WO2021127843A1 - 摄像光学镜头 - Google Patents
摄像光学镜头 Download PDFInfo
- Publication number
- WO2021127843A1 WO2021127843A1 PCT/CN2019/127428 CN2019127428W WO2021127843A1 WO 2021127843 A1 WO2021127843 A1 WO 2021127843A1 CN 2019127428 W CN2019127428 W CN 2019127428W WO 2021127843 A1 WO2021127843 A1 WO 2021127843A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- curvature
- imaging optical
- radius
- ttl
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/18—Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
Definitions
- the present invention relates to the field of optical lenses, in particular to an imaging optical lens suitable for portable terminal equipment such as smart phones and digital cameras, as well as imaging devices such as monitors and PC lenses.
- the photosensitive devices of general photographic lenses are nothing more than photosensitive coupled devices (CCD) or complementary metal oxide semiconductor devices (Complementary Metal).
- CCD photosensitive coupled devices
- CMOS Sensor complementary metal oxide semiconductor devices
- the pixel size of photosensitive devices has been reduced, and the development trend of current electronic products with good functions, thin and short appearance, therefore, has a good
- the miniaturized camera lens with image quality has become the mainstream in the current market.
- the lenses traditionally mounted on mobile phone cameras often adopt three-element, four-element, or even five-element or six-element lens structures.
- the seven-element lens structure gradually appears in the lens design.
- the seven-element lens has good optical performance, its optical power, lens spacing and lens shape settings are still unreasonable, resulting in the lens structure having good optical performance, but cannot meet the requirements of large aperture, Design requirements for ultra-thin and long focal length.
- the object of the present invention is to provide an imaging optical lens, which has good optical performance while meeting the design requirements of large aperture, ultra-thinness, and long focal length.
- an embodiment of the present invention provides the imaging optical lens, which includes in order from the object side to the image side: a first lens with a positive refractive power, a second lens with a negative refractive power, and a second lens with a negative refractive power.
- a first lens with a positive refractive power a positive refractive power
- a second lens with a negative refractive power a second lens with a negative refractive power.
- Three lenses a fourth lens with positive refractive power, a fifth lens with negative refractive power, a sixth lens with negative refractive power, and a seventh lens with positive refractive power;
- the focal length of the imaging optical lens is f
- the focal length of the fifth lens is f5
- the radius of curvature of the object side of the third lens is R5
- the radius of curvature of the image side of the third lens is R6, and the sixth
- the on-axis thickness of the lens is d11
- the on-axis distance from the image side surface of the fifth lens to the object side surface of the sixth lens is d10, which satisfies the following relationship:
- the radius of curvature of the object side surface of the fourth lens is R7
- the radius of curvature of the image side surface of the fourth lens is R8, and the following relationship is satisfied:
- the focal length of the first lens is f1
- the radius of curvature of the object side of the first lens is R1
- the radius of curvature of the image side of the first lens is R2
- the on-axis thickness of the first lens is d1
- the total optical length of the camera optical lens is TTL, and satisfies the following relationship:
- the focal length of the second lens is f2
- the radius of curvature of the object side of the second lens is R3
- the radius of curvature of the image side of the second lens is R4
- the on-axis thickness of the second lens is d3
- the total optical length of the camera optical lens is TTL, and satisfies the following relationship:
- the focal length of the third lens is f3
- the axial thickness of the third lens is d5
- the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied:
- the focal length of the fourth lens is f4
- the radius of curvature of the object side of the fourth lens is R7
- the radius of curvature of the image side of the fourth lens is R8,
- the on-axis thickness of the fourth lens is d7
- the total optical length of the camera optical lens is TTL, and satisfies the following relationship:
- the radius of curvature of the object side surface of the fifth lens is R9
- the radius of curvature of the image side surface of the fifth lens is R10
- the axial thickness of the fifth lens is d9
- the total optical length of the imaging optical lens is TTL, and satisfies the following relationship:
- the focal length of the sixth lens is f6, the radius of curvature of the object side of the sixth lens is R11, the radius of curvature of the image side of the sixth lens is R12, and the total optical length of the imaging optical lens is TTL, And satisfy the following relationship:
- the focal length of the seventh lens is f7
- the radius of curvature of the object side of the seventh lens is R13
- the radius of curvature of the image side of the seventh lens is R14
- the axial thickness of the seventh lens is d13
- the total optical length of the camera optical lens is TTL, and satisfies the following relationship:
- the effective focal length of the imaging optical lens is EFL
- the total optical length of the imaging optical lens is TTL
- the imaging optical lens according to the present invention has good optical performance, and has the characteristics of large aperture, long focal length, and ultra-thinness, and is especially suitable for mobile phones composed of high-pixel CCD, CMOS and other imaging elements.
- Camera lens assembly and WEB camera lens are examples of camera lens.
- FIG. 1 is a schematic diagram of the structure of an imaging optical lens of the first embodiment
- FIG. 2 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 1;
- FIG. 3 is a schematic diagram of the chromatic aberration of magnification of the imaging optical lens shown in FIG. 1;
- FIG. 4 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 1;
- FIG. 5 is a schematic diagram of the structure of the imaging optical lens of the second embodiment
- FIG. 6 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 5;
- FIG. 7 is a schematic diagram of the chromatic aberration of magnification of the imaging optical lens shown in FIG. 5;
- FIG. 8 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 5;
- FIG. 9 is a schematic diagram of the structure of the imaging optical lens of the third embodiment.
- FIG. 10 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 9;
- FIG. 11 is a schematic diagram of the chromatic aberration of magnification of the imaging optical lens shown in FIG. 9;
- FIG. 12 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 9;
- FIG. 13 is a schematic diagram of the structure of the imaging optical lens of the fourth embodiment.
- FIG. 14 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 13;
- FIG. 15 is a schematic diagram of the chromatic aberration of magnification of the imaging optical lens shown in FIG. 13;
- FIG. 16 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 13.
- FIG. 1 shows an imaging optical lens 10 according to a first embodiment of the present invention.
- the imaging optical lens 10 includes seven lenses. Specifically, the imaging optical lens 10 includes in order from the object side to the image side: an aperture S1, a first lens L1 with a positive refractive power, a second lens L2 with a negative refractive power, a third lens L3, and a third lens L3 with a positive refractive power.
- a fourth lens L4 having a refractive power
- a fifth lens L5 having a negative refractive power
- a sixth lens L6 having a negative refractive power
- a seventh lens L7 having a positive refractive power.
- An optical element such as an optical filter GF may be provided between the seventh lens L7 and the image plane Si.
- the first lens is made of glass
- the second lens is made of plastic
- the third lens is made of plastic
- the fourth lens is made of plastic
- the fifth lens is made of plastic
- the sixth lens It is made of glass
- the seventh lens is made of plastic.
- the focal length of the imaging optical lens is defined as f
- the focal length of the fifth lens L5 is f5
- the following relationship is satisfied: -1.00 ⁇ f5/f ⁇ -0.30
- the focal length of the fifth lens L5 is specified
- the ratio of the total focal length, through the reasonable distribution of the optical power, makes the system have better imaging quality and lower sensitivity.
- the curvature radius of the object side surface of the third lens L3 is R5, and the curvature radius of the image side surface of the third lens L3 is R6, which satisfies the following relationship: 3.00 ⁇ (R5+R6)/(R5-R6) ⁇ 20.00;
- the shape of the third lens L3 can relax the degree of deflection of light passing through the lens within the range specified by the conditional formula, and effectively reduce aberrations.
- the on-axis thickness of the sixth lens L6 is d11, and the on-axis distance from the image side surface of the fifth lens L5 to the object side surface of the sixth lens L6 is d10, which satisfies the following relationship: 3.00 ⁇ d10/d11 ⁇ 10.00;
- the ratio of the air space between the fifth lens L5 and the sixth lens L6 to the axial thickness of the sixth lens L6 is specified, which helps to compress the total length of the optical system within the scope of the conditional expression and achieve an ultra-thinning effect.
- the curvature radius of the object side surface of the fourth lens L4 is defined as R7, and the curvature radius of the image side surface of the fourth lens L4 is R8, and the following relationship is satisfied: 5.00 ⁇ R7/R8 ⁇ 15.00;
- the shape, within the range specified by the conditional expression, is beneficial to correct the aberration of the off-axis angle of view.
- the focal length of the first lens L1 is defined as f1, which satisfies the following relationship: 0.17 ⁇ f1/f ⁇ 0.58, which specifies the ratio of the positive refractive power of the first lens L1 to the overall focal length.
- the first lens L1 has an appropriate positive refractive power, which is beneficial to reduce system aberrations, and at the same time, is beneficial to the development of the lens to ultra-thin and long focal length.
- it satisfies 0.28 ⁇ f1/f ⁇ 0.46.
- the curvature radius of the object side surface of the first lens L1 is R1, and the curvature radius of the image side surface of the first lens L1 is R2, which satisfies the following relationship: -2.34 ⁇ (R1+R2)/(R1-R2) ⁇ -0.68 ;
- it satisfies -1.46 ⁇ (R1+R2)/(R1-R2) ⁇ -0.85.
- the axial thickness of the first lens L1 is d1
- the total optical length of the imaging optical lens is TTL, which satisfies the following relationship: 0.08 ⁇ d1/TTL ⁇ 0.26, which is beneficial to realize ultra-thinness.
- 0.12 ⁇ d1/TTL ⁇ 0.21 is satisfied.
- the focal length of the second lens L2 is defined as f2, which satisfies the following relationship: -1.03 ⁇ f2/f ⁇ -0.29.
- f2 The focal length of the second lens L2 is defined as f2, which satisfies the following relationship: -1.03 ⁇ f2/f ⁇ -0.29.
- the curvature radius of the object side surface of the second lens L2 is R3, and the curvature radius of the image side surface of the second lens L2 is R4, satisfying the following relationship: 0.51 ⁇ (R3+R4)/(R3-R4) ⁇ 2.24,
- the shape of the second lens L2 is specified, and when it is within the range, it is beneficial to correct the problem of axial chromatic aberration. Preferably, 0.81 ⁇ (R3+R4)/(R3-R4) ⁇ 1.79 is satisfied.
- the on-axis thickness of the second lens L2 is d3, which satisfies the following relationship: 0.01 ⁇ d3/TTL ⁇ 0.05, which is beneficial to realize ultra-thinness.
- 0.02 ⁇ d3/TTL ⁇ 0.04 is satisfied.
- the focal length of the third lens L3 is defined as f3, and satisfies the following relational expression: -4.20 ⁇ f3/f ⁇ 39.18.
- the reasonable distribution of optical power enables the system to have better imaging quality and lower sensitivity. Preferably, it satisfies -2.62 ⁇ f3/f ⁇ 31.34.
- the on-axis thickness of the third lens L3 is d5, which satisfies the following relationship: 0.02 ⁇ d5/TTL ⁇ 0.05, which is beneficial to realize ultra-thinness.
- 0.02 ⁇ d5/TTL ⁇ 0.04 is satisfied.
- the focal length of the fourth lens L4 is defined as f4, which satisfies the following relationship: 0.25 ⁇ f4/f ⁇ 15.67, which specifies the ratio of the focal length of the fourth lens L4 to the focal length of the system, which helps to improve the performance of the optical system within the scope of the conditional expression .
- it satisfies 0.40 ⁇ f4/f ⁇ 12.54.
- the curvature radius of the object side surface of the fourth lens L4 is R7
- the curvature radius of the image side surface of the fourth lens L4 is R8, and the following relationship is satisfied: 0.57 ⁇ (R7+R8)/(R7-R8) ⁇ 2.25 .
- the shape of the fourth lens L4 is specified, and when it is within the range, it is beneficial to correct problems such as aberrations of the off-axis angle of view. Preferably, it satisfies 0.91 ⁇ (R7+R8)/(R7-R8) ⁇ 1.80.
- the axial thickness of the fourth lens L4 is d7, which satisfies the following relationship: 0.02 ⁇ d7/TTL ⁇ 0.06, which is beneficial to realize ultra-thinness.
- 0.02 ⁇ d7/TTL ⁇ 0.05 is satisfied.
- the radius of curvature of the object side surface of the fifth lens L5 as R9
- the radius of curvature of the image side surface of the fifth lens L5 as R10
- the shape of the fifth lens L5 is specified, and when it is within the range, it is beneficial to correct problems such as aberrations of the off-axis angle of view.
- it satisfies -2.15 ⁇ (R9+R10)/(R9-R10) ⁇ -0.24.
- the on-axis thickness of the fifth lens L5 is d9, which satisfies the following relationship: 0.01 ⁇ d9/TTL ⁇ 0.05, which is beneficial to realize ultra-thinness.
- 0.02 ⁇ d9/TTL ⁇ 0.04 is satisfied.
- the focal length of the sixth lens L6 is defined as f6, which satisfies the following relational expression: -1.00 ⁇ f6/f ⁇ -0.21.
- the system has better imaging quality and Lower sensitivity.
- it satisfies -0.63 ⁇ f6/f ⁇ -0.26.
- the radius of curvature of the object side surface of the sixth lens L6 is R11, and the radius of curvature of the image side surface of the sixth lens L6 is R12, and the following relationship is satisfied: -2.42 ⁇ (R11+R12)/(R11-R12) ⁇ 1.38.
- the shape of the sixth lens L6 is stipulated. When the condition is within the range, it is helpful to correct the aberration of the off-axis angle of view. Preferably, it satisfies -1.51 ⁇ (R11+R12)/(R11-R12) ⁇ 1.10.
- the on-axis thickness of the sixth lens L6 is d11, which satisfies the following relationship: 0.01 ⁇ d11/TTL ⁇ 0.08, which is beneficial to realize ultra-thinness.
- 0.02 ⁇ d11/TTL ⁇ 0.06 is satisfied.
- the focal length of the seventh lens L7 is defined as f7, which satisfies the following relational formula: 0.19 ⁇ f7/f ⁇ 0.67.
- f7 The focal length of the seventh lens L7
- the system has better imaging quality and lower Sensitivity.
- it satisfies 0.31 ⁇ f7/f ⁇ 0.54.
- the curvature radius of the object side surface of the seventh lens L7 is R13
- the curvature radius of the image side surface of the seventh lens L7 is R14
- the following relationship is satisfied: -0.12 ⁇ (R13+R14)/(R13-R14) ⁇ 1.36.
- the shape of the seventh lens L7 is the shape of the seventh lens L7.
- it is beneficial to correct the aberration of the off-axis angle of view.
- it satisfies -0.07 ⁇ (R13+R14)/(R13-R14) ⁇ 1.09.
- the on-axis thickness of the seventh lens L7 is d13, which satisfies the following relationship: 0.04 ⁇ d13/TTL ⁇ 0.17, which is beneficial to realize ultra-thinness.
- 0.06 ⁇ d13/TTL ⁇ 0.14 is satisfied.
- the effective focal length of the camera optical lens is defined as EFL, which satisfies the following relationship: EFL/TTL ⁇ 1.37, which is conducive to achieving ultra-thinness.
- the total optical length TTL of the imaging optical lens 10 is less than or equal to 7.86 mm, which is beneficial to realize ultra-thinness.
- the total optical length TTL is less than or equal to 7.50 mm.
- the overall optical length TTL of the overall imaging optical lens 10 can be shortened as much as possible, and the characteristics of miniaturization can be maintained.
- the imaging optical lens 10 can have good optical performance, and at the same time, it can satisfy the requirements of large aperture, long focal length, and ultra-thinness.
- the imaging optical lens 10 of the present invention will be described below with an example.
- the symbols described in each example are as follows.
- the unit of focal length, distance on axis, radius of curvature, thickness on axis, position of inflection point, and position of stagnation point is mm.
- TTL Total optical length (the on-axis distance from the object side of the first lens L1 to the imaging surface), the unit is mm;
- the object side and/or the image side of the lens can also be provided with inflection points and/or stagnation points to meet high-quality imaging requirements.
- inflection points and/or stagnation points for specific implementations, refer to the following.
- Table 1 and Table 2 show design data of the imaging optical lens 10 according to the first embodiment of the present invention.
- R The radius of curvature of the optical surface, and the radius of curvature of the center of the lens
- R1 the radius of curvature of the object side surface of the first lens L1;
- R2 the radius of curvature of the image side surface of the first lens L1;
- R3 the radius of curvature of the object side surface of the second lens L2;
- R4 the radius of curvature of the image side surface of the second lens L2;
- R5 the radius of curvature of the object side surface of the third lens L3;
- R6 the radius of curvature of the image side surface of the third lens L3;
- R7 the radius of curvature of the object side of the fourth lens L4;
- R8 the radius of curvature of the image side surface of the fourth lens L4;
- R9 the radius of curvature of the object side surface of the fifth lens L5;
- R10 the radius of curvature of the image side surface of the fifth lens L5;
- R11 the radius of curvature of the object side surface of the sixth lens L6;
- R12 the radius of curvature of the image side surface of the sixth lens L6;
- R13 the radius of curvature of the object side surface of the seventh lens L7;
- R14 the radius of curvature of the image side surface of the seventh lens L7;
- R15 the radius of curvature of the object side of the optical filter GF
- R16 the radius of curvature of the image side surface of the optical filter GF
- d0 the on-axis distance from the aperture S1 to the object side of the first lens L1;
- d2 the on-axis distance from the image side surface of the first lens L1 to the object side surface of the second lens L2;
- d4 the on-axis distance from the image side surface of the second lens L2 to the object side surface of the third lens L3;
- d6 the on-axis distance from the image side surface of the third lens L3 to the object side surface of the fourth lens L4;
- d10 the on-axis distance from the image side surface of the fifth lens L5 to the object side surface of the sixth lens L6;
- d11 the on-axis thickness of the sixth lens L6;
- d12 the on-axis distance from the image side surface of the sixth lens L6 to the object side surface of the seventh lens L7;
- d14 the on-axis distance from the image side surface of the seventh lens L7 to the object side surface of the optical filter GF;
- d15 the axial thickness of the optical filter GF
- d16 the on-axis distance from the image side surface of the optical filter GF to the image surface
- nd refractive index of d-line
- nd1 the refractive index of the d-line of the first lens L1;
- nd2 the refractive index of the d-line of the second lens L2;
- nd3 the refractive index of the d-line of the third lens L3;
- nd4 the refractive index of the d-line of the fourth lens L4;
- nd5 the refractive index of the d-line of the fifth lens L5;
- nd6 the refractive index of the d-line of the sixth lens L6;
- nd7 the refractive index of the d-line of the seventh lens L7;
- ndg the refractive index of the d-line of the optical filter GF
- vg Abbe number of optical filter GF.
- Table 2 shows the aspheric surface data of each lens in the imaging optical lens 10 of the first embodiment of the present invention.
- k is the conic coefficient
- A4, A6, A8, A10, A12, A14, A16, A18, A20 are aspherical coefficients.
- the aspheric surface of each lens surface uses the aspheric surface shown in the above formula (1).
- the present invention is not limited to the aspheric polynomial form represented by the formula (1).
- Table 3 and Table 4 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 10 of the first embodiment of the present invention.
- P1R1 and P1R2 represent the object side and image side of the first lens L1 respectively
- P2R1 and P2R2 represent the object side and image side of the second lens L2 respectively
- P3R1 and P3R2 represent the object side and image side of the third lens L3 respectively.
- P4R1, P4R2 represent the object side and image side of the fourth lens L4
- P5R1, P5R2 represent the object side and image side of the fifth lens L5
- P6R1, P6R2 represent the object side and image side of the sixth lens L6,
- P7R1 P7R2 represents the object side and image side of the seventh lens L7, respectively.
- the corresponding data in the “reflection point position” column is the vertical distance from the reflex point set on the surface of each lens to the optical axis of the imaging optical lens 10.
- the data corresponding to the “stationary point position” column is the vertical distance from the stationary point set on the surface of each lens to the optical axis of the imaging optical lens 10.
- FIG. 4 shows a schematic diagram of field curvature and distortion of light with a wavelength of 555 nm after passing through the imaging optical lens 10 of the first embodiment.
- the field curvature S in FIG. 4 is the field curvature in the sagittal direction, and T is the field curvature in the meridian direction. song.
- Table 17 shows the values corresponding to the various numerical values in each of the first, second, third, and fourth embodiments and the parameters that have been specified in the conditional expressions.
- the first embodiment satisfies each conditional expression.
- the entrance pupil diameter of the imaging optical lens is 3.265mm
- the full-field image height is 2.040mm
- the diagonal field angle is 23.63°. It has a telephoto lens and is ultra-thin. The off-axis chromatic aberration is fully corrected and has excellent optical characteristics.
- the second embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment.
- the structure of the imaging optical lens 20 of the second embodiment is shown in FIG. 5, and only the differences are listed below.
- Table 5 and Table 6 show design data of the imaging optical lens 20 according to the second embodiment of the present invention.
- Table 6 shows the aspheric surface data of each lens in the imaging optical lens 20 according to the second embodiment of the present invention.
- Table 7 and Table 8 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 20 according to the second embodiment of the present invention.
- FIG. 6 and 7 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light having wavelengths of 650 nm, 610 nm, 555 nm, 510 nm, 470 nm, and 430 nm pass through the imaging optical lens 20 of the second embodiment.
- FIG. 8 shows a schematic diagram of field curvature and distortion after light with a wavelength of 555 nm passes through the imaging optical lens 20 of the second embodiment.
- the second embodiment satisfies various conditional expressions.
- the entrance pupil diameter of the imaging optical lens is 3.265mm
- the full-field image height is 2.040mm
- the diagonal field angle is 24.00°. It has a telephoto lens and ultra-thin lens.
- the off-axis chromatic aberration is fully corrected and has excellent optical characteristics.
- the third embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment. Please refer to FIG. 9 for the structure of the imaging optical lens 30 of the third embodiment. Only the differences are listed below.
- Table 9 and Table 10 show design data of the imaging optical lens 30 according to the third embodiment of the present invention.
- Table 10 shows the aspheric surface data of each lens in the imaging optical lens 30 according to the third embodiment of the present invention.
- Table 11 and Table 12 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 30 of the third embodiment of the present invention.
- FIG. 10 and 11 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light having wavelengths of 650 nm, 610 nm, 555 nm, 510 nm, 470 nm, and 430 nm pass through the imaging optical lens 30 of the third embodiment.
- FIG. 12 shows a schematic diagram of field curvature and distortion after light with a wavelength of 555 nm passes through the imaging optical lens 30 of the third embodiment.
- Table 17 lists the numerical values corresponding to each conditional expression in this embodiment according to the above-mentioned conditional expressions. Obviously, the imaging optical lens of this embodiment satisfies the above-mentioned conditional expression.
- the entrance pupil diameter of the imaging optical lens is 3.266mm
- the full-field image height is 2.040mm
- the diagonal field angle is 23.80°. It has a telephoto lens and is ultra-thin. The off-axis chromatic aberration is fully corrected and has excellent optical characteristics.
- the fourth embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment. Please refer to FIG. 13 for the structure of the imaging optical lens 40 of the fourth embodiment. Only the differences are listed below.
- Table 13 and Table 14 show design data of the imaging optical lens 40 according to the fourth embodiment of the present invention.
- Table 14 shows the aspheric surface data of each lens in the imaging optical lens 40 according to the fourth embodiment of the present invention.
- Table 15 and Table 16 show the inflection point and stagnation point design data of each lens in the imaging optical lens 40 according to the fourth embodiment of the present invention.
- FIG. 14 and 15 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light having wavelengths of 650 nm, 610 nm, 555 nm, 510 nm, 470 nm, and 430 nm pass through the imaging optical lens 40 of the fourth embodiment.
- FIG. 16 shows a schematic diagram of field curvature and distortion after light with a wavelength of 555 nm passes through the imaging optical lens 40 of the fourth embodiment.
- Table 17 lists the numerical values corresponding to each conditional expression in this embodiment according to the above-mentioned conditional expressions. Obviously, the imaging optical lens of this embodiment satisfies the above-mentioned conditional expression.
- the entrance pupil diameter of the imaging optical lens is 3.267mm
- the full-field image height is 2.040mm
- the diagonal field angle is 23.60°
- wide-angle, ultra-thin and its axis and axis
- the external chromatic aberration is fully corrected and has excellent optical characteristics.
- Example one Example two
- Example three Example four f5/f -0.30 -1.00 -0.36 -0.36 (R5+R6)/(R5-R6) 3.00 19.99 3.00 5.19 d10/d11 3.00 10.00 5.59 5.28 f 9.794 9.794 9.799 9.8
- Fno is the aperture F number of the imaging optical lens.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
一种摄像光学镜头(10),摄像光学(10)自物侧至像侧依序包含:具有正屈折力的第一透镜(L1),具有负屈折力的第二透镜(L2),第三透镜(L3),具有正屈折力的第四透镜(L4),具有负屈折力的第五透镜(L5),具有负屈折力的第六透镜(L6)以及具有正屈折力的第七透镜(L7);满足下列关系式:-1.00≤f5/f≤-0.30;3.00≤(R5+R6)/(R5-R6)≤20.00;3.00≤d10/d11≤10.00。摄像光学镜头(10)具有良好光学性能的同时,满足大光圈、长焦距、超薄化的设计要求。
Description
本发明涉及光学镜头领域,特别涉及一种适用于智能手机、数码相机等手提终端设备,以及监视器、PC镜头等摄像装置的摄像光学镜头。
近年来,随着智能手机的兴起,小型化摄影镜头的需求日渐提高,而一般摄影镜头的感光器件不外乎是感光耦合器件(Charge Coupled Device,CCD)或互补性氧化金属半导体器件(Complementary Metal-OxideSemicondctor Sensor,CMOS Sensor)两种,且由于半导体制造工艺技术的精进,使得感光器件的像素尺寸缩小,再加上现今电子产品以功能佳且轻薄短小的外型为发展趋势,因此,具备良好成像品质的小型化摄像镜头俨然成为目前市场上的主流。
为获得较佳的成像品质,传统搭载于手机相机的镜头多采用三片式、四片式甚至是五片式、六片式透镜结构。然而,随着技术的发展以及用户多样化需求的增多,在感光器件的像素面积不断缩小,且系统对成像品质的要求不断提高的情况下,七片式透镜结构逐渐出现在镜头设计当中,常见的七片式透镜虽然已经具有较好的光学性能,但是其光焦度、透镜间距和透镜形状设置仍然具有一定的不合理性,导致透镜结构在具有良好光学性能的同时,无法满足大光圈、超薄化、长焦距的设计要求。
针对上述问题,本发明的目的在于提供一种摄像光学镜头,其具有良好光学性能的同时,满足大光圈、超薄化、长焦距的设计要求。
为解决上述技术问题,本发明的实施方式提供了一种所述摄像光学镜头,自物侧至像侧依序包含:具有正屈折力的第一透镜,具有负屈折力的第二透镜,第三透镜,具有正屈折力的第四透镜,具有负屈折力的第五透镜,具有负屈折力的第六透镜以及具有正屈折力的第七透镜;
所述摄像光学镜头的焦距为f,所述第五透镜的焦距为f5,所述第三透镜物侧面的曲率半径为R5,所述第三透镜像侧面的曲率半径为R6,所述第六透镜的轴上厚度为d11,所述第五透镜像侧面到所述第六透镜物侧面的轴上距离为d10,满足下列关系式:
-1.00≤f5/f≤-0.30;
3.00≤(R5+R6)/(R5-R6)≤20.00;
3.00≤d10/d11≤10.00。
优选的,所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,且满足下列关系式:
5.00≤R7/R8≤15.00。
优选的,所述第一透镜的焦距为f1,所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
0.17≤f1/f≤0.58;
-2.34≤(R1+R2)/(R1-R2)≤-0.68;
0.08≤d1/TTL≤0.26。
优选的,所述第二透镜的焦距为f2,所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-1.03≤f2/f≤-0.29;
0.51≤(R3+R4)/(R3-R4)≤2.24;
0.01≤d3/TTL≤0.05。
优选的,所述第三透镜的焦距为f3,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-4.20≤f3/f≤39.18;
0.02≤d5/TTL≤0.05。
优选的,所述第四透镜的焦距为f4,所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
0.25≤f4/f≤15.67;
0.57≤(R7+R8)/(R7-R8)≤2.25;
0.02≤d7/TTL≤0.06。
优选的,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,所述第五透镜的轴上厚度为d9,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-3.44≤(R9+R10)/(R9-R10)≤-0.19;
0.01≤d9/TTL≤0.05。
优选的,所述第六透镜的焦距为f6,所述第六透镜物侧面的曲率半径为R11,所述第六透镜像侧面的曲率半径为R12,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-1.00≤f6/f≤-0.21;
-2.42≤(R11+R12)/(R11-R12)≤1.38;
0.01≤d11/TTL≤0.08。
优选的,所述第七透镜的焦距为f7,所述第七透镜物侧面的曲率半径为R13,所述第七透镜像侧面的曲率半径为R14,所述第七透镜的轴上厚度为d13,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
0.19≤f7/f≤0.67;
-0.12≤(R13+R14)/(R13-R14)≤1.36;
0.04≤d13/TTL≤0.17。
优选的,所述摄像光学镜头的有效焦距为EFL,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
EFL/TTL≥1.37。
本发明的有益效果在于:根据本发明的摄像光学镜头具有良好光学性能,且具有大光圈、长焦距、超薄化的特性,尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述 中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1是实施方式一的摄像光学镜头的结构示意图;
图2是图1所示的摄像光学镜头的轴向像差示意图;
图3是图1所示的摄像光学镜头的倍率色差示意图;
图4是图1所示的摄像光学镜头的场曲及畸变示意图;
图5是实施方式二的摄像光学镜头的结构示意图;
图6是图5所示的摄像光学镜头的轴向像差示意图;
图7是图5所示的摄像光学镜头的倍率色差示意图;
图8是图5所示的摄像光学镜头的场曲及畸变示意图;
图9是实施方式三的摄像光学镜头的结构示意图;
图10是图9所示的摄像光学镜头的轴向像差示意图;
图11是图9所示的摄像光学镜头的倍率色差示意图;
图12是图9所示的摄像光学镜头的场曲及畸变示意图;
图13是实施方式四的摄像光学镜头的结构示意图;
图14是图13所示的摄像光学镜头的轴向像差示意图;
图15是图13所示的摄像光学镜头的倍率色差示意图;
图16是图13所示的摄像光学镜头的场曲及畸变示意图。
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本发明而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本发明所要求保护的技术方案。
(第一实施方式)
请参考附图,本发明提供了一种摄像光学镜头10。图1所示为本发明第一实施方式的摄像光学镜头10,该摄像光学镜头10包括七个透镜。具体的,所述摄像光学镜头10,由物侧至像侧依序包括:光圈S1、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、第三透镜L3、具有正屈折力的第四透镜L4、具有负屈折力的第五透镜L5、具有负屈折力的第六透镜L6以及具有正屈折力的第七透镜L7。第七透镜L7和像面Si之间可设置有光学过滤片(filter)GF等光学元件。
所述第一透镜为玻璃材质,所述第二透镜为塑料材质,所述第三透镜为塑料材质,所述第四透镜为塑料材质,所述第五透镜为塑料材质,所述第六透镜为玻璃材质,所述第七透镜为塑料材质。
在本实施方式中,定义所述摄像光学镜头的焦距为f,所述第五透镜L5的焦距为f5,满足下列关系式:-1.00≤f5/f≤-0.30;规定了第五透镜L5焦距与总焦距的比值,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。
所述第三透镜L3物侧面的曲率半径为R5,所述第三透镜L3像侧面的曲率半径为R6,满足下列关系式:3.00≤(R5+R6)/(R5-R6)≤20.00;规定了第三透镜L3的形状,在条件式规定范围内,可以缓和光线经过镜片的偏 折程度,有效减小像差。
所述第六透镜L6的轴上厚度为d11,所述第五透镜L5像侧面到所述第六透镜L6物侧面的轴上距离为d10,满足下列关系式:3.00≤d10/d11≤10.00;规定了第五透镜L5第六透镜L6间空气间隔与第六透镜L6轴上厚度的比值,在条件式范围内有助于压缩光学系统总长,实现超薄化效果。
定义所述第四透镜L4物侧面的曲率半径为R7,所述第四透镜L4像侧面的曲率半径为R8,且满足下列关系式:5.00≤R7/R8≤15.00;规定了第四透镜L4的形状,在条件式规定范围内,有利于补正轴外画角的像差。
定义所述第一透镜L1的焦距为f1,满足下列关系式:0.17≤f1/f≤0.58,规定了第一透镜L1的正屈折力与整体焦距的比值。在规定的范围内时,第一透镜L1具有适当的正屈折力,有利于减小系统像差,同时有利于镜头向超薄化、长焦距发展。优选的,满足0.28≤f1/f≤0.46。
所述第一透镜L1物侧面的曲率半径为R1,所述第一透镜L1像侧面的曲率半径为R2,满足下列关系式:-2.34≤(R1+R2)/(R1-R2)≤-0.68;合理控制第一透镜L1的形状,使得第一透镜L1能够有效地校正系统球差。优选的,满足-1.46≤(R1+R2)/(R1-R2)≤-0.85。
所述第一透镜L1的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,满足下列关系式:0.08≤d1/TTL≤0.26,有利于实现超薄化。优选地,满足0.12≤d1/TTL≤0.21。
定义所述第二透镜L2的焦距为f2,满足下列关系式:-1.03≤f2/f≤-0.29,通过将第二透镜L2的负光焦度控制在合理范围,有利于矫正光学系统的像差。优选的,满足-0.65≤f2/f≤-0.36。
所述第二透镜L2物侧面的曲率半径为R3,以及所述第二透镜L2像侧面的曲率半径为R4,满足下列关系式:0.51≤(R3+R4)/(R3-R4)≤2.24,规定了第二透镜L2的形状,在范围内时有利于补正轴上色像差问题。优选的,满足0.81≤(R3+R4)/(R3-R4)≤1.79。
所述第二透镜L2的轴上厚度为d3,满足下列关系式:0.01≤d3/TTL≤0.05,有利于实现超薄化。优选地,满足0.02≤d3/TTL≤0.04。
定义所述第三透镜L3的焦距为f3,且满足下列关系式:-4.20≤f3/f≤39.18,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选的,满足-2.62≤f3/f≤31.34。
所述第三透镜L3的轴上厚度为d5,满足下列关系式:0.02≤d5/TTL≤0.05,有利于实现超薄化。优选地,满足0.02≤d5/TTL≤0.04。
定义所述第四透镜L4的焦距为f4,满足下列关系式:0.25≤f4/f≤15.67,规定了第四透镜L4焦距与系统焦距的比值,在条件式范围内有助于提高光学系统性能。优选的,满足0.40≤f4/f≤12.54。
所述第四透镜L4物侧面的曲率半径为R7,以及所述第四透镜L4像侧面的曲率半径为R8,且满足下列关系式:0.57≤(R7+R8)/(R7-R8)≤2.25。规定了第四透镜L4的形状,在范围内时,有利于补正轴外画角的像差等问题。优选的,满足0.91≤(R7+R8)/(R7-R8)≤1.80。
所述第四透镜L4的轴上厚度为d7,满足下列关系式:0.02≤d7/TTL≤0.06,有利于实现超薄化。优选地,满足0.02≤d7/TTL≤0.05。
定义所述第五透镜L5物侧面的曲率半径为R9,以及所述第五透镜L5像侧面的曲率半径为R10,且满足下列关系式:-3.44≤(R9+R10)/(R9-R10) ≤-0.19。规定了第五透镜L5的形状,在范围内时,有利于补正轴外画角的像差等问题。优选的,满足-2.15≤(R9+R10)/(R9-R10)≤-0.24。
所述第五透镜L5的轴上厚度为d9,满足下列关系式:0.01≤d9/TTL≤0.05,有利于实现超薄化。优选地,满足0.02≤d9/TTL≤0.04。
定义所述第六透镜L6的焦距为f6,满足下列关系式:-1.00≤f6/f≤-0.21,在条件式范围内,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选的,满足-0.63≤f6/f≤-0.26。
所述第六透镜L6物侧面的曲率半径为R11,以及所述第六透镜L6像侧面的曲率半径为R12,且满足下列关系式:-2.42≤(R11+R12)/(R11-R12)≤1.38,规定的是第六透镜L6的形状,在条件范围内时,有利于补正轴外画角的像差等问题。优选的,满足-1.51≤(R11+R12)/(R11-R12)≤1.10。
所述第六透镜L6的轴上厚度为d11,满足下列关系式:0.01≤d11/TTL≤0.08,有利于实现超薄化。优选地,满足0.02≤d11/TTL≤0.06。
定义所述第七透镜L7的焦距为f7,满足下列关系式:0.19≤f7/f≤0.67,在条件式范围内,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选的,满足0.31≤f7/f≤0.54。
所述第七透镜L7物侧面的曲率半径为R13,以及所述第七透镜L7像侧面的曲率半径为R14,且满足下列关系式:-0.12≤(R13+R14)/(R13-R14)≤1.36。规定的是第七透镜L7的形状,在条件范围内时,有利于补正轴外画角的像差等问题。优选的,满足-0.07≤(R13+R14)/(R13-R14)≤1.09。
第七透镜L7的轴上厚度为d13,满足下列关系式:0.04≤d13/TTL≤0.17,有利于实现超薄化。优选地,满足0.06≤d13/TTL≤0.14。
定义所述摄像光学镜头的有效焦距为EFL,满足下列关系式:EFL/TTL≥1.37,有利于实现超薄化。
本实施方式中,摄像光学镜头10的光学总长TTL小于或等于7.86毫米,有利于实现超薄化。优选地,光学总长TTL小于或等于7.50毫米。
如此设计,能够使得整体摄像光学镜头10的光学总长TTL尽量变短,维持小型化的特性。
当本发明所述摄像光学镜头10的焦距、各透镜的焦距和曲率半径满足上述关系式时,可以使摄像光学镜头10具有良好光学性能,同时能够满足了大光圈、长焦距、超薄化的设计要求;根据该光学镜头10的特性,该光学镜头10尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
下面将用实例进行说明本发明的摄像光学镜头10。各实例中所记载的符号如下所示。焦距、轴上距离、曲率半径、轴上厚度、反曲点位置、驻点位置的单位为mm。
TTL:光学总长(第一透镜L1的物侧面到成像面的轴上距离),单位为mm;
优选的,所述透镜的物侧面和/或像侧面上还可以设置有反曲点和/或驻点,以满足高品质的成像需求,具体的可实施方案,参下所述。
表1、表2示出本发明第一实施方式的摄像光学镜头10的设计数据。
【表1】
其中,各符号的含义如下。
S1:光圈;
R:光学面的曲率半径、透镜时为中心曲率半径;
R1:第一透镜L1的物侧面的曲率半径;
R2:第一透镜L1的像侧面的曲率半径;
R3:第二透镜L2的物侧面的曲率半径;
R4:第二透镜L2的像侧面的曲率半径;
R5:第三透镜L3的物侧面的曲率半径;
R6:第三透镜L3的像侧面的曲率半径;
R7:第四透镜L4的物侧面的曲率半径;
R8:第四透镜L4的像侧面的曲率半径;
R9:第五透镜L5的物侧面的曲率半径;
R10:第五透镜L5的像侧面的曲率半径;
R11:第六透镜L6的物侧面的曲率半径;
R12:第六透镜L6的像侧面的曲率半径;
R13:第七透镜L7的物侧面的曲率半径;
R14:第七透镜L7的像侧面的曲率半径;
R15:光学过滤片GF的物侧面的曲率半径;
R16:光学过滤片GF的像侧面的曲率半径;
d:透镜的轴上厚度与透镜之间的轴上距离;
d0:光圈S1到第一透镜L1的物侧面的轴上距离;
d1:第一透镜L1的轴上厚度;
d2:第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;
d3:第二透镜L2的轴上厚度;
d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;
d5:第三透镜L3的轴上厚度;
d6:第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;
d7:第四透镜L4的轴上厚度;
d8:第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离;
d9:第五透镜L5的轴上厚度;
d10:第五透镜L5的像侧面到第六透镜L6的物侧面的轴上距离;
d11:第六透镜L6的轴上厚度;
d12:第六透镜L6的像侧面到第七透镜L7的物侧面的轴上距离;
d13:第七透镜L7的轴上厚度;
d14:第七透镜L7的像侧面到光学过滤片GF的物侧面的轴上距离;
d15:光学过滤片GF的轴上厚度;
d16:光学过滤片GF的像侧面到像面的轴上距离;
nd:d线的折射率;
nd1:第一透镜L1的d线的折射率;
nd2:第二透镜L2的d线的折射率;
nd3:第三透镜L3的d线的折射率;
nd4:第四透镜L4的d线的折射率;
nd5:第五透镜L5的d线的折射率;
nd6:第六透镜L6的d线的折射率;
nd7:第七透镜L7的d线的折射率;
ndg:光学过滤片GF的d线的折射率;
vd:阿贝数;
v1:第一透镜L1的阿贝数;
v2:第二透镜L2的阿贝数;
v3:第三透镜L3的阿贝数;
v4:第四透镜L4的阿贝数;
v5:第五透镜L5的阿贝数;
v6:第六透镜L6的阿贝数;
v7:第七透镜L7的阿贝数;
vg:光学过滤片GF的阿贝数。
表2示出本发明第一实施方式的摄像光学镜头10中各透镜的非球面数据。
【表2】
其中,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16、A18、A20是非球面系数。
y=(x
2/R)/[1+{1-(k+1)(x
2/R
2)}
1/2]+A4x
4+A6x
6+A8x
8+A10x
10+A12x
12+A14x
14+A16x
16+A18x
18+A20x
20 (1)
为方便起见,各个透镜面的非球面使用上述公式(1)中所示的非球面。但是,本发明不限于该公式(1)表示的非球面多项式形式。
表3、表4示出本发明第一实施方式的摄像光学镜头10中各透镜的反曲点以及驻点设计数据。其中,P1R1、P1R2分别代表第一透镜L1的物侧面和像侧面,P2R1、P2R2分别代表第二透镜L2的物侧面和像侧面,P3R1、P3R2分别代表第三透镜L3的物侧面和像侧面,P4R1、P4R2分别代表第四透镜L4的物侧面和像侧面,P5R1、P5R2分别代表第五透镜L5的物侧面和像侧面,P6R1、P6R2分别代表第六透镜L6的物侧面和像侧面,P7R1、P7R2分别代表第七透镜L7的物侧面和像侧面。“反曲点位置”栏位对应数据为各透镜表面所设置的反曲点到摄像光学镜头10光轴的垂直距离。“驻点位置”栏位对应数据为各透镜表面所设置的驻点到摄像光学镜头10光轴的垂直距离。
【表3】
反曲点个数 | 反曲点位置1 | 反曲点位置2 | |
P1R1 | 1 | 1.575 | |
P1R2 | 1 | 1.125 | |
P2R1 | |||
P2R2 | |||
P3R1 | |||
P3R2 | 1 | 0.735 | |
P4R1 | |||
P4R2 | 1 | 0.725 | |
P5R1 | 1 | 0.385 | |
P5R2 | 1 | 0.915 | |
P6R1 | 1 | 0.725 | |
P6R2 | 2 | 0.545 | 1.025 |
P7R1 | 1 | 1.745 | |
P7R2 | 2 | 1.025 | 1.895 |
【表4】
驻点个数 | 驻点位置1 | 驻点位置2 | |
P1R1 | |||
P1R2 | 1 | 1.365 | |
P2R1 |
P2R2 | |||
P3R1 | |||
P3R2 | |||
P4R1 | |||
P4R2 | |||
P5R1 | 1 | 0.705 | |
P5R2 | |||
P6R1 | 1 | 1.425 | |
P6R2 | 2 | 0.885 | 1.145 |
P7R1 | |||
P7R2 | 1 | 1.635 |
图2、图3分别示出了波长为650nm、610nm、555nm、510nm、470nm和430nm的光经过第一实施方式的摄像光学镜头10后的轴向像差以及倍率色差示意图。图4则示出了,波长为555nm的光经过第一实施方式的摄像光学镜头10后的场曲及畸变示意图,图4的场曲S是弧矢方向的场曲,T是子午方向的场曲。
后出现的表17示出各实施方式一、二、三、四中各种数值与条件式中已规定的参数所对应的值。
如表17所示,第一实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径为3.265mm,全视场像高为2.040mm,对角线方向的视场角为23.63°,长焦、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第二实施方式)
第二实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,该第二实施方式的摄像光学镜头20的结构形式请参图5所示,以下只列出不同点。
表5、表6示出本发明第二实施方式的摄像光学镜头20的设计数据。
【表5】
表6示出本发明第二实施方式的摄像光学镜头20中各透镜的非球面数据。
【表6】
表7、表8示出本发明第二实施方式的摄像光学镜头20中各透镜的反曲点以及驻点设计数据。
【表7】
反曲点个数 | 反曲点位置1 | 反曲点位置2 | 反曲点位置3 | |
P1R1 | 1 | 1.535 | ||
P1R2 | 1 | 0.595 | ||
P2R1 | 1 | 0.835 | ||
P2R2 | ||||
P3R1 | 2 | 0.135 | 0.795 | |
P3R2 | 2 | 0.105 | 0.715 | |
P4R1 | 2 | 0.105 | 0.375 | |
P4R2 | 1 | 0.705 | ||
P5R1 | 2 | 0.485 | 0.835 | |
P5R2 | 1 | 0.835 | ||
P6R1 | 2 | 0.675 | 1.605 | |
P6R2 | 2 | 0.705 | 1.125 |
P7R1 | 3 | 0.435 | 0.735 | 1.725 |
P7R2 | 2 | 0.935 | 1.785 |
【表8】
驻点个数 | 驻点位置1 | 驻点位置2 | |
P1R1 | |||
P1R2 | 1 | 0.965 | |
P2R1 | |||
P2R2 | |||
P3R1 | 1 | 0.235 | |
P3R2 | 2 | 0.165 | 0.775 |
P4R1 | 2 | 0.125 | 0.495 |
P4R2 | |||
P5R1 | 1 | 0.735 | |
P5R2 | |||
P6R1 | 2 | 1.525 | 1.655 |
P6R2 | 2 | 0.985 | 1.225 |
P7R1 | |||
P7R2 | 1 | 1.465 |
图6、图7分别示出了波长为650nm、610nm、555nm、510nm、470nm和430nm的光经过第二实施方式的摄像光学镜头20后的轴向像差以及倍率色差示意图。图8则示出了,波长为555nm的光经过第二实施方式的摄像光学镜头20后的场曲及畸变示意图。
如表17所示,第二实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径为3.265mm,全视场像高为2.040mm,对角线方向的视场角为24.00°,长焦、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第三实施方式)
第三实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,该第三实施方式的摄像光学镜头30的结构形式请参图9所示,以下只列出不同点。
表9、表10示出本发明第三实施方式的摄像光学镜头30的设计数据。
【表9】
表10示出本发明第三实施方式的摄像光学镜头30中各透镜的非球面数据。
【表10】
表11、表12示出本发明第三实施方式的摄像光学镜头30中各透镜的反曲点以及驻点设计数据。
【表11】
【表12】
驻点个数 | 驻点位置1 | 驻点位置2 | |
P1R1 | |||
P1R2 | 1 | 0.575 | |
P2R1 | |||
P2R2 | |||
P3R1 | |||
P3R2 | |||
P4R1 | |||
P4R2 | |||
P5R1 | 1 | 0.515 | |
P5R2 | 2 | 0.295 | 1.095 |
P6R1 | 1 | 0.515 | |
P6R2 | 1 | 1.535 | |
P7R1 | |||
P7R2 | 1 | 1.465 |
图10、图11分别示出了波长为650nm、610nm、555nm、510nm、470nm和430nm的光经过第三实施方式的摄像光学镜头30后的轴向像差以及倍率色差示意图。图12则示出了,波长为555nm的光经过第三实施方式的摄像光学镜头30后的场曲及畸变示意图。
以下表17按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学镜头满足上述的条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径为3.266mm,全视场像高为2.040mm,对角线方向的视场角为23.80°,长焦、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第四实施方式)
第四实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,该第四实施方式的摄像光学镜头40的结构形式请参图13所示,以下只列出不同点。
表13、表14示出本发明第四实施方式的摄像光学镜头40的设计数据。
【表13】
表14示出本发明第四实施方式的摄像光学镜头40中各透镜的非球面数据。
【表14】
表15、表16示出本发明第四实施方式的摄像光学镜头40中各透镜的反曲点以及驻点设计数据。
【表15】
【表16】
驻点个数 | 驻点位置1 | 驻点位置2 | |
P1R1 | |||
P1R2 | 1 | 1.375 | |
P2R1 | |||
P2R2 | |||
P3R1 | |||
P3R2 | |||
P4R1 | |||
P4R2 | |||
P5R1 | |||
P5R2 | |||
P6R1 | 1 | 1.345 | |
P6R2 | 2 | 0.715 | 0.985 |
P7R1 | |||
P7R2 | 1 | 1.625 |
图14、图15分别示出了波长为650nm、610nm、555nm、510nm、470nm和430nm的光经过第四实施方式的摄像光学镜头40后的轴向像差以及倍率色差示意图。图16则示出了,波长为555nm的光经过第四实施方式的摄像光学镜头40后的场曲及畸变示意图。
以下表17按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学镜头满足上述的条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径为3.267mm,全视场像高为2.040mm,对角线方向的视场角为23.60°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
【表17】
参数及条件式 | 实施例一 | 实施例二 | 实施例三 | 实施例四 |
f5/f | -0.30 | -1.00 | -0.36 | -0.36 |
(R5+R6)/(R5-R6) | 3.00 | 19.99 | 3.00 | 5.19 |
d10/d11 | 3.00 | 10.00 | 5.59 | 5.28 |
f | 9.794 | 9.794 | 9.799 | 9.8 |
f1 | 3.782 | 3.755 | 3.404 | 3.652 |
f2 | -5.06 | -4.488 | -4.596 | -4.208 |
f3 | -14.18 | 255.799 | -14.533 | -20.574 |
f4 | 4.838 | 102.332 | 6.641 | 6.289 |
f5 | -2.938 | -9.791 | -3.508 | -3.506 |
f6 | -4.233 | -3.1 | -4.6 | -4.909 |
f7 | 3.784 | 4.247 | 3.95 | 4.395 |
f12 | 5.908 | 6.566 | 5.714 | 6.247 |
Fno | 3.00 | 3.00 | 3.00 | 3.00 |
Fno为摄像光学镜头的光圈F数。
本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施方式,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。
Claims (10)
- 一种摄像光学镜头,其特征在于,所述摄像光学镜头,自物侧至像侧依序包含:具有正屈折力的第一透镜,具有负屈折力的第二透镜,第三透镜,具有正屈折力的第四透镜,具有负屈折力的第五透镜,具有负屈折力的第六透镜以及具有正屈折力的第七透镜;所述摄像光学镜头的焦距为f,所述第五透镜的焦距为f5,所述第三透镜物侧面的曲率半径为R5,所述第三透镜像侧面的曲率半径为R6,所述第六透镜的轴上厚度为d11,所述第五透镜像侧面到所述第六透镜物侧面的轴上距离为d10,满足下列关系式:-1.00≤f5/f≤-0.30;3.00≤(R5+R6)/(R5-R6)≤20.00;3.00≤d10/d11≤10.00。
- 根据权利要求1所述的摄像光学镜头,其特征在于,所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,且满足下列关系式:5.00≤R7/R8≤15.00。
- 根据权利要求1所述的摄像光学镜头,其特征在于,所述第一透镜的焦距为f1,所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:0.17≤f1/f≤0.58;-2.34≤(R1+R2)/(R1-R2)≤-0.68;0.08≤d1/TTL≤0.26。
- 根据权利要求1所述的摄像光学镜头,其特征在于,所述第二透镜的焦距为f2,所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:-1.03≤f2/f≤-0.29;0.51≤(R3+R4)/(R3-R4)≤2.24;0.01≤d3/TTL≤0.05。
- 根据权利要求1所述的摄像光学镜头,其特征在于,所述第三透镜的焦距为f3,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:-4.20≤f3/f≤39.18;0.02≤d5/TTL≤0.05。
- 根据权利要求1所述的摄像光学镜头,其特征在于,所述第四透镜的焦距为f4,所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:0.25≤f4/f≤15.67;0.57≤(R7+R8)/(R7-R8)≤2.25;0.02≤d7/TTL≤0.06。
- 根据权利要求1所述的摄像光学镜头,其特征在于,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,所述第 五透镜的轴上厚度为d9,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:-3.44≤(R9+R10)/(R9-R10)≤-0.19;0.01≤d9/TTL≤0.05。
- 根据权利要求1所述的摄像光学镜头,其特征在于,所述第六透镜的焦距为f6,所述第六透镜物侧面的曲率半径为R11,所述第六透镜像侧面的曲率半径为R12,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:-1.00≤f6/f≤-0.21;-2.42≤(R11+R12)/(R11-R12)≤1.38;0.01≤d11/TTL≤0.08。
- 根据权利要求1所述的摄像光学镜头,其特征在于,所述第七透镜的焦距为f7,所述第七透镜物侧面的曲率半径为R13,所述第七透镜像侧面的曲率半径为R14,所述第七透镜的轴上厚度为d13,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:0.19≤f7/f≤0.67;-0.12≤(R13+R14)/(R13-R14)≤1.36;0.04≤d13/TTL≤0.17。
- 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的有效焦距为EFL,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:EFL/TTL≥1.37。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/127428 WO2021127843A1 (zh) | 2019-12-23 | 2019-12-23 | 摄像光学镜头 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/127428 WO2021127843A1 (zh) | 2019-12-23 | 2019-12-23 | 摄像光学镜头 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021127843A1 true WO2021127843A1 (zh) | 2021-07-01 |
Family
ID=76573444
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/127428 WO2021127843A1 (zh) | 2019-12-23 | 2019-12-23 | 摄像光学镜头 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2021127843A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1164033A (zh) * | 1996-03-29 | 1997-11-05 | 三星航空产业株式会社 | 广角摄影镜头系统 |
JP2001133685A (ja) * | 1999-11-02 | 2001-05-18 | Matsushita Electric Ind Co Ltd | 撮像レンズ、電子スチルカメラおよびビデオカメラ |
CN206594355U (zh) * | 2017-03-14 | 2017-10-27 | 桂林电子科技大学 | 一种用于机器视觉检测的固液混合型复消色差连续变焦镜头 |
CN108594401A (zh) * | 2018-06-20 | 2018-09-28 | 广东奥普特科技股份有限公司 | 一种大靶面定焦机器视觉线阵镜头 |
CN109491051A (zh) * | 2018-12-28 | 2019-03-19 | 瑞声声学科技(深圳)有限公司 | 摄像光学镜头 |
-
2019
- 2019-12-23 WO PCT/CN2019/127428 patent/WO2021127843A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1164033A (zh) * | 1996-03-29 | 1997-11-05 | 三星航空产业株式会社 | 广角摄影镜头系统 |
JP2001133685A (ja) * | 1999-11-02 | 2001-05-18 | Matsushita Electric Ind Co Ltd | 撮像レンズ、電子スチルカメラおよびビデオカメラ |
CN206594355U (zh) * | 2017-03-14 | 2017-10-27 | 桂林电子科技大学 | 一种用于机器视觉检测的固液混合型复消色差连续变焦镜头 |
CN108594401A (zh) * | 2018-06-20 | 2018-09-28 | 广东奥普特科技股份有限公司 | 一种大靶面定焦机器视觉线阵镜头 |
CN109491051A (zh) * | 2018-12-28 | 2019-03-19 | 瑞声声学科技(深圳)有限公司 | 摄像光学镜头 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021237782A1 (zh) | 摄像光学镜头 | |
WO2021168910A1 (zh) | 摄像光学镜头 | |
WO2021253516A1 (zh) | 摄像光学镜头 | |
WO2021168905A1 (zh) | 摄像光学镜头 | |
WO2021196257A1 (zh) | 摄像光学镜头 | |
WO2021253517A1 (zh) | 摄像光学镜头 | |
WO2021248576A1 (zh) | 摄像光学镜头 | |
WO2021248577A1 (zh) | 摄像光学镜头 | |
WO2021031285A1 (zh) | 摄像光学镜头 | |
WO2021114233A1 (zh) | 摄像光学镜头 | |
WO2021031281A1 (zh) | 摄像光学镜头 | |
WO2021168889A1 (zh) | 摄像光学镜头 | |
WO2021253555A1 (zh) | 摄像光学镜头 | |
WO2021253518A1 (zh) | 摄像光学镜头 | |
WO2021119894A1 (zh) | 摄像光学镜头 | |
WO2021109078A1 (zh) | 摄像光学镜头 | |
WO2021127827A1 (zh) | 摄像光学镜头 | |
WO2021114235A1 (zh) | 摄像光学镜头 | |
WO2021031286A1 (zh) | 摄像光学镜头 | |
WO2021128187A1 (zh) | 摄像光学镜头 | |
WO2021127843A1 (zh) | 摄像光学镜头 | |
WO2021237779A1 (zh) | 摄像光学镜头 | |
WO2021127844A1 (zh) | 摄像光学镜头 | |
WO2021127883A1 (zh) | 摄像光学镜头 | |
WO2021127857A1 (zh) | 摄像光学镜头 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19957261 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19957261 Country of ref document: EP Kind code of ref document: A1 |