WO2021128063A1 - 一种深度氧化烯烃催化剂及其制备方法和应用 - Google Patents
一种深度氧化烯烃催化剂及其制备方法和应用 Download PDFInfo
- Publication number
- WO2021128063A1 WO2021128063A1 PCT/CN2019/128317 CN2019128317W WO2021128063A1 WO 2021128063 A1 WO2021128063 A1 WO 2021128063A1 CN 2019128317 W CN2019128317 W CN 2019128317W WO 2021128063 A1 WO2021128063 A1 WO 2021128063A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ldhs
- unsaturated organic
- application according
- organic compound
- light
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/16—Clays or other mineral silicates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/16—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D301/00—Preparation of oxiranes
- C07D301/02—Synthesis of the oxirane ring
- C07D301/03—Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
Definitions
- the invention relates to the technical fields of fine chemicals and organic synthesis. More specifically, it relates to a deep oxidation olefin catalyst and its preparation method and application.
- Carboxylic acids have many uses in the chemical industry. For example, propionic acid is a useful grain preservative, and longer-chain acids have been used to make detergents. It is known that there are many preparation methods for carboxylic acids, such as the oxidation of olefins, which are essential for the production of aldehydes, ketones or carboxylic acids.
- olefin oxidation is an important precursor step in the hydroformylation reaction to synthesize aldehydes.
- Various studies have explored the oxidation of olefins using OsO 4, 3,4,5,6- tetramethyl-2-iodobenzoic acid, RuO 2 / BaTi 4 O 9 in combination with EtOAc-H 2 O of NaIO 4 , RuCl 3 and 4 combined CCl 4 -MeCN-H 2 O in NaIO, mesoporous materials, or other catalysts and catalyst support (BRTravis, RSNarayan, B.Borhan, J.Am.Chem.Soc ., 2002,124, 3824-3825; JN Moorthy, KNParida, J.
- the present invention proposes a deep olefin oxidation catalyst, a preparation method thereof, and application of the catalyst in olefin oxidation to solve the above-mentioned problems.
- the first aspect of the present invention is to provide a process for the deep oxidation of carbon-carbon double bonds in unsaturated organic compounds with 4 or more carbon atoms.
- the process includes the following steps:
- step a) The layered dihydroxy group is in contact with an unsaturated organic compound; wherein step a) is carried out under electromagnetic radiation with a wavelength of less than or equal to 800 nm.
- a method for preparing layered double metal hydroxide is provided, the formula of which is The synthesis steps are:
- the metal source consists of divalent metal ions M 2+ , such as Mg 2+ , Ni 2+ , Co 2+ , Zn 2+ and Cu 2+, etc., or trivalent metal ions M 3+ , Cr 3+ , Fe 3 + And Sc 3+ and other one or two components;
- . iii source comprises one or more non-metal anion A n- composition: CO 3 2-, NO 3 - , Cl -, OH -, SO 4 2-, PO 4 3-, C 6 H 4 (COO) 2 2 - and other anions;
- step b) Adjust the time length of step a) from 2 hours to 20 hours;
- step a) The ratio of zinc to aluminum is from 1:1 to 5:1;
- the layered double metal hydroxide can be obtained or directly obtained by the method defined in the present invention.
- the present invention provides a method for deep oxidation of carbon-carbon double bonds in unsaturated organic compounds with 4 or more carbon atoms.
- the steps are as follows:
- step a) The layered dihydroxy group is in contact with an unsaturated organic compound; wherein step a) is carried out under electromagnetic radiation with a wavelength of less than or equal to 800 nm.
- Unsaturated organic compounds can be linear, branched or cyclic (such as monocyclic, fused bicyclic, polycyclic or helical).
- the unsaturated organic compound may also include one or more other functional groups.
- These functional groups include but are not limited to carbonyl, hydroxyl, ether, amino, amide, carbon-carbon triple bond, cyano, nitro, ring, aryl, isoaryl, alkoxy, sulfoxide, sulfonyl, sulfonamide, sulfonamide And carbamoyl.
- the unsaturated organic compound has 60 carbon atoms or less.
- the unsaturated organic compound has 30 or fewer carbon atoms. More suitably, the unsaturated organic compound has 20 or fewer carbon atoms.
- the unsaturated organic compound is a linear olefin or a branched olefin or an aryl group consisting of a linear olefin or a branched olefin.
- the unsaturated organic compound includes only carbon atoms and hydrogen atoms.
- Exemplary olefins include hexene, heptene, octene, nonene, decene, dodecene, tetradecene, octadecene, and allylbenzene.
- the unsaturated organic compound is a linear olefin or a branched olefin consisting only of carbon atoms and hydrogen atoms.
- the unsaturated organic compound is a 1-, 2-, 3-, or 4-olefin composed of carbon atoms and hydrogen atoms.
- Exemplary olefins include hexene, heptene, octene, nonene, decene, dodecene, tetradecene, and octadecene.
- olefins include hexene, heptene, octene, nonene and decene.
- LDHs Layered double hydroxides
- AdBAdB divalent cations
- Z An additional anion layer (Z) is inserted between) to neutralize the charge, thereby forming the structure [AcBZAcB] n .
- the insertion layer (Z) may be formed in a variety of anions such as Cl -, Br -, NO 3 -, CO 3 2-, NO 3 -, OH -, SO 4 2-, PO 4 3-, C 6 H 4 (COO) 2 2- , SeO 4 2- and other anions.
- This structure is uncommon in solid-state chemistry, because many materials with similar structures (such as montmorillonite and other clay minerals) have a negatively charged primary metal layer (c) and positively charged ions in the intercalation. (Z).
- the positive layer (c) is composed of divalent and trivalent cations, and the formula can be used Indicates where A n- is the inserted anion.
- M 2+ Ca 2+ , Mg 2+ , Mn 2+ , Fe 2+ , Co 2+ , Ni 2+ , Cu 2+ or Zn 2+
- M 3+ is another three Valence cation, may be the same as M.
- the variable x is known, and in some cases, x>0.5.
- the layered double metal hydroxide has the structure:
- the layered double metal hydroxide may be ZnAl-LDHs, CaAl-LDHS, MgAl-LDHs, MnAl-LDHs, FeAl-LDHs, CoAl-LDHs, NiAl-LDHs, CuAl-LDHs, ZnCr- LDHs, CaCr-LDHs, MgCr-LDHs, MnCr-LDHs, FeCr-LDHs, CoCr-LDHs, NiCr-LDHs, CuCr-LDHs, ZnFe-LDHs, CaFe-LDHs, MgFe-LDHs, MnFe-LDHs, CoFe-LDHs, One or more of NiFe-LDHs, CuFe-LDHs, ZnSc-LDHs, CaSc-LDHs, MgSc-LDHs, MnSc-LDHs, FeSc-LDHs, CoS
- the layered double metal hydroxide is ZnAl-LDHs, MgAl-LDHs, MnAl-LDHs, FeAl-LDHs, CoAl-LDHs, NiAl-LDHs, CuAl-LDHs or mixtures thereof.
- the layered double metal hydroxide is ZnAl-LDHs.
- the layered double metal hydroxide can be understood to be part of the catalytic complex.
- the layered double metal hydroxide can be obtained through the process of preparing LDHs as defined herein or directly.
- the layered double metal hydroxide may be provided on a carrier. Any suitable carrier material can be used. Typical materials include alumina (for example ⁇ -Al 2 O 3 or ⁇ -Al 2 O 3 ), silicon, aluminum silicon, titanium dioxide, zeolite, kaolin, clay, activated carbon, silicon carbide, and mixtures thereof.
- the layered double metal hydroxide is supported on an alumina carrier.
- the weight of the carrier accounts for 0.1-90% of the total weight of the supported layered double metal hydroxide.
- the carrier is composed of 0.1-30% of the total weight of the supported layered double metal hydroxide. More preferably, the carrier is composed of 15-25% of the total weight of the supported layered double metal hydroxide.
- step a) includes contacting an unsaturated organic compound with a mixed catalyst, wherein the mixed catalyst includes one or more layered double metal hydroxides and/or supports.
- step a) may include contacting the unsaturated organic compound with a layered double metal hydroxide.
- step a) may include contacting the unsaturated organic compound with a mixture of a layered double metal hydroxide and an alumina support.
- the volume ratio of LDHs to unsaturated organic compound in step a) is 10:1 to 1:100. More preferably, the volume ratio of LDHs to unsaturated organic compounds is 1:1 to 1:15.
- step a) is performed in the presence of electromagnetic radiation with a wavelength of 10-800 nm.
- step a) is performed in the presence of electromagnetic radiation with a wavelength of 200-800 nm.
- step a) is performed in the presence of electromagnetic radiation with a wavelength of 300-800 nanometers.
- step a) is performed in the presence of electromagnetic radiation with a wavelength of 350-600 nm.
- step a) is performed in the presence of electromagnetic radiation with a wavelength of 250-600 nm.
- step a) is carried out in the presence of electromagnetic radiation with a wavelength of 260-380 nm.
- step a) is performed in the presence of electromagnetic radiation having a wavelength of less than 600 nm (appropriate), less than 400 nm (most appropriate), and less than 350 nm (most appropriate).
- the unsaturated organic compounds and LDHs in step a) of this process are subjected to electromagnetic radiation with a wavelength less than or equal to 800 nm.
- the unsaturated organic compounds and LDHs in step a) of this process are irradiated with electromagnetic radiation from a light source, for example, a xenon lamp.
- “Irradiation” here refers to the electromagnetic radiation of unsaturated organic compounds and LDHs during step a), the intensity is greater than the electromagnetic radiation under standard environmental conditions (ie, electromagnetic radiation provided by sunlight and room lighting). Therefore, it will be easy to understand the process of unsaturated organic compounds and LDHs in step a).
- electromagnetic radiation is only received when irradiated by radiation (light source), for example, a xenon lamp is placed in Nearby or direct contact, the unsaturated organic compound and LDHs in the reaction vessel during step a).
- the irradiation (light) source used in step a) to irradiate unsaturated organic compounds and medium LDHs in this process can have any suitable power output.
- the power output of the irradiation (light) source used to irradiate unsaturated organic compounds and LDHs in step a) is between 200W and 1000W. More preferably, the power output of the irradiation (light) source used in step a) to irradiate the unsaturated organic compound and LDHs is between 200W and 600W. More preferably, the power output of the irradiation (light) source for irradiating unsaturated organic compounds and LDHs in step a) is between 200W and 400W. Most preferably, the power output of the irradiation (light) source used for irradiating unsaturated organic compounds and LDHs in step a) is 300W.
- the radiation (light) source is located within 50 cm of the reaction vessel containing the unsaturated organic compound and LDHs in step a) of this process.
- the radiation (light) source is located within 20 cm of the reaction vessel containing the unsaturated organic compound and LDHs of the process step a). More preferably, the radiation (light) source is located within 10 cm of the reaction vessel, and the reaction vessel includes the unsaturated organic compound and LDHs in step a) of the process. More preferably, the radiation (light) source is located within 5 cm of the reaction vessel, and the reaction vessel includes the unsaturated organic compound and LDHs in step a) of the process.
- the radiation (light) source is in direct contact with the reaction vessel containing the unsaturated organic compound and LDHs in step a) of the process.
- the radiation (light) source is located in a reaction vessel containing the unsaturated organic compound and LDHs of step a) of the process.
- the radiation (light) source is a 300W xenon lamp.
- the reaction vessel In order for the radiation (light) source to irradiate the unsaturated organic compounds and LDHs in step a) of this process, the reaction vessel will allow electromagnetic radiation with a wavelength between 10 nm and 800 nm to pass. Therefore, when the wavelength is between 200 and 800 nm, the reaction vessel will not significantly absorb electromagnetic radiation.
- the reaction vessel used in step a) of this process is a quartz reaction vessel.
- Step a) may or may not use a solvent.
- the unsaturated organic compound can be provided intact (ie, without a separate solvent).
- An unlimited example of an unsaturated organic compound that can be used intact in the process of the present invention is 1-hexene.
- the unsaturated organic compound can be provided as a solution in any suitable solvent.
- step a) of this process can be carried out at any temperature lower than the boiling point of the unsaturated organic compound (if any other solvent is present).
- step a) of the process is carried out in the range of 18°C-110°C.
- Step a) of the process can be carried out under any suitable pressure (ie, under atmospheric pressure and high pressure).
- step a) of the process can be carried out under normal pressure. That is, the current step a) can be carried out at a pressure of 100 to 1000 kPa, more preferably, the pressure is 100 to 500 kPa, and most preferably, the pressure is 100 to 150 kPa.
- step a) can be completed within 30 to 720 minutes.
- step a) can be completed within 60 to 600 minutes. More preferably, step a) can be completed within 60 to 420 minutes. More preferably, step a) can be completed within 60 to 240 minutes. More preferably, step a) can be completed within 120 to 240 minutes.
- step a) can occur within 1 to 450 minutes.
- step a) can be completed within 5 to 450 minutes. More preferably, step a) can be completed within 10 to 450 minutes. More preferably, step a) can be completed within 10 to 100 minutes. More preferably, step a) can be completed within 10 to 60 minutes.
- the present invention provides a method for preparing LDHs, which includes the following steps:
- the metal source consists of divalent metal ions M 2+ , such as Mg 2+ , Ni 2+ , Co 2+ , Zn 2+ and Cu 2+, etc., or trivalent metal ions M 3+ , Cr 3+ , Fe 3 + And Sc 3+ and other one or two components;
- . iii source comprises one or more non-metal anion A n- composition: CO 3 2-, NO 3 - , Cl -, OH -, SO 4 2-, PO 4 3-, C 6 H 4 (COO) 2 2 - and other anions;
- step b) Adjust the time length of step a) from 2 hours to 20 hours;
- step a) The ratio of zinc to aluminum is from 1:1 to 5:1;
- the method of the present invention prepares ZnAl LDHs with a relatively large surface area.
- the improved surface area improves the efficiency of ZnAl LDHs in the catalytic process.
- step b) includes adjusting the time of the mixture of step a) from 2 hours to 20 hours; preferably, step b) includes adjusting the time of the mixture of step a) from 2 hours to 12 hours. More preferably, step b) includes adjusting the time of the mixture of step a) to 6 hours to 12 hours. Most preferably, the length of time is adjusted to 8 hours or less, resulting in the formation of LDHs having a nanosheet structure. The mixing time can be adjusted in step b).
- the metal source may be metal ions such as Mg 2+, Ni 2+ , Co 2+ , Zn 2+ and Cu 2+ or r Al 3+ , Cr 3+ , Fe 3+ and Sc 3+ .
- the metal may exist in an uncharged state, or in any suitable charged state.
- non-metal source may be CO 3 2-, NO 3 -, Cl -, OH -, SO 4 2-, any PO 4 3-, C 6 H 4 (COO) 2 2- , and one or more other anions A. Exist in an uncharged state or any suitable state of charge.
- the metal source is a metal in its 2+ oxidation state.
- the non-metal source includes OH ⁇ .
- the non-metal source is NaOH.
- step a) is performed at a temperature of 60-100°C.
- LDHs can be supported on suitable carrier materials. This can be achieved by mixing the LDHs prepared by this process with a suitable carrier material (with or without solvent). Alternatively, the supported LDHs can be prepared by including a suitable carrier material in step a) of this process, thereby forming the supported LDHs in situ. Any suitable carrier material can be used, including the materials described herein. A suitable support material is Al 2 O 3 .
- the present invention also provides a kind of LDHs obtainable or directly obtained by the method defined herein.
- the LDHs of the present invention have many advantages. Perhaps most notably, the LDHs of the present invention have a much higher surface area than LDHs on the market. The increased surface area makes LDHs more effective as catalysts.
- LDHs have a BET surface area ⁇ 3 m 2 /g. More preferably, the BET surface area of LDHs is ⁇ 5 m 2 /g. More preferably, the BET surface area of LDHs is 5-10 m 2 /g.
- the surface area of BET can be calculated by nitrogen physical adsorption method.
- the pore volume of LDHs is 0.1-1.0 ml/g. More preferably, the pore volume of LDHs is 0.2-0.8 ml/g. More preferably, the pore volume of LDHs is 0.2-0.6 ml/g.
- the pore volume is calculated using the carbon tetrachloride (CCl 4 ) method.
- the density of LDHs is 0.1-20 ml/g. More preferably, the pore volume of LDHs is 0.5-15 ml/g. More preferably, the pore volume of LDHs is 1-10 ml/g.
- the pore volume is calculated using the carbon tetrachloride (CCl 4 ) method.
- LDHs absorb UV-vis light with a wavelength between 250 and 450 nm.
- the gas chromatograph uses includedgas chromatograph (GC-2010plus, Shimadzu Corporation), autosampler (AOC-201, Shimadzu Corporation) and chromatographic column (SHIM-5MS thickness: 0.25 ⁇ m, length: 30.0m) , Diameter: 0.25mm).
- Oven temperature 50°C
- Injection temperature 200°C;
- Injection mode shunt
- Carrier gas helium
- Injection hot port INJT
- the temperature program using GC-MS is as follows:
- Solution A is made by mixing zinc nitrate hexahydrate (Zn(NO 3 ) 2 ⁇ 6H 2 O, Sigma-Aldrich), aluminum nitrate nonahydrate (Al(NO 3 ) 3 ⁇ 9H 2 O, Sigma-Aldrich) in water Obtained, "Solution B” is obtained by mixing sodium hydroxide (sodium hydroxide, Sigma-Aldrich) and sodium carbonate (Na 2 CO 3 , Sigma-Aldrich) in water, using a gentle magnetic stirring temperature from 30-90°C, Continue for 3-20 minutes until completely dissolved.
- sample C is formed, filtered 3-5 times, and dried in air to form a layered double metal hydroxide. Moreover, this sample does not require any activation steps during the catalysis process.
- Usage example 1 1.0 g of AlZn LDHs prepared was added to a quartz test tube equipped with an electromagnetic stirrer, and kept at 90°C. 30ml 1-hexene (purchased from Sigma-Aldrich) was also added to the test tube, the temperature was kept at 90°C, and the mixture was continuously mixed in a magnetic stirrer, and then irradiated with UV-visible and 300W xenon lamps. The samples of each series were extracted after 60, 120, 180, 240, 300, 360, 420 minutes, and analyzed by gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR). The analysis showed that 1-hexene was oxidized to 70% after 540 minutes of ultraviolet irradiation and 300W xenon lamp irradiation.
- GC-MS gas chromatography-mass spectrometry
- NMR nuclear magnetic resonance
- Example 1 Using 1.0 g of AlZn LDHs with Keggin structure prepared in Example 1) was added to a quartz test tube equipped with an electromagnetic stirrer, and kept at 90°C. 15ml 1-octene (purchased from Sigma-Aldrich) was also added to the test tube, the temperature was kept at 90°C, and the mixture was continuously mixed in a magnetic stirrer, and then irradiated with UV-visible and 300W xenon lamps. The samples of each series were extracted after 60, 120, 180, 240, 300, 360, 420 minutes, and analyzed by gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR). The analysis showed that 1-hexene was oxidized to 70% after 540 minutes of ultraviolet irradiation and 300W xenon lamp irradiation.
- GC-MS gas chromatography-mass spectrometry
- NMR nuclear magnetic resonance
- Example 1 Prepare 1.0 g of the catalyst prepared in Example 1), add it to a quartz test tube equipped with an electromagnetic stirrer, and keep it at a temperature of 23°C. 15 ml of 1-hexene (purchased from Sigma-Aldrich) is also added to the test tube to maintain Mix continuously in the dark at a temperature of 90°C. One of the samples was extracted after 240 hours and analyzed by gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR). Analysis showed that 1-hexene and the catalyst were continuously mixed for 240 hours in the dark without oxidation reaction.
- GC-MS gas chromatography-mass spectrometry
- NMR nuclear magnetic resonance
- Example 1 To prepare 1.0 g of the catalyst prepared in Example 1) was added to the quartz test tube, equipped with an electromagnetic stirrer, kept at a temperature of 23°C, and 15 ml of 1-octene (purchased from Sigma-Aldrich) was also added to the test tube , Keep the temperature at 90 °C, keep mixing in the dark.
- One of the samples was extracted after 240 hours and analyzed by gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR). The analysis results showed that 1-octene was not oxidized after 240 hours of using the catalyst in the dark. Instead, all octane is polymerized into dimers or trimers.
- GC-MS gas chromatography-mass spectrometry
- NMR nuclear magnetic resonance
- Example 1 Prepare 4.0 g of the catalyst prepared in Example 1), add it to a quartz test tube equipped with an electromagnetic stirrer, and keep it at a temperature of 80°C. 40ml of oleic acid (purchased from Sigma-Aldrich) is also added to the test tube, and the temperature is maintained. Stir continuously at 80°C, then irradiate with UV-Vis and 300W xenon lamp. The samples of each series were extracted after 6, 9, 12, 15, 18 and 24 hours and analyzed by gas chromatography-mass spectrometry (GC-MS). Analysis showed that oleic acid was oxidized by azelaic acid.
- GC-MS gas chromatography-mass spectrometry
- Tables 2 to 8 below compare the ZnAl LDHs prepared in Example 1 to 1-hexene (1-C 6 H 12 ), 1-heptene (1-1-C 7 H 14 ), 1-octene (1- C 8 H 16 ), 1-decene (1-C 10 H 20 ), 1-dodecene (1-C 12 H 24 ), 1-tetradecene (1-C 14 H 28 ) and 1-decene
- the catalytic efficiency of the oxidation of octaene (1-C 18 H 36 ).
- the catalyst C1 was the same as the catalyst prepared in Example 1 above.
- the light emitted by a xenon lamp equipped with a filter can filter out light with a wavelength of 350 nanometers or less.
- Reaction conditions 2g of the catalyst sample (C1) was immersed in 30ml of reactant and irradiated with a 300W xenon lamp under ambient conditions.
- the catalyst C1 was the same as the catalyst prepared in Example 1 above.
- Reaction conditions 2g of the catalyst sample (C1) was immersed in 30ml of reactant and irradiated with a 300W xenon lamp under ambient conditions.
- the catalyst C1 was the same as the catalyst prepared in Example 1 above.
- the light emitted by a xenon lamp equipped with a filter can filter out light with a wavelength of 350 nanometers or less.
- the catalyst C1 was the same as the catalyst prepared in Example 1 above.
- the light emitted by a xenon lamp equipped with a filter can filter out light with a wavelength of 350 nanometers or less.
- Reaction conditions 2g of the catalyst sample (C1) was immersed in 30ml of reactant and irradiated with a 300W xenon lamp under ambient conditions.
- the catalyst C1 was the same as the catalyst prepared in Example 1 above.
- the light emitted by a xenon lamp equipped with a filter can filter out light with a wavelength of 350 nanometers or less.
- Reaction conditions 2g of the catalyst sample (C1) was immersed in 30ml of reactant and irradiated with a 300W xenon lamp under ambient conditions.
- the catalyst C1 was the same as the catalyst prepared in Example 1 above.
- the light emitted by a xenon lamp equipped with a filter can filter out light with a wavelength of 350 nanometers or less.
- Reaction conditions 2g of the catalyst sample (C1) was immersed in 30ml of reactant and irradiated with a 300W xenon lamp under ambient conditions.
- the catalyst C1 was the same as the catalyst prepared in Example 1 above.
- the light emitted by a xenon lamp equipped with a filter can filter out light with a wavelength of 350 nanometers or less.
- Reaction conditions 2g of the catalyst sample (C1) was immersed in 30ml of reactant and irradiated with a 300W xenon lamp under ambient conditions.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Analytical Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
Abstract
一种深度氧化烯烃催化剂及其制备方法和应用,涉及一种深度氧化不饱和有机化合物碳碳双键的催化方法,还涉及用于上述催化过程的层状双金属氢氧化物催化剂。该催化剂能够有效进行不饱和有机化合物中的C=C双键的深度氧化。
Description
本发明涉及精细化工和有机合成技术领域。更具体地,涉及一种深度氧化烯烃催化剂及其制备方法和应用。
羧酸在化学工业中有许多用途。例如,丙酸是一种有用的谷物防腐剂,更长链的酸已被用于制造洗涤剂。已知羧酸有多种制备方法,如烯烃的氧化等,这对生产醛、酮或羧酸等至关重要。
另外,烯烃氧化是加氢甲酰化反应合成醛类化合物的重要前驱步骤。各种研究探索了烯烃的氧化,使用OsO
4、3、4、5、6-四甲基-2-碘代苯甲酸、RuO
2/BaTi
4O
9与EtOAc-H
2O中的NaIO
4结合,RuCl
3与CCl
4-MeCN-H
2O中的NaIO
4结合,或使用其他介孔材料催化剂和催化载体(B.R.Travis,R.S.Narayan,B.Borhan,J.Am.Chem.Soc.,2002,124,3824-3825;J.N.Moorthy,K.N.Parida,J.Org.Chem.,2014,79,11431-11439;H.Okumoto,K.Ohtsuko,S.Banjoya,Synlett,2007,3201-3205;Y.K.Chen.A.E.Lurain,P.J.Walsh,J.Am.Chem.Soc.,2002,124,12225-12231;D.Yang,C.Zhang,J.Org.Chem.,2001,66,4814-4818;),或使用铈盐和硝酸催化剂(美国专利,专利号:3407221)。其他的研究集中在使用R
1
aRe
bO
cL
d分子式化合物作为催化剂,在含有过氧化物和布伦斯特酸的化合物存在的情况下,选择性地将烯烃氧化成相应的羧酸(国际专利号:WO9847852A1)。尽管如此,对于不饱和有机化合物中的C=C双键的深度氧化仍然需要其他的方法。
因此,本发明提出了一种深度氧化烯烃催化剂及其制备方法和该催化剂在烯烃氧化中的应用,解决上述问题。
发明内容
本发明的第一个方面在于提供了一种在有4个或更多碳原子的不饱和有机化合物中碳碳双键的深度氧化的过程,该过程包括的步骤为:
a)层状双羟基与不饱和有机化合物接触;其中步骤a)是在波长小于等于800nm的电磁辐射下进行的。
a)混合:
i.水;
ii.金属源由二价金属离子M
2+,如Mg
2+,Ni
2+,Co
2+,Zn
2+和Cu
2+等,或三价金属离子M
3+,Cr
3+,Fe
3+和Sc
3+等一个或两个组成;
iii.非金属源由一个或多个阴离子A
n-组成:CO
3
2-,NO
3
-,Cl
-,OH
-,SO
4
2-,PO
4
3-,C
6H
4(COO)
2
2-和其他阴离子;
b)调整步骤a)混合的时间长度,从2小时调整到20小时;
c)调整步骤a)锌铝比例从1∶1到5∶1;
d)调节a)反应温度,从60℃到100℃;
e)隔离步骤b)形成的产物;
f)清洗步骤e)中隔离的产品;
g)烘干步骤f)水洗后的产品。
根据本发明的另一个方面,可通过本发明定义的方法获得或直接获得层状双金属氢氧化物。
根据本发明的另一个方面,提供了在本发明中定义的C=C深度氧化过程中使用的层状双金属氢氧化物。
如上所述,本发明提供了一种具有4个或4个以上碳原子的不饱和有机化合物中碳碳双键的深度氧化的方法,其步骤为:
a)层状双羟基与不饱和有机化合物接触;其中步骤a)是在波长小于等于800nm的电磁辐射下进行的。
与现有技术方法相比,本发明提供了一种在可见光或UV-vis光线下使用层状双羟基催化C=C双键在不饱和有机化合物中的光催化深度氧化的快速高效方法。
此处所使用的不饱和有机化合物,除非另有规定,是指至少含有一个C=C双键的任何有机化合物。对于含有4个以上碳原子的不饱和有机化合物,可能存在一个以上的C=C双键,根据本文定义的过程,其中的任何一个或全部都可能被深度氧化。不饱和有机化合物可以是线性的、分枝的或环状的(如单环的、稠双环的、多环的或螺旋的)。除C=C双键外,该不饱和有机化合物还可包括一个或多个其他官能团。这些官能团包括但不限于羰基、羟基、醚、氨基、酰胺、碳碳三键、氰基、硝基、环、芳基、异芳基、烷氧基、亚砜、磺酰、 磺胺、磺胺基和氨基甲酰基。
在实施例中,不饱和有机化合物具有60个或更少的碳原子。适当地,不饱和有机化合物有30个或更少的碳原子。更合适的是,不饱和有机化合物有20个或更少的碳原子。
在另一个实施例中,不饱和有机化合物的C=C双键是末端或内部的C=C双键。
在另一个实施例中,所述不饱和有机化合物为直链烯烃或支链烯烃或芳基组成直链烯烃或支链烯烃。适当地,不饱和有机化合物只包括碳原子和氢原子。示例烯烃包括己烯、庚烯、辛烯、壬烯、癸烯、十二烯、十四烯、十八烯和烯丙基苯。
在另一个实施例中,所述不饱和有机化合物为直链烯烃或仅由碳原子和氢原子组成的支链烯烃。适当的,不饱和有机化合物是由碳原子和氢原子组成的1-、2-、3-或4-烯烃。示例烯烃包括己烯、庚烯、辛烯、壬烯、癸烯、十二烯、十四烯和十八烯。相应的,烯烃包括己烯、庚烯、辛烯、壬烯和癸烯。
层状双金属氢氧化物“LDHs”被研究人员简单地认为是一种酸,它是由氢和氧与某些金属和非金属的特定组合形成的。可以认为LDHs是由金属层中氧化或阳离子置换的二价阳离子[AdBAdB]
n的氢氧化物衍生而来(d),从而使它们获得过量的正电荷;并在氢氧根层(A,B)之间插入额外的阴离子层(Z)以中和电荷,从而形成结构[AcBZAcB]
n。在插入层(Z)中可以形成多种阴离子,如Cl
-,Br
-,NO
3
-,CO
3
2-,NO
3
-,OH
-,SO
4
2-,PO
4
3-,C
6H
4(COO)
2
2-,SeO
4
2-等阴离子。这种结构在固态化学中是不常见的,因为许多具有类似结构的材料(如蒙脱石和其他粘土矿物)在插层中都有带负电荷的主要金属层(c)和带正电的离子(Z)。
在研究最多的LDHs类的实施例中,正层(c)由二价和三价阳离子组成,可以用公式
表示,其中A
n-是插入的阴离子。最常见的是,M
2+=Ca
2+,Mg
2+,Mn
2+,Fe
2+,Co
2+,Ni
2+,Cu
2+或Zn
2+,而M
3+是另一种三价阳离子,可能与M相同。然而,变量x已知,在某些情况下,x>0.5。另一类LDH已知主要金属层(c)由Li
+和Al
3+阳离子组成,一般公式为[Li
+Al
3+
2(HO
-)
6]
+[Li
+Al
3+
2(X
6-)·yH
2O]
-,其中X
6-表示一个或多个带总电荷6的阴离子。y的值通常在0.5到4之间。
在实施例中,层状双金属氢氧化物具有结构为:
在另一个实施例中,层状双金属氢氧化物可以是ZnAl-LDHs,CaAl-LDHS,MgAl-LDHs,MnAl-LDHs,FeAl-LDHs,CoAl-LDHs,NiAl-LDHs,CuAl-LDHs,ZnCr-LDHs,CaCr-LDHs,MgCr-LDHs,MnCr-LDHs,FeCr-LDHs,CoCr-LDHs,NiCr-LDHs,CuCr-LDHs,ZnFe-LDHs,CaFe-LDHs,MgFe-LDHs,MnFe-LDHs,CoFe-LDHs,NiFe-LDHs,CuFe-LDHs,ZnSc-LDHs, CaSc-LDHs,MgSc-LDHs,MnSc-LDHs,FeSc-LDHs,CoSc-LDHs,NiSc-LDHs,CuSc-LDHs等的一个或多个。
优选地,层状双金属氢氧化物为ZnAl-LDHs、MgAl-LDHs、MnAl-LDHs、FeAl-LDHs、CoAl-LDHs、NiAl-LDHs、CuAl-LDHs或其混合物。所述的层状双金属氢氧化物为ZnAl-LDHs。层状双金属氢氧化物可以理解为可能是催化复合物的一部分。
在另一个实施例中,所述层状双金属氢氧化物可通过制备此处定义的LDHs的过程获得或直接获得。所述层状双金属氢氧化物可设置在载体上。任何合适的载体材料都可以使用。典型材料包括氧化铝(例如α-Al
2O
3或γ-Al
2O
3)、硅、铝硅、二氧化钛、沸石、高岭土、粘土、活性炭、碳化硅和其混合物。优选地,所述层状双金属氢氧化物被担载在氧化铝载体上。
当层状双金属氢氧化物被担载在合适的载体上时,载体的重量占所担载的层状双金属氢氧化物总重量的0.1-90%。优选地,该载体由所担载的层状双金属氢氧化物总重量的0.1-30%构成。更优选地,该载体由所担载的层状双金属氢氧化物总重量的15-25%组成。
在另一个实施例中,步骤a)包括与混合催化剂接触不饱和有机化合物,其中混合催化剂包括一个或多个层状双金属氢氧化物和/或载体。例如,步骤a)可以包括用层状双金属氢氧化物接触不饱和有机化合物。或者,步骤a)可以包括用层状双金属氢氧化物和氧化铝载体的混合物接触不饱和有机化合物。
优选地,步骤a)中LDHs与不饱和有机化合物的体积比为10∶1~1∶100。更优选地,LDHs与不饱和有机化合物的体积比为1∶1~1∶15。
本发明的C=C键氧化工艺需要波长小于或等于800nm的光。这包括可见光(约400-800nm)和紫外线(约10-400nm)。在实施例中,步骤a)在波长为10-800nm的电磁辐射存在的情况下进行。优选地,步骤a)在波长为200-800nm的电磁辐射存在的情况下进行。更优选的是,步骤a)是在波长为300-800纳米的电磁辐射存在的情况下进行的。更优选的是,步骤a)是在波长为350-600nm的电磁辐射存在的情况下进行的。更优选的是,步骤a)是在波长为250-600nm的电磁辐射存在的情况下进行的。最优选的是,步骤a)是在波长为260-380nm的电磁辐射存在的情况下进行的。
在实施例中,步骤a)是在波长小于600nm(适当)、小于400nm(最适当)和小于350nm(最适当)的电磁辐射存在的情况下进行的。
在另一个实施例中,本工艺步骤a)的不饱和有机化合物和LDHs受到波长小于或等于800nm的电磁辐射。优选地,本工艺步骤a)的不饱和有机化合物和LDHs被来自光源的电 磁辐射照射,例如,一盏氙灯。
“辐照”在这里指的是不饱和有机化合物和LDHs在步骤a)过程中的电磁辐射,强度比标准环境条件下(即阳光提供的电磁辐射和房间照明)的电磁辐射更大。因此,这将是很容易明白的不饱和有机化合物和LDHs在步骤a)的过程,在本发明中,只有在受辐照(光源)照射时才受到电磁辐射,例如,一盏氙灯,放置在附近或直接接触,在步骤a)时反应容器中的不饱和有机化合物和LDHs。
本工艺中用于步骤a)辐照不饱和有机化合物和中LDHs的辐照(光)源可以有任何合适的功率输出。优选地,用于步骤a)辐照不饱和有机化合物和的LDHs的辐照(光)源的功率输出在200W到1000W之间。更优选的是,用于步骤a)辐照不饱和有机化合物和的LDHs的辐照(光)源的功率输出在200W到600W之间。更优选的是,用于辐照步骤a)不饱和有机化合物和的LDHs的辐照(光)源的功率输出在200W到400瓦之间。最优选的是,用于步骤a)辐照不饱和有机化合物和的LDHs的辐照(光)源的功率输出为300W。
在实施例中,辐照(光)源位于包含本工艺步骤a)的不饱和有机化合物和LDHs的反应容器的50cm内。优选地,辐照(光)源位于包含本工艺步骤a)的不饱和有机化合物和LDHs的反应容器的20cm内。更优选的是,辐照(光)源位于反应容器的10cm内,该反应容器包括本工艺步骤a)的不饱和有机化合物和LDHs。更优选的是,辐照(光)源位于反应容器的5cm内,该反应容器包括本工艺步骤a)的不饱和有机化合物和LDHs。
在另一个实施例中,辐照(光)源与包含本工艺步骤a)的不饱和有机化合物和LDHs的反应容器直接接触。
在另一个实施例中,辐照(光)源位于包含本工艺步骤a)的不饱和有机化合物和LDHs的反应容器内。
在一个特定实施例中,辐照(光)源是一个300W氙灯。
为了使辐射(光)源照射本工艺步骤a)的不饱和有机化合物和LDHs,反应容器将允许波长在10nm到800nm之间的电磁辐射通过。因此,当波长在200~800nm之间时,反应容器不会显著吸收电磁辐射。优选地,本工艺步骤a)中使用的反应容器为石英反应容器。
步骤a)可以使用溶剂,也可以不使用溶剂。在实施例中,所述不饱和有机化合物可以提供完整的(即没有单独的溶剂)。在本发明的过程中可以完整使用的不饱和有机化合物的一个无极限的例子是1-己烯。或者,所述不饱和有机化合物可作为溶液提供在任何合适的溶剂中。
与需要提高温度的现有技术相比,本工艺的步骤a)可以在低于不饱和有机化合物沸点 的任何温度下进行(如果存在任何其他溶剂)。优选地,在实施例中,本工艺的步骤a)在18℃-110℃范围内进行。
本工艺的步骤a)可在任何适当的压力下(即在大气压和高压下)进行。优选地,与现有技术要求提高压力相反,本工艺的步骤a)可在常压下进行。也就是说,目前的步骤a)可以在100至1000千帕的压力下进行,更优选地,压力为100至500千帕,最优选地,压力为100至150千帕。
与现有技术相比,本工艺可显著缩短反应时间。在实施例中,步骤a)可以在30到720分钟的时间内完成。优选地,步骤a)可以在60到600分钟的时间内完成。更优选地是,步骤a)可在60至420分钟内完成。更优选地,步骤a)可以在60到240分钟内完成。更优选地,步骤a)可以在120到240分钟内完成。虽然目前的方法可以在较短的时间内实现C=C的双键氧化,但如果使用较长的反应时间,C=C的双键氧化可能会有更高转化率。
在某些实施例中,步骤a)可在1至450分钟内发生。优选地,步骤a)可以在5到450分钟的时间内完成。更优选地,步骤a)可以在10到450分钟内完成。更优选地,步骤a)可以在10到100分钟内完成。更优选地,步骤a)可以在10到60分钟内完成。
LDHs制备
如前所述,本发明提供了一种LDHs的制备方法,该方法包括以下步骤:
a)混合:
i.水;
ii.金属源由二价金属离子M
2+,如Mg
2+,Ni
2+,Co
2+,Zn
2+和Cu
2+等,或三价金属离子M
3+,Cr
3+,Fe
3+和Sc
3+等一个或两个组成;
iii.非金属源由一个或多个阴离子A
n-组成:CO
3
2-,NO
3
-,Cl
-,OH
-,SO
4
2-,PO
4
3-,C
6H
4(COO)
2
2-和其他阴离子;
b)调整步骤a)混合的时间长度,从2小时调整到20小时;
c)调整步骤a)锌铝比例从1∶1到5∶1;
d)调节a)反应温度,从60℃到100℃;
e)隔离步骤b)形成的产物;
f)清洗步骤e)中隔离的产品;
g)烘干步骤f)水洗后的产品。
与现有技术相比,本发明的方法制备了具有相当大的表面积的ZnAl LDHs。改进的表面积提高了ZnAl LDHs在催化过程中的效率。
在另一个实施例中,步骤b)包括将步骤a)的混合物的时间从2小时调整到20小时;优选地,步骤b)包括将步骤a)的混合物的时间从2小时调整到12小时。更优选地,步骤b)包括将步骤a)的混合物的时间调整为6小时到12小时。最更优选地,将时间长度调整为8小时或以下,导致形成具有纳米片结构的LDHs。混合时间可在步骤b)中调整。
金属源可以是Mg
2+,Ni
2+,Co
2+,Zn
2+和Cu
2+或者r Al
3+,Cr
3+,Fe
3+和Sc
3+等金属离子。金属可能以不带电状态存在,或以任何适当的带电状态存在。同样,非金属源可以是CO
3
2-,NO
3
-,Cl
-,OH
-,SO
4
2-,PO
4
3-,C
6H
4(COO)
2
2-和其他阴离子的任何一个或多个。以非荷电状态或任何合适的荷电状态存在。
在另一个实施例中,金属源是处于其2
+氧化状态的金属。
在另一个实施例中,非金属源包括OH
-。优选地,非金属源是NaOH。
在另一个实施例中,步骤a)在60-100℃的温度下进行。
LDHs可担载在合适的载体材料上。这可以通过将通过本工艺制备的LDHs与适当的载体材料(无论是否有溶剂)混合来实现。或者,可通过在本工艺步骤a)中包括合适的载体材料来制备担载型LDHs,从而在原位形成担载型LDHs。可以使用任何合适的载体材料,包括在此所述的材料。适当的支撑材料是Al
2O
3。
如前所述,本发明还提供了一种可获得或直接通过本文定义的方法获得的LDHs。
本发明的LDHs相比市场上的LDHs具有许多优点。也许最值得注意的是,本发明的LDHs具有比市场上的LDHs高得多的表面积。增加的表面积使LDHs作为催化剂时更有效。
在实施例中,LDHs具有≥3m
2/g的BET表面积。更优选地,LDHs的BET表面积≥5m
2/g。更优选地,LDHs的BET表面积为5-10m
2/g。BET的表面积可用氮气物理吸附法计算。
在实施例中,LDHs的孔隙体积为0.1-1.0ml/g。更优选地,LDHs的孔隙体积为0.2-0.8ml/g。更优选地,LDHs的孔隙体积为0.2-0.6ml/g。孔隙体积使用四氯化碳(CCl
4)法计算。
在实施例中,LDHs的密度为0.1-20ml/g。更优选地,LDHs的孔隙体积为0.5-15ml/g。更优选地,LDHs的孔隙体积为1-10ml/g。孔隙体积使用四氯化碳(CCl
4)法计算。
在另一个实施例中,LDHs吸收波长在250到450nm之间的UV-vis光。
实例:
试剂与材料:
苯乙烯,C
8H
8,MW:104.15g·mol
-1购自Sigma-Aldrich公司
ZnAl-LDHs,自制(见上文)
装置:
通用弧光灯
优选氙灯
灯: | 氙灯 |
功率: | 300W |
环境温度: | 40-60℃ |
运行时间: | 0min,60min,120min,180min,240min,300min,360min,420min,480min, |
弧光灯供应:
模型:PLS-SXE300DUV;
-灯具规格:300W氙灯;
-功率范围:240-330W;
-典型电流ADC:13.0-15.0;
-平均使用寿命(小时):1000;
GC-MS(GCMS-QP2010 SE,岛津)
气相色谱仪使用的是includedagas色谱仪(GC-2010plus,日本岛津公司),自动进样器(AOC-201,日本岛津公司)和色谱柱(SHIM-5MS厚度:0.25μm,长度:30.0m,直径:0.25mm)。
采用以下条件:
柱箱温度:50℃;
注入温度:200℃;
注入模式:分流;
载气:氦气;
Prim.Press:500-900;
流量控制方式:线速度;
压力:7.9kpa;
总流量:6.9ml/min;
柱流量:0.50ml/min;
线速度:25.6cm/sec;
吹扫流量:1.4ml/min;
注入热端口:INJT;
分割比例:100.0;
注入体积:0.1μL
使用GC-MS的温度程序如下:
速度 | 终止温度. | 保存时间(min) | |
0 | - | 50.0 | 5 |
1 | 5.00 | 100.0 | 1.00 |
2 | 20.00 | 250.00 | 30.00 |
3 | 0.00 | 0.00 | 0.00 |
示例1:制备AlZn LDHs
“溶液A”是通过在水中混合六水合硝酸锌(Zn(NO
3)
2·6H
2O、Sigma-Aldrich),九水合硝酸铝(Al(NO
3)
3·9H
2O,Sigma-Aldrich)获得,“溶液B”是通过在水中混合氢氧化钠(氢氧化钠,Sigma-Aldrich)和碳酸钠(Na
2CO
3,Sigma-Aldrich)获得,使用温和的磁性搅拌温度从30-90℃,持续3-20分钟直到完全溶解。
将“溶液A”和“溶液B”完全混合后,形成样品C,过滤3-5次,在空气中干燥形成层状双金属氢氧化物。而且,该样品在催化过程中不需要任何活化步骤。
示例2 C=C双键的氧化
例(i)-分别在UV-vis和300W氙气可见光照射下用光催化剂进行氧化1-己烯。
使用示例1)制备的AlZn LDHs 1.0g添加到一个石英试管中配备电磁搅拌器,保持90℃。30ml 1-己烯(购自Sigma-Aldrich)也加入到试管中,温度保持在90℃,在磁力搅拌器中不断混合,然后分别照射紫外-可见和300W氙灯。每个系列的样品在60、120、180、240、300、360、420分钟后提取,通过气相色谱-质谱(GC-MS)和核磁共振(NMR)进行分析。分析表明,1-己烯在紫外线照射和300W氙灯照射540分钟后均被氧化至70%。
例(ii)-分别在UV-vis和300W氙气可见光的照射下用光催化剂氧化1-辛烯。
使用1.0g示例1)制备的Keggin结构的AlZn LDHs添加到一个石英试管中配备电磁搅拌器,保持90℃。15ml 1-辛烯(购自Sigma-Aldrich)也加入到试管中,温度保持在90℃,在磁力搅拌器中不断混合,然后分别照射紫外-可见和300W氙灯。每个系列的样品在60、120、180、240、300、360、420分钟后提取,通过气相色谱-质谱(GC-MS)和核磁共振(NMR)进行分析。分析表明,1-己烯在紫外线照射和300W氙灯照射540分钟后均被氧化至70%。
比较示例(i)-在没有光催化剂的情况下,1-己烯分别在UV-vis或300W氙气可见光照射下进行氧化。
将15ml 1-己烯(购自Sigma-Aldrich公司)加入装有磁力搅拌器的石英试管中,保持 在90℃的温度下,然后分别在紫外-可见和300W氙灯下照射。每个样品在480分钟后取出,通过气相色谱-质谱(GC-MS)和核磁共振(NMR)进行分析。分析结果表明,1-己烯在两种光照下均未被氧化为2-己烯。
比较示例(ii)-尝试在黑暗中使用催化剂氧化1-己烯
准备在示例1)中制备的催化剂1.0克,添加到一个石英试管配备电磁搅拌器,保持在一个温度23℃,15毫升1-己烯(购自Sigma-Aldrich公司)也添加到试管中,维持在90℃的温度,在黑暗中不断地混合。其中一个样品在240小时后提取,通过气相色谱-质谱(GC-MS)和核磁共振(NMR)进行分析。分析表明,1-己烯与催化剂在黑暗中连续混合240小时不发生氧化反应。
比较例(iii)-在没有光催化剂的情况下,1-辛烯分别在UV-vis和300W氙气可见光照射下进行氧化。
将15mL 1-辛烯(购自Sigma-Aldrich公司)加入装有磁力搅拌器的石英试管中,保持温度90℃,然后分别在UV-vis和可见300W氙灯下照射。每个样品在480分钟后取出,通过气相色谱-质谱(GC-MS)和核磁共振(NMR)进行分析。结果表明,1-辛烯在紫外-可见和300W氙灯照射下均未发生氧化反应。
比较例子(iv)-尝试在黑暗中使用催化剂氧化1-辛烯。
准备在示例1)中制备的催化剂1.0克添加到石英试管中,并配有电磁搅拌器,保持在一个温度23℃,15毫升1-辛烯(购自Sigma-Aldrich公司)也添加到试管中,温度保持在90℃,在黑暗中不停混合。其中一个样品在240小时后提取,通过气相色谱-质谱(GC-MS)和核磁共振(NMR)进行分析。分析结果表明,在黑暗中使用催化剂240小时后,1-辛烯没有被氧化。相反,所有的辛烷都聚合成二聚或三聚物。
比较示例(v)-在300W氙灯的可见光照射下,尝试用光催化剂氧化油酸。
准备在示例1)中制备的催化剂4.0克,添加到石英试管中并配有电磁搅拌器,保持在一个温度80℃,40ml油酸(购自Sigma-Aldrich公司)也添加到试管中,温度保持在80℃下不断搅拌,然后用紫外可见和300W氙灯照射。每个系列的样品在6、9、12、15、18和24小时后提取,通过气相色谱-质谱(GC-MS)分析。分析表明,油酸被氧化的壬二酸。
示例3:ZnAl LDHs催化剂性能比较
下面的表1比较了例1制备的ZnAl LDHs在氧化CH
2=CH-(CH
2)
13-CH
3时的催化效率与行业标准。
表1-在不同时长的光照下,ZnAl LDHs对CH
2=CH-(CH
2)
13-CH
3的氧化百分比
反应条件:1g催化剂样品浸泡在15ml反应物中,环境条件下用300W氙灯照射。
正如表1中显示的明确数据,在每一个时间间隔中,示例1制备的催化剂对CH
2=CH-(CH
2)
13-CH
3的氧化率比参比物具有更高的氧化率,并在实验开始9小时后完成100%转换。
下面的表2到8比较了例1制备的ZnAl LDHs对1-己烯(1-C
6H
12)、1-庚烯(1-1-C
7H
14)、1-辛烯(1-C
8H
16)、1-癸烯(1-C
10H
20)、1-十二烯(1-C
12H
24)、1-十四烯(1-C
14H
28)和1-十八烯(1-C
18H
36)的氧化的催化效率。
表2-光和非光对1-己烯双键氧化的影响比较
*装有滤光器的氙灯发出的光,可滤去波长在350纳米或以下的光线。
#氙灯发出的光。
反应条件:2g催化剂样品(C1)浸泡在30ml反应物中,环境条件下用300W氙灯照射。
表3-光和非光对1-庚烯双键氧化的影响比较
#氙灯发出的光。
反应条件:2g催化剂样品(C1)浸泡在30ml反应物中,环境条件下用300W氙灯照射。
表4-光和非光对1-辛烯双键氧化的影响比较
*装有滤光器的氙灯发出的光,可滤去波长在350纳米或以下的光线。
#氙灯发出的光。
反应条件:2g催化剂样品(C1)浸泡在30ml反应物中,环境条件下用300W氙灯照射。 表5-光和非光对1-癸烯双键氧化的影响比较
*装有滤光器的氙灯发出的光,可滤去波长在350纳米或以下的光线。
#氙灯发出的光。
反应条件:2g催化剂样品(C1)浸泡在30ml反应物中,环境条件下用300W氙灯照射。
表6-光和非光对1-十二烯双键氧化的影响比较
*装有滤光器的氙灯发出的光,可滤去波长在350纳米或以下的光线。
#氙灯发出的光。
反应条件:2g催化剂样品(C1)浸泡在30ml反应物中,环境条件下用300W氙灯照射。
表7-光和非光对1-十四烯双键氧化的影响比较
*装有滤光器的氙灯发出的光,可滤去波长在350纳米或以下的光线。
#氙灯发出的光。
反应条件:2g催化剂样品(C1)浸泡在30ml反应物中,环境条件下用300W氙灯照射。
表8-光和非光对1-十八烯双键氧化的影响比较
*装有滤光器的氙灯发出的光,可滤去波长在350纳米或以下的光线。
#氙灯发出的光。
反应条件:2g催化剂样品(C1)浸泡在30ml反应物中,环境条件下用300W氙灯照射。
示例4苯乙烯的深度氧化
苯乙烯的双键氧化反应:
将示例1)制备的4.0克的AlZn LDHs添加到一个石英试管中,并放在电磁搅拌器中搅拌,温度保持在80℃。将40毫升的苯乙烯(购自Sigma-Aldrich)也添加到试管中,维持在80℃的温度。将两者在磁力搅拌中连续混合,然后用可见的氙灯照射。各系列样品分别于30min、60min、90min、120min、150min、180min、210min、240min、270min、300min后提取,分别进行气相色谱-质谱(GC-MS)、IR分析。分析表明,分析表明苯乙烯为氧化苯甲酸。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定,对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。
Claims (17)
- 一种深度氧化烯烃催化剂的应用,其特征在于:在含有4个或4个以上碳原子的不饱和有机化合物中碳碳双键的深度氧化过程,其步骤为:a)将不饱和有机化合物与LDHs接触;其中步骤a)是在波长小于等于800nm的电磁辐射下进行的。
- 根据权利要求1所述的应用,其特征在于:不饱和有机化合物有60个或更少的碳原子。
- 根据权利要求1或2所述的应用,其特征在于:不饱和有机化合物有30个或更少的碳原子。
- 如权利要求1-3任一项所述的应用,其特征在于:不饱和有机化合物有20个或更少的碳原子。
- 如权利要求1-4任一项所述的应用,其特征在于:不饱和有机化合物是直链烯烃或支链烯烃。
- 如权利要求1所述的应用,其特征在于:步骤a)是在波长为10-800nm的电磁辐射存在的情况下进行的。
- 如权利要求1所述的应用,其特征在于:步骤a)是在波长为200-800nm的电磁辐射存在的情况下进行的。
- 如权利要求1所述的应用,其特征在于:步骤a)是在波长为300-800nm的电磁辐射存在的情况下进行的。
- 如权利要求1所述的应用,其特征在于:LDHs是负载在载体上的。
- 如权利要求1所述的应用,其特征在于:LDHs的载体是Al 2O 3。
- 如权利要求9-10所述的应用,其特征在于:载体的占比占LDHs总重量的0.1-90%。
- 如权利要求10所述的应用,其特征在于:载体的占比占LDHs总重量的0.1-30%。
- 如权利要求10所述的应用,其特征在于:载体的占比占LDHs总重量的15-25%。
- 一种如权利要求1-13任一项所述的LDHs的制备方法,其特征在于,包括如下步骤:a)混合:i.水;ii.金属源由二价金属离子M 2+,如Mg 2+,Ni 2+,Co 2+,Zn 2+和Cu 2+等,或三价金属离子M 3+,Cr 3+,Fe 3+和Sc 3+等一个或两个组成;iii.非金属源由一个或多个阴离子A n-组成:CO 3 2-,NO 3 -,Cl -,OH -,SO 4 2-,PO 4 3-,C 6H 4(COO) 2 2-和其他阴离子;b)调整步骤a)混合的时间长度,从2小时调整到20小时;c)调整步骤a)锌铝比例从1∶1到5∶1;d)调节a)反应温度,从60℃到100℃;e)隔离步骤b)形成的产物;f)清洗步骤e)中隔离的产品;g)烘干步骤f)水洗后的产品。
- 一种由权利要求14的制备方法获得的LDHs。
- 如权利要求15所述的LDHs,其特征在于:LDHs的BET表面积≥3m 2/g。
- 如权利要求15或16所述的LDHs,其特征在于:LDHs的BET表面积≥5m 2/g。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/128317 WO2021128063A1 (zh) | 2019-12-25 | 2019-12-25 | 一种深度氧化烯烃催化剂及其制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/128317 WO2021128063A1 (zh) | 2019-12-25 | 2019-12-25 | 一种深度氧化烯烃催化剂及其制备方法和应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021128063A1 true WO2021128063A1 (zh) | 2021-07-01 |
Family
ID=76575022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/128317 WO2021128063A1 (zh) | 2019-12-25 | 2019-12-25 | 一种深度氧化烯烃催化剂及其制备方法和应用 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2021128063A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11746164B1 (en) | 2022-07-29 | 2023-09-05 | King Fahd University Of Petroleum And Minerals | Method of making a polyolefin nanocomposite |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6812186B2 (en) * | 2002-03-27 | 2004-11-02 | Council of Industrial Research | Preparation of new layered double hydroxides exchanged with diisopropylamide for C-C bond forming reactions |
CN105330533A (zh) * | 2015-09-30 | 2016-02-17 | 中国石油化工股份有限公司 | 苯甲酰甲酸的合成方法 |
CN106905266A (zh) * | 2017-03-13 | 2017-06-30 | 常州工程职业技术学院 | 一种苯乙烯环氧化制备环氧苯乙烷的方法 |
-
2019
- 2019-12-25 WO PCT/CN2019/128317 patent/WO2021128063A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6812186B2 (en) * | 2002-03-27 | 2004-11-02 | Council of Industrial Research | Preparation of new layered double hydroxides exchanged with diisopropylamide for C-C bond forming reactions |
CN105330533A (zh) * | 2015-09-30 | 2016-02-17 | 中国石油化工股份有限公司 | 苯甲酰甲酸的合成方法 |
CN106905266A (zh) * | 2017-03-13 | 2017-06-30 | 常州工程职业技术学院 | 一种苯乙烯环氧化制备环氧苯乙烷的方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11746164B1 (en) | 2022-07-29 | 2023-09-05 | King Fahd University Of Petroleum And Minerals | Method of making a polyolefin nanocomposite |
US11926691B2 (en) | 2022-07-29 | 2024-03-12 | King Fahd University Of Petroleum And Minerals | Method for making and using a supported zinc aluminum layered double hydroxide catalyst |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Amadine et al. | Effect of calcination temperature on the structure and catalytic performance of copper–ceria mixed oxide catalysts in phenol hydroxylation | |
Cheng et al. | Visible-light-driven deep oxidation of NO over Fe doped TiO2 catalyst: Synergic effect of Fe and oxygen vacancies | |
Liang et al. | Multifunctional polyoxometalates encapsulated in MIL-100 (Fe): highly efficient photocatalysts for selective transformation under visible light | |
Huang et al. | Effect of reduction treatment on structural properties of TiO 2 supported Pt nanoparticles and their catalytic activity for formaldehyde oxidation | |
Wang et al. | Coupling MOF-based photocatalysis with Pd catalysis over Pd@ MIL-100 (Fe) for efficient N-alkylation of amines with alcohols under visible light | |
Xia et al. | Ti-based layered double hydroxides: efficient photocatalysts for azo dyes degradation under visible light | |
Rodrigues et al. | Influence of activated carbon surface chemistry on the activity of Au/AC catalysts in glycerol oxidation | |
Khoshbin et al. | Preparation and catalytic performance of CuO–ZnO–Al2O3/clinoptilolite nanocatalyst for single-step synthesis of dimethyl ether from syngas as a green fuel | |
Liu et al. | Photocatalytic reduction of carbon dioxide using sol–gel derived titania-supported CoPc catalysts | |
JP5837062B2 (ja) | 混成マンガンフェライトがコートされた触媒の製造方法及びそれを用いた1,3−ブタジエンの製造方法 | |
Liu et al. | CC cross-coupling of primary and secondary benzylic alcohols using supported gold-based bimetallic catalysts | |
Xu et al. | Photocatalytic degradation of an aqueous sulfamethoxazole over the metallic silver and Keggin unit codoped titania nanocomposites | |
Tan et al. | One-pot synthesis Of Cu/ZnO/ZnAl 2 O 4 catalysts and their catalytic performance in glycerol hydrogenolysis | |
Wang et al. | One-pot synthesis of gold nanoparticles embedded in silica for cyclohexane oxidation | |
Li et al. | Preparation of an active SO42−/TiO2 photocatalyst for phenol degradation under supercritical conditions | |
US11180435B2 (en) | Chromium-catalyzed production of alcohols from hydrocarbons | |
Shi et al. | CO oxidation over Cu 2 O deposited on 2D continuous lamellar gC 3 N 4 | |
Xiao et al. | Tuning the reduction power of visible-light photocatalysts of gold nanoparticles for selective reduction of nitroaromatics to azoxy-compounds—Tailoring the catalyst support | |
Wu et al. | Visible light-driven oxidation of vanillyl alcohol in air with Au–Pd bimetallic nanoparticles on phosphorylated hydrotalcite | |
Kirar et al. | Cu (II) Schiff base complex intercalated into layered double hydroxide for selective oxidation of ethylbenzene under solvent-free conditions | |
Sodeifian et al. | Application of microwave irradiation in preparation and characterization of CuO/Al2O3 nanocomposite for removing MB dye from aqueous solution | |
Wang et al. | The synergistic role of the support surface and Au–Cu alloys in a plasmonic Au–Cu@ LDH photocatalyst for the oxidative esterification of benzyl alcohol with methanol | |
Zhang et al. | Complexation effect of copper (ii) with HEDP supported by activated carbon and influence on acetylene hydration | |
EP3374335B1 (en) | Photocatalytic process for the isomerisation of an unsaturated compound | |
WO2021128063A1 (zh) | 一种深度氧化烯烃催化剂及其制备方法和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19957532 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19957532 Country of ref document: EP Kind code of ref document: A1 |