装置、背光模组、液晶显示装置、和电子设备 |
-
2019
- 2019-12-27 CN CN201980013621.4A patent/CN111758101B/zh active Active
- 2019-12-27 WO PCT/CN2019/129273 patent/WO2021128294A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201440175U (zh) * | 2009-06-09 | 2010-04-21 | 洋华光电股份有限公司 | 透明叠层板的抗牛顿环与抗亮点结构 |
US20120154712A1 (en) * | 2010-12-16 | 2012-06-21 | Shang-Wen Yu | Liquid crystal display device and backlight module thereof |
TW201901525A (zh) * | 2017-05-19 | 2019-01-01 | 致伸科技股份有限公司 | 光學式指紋辨識模組 |
CN109872626A (zh) * | 2017-12-01 | 2019-06-11 | 群创光电股份有限公司 | 电子装置 |
CN209728383U (zh) * | 2019-10-25 | 2019-12-03 | 深圳阜时科技有限公司 | 光学检测装置、背光模组、液晶显示装置、和电子设备 |
Also Published As
Publication number | Publication date |
---|---|
CN111758101B (zh) | 2024-04-30 |
CN111758101A (zh) | 2020-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN213182770U (zh) | 指纹识别装置和电子设备 | |
US11455823B2 (en) | Under-screen fingerprint identification apparatus and electronic device | |
CN209895353U (zh) | 指纹识别装置和电子设备 | |
JP6864120B2 (ja) | 指紋認識装置及び電子機器 | |
CN210091189U (zh) | 光学传感器装置和电子设备 | |
CN110235143B (zh) | 屏下指纹识别装置和电子设备 | |
US11663846B2 (en) | Fingerprint identification apparatus and electronic device | |
WO2020077498A1 (zh) | 发光装置、生物特征检测装置和电子设备 | |
CN110770749B (zh) | 指纹识别装置和电子设备 | |
WO2019237872A1 (zh) | 指纹识别装置和电子设备 | |
CN212135452U (zh) | 指纹识别装置和电子设备 | |
CN110036396B (zh) | 指纹识别装置和电子设备 | |
CN111095277B (zh) | 光学指纹装置和电子设备 | |
WO2020082375A1 (zh) | 复合透镜结构、指纹识别装置和电子设备 | |
CN210864756U (zh) | 光学指纹装置和电子设备 | |
CN211319236U (zh) | 指纹检测装置、背光模组、显示屏和电子设备 | |
WO2021128294A1 (zh) | 指纹检测装置、背光模组、显示屏和电子设备 | |
CN211087274U (zh) | 指纹检测装置和电子设备 | |
CN212160687U (zh) | 一种生物特征检测装置 | |
CN211087267U (zh) | 指纹识别装置、背光模组、显示屏和电子设备 | |
CN111801685A (zh) | 指纹检测装置和电子设备 | |
WO2021146965A1 (zh) | 指纹检测装置、背光模组、显示屏和电子设备 | |
WO2021147020A1 (zh) | 指纹识别装置和电子设备 | |
WO2021248496A1 (zh) | 指纹检测装置和电子设备 | |
CN211319245U (zh) | 指纹识别装置和电子设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19957447 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19957447 Country of ref document: EP Kind code of ref document: A1 |