WO2021127896A1 - 通信方法和通信装置 - Google Patents

通信方法和通信装置 Download PDF

Info

Publication number
WO2021127896A1
WO2021127896A1 PCT/CN2019/127577 CN2019127577W WO2021127896A1 WO 2021127896 A1 WO2021127896 A1 WO 2021127896A1 CN 2019127577 W CN2019127577 W CN 2019127577W WO 2021127896 A1 WO2021127896 A1 WO 2021127896A1
Authority
WO
WIPO (PCT)
Prior art keywords
service
network node
information
algorithm
configuration
Prior art date
Application number
PCT/CN2019/127577
Other languages
English (en)
French (fr)
Inventor
胡星星
曾清海
张宏平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/127577 priority Critical patent/WO2021127896A1/zh
Priority to EP19957297.5A priority patent/EP4068838A4/en
Priority to CN201980103129.6A priority patent/CN114830707A/zh
Publication of WO2021127896A1 publication Critical patent/WO2021127896A1/zh
Priority to US17/846,920 priority patent/US20220338032A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/12Access point controller devices

Definitions

  • the present application relates to the field of communication, and more specifically, to a communication method and communication device.
  • the fifth generation (5G) communication technology introduced a centralized unit (CU)/distributed unit (DU) architecture, that is, the access network equipment (e.g., base station) is divided into CU and DU has two parts.
  • the CU can be divided into the centralized unit control plane (CU-CP) and the centralized unit user plane (CU-UP).
  • the CU-CP can be responsible for the control plane functions, and the CU-UP can Responsible for user interface functions.
  • the present application provides a communication method and communication device, which can enable the DU to perform service scheduling or configuration based on the service characteristics sent by the CU-CP.
  • a communication method including: a first network node acquires a first service feature of a service, the first network node is CU-UP, and the first service feature includes one or more of the following: the Whether the service is a periodic service, if the service is a periodic service, the period corresponding to the service, the size of the service packet corresponding to the service, the service model corresponding to the service, or the scheduling time of the service; the first network node sends to the second network The node sends the first service feature, and the second network node is the CU-CP.
  • the first network node can obtain the service characteristics and provide them to the second network node, and then the second network node can provide the service characteristics to the DU, so that the DU can be based on the received service characteristics Carry out business scheduling or configuration.
  • the first network node can obtain service characteristics based on actual service data, so that the obtained service characteristics are more in line with the actual transmission service, and the DU can better adapt to the service during scheduling or configuration.
  • the granularity corresponding to the first service feature is any one of the following: protocol data unit (PDU) session, terminal equipment, quality of service (QoS) flow, data radio bearer ( dara radio bearer, DRB) or slice.
  • the first service characteristic is a service characteristic corresponding to a specific PDU session, terminal device, QoS flow, DRB or slice, and the specific PDU session, terminal device, QoS flow, DRB or slice corresponds to a service.
  • the method may further include: the first network node receives algorithm information sent by the core network device, where the algorithm information includes the first algorithm and/or corresponding to the first algorithm Parameter information; where the first network node acquiring the first service characteristic of the service includes: the first network node determines the first service characteristic according to the algorithm information.
  • the first network node can predict the first service characteristic based on the algorithm information.
  • the algorithm information may be sent to the first network node by the core network device or other network elements (such as network management).
  • the first algorithm may be some specific algorithms in supervised learning algorithms (such as decision trees, naive Bayes classification, least squares, support vector machines, etc.), and some specific algorithms in unsupervised learning algorithms (such as clustering algorithms, etc.) or some specific algorithms in reinforcement learning.
  • supervised learning algorithms such as decision trees, naive Bayes classification, least squares, support vector machines, etc.
  • unsupervised learning algorithms such as clustering algorithms, etc.
  • reinforcement learning such as clustering algorithms, etc.
  • the first network node receiving the algorithm information sent by the core network device includes: the first network node receives the algorithm information sent by the core network device through the control plane of the centralized unit.
  • the method may further include: the first network node sends the second algorithm and/or parameter information corresponding to the second algorithm to the core network device.
  • the core network device can The second algorithm and/or the parameter information corresponding to the second algorithm are sent to the CU-UP that re-establishes the connection with the terminal device, and the CU-UP can continue to predict the service characteristics based on the second algorithm and/or the parameter information corresponding to the second algorithm .
  • RRC radio resource control
  • the first algorithm information and the second algorithm information may be the same or different.
  • the first network node acquiring the first service feature of the service includes: the first network node determines the first service feature according to the auxiliary information sent by the core network device or other network nodes Business characteristics, the auxiliary information includes one or more of the following: whether the business is a periodic business, the period corresponding to the business if the business is a periodic business, the size of the business package corresponding to the business, and the business corresponding to the business
  • the model or service scheduling time, and the auxiliary information is the same as or different from the service characteristics.
  • the auxiliary information may be determined by the CU-UP last accessed by the terminal device and sent to the core network device.
  • the first network node acquiring the first service characteristic of the service includes: the first network node acquiring the first service characteristic locally or from another CU-UP.
  • a communication method including: a second network node receives a first service feature of a service sent by a first network node, the first network node is CU-CP, the second network node is CU-CP, and the first network node is CU-CP.
  • a business feature includes one or more of the following: whether the business is a periodic business, the period corresponding to the business if the business is a periodic business, the size of the business package corresponding to the business, and the business model corresponding to the business Or the scheduled time of the business.
  • the method may further include: the second network node sends the first service feature to a third network node, and the third network node is a DU.
  • the method may further include: the second network node determines the second service characteristic of the service according to the first service characteristic, and the granularity corresponding to the first service characteristic and the second service characteristic is different; The network node sends the second service feature, and the third network node is the DU.
  • the CU-UP obtains the service feature and sends the service feature or another service feature determined according to the service feature to the DU through the CU-CP, so that the DU can be based on the received service Features perform business scheduling or configuration.
  • the granularity corresponding to the first service feature is any one of the following: protocol data unit PDU session, terminal device, quality of service QoS flow, data radio bearer DRB or slice.
  • the method may further include: the second network node sends the first service feature or the second service feature to the core network device.
  • the core network device can send the first service feature or the second service feature to the CU-UP, and the CU-UP can be based on the first service Features or second business features continue to be predicted or used.
  • a communication method including: a first network node determines first information of a terminal device, where the first network node is CU-CP, and the first information includes one or more of the following: the The movement information of the terminal device, the battery information of the terminal device, or the power consumption information of the terminal device; the first network node sends the first information to the second network node, and the second network node is the DU.
  • the CU-UP can determine the first information that characterizes certain characteristics of the terminal device, and the CU-UP can send the first information to the DU, so that the DU can configure the terminal device with appropriate wireless information based on the first information. Parameters, so as to better serve the terminal equipment.
  • the first network node determining the first information of the terminal device includes: the first network node determining the first information according to the algorithm information and/or auxiliary information, the algorithm The information includes the first algorithm and/or parameter information corresponding to the first algorithm, and the auxiliary information includes one or more of the following: mobile information of the terminal device, battery information of the terminal device, or power consumption information of the terminal device , The auxiliary information is the same or different from the first information.
  • the first network node can predict service characteristics based on algorithm information and/or auxiliary information.
  • the method may further include: the first network node sends the algorithm information to the core network device.
  • the core network device can send the algorithm information to the terminal device
  • the connected CU-UP is re-established, and the CU-UP can continue to predict the service characteristics based on the algorithm information.
  • the method may further include: the first network node sends the first information to the core network device.
  • the core network device can send the first information to the CU-CP, and the CU-CP can continue to predict or use based on the first information.
  • a communication method including: a second network node receives first information of a terminal device sent by a first network node, the first network node is CU-CP, the second network node is DU, and the first network node is DU.
  • a piece of information includes one or more of the following: movement information of the terminal device, battery information of the terminal device, or power consumption information of the terminal device.
  • the CU-UP can determine the first information that characterizes certain characteristics of the terminal device, and the CU-UP can send the first information to the DU, so that the DU can configure the terminal device with appropriate wireless information based on the first information. Parameters, so as to better serve the terminal equipment.
  • the method may further include: the second network node configures wireless parameters for the terminal device according to the first information.
  • the wireless parameters may include one or more of the following: discontinuous reception (DRX) configuration information, beam configuration information, data inactivity timer length (when the terminal device is in the timer When no media access control (MAC) service data unit (SDU) is received or sent, the terminal device will release the RRC connection with the network side and enter the RRC idle state), whether the carrier is configured Aggregation, the bandwidth that the terminal device can use, and the maximum number of multiple input multiple output (MIMO) layers that the terminal device can use, etc.
  • DRX discontinuous reception
  • beam configuration information beam configuration information
  • data inactivity timer length when the terminal device is in the timer When no media access control (MAC) service data unit (SDU) is received or sent, the terminal device will release the RRC connection with the network side and enter the RRC idle state
  • MAC media access control
  • SDU media access control service data unit
  • MIMO multiple input multiple output
  • a communication method including: a second network node determines configuration information of a terminal device, the second network node is a DU, and the configuration information includes one or more of the following: semi-persistent scheduling configuration, Multiple-input multiple-output MIMO configuration, channel state information reference signal (CSI-RS) configuration or sounding reference signal (SRS) configuration; the second network node communicates to the core network through the first network node The device sends the configuration information, and the first network node is CU-CP.
  • CSI-RS channel state information reference signal
  • SRS sounding reference signal
  • the semi-persistent scheduling configuration may include one or more of the following: the semi-persistent scheduling period, the hybrid automatic repeat reQuest (HARQ) process number corresponding to the semi-persistent scheduling, and the corresponding semi-persistent scheduling
  • HARQ hybrid automatic repeat reQuest
  • PUCCH physical uplink control channel
  • the CSI-RS configuration may include one or more of the following: frequency domain position, number of ports, time domain position, code domain type.
  • the SRS configuration may include one or more of the following: periodic or aperiodic, number of ports, resource location, and so on.
  • the MIMO configuration may include the number of MIMO streams and so on.
  • the DU can send the configuration information of the terminal device to the core network device, and the core network device can provide the configuration information to the subsequent DU (such as the DU after handover) to facilitate subsequent DU scheduling or configuration Wireless parameters.
  • the second network node determining configuration information of the terminal device includes: the second network node determining the configuration information according to the algorithm information and/or auxiliary information, the algorithm information Including the first algorithm and/or parameter information corresponding to the first algorithm, the auxiliary information includes one or more of the following information of the terminal device: semi-persistent scheduling configuration, MIMO configuration, CSI-RS configuration or SRS configuration, The auxiliary information is the same as or different from the configuration information.
  • the second network node can predict the configuration information based on algorithm information and/or auxiliary information.
  • the method may further include: the second network node sends the algorithm information to the first network node.
  • the first network node can send the received algorithm information to the DU, and the DU can use the algorithm information to predict the configuration information of the terminal device.
  • a communication method including: a core network device receives configuration information of a terminal device sent by a second network node through a first network node, the first network node is CU-CP, and the second network node is DU, the configuration information includes one or more of the following: semi-persistent scheduling configuration, multiple-input multiple-output MIMO configuration, channel state information reference signal CSI-RS configuration, or sounding reference signal SRS configuration.
  • the DU can send the configuration information of the terminal device to the core network device, so that the core network device can provide the configuration information to the subsequent DU (such as the DU after the handover) to facilitate subsequent DU scheduling or Configure wireless parameters.
  • the method may further include: the core network device sends the configuration information to another DU.
  • the other distribution unit may be a DU after the terminal device is switched.
  • the method may further include: the core network device sends auxiliary information to the second network node, the auxiliary information is used by the second network node to determine the configuration information, and the auxiliary information includes one of the following information of the terminal device Or multiple: semi-persistent scheduling configuration, MIMO configuration, CSI-RS configuration or SRS configuration.
  • the second network node can predict the configuration information based on the auxiliary information, which is beneficial to improve the prediction accuracy.
  • a communication method including: a first network node receives a first service feature of a service sent by a core network device, the first network node is CU-CP, and the granularity corresponding to the first service feature is as follows: Any one of: protocol data unit PDU session, quality of service QoS flow, data radio bearer DRB or slice; the first network node sends the second service characteristic of the service to the second network node according to the first service characteristic, and the second network The node is CU-CUP or DU, and the granularity corresponding to the second service feature is any one of the following: PDU session, QoS flow, DRB or slice.
  • the core network device can provide the access network device with terminal device-granularity service features.
  • the core network device can send smaller-granularity service features to the CU-UP or DU, thereby CU-UP Or DU can perform more accurate scheduling and resource allocation based on these smaller-granularity service characteristics, so as to better provide communication services for terminal devices.
  • the first service feature includes one or more of the following: whether the service is a periodic service, the period corresponding to the service if the service is a periodic service, and the size of the service package corresponding to the service , The business model corresponding to the business, the scheduling time of the business, and the delay requirements of the business.
  • a communication method including: a core network device determines a first service characteristic of a service; the core network device sends the first service characteristic to a first network node, the first network node is CU-CP, and the first service
  • the granularity corresponding to the feature is any one of the following: protocol data unit PDU session, quality of service QoS flow, data radio bearer DRB or slice.
  • the core network device can provide the access network device with terminal device-granularity service features.
  • the core network device can send smaller-granularity service features to the CU-UP, so that the CU-UP can be based on These smaller-grained business features perform more accurate scheduling and resource allocation, so as to better provide communication services for terminal devices.
  • the first service feature includes one or more of the following: whether the service is a periodic service, the period corresponding to the service if the service is a periodic service, the size of the service package corresponding to the service, and the The business model corresponding to the business, the scheduling time of the business, and the delay requirements of the business.
  • a communication method including: a second network node receives a second service feature of a service sent by a first network node, the first network node is CU-CP, and the second network node is CU-UP or DU
  • the granularity corresponding to the second service feature is any one of the following: protocol data unit PDU session, quality of service QoS flow, data radio bearer DRB or slice.
  • the CU-UP or DU can perform more accurate scheduling and resource allocation according to the service characteristics provided by the CU-CP, so as to better provide communication services for terminal devices.
  • the second service feature includes one or more of the following: whether the service is a periodic service, the period corresponding to the service if the service is a periodic service, the size of the service package corresponding to the service, and the The business model corresponding to the business, the scheduling time of the business, and the delay requirements of the business.
  • a communication device which includes various modules or units for executing the method in any one of the first to ninth aspects or the first to ninth aspects.
  • the device corresponds to the first network node in the first aspect.
  • the device includes a processing unit and a transceiver unit.
  • the processing unit is used to obtain a first business characteristic of a business, and the first business characteristic includes one or more of the following: whether the business is a periodic business, if the business is a periodic business, the corresponding period of the business, The size of the service packet corresponding to the service, the service model corresponding to the service, or the scheduling time of the service; the transceiver unit is used to send the first service feature to a second network node, which is the control plane of the centralized unit. It should be understood that the device may also be used to execute the method in any one of the possible implementation manners of the first aspect.
  • the device corresponds to the second network node of the second aspect.
  • the device includes a transceiver unit for receiving a first service feature of a service sent by a first network node, where the first network node is a user plane of a centralized unit, and the first service feature includes one or more of the following: Whether the business is a periodic business, if the business is a periodic business, the period corresponding to the business, the size of the business package corresponding to the business, the business model corresponding to the business, or the scheduling time of the business. It should be understood that the device may also be used to execute the method in any one of the possible implementation manners of the second aspect.
  • the device corresponds to the first network node of the third aspect.
  • the device includes a processing unit and a transceiver unit.
  • the processing unit is used to determine first information of the terminal device, the first information includes one or more of the following: movement information of the terminal device, battery information of the terminal device, or power consumption information of the terminal device;
  • the unit is used to send the first information to a second network node, and the second network node is a distribution unit. It should be understood that the device may also be used to execute the method in any one of the possible implementation manners of the third aspect.
  • the device corresponds to the second network node of the fourth aspect.
  • the device includes a transceiver unit for receiving first information of a terminal device sent by a first network node, where the first network node is a control plane of a centralized unit, and the first information includes one or more of the following: the The movement information of the terminal device, the battery information of the terminal device, and the power consumption information of the terminal device. It should be understood that the device may also be used to execute the method in any one of the possible implementation manners of the fourth aspect.
  • the device corresponds to the second network node of the fifth aspect.
  • the device includes a processing unit and a transceiver unit.
  • the processing unit is used to determine configuration information of the terminal device, the configuration information includes one or more of the following: semi-persistent scheduling configuration, multiple-input multiple-output MIMO configuration, channel state information reference signal CSI-RS configuration, or sounding reference signal SRS configuration;
  • the transceiver unit is used to send the configuration information to the core network device through the first network node, where the first network node is the control plane of the centralized unit. It should be understood that the device may also be used to execute the method in any one of the possible implementation manners of the fifth aspect.
  • the device corresponds to the core network equipment of the sixth aspect.
  • the device includes a transceiver unit, configured to receive configuration information of a terminal device sent by a second network node through a first network node, the first network node is a control plane of a centralized unit, the second network node is a distributed unit, and the configuration information It includes one or more of the following: semi-persistent scheduling configuration, multiple-input multiple-output MIMO configuration, channel state information reference signal CSI-RS configuration, or sounding reference signal SRS configuration. It should be understood that the device may also be used to execute the method in any one of the possible implementation manners of the sixth aspect.
  • the device corresponds to the first network node of the seventh aspect.
  • the device includes a transceiver unit for receiving a first service feature of a service sent by a core network device, and the granularity corresponding to the first service feature is any one of the following: protocol data unit PDU session, quality of service QoS flow, data Radio bearer DRB or slice; according to the first service characteristic, send the second service characteristic of the service to the second network node, the second network node is the user plane or distribution unit of the centralized unit, and the second service characteristic corresponds to
  • the granularity is any of the following: PDU session, QoS flow, DRB or slice. It should be understood that the device may also be used to execute the method in any one of the possible implementation manners of the seventh aspect.
  • the device corresponds to the core network device of the eighth aspect.
  • the device includes a processing unit and a transceiver unit.
  • the processing unit is used to determine the first service feature of the service; the transceiver unit is used to send the first service feature to the first network node, where the first network node is the control plane of the centralized unit, and the granularity corresponding to the first service feature is: Any of the above: protocol data unit PDU session, quality of service QoS flow, data radio bearer DRB or slice. It should be understood that the device may also be used to execute the method in any one of the possible implementation manners of the eighth aspect.
  • the device corresponds to the second network node of the ninth aspect.
  • the device includes a transceiver unit for receiving a second service feature of a service sent by a first network node, where the first network node is a control plane of a centralized unit, and the granularity corresponding to the second service feature is any of the following : Protocol data unit PDU session, quality of service QoS flow, data radio bearer DRB or slice. It should be understood that the device may also be used to execute the method in any one of the possible implementation manners of the ninth aspect.
  • a communication device including a processor.
  • the processor may be used to execute related instructions, so that the device executes the method in any one of the foregoing first aspect to the ninth aspect or any one of the first aspect to the ninth aspect.
  • the device may further include a memory coupled with the processor, and further related instructions are stored in the memory.
  • a communication device including a processor and a memory.
  • the processor is used to read instructions stored in the memory, receive signals through a receiver, and transmit signals through a transmitter to execute any one of the first to ninth aspects or any one of the possible implementation manners of the first to ninth aspects In the method.
  • processors there are one or more processors and one or more memories.
  • the memory can be integrated with the processor, or the memory and the processor can be provided separately.
  • the memory can be a non-transitory (non-transitory) memory, such as a read only memory (ROM), which can be integrated with the processor on the same chip, or can be set in different On the chip, the embodiment of the present application does not limit the type of the memory and the setting mode of the memory and the processor.
  • ROM read only memory
  • the communication device in the above-mentioned twelfth aspect may be a chip, and the processor may be implemented by hardware or software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software
  • the processor may be a general-purpose processor, which is implemented by reading software codes stored in the memory.
  • the memory may be integrated in the processor, may be located outside the processor, and exist independently.
  • a computer program product includes: a computer program (also called code, or instruction), when the computer program is run, the computer executes the first to ninth aspects. Aspect or any one of the possible implementation manners of the first aspect to the ninth aspect.
  • a computer-readable medium stores a computer program (also called code, or instruction) when it runs on a computer, so that the computer executes the first aspect to the first aspect mentioned above.
  • a computer program also called code, or instruction
  • a communication system including at least two of the aforementioned CU-CP, CU-UP, DU, and core network equipment.
  • Figure 1 is a schematic diagram of a communication system applied to this application
  • Fig. 2 is a schematic flowchart of a communication method provided by the present application.
  • Fig. 3 is a schematic flowchart of another communication method provided by the present application.
  • Fig. 4 is a schematic flowchart of a communication method provided by the present application.
  • FIG. 5 is a schematic flowchart of another communication method provided by the present application.
  • Fig. 6 is a schematic flowchart of a communication method provided by the present application.
  • Fig. 7 is a schematic block diagram of a communication device provided by the present application.
  • Fig. 8 is a schematic block diagram of another communication device provided by the present application.
  • LTE long term evolution
  • WiMAX worldwide interoperability for microwave access
  • 5th generation fifth-generation
  • 5G generation, 5G system in the new radio (new radio, NR) or other communication systems that may appear in the future.
  • Fig. 1 is a schematic diagram of a communication system applied to this application.
  • the system includes core network equipment, CU and DU, and CU can be divided into CU-UP and CU-CP.
  • the CU-UP can also be referred to as the user plane entity or user plane entity of the centralized unit.
  • the CU-CP may also be called the control plane entity or the control plane entity of the centralized unit.
  • the core network device and the CU (such as CU-UP and/or CU-CP) can communicate with each other.
  • the CU-CP can represent the access network device connected to the core network device through the Ng interface.
  • CU-UP and CU-CP can communicate between, for example, can communicate through E1 interface.
  • CU-UP and CU-CP can communicate with DU.
  • CU-CP can be connected to DU through F1-C (control plane), and CU-UP can be connected to DU through F1-U (user plane).
  • the core network equipment corresponds to different network elements in different systems.
  • the core network equipment can correspond to the mobility management entity (MME) and/or the serving gateway (S-GW); in the 5G network, it can correspond to the access and mobility management functions (access and Mobility management function (AMF), session management function (session management function, SMF), or user plane function (UPF), etc.
  • MME mobility management entity
  • S-GW serving gateway
  • AMF access and Mobility management function
  • SMF session management function
  • UPF user plane function
  • the CU and DU are the division of access network equipment from the perspective of logical functions.
  • the access network equipment can be, for example, a base station (base station), an evolved base station (evolved NodeB, eNodeB), a transmission reception point (TRP), and the next generation NodeB (gNB) in a 5G mobile communication system.
  • the base station in the future mobile communication system or the access node in the WiFi system, etc.
  • CU and DU can be physically separated or deployed together. Multiple DUs can share one CU, and one DU can also be connected to multiple CUs (not shown in the figure).
  • the CU and the DU can be connected through an interface, for example, an F1 interface.
  • CU and DU can be divided according to the protocol layer of the wireless network.
  • CU is used to perform radio resource control (radio resource control, RRC) layer, service data adaptation protocol (service data adaptation protocol, SDAP) ) Layer and the functions of the Packet Data Convergence Protocol (PDCP) layer
  • RRC radio resource control
  • SDAP service data adaptation protocol
  • PDCP Packet Data Convergence Protocol
  • the DU is used to perform the radio link control (RLC) layer and the media access control (media access control, MAC) layer
  • RLC radio link control
  • MAC media access control
  • physical (physical) layer and other functions the above division is only an example, and the CU and DU may also be divided in other ways.
  • the CU or DU can be divided into functions with more protocol layers.
  • the CU or DU can also be divided into part of the processing functions with the protocol layer.
  • part of the functions of the RLC layer and the functions of the protocol layer above the RLC layer are set in the CU, and the remaining functions of the RLC layer and the functions of the protocol layer below the RLC layer are set in the DU.
  • the functions of the CU or DU can also be divided according to service types or other system requirements. For example, it is divided by time delay, and the functions whose processing time needs to meet the delay requirement are set in the DU, and the functions that do not need to meet the delay requirement are set in the CU.
  • the CU may also have one or more functions of the core network. One or more CUs can be set centrally or separately.
  • the CU can be set on the network side to facilitate centralized management.
  • the DU can have multiple radio frequency functions, or the radio frequency functions can be set remotely. It should be understood that the functions of the CU and DU can be set as required in specific implementations, which are not limited in the embodiment of the present application.
  • the functions of the CU can be implemented by one entity or by different entities.
  • the function of the CU can be further divided into the CP function and the UP function, that is, the CU can be divided into CU-UP and CU-CP.
  • CU-CP and CU-UP can be implemented by one physical device respectively, or both can be deployed in the same physical device.
  • CU-CP and CU-UP can be coupled with DU to jointly complete the function of access network equipment.
  • CU-CP is responsible for the control plane function, mainly including RRC and PDCP-C.
  • PDCP-C is mainly responsible for encryption and decryption of control plane data, integrity protection, and data transmission.
  • CU-UP is responsible for user plane functions, mainly including SDAP and PDCP-U.
  • SDAP is mainly responsible for processing the data of the core network equipment and mapping the data flow to the bearer.
  • PDCP-U is mainly responsible for data encryption and decryption, integrity protection, header compression, serial number maintenance, and data transmission.
  • Another possible implementation is that PDCP-C is also in CU-UP.
  • Terminal equipment can refer to user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, terminal, wireless communication equipment, user agent or User device.
  • UE user equipment
  • the terminal device can also be a cellular phone, a cordless phone, a session initiation protocol (session initiation protocol, SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (personal digital assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in the future 5G network, or future evolution of the public land mobile network (PLMN) Terminal equipment, etc., this embodiment of the present application is not limited thereto.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • a terminal device may communicate with multiple access network devices, that is, dual connectivity (DC), also known as multi-radio dual connectivity (MR-DC).
  • DC dual connectivity
  • MR-DC multi-radio dual connectivity
  • These multiple access network devices may be access network devices of the same standard (for example, all 4G access network devices, or all 5G access network devices), or they may be access network devices with different mechanisms (such as one It is the fourth-generation 4G access network equipment, and the other is the fifth-generation 5G access network equipment).
  • the network side can use the resources of multiple access network devices to provide communication services for the terminal device, thereby providing high-speed transmission for the terminal device.
  • the access network device that interacts with the core network device on the control plane and neighbors is called a master node (master node, MN), and other access network devices are called secondary nodes (secondary nose, SN).
  • MN master node
  • SN secondary nose
  • the MN and SN in the MR-DC can be the various forms and structures of the aforementioned access network equipment.
  • MN and SN use the same CU but different DU, or use the same DU but different CU.
  • Fig. 2 is a schematic flowchart of a communication method provided by the present application. The steps of the method 200 will be described below in conjunction with FIG. 2.
  • the first network node obtains the first service feature of the service, and the first network node is CU-UP.
  • the first service characteristic may include one or more of the following: whether the service is a periodic service, the size of the service package corresponding to the service, the service model corresponding to the service, or the scheduling time of the service, the If the business is a periodic business, the cycle corresponding to the business.
  • the service model may be, for example, one of the following: only single uplink, only single downlink, single uplink followed by single downlink, single uplink followed by multiple downlinks, and multiple uplinks followed by single downlink.
  • single/multiple refers to the number of data packets.
  • Only single uplink means that the service has only uplink data packets, and only one uplink data packet of the service is sent at a time.
  • the meaning of only single downlink is similar (that is, the service has only downlink data packets, and only one downlink data packet of the service is sent at a time).
  • Single uplink followed by single downlink means that the service has both uplink data packets and downlink data packets, and each time an uplink data packet of the service is sent, only one downlink data packet of the service is sent.
  • Single uplink followed by multiple downlinks means that the service has both uplink data packets and downlink data packets, and each time an uplink data packet of the service is sent, only multiple downlink data packets of the service are sent.
  • the meaning of multiple ups followed by single downs is similar.
  • the service model may also be one of the following: only uplink, only downlink, and both uplink and downlink.
  • Only uplink means that the service has only uplink data packets.
  • Downlink only means that the service has only downlink data packets.
  • Both uplink and downlink mean that the service has both uplink data packets and downlink data packets.
  • the scheduling time may be, for example, a weekly scheduling time or a daily scheduling time.
  • the granularity corresponding to the first service feature may be any of the following: PDU session, terminal device, QoS flow, DRB or slice.
  • the first service feature is a service feature corresponding to a specific PDU session, terminal device, QoS flow, DRB or slice, and the specific PDU session, terminal device, QoS flow, DRB or slice corresponds to the service.
  • the first service characteristic may be a specific QoS flow, such as QoS flow #1, corresponding to the service characteristic, where QoS flow #1 corresponds to the service.
  • the first service feature may be a specific DRB, such as DRB#1, the corresponding service feature, where the QoS flow carried in the DRB corresponds to the service.
  • service characteristics corresponding to different granularities may be different.
  • QoS flow #1 corresponds to DRB#1
  • the two correspond to the same service
  • the service characteristic corresponding to QoS flow #1 and the service characteristic corresponding to DRB#1 may be the same or different.
  • the first network node may obtain one or more service characteristics of each service in one or more services, and the granularity corresponding to one or more service characteristics of each service may be the same or different.
  • the first network node may obtain one or more service characteristics of service #1, and obtain one or more service characteristics of service #2.
  • the one or more service characteristics of service #1 may be, for example, the service characteristics of slice #1 and the service characteristic of slice #2
  • the one or more service characteristics of service #2 may be, for example, QoS flow #1 and QoS flow #. 2 business characteristics.
  • the CU-UP can obtain the first service feature in multiple ways.
  • the following is an example for description.
  • CU-UP can determine the first service feature according to the algorithm information.
  • the algorithm information may include the first algorithm and/or parameter information corresponding to the first algorithm.
  • the algorithm information may be sent by the core network device to CU-UP, for example, the core network device directly sends it to CU-UP, or the core network device sends it to CU-CP first, and then CU-CP sends it to CU-UP.
  • the algorithm information may also be sent to the CU-UP by other network elements (for example, network management).
  • the CU-UP may have a service feature prediction function.
  • the CU-UP may predict the service feature based on the prediction algorithm and/or parameter information corresponding to the prediction algorithm (or called the prediction model) and the received data packet.
  • CU-UP can predict QoS based on the data packets of QoS flow #1 received within a certain period of time or currently, through the first algorithm (ie, an example of the prediction algorithm) and/or the parameter information corresponding to the first algorithm
  • the service characteristic of stream #1 (an example of the first service characteristic).
  • the prediction algorithm may be an AI algorithm, such as certain specific algorithms in supervised learning algorithms (such as decision trees, naive Bayes classification, least squares, support vector machines, etc.), and unsupervised learning algorithms. Some specific algorithms (such as clustering algorithms, etc.) or some specific algorithms in reinforcement learning. It should be understood that the first algorithm may be any of the aforementioned algorithms.
  • the CU-UP may also send the second algorithm and/or parameter information corresponding to the second algorithm to the core network device.
  • the first algorithm and the second algorithm can be the same or different.
  • the second algorithm can be any of the algorithms described above, such as Naive Bayes classification.
  • the second algorithm and/or the parameter information corresponding to the second algorithm may be directly sent by the CU-UP to the core network device.
  • the second algorithm and/or the parameter information corresponding to the second algorithm may also be sent by the CU-UP to the CU-CP first, and the CU-CP then sent to the core network device.
  • CU-UP can also adjust the prediction algorithm and/or the parameter information corresponding to the prediction algorithm, and can adjust the adjusted prediction algorithm (such as the second algorithm) and/or The parameter information corresponding to the adjusted prediction algorithm (for example, the parameter information corresponding to the second algorithm) is sent to the core network device.
  • the adjusted prediction algorithm such as the second algorithm
  • the parameter information corresponding to the adjusted prediction algorithm for example, the parameter information corresponding to the second algorithm
  • the core network device can send this information Give a CU-UP to re-establish a connection with the terminal device (hereinafter referred to as: target CU-UP).
  • the core network device can send the adjusted prediction algorithm (eg, the second algorithm) and/or the parameter information corresponding to the adjusted prediction algorithm directly to the target CU-UP, or send it to the target CU-UP first.
  • the CU-CP (hereinafter referred to as: target CU-CP) is sent to the target CU-UP by the target CU-CP.
  • target CU-CP is sent to the target CU-UP by the target CU-CP.
  • the target CU-UP and the above CU-UP may or may not be the same CU-UP.
  • CU-UP After CU-UP receives the information sent by the core network equipment, it can continue to use the information to make predictions.
  • the CU-UP can determine the first service feature according to the auxiliary information.
  • CU-UP has a business feature prediction function, and CU-UP can make finer predictions based on auxiliary information, such as more accurate predictions.
  • auxiliary information may include one or more service characteristics of the service, and the parameter type in the service characteristic and the parameter type in the first service characteristic may be the same.
  • the CU-UP can determine the current business characteristics of the business based on the previous business characteristics of the business.
  • the auxiliary information may be sent by core network equipment or network management.
  • the core network device or the network manager may directly send the auxiliary information to the CU-UP, or the core network device or the network manager may send the auxiliary information to the CU-CP, and the CU-CP then forwards the auxiliary information to the CU-UP.
  • the auxiliary information may be determined by the CU-UP last accessed by the terminal device and sent to the core network device.
  • the auxiliary information may also be obtained by the CU-UP locally or from other CU-UPs.
  • the source access network device sends auxiliary information to the target access network device, for example, the handover request message carries the auxiliary information.
  • the MN sends the auxiliary information to the SN, for example, the auxiliary information is carried in the SN addition request message or the SN modification request message.
  • the source access network device and the target access network device, or the source MN and SN may correspond to the same CU-UP, or may correspond to different CU-UPs.
  • the above-mentioned first algorithm and the parameter information corresponding to the first algorithm can also be obtained in the manner described herein.
  • the CU-UP can obtain the first service feature from the local or other CU-UP.
  • the source access network device may send the first service feature to the target access network device, for example, the first service feature is carried in the handover request message.
  • the MN may send the first service feature to the SN, for example, the first service feature is carried in the SN addition request message or the SN modification request message.
  • the source access network device and the target access network device, or the source MN and SN may correspond to the same CU-UP, or may correspond to different CU-UPs.
  • the CU-UP can combine the above three methods or any two of the three methods to determine the first service feature.
  • the first network node sends the first service feature to the second network node, and the second network node is the CU-CP.
  • S230 The CU-CP sends the first service feature to the third network node.
  • the third network node in the method 200 is DU.
  • the CU-CP can directly forward the first service feature to the DU.
  • the CU-CP may send the first service feature to the DU. For example, if the first service feature is the service feature of DRB#1, and the granularity of the service feature that the CU-CP needs to provide to the DU is also the DRB, then the CU-CP can send the service feature of DRB#1 to the DU.
  • the CU-CP determines the second service characteristic of the service according to the first service characteristic, and the granularity corresponding to the first service characteristic and the second service characteristic is different.
  • the granularity corresponding to the second service feature may be any of the following: PDU session, terminal device, QoS flow, DRB or slice.
  • the CU-CP sends the second service feature to the DU.
  • the CU-CP determines that the granularity corresponding to the first service feature is different from the granularity corresponding to the service feature that the CU-CP needs to send to the DU, then the CU-CP can determine the second service feature according to the first service feature.
  • Business characteristics For example, if the first service characteristic is the service characteristic of QoS flow #1, and the granularity of the service characteristic that CU-CP needs to provide to the DU is DRB, then CU-CP can determine QoS flow #1 according to the service characteristic of QoS flow #1 The service feature of the corresponding DRB#1 (ie, an example of the second service feature).
  • CU-CP can provide the service feature of QoS flow #1 as the service feature of DRB#1 to the DU, or CU-CP can combine the service feature of QoS flow #1 and the other one or more corresponding to DRB#1. For the service characteristics of each QoS flow, determine the service characteristics of DRB#1, and send the determined service characteristics of DRB#1 to the DU.
  • the DU After the DU obtains the first service feature or the second service feature, it can perform service scheduling or configuration. For example, the DU can perform different scheduling or configuration according to the first service feature or the second service feature. For example, if the DU learns that the service is a periodic service, the DU can schedule the terminal device according to the period corresponding to the service. For another example, the DU can configure semi-presistent scheduling (SPS) period or discontinuous reception (DRX) configuration information according to the period corresponding to the service. For another example, the DU selects whether to configure the carrier aggregation function according to the size of the service packet corresponding to the service or/and the service period.
  • SPS semi-presistent scheduling
  • DRX discontinuous reception
  • the CU-UP obtains the service feature, and sends the service feature or another service feature determined according to the service feature to the DU through the CU-CP, so that the DU can be based on the received
  • the business features perform business scheduling or configuration.
  • the CU-UP can obtain service characteristics based on actual service data, so that the obtained service characteristics are more in line with the actual transmission service, and the DU can better adapt to the service during scheduling or configuration.
  • the CU-CP may also send the first service feature or the second service feature to the core network device.
  • the core network device can send the first service feature or the second service feature to the CU-UP, and the CU-UP can be based on the first service Features or second business features continue to be predicted or used.
  • the CU-CP may also perform some configurations based on the first service feature. For example, the CU-CP can choose whether to configure dual-connectivity according to the size of the service packet corresponding to the service or/and the period of the service.
  • Fig. 3 is a schematic flowchart of another communication method provided by the present application.
  • the first network node can directly provide the DU after obtaining the first service feature.
  • the first network node obtains the first service feature of the service, and the first network node is CU-UP.
  • This step is the same as S210, and will not be repeated here.
  • S320 The first network node sends the first service feature to a third network node, and the third network node is a DU.
  • the first network node may directly send the first service feature to the DU without being forwarded by the CU-CP.
  • the CU-UP obtains the service characteristics and provides them to the DU, so that the DU can be scheduled or configured based on the received service characteristics.
  • CU-UP can obtain service characteristics based on actual service data, so that the obtained service characteristics are more in line with the actual transmission service, and the DU can better adapt to the service during scheduling or configuration.
  • Fig. 4 is a schematic flowchart of another communication method provided by the present application. The steps of the method 400 will be described below in conjunction with FIG. 4.
  • the first network node determines the first information of the terminal device, and the first network node is the CU-CP.
  • S420 The CU-CP sends the first information to the second network node, where the second network node is the DU.
  • the first information may include one or more of the following: movement information of the terminal device, battery information of the terminal device, or power consumption information of the terminal device.
  • the movement information of the terminal device may indicate whether the terminal device is in a moving state or whether it is stationary.
  • the movement information of the terminal device may also include the movement rate level of the terminal device when it is in a moving state, such as high speed, medium speed, or normal speed.
  • the movement information of the terminal device may include beam-level movement history information.
  • the movement history information of the beam level is used to indicate the beam experienced by the terminal device and the time on the experienced beam.
  • the beam experienced by the terminal device can be understood as the beam that provides services for the terminal device.
  • the beam here may refer to a synchronization signal and a PBCH block (synchronization signal and pbch block, SSB) or a channel state information reference signal (channel state information reference signal, CSI-RS)
  • the battery information of the terminal device may indicate whether the battery of the terminal device is rechargeable, or whether the terminal device is connected to a power source.
  • the power consumption information of the terminal device may indicate the power consumption of the battery of the terminal device, such as the target remaining power.
  • the CU-CP may determine the first information according to multiple methods.
  • the following is an example for description.
  • the CU-CP may determine the first information according to the algorithm information.
  • the algorithm information may include the first algorithm and/or parameter information corresponding to the first algorithm.
  • the algorithm information may be sent by a core network device, or may also be sent by other network elements (for example, network management).
  • the CU-CP has a prediction function.
  • the CU-UP can predict the first information according to the prediction algorithm and/or the parameter information corresponding to the prediction algorithm (or called the prediction model).
  • the prediction algorithm here may be any of the algorithms described in method 200. It should be understood that the first algorithm may be any prediction algorithm.
  • the CU-CP may also send the second algorithm and/or parameter information corresponding to the second algorithm to the core network device.
  • the first algorithm and the second algorithm can be the same or different.
  • the second algorithm may be, for example, some specific algorithms in a supervised learning algorithm or some specific algorithms in an unsupervised learning algorithm.
  • the prediction algorithm and/or the parameter information corresponding to the prediction algorithm can also be adjusted, and the adjusted prediction algorithm (such as the second algorithm) and/or the adjusted
  • the parameter information corresponding to the prediction algorithm (for example, the parameter information corresponding to the second algorithm) is sent to the core network device.
  • the core network device can send this information to the CU-CP that re-establishes the connection with the terminal device (hereinafter referred to as : Target CU-CP).
  • the target CU-CP and the above CU-CP may or may not be the same CU-CP.
  • the first algorithm and/or the parameter information corresponding to the first algorithm may be sent to the core network device by a certain CU-CP before handover or before the terminal device enters the RRC idle state.
  • the CU-CP may determine the first information according to the auxiliary information.
  • the CU-CP has a prediction function, and the CU-CP can make finer predictions based on the first information, such as more accurate predictions.
  • the parameters in the auxiliary information can be of the same type as the parameters in the first information, but the granularity of the auxiliary information can be different from that of the first information.
  • the auxiliary information is cell granular
  • the first information is beam granular, namely CU-CP
  • the corresponding information of the beam granularity can be predicted based on the information of the cell granularity.
  • the auxiliary information may be sent by core network equipment or network management.
  • the auxiliary information may be determined by the CU-CP that the terminal device accessed last time and sent to the core network device.
  • the auxiliary information may also be obtained by the CU-CP locally or from other CU-CPs.
  • the source access network device sends auxiliary information to the target access network device, for example, the handover request message carries the auxiliary information.
  • the MN sends the auxiliary information to the SN, for example, the auxiliary information is carried in the SN addition request message or the SN modification request message.
  • the source access network device and the target access network device, or the source MN and SN may correspond to the same CU-CP, or may correspond to different CU-CPs.
  • the first algorithm and the parameter information corresponding to the first algorithm can also be obtained in the manner described here.
  • the terminal device may determine the first information of the terminal device according to the first algorithm and/or the parameter information corresponding to the first algorithm, and the auxiliary information.
  • the CU-CP may also use the first information to perform local configuration, such as mobile measurement configuration.
  • the DU may receive the first information. After receiving the first information, the DU can configure wireless parameters for the terminal device according to the first information.
  • the wireless parameters may include one or more of the following: discontinuous reception (DRX) configuration information, beam configuration information, data inactivity timer length (when the terminal device is in the timer When no MAC service data unit (SDU) is received or sent, the terminal device will release the RRC connection with the network side and enter the RRC idle state), whether to configure carrier aggregation, the bandwidth that the terminal device can use, and The maximum number of multiple input multiple output (MIMO) layers that can be used by the terminal device, etc.
  • DRX discontinuous reception
  • beam configuration information beam configuration information
  • data inactivity timer length when the terminal device is in the timer When no MAC service data unit (SDU) is received or sent, the terminal device will release the RRC connection with the network side and enter the RRC idle state
  • SDU MAC service data unit
  • MIMO multiple input multiple output
  • the method may further include: S430, the CU-CP sends the first information to the core network device.
  • the CU-CP can send the first information to the core network device, so that when the terminal device returns to RRC_connected from the RRC_idle state or the inactive state next time, the core network device can send the first information to the CU-CP, The CU-CP can continue to predict or use based on the first information.
  • CU-UP can determine the first information that characterizes certain characteristics of the terminal device, and CU-UP can send the first information to the DU, so that the DU can configure the terminal device appropriately according to the first information. Wireless parameters, so as to better serve the terminal equipment.
  • Fig. 5 is a schematic flowchart of another communication method provided by the present application. The steps of the method 500 will be described below in conjunction with FIG. 5.
  • the second network node determines configuration information of the terminal device.
  • the second network node is DU.
  • the DU sends the configuration information to the core network device through the first network node.
  • the first network node is CU-CP.
  • the configuration information includes one or more of the following: semi-persistent scheduling configuration, multiple-input multiple-output MIMO configuration, channel state information reference signal CSI-RS configuration, or sounding reference signal SRS configuration.
  • the semi-persistent scheduling configuration may include one or more of the following: the semi-persistent scheduling period, the hybrid automatic repeat reQuest (HARQ) process number corresponding to the semi-persistent scheduling, and the corresponding semi-persistent scheduling
  • the CSI-RS configuration may include one or more of the following: frequency domain position, number of ports, time domain position, code domain type.
  • the SRS configuration may include one or more of the following: periodic or aperiodic, number of ports, resource location, and so on.
  • the MIMO configuration may include the number of MIMO streams and so on.
  • the DU may determine the configuration information according to algorithm information.
  • the algorithm information may include the first algorithm and/or parameter information corresponding to the first algorithm.
  • the algorithm information may be sent by a core network device, or may be sent by other network elements (e.g., network management).
  • the DU has a prediction function.
  • the DU can predict the configuration information according to the prediction algorithm and/or the parameter information corresponding to the prediction algorithm (or called the prediction model).
  • the prediction algorithm here may be any of the algorithms described in method 200. It should be understood that the first algorithm may be any prediction algorithm.
  • the DU may also send the second algorithm and/or parameter information corresponding to the second algorithm to the CU-CP.
  • the CU-CP may send the second algorithm and/or parameter information corresponding to the second algorithm to the core network device.
  • the first algorithm and the second algorithm can be the same or different.
  • the second algorithm may be, for example, some specific algorithms in a supervised learning algorithm or some specific algorithms in an unsupervised learning algorithm.
  • the prediction algorithm and/or the parameter information corresponding to the prediction algorithm can also be adjusted, and the adjusted prediction algorithm (such as the second algorithm) and/or the adjusted prediction algorithm can be adjusted.
  • the corresponding parameter information (for example, the parameter information corresponding to the second algorithm) is sent to the CU-CP.
  • the CU-CP can send this information to the new DU, and the new DU can use this information to configure relevant information for the UE.
  • the DU may determine the configuration information according to the auxiliary information.
  • the parameters in the auxiliary information may be of the same type as the parameters in the configuration information of the terminal device.
  • the auxiliary information may be sent by core network equipment or network management.
  • the auxiliary information may be determined by the DU accessed by the terminal device last time and sent to the core network device.
  • the auxiliary information may also be obtained by the DU locally or from other DUs.
  • the source access network device sends auxiliary information to the target access network device.
  • the handover request message carries auxiliary information.
  • the MN sends auxiliary information to the SN.
  • a request message for adding an SN or a request message for modifying an SN carries auxiliary information.
  • the source access network device and the target access network device, or the source MN and SN may correspond to the same DU or different DUs.
  • the first algorithm and the parameter information corresponding to the first algorithm can also be obtained in the manner described here.
  • the terminal device may determine the configuration information according to the first algorithm and/or parameter information corresponding to the first algorithm, and auxiliary information.
  • the DU first sends the configuration information to the CU-CP, and the CU-CP then sends the configuration information to the core network device.
  • the core network device can send the configuration information to the corresponding DU, and the corresponding DU can continue to be predicted or used based on the configuration information.
  • the DU can send the configuration information of the terminal device to the core network device, so as to facilitate subsequent DU scheduling or configuration of wireless parameters.
  • Fig. 6 is a schematic flowchart of another communication method provided by the present application. The steps of the method 600 will be described below in conjunction with FIG. 6.
  • S610 The core network device determines the first service characteristic of the service.
  • the first service feature may include one or more of the following: whether the service is a periodic service, the size of the service package corresponding to the service, the service model corresponding to the service, or the scheduling time of the service, Time delay requirement, and the period corresponding to the service when the service is a periodic service.
  • the delay requirement can distinguish between uplink and downlink. That is, if the service is an uplink service, the delay requirement is an uplink delay requirement. If the service is a downlink service, the delay requirement is a downlink delay requirement. If the service includes both uplink and downlink services, the delay requirements include uplink delay requirements and downlink delay requirements.
  • the granularity corresponding to the first service feature may be any of the following: PDU session, QoS flow, DRB or slice.
  • the first service characteristic is a service characteristic corresponding to a specific PDU session, QoS flow, DRB or slice, and the specific PDU session, QoS flow, DRB or slice corresponds to the service.
  • the first service characteristic may be a specific QoS flow, such as QoS flow #1, corresponding to the service characteristic, where QoS flow #1 corresponds to the service.
  • service characteristics corresponding to different granularities may be different.
  • QoS flow #1 corresponds to DRB#1
  • the two correspond to the same service
  • the service characteristic corresponding to QoS flow #1 and the service characteristic corresponding to DRB#1 may be the same or different.
  • the first network node may obtain one or more service characteristics of each service in one or more services, and the granularity corresponding to one or more service characteristics of each service may be the same or different.
  • the first network node may obtain one or more service characteristics of service #1, and obtain one or more service characteristics of service #2.
  • the one or more service characteristics of service #1 may be, for example, the service characteristics of slice #1 and the service characteristic of slice #2
  • the one or more service characteristics of service #2 may be, for example, QoS flow #1 and QoS flow #. 2 business characteristics.
  • the core network device sends the first service feature to the first network node, where the first network node is the CU-CP.
  • the CU-CP sends the second service feature to the second network node, where the second network node is CU-UP or DU.
  • the first service feature and the second service feature can be the same or different.
  • the second service feature may be PDU session, QoS flow, DRB or slice.
  • the CU-CP may directly forward the first service feature to the second network node.
  • the CU-CP may send the first service feature to the second network node.
  • the first service feature is the service feature of DRB#1
  • the granularity of the service feature that the CU-CP needs to provide to the second network node is also DRB
  • the CU-CP can send the service feature of DRB#1 to the second network node.
  • the CU-CP may determine the first service feature according to the first service feature.
  • the first service feature is the service feature of QoS flow #1
  • the granularity of the service feature that CU-CP needs to provide to the second network node is DRB
  • CU-CP can determine the QoS according to the service feature of QoS flow #1
  • the service feature of DRB#1 corresponding to stream #1 ie, an example of the second service feature.
  • CU-CP can provide the service feature of QoS flow #1 as the service feature of DRB#1 to the second network node, or CU-CP can combine the service feature of QoS flow #1 and other corresponding DRB#1
  • the service characteristics of DRB#1 are determined, and the determined service characteristics of DRB#1 are sent to the second network node.
  • CU-CP can decompose the requirements of the first granularity of the services to the various entities (such as CU -The guaranteed delay on the UP side, the guaranteed delay on the F1-U port, the guaranteed delay on the DU side, and the guaranteed delay on the terminal equipment side), CU-CP will notify each entity of the delay requirements CU-UP and DU.
  • the CU-CP can decompose the downlink delay requirements into CU-UP, F1 port delay, DU side delay, and terminal device side delay.
  • the CU-CP notifies the CU-CP of the delay requirements for the CU-UP and F1 ports, and sends the delay requirements for the DU side to the DU. Therefore, the CU-UP and DU can adjust the processing of the corresponding services according to the corresponding delay requirements, so as to meet the corresponding delay requirements.
  • the core network device can provide the access network device with terminal device-granularity service features.
  • the core network device can send smaller-granularity service features to the CU-UP or DU, thereby CU-UP Or DU can perform more accurate scheduling and resource allocation based on these smaller-granularity service characteristics, so as to better provide communication services for terminal devices.
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic.
  • the various numerical numbers or serial numbers involved in the above-mentioned various processes are only for easy distinction for description, and should not constitute any limitation on the implementation process of the embodiments of the present application.
  • Fig. 7 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the communication device 1000 may include a transceiving unit 1100 and a processing unit 1200.
  • the transceiver unit 1100 can be used to receive information sent by other devices, and can also be used to send information to other devices.
  • the processing unit 1200 may be used to perform internal processing of the device.
  • the communication device 1000 may correspond to the first network node (ie, CU-UP) in the above method 200, for example, the communication device 1000 may be the first network node or be configured at the first network node In the chip.
  • the communication device 1000 may include a unit for performing operations performed by the first network node in the method, and each unit in the communication device 1000 is for implementing the operations performed by the first network node in the method.
  • the processing unit 1200 is configured to obtain a first business characteristic of a business, and the first business characteristic includes one or more of the following: whether the business is a periodic business, and if the business is a periodic business, the business The corresponding period, the size of the service packet corresponding to the service, the service model corresponding to the service, or the scheduling time of the service; the transceiver unit 1100 is configured to send the first service feature to the second network node (ie, CU-CP).
  • the second network node ie, CU-CP
  • the granularity corresponding to the first service feature is any one of the following: protocol data unit PDU session, terminal equipment, quality of service QoS flow, data radio bearer DRB or slice.
  • the transceiver unit 1100 is further configured to receive algorithm information sent by the core network device, where the algorithm information includes the first algorithm and/or parameter information corresponding to the first algorithm; the processing unit 1200 is specifically configured to: according to the algorithm information Determine the first business characteristic.
  • the transceiver unit 1100 is specifically configured to receive the algorithm information sent by the core network device through the second network node.
  • the transceiver unit 1100 is further configured to send the second algorithm and/or parameter information corresponding to the second algorithm to the core network device.
  • the processing unit 1200 is specifically configured to: determine the first service characteristic according to the auxiliary information sent by the core network device or other network nodes, the auxiliary information includes one or more of the following: whether the service is a periodic service If the business is a periodic business, the period corresponding to the business, the size of the business package corresponding to the business, the business model corresponding to the business, or the scheduling time of the business, the auxiliary information is the same as or different from the characteristics of the business.
  • the communication device 1000 may correspond to the second network node (ie, CU-CP) in the above method 200, for example, the communication device 1000 may be the second network node or be configured at the second network node In the chip.
  • the communication device 1000 may include a unit for performing operations performed by the second network node in the method, and each unit in the communication device 1000 is for implementing the operations performed by the second network node in the method.
  • the transceiver unit 1100 is configured to receive a first service characteristic of a service sent by a first network node (ie, CU-UP), where the first service characteristic includes one or more of the following: whether the service is periodic Business, if the business is a periodic business, the period corresponding to the business, the size of the business package corresponding to the business, the business model corresponding to the business, or the scheduling time of the business.
  • a first network node ie, CU-UP
  • the first service characteristic includes one or more of the following: whether the service is periodic Business, if the business is a periodic business, the period corresponding to the business, the size of the business package corresponding to the business, the business model corresponding to the business, or the scheduling time of the business.
  • the transceiver unit 1100 is further configured to send the first service feature to a third network node, where the third network node is a distribution unit.
  • the processing unit 1200 is configured to determine a second service feature of the service, and the granularity corresponding to the first service feature and the second service feature are different; the transceiver unit 1100 is also configured to send the first service feature to a third network node 2.
  • Service characteristics, the third network node is a distribution unit.
  • the granularity corresponding to the first service feature is any one of the following: protocol data unit PDU session, terminal equipment, quality of service QoS flow, data radio bearer DRB or slice.
  • the communication device 1000 may correspond to the first network node (ie, CU-UP) in the above method 300, for example, the communication device 1000 may be the first network node or be configured at the first network node In the chip.
  • the communication device 1000 may include a unit for performing operations performed by the first network node in the method, and each unit in the communication device 1000 is for implementing the operations performed by the first network node in the method.
  • the processing unit 1200 is configured to obtain a first service characteristic of a service, and the first service characteristic includes one or more of the following: whether the service is a periodic service, and if the service is a periodic service, the The period corresponding to the service, the size of the service packet corresponding to the service, the service model corresponding to the service, or the scheduling time of the service; the transceiver unit 1100 is configured to send the first service feature to a third network node (ie, DU).
  • a third network node ie, DU
  • the communication device 1000 may correspond to the third network node (ie, DU) in the above method 300.
  • the communication device 1000 may be a third network node or a third network node configured in the third network node. chip.
  • the communication device 1000 may include a unit for performing operations performed by the third network node in the method, and each unit in the communication device 1000 is for implementing the operations performed by the third network node in the method.
  • the transceiver unit 1100 is configured to receive a first service characteristic of a service sent by a first network node (ie, CU-UP), where the first service characteristic includes one or more of the following: whether the service is periodic Business, if the business is a periodic business, the period corresponding to the business, the size of the business package corresponding to the business, the business model corresponding to the business, or the scheduling time of the business.
  • a first network node ie, CU-UP
  • the first service characteristic includes one or more of the following: whether the service is periodic Business, if the business is a periodic business, the period corresponding to the business, the size of the business package corresponding to the business, the business model corresponding to the business, or the scheduling time of the business.
  • the communication device 1000 may correspond to the first network node (ie, CU-CP) in the above method 400, for example, the communication device 1000 may be the first network node or be configured at the first network node In the chip.
  • the communication device 1000 may include a unit for performing operations performed by the first network node in the method, and each unit in the communication device 1000 is for implementing the operations performed by the first network node in the method.
  • the processing unit 1200 is configured to determine first information of the terminal device, where the first information includes one or more of the following: the mobile information of the terminal device, the battery information of the terminal device, or the terminal device’s battery information. Power consumption information; the transceiver unit 1100 is configured to send the first information to a second network node, which is a distribution unit.
  • the processing unit 1200 is specifically configured to determine the first information according to algorithm information and/or auxiliary information, the algorithm information includes the first algorithm and/or parameter information corresponding to the first algorithm, and the auxiliary information includes the following One or more of the above: movement information of the terminal device, battery information of the terminal device, or power consumption information of the terminal device, and the auxiliary information is the same or different from the first information.
  • the transceiver unit 1100 is further configured to send the algorithm information to the core network device.
  • the transceiving unit 1100 is further configured to send the first information to the core network device.
  • the communication device 1000 may correspond to the second network node (ie, DU) in the above method 400.
  • the communication device 1000 may be a second network node or a device configured in the second network node. chip.
  • the communication device 1000 may include a unit for performing operations performed by the second network node in the method, and each unit in the communication device 1000 is for implementing the operations performed by the second network node in the method.
  • the transceiver unit 1100 is configured to receive first information of the terminal device sent by a first network node, where the first network node is a control plane of a centralized unit, and the first information includes one or more of the following: The movement information of the terminal device, the battery information of the terminal device, or the power consumption information of the terminal device.
  • the processing unit 1200 is configured to configure wireless parameters for the terminal device according to the first information.
  • the communication device 1000 may correspond to the second network node (ie, DU) in the above method 500.
  • the communication device 1000 may be a second network node or a device configured in the second network node. chip.
  • the communication device 1000 may include a unit for performing operations performed by the second network node in the method, and each unit in the communication device 1000 is for implementing the operations performed by the second network node in the method.
  • the processing unit 1200 is configured to determine configuration information of the terminal device, the configuration information includes one or more of the following: semi-persistent scheduling configuration, multiple input multiple output MIMO configuration, channel state information reference signal CSI-RS Configuration or sounding reference signal SRS configuration; the transceiver unit 1100 is configured to send the configuration information to the core network device through the first network node, which is the control plane of the centralized unit.
  • the processing unit 1200 is specifically configured to: determine the configuration information according to algorithm information and/or auxiliary information, the algorithm information includes the first algorithm and/or parameter information corresponding to the first algorithm, and the auxiliary information includes the terminal device One or more of the following information: semi-persistent scheduling configuration, MIMO configuration, CSI-RS configuration, or SRS configuration, and the auxiliary information is the same or different from the configuration information.
  • the transceiver unit 1100 is further configured to send the algorithm information to the first network node.
  • the communication device 1000 may correspond to the core network device in the above method 500.
  • the communication device 1000 may be a core network device or a chip configured in the core network device.
  • the communication device 1000 may include a unit for performing operations performed by the core network device in the method, and each unit in the communication device 1000 is used to implement the operations performed by the core network device in the method.
  • the transceiver unit 1100 is configured to receive configuration information of the terminal device sent by a second network node through a first network node, where the first network node is a control plane of a centralized unit, and the second network node is a distributed unit.
  • the information includes one or more of the following: semi-persistent scheduling configuration, multiple-input multiple-output MIMO configuration, channel state information reference signal CSI-RS configuration, or sounding reference signal SRS configuration.
  • the transceiver unit 1100 is further configured to send the configuration information to another DU.
  • the transceiver unit 1100 is further configured to: send auxiliary information to the second network node, the auxiliary information is used by the second network node to determine the configuration information, and the auxiliary information includes one of the following information of the terminal device Or multiple: semi-persistent scheduling configuration, MIMO configuration, CSI-RS configuration or SRS configuration.
  • the communication device 1000 may correspond to the first network node (ie, CU-CP) in the above method 600, for example, the communication device 1000 may be the first network node or be configured at the first network node In the chip.
  • the communication device 1000 may include a unit for performing operations performed by the first network node in the method, and each unit in the communication device 1000 is for implementing the operations performed by the first network node in the method.
  • the transceiver unit 1100 is configured to receive a first service feature of a service sent by a core network device, and the granularity corresponding to the first service feature is any one of the following: protocol data unit PDU session, quality of service flow, Data radio bearer DRB or slice; according to the first service characteristic, send the second service characteristic of the service to the second network node, the second network node is the user plane or the distribution unit of the centralized unit, and the second service characteristic corresponds to The granularity of is any one of the following: PDU session, QoS flow, DRB or slice.
  • the first service characteristic includes one or more of the following: whether the service is a periodic service, the period corresponding to the service if the service is a periodic service, the size of the service package corresponding to the service, The business model corresponding to the business, the scheduling time of the business, and the delay requirements of the business.
  • the communication device 1000 may correspond to the core network device in the above method 600.
  • the communication device 1000 may be a core network device or a chip configured in the core network device.
  • the communication device 1000 may include a unit for performing operations performed by the core network device in the method, and each unit in the communication device 1000 is used to implement the operations performed by the core network device in the method.
  • the processing unit 1200 is configured to determine the first service feature of the service; the transceiver unit 1100 is configured to send the first service feature to a first network node, where the first network node is the control plane of the centralized unit, and the first network node is the control plane of the centralized unit.
  • the granularity corresponding to the service feature is any one of the following: protocol data unit PDU session, quality of service QoS flow, data radio bearer DRB or slice.
  • the first service characteristic includes one or more of the following: whether the service is a periodic service, the period corresponding to the service if the service is a periodic service, the size of the service package corresponding to the service, The business model corresponding to the business, the scheduling time of the business, and the delay requirements of the business.
  • the communication device 1000 may correspond to the second network node (ie, CU-CP or DU) in the above method 600.
  • the communication device 1000 may be the second network node or be configured in the second network node.
  • the communication device 1000 may include a unit for performing operations performed by the second network node in the method, and each unit in the communication device 1000 is for implementing the operations performed by the second network node in the method.
  • the transceiver unit 1100 is configured to receive a second service feature of a service sent by a first network node, where the first network node is the control plane of a centralized unit, and the granularity corresponding to the second service feature is any of the following Types: protocol data unit PDU session, quality of service QoS flow, data radio bearer DRB or slice.
  • the second service characteristic includes one or more of the following: whether the service is a periodic service, if the service is a periodic service, the period corresponding to the service, the size of the service package corresponding to the service, The business model corresponding to the business, the scheduling time of the business, and the delay requirements of the business.
  • transceiving unit 1100 in the communication device 1000 may correspond to the transceiving circuit 2010 shown in FIG. 8, and the processing unit 1200 in the communication device 1000 may correspond to the processing circuit 2020 shown in FIG. 8.
  • FIG. 8 is a schematic structural diagram of a communication device 2000 provided by an embodiment of the present application.
  • the device 2000 can be applied to the system shown in FIG. 1 to perform operations performed by each network element in the foregoing method embodiment.
  • the device 2000 includes a transceiver circuit 2010 and a processing circuit 2020.
  • the device 2000 further includes a storage circuit 2030.
  • the transceiver circuit 2010 may be a transceiver
  • the processing circuit 2020 may be a processor
  • the storage circuit 2030 may be a memory.
  • the transceiver circuit 2010, the processing circuit 2020, and the storage circuit 2030 can communicate with each other through an internal connection path to transfer control or data signals.
  • the storage circuit 2030 is used to store computer programs, and the processing circuit 2020 is used to receive data from the storage circuit 2030. Call and run the computer program to control the transceiver circuit 2010 to send and receive signals.
  • the aforementioned processing circuit 2020 and the storage circuit 2030 can be combined into one processing device, and the processing circuit 2020 is used to execute the program code stored in the storage circuit 2030 to realize the aforementioned functions.
  • the storage circuit 2030 may also be integrated in the processing circuit 2020 or independent of the processing circuit 2020.
  • the apparatus 2000 shown in FIG. 8 can implement any network function involved in any of the methods 200 to 600.
  • the operation or function of each module in the device 2000 is to implement the corresponding process in the foregoing method embodiment.
  • the present application also provides a computer program product, the computer program product includes: computer program code, when the computer program code runs on a computer, the computer executes any of the foregoing method embodiments An operation performed by a network element.
  • the present application also provides a computer-readable medium storing program code, which when the program code runs on a computer, causes the computer to execute any of the foregoing method embodiments.
  • the present application also provides a system, which includes one or more network elements among the aforementioned DU, CU-CP, CU-CP, and core network equipment.
  • An embodiment of the present application also provides a processing device, including a processor and an interface; the processor is configured to execute the method in the foregoing method embodiment.
  • the aforementioned processing device may be a chip.
  • the processing device may be a field programmable gate array (FPGA), a general-purpose processor, a digital signal processor (digital signal processor, DSP), or an application specific integrated circuit (ASIC) , Ready-made programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, or system on chip (SoC), or central processing
  • the central processor unit (CPU) can also be a network processor (NP), a digital signal processing circuit (digital signal processor, DSP), or a microcontroller (microcontroller unit, MCU) It can also be a programmable logic device (PLD) or other integrated chips.
  • NP network processor
  • DSP digital signal processor
  • MCU microcontroller unit
  • PLD programmable logic device
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disc, SSD)) etc.
  • the network equipment in each of the above-mentioned device embodiments corresponds completely to the network equipment or terminal equipment in the terminal equipment and method embodiments, and the corresponding modules or units execute the corresponding steps.
  • the communication unit executes the receiving or the terminal equipment in the method embodiments.
  • the processing unit executes the functions of specific units, refer to the corresponding method embodiments. Among them, there may be one or more processors.
  • a component may be, but is not limited to, a process, a processor, an object, an executable file, an execution thread, a program, or a computer running on the processor.
  • the application running on the computing device and the computing device can be components.
  • One or more components can reside in a process or thread of execution, and the components can be located on one computer or distributed between two or more computers.
  • these components can be executed from various computer readable media having various data structures stored thereon.
  • a component can pass a local signal based on a signal having one or more data packets (for example, data from two components that interact with another component in a local system, a distributed system, or a network, such as the Internet that interacts with other systems through a signal). Or remote process to communicate.
  • a signal having one or more data packets for example, data from two components that interact with another component in a local system, a distributed system, or a network, such as the Internet that interacts with other systems through a signal.
  • remote process to communicate for example, data from two components that interact with another component in a local system, a distributed system, or a network, such as the Internet that interacts with other systems through a signal.
  • a corresponding to B means that B is associated with A, and B can be determined according to A.
  • determining B based on A does not mean that B is determined only based on A, and B can also be determined based on A and/or other information.
  • the terminal device and/or the network device can perform some or all of the steps in the embodiments of the present application. These steps or operations are only examples, and the embodiments of the present application may also perform other operations or various operations. Deformation of the operation. In addition, each step may be executed in a different order presented in the embodiments of the present application, and it may not be necessary to perform all the operations in the embodiments of the present application.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read only memory ROM, random access memory RAM, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法和通信装置,由CU-UP获取业务的第一业务特征,第一业务特征包括下述中的一项或多项:该业务是否为周期业务、在该业务为周期业务的情况下该业务对应的周期、该业务对应的业务包大小、该业务对应的业务模型或者该业务的调度时间;然后,CU-UP向CU-CP发送第一业务特征,接着CU-CP可以将第一业务特征发送给DU。从而,DU可以基于CU-CP发送的业务特征进行业务的调度或配置。

Description

通信方法和通信装置 技术领域
本申请涉及通信领域,并且更具体地,涉及一种通信方法和通信装置。
背景技术
第五代(5th generation,5G)通信技术引入了集中式单元(centralized unit,CU)/分布式单元(distributed unit,DU)架构,也就是将接入网设备(例如,基站)分为CU和DU两部分。CU又可以分为集中单元的控制面(centralized unit control plane,CU-CP)和集中单元的用户面(centralized unit user plane,CU-UP),CU-CP可以负责控制面功能,CU-UP可以负责用户面功能。
在新的网络架构下,接入网设备如何进行业务调度或配置,是一个需要解决的问题。
发明内容
本申请提供了一种通信方法和通信装置,能够使得DU可以基于CU-CP发送的业务特征进行业务的调度或配置。
第一方面,提供了一种通信方法,包括:第一网络节点获取业务的第一业务特征,第一网络节点为CU-UP,第一业务特征包括下述中的一项或多项:该业务是否为周期业务、在该业务为周期业务的情况下该业务对应的周期、该业务对应的业务包大小、该业务对应的业务模型或者该业务的调度时间;第一网络节点向第二网络节点发送第一业务特征,第二网络节点为CU-CP。
根据本申请提供的通信方法,第一网络节点可以获取业务特征,并且可以提供给第二网络节点,进而第二网络节点可以将业务特征提供给DU,从而使得DU可以基于所接收到的业务特征进行业务的调度或配置。
另外,通常业务特征由核心网提供给接入网设备,而核心网提供的业务特征一般都是签约的业务特征,可能与实际的业务特征不相符,从而可能导致接入网设备在进行业务调度或配置的时候无法适配业务特征。而根据本申请提供的通信方法,第一网络节点可以基于实际的业务数据获取业务特征,这样获得的业务特征更符合实际传输的业务,进而DU在进行调度或配置时可以更好的适配业务。
可选地,第一业务特征对应的粒度为下述中的任一种:协议数据单元(protocol data unit,PDU)会话、终端设备、服务质量(quality of service,QoS)流、数据无线承载(dara radio bearer,DRB)或者切片(slice)。或者,第一业务特征为特定的PDU会话、终端设备、QoS流、DRB或者切片对应的业务特征,该特定的PDU会话、终端设备、QoS流、DRB或者切片对应该业务。
结合第一方面,在第一方面的某些实现方式中,该方法还可以包括:第一网络节点接收核心网设备发送的算法信息,该算法信息包括第一算法和/或第一算法对应的参数信息; 其中,第一网络节点获取业务的第一业务特征,包括:第一网络节点根据该算法信息确定第一业务特征。
基于该方案,第一网络节点可以基于该算法信息,预测第一业务特征。
可选地,该算法信息可以是核心网设备或其他网元(如,网管)发送给第一网络节点的。
可选地,第一算法可以是监督学习算法中的某些具体算法(比如决策树、朴素贝叶斯分类、最小二乘法、支持向量机等)、无监督学习算法中的某些具体算法(比如聚类算法等)或者强化学习中的某些具体算法。
可选地,第一网络节点接收核心网设备发送的算法信息,包括:第一网络节点通过所述集中单元的控制面,接收核心网设备发送的该算法信息。
结合第一方面,在第一方面的某些实现方式中,该方法还可以包括:第一网络节点向核心网设备发送第二算法和/或第二算法对应的参数信息。
基于该方案,第一网络节点切换之后,或者终端设备进入到无线资源控制(radio resource control,RRC)空闲(RRC_idle)态,再由RRC_idle态进入RRC连接(RRC_connected)态时,核心网设备可以将第二算法和/或第二算法对应的参数信息发送给与该终端设备重新建立连接的CU-UP,该CU-UP可以基于第二算法和/或第二算法对应的参数信息继续预测业务特征。
可选地,第一算法信息和第二算法信息可以相同,也可以不同。
结合第一方面,在第一方面的某些实现方式中,第一网络节点获取业务的第一业务特征,包括:第一网络节点根据核心网设备或者其他网络节点发送的辅助信息,确定第一业务特征,所述辅助信息包括下述中的一项或多项:业务是否为周期业务、在业务为周期业务的情况下所述业务对应的周期、业务对应的业务包大小、业务对应的业务模型或者业务的调度时间,所述辅助信息与所述业务特征相同或不同。
可选地,该辅助信息可以是终端设备上一次所接入的CU-UP所确定并发送给核心网设备的。
结合第一方面,在第一方面的某些实现方式中,第一网络节点获取业务的第一业务特征,包括:第一网络节点从本地或者其他CU-UP处获取第一业务特征。
第二方面,提供了一种通信方法,包括:第二网络节点接收第一网络节点发送的业务的第一业务特征,第一网络节点为CU-CP,第二网络节点为CU-CP,第一业务特征包括下述中的一项或多项:该业务是否为周期业务、在该业务为周期业务的情况下该业务对应的周期、该业务对应的业务包大小、该业务对应的业务模型或者该业务的调度时间。
可选地,该方法还可以包括:第二网络节点向第三网络节点发送第一业务特征,第三网络节点为DU。
可选地,该方法还可以包括:第二网络节点根据第一业务特征,确定该业务的第二业务特征,第一业务特征和第二业务特征对应的粒度不同;第二网络节点向第三网络节点发送第二业务特征,第三网络节点为DU。
根据本申请提供的方法,通过由CU-UP获取业务特征,并通过CU-CP向DU发送该业务特征或者根据该业务特征所确定的另一业务特征,从而使得DU可以基于所接收到的业务特征进行业务的调度或配置。
可选地,第一业务特征对应的粒度为下述中的任一种:协议数据单元PDU会话、终端设备、服务质量QoS流、数据无线承载DRB或者切片。
结合第二方面,在第二方面的某些实现方式中,该方法还可以包括:第二网络节点向核心网设备发送第一业务特征或第二业务特征。
这样当该终端设备下次从RRC_idle态或非激活(inactive)态回到RRC_connected时,核心网设备可以将第一业务特征或第二业务特征发送给CU-UP,CU-UP可以基于第一业务特征或第二业务特征继续预测或使用。
第三方面,提供了一种通信方法,包括:第一网络节点确定终端设备的第一信息,所第一网络节点为CU-CP,第一信息包括下述中的一项或多项:该终端设备的移动信息、该终端设备的电池信息或者该终端设备的耗电信息;第一网络节点向第二网络节点发送第一信息,第二网络节点为DU。
根据本申请提供的方法,CU-UP可以确定表征终端设备的某些特征的第一信息,并且CU-UP可以向DU发送第一信息,从而DU可以根据第一信息为终端设备配置合适的无线参数,从而更好的为终端设备服务。
结合第三方面,在第三方面的某些实现方式中,第一网络节点确定终端设备的第一信息,包括:第一网络节点根据算法信息和/或辅助信息,确定第一信息,该算法信息包括第一算法和/或第一算法对应的参数信息,辅助信息包括下述中的一项或多项:该终端设备的移动信息、该终端设备的电池信息或者该终端设备的耗电信息,辅助信息与第一信息相同或不同。
基于该方法,第一网络节点可以基于算法信息和/或辅助信息,预测业务特征。
结合第三方面,在第三方面的某些实现方式中,该方法还可以包括:第一网络节点向核心网设备发送该算法信息。
基于该方案,第一网络节点切换之后,或者终端设备进入到RRC空闲(RRC_idle)态,再由RRC_idle态进入RRC连接(RRC_connected)态时,核心网设备可以将该算法信息发送给与该终端设备重新建立连接的CU-UP,该CU-UP可以基于该算法信息继续预测业务特征。
结合第三方面,在第三方面的某些实现方式中,该方法还可以包括:第一网络节点向核心网设备发送第一信息。这样当该终端设备下次从RRC_idle态或非激活(inactive)态回到RRC_connected时,核心网设备可以把第一信息发送给CU-CP,CU-CP可以基于第一信息继续预测或使用。
第四方面,提供了一种通信方法,包括:第二网络节点接收第一网络节点发送的终端设备的第一信息,第一网络节点为CU-CP,第二网络节点为DU,所述第一信息包括下述中的一项或多项:该终端设备的移动信息、该终端设备的电池信息或者该终端设备的耗电信息。
根据本申请提供的方法,CU-UP可以确定表征终端设备的某些特征的第一信息,并且CU-UP可以向DU发送第一信息,从而DU可以根据第一信息为终端设备配置合适的无线参数,从而更好的为终端设备服务。
可选地,该方法还可以包括:第二网络节点根据第一信息,为所述终端设备配置无线参数。
示例性的,无线参数可以包括下述中的一项或多项:非连续接收(discontinuous reception,DRX)的配置信息、波束配置信息、数据不激活定时器长度(当终端设备在该定时器内没有收到或发送任何媒体接入控制(media access control,MAC)服务数据单元(service data unit,SDU)时,终端设备会释放和网络侧的RRC连接,并进入RRC空闲态)、是否配置载波聚合、终端设备可以使用的带宽、以及终端设备可以使用的最大多入多出(multiple input multiple output,MIMO)层数等。
第五方面,提供了一种通信方法,包括:第二网络节点确定终端设备的配置信息,第二网络节点为DU,该配置信息包括下述中的一项或多项:半静态调度配置、多输入多输出MIMO配置、信道状态信息参考信号(channel state informatin reference signal,CSI-RS)配置或者探测参考信号(sounding reference signal,SRS)配置;第二网络节点通过第一网络节点,向核心网设备发送该配置信息,第一网络节点为CU-CP。
示例性的,半静态调度配置可以包括下述中的一项或多项:半静态调度周期、半静态调度对应的混合自动重传请求(hybrid automatic repeat reQuest,HARQ)进程号、半静态调度对应的调制编码表格、下行半静态调度对应的物理上行控制信道(paysical uplink control channel,PUCCH)资源。
CSI-RS配置可以包括下述中的一项或多项:频域位置、端口数目、时域位置、码域类型。
SRS配置可以包括下述中的一项或多项:周期还是非周期、端口数目、资源位置等。
MIMO配置可以包括MIMO的流数等。
根据本申请提供的方法,DU可以将终端设备的配置信息发送给核心网设备,核心网设备可以将该配置信息提供给后续的DU(如切换后的DU,)便于后续的DU进行调度或配置无线参数。
结合第五方面,在第五方面的某些实现方式中,第二网络节点确定终端设备的配置信息,包括:第二网络节点根据算法信息和/或辅助信息,确定该配置信息,该算法信息包括第一算法和/或该第一算法对应的参数信息,该辅助信息包括终端设备的下述信息中的一项或多项:半静态调度配置、MIMO配置、CSI-RS配置或者SRS配置,所述辅助信息与所述配置信息相同或不同。
基于该方案,第二网络节点可以基于算法信息和/或辅助信息,预测该配置信息。
结合第五方面,在第五方面的某些实现方式中,该方法还可以包括:第二网络节点向第一网络节点发送该算法信息。
基于该方案,当终端设备切换到另一DU时,第一网络节点可以将接收到的算法信息发送给该DU,该DU可以利用该算法信息预测终端设备的配置信息。
第六方面,提供了一种通信方法,包括:核心网设备通过第一网络节点接收第二网络节点发送的终端设备的配置信息,第一网络节点为CU-CP,所述第二网络节点为DU,该配置信息包括下述中的一项或多项:半静态调度配置、多输入多输出MIMO配置、信道状态信息参考信号CSI-RS配置或者探测参考信号SRS配置。
根据本申请提供的方法,DU可以将终端设备的配置信息发送给核心网设备,从而核心网设备可以将该配置信息提供给后续的DU(如切换后的DU,)便于后续的DU进行调度或配置无线参数。
可选地,该方法还可以包括:核心网设备向另一DU发送该配置信息。示例性的,该另一分布单元可以是终端设备切换后的DU。
可选地,该方法还可以包括:核心网设备向第二网络节点发送辅助信息,该辅助信息用于第二网络节点确定该配置信息,该辅助信息包括终端设备的下述信息中的一项或多项:半静态调度配置、MIMO配置、CSI-RS配置或者SRS配置。
基于该方案,第二网络节点可以基于该辅助信息预测该配置信息,有利于提高预测精度。
第七方面,提供了一种通信方法,包括:第一网络节点接收核心网设备发送的业务的第一业务特征,第一网络节点为CU-CP,第一业务特征对应的粒度为下述中的任一种:协议数据单元PDU会话、服务质量QoS流、数据无线承载DRB或者切片;第一网络节点根据第一业务特征,向第二网络节点发送该业务的第二业务特征,第二网络节点为CU-CUP或DU,第二业务特征对应的粒度为下述中的任一种:PDU会话、QoS流、DRB或者切片。
当前技术中,核心网设备可以向接入网设备提供终端设备粒度的业务特征,而本申请提供的方法,核心网设备可以向CU-UP或DU发送更小粒度的业务特征,从而CU-UP或DU可以根据这些更小粒度的业务特征进行更准确的调度和资源分配,从而更好地为终端设备提供通信服务。
可选地,所述第一业务特征包括下述中的一项或多项:该业务是否为周期业务、在该业务为周期业务的情况下该业务对应的周期、该业务对应的业务包大小、该业务对应的业务模型、该业务的调度时间、该业务的时延要求。
第八方面,提供了一种通信方法,包括:核心网设备确定业务的第一业务特征;核心网设备向第一网络节点发送第一业务特征,第一网络节点为CU-CP,第一业务特征对应的粒度为下述中的任一种:协议数据单元PDU会话、服务质量QoS流、数据无线承载DRB或者切片。
当前技术中,核心网设备可以向接入网设备提供终端设备粒度的业务特征,而本申请提供的方法,核心网设备可以向CU-UP发送更小粒度的业务特征,从而CU-UP可以根据这些更小粒度的业务特征进行更准确的调度和资源分配,从而更好地为终端设备提供通信服务。
可选地,第一业务特征包括下述中的一项或多项:该业务是否为周期业务、在该业务为周期业务的情况下该业务对应的周期、该业务对应的业务包大小、该业务对应的业务模型、该业务的调度时间、该业务的时延要求。
第九方面,提供了一种通信方法,包括:第二网络节点接收第一网络节点发送的业务的第二业务特征,第一网络节点为CU-CP,第二网络节点为CU-UP或DU,第二业务特征对应的粒度为下述中的任一种:协议数据单元PDU会话、服务质量QoS流、数据无线承载DRB或者切片。
根据本申请提供的方法,CU-UP或DU可以根据CU-CP提供的业务特征进行更准确的调度和资源分配,从而更好地为终端设备提供通信服务。
可选地,第二业务特征包括下述中的一项或多项:该业务是否为周期业务、在该业务为周期业务的情况下该业务对应的周期、该业务对应的业务包大小、该业务对应的业务模 型、该业务的调度时间、该业务的时延要求。
第十方面,提供了一种通信装置,包括用于执行第一方面至第九方面或第一方面至第九方面中任一种可能实现方式中的方法的各个模块或单元。
在一种实现方式中,该装置对应第一方面中的第一网络节点。该装置包括处理单元和收发单元。处理单元用于获取业务的第一业务特征,该第一业务特征包括下述中的一项或多项:该业务是否为周期业务、在该业务为周期业务的情况下该业务对应的周期、该业务对应的业务包大小、该业务对应的业务模型或者该业务的调度时间;收发单元用于向第二网络节点发送该第一业务特征,该第二网络节点为集中单元的控制面。应理解,该装置还可以用于执行第一方面中任一种可能实现方式中的方法。
在一种实现方式中,该装置对应第二方面的第二网络节点。该装置包括收发单元,用于接收第一网络节点发送的业务的第一业务特征,该第一网络节点为集中单元的用户面,该第一业务特征包括下述中的一项或多项:该业务是否为周期业务、在该业务为周期业务的情况下该业务对应的周期、该业务对应的业务包大小、该业务对应的业务模型或者该业务的调度时间。应理解,该装置还可以用于执行第二方面中任一种可能实现方式中的方法。
在一种实现方式中,该装置对应第三方面的第一网络节点。该装置包括处理单元和收发单元。处理单元用于确定终端设备的第一信息,该第一信息包括下述中的一项或多项:该终端设备的移动信息、该终端设备的电池信息或者该终端设备的耗电信息;收发单元用于向第二网络节点发送该第一信息,该第二网络节点为分布单元。应理解,该装置还可以用于执行第三方面中任一种可能实现方式中的方法。
在一种实现方式中,该装置对应第四方面的第二网络节点。该装置包括收发单元,用于接收第一网络节点发送的终端设备的第一信息,该第一网络节点为集中单元的控制面,该第一信息包括下述中的一项或多项:该终端设备的移动信息、该终端设备的电池信息和该终端设备的耗电信息。应理解,该装置还可以用于执行第四方面中任一种可能实现方式中的方法。
在一种实现方式中,该装置对应第五方面的第二网络节点。该装置包括处理单元和收发单元。处理单元用于确定终端设备的配置信息,该配置信息包括下述中的一项或多项:半静态调度配置、多输入多输出MIMO配置、信道状态信息参考信号CSI-RS配置或者探测参考信号SRS配置;收发单元用于通过第一网络节点,向核心网设备发送该配置信息,该第一网络节点为集中单元的控制面。应理解,该装置还可以用于执行第五方面中任一种可能实现方式中的方法。
在一种实现方式中,该装置对应第六方面的核心网设备。该装置包括收发单元,用于通过第一网络节点接收第二网络节点发送的终端设备的配置信息,该第一网络节点为集中单元的控制面,该第二网络节点为分布单元,该配置信息包括下述中的一项或多项:半静态调度配置、多输入多输出MIMO配置、信道状态信息参考信号CSI-RS配置或者探测参考信号SRS配置。应理解,该装置还可以用于执行第六方面中任一种可能实现方式中的方法。
在一种实现方式中,该装置对应第七方面的第一网络节点。该装置包括收发单元,用于接收核心网设备发送的业务的第一业务特征,该第一业务特征对应的粒度为下述中的任一种:协议数据单元PDU会话、服务质量QoS流、数据无线承载DRB或者切片;根据 该第一业务特征,向第二网络节点发送该业务的第二业务特征,该第二网络节点为该集中单元的用户面或分布单元,该第二业务特征对应的粒度为下述中的任一种:PDU会话、QoS流、DRB或者切片。应理解,该装置还可以用于执行第七方面中任一种可能实现方式中的方法。
在一种实现方式中,该装置对应第八方面的核心网设备。该装置包括处理单元和收发单元。处理单元用于确定业务的第一业务特征;收发单元用于向第一网络节点发送该第一业务特征,该第一网络节点为集中单元的控制面,该第一业务特征对应的粒度为下述中的任一种:协议数据单元PDU会话、服务质量QoS流、数据无线承载DRB或者切片。应理解,该装置还可以用于执行第八方面中任一种可能实现方式中的方法。
在一种实现方式中,该装置对应第九方面的第二网络节点。该装置包括收发单元,用于接收第一网络节点发送的业务的第二业务特征,该第一网络节点为集中单元的控制面,该第二业务特征对应的粒度为下述中的任一种:协议数据单元PDU会话、服务质量QoS流、数据无线承载DRB或者切片。应理解,该装置还可以用于执行第九方面中任一种可能实现方式中的方法。
第十一方面,提供了一种通信装置,包括处理器。该处理器可用于执行涉及的指令,以使得该装置执行上述第一方面至第九方面或第一方面至第九方面中任一种可能实现方式中的方法。可选地,该装置还可以包括存储器,该存储器与处理器耦合,该存储器中存储有还涉及的指令。
第十二方面,提供了一种通信装置,包括处理器和存储器。该处理器用于读取存储器中存储的指令,并可通过接收器接收信号,通过发射器发射信号,以执行第一方面至第九方面或第一方面至第九方面中任一种可能实现方式中的方法。
在一种可行的设计中,该处理器为一个或多个,该存储器为一个或多个。
在一种可行的设计中,该存储器可以与该处理器集成在一起,或者该存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
上述第十二方面中的通信装置可以是一个芯片,该处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第十三方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序(也可以称为代码,或指令),当该计算机程序被运行时,使得计算机执行上述第一方面至第九方面或第一方面至第九方面中任一种可能实现方式中的方法。
第十四方面,提供了一种计算机可读介质,该计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面至第九方面或第一方面至第十方面中任一种可能实现方式中的方法。
第十五方面,提供了一种通信系统,包括前述的CU-CP、CU-UP、DU和核心网设备 中的至少两项。
附图说明
图1是应用于本申请的一个通信系统的示意图;
图2是本申请提供的一种通信方法的示意性流程图;
图3是本申请提供的另一种通信方法的示意性流程图;
图4是本申请提供的一种通信方法的示意性流程图;
图5是本申请提供的另一种通信方法的示意性流程图;
图6是本申请提供的一种通信方法的示意性流程图;
图7是本申请提供的通信装置的示意性框图;
图8是本申请提供的另一通信装置的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)系统中的新无线(new radio,NR)或未来可能出现的其他的通信系统。
图1是应用于本申请的一个通信系统的示意图。如图1所示,该系统包括核心网设备、CU和DU,CU可以分为CU-UP和CU-CP。CU-UP也可以称为集中单元的用户面实体或用户面实体。CU-CP也可以称为集中单元的控制面实体或控制面实体。核心网设备和CU(如CU-UP和/或CU-CP)之间可以进行通信,例如,CU-CP可以代表接入网设备通过Ng接口和核心网设备连接。CU-UP和CU-CP之间可以进行通信,例如,可以通过E1接口通信。CU-UP和CU-CP与DU之间可以进行通信,例如,CU-CP可以通过F1-C(控制面)和DU连接,CU-UP通过F1-U(用户面)和DU连接。
核心网设备在不同的系统对应不同的网元。比如,在4G网络中核心网设备可以对应移动管理功能(mobility management entity,MME)和/或服务网关(serving gateway,S-GW);在5G网络中可以对应接入和移动管理功能(access and mobility management function,AMF)、会话管理功能(session management function,SMF)或者用户面功能(user plane function,UPF)等。
CU和DU是对接入网设备从逻辑功能角度的划分。接入网设备例如可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、5G移动通信系统中的下一代基站(next generation NodeB,gNB)、未来移动通信系统中的基站或WiFi系统中的接入节点等。CU和DU在物理上可以是分离的也可以部署在一起。多个DU可以共用一个CU,一个DU也可以连接多个CU(图中未示出)。CU和DU之间可以通过接口相连,例如可以是F1接口。CU和DU可以根据无线网络的协议层划分,例如其中一种可能的划分方式是:CU用于执行无线资源控制(radio resource control,RRC)层、业务数据适配协议(service data adaptation protocol,SDAP)层以及分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,而DU用于执行 无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层以及物理(physical)层等的功能。可以理解,上述划分仅仅是一种举例,CU和DU也可以按照其他的方式进行划分。例如可以将CU或者DU划分为具有更多协议层的功能。例如,CU或DU还可以划分为具有协议层的部分处理功能。在一种可能的实现方式中,将RLC层的部分功能和RLC层以上的协议层的功能设置在CU,将RLC层的剩余功能和RLC层以下的协议层的功能设置在DU。在另一种可能的实现方式中,还可以按照业务类型或者其他系统需求对CU或者DU的功能进行划分。例如按时延划分,将处理时间需要满足时延要求的功能设置在DU,不需要满足该时延要求的功能设置在CU。在又一种可能的实现方式中,CU也可以具有核心网的一个或多个功能。一个或者多个CU可以集中设置,也分离设置。例如CU可以设置在网络侧方便集中管理。DU可以具有多个射频功能,也可以将射频功能拉远设置。应理解,CU和DU的功能可以在具体实现中可以根据需要设置,本申请实施例对此不作任何限定。
CU的功能可以由一个实体来实现也可以由不同的实体实现。在一种方式中,CU的功能可以进一步切分为CP功能和UP功能,即,CU可以分为CU-UP和CU-CP。CU-CP和CU-UP可以分别由一个物理设备来实现,或者二者可以部署在同一物理设备中。CU-CP和CU-UP可以与DU相耦合,共同完成接入网设备的功能。一种可能的方式中,CU-CP负责控制面功能,主要包含RRC和PDCP-C。PDCP-C主要负责控制面数据的加解密、完整性保护以及数据传输等。CU-UP负责用户面功能,主要包含SDAP和PDCP-U。其中SDAP主要负责将核心网设备的数据进行处理并将数据流(flow)映射到承载。PDCP-U主要负责数据面的加解密、完整性保护、头压缩、序列号维护以及数据传输等。还有一种可能的实现是PDCP-C也在CU-UP。
应理解,图1所示的协议层的划分方式仅是一个示例性的方式,并不应对本申请构成任何限定。另外,图1所示的系统还可以包括图中未示出的终端设备。终端设备可以指用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
在无线网络中,一个终端设备可能和多个接入网设备通信,即双连接(dual connectivity,DC),也称为多无线双连接(Multi-Radio dual connectivity,MR-DC)。这多个接入网设备可能是属于同一制式的接入网设备(比如都是4G接入网设备,或者都是5G接入网设备),也可能是不同机制的接入网设备(比如一个是第四代4G接入网设备,一个是第五代5G接入网设备)。网络侧可以利用多个接入网设备的资源为该终端设备提供通信服务,从而为终端设备提供高速率传输。DC中与核心网设备有控制面信邻交互的接入网设备称为主节点(master node,MN),其他接入网设备称为辅节点(secondary nose,SN)。需要说明的是,MR-DC中MN和SN可以是前面所述接入网设备的各种形式和结 构。可选地,MN和SN使用相同的CU而DU不同,或使用相同的DU而CU不同。
下面对本申请提供的方法进行说明。需要说明的是,下文中描述的CU-CP和CU-UP可以由一个实体实现,也可以由不同的实体实现。
图2是本申请提供的一种通信方法的示意性流程图。下面结合图2对方法200的各步骤进行说明。
S210,第一网络节点获取业务的第一业务特征,第一网络节点为CU-UP。
示例性的,第一业务特征可以包括下述中的一项或多项:该业务是否为周期业务、该业务对应的业务包大小、该业务对应的业务模型或者该业务的调度时间、在该业务为周期业务的情况下该业务对应的周期。
所述业务模型例如可以是下述其中之一:只有单上行、只有单下行、单上行之后跟着单下行、单上行之后跟着多下行、多上行之后跟着单下行。其中,这里的单/多指的是数据包个数。
只有单上行是指该业务只有上行数据包,并且每次只发送该业务的一个上行数据包。只有单下行的含义类似(即指该业务只有下行数据包,并且每次只发送该业务的一个下行数据包)。单上行之后跟着单下行是指该业务即有上行数据包又有下行数据包,并且每次发送该业务的一个上行数据包之后仅接着发送该业务的一个下行数据包。单上行之后跟着多下行是指该业务即有上行数据包又有下行数据包,并且每次发送该业务的一个上行数据包之后仅接着发送该业务的多个下行数据包。多上行之后跟着单下行的含义类似。
所述业务模型例如还可以是下述其中之一:只有上行、只有下行、上下行都有。只有上行是指该业务只有上行数据包。只有下行是指该业务只有下行数据包。上下行都有是指该业务即有上行数据包,也有下行数据包。
所述调度时间例如可以是每周的调度时间或者每天的调度时间等。
示例性的,第一业务特征对应的粒度可以是下述中的任一种:PDU会话、终端设备、QoS流、DRB或者切片。
或者,可以理解为,第一业务特征为特定的PDU会话、终端设备、QoS流、DRB或者切片对应的业务特征,该特定的PDU会话、终端设备、QoS流、DRB或者切片对应所述业务。举例来说,第一业务特征可以是特定的QoS流,如QoS流#1,对应的业务特征,其中QoS流#1对应所述业务。第一业务特征可以是特定的DRB,如DRB#1,对应的业务特征,其中DRB中承载的QoS流对应所述业务。
应理解,针对同一业务,不同粒度对应的业务特征可能不同。比如,QoS流#1对应DRB#1,二者对应同一业务,但QoS流#1对应的业务特征和DRB#1对应的业务特征可能相同,也可能不同。
还应理解,在S210中,第一网络节点可以获取一个或多个业务中每个业务的一个或多个业务特征,每个业务的一个或多个业务特征对应的粒度可能相同,也可能不同,本申请对此不作限定。例如,在S210中,第一网络节点可以获取业务#1的一个或多个业务特征,以及获取业务#2的一个或多个业务特征。其中,业务#1的一个或多个业务特征例如可以是切片#1的业务特征和切片#2的业务特征,业务#2的一个或多个业务特征例如可以是QoS流#1和QoS流#2的业务特征。
在S210中,CU-UP可以通过多种方式获取第一业务特征。下面举例进行说明。
方式一
CU-UP可以根据算法信息,确定第一业务特征。
其中,该算法信息可以包括第一算法和/或第一算法对应的参数信息。示例性的,该算法信息可以是核心网设备发送给CU-UP的,比如核心网设备直接发送给CU-UP,或者核心网设备先发送给CU-CP,CU-CP再发送给CU-UP。或者,该算法信息也可以是其他网元(例如,网管)发送给CU-UP的。
举例来说,CU-UP可以具有业务特征预测功能,比如CU-UP可以根据预测算法和/或预测算法对应的参数信息(或称为预测模型)以及接收到的数据包预测业务特征。比如,CU-UP可以基于一定时间段内或当前接收到的QoS流#1的数据包,通过第一算法(即,预测算法的一例)和/或第一算法对应的参数信息,来预测QoS流#1的业务特征(第一业务特征的一例)。如,若CU-UP在一段时间内只在QoS流#1上接收到上行数据包,则认为QoS流#1对应的业务的业务模型为只有单上行。示例性的,所述预测算法可以是AI算法,如监督学习算法中的某些具体算法(比如决策树、朴素贝叶斯分类、最小二乘法、支持向量机等)、无监督学习算法中的某些具体算法(比如聚类算法等)或者强化学习中的某些具体算法。应理解,第一算法可以是上述算法中任一种。
可选地,CU-UP还可以向核心网设备发送第二算法和/或第二算法对应的参数信息。第一算法和第二算法可以相同,也可以不同。第二算法例如可以是上文所述的任一种算法,如朴素贝叶斯分类。示例性的,第二算法和/或第二算法对应的参数信息可以由CU-UP直接发送给核心网设备。或者,第二算法和/或第二算法对应的参数信息也可以由CU-UP先发送给CU-CP,CU-CP再发送给核心网设备。
举例来说,CU-UP在预测业务特征的过程中,也可以对预测算法和/或预测算法对应的参数信息进行调整,并且可以将调整后的预测算法(如,第二算法)和/或调整后的预测算法对应的参数信息(如,第二算法对应的参数信息)发送给核心网设备。这样,CU-UP切换之后,或者终端设备进入到无线资源控制(radio resource control,RRC)空闲(RRC_idle)态,再由RRC_idle态进入RRC连接(RRC_connected)态时,核心网设备可以把这些信息发送给与该终端设备重新建立连接的CU-UP(下文中记作:目标CU-UP)。比如,核心网设备可以将调整后的预测算法(如,第二算法)和/或调整后的预测算法对应的参数信息直接发送给目标CU-UP,或者先发送给与该目标CU-UP连接的CU-CP(下文中记作:目标CU-CP),再由目标CU-CP发送给目标CU-UP。同时应理解,目标CU-UP和上文中的CU-UP可能是同一CU-UP,也可能不是。CU-UP接收到核心网设备发送的信息后,可以继续利用这些信息进行预测。
方式二
CU-UP可以根据辅助信息,确定第一业务特征。
举例来说,CU-UP具有业务特征预测功能,CU-UP可以在辅助信息的基础上进行更精细的预测,比如更准确的预测等。示例性的,辅助信息可以包括该业务的一个或多个业务特征,业务特征中的参数和第一业务特征中的参数类型可以相同。也就是说,CU-UP可以基于该业务之前的业务特征,确定该业务当前的业务特征。
辅助信息可以是核心网设备或者网管发送的。比如,核心网设备或者网管可以直接向CU-UP发送辅助信息,或者核心网设备或者网管可以将辅助信息发送给CU-CP,CU-CP 再将辅助信息转发给CU-UP。示例性的,所述辅助信息可以是终端设备上一次所接入的CU-UP所确定并发送给核心网设备的。
辅助信息还可以是CU-UP从本地或者其他CU-UP处获取的。比如切换场景中,源接入网设备把辅助信息发送给目标接入网设备,例如,在切换请求消息中携带辅助信息。又比如在MR-DC场景中,MN把辅助信息发送给SN,例如在增加SN请求消息或者修改SN请求消息中携带辅助信息。这里的源接入网设备和目标接入网设备,或者源MN和SN,可以对应同一个CU-UP,也可以对应不同的CU-UP。另外,上述第一算法和第一算法对应的参数信息也可以通过这里所描述的方式获取。
方式三
CU-UP可以从本地或者其他CU-UP处获取第一业务特征。
比如切换场景中,源接入网设备可以将第一业务特征发送给目标接入网设备,例如,在切换请求消息中携带第一业务特征。又比如在MR-DC场景中,MN可以将第一业务特征发送给SN,例如在增加SN请求消息或者修改SN请求消息中携带第一业务特征。这里的源接入网设备和目标接入网设备,或者源MN和SN,可以对应同一个CU-UP,也可以对应不同的CU-UP。
应理解,CU-UP可以结合上述三种方式或三种方式中的任意两种方式,确定第一业务特征。
S220,第一网络节点向第二网络节点发送第一业务特征,第二网络节点为CU-CP。
CU-CP接收到第一业务特征后,有两种处理方式,下面分别进行说明。
方式一:
S230,CU-CP向第三网络节点发送第一业务特征。其中,方法200中的第三网络节点为DU。
比如,CU-CP在接收到第一业务特征后,可以直接将第一业务特征转发给DU。
或者,若CU-CP确定第一业务特征对应的粒度和CU-CP需要发送给DU的业务特征所对应的粒度相同,则CU-CP可以将第一业务特征发送给DU。比如,第一业务特征为DRB#1的业务特征,CU-CP需要提供给DU的业务特征的粒度也是DRB,则CU-CP可以向DU发送DRB#1的业务特征。
方式二:
S240,CU-CP根据第一业务特征,确定该业务的第二业务特征,第一业务特征和第二业务特征对应的粒度不同。
可选地,第二业务特征对应的粒度可以是下述中的任一种:PDU会话、终端设备、QoS流、DRB或者切片。
S250,CU-CP向所述DU发送第二业务特征。
举例来说,若CU-CP确定第一业务特征对应的粒度和CU-CP需要发送给DU的业务特征所对应的粒度不同,则CU-CP可以根据第一业务特征,确定该业务的第二业务特征。比如,第一业务特征为QoS流#1的业务特征,而CU-CP需要提供给DU的业务特征的粒度为DRB,则CU-CP可以根据QoS流#1的业务特征,确定QoS流#1对应的DRB#1的业务特征(即,第二业务特征的一例)。如,CU-CP可以将QoS流#1的业务特征,作为DRB#1的业务特征提供给DU,或者,CU-CP可以结合QoS流#1的业务特征以及DRB#1 对应的其他一个或多个QoS流的业务特征,确定DRB#1的业务特征,并将所确定的DRB#1的业务特征发送给DU。
DU获取到第一业务特征或第二业务特征后,可以进行业务调度或配置。比如,DU可以根据第一业务特征或第二业务特征,进行不同的调度或配置。比如,DU获知业务为周期业务,则DU可以根据业务对应的周期来调度终端设备。又比如DU可以根据业务对应的周期来配置半静态调度(semi-presistent scheduling,SPS)周期或非连续接收(discontinuous reception,DRX)的配置信息。又比如,DU根据业务对应的业务包大小或/和业务的周期等来选择是否配置载波聚合功能。
根据本申请提供的通信方法,通过由CU-UP获取业务特征,并通过CU-CP向DU发送该业务特征或者根据该业务特征所确定的另一业务特征,从而使得DU可以基于所接收到的业务特征进行业务的调度或配置。
另外,通常业务特征由核心网提供给接入网设备,而核心网提供的业务特征一般都是签约的业务特征,可能与实际的业务特征不相符,从而可能导致接入网设备在进行业务调度或配置的时候无法适配业务特征。而根据本申请提供的通信方法,CU-UP可以基于实际的业务数据获取业务特征,这样获得的业务特征更符合实际传输的业务,进而DU在进行调度或配置时可以更好的适配业务。
可选地,CU-CP在接收到第一业务特征或者根据第一业务特征得到第二业务特征后,还可以将第一业务特征或第二业务特征发送给核心网设备。
这样当该终端设备下次从RRC_idle态或非激活(inactive)态回到RRC_connected时,核心网设备可以将第一业务特征或第二业务特征发送给CU-UP,CU-UP可以基于第一业务特征或第二业务特征继续预测或使用。
可选地,CU-CP接收到第一业务特征后,CU-CP也可以基于第一业务特征进行一些配置。比如,CU-CP可以根据业务对应的业务包大小或/和业务的周期等来选择是否配置双连接(dual-connectivity)。
图3是本申请提供的另一通信方法的示意性流程图。该方法300中,第一网络节点获取到第一业务特征后可以直接提供给DU。
S310,第一网络节点获取业务的第一业务特征,第一网络节点为CU-UP。
该步骤与S210相同,这里不再赘述。
S320,第一网络节点向第三网络节点发送第一业务特征,第三网络节点为DU。
即,第一网络节点可以不经过CU-CP的转发,直接将第一业务特征发送给DU。
根据本申请提供的方法,通过由CU-UP获取业务特征并提供给DU,使得DU可以基于所接收到的业务特征进行调度或配置。另外,CU-UP可以基于实际的业务数据获取业务特征,这样获得的业务特征更符合实际传输的业务,进而DU在进行调度或配置时可以更好的适配业务。
图4是本申请提供的另一种通信方法的示意性流程图。下面结合图4对方法400的各步骤进行说明。
S410,第一网络节点确定终端设备的第一信息,第一网络节点为CU-CP。
S420,CU-CP向第二网络节点发送第一信息,第二网络节点为DU。
示例性的,第一信息可以包括下述中的一项或多项:该终端设备的移动信息、该终端 设备的电池信息或者该终端设备的耗电信息。
该终端设备的移动信息可以指示该终端设备是否处于移动状态或者是否静止。可选地,该终端设备的移动信息还可以包括该终端设备在处于移动状态时的移动速率等级,比如高速、中速或正常速度。可选地,该终端设备的移动信息可以包括波束(beam)级别的移动历史信息。波束级别的移动历史信息用于指示该终端设备所经历的波束以及在所经历的波束上所处的时间。终端设备所经历的波束可以理解为为终端设备提供服务的波束。可选的,这里的波束可以是指同步信号和PBCH块(synchronization signal and pbch block,SSB)或信道状态信息参考信号(channel state information reference signal,CSI-RS)
该终端设备的电池信息可以指示该终端设备的电池是否可充电,或者指示该终端设备是否连接了电源。
该终端设备的耗电信息可以指示该终端设备的电池的耗电情况,如目标剩余电量等。
在S410中,CU-CP可以根据多种方式确定第一信息。下面举例进行说明。
方式一
CU-CP可以根据算法信息,确定第一信息。
其中,算法信息可以包括第一算法和/或第一算法对应的参数信息。示例性的,所述算法信息可以是核心网设备发送的,也可以是其他网元(例如,网管)发送的。
举例来说,CU-CP具有预测功能,比如CU-UP可以根据预测算法和/或预测算法对应的参数信息(或称为预测模型)预测第一信息。这里的预测算法可以是方法200中描述的任一种算法。应理解,第一算法可以是任一种预测算法。
可选地,CU-CP还可以向核心网设备发送第二算法和/或第二算法对应的参数信息。第一算法和第二算法可以相同,也可以不同。第二算法例如可以是监督学习算法中的某些具体算法或者无监督学习算法中的某些具体算法等。
举例来说,CU-CP在预测过程中,也可以对预测算法和/或预测算法对应的参数信息进行调整,并且可以将调整后的预测算法(如,第二算法)和/或调整后的预测算法对应的参数信息(如,第二算法对应的参数信息)发送给核心网设备。这样,CU-CP切换之后,或者终端设备进入到RRC_idle态,再由RRC_idle态进入RRC_connected态时,核心网设备可以将这些信息发送给与该终端设备重新建立连接的CU-CP(下文中记作:目标CU-CP)。应理解,目标CU-CP和上文中的CU-CP可能是同一CU-CP,也可能不是。CU-CP接收到核心网设备发送的信息后,可以继续利用这些信息进行预测。
基于上段描述可以理解,第一算法和/或第一算法对应的参数信息可以是某一CU-CP在切换前或者终端设备进入到RRC空闲态之前发送给核心网设备的。
方式二
CU-CP可以根据辅助信息,确定第一信息。
举例来说,CU-CP具有预测功能,CU-CP可以在第一信息的基础上进行更精细的预测,比如更准确的预测等。比如,辅助信息中的参数可以和第一信息中的参数类型相同,但辅助信息可以和第一信息的粒度不同,如辅助信息是小区粒度的,第一信息为波束粒度的,即CU-CP可以基于小区粒度的信息预测波束粒度的相应的信息。
辅助信息可以是核心网设备或者网管发送的。示例性的,所述辅助信息可以是终端设备上一次所接入的CU-CP所确定并发送给核心网设备的。
辅助信息还可以是CU-CP从本地或者其他CU-CP处获取的。比如切换场景中,源接入网设备把辅助信息发送给目标接入网设备,例如,在切换请求消息中携带辅助信息。又比如在MR-DC场景中,MN把辅助信息发送给SN,例如在增加SN请求消息或者修改SN请求消息中携带辅助信息。这里的源接入网设备和目标接入网设备,或者源MN和SN,可以对应同一个CU-CP,也可以对应不同的CU-CP。另外,第一算法和第一算法对应的参数信息也可以通过这里所描述的方式获取。
可选地,上述两种确定终端设备的第一信息的方式可以结合。即,终端设备可以根据第一算法和/或第一算法对应的参数信息,以及辅助信息,确定终端设备的第一信息。
可选地,本申请中,CU-CP也可以利用第一信息进行本地配置,如移动测量的配置。
在S420中,DU可以接收到第一信息。在DU接收到第一信息后,可以根据第一信息,为该终端设备配置无线参数。
示例性的,无线参数可以包括下述中的一项或多项:非连续接收(discontinuous reception,DRX)的配置信息、波束配置信息、数据不激活定时器长度(当终端设备在该定时器内没有收到或发送任何MAC服务数据单元(service data unit,SDU)时,终端设备会释放和网络侧的RRC连接,并进入RRC空闲态)、是否配置载波聚合、终端设备可以使用的带宽、以及终端设备可以使用的最大多入多出(multiple input multiple output,MIMO)层数等。
可选地,该方法还可以包括:S430,CU-CP向核心网设备发送所述第一信息。
CU-CP可以把第一信息发送给核心网设备,这样当该终端设备下次从RRC_idle态或非激活(inactive)态回到RRC_connected时,核心网设备可以把第一信息发送给CU-CP,CU-CP可以基于第一信息继续预测或使用。
综上,本申请提供的方法,CU-UP可以确定表征终端设备的某些特征的第一信息,并且CU-UP可以向DU发送第一信息,从而DU可以根据第一信息为终端设备配置合适的无线参数,从而更好的为终端设备服务。
图5是本申请提供的另一通信方法的示意性流程图。下面结合图5对方法500的各步骤进行说明。
S510,第二网络节点确定终端设备的配置信息。第二网络节点为DU。
S520,DU通过第一网络节点,向核心网设备发送该配置信息。第一网络节点为CU-CP。
示例性的,该配置信息包括下述中的一种或多种:半静态调度配置、多输入多输出MIMO配置、信道状态信息参考信号CSI-RS配置或者探测参考信号SRS配置。
举例来说,半静态调度配置可以包括下述中的一项或多项:半静态调度周期、半静态调度对应的混合自动重传请求(hybrid automatic repeat reQuest,HARQ)进程号、半静态调度对应的调制编码表格、下行半静态调度对应的PUCCH资源。
CSI-RS配置可以包括下述中的一项或多项:频域位置、端口数目、时域位置、码域类型。
SRS配置可以包括下述中的一项或多项:周期还是非周期、端口数目、资源位置等。
MIMO配置可以包括MIMO的流数等。
在一种方式中,在S510中,DU可以根据算法信息,确定所述配置信息。算法信息可以包括第一算法和/或第一算法对应的参数信息。示例性的,所述算法信息可以是核心 网设备发送的,也可以是其他网元(例如,网管)发送的。
举例来说,DU具有预测功能,比如DU可以根据预测算法和/或预测算法对应的参数信息(或称为预测模型)预测所述配置信息。这里的预测算法可以是方法200中描述的任一种算法。应理解,第一算法可以是任一种预测算法。
可选地,DU还可以向CU-CP发送第二算法和/或第二算法对应的参数信息。进一步地,CU-CP可以将第二算法和/或第二算法对应的参数信息发送给核心网设备。第一算法和第二算法可以相同,也可以不同。第二算法例如可以是监督学习算法中的某些具体算法或者无监督学习算法中的某些具体算法等。
举例来说,DU在预测过程中,也可以对预测算法和/或预测算法对应的参数信息进行调整,并且可以将调整后的预测算法(如,第二算法)和/或调整后的预测算法对应的参数信息(如,第二算法对应的参数信息)发送给CU-CP。这样,当终端设备切换到一个新的DU时,CU-CP可以把这些信息发送给新的DU,新的DU可以利用这些信息给UE配置相关信息。
另一种方式中,在S510中,DU可以根据辅助信息,确定所述配置信息。
示例性的,辅助信息中的参数可以和终端设备的配置信息中的参数的类型相同。
辅助信息可以是核心网设备或者网管发送的。示例性的,所述辅助信息可以是终端设备上一次所接入的DU所确定并发送给核心网设备的。
辅助信息还可以是DU从本地或者其他DU处获取的。比如切换场景中,源接入网设备把辅助信息发送给目标接入网设备。例如,在切换请求消息中携带辅助信息。又比如在MR-DC场景中,MN把辅助信息发送给SN。例如在增加SN请求消息或者修改SN请求消息中携带辅助信息。这里的源接入网设备和目标接入网设备,或者源MN和SN,可以对应同一个DU,也可以对应不同的DU。另外,第一算法和第一算法对应的参数信息也可以通过这里所描述的方式获取。
可选地,上述两种确定所述配置信息的方式可以结合。即,终端设备可以根据第一算法和/或第一算法对应的参数信息,以及辅助信息,确定所述配置信息。
在S520中,DU先将所述配置信息发送给CU-CP,CU-CP再将所述配置信息发送给核心网设备。
这样,当该终端设备下次从RRC_idle态或inactiv态回到RRC_connected时,核心网设备可以将所述配置信息发送给对应的DU,对应的DU可以基于所述配置信息继续预测或使用。
本申请提供的方法中,DU可以将终端设备的配置信息发送给核心网设备,从而便于后续的DU进行调度或配置无线参数。
图6是本申请提供的另一通信方法的示意性流程图。下面结合图6对方法600的各步骤进行说明。
S610,核心网设备确定业务的第一业务特征。
示例性的,第一业务特征可以包括下述中的一项或多项:该业务是否为周期业务、该业务对应的业务包大小、该业务对应的业务模型或者该业务的调度时间、业务的时延要求、在该业务为周期业务的情况下该业务对应的周期。
可选地,时延要求可以区分上下行。即,如果该业务为上行业务,则该时延要求为上 行时延要求。如果该业务为下行业务,则该时延要求为下行时延要求。如果该业务即包括上行又包括下行业务,则时延要求包括上行时延要求和下行时延要求。
应理解,业务模型和调度时间的含义可以参照方法200中的说明。
示例性的,第一业务特征对应的粒度可以是下述中的任一种:PDU会话、QoS流、DRB或者切片。
或者,可以理解为,第一业务特征为特定的PDU会话、QoS流、DRB或者切片对应的业务特征,该特定的PDU会话、QoS流、DRB或者切片对应所述业务。举例来说,第一业务特征可以是特定的QoS流,如QoS流#1,对应的业务特征,其中QoS流#1对应所述业务。
应理解,针对同一业务,不同粒度对应的业务特征可能不同。比如,QoS流#1对应DRB#1,二者对应同一业务,但QoS流#1对应的业务特征和DRB#1对应的业务特征可能相同,也可能不同。
还应理解,在S610中,第一网络节点可以获取一个或多个业务中每个业务的一个或多个业务特征,每个业务的一个或多个业务特征对应的粒度可能相同,也可能不同,本申请对此不作限定。例如,在S610中,第一网络节点可以获取业务#1的一个或多个业务特征,以及获取业务#2的一个或多个业务特征。其中,业务#1的一个或多个业务特征例如可以是切片#1的业务特征和切片#2的业务特征,业务#2的一个或多个业务特征例如可以是QoS流#1和QoS流#2的业务特征。
S620,核心网设备向第一网络节点发送第一业务特征,第一网络节点为CU-CP。
S630,CU-CP向第二网络节点发送第二业务特征,第二网络节点为CU-UP或DU。
第一业务特征和第二业务特征可以相同,也可以不同。示例性的,第二业务特征可以是PDU会话、QoS流、DRB或者切片。
举例来说,CU-CP在接收到第一业务特征后,可以直接将第一业务特征转发给第二网络节点。
或者,若CU-CP确定第一业务特征对应的粒度和CU-CP需要发送给第二网络节的业务特征所对应的粒度相同,则CU-CP可以将第一业务特征发送给第二网络节。比如,第一业务特征为DRB#1的业务特征,CU-CP需要提供给第二网络节的业务特征的粒度也是DRB,则CU-CP可以向第二网络节发送DRB#1的业务特征。
或者,若CU-CP确定第一业务特征对应的粒度和CU-CP需要发送给第二网络节点的业务特征所对应的粒度不同,则CU-CP可以根据第一业务特征,确定该业务的第二业务特征。比如,第一业务特征为QoS流#1的业务特征,而CU-CP需要提供给第二网络节点的业务特征的粒度为DRB,则CU-CP可以根据QoS流#1的业务特征,确定QoS流#1对应的DRB#1的业务特征(即,第二业务特征的一例)。如,CU-CP可以将QoS流#1的业务特征,作为DRB#1的业务特征提供给第二网络节点,或者,CU-CP可以结合QoS流#1的业务特征以及DRB#1对应的其他一个或多个QoS流的业务特征,确定DRB#1的业务特征,并将所确定的DRB#1的业务特征发送给第二网络节点。又如,对于业务的时延要求,假设第一业务特征中的业务的时延要求为第一粒度,CU-CP可以将第一粒度的业务对时延的要求大小分解到各个实体(比如CU-UP侧需要保证的时延,F1-U口需要保证的时延,DU侧需要保证的时延,终端设备侧需要保证的时延),CU-CP将对各个实体的时延要 求通知给CU-UP和DU。比如对于下行而言,CU-CP可以将对下行的时延要求分解到CU-UP、F1口时延、DU侧的时延和终端设备侧的时延。CU-CP将对CU-UP和F1口时延要求通知给CU-CP,将对DU侧的时延要求发送给DU。从而CU-UP和DU可以根据对应的时延要求调整对应的业务的处理,从而满足对应的时延要求。
当前技术中,核心网设备可以向接入网设备提供终端设备粒度的业务特征,而本申请提供的方法,核心网设备可以向CU-UP或DU发送更小粒度的业务特征,从而CU-UP或DU可以根据这些更小粒度的业务特征进行更准确的调度和资源分配,从而更好地为终端设备提供通信服务。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。上述各个过程涉及的各种数字编号或序号仅为描述方便进行的区分,而不应对本申请实施例的实施过程构成任何限定。
以上,结合图2至图6详细说明了本申请实施例提供的方法。以下,结合图7和图8详细说明本申请实施例提供的装置。
图7是本申请实施例提供的通信装置的示意性框图。如图7所示,该通信装置1000可以包括收发单元1100和处理单元1200。
其中,收发单元1100可以用于接收其他装置发送的信息,还可以用于向其他装置发送信息。处理单元1200可以用于进行装置的内部处理。
在一种可能的设计中,该通信装置1000可对应于上述方法200中的第一网络节点(即,CU-UP),如该通信装置1000可以是第一网络节点或者配置于第一网络节点中的芯片。该通信装置1000可以包括用于执行该方法中由第一网络节点所执行的操作的单元,并且,该通信装置1000中的各单元分别为了实现该方法中由第一网络节点所执行的操作。
具体地,处理单元1200用于获取业务的第一业务特征,该第一业务特征包括下述中的一项或多项:该业务是否为周期业务、在该业务为周期业务的情况下该业务对应的周期、该业务对应的业务包大小、该业务对应的业务模型或者该业务的调度时间;收发单元1100用于向第二网络节点(即,CU-CP)发送该第一业务特征。
可选地,该第一业务特征对应的粒度为下述中的任一种:协议数据单元PDU会话、终端设备、服务质量QoS流、数据无线承载DRB或者切片。
可选地,收发单元1100还用于,接收核心网设备发送的算法信息,该算法信息包括第一算法和/或该第一算法对应的参数信息;处理单元1200具体用于:根据该算法信息确定该第一业务特征。
可选地,收发单元1100具体用于:通过该第二网络节点,接收该核心网设备发送的该算法信息。
可选地,收发单元1100还用于,向核心网设备发送第二算法和/或该第二算法对应的参数信息。
可选地,处理单元1200具体用于:根据核心网设备或者其他网络节点发送的辅助信息,确定该第一业务特征,该辅助信息包括下述中的一项或多项:业务是否为周期业务、在业务为周期业务的情况下该业务对应的周期、业务对应的业务包大小、业务对应的业务模型或者业务的调度时间,该辅助信息与该业务特征相同或不同。
在一种可能的设计中,该通信装置1000可对应于上述方法200中的第二网络节点(即, CU-CP),如该通信装置1000可以是第二网络节点或者配置于第二网络节点中的芯片。该通信装置1000可以包括用于执行该方法中由第二网络节点所执行的操作的单元,并且,该通信装置1000中的各单元分别为了实现该方法中由第二网络节点所执行的操作。
具体地,收发单元1100用于接收第一网络节点(即,CU-UP)发送的业务的第一业务特征,该第一业务特征包括下述中的一项或多项:该业务是否为周期业务、在该业务为周期业务的情况下该业务对应的周期、该业务对应的业务包大小、该业务对应的业务模型或者该业务的调度时间。
可选地,收发单元1100还用于:向第三网络节点发送该第一业务特征,该第三网络节点为分布单元。
可选地,处理单元1200用于,确定该业务的第二业务特征,该第一业务特征和该第二业务特征对应的粒度不同;收发单元1100还用于,向第三网络节点发送该第二业务特征,该第三网络节点为分布单元。
可选地,该第一业务特征对应的粒度为下述中的任一种:协议数据单元PDU会话、终端设备、服务质量QoS流、数据无线承载DRB或者切片。
在一种可能的设计中,该通信装置1000可对应于上述方法300中的第一网络节点(即,CU-UP),如该通信装置1000可以是第一网络节点或者配置于第一网络节点中的芯片。该通信装置1000可以包括用于执行该方法中由第一网络节点所执行的操作的单元,并且,该通信装置1000中的各单元分别为了实现该方法中由第一网络节点所执行的操作。
具体地,处理单元1200用于,获取业务的第一业务特征,该第一业务特征包括下述中的一项或多项:该业务是否为周期业务、在该业务为周期业务的情况下该业务对应的周期、该业务对应的业务包大小、该业务对应的业务模型或者该业务的调度时间;收发单元1100用于向第三网络节点(即,DU)发送该第一业务特征。
在一种可能的设计中,该通信装置1000可对应于上述方法300中的第三网络节点(即,DU),如该通信装置1000可以是第三网络节点或者配置于第三网络节点中的芯片。该通信装置1000可以包括用于执行该方法中由第三网络节点所执行的操作的单元,并且,该通信装置1000中的各单元分别为了实现该方法中由第三网络节点所执行的操作。
具体地,收发单元1100用于接收第一网络节点(即,CU-UP)发送的业务的第一业务特征,该第一业务特征包括下述中的一项或多项:该业务是否为周期业务、在该业务为周期业务的情况下该业务对应的周期、该业务对应的业务包大小、该业务对应的业务模型或者该业务的调度时间。
在一种可能的设计中,该通信装置1000可对应于上述方法400中的第一网络节点(即,CU-CP),如该通信装置1000可以是第一网络节点或者配置于第一网络节点中的芯片。该通信装置1000可以包括用于执行该方法中由第一网络节点所执行的操作的单元,并且,该通信装置1000中的各单元分别为了实现该方法中由第一网络节点所执行的操作。
具体地,处理单元1200用于,确定终端设备的第一信息,该第一信息包括下述中的一项或多项:该终端设备的移动信息、该终端设备的电池信息或者该终端设备的耗电信息;收发单元1100用于,向第二网络节点发送该第一信息,该第二网络节点为分布单元。
可选地,处理单元1200具体用于:根据算法信息和/或辅助信息,确定该第一信息,该算法信息包括第一算法和/或该第一算法对应的参数信息,该辅助信息包括下述中的一 项或多项:该终端设备的移动信息、该终端设备的电池信息或者该终端设备的耗电信息,该辅助信息与该第一信息相同或不同。
可选地,收发单元1100还用于:向核心网设备发送该算法信息。
可选地,收发单元1100还用于:向核心网设备发送该第一信息。
在一种可能的设计中,该通信装置1000可对应于上述方法400中的第二网络节点(即,DU),如该通信装置1000可以是第二网络节点或者配置于第二网络节点中的芯片。该通信装置1000可以包括用于执行该方法中由第二网络节点所执行的操作的单元,并且,该通信装置1000中的各单元分别为了实现该方法中由第二网络节点所执行的操作。
具体地,收发单元1100用于,接收第一网络节点发送的终端设备的第一信息,该第一网络节点为集中单元的控制面,该第一信息包括下述中的一项或多项:该终端设备的移动信息、该终端设备的电池信息或者该终端设备的耗电信息。
可选地,处理单元1200用于:根据该第一信息,为该终端设备配置无线参数。
在一种可能的设计中,该通信装置1000可对应于上述方法500中的第二网络节点(即,DU),如该通信装置1000可以是第二网络节点或者配置于第二网络节点中的芯片。该通信装置1000可以包括用于执行该方法中由第二网络节点所执行的操作的单元,并且,该通信装置1000中的各单元分别为了实现该方法中由第二网络节点所执行的操作。
具体地,处理单元1200用于,确定终端设备的配置信息,该配置信息包括下述中的一项或多项:半静态调度配置、多输入多输出MIMO配置、信道状态信息参考信号CSI-RS配置或者探测参考信号SRS配置;收发单元1100用于,通过第一网络节点,向核心网设备发送该配置信息,该第一网络节点为集中单元的控制面。
可选地,处理单元1200具体用于:根据算法信息和/或辅助信息,确定该配置信息,该算法信息包括第一算法和/或该第一算法对应的参数信息,该辅助信息包括终端设备的下述信息中的一项或多项:半静态调度配置、MIMO配置、CSI-RS配置或者SRS配置,该辅助信息与该配置信息相同或不同。
可选地,收发单元1100还用于,向该第一网络节点发送该算法信息。
在一种可能的设计中,该通信装置1000可对应于上述方法500中的核心网设备,如该通信装置1000可以是核心网设备或者配置于核心网设备中的芯片。该通信装置1000可以包括用于执行该方法中由核心网设备所执行的操作的单元,并且,该通信装置1000中的各单元分别为了实现该方法中由核心网设备所执行的操作。
具体地,收发单元1100用于,通过第一网络节点接收第二网络节点发送的终端设备的配置信息,该第一网络节点为集中单元的控制面,该第二网络节点为分布单元,该配置信息包括下述中的一项或多项:半静态调度配置、多输入多输出MIMO配置、信道状态信息参考信号CSI-RS配置或者探测参考信号SRS配置。
可选地,收发单元1100还用于:向另一DU发送该配置信息。
可选地,收发单元1100还用于:向该第二网络节点发送辅助信息,该辅助信息用于该第二网络节点确定该配置信息,该辅助信息包括终端设备的下述信息中的一项或多项:半静态调度配置、MIMO配置、CSI-RS配置或者SRS配置。
在一种可能的设计中,该通信装置1000可对应于上述方法600中的第一网络节点(即,CU-CP),如该通信装置1000可以是第一网络节点或者配置于第一网络节点中的芯片。 该通信装置1000可以包括用于执行该方法中由第一网络节点所执行的操作的单元,并且,该通信装置1000中的各单元分别为了实现该方法中由第一网络节点所执行的操作。
具体地,收发单元1100用于,接收核心网设备发送的业务的第一业务特征,该第一业务特征对应的粒度为下述中的任一种:协议数据单元PDU会话、服务质量QoS流、数据无线承载DRB或者切片;根据该第一业务特征,向第二网络节点发送该业务的第二业务特征,该第二网络节点为该集中单元的用户面或分布单元,该第二业务特征对应的粒度为下述中的任一种:PDU会话、QoS流、DRB或者切片。
可选地,该第一业务特征包括下述中的一项或多项:该业务是否为周期业务、在该业务为周期业务的情况下该业务对应的周期、该业务对应的业务包大小、该业务对应的业务模型、该业务的调度时间、该业务的时延要求。
在一种可能的设计中,该通信装置1000可对应于上述方法600中的核心网设备,如该通信装置1000可以是核心网设备或者配置于核心网设备中的芯片。该通信装置1000可以包括用于执行该方法中由核心网设备所执行的操作的单元,并且,该通信装置1000中的各单元分别为了实现该方法中由核心网设备所执行的操作。
具体地,处理单元1200用于,确定业务的第一业务特征;收发单元1100用于,向第一网络节点发送该第一业务特征,该第一网络节点为集中单元的控制面,该第一业务特征对应的粒度为下述中的任一种:协议数据单元PDU会话、服务质量QoS流、数据无线承载DRB或者切片。
可选地,该第一业务特征包括下述中的一项或多项:该业务是否为周期业务、在该业务为周期业务的情况下该业务对应的周期、该业务对应的业务包大小、该业务对应的业务模型、该业务的调度时间、该业务的时延要求。
在一种可能的设计中,该通信装置1000可对应于上述方法600中的第二网络节点(即,CU-CP或DU),如该通信装置1000可以是第二网络节点或者配置于第二网络节点中的芯片。该通信装置1000可以包括用于执行该方法中由第二网络节点所执行的操作的单元,并且,该通信装置1000中的各单元分别为了实现该方法中由第二网络节点所执行的操作。
具体地,收发单元1100用于,接收第一网络节点发送的业务的第二业务特征,该第一网络节点为集中单元的控制面,该第二业务特征对应的粒度为下述中的任一种:协议数据单元PDU会话、服务质量QoS流、数据无线承载DRB或者切片。
可选地,该第二业务特征包括下述中的一项或多项:该业务是否为周期业务、在该业务为周期业务的情况下该业务对应的周期、该业务对应的业务包大小、该业务对应的业务模型、该业务的调度时间、该业务的时延要求。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置1000中的收发单元1100可对应于图8中示出的收发电路2010,该通信装置1000中的处理单元1200可对应于图8中示出处理电路2020。
图8是本申请实施例提供的通信装置2000的结构示意图。该装置2000可应用于如图1所示的系统中,执行上述方法实施例中各网元所执行的操作。如图8所示,该装置2000包括收发电路2010和处理电路2020。可选地,该装置2000还包括存储电路2030。示例性的,收发电路2010可以是收发器,处理电路2020可以是处理器,存储电路2030可以 是存储器。其中,收发电路2010、处理电路2020和存储电路2030之间可以通过内部连接通路互相通信,传递控制或数据信号,该存储电路2030用于存储计算机程序,该处理电路2020用于从该存储电路2030中调用并运行该计算机程序,以控制该收发电路2010收发信号。
上述处理电路2020可以和存储电路2030可以合成一个处理装置,处理电路2020用于执行存储电路2030中存储的程序代码来实现上述功能。具体实现时,该存储电路2030也可以集成在处理电路2020中,或者独立于处理电路2020。
应理解,图8所示的装置2000能够实现方法200至方法600中任一方法所涉及的任一网络的功能。装置2000中的各个模块的操作或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行前述方法实施例中任一网元所执行的操作。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行前述方法实施例中任一网元所执行的操作。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述DU、CU-CP、CU-CP和核心网设备中的一个或多个网元。
本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器用于执行上述方法实施例中的方法。
应理解,上述处理装置可以是一个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM), 其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
上述各个装置实施例中网络设备与终端设备和方法实施例中的网络设备或终端设备完全对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程或执行线程中,部件可位于一个计算机上或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地或远程进程来通信。
应理解,说明书通篇中提到的“实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各个实施例未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
应理解,在本申请实施例中,编号“第一”、“第二”…仅仅为了区分不同的对象,比如为了区分不同的网络设备,并不对本申请实施例的范围构成限制,本申请实施例并不限于此。
还应理解,在本申请中,“当…时”、“若”以及“如果”均指在某种客观情况下网元会做出相应的处理,并非是限定时间,且也不要求网元实现时一定要有判断的动作,也不意味着存在其它限定。
还应理解,在本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。
还应理解,在本申请各实施例中,“A对应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
还应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请中出现的类似于“项目包括如下中的一项或多项:A,B,以及C”表述的含义,如无特别说明,通常是指该项目可以为如下中任一个:A;B;C;A和B;A和C;B和C;A,B和C;A和A;A,A和A;A,A和B;A,A和C,A,B和B;A,C和C;B和B,B,B和B,B,B和C,C和C;C,C和C,以及其他A,B和C的组合。以上是以A,B和C共3个元素进行举例来说明该项目的可选用条目,当表达为“项目包括如下中至少一种:A,B,……,以及X”时,即表达中具有更多元素时,那么该项目可以适用的条目也可以按照前述规则获得。
可以理解的,本申请实施例中,终端设备和/或网络设备可以执行本申请实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照本申请实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部操作。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (35)

  1. 一种通信方法,其特征在于,包括:
    第一网络节点获取业务的第一业务特征,所述第一网络节点为集中单元的用户面,所述第一业务特征包括下述中的一项或多项:所述业务是否为周期业务、在所述业务为周期业务的情况下所述业务对应的周期、所述业务对应的业务包大小、所述业务对应的业务模型或者所述业务的调度时间;
    所述第一网络节点向第二网络节点发送所述第一业务特征,所述第二网络节点为所述集中单元的控制面。
  2. 如权利要求1所述的方法,其特征在于,所述第一业务特征对应的粒度为下述中的任一种:协议数据单元PDU会话、终端设备、服务质量QoS流、数据无线承载DRB或者切片。
  3. 如权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述第一网络节点接收核心网设备发送的算法信息,所述算法信息包括第一算法和/或所述第一算法对应的参数信息;
    其中,所述第一网络节点获取业务的第一业务特征,包括:
    所述第一网络节点根据所述算法信息确定所述第一业务特征。
  4. 如权利要求3所述的方法,其特征在于,所述第一网络节点接收核心网设备发送的算法信息,包括:
    所述第一网络节点通过所述集中单元的控制面,接收所述核心网设备发送的所述算法信息。
  5. 如权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一网络节点向核心网设备发送第二算法和/或所述第二算法对应的参数信息。
  6. 如权利要求1至5中任一项所述的方法,其特征在于,所述第一网络节点获取业务的第一业务特征,包括:
    所述第一网络节点根据核心网设备或者其他网络节点发送的辅助信息,确定所述第一业务特征,所述辅助信息包括下述中的一项或多项:业务是否为周期业务、在业务为周期业务的情况下所述业务对应的周期、业务对应的业务包大小、业务对应的业务模型或者业务的调度时间,所述辅助信息与所述业务特征相同或不同。
  7. 一种通信方法,其特征在于,包括:
    第二网络节点接收第一网络节点发送的业务的第一业务特征,所述第一网络节点为集中单元的用户面,所述第二网络节点为所述集中单元的控制面,所述第一业务特征包括下述中的一项或多项:所述业务是否为周期业务、在所述业务为周期业务的情况下所述业务对应的周期、所述业务对应的业务包大小、所述业务对应的业务模型或者所述业务的调度时间。
  8. 如权利要求7所述的方法,其特征在于,所述方法还包括:
    所述第二网络节点向第三网络节点发送所述第一业务特征,所述第三网络节点为分布单元。
  9. 如权利要求7所述的方法,其特征在于,所述方法还包括:
    所述第二网络节点根据所述第一业务特征,确定所述业务的第二业务特征,所述第一业务特征和所述第二业务特征对应的粒度不同;
    所述第二网络节点向第三网络节点发送所述第二业务特征,所述第三网络节点为分布单元。
  10. 如权利要求7至9中任一项所述的方法,其特征在于,所述第一业务特征对应的粒度为下述中的任一种:协议数据单元PDU会话、终端设备、服务质量QoS流、数据无线承载DRB或者切片。
  11. 一种通信方法,其特征在于,包括:
    第一网络节点确定终端设备的第一信息,所述第一网络节点为集中单元的控制面,所述第一信息包括下述中的一项或多项:所述终端设备的移动信息、所述终端设备的电池信息或者所述终端设备的耗电信息;
    所述第一网络节点向第二网络节点发送所述第一信息,所述第二网络节点为分布单元。
  12. 如权利要求11所述的方法,其特征在于,所述第一网络节点确定终端设备的第一信息,包括:
    所述第一网络节点根据算法信息和/或辅助信息,确定所述第一信息,所述算法信息包括第一算法和/或所述第一算法对应的参数信息,所述辅助信息包括下述中的一项或多项:所述终端设备的移动信息、所述终端设备的电池信息或者所述终端设备的耗电信息,所述辅助信息与所述第一信息相同或不同。
  13. 如权利要求12所述的方法,其特征在于,所述方法还包括:
    所述第一网络节点向核心网设备发送所述算法信息。
  14. 如权利要求11至13中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一网络节点向核心网设备发送所述第一信息。
  15. 一种通信方法,其特征在于,包括:
    第二网络节点接收第一网络节点发送的终端设备的第一信息,所述第一网络节点为集中单元的控制面,所述第二网络节点为分布单元,所述第一信息包括下述中的一项或多项:所述终端设备的移动信息、所述终端设备的电池信息或者所述终端设备的耗电信息。
  16. 如权利要求15所述的方法,其特征在于,所述方法还包括:
    所述第二网络节点根据所述第一信息,为所述终端设备配置无线参数。
  17. 一种通信方法,其特征在于,包括:
    第二网络节点确定终端设备的配置信息,所述第二网络节点为分布单元,所述配置信息包括下述中的一项或多项:半静态调度配置、多输入多输出MIMO配置、信道状态信息参考信号CSI-RS配置或者探测参考信号SRS配置;
    所述第二网络节点通过第一网络节点,向核心网设备发送所述配置信息,所述第一网络节点为集中单元的控制面。
  18. 如权利要求17所述的方法,其特征在于,所述第二网络节点确定终端设备的配置信息,包括:
    所述第二网络节点根据算法信息和/或辅助信息,确定所述配置信息,所述算法信息 包括第一算法和/或所述第一算法对应的参数信息,所述辅助信息包括终端设备的下述信息中的一项或多项:半静态调度配置、MIMO配置、CSI-RS配置或者SRS配置,所述辅助信息与所述配置信息相同或不同。
  19. 如权利要求18所述的方法,其特征在于,所述方法还包括:
    所述第二网络节点向所述第一网络节点发送所述算法信息。
  20. 一种通信方法,其特征在于,包括:
    核心网设备通过第一网络节点接收第二网络节点发送的终端设备的配置信息,所述第一网络节点为集中单元的控制面,所述第二网络节点为分布单元,所述配置信息包括下述中的一项或多项:半静态调度配置、多输入多输出MIMO配置、信道状态信息参考信号CSI-RS配置或者探测参考信号SRS配置。
  21. 如权利要求20述的方法,其特征在于,所述方法还包括:
    所述核心网设备向另一分布单元发送所述配置信息。
  22. 如权利要求20或21所述的方法,其特征在于,所述方法还包括:
    所述核心网设备向所述第二网络节点发送辅助信息,所述辅助信息用于所述第二网络节点确定所述配置信息,所述辅助信息包括终端设备的下述信息中的一项或多项:半静态调度配置、MIMO配置、CSI-RS配置或者SRS配置。
  23. 一种通信方法,其特征在于,包括:
    第一网络节点接收核心网设备发送的业务的第一业务特征,所述第一网络节点为集中单元的控制面,所述第一业务特征对应的粒度为下述中的任一种:协议数据单元PDU会话、服务质量QoS流、数据无线承载DRB或者切片;
    所述第一网络节点根据所述第一业务特征,向第二网络节点发送所述业务的第二业务特征,所述第二网络节点为所述集中单元的用户面或分布单元,所述第二业务特征对应的粒度为下述中的任一种:PDU会话、QoS流、DRB或者切片。
  24. 如权利要求23所述的方法,其特征在于,所述第一业务特征包括下述中的一项或多项:
    所述业务是否为周期业务、在所述业务为周期业务的情况下所述业务对应的周期、所述业务对应的业务包大小、所述业务对应的业务模型、所述业务的调度时间、所述业务的时延要求。
  25. 一种通信方法,其特征在于,包括:
    核心网设备确定业务的第一业务特征;
    所述核心网设备向第一网络节点发送所述第一业务特征,所述第一网络节点为集中单元的控制面,所述第一业务特征对应的粒度为下述中的任一种:协议数据单元PDU会话、服务质量QoS流、数据无线承载DRB或者切片。
  26. 如权利要求25所述的方法,其特征在于,所述第一业务特征包括下述中的一项或多项:所述业务是否为周期业务、在所述业务为周期业务的情况下所述业务对应的周期、所述业务对应的业务包大小、所述业务对应的业务模型、所述业务的调度时间、所述业务的时延要求。
  27. 一种通信方法,其特征在于,包括:
    第二网络节点接收第一网络节点发送的业务的第二业务特征,所述第一网络节点为集 中单元的控制面,所述第二网络节点为所述集中单元的用户面或分布单元,所述第二业务特征对应的粒度为下述中的任一种:协议数据单元PDU会话、服务质量QoS流、数据无线承载DRB或者切片。
  28. 如权利要求27所述的方法,其特征在于,所述第二业务特征包括下述中的一项或多项:所述业务是否为周期业务、在所述业务为周期业务的情况下所述业务对应的周期、所述业务对应的业务包大小、所述业务对应的业务模型、所述业务的调度时间、所述业务的时延要求。
  29. 一种通信装置,其特征在于,所述通信装置用于执行如权利要求1至6中任一项所述的方法。
  30. 一种通信装置,其特征在于,所述通信装置用于执行如权利要求7至16中任一项、23或24、或27或28所述的方法。
  31. 一种通信装置,其特征在于,所述通信装置用于执行如权利要求17至19中任一项所述的方法。
  32. 一种通信装置,其特征在于,所述通信装置用于执行如权利要求20至22中任一项、或25或26所述的方法。
  33. 一种通信装置,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述装置执行如权利要求1至28中任一项所述的方法。
  34. 一种可读存储介质,其上存储有计算机程序或指令,其特征在于,所述计算机程序或指令被执行时使得计算机执行如权利要求1至28中任一项所述的方法。
  35. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行:如权利要求1至28中任一项所述的方法。
PCT/CN2019/127577 2019-12-23 2019-12-23 通信方法和通信装置 WO2021127896A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2019/127577 WO2021127896A1 (zh) 2019-12-23 2019-12-23 通信方法和通信装置
EP19957297.5A EP4068838A4 (en) 2019-12-23 2019-12-23 COMMUNICATION METHOD AND COMMUNICATION DEVICE
CN201980103129.6A CN114830707A (zh) 2019-12-23 2019-12-23 通信方法和通信装置
US17/846,920 US20220338032A1 (en) 2019-12-23 2022-06-22 Communication method and communication apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/127577 WO2021127896A1 (zh) 2019-12-23 2019-12-23 通信方法和通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/846,920 Continuation US20220338032A1 (en) 2019-12-23 2022-06-22 Communication method and communication apparatus

Publications (1)

Publication Number Publication Date
WO2021127896A1 true WO2021127896A1 (zh) 2021-07-01

Family

ID=76573221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127577 WO2021127896A1 (zh) 2019-12-23 2019-12-23 通信方法和通信装置

Country Status (4)

Country Link
US (1) US20220338032A1 (zh)
EP (1) EP4068838A4 (zh)
CN (1) CN114830707A (zh)
WO (1) WO2021127896A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11838777B2 (en) * 2020-02-14 2023-12-05 Intel Corporation Support for quality-of-service (QOS) monitoring in a dual connectivity or split ng-ran with control plane (CP)—user plane (UP) separation
US20220078808A1 (en) * 2020-09-08 2022-03-10 Qualcomm Incorporated Packet delay budget (pdb) and time sensitive communication (tsc) traffic in integrated access and backhaul (iab) networks

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109151871A (zh) * 2018-02-14 2019-01-04 华为技术有限公司 集中式单元-分布式单元架构下的通信方法、通信设备
WO2019139345A1 (en) * 2018-01-11 2019-07-18 Samsung Electronics Co., Ltd. Apparatus and method for selecting centralized unit-user plane in wireless communication system
CN110035431A (zh) * 2018-01-12 2019-07-19 中国移动通信有限公司研究院 信息处理方法及装置、网络实体及存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2552844A (en) * 2016-08-12 2018-02-14 Nec Corp Communication system
CN109526029B (zh) * 2017-09-20 2022-05-10 中国移动通信有限公司研究院 一种业务优化方法、介质、相关装置和设备
CN109842910A (zh) * 2017-11-28 2019-06-04 中国移动通信有限公司研究院 一种网络切片的处理方法及接入网网元
CN110225474B (zh) * 2018-03-02 2021-08-13 华为技术有限公司 一种多连接下的数据量上报方法
WO2019193553A1 (en) * 2018-04-06 2019-10-10 Telefonaktiebolaget Lm Ericsson (Publ) Qos flow management over e1

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019139345A1 (en) * 2018-01-11 2019-07-18 Samsung Electronics Co., Ltd. Apparatus and method for selecting centralized unit-user plane in wireless communication system
CN110035431A (zh) * 2018-01-12 2019-07-19 中国移动通信有限公司研究院 信息处理方法及装置、网络实体及存储介质
CN109151871A (zh) * 2018-02-14 2019-01-04 华为技术有限公司 集中式单元-分布式单元架构下的通信方法、通信设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON, AT&T, INTEL, VODAFONE: "Resolution of E1 open issues – interface design", 3GPP DRAFT; R3-173334 E1 OPEN ISSUES RESOLUTION - INTERFACE DESIGN, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Berlin, Germany; 20170821 - 20170825, 22 August 2017 (2017-08-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051320148 *

Also Published As

Publication number Publication date
CN114830707A (zh) 2022-07-29
US20220338032A1 (en) 2022-10-20
EP4068838A1 (en) 2022-10-05
EP4068838A4 (en) 2022-12-21

Similar Documents

Publication Publication Date Title
JP2022518400A (ja) ビーム障害検出を管理する装置、システム、コンピュータプログラム製品および方法
US20210211926A1 (en) Data transmission method and apparatus
TWI704830B (zh) 用於無線通訊中的分離承載預處理的緩衝器狀態報告方法和裝置
US20200015117A1 (en) Ambr determining method and communications entity
US20220338032A1 (en) Communication method and communication apparatus
TWI830016B (zh) 增加和改變條件主輔小區的方法
US11228976B2 (en) Power saving for new radio carrier aggregation
US10966221B2 (en) Uplink scheduling with WLAN/3GPP aggregation
US20130065596A1 (en) Method and apparatus for controlling handover and reselection
WO2017015948A1 (zh) 调整无线网络系统的能量损耗的方法和装置
WO2015176613A1 (zh) 用于无线网络中的测量装置和方法以及控制装置和方法
US10091725B2 (en) Outage delay indication and exploitation
US20230254859A1 (en) Downlink Transmission Method and Communication Apparatus
WO2023160116A1 (zh) 通信方法和装置
WO2020199034A1 (zh) 用于中继通信的方法和装置
WO2020238596A1 (zh) 切换的方法、装置和通信系统
WO2019033328A1 (en) METHOD, COMPUTER PROGRAM, AND APPARATUS
EP4298818A1 (en) Signalling support for split ml-assistance between next generation random access networks and user equipment
WO2019214593A9 (zh) 一种通信方法及装置
WO2023185621A1 (zh) 通信方法及通信装置
WO2023151096A1 (en) Service request in an integrated access and backhaul network
WO2023201746A1 (en) Method, device, and system for resource status report in wireless networks
WO2023216170A1 (en) Deterministic communication with dual-connectivity
WO2024146303A2 (zh) 一种通信方法、网络设备和终端设备
WO2024001897A1 (zh) 通信方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19957297

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019957297

Country of ref document: EP

Effective date: 20220628