WO2021125555A1 - 내지연파괴 특성이 우수한 냉간단조용 선재, 부품 및 이들의 제조방법 - Google Patents

내지연파괴 특성이 우수한 냉간단조용 선재, 부품 및 이들의 제조방법 Download PDF

Info

Publication number
WO2021125555A1
WO2021125555A1 PCT/KR2020/015596 KR2020015596W WO2021125555A1 WO 2021125555 A1 WO2021125555 A1 WO 2021125555A1 KR 2020015596 W KR2020015596 W KR 2020015596W WO 2021125555 A1 WO2021125555 A1 WO 2021125555A1
Authority
WO
WIPO (PCT)
Prior art keywords
delayed fracture
fracture resistance
heat treatment
excellent delayed
cold forging
Prior art date
Application number
PCT/KR2020/015596
Other languages
English (en)
French (fr)
Inventor
정병인
박용식
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to US17/784,458 priority Critical patent/US20230020467A1/en
Priority to EP20901950.4A priority patent/EP4060072A1/en
Priority to CN202080092128.9A priority patent/CN114929922B/zh
Publication of WO2021125555A1 publication Critical patent/WO2021125555A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/20Isothermal quenching, e.g. bainitic hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/22Martempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/32Soft annealing, e.g. spheroidising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/58Oils
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/10Modifying the physical properties of iron or steel by deformation by cold working of the whole cross-section, e.g. of concrete reinforcing bars
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0093Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for screws; for bolts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the present invention relates to a wire rod for cold forging having excellent delayed fracture resistance, and a method for manufacturing the same, and more particularly, to a wire rod for cold forging having excellent delayed fracture resistance that can be applied to high strength bolts, parts, and manufacturing thereof it's about how
  • Wire rod products for general cold forging are manufactured into mechanical structures and automobile parts by performing wire rod, cold drawing, spheroidizing heat treatment, cold drawing, cold forging, rapid cooling and tempering.
  • the strength and toughness of a normal material are properties that are difficult to be compatible with each other, and usually exhibits a phenomenon in which the toughness decreases when the strength is improved. Therefore, it is necessary to develop parts with excellent resistance to delayed fracture by securing strength and resistance to hydrogen delayed fracture.
  • the present invention is to provide a wire rod, a component for cold forging excellent in delayed fracture resistance, and a manufacturing method thereof.
  • the present specification includes, by weight%, C: 0.3 to 0.5%, Si: 0.01 to 0.3%, Mn: 0.3 to 1.0%, Cr: 0.3 to 1.5%, Mo: 0.3 to 1.5% and V: contains at least two or more from the group consisting of 0.01 to 0.4%, the remainder contains Fe and other impurities, and includes a tempered martensite phase as a microstructure in an area fraction of 95% or more, Disclosed is a heat-treated component having excellent delayed fracture resistance, including 10/100 ⁇ m 2 or more of V-based carbides having a diameter of 300 nm or less.
  • Cr, Mo, and V mean wt% of each element.
  • the aspect ratio of the V-based carbide may be 10 to 1:1.
  • the microstructure may further include 20 /100 ⁇ m 2 or more of Mo-based carbides having a diameter of 500 nm or less.
  • the microstructure may further include 20 / 100 ⁇ m 2 or more of Cr-based carbides having a diameter of 200 nm or less.
  • the prior austenite average grain diameter may be 10 ⁇ m or less.
  • the tensile strength may be 1450 MPa or more.
  • the impact toughness may be 80J or more.
  • the present specification includes, by weight%, C: 0.3 to 0.5%, Si: 0.01 to 0.3%, Mn: 0.3 to 1.0%, Cr: 0.3 to 1.5%, Mo: 0.3 to 1.5% and V: containing at least two or more from the group consisting of 0.01 to 0.4%, the remainder including Fe and other impurities, spheroidizing heat treatment and wire drawing of a wire that satisfies the following formula (1) performing at least once to prepare a steel wire, cold forging the steel wire to prepare a part, heating the part, quenching the heated part, and heating the quenched part to 850 to 950 ° C.
  • reheated component Reheating, re-hardening the reheated component, and tempering the re-hardened component, wherein the reheated component is a microstructure, 10 V-based carbides having a diameter of 300 nm or less, 10/100 ⁇ m 2
  • a method for manufacturing a heat-treated component having excellent delayed fracture resistance including the above.
  • Cr, Mo, and V mean wt% of each element.
  • the present specification includes, by weight%, C: 0.3 to 0.5%, Si: 0.01 to 0.3%, Mn: 0.3 to 1.0%, Cr: 0.3 to 1.5%, Mo: 0.3 to 1.5% and V: contains at least two or more from the group consisting of 0.01 to 0.4%, the remainder contains Fe and other impurities, the microstructure is an area fraction, bainite: 85% or more, martens Disclosed is a wire rod for cold forging comprising site: 2 to 10% and perlite: 1 to 5%.
  • Cr, Mo, and V mean wt% of each element.
  • the prior austenite average grain diameter may be 30 ⁇ m or less.
  • the content of Si that inhibits the cold forging formability is minimized by causing solid solution strengthening, Mo is added to prevent strength deterioration, and V is added to increase strength and grain refinement, and quenching and tempering heat treatment It is possible to secure the hydrogen-delayed fracture resistance of the post-heat treatment parts.
  • the tempering heat treatment is performed at a high temperature of 500 ° C. or higher to prevent the generation of carbides in the form of thin films of the prior austenite grain boundaries, and the spheroidized carbides are dispersed inside and outside the grain boundaries to be distributed. Accordingly, it is possible to improve the hydrogen-delayed fracture resistance of the heat-treated parts.
  • 1 is a graph showing the tensile strength of each invention example and comparative example.
  • the heat-treated parts having excellent delayed fracture resistance include, by weight%, C: 0.3 to 0.5%, Si: 0.01 to 0.3%, Mn: 0.3 to 1.0%, Cr: 0.3 to 1.5% , Mo: from the group consisting of 0.3 to 1.5% and V: from the group consisting of 0.01 to 0.4%, including at least two or more, the remainder contains Fe and other impurities, and the area fraction of the tempered martensite phase as a microstructure is 95% or more and may include 10/100 ⁇ m 2 or more of V-based carbides having a diameter of 300 nm or less.
  • the wire rod for cold forging according to the present invention includes, by weight, C: 0.3 to 0.5%, Si: 0.01 to 0.3%, Mn: 0.3 to 1.0%, Cr: 0.3 to 1.5%, Mo: 0.3 to 1.5% and V: at least two or more from the group consisting of 0.01 to 0.4%, and the remainder includes Fe and other impurities.
  • C is an element added to secure product strength.
  • the content of C is less than 0.3%, it is difficult to secure the target strength, and it is not easy to secure sufficient hardenability after the final Q/T (Quenching/Tempering) heat treatment.
  • the content of C exceeds 0.5%, there is a problem in that the fatigue life is reduced due to excessive carbide formation. Accordingly, the upper limit of the C content in the present invention is limited to 0.5%.
  • Si is not only used for deoxidation of steel, but also is an element advantageous for securing strength through solid solution strengthening.
  • 0.01% or more of Si is added to ensure deoxidation and strength.
  • the content is excessive, there is a problem in that the cold forging formability is lowered, making it difficult to process parts having a complex shape such as bolts. Accordingly, the upper limit of the Si content in the present invention is limited to 0.3%.
  • Mn is advantageous in securing strength by improving hardenability of parts, and is an element that increases rollability and reduces brittleness. In order to secure sufficient strength, 0.3% or more is added. However, when the content is excessive, it is easy to generate a hard structure during cooling after hot rolling, and there is a problem in that a large amount of MnS inclusions are generated and fatigue properties are deteriorated. Accordingly, the upper limit of the Mn content in the present invention is limited to 1.0%.
  • Cr is an element that improves oxidation resistance and hardenability.
  • the Cr content is less than 0.3%, it is difficult to secure sufficient oxidation resistance and hardenability, so that sufficient strength cannot be secured after Q/T heat treatment.
  • the content is excessive, the hardenability becomes excessively high and the shape of the part is distorted after quenching, and an additional process is required to correct it, the impact toughness is lowered, and the problem of forming coarse carbides inferior to the hydrogen delayed fracture resistance have. Accordingly, the upper limit of the Cr content in the present invention is limited to 1.5%.
  • Mo is an element that improves hardenability through precipitation and solid solution strengthening by precipitation of fine carbides.
  • the improvement of hardenability due to Mo is more effective than Mn and Cr. If the Mo content is less than 0.3%, sufficient quenching is not performed, so sufficient strength cannot be secured after Q/T heat treatment. On the other hand, if the content is excessive, the quenching property becomes excessively high, and the shape of the part is distorted after quenching, so there is a problem that an additional process is required to correct it. Accordingly, the upper limit of the Mo content in the present invention is limited to 1.5%.
  • Vanadium (V) 0.01 to 0.4% by weight
  • V is an element that refines the structure of steel by forming fine carbonitrides such as VC, VN, and V(C, N). If the content of V is less than 0.01%, the distribution of V precipitates in the base material is small, so the prior austenite grain boundaries cannot be fixed, so that the prior austenite grains are coarsened in the process of reheating the quenched parts, which may cause a problem of lowering strength. have. However, when the content is excessive, there is a problem in that a coarse carbonitride is formed to reduce impact toughness. Accordingly, the upper limit of the V content in the present invention is limited to 0.4%.
  • At least two or more of the alloy components of Cr, Mo, and V in the present invention may be included, and preferably, all may be included in consideration of hardenability, impact toughness, and the like.
  • the remaining component of the present invention is iron (Fe).
  • Fe iron
  • the impurities are known to any person skilled in the art of a conventional manufacturing process, all details thereof are not specifically mentioned in the present specification.
  • the present inventors found that when the relationship between the Cr, Mo, and V contents satisfies a specific condition, the strength and delay resistance of the steel for cold forging can be further improved, and the following component relational expressions were derived.
  • the wire rod for cold forging according to an example of the present invention may satisfy the above-described alloy composition and, at the same time, satisfy Equation (1) below.
  • Cr, Mo, and V mean weight % of each element. In addition, if there is an alloy component that is not included among Cr, Mo, and V, 0 is substituted for the numerical value of the alloy component.
  • Microcarbides capable of trapping hydrogen include CrC, MoC, and VC carbides containing Cr, Mo, and V as main components, respectively. Only by securing a certain level of the number of such carbides can secure the strength of 1450 MPa or more at a tempering temperature of 550 to 650 °C, and at the same time maximize the hydrogen trap effect. In consideration of this, if the alloy composition is controlled to satisfy Equation (1), the strength and hydrogen delayed fracture resistance of the heat-treated parts can be improved at a high tempering temperature of 550 to 650°C.
  • the microstructure of the wire rod for cold forging according to an embodiment of the present invention may include, as an area fraction, bainite: 85% or more, martensite: 2 to 10%, and pearlite: 1 to 5%.
  • the prior austenite average grain diameter of the wire rod for cold forging according to an embodiment of the present invention may be 30 ⁇ m or less.
  • the prior austenite average grain diameter of the wire rod means the average grain diameter of the austenite structure of the wire rod after winding and before cooling.
  • the method of manufacturing a wire rod for cold forging may include heating a billet satisfying the above-described component system, preparing the heated billet as a wire rod, and cooling the wire rod.
  • the billet satisfies the above-described component system and Equation (1), and heating may be performed at 900 to 1200°C.
  • the heated billet may be finish rolled and wound at 800 to 1000° C. to provide a wire rod.
  • the rolling ratio may be 80% or more.
  • the wire rod may be cooled at a rate of 0.2 to 0.5 °C/s, and the cooling method is not particularly limited, but may be performed by air cooling.
  • the microstructure of the cooled wire rod may include, as an area fraction, bainite: 85% or more, martensite: 2 to 10%, and pearlite: 1 to 5%, and the prior austenite average grain diameter may be 30 ⁇ m or less .
  • the prior austenite average grain diameter of the wire rod means the average grain diameter of the austenite structure of the wire rod after winding and before cooling.
  • the cooled wire rod is subjected to spheroidization heat treatment and wire drawing at least once following the above-described method for manufacturing the wire rod for cold forging to prepare a steel wire step, cold forging the steel wire to prepare a part, heating the part, quenching the heated part, reheating the quenched part, re-quenching the reheated part, and re-quenching the part It may include a tempering step. Each step is described in detail below.
  • the cooled wire rod may be subjected to spheroidizing heat treatment and wire drawing at least once to prepare a steel wire.
  • the spheroidizing heat treatment is appropriately performed in order to impart a processing amount to the steel material prior to wire drawing, and the wire drawing may be appropriately performed in consideration of the wire drawing limit.
  • the wire rod can be prepared as a steel wire having a narrow diameter capable of manufacturing complex-shaped parts by performing spheroidizing heat treatment and wire drawing at least once.
  • the steel wire may be cold forged and provided as a component. Examples of parts include screws, bolts, and the like.
  • the part may then be heated.
  • the step of heating the part is a step of completely re-dissolving the carbide deposited during wire rod rolling.
  • the part may be heated between 1000 and 1100°C. In this case, the heating time may be 1000 to 3000 seconds.
  • the heated part may be quenched to 40 to 80°C.
  • the quenching method is not particularly limited, but may be performed by immersing the heated parts in oil at 40 to 80°C.
  • the step of reheating the quenched part is a step of controlling the austenite average grain diameter of the reheated part to be 10 ⁇ m or less by precipitating fine V, Mo, Cr-based carbides.
  • the V-type carbide according to an example of the present invention may have a diameter of 300 nm or less in the microstructure of the heat treatment part, and may be included in an amount of 10/100 ⁇ m 2 or more.
  • the aspect ratio of the V-based carbide may be 10 to 1:1.
  • Mo-based carbide according to an example of the present invention has a diameter of 500 nm or less within the microstructure of the heat-treated part, and may be included in an amount of 20/100 ⁇ m 2 or more.
  • the aspect ratio of the Mo-based carbide may be 10 to 1:1.
  • the Cr-based carbide according to an embodiment of the present invention may have a diameter of 200 nm or less in the microstructure of the heat-treated part, and may be included in an amount of 20/100 ⁇ m 2 or more.
  • the aspect ratio of the Cr-based carbide may be 10 to 1:1.
  • the finely precipitated V, Mo, Cr-based carbides control the average austenite grains to be fine, so that sufficient strength of the heat-treated parts can be secured after the subsequent Q/T heat treatment.
  • the step of reheating the quenched parts the generation of carbides in the form of a thin film at the austenite grain boundary is prevented, and the spheroidized carbide is dispersed and distributed inside and outside the grain boundary, thereby improving the resistance to delayed hydrogen fracture.
  • reheating can heat the quenched part to 850 to 950 °C. At this time, it can be heated to 850 to 950 ° C. and then maintained for 3000 to 4000 seconds in the corresponding temperature range.
  • the reheated part may be quenched to 40 to 80°C.
  • the quenching method is not particularly limited, but may be performed by immersing the reheated parts in oil at 40 to 80°C.
  • the step of tempering the re-hardened part is a step for controlling the final microstructure of the heat-treated part to be tempered martensite.
  • the re-hardened part is tempered at a high temperature to prevent the formation of carbides in the form of a thin film at the grain boundaries of prior austenite, and the spheroidized carbides are dispersed and distributed inside and outside the grain boundaries. Accordingly, it is possible to improve the hydrogen-delayed fracture resistance of the heat-treated parts.
  • the tempering step may be performed by tempering heat treatment at 550 to 650°C.
  • the tempering heat treatment time may be 3000 to 10000 seconds.
  • the heat-treated parts having excellent delayed fracture properties according to the present invention manufactured by the above-described manufacturing method include, by weight, C: 0.3 to 0.5%, Si: 0.1 to 0.3%, Mn: 0.5 to 1.0%, Cr: 0.5 to 1.5%, Mo: 0.5 to 1.5%, and V: contains at least two or more from the group consisting of 0.01 to 0.2%, the remainder contains Fe and other impurities, as a microstructure, a tempered martensite phase It may be included in an area fraction of 95% or more.
  • the heat treatment component satisfying the above-described alloy composition may satisfy the following formula (1). Since the reason for limitation to Equation (1) is the same as described above, it is omitted for convenience.
  • Cr, Mo, and V mean the weight % of each element.
  • the heat treatment component having excellent delayed fracture resistance may include 10/100 ⁇ m 2 or more of V-based carbides having a diameter of 300 nm or less as a microstructure.
  • the aspect ratio of the V-based carbide may be 10 to 1:1.
  • the heat treatment component having excellent delayed fracture resistance may further include 20/100 ⁇ m 2 or more of Mo-based carbides having a diameter of 500 nm or less as a microstructure.
  • the aspect ratio of the Mo-based carbide may be 10 to 1:1.
  • the heat treatment component having excellent delayed fracture resistance may further include 20/100 ⁇ m 2 or more of Cr-based carbides having a diameter of 200 nm or less as a microstructure.
  • the aspect ratio of the Cr-based carbide may be 10 to 1:1.
  • the heat treatment part having excellent delayed fracture characteristics may have a prior austenite average grain diameter of 10 ⁇ m or less.
  • the old austenite average grain diameter of the heat-treated part means the average grain diameter of the austenite structure of the part after reheating and before re-quenching.
  • the heat treatment component having excellent delayed fracture resistance may have a tensile strength of 1450 MPa or more.
  • the heat treatment component having excellent delayed fracture resistance according to an embodiment of the present invention may have an impact toughness of 80J or more.
  • the billet having the composition shown in Table 1 below was heated to 900 to 1200° C., and then finished rolled and wound at 800 to 1000° C. to prepare a wire rod.
  • the prepared wire rod was cooled at a rate of 0.2 to 0.5°C/s.
  • the microstructure of each wire rod after cooling was completed contained 85% or more of bainite, 2 to 10% of martensite, and 1 to 5% of pearlite as an area fraction.
  • Equation (1)' is derived by substituting the contents (wt%) of each Cr, Mo, and V to 'Cr + 2.7Mo + 6V', which is the component relational expression of Equation (1) disclosed in the present specification. became
  • each wire rod was made into a steel wire by spheroidizing heat treatment and wire drawing, and then cold forged to prepare parts.
  • the parts were then heated between 1000 and 1100° C. for 2000 seconds and quenched by immersion in 60° C. oil. Then, after reheating to 880 °C, it was maintained for 3600 seconds, and re-quenched by immersion in 60 °C oil. Then, a tempering heat treatment was performed at a high temperature of 550 to 650° C. for 3000 seconds to 10000 seconds, followed by a tensile test.
  • the tensile strength and impact toughness which are the results of the tensile test, are shown in Table 1 and FIG. 1 below.
  • each invention example the alloy composition and formula (1) defined by the present invention satisfy 3.56 or more.
  • each comparative example satisfies the alloy composition defined by the present invention, but did not satisfy the value of Equation (1) to be less than 3.56.
  • each invention example and the comparative example were prepared by dividing into the case where the normal heat treatment was applied and the case where the reheat heat treatment was applied. Except that, it was prepared under the same conditions as in Table 1.
  • the reheat heat treatment refers to the heat treatment process of the present invention that proceeds in the order of quenching ⁇ reheating ⁇ re-quenching ⁇ tempering as described above.
  • normal heat treatment is a heat treatment that proceeds in the order of quenching ⁇ tempering, which is a typical Q/T process, without reheating and re-quenching heat treatment, unlike the heat treatment process that proceeds in the order of quenching ⁇ reheating ⁇ re-quenching ⁇ tempering .
  • Table 2 shows the results of tensile tests in the case where normal heat treatment was applied and when reheat heat treatment was applied.
  • the tensile strength and impact toughness were lowered when the normal heat treatment was applied compared to the case where the reheat heat treatment was applied. From this, when the reheating heat treatment according to the present invention is not applied, the average prior austenite grain diameter cannot be finely controlled, so sufficient strength cannot be secured after the subsequent quenching and tempering heat treatment, and the prior austenite grain boundary It can be seen that the carbide in the form of a thin film is generated and the impact toughness is lowered.
  • the content of Si that causes solid solution strengthening and inhibits cold forging is minimized, Mo is added to prevent strength deterioration, and V is added for strength increase and grain refinement. It can be seen that after quenching and annealing heat treatment, it is possible to secure the hydrogen-delayed fracture resistance of heat-treated parts.
  • the tempering heat treatment is performed at a high temperature of 500 ° C. or higher to prevent the generation of carbides in the form of thin films of the prior austenite grain boundaries, and the spheroidized carbides are dispersed inside and outside the grain boundaries to be distributed. Accordingly, it can be seen that the hydrogen-delayed fracture resistance of the heat-treated parts is improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

본 명세서에서는 고강도 볼트 등에 적용될 수 있는 내지연파괴 특성이 우수한 냉간단조용 선재, 부품 및 이들의 제조방법을 개시한다. 개시되는 내지연파괴 특성이 우수한 열처리부품의 일 실시예에 따르면 중량%로, C: 0.3 내지 0.5%, Si: 0.01 내지 0.3%, Mn: 0.3 내지 1.0%를 포함하고, Cr: 0.3 내지 1.5%, Mo: 0.3 내지 1.5% 및 V: 0.01 내지 0.4%으로 이루어진 그룹으로부터 적어도 2종 이상을 포함하고, 나머지는 Fe 및 기타 불순물을 포함하고, 미세조직으로 템퍼드 마르텐사이트 상을 면적분율 95% 이상으로 포함하고, 직경이 300nm 이하인 V계 탄화물을 10개/100㎛ 2 이상으로 포함한다.

Description

내지연파괴 특성이 우수한 냉간단조용 선재, 부품 및 이들의 제조방법
본 발명은 내지연파괴 특성이 우수한 냉간단조용 선재, 부품 및 이들의 제조방법에 관한 것으로, 보다 상세하게는 고강도 볼트 등에 적용될 수 있는 내지연파괴 특성이 우수한 냉간단조용 선재, 부품 및 이들의 제조방법에 관한 것이다.
일반적인 냉간단조용 선재 제품은 선재, 냉간 신선, 구상화 열처리, 냉간 신선, 냉간 단조, 급냉 및 소려를 진행하여 기계 구조 및 자동차 부품 등으로 제조된다.
최근의 냉간단조용 강재의 기술개발 동향은 열처리 및 가공공정 등을 생략한 공정 생략형 선재와 더불어 전세계적 자동차 연비 구제에 대응하기 위한 부품 경량화를 이룰 수 있는 고강도 냉간단조용 강재 개발에 집중되고 있는 추세이다. 그러나, 이러한 고강도 냉간단조용 부품은 냉간 단조 후 소입, 소려 열처리를 진행하며 이 때 형성되는 미세조직인 템퍼드 마르텐사이트 조직은 1300MPa 이상의 고강도에서는 수소지연파괴에 매우 민감하여 사용이 어렵다.
한편, 통상 소재의 강도와 인성은 서로 양립하기 어려운 성질로서, 통상 강도가 향상되면 인성이 감소하는 현상을 나타낸다. 이에 강도 및 수소지연파괴 저항성을 확보하여 내지연파괴 특성이 우수한 부품의 개발이 필요하다.
상술한 문제점을 해결하기 위하여, 본 발명은 내지연파괴 특성이 우수한 냉간단조용 선재, 부품 및 이들의 제조방법을 제공하고자 한다.
상술한 목적을 달성하기 위한 수단으로서 본 명세서는 중량%로, C: 0.3 내지 0.5%, Si: 0.01 내지 0.3%, Mn: 0.3 내지 1.0%를 포함하고, Cr: 0.3 내지 1.5%, Mo: 0.3 내지 1.5% 및 V: 0.01 내지 0.4%으로 이루어진 그룹으로부터 적어도 2종 이상을 포함하고, 나머지는 Fe 및 기타 불순물을 포함하고, 미세조직으로 템퍼드 마르텐사이트 상을 면적분율 95% 이상으로 포함하고, 직경이 300nm 이하인 V계 탄화물을 10개/100㎛ 2 이상으로 포함하는 내지연파괴 특성이 우수한 열처리부품을 개시한다.
또한, 본 발명의 각 내지연파괴 특성이 우수한 열처리부품에 있어서, 하기 식(1)을 만족할 수 있다.
(1) Cr+2.7Mo+6V ≥ 3.56
여기서, Cr, Mo, V는 각 원소의 중량%를 의미한다.
또한, 본 발명의 각 내지연파괴 특성이 우수한 열처리부품에 있어서, 상기 V계 탄화물의 종횡비는 10~1:1일 수 있다.
또한, 본 발명의 각 내지연파괴 특성이 우수한 열처리부품에 있어서, 미세조직으로 직경이 500nm 이하인 Mo계 탄화물을 20개/100㎛ 2 이상 더 포함할 수 있다.
또한, 본 발명의 각 내지연파괴 특성이 우수한 열처리부품에 있어서, 미세조직으로 직경이 200nm 이하인 Cr계 탄화물을 20개/100㎛ 2 이상 더 포함할 수 있다.
또한, 본 발명의 각 내지연파괴 특성이 우수한 열처리부품에 있어서, 구오스테나이트 평균 결정립 직경이 10㎛ 이하일 수 있다.
또한, 본 발명의 각 내지연파괴 특성이 우수한 열처리부품에 있어서, 인장강도가 1450MPa 이상일 수 있다.
또한, 본 발명의 각 내지연파괴 특성이 우수한 열처리부품에 있어서, 충격인성이 80J 이상일 수 있다.
또한, 상술한 목적을 달성하기 위한 다른 수단으로서 본 명세서는 중량%로, C: 0.3 내지 0.5%, Si: 0.01 내지 0.3%, Mn: 0.3 내지 1.0%를 포함하고, Cr: 0.3 내지 1.5%, Mo: 0.3 내지 1.5% 및 V: 0.01 내지 0.4%으로 이루어진 그룹으로부터 적어도 2종 이상을 포함하고, 나머지는 Fe 및 기타 불순물을 포함하고, 하기 식(1)을 만족하는 선재를 구상화 열처리 및 신선 가공을 1회 이상 수행하여 강선으로 마련하는 단계, 상기 강선을 냉간단조하여 부품으로 마련하는 단계, 상기 부품을 가열하는 단계, 상기 가열된 부품을 소입하는 단계, 상기 소입된 부품을 850 내지 950℃까지 재가열하는 단계, 상기 재가열된 부품을 재소입하는 단계 및 상기 재소입된 부품을 소려하는 단계를 포함하고, 상기 재가열된 부품은 미세조직으로, 직경이 300nm 이하인 V계 탄화물을 10개/100㎛ 2 이상으로 포함하는 내지연파괴 특성이 우수한 열처리부품의 제조방법을 개시한다.
(1) Cr+2.7Mo+6V ≥ 3.56
여기서, Cr, Mo, V는 각 원소의 중량%를 의미한다.
또한, 상술한 목적을 달성하기 위한 다른 수단으로서 본 명세서는 중량%로, C: 0.3 내지 0.5%, Si: 0.01 내지 0.3%, Mn: 0.3 내지 1.0%를 포함하고, Cr: 0.3 내지 1.5%, Mo: 0.3 내지 1.5% 및 V: 0.01 내지 0.4%으로 이루어진 그룹으로부터 적어도 2종 이상을 포함하고, 나머지는 Fe 및 기타 불순물을 포함하며, 미세조직은 면적분율로, 베이나이트: 85% 이상, 마르텐사이트: 2 내지 10% 및 펄라이트: 1 내지 5%를 포함하는 냉간단조용 선재를 개시한다.
또한, 본 발명의 각 냉간단조용 선재에 있어서, 하기 식(1)을 만족할 수 있다.
(1) Cr+2.7Mo+6V ≥ 3.56
여기서, Cr, Mo, V는 각 원소의 중량%를 의미한다.
또한, 본 발명의 각 냉간단조용 선재에 있어서, 구오스테나이트 평균 결정립 직경이 30㎛ 이하일 수 있다.
본 발명의 실시예에 따르면 고용강화를 일으켜 냉간단조성을 저해하는 Si의 함량을 최소로 하고, 강도 저하를 방지하기 위해 Mo를 첨가하고, 강도 증가 및 결정립 미세화를 위해 V를 첨가하여 소입, 소려 열처리 후 열처리부품의 수소지연파괴 저항성을 확보할 수 있다.
본 발명의 실시예에 따르면 구오스테나이트 결정립이 미세화된 부품을 퀜칭 후 500℃ 이상의 고온에서 템퍼링 열처리하여 구오스테나이트 결정립계의 얇은 필름 형태의 탄화물 생성을 방지하고, 구형화된 탄화물이 결정립계 내외부에 분산 분포되도록 한다. 이에 따라, 열처리부품의 수소지연파괴 저항성을 향상시킬 수 있다.
도 1은 각 발명예, 비교예의 인장강도를 도시한 그래프이다.
본 발명의 일 예에 따른 내지연파괴 특성이 우수한 열처리부품은 중량%로, C: 0.3 내지 0.5%, Si: 0.01 내지 0.3%, Mn: 0.3 내지 1.0%를 포함하고, Cr: 0.3 내지 1.5%, Mo: 0.3 내지 1.5% 및 V: 0.01 내지 0.4%으로 이루어진 그룹으로부터 적어도 2종 이상을 포함하고, 나머지는 Fe 및 기타 불순물을 포함하고, 미세조직으로 템퍼드 마르텐사이트 상을 면적분율 95% 이상으로 포함하고, 직경이 300nm 이하인 V계 탄화물을 10개/100㎛ 2 이상으로 포함할 수 있다.
이하에서는 본 발명의 바람직한 실시형태들을 설명한다. 그러나, 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 기술사상이 이하에서 설명하는 실시형태로 한정되는 것은 아니다. 또한, 본 발명의 실시형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다.
본 출원에서 사용하는 용어는 단지 특정한 예시를 설명하기 위하여 사용되는 것이다. 때문에 가령 단수의 표현은 문맥상 명백하게 단수여야만 하는 것이 아닌 한, 복수의 표현을 포함한다. 덧붙여, 본 출원에서 사용되는 "포함하다" 또는 "구비하다" 등의 용어는 명세서 상에 기재된 특징, 단계, 기능, 구성요소 또는 이들을 조합한 것이 존재함을 명확히 지칭하기 위하여 사용되는 것이지, 다른 특징들이나 단계, 기능, 구성요소 또는 이들을 조합한 것의 존재를 예비적으로 배제하고자 사용되는 것이 아님에 유의해야 한다.
한편, 다르게 정의되지 않는 한, 본 명세서에서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진 것으로 보아야 한다. 따라서, 본 명세서에서 명확하게 정의하지 않는 한, 특정 용어가 과도하게 이상적이거나 형식적인 의미로 해석되어서는 안 된다. 가령, 본 명세서에서 단수의 표현은 문맥상 명백하게 예외가 있지 않는 한, 복수의 표현을 포함한다.
또한, 본 명세서의 "약", "실질적으로" 등은 언급한 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본 발명의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.
본 발명에 따른 냉간단조용 선재는 중량%로, C: 0.3 내지 0.5%, Si: 0.01 내지 0.3%, Mn: 0.3 내지 1.0%를 포함하고, Cr: 0.3 내지 1.5%, Mo: 0.3 내지 1.5% 및 V: 0.01 내지 0.4%으로 이루어진 그룹으로부터 적어도 2종 이상을 포함하고, 나머지는 Fe 및 기타 불순물을 포함한다.
이하에서는 상기 합금조성에 대해서 한정한 이유에 대하여 구체적으로 설명한다. 하기 성분조성은 특별한 기재가 없는 한 모두 중량%를 의미한다.
탄소(C): 0.3 내지 0.5중량%
C는 제품의 강도를 확보하기 위해서 첨가되는 원소이다. C의 함량이 0.3% 미만일 경우에는 목표하는 강도를 확보하는 것이 어려우며, 최종 Q/T(Quenching/Tempering) 열처리 후 충분한 소입성을 확보하기가 용이하지 않다. 이와 반대로 C의 함량이 0.5%를 초과하는 경우에는 탄화물이 과다하게 생성되어 피로수명이 저하되는 문제가 있다. 이에 따라, 본 발명에서 C함량의 상한은 0.5%로 제한된다.
규소(Si): 0.01 내지 0.3중량%
Si는 강의 탈산을 위해서 사용될 뿐만 아니라, 고용 강화를 통한 강도 확보에 유리한 원소이다. 본 발명에서 Si은 탈산 및 강도 확보를 위하여 0.01% 이상을 첨가한다. 다만 그 함량이 과다할 경우, 냉간단조성을 저하되어 볼트와 같은 복잡한 형상의 부품의 가공이 어려워지는 문제가 있다. 이에 따라, 본 발명에서 Si함량의 상한은 0.3%로 제한된다.
망간(Mn): 0.3 내지 1.0중량%
Mn은 부품의 소입성을 향상시켜 강도를 확보하는데 유리하며, 압연성을 증가시키고 취성을 감소시키는 원소이다. 이에 충분한 강도를 확보하기 위해 0.3% 이상 첨가한다. 다만 그 함량이 과다할 경우, 열간압연 이후 냉각 시에 경한 조직이 발생하기 쉽고, MnS 개재물이 다량으로 생성되어 피로 특성이 저하되는 문제가 있다. 이에 따라, 본 발명에서 Mn함량의 상한은 1.0%로 제한된다.
크롬(Cr): 0.3 내지 1.5중량%
Cr은 내산화성, 소입성을 향상시키는 원소이다. Cr 함량이 0.3% 미만인 경우 충분한 내산화성, 소입성을 확보하기 어려워 Q/T 열처리 후 충분한 강도를 확보할 수 없다. 반면, 그 함량이 과다한 경우 소입성이 지나치게 높아져 소입 후 부품 형상이 뒤틀리게 되어 이를 교정하기 위한 추가 공정이 필요하며, 충격인성이 저하되고, 수소 지연파괴 저항성에 열위한 조대한 탄화물이 형성되는 문제가 있다. 이에 따라, 본 발명에서 Cr함량의 상한은 1.5%로 제한된다.
몰리브덴(Mo): 0.3 내지 1.5중량%
Mo은 미세한 탄화물의 석출에 의한 석출강화와 고용강화를 통해 소입성을 향상시키는 원소이다. Mo로 인한 소입성 향상은 Mn, Cr보다 효과적이다. Mo 함량이 0.3% 미만인 경우에는 충분한 소입이 이루어지지 않아 Q/T 열처리 후 충분한 강도를 확보할 수 없다. 반면, 그 함량이 과다할 경우 소입성이 과도하게 높아져 소입 후 부품의 형상이 뒤틀리게 되어 이를 교정하기 위한 추가 공정이 필요한 문제가 있다. 이에 따라, 본 발명에서 Mo함량의 상한은 1.5%로 제한된다.
바나듐(V): 0.01 내지 0.4중량%
V은 VC, VN, V(C, N) 등의 미세한 탄질화물을 형성하여 강의 조직을 미세화하는 원소이다. V의 함량이 0.01% 미만인 경우에는 모재 내 V 석출물의 분포가 적어 구오스테나이트 입계를 고정시키지 못하여, 소입된 부품을 재가열하는 공정에서 구오스테나이트 결정립이 조대화되어 강도가 저하되는 문제가 발생할 수 있다. 다만 그 함량이 과다할 경우, 조대한 탄질화물이 형성되어 충격인성을 저하시키는 문제가 있다. 이에 따라, 본 발명에서 V함량의 상한은 0.4%로 제한된다.
본 발명에서 이상의 Cr, Mo, V의 합금성분은 적어도 2종 이상이 포함될 수 있으며, 바람직하게는 소입성, 충격인성 등을 고려하여 모두 포함될 수 있다.
본 발명의 나머지 성분은 철(Fe)이다. 다만, 통상의 제조 과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 상기 불순물들은 통상의 제조 과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.
본 발명자들은 Cr, Mo, V 함량 간의 관계가 특정 조건을 만족하는 경우, 냉간단조용 강재의 강도 및 내지연특성을 더욱 향상시킬 수 있다는 것을 발견하고 다음과 같은 성분 관계식을 도출하였다. 본 발명의 일 예에 따른 냉간단조용 선재는 상술한 합금조성을 만족하는 것과 동시에, 하기 식(1)을 만족할 수 있다.
(1) Cr+2.7Mo+6V ≥ 3.56
상기 식 (1)에서, Cr, Mo, V는 각 원소의 중량%를 의미한다. 또한, Cr, Mo, V 중 포함되지 않는 합금성분이 있는 경우, 해당 합금성분의 수치로는 0을 대입한다.
수소지연파괴 저항성을 향상시키기 위해서는 확산성 수소를 트랩할 수 있는 미세한 탄화물을 확보해야 한다. 수소를 트랩할 수 있는 미세탄화물로는 각각 Cr, Mo, V를 주성분으로 하는 CrC, MoC, VC 탄화물들이 있다. 이러한 탄화물의 개수를 일정 수준 확보해야만 템퍼링 온도 550 내지 650℃에서 1450MPa 이상의 강도를 확보함과 동시에 수소 트랩 효과도 극대화할 수 있다. 이를 고려하여, 상기 식 (1)을 만족시키도록 합금조성을 제어하면 고온의 템퍼링 온도 550 내지 650℃에서 열처리부품의 강도 및 수소지연파괴 저항성을 향상시킬 수 있다.
본 발명의 일 실시예에 따른 냉간단조용 선재의 미세조직은 면적분율로, 베이나이트: 85% 이상, 마르텐사이트: 2 내지 10% 및 펄라이트: 1 내지 5%를 포함할 수 있다.
또한, 본 발명의 일 실시예에 따른 냉간단조용 선재의 구오스테나이트 평균 결정립 직경은 30㎛ 이하일 수 있다. 여기서, 선재의 구오스테나이트 평균 결정립 직경은 권취한 이후, 냉각하기 이전의 선재의 오스테나이트 조직의 평균 결정립 직경을 의미한다.
먼저, 이하에서 본 발명에 따른 냉간단조용 선재의 제조방법에 대해 설명한다.
본 발명의 일 예에 따른 냉간단조용 선재의 제조방법은 상술한 성분계를 만족하는 빌렛을 가열하는 단계, 가열된 빌렛을 선재로 마련하는 단계 및 선재를 냉각하는 단계를 포함할 수 있다.
빌렛을 가열하는 단계에서, 빌렛은 상술한 성분계 및 식 (1)을 만족하며, 가열은 900 내지 1200℃에서 진행될 수 있다.
가열된 빌렛을 선재로 마련하는 단계에서, 가열된 빌렛은 800 내지 1000℃에서 마무리 압연 및 권취되어 선재로 마련할 수 있다. 이 때, 압연비는 80% 이상일 수 있다.
선재를 냉각하는 단계에서, 선재는 0.2 내지 0.5℃/s의 속도로 냉각될 수 있으며, 냉각 방법은 특별히 제한되지 않으나 공냉으로 진행될 수 있다. 냉각된 선재의 미세조직은 면적분율로, 베이나이트: 85% 이상, 마르텐사이트: 2 내지 10% 및 펄라이트: 1 내지 5%를 포함할 수 있으며, 구오스테나이트 평균 결정립 직경이 30㎛ 이하일 수 있다. 여기서, 선재의 구오스테나이트 평균 결정립 직경은 권취한 이후, 냉각하기 이전의 선재의 오스테나이트 조직의 평균 결정립 직경을 의미한다.
이하, 전술한 냉간단조용 선재를 이용한 내지연파괴 특성이 우수한 열처리부품의 제조방법에 대해 설명한다.
본 발명의 일 예에 따른 내지연파괴 특성이 우수한 열처리부품의 제조방법에 따르면 전술한 냉간단조용 선재의 제조방법에 후속하여 냉각된 선재를 구상화 열처리 및 신선 가공을 1회 이상 수행하여 강선으로 마련하는 단계, 강선을 냉간단조하여 부품으로 마련하는 단계, 부품을 가열하는 단계, 가열된 부품을 소입하는 단계, 소입된 부품을 재가열하는 단계, 재가열된 부품을 재소입하는 단계 및 재소입된 부품을 소려하는 단계를 포함할 수 있다. 이하에서 각 단계를 상세히 설명한다.
전술한 선재의 제조방법에 따라 냉각된 선재를 구상화 열처리 및 신선 가공을 1회 이상 수행하여 강선으로 마련할 수 있다. 구상화 열처리는 신선 가공 이전에 강재에 가공량을 부여하기 위하여 적절하게 수행되며, 신선 가공은 신선 가공 한계를 고려하여 적절하게 수행될 수 있다. 본 발명에 따르면 선재를 구상화 열처리 및 신선 가공을 1회 이상으로 수행하여 복잡한 형상의 부품을 제조할 수 있는 세경을 갖는 강선으로 마련할 수 있다.
강선은 냉간단조되어 부품으로 마련될 수 있다. 부품의 예로는 나사, 볼트 등을 들 수 있다.
이어서, 부품은 가열될 수 있다. 부품을 가열하는 단계는 선재 압연 중 석출된 탄화물을 완전히 재용해시키는 단계이다. 일 실시예에 따르면, 부품은 1000 내지 1100℃에서 가열될 수 있다. 이때, 가열 시간은 1000 내지 3000초일 수 있다.
가열된 부품을 소입하는 단계에서, 가열된 부품은 40 내지 80℃까지 소입될 수 있다. 소입 방법은 특별히 제한되지 않으나, 40 내지 80℃의 오일에 가열된 부품을 담궈서 수행될 수 있다.
소입된 부품을 재가열하는 단계는 미세한 V, Mo, Cr계 탄화물이 석출되도록 하여 재가열된 부품의 오스테나이트 평균 결정립 직경이 10㎛ 이하가 되도록 제어하는 단계이다.
본 발명의 일 예에 따른 V계 탄화물은 열처리부품의 미세조직 내 직경이 300nm 이하이며, 10개/100㎛ 2 이상으로 포함될 수 있다. 이때, V계 탄화물의 종횡비(aspect ratio)는 10~1:1일 수 있다.
본 발명의 일 예에 따른 Mo계 탄화물은 열처리부품의 미세조직 내 직경이 500nm 이하이며, 20개/100㎛ 2 이상으로 포함될 수 있다. 이때, Mo계 탄화물의 종횡비는 10~1:1일 수 있다.
본 발명의 일 예에 따른 Cr계 탄화물은 열처리부품의 미세조직 내 직경이 200nm 이하이며, 20개/100㎛ 2 이상으로 포함될 수 있다. 이때, Cr계 탄화물의 종횡비는 10~1:1일 수 있다.
미세하게 석출된 V, Mo, Cr계 탄화물은 평균 오스테나이트 결정립을 미세하도록 제어하여 후속되는 Q/T 열처리 이후에 열처리부품의 충분한 강도를 확보할 수 있다. 또한, 소입된 부품을 재가열하는 단계를 통하여 오스테나이트 결정립계의 얇은 필름 형태의 탄화물 생성을 방지하고, 구형화된 탄화물이 결정립계 내외부에 분산하여 분포되도록 하여 수소지연파괴 저항성을 향상시킬 수 있다. 일 실시예에 따르면, 재가열은 소입된 부품을 850 내지 950℃까지 가열할 수 있다. 이때, 850 내지 950℃까지 가열한 다음, 해당 온도 범위에서 3000 내지 4000초 동안 유지할 수 있다.
재가열된 부품을 재소입하는 단계에서, 재가열된 부품은 40 내지 80℃까지 소입될 수 있다. 소입 방법은 특별히 제한되지 않으나, 40 내지 80℃의 오일에 재가열된 부품을 담궈서 수행될 수 있다.
재소입된 부품을 소려하는 단계는 열처리부품의 최종 미세조직을 템퍼드 마르텐사이트로 제어하기 위한 단계이다. 일 예에 따르면, 재소입된 부품을 고온으로 소려하여 구오스테나이트 결정립계의 얇은 필름 형태의 탄화물 생성을 방지하고, 구형화된 탄화물이 결정립계 내외부에 분산하여 분포되도록 한다. 이에 따라, 열처리부품의 수소지연파괴 저항성을 향상시킬 수 있다.
일 예에 따르면, 소려하는 단계는 550 내지 650℃에서 템퍼링 열처리하여 수행될 수 있다. 이때, 템퍼링 열처리 시간은 3000 내지 10000초일 수 있다.
상술한 제조방법으로 제조된 본 발명에 따른 내지연파괴 특성이 우수한 열처리부품은 중량%로, C: 0.3 내지 0.5%, Si: 0.1 내지 0.3%, Mn: 0.5 내지 1.0%를 포함하고, Cr: 0.5 내지 1.5%, Mo: 0.5 내지 1.5% 및 V: 0.01 내지 0.2%으로 이루어진 그룹으로부터 적어도 2종 이상을 포함하고, 나머지는 Fe 및 기타 불순물을 포함하고, 미세조직으로, 템퍼드 마르텐사이트 상을 면적분율 95% 이상으로 포함할 수 있다.
또한, 본 발명의 일 예에 따르면, 전술한 합금조성을 만족하는 열처리부품은 하기 식 (1)을 만족할 수 있다. 식 (1)에 대한 한정이유에 대해서는 전술한 바와 같으므로, 편의상 생략한다.
(1) Cr+2.7Mo+6V ≥ 3.56
식 (1)에서, Cr, Mo, V는 각 원소의 중량%를 의미한다.
또한, 본 발명의 일 예에 따른 내지연파괴 특성이 우수한 열처리부품은 미세조직으로, 직경이 300nm 이하인 V계 탄화물을 10개/100㎛ 2 이상으로 포함할 수 있다. 이때, V계 탄화물의 종횡비는 10~1:1일 수 있다.
또한, 본 발명의 일 예에 따른 내지연파괴 특성이 우수한 열처리부품은 미세조직으로, 직경이 500nm 이하인 Mo계 탄화물을 20개/100㎛ 2 이상 더 포함할 수 있다. 이때, Mo계 탄화물의 종횡비는 10~1:1일 수 있다.
또한, 본 발명의 일 예에 따른 내지연파괴 특성이 우수한 열처리부품은 미세조직으로, 직경이 200nm 이하인 Cr계 탄화물을 20개/100㎛ 2 이상 더 포함할 수 있다. 이때, Cr계 탄화물의 종횡비는 10~1:1일 수 있다.
또한, 본 발명의 일 예에 따른 내지연파괴 특성이 우수한 열처리부품은 구오스테나이트 평균 결정립 직경이 10㎛ 이하일 수 있다. 여기서, 열처리부품의 구오스테나이트 평균 결정립 직경은 재가열된 이후, 재소입되기 이전의 부품의 오스테나이트 조직의 평균 결정립 직경을 의미한다.
또한, 본 발명의 일 예에 따른 내지연파괴 특성이 우수한 열처리부품은 인장강도가 1450MPa 이상일 수 있다.
또한, 본 발명의 일 예에 따른 내지연파괴 특성이 우수한 열처리부품은 충격인성이 80J 이상일 수 있다.
이하 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 한다. 다만, 하기의 실시예는 본 발명을 예시하여 보다 상세하게 설명하기 위한 것일 뿐, 본 발명의 기술적 사상이 하기의 실시예에 한정되는 것은 아니다.
{실시예}
이하의 표 1과 같은 성분조성을 갖는 빌렛을 900 내지 1200℃로 가열한 다음, 800 내지 1000℃에서 마무리 압연 및 권취하여 선재로 마련하였다. 마련된 선재를 0.2 내지 0.5℃/s의 속도로 냉각하였다. 냉각이 완료된 후의 각 선재의 미세조직은 면적분율로, 베이나이트 85% 이상, 마르텐사이트 2 내지 10% 및 펄라이트 1 내지 5%를 포함하였다.
한편, 표 1에서 '식 (1)'은 본 명세서에서 개시하는 식 (1)의 성분 관계식인 'Cr + 2.7Mo + 6V'에 각 Cr, Mo, V의 함량(중량%)를 대입하여 도출되었다.
냉각 완료된 각 선재는 구상화 열처리 및 신선 가공하여 강선으로 제조한 다음, 냉간단조하여 부품으로 마련되었다. 그 다음, 부품을 1000 내지 1100℃ 사이에서 2000초 가열하였고, 60℃ 오일에 담궈 소입시켰다. 그 다음, 880℃까지 재가열한 후 3600초 유지하였고, 60℃ 오일에 담궈 재소입시켰다. 그 다음, 고온인 550 내지 650℃에서 3000초 내지 10000초 동안 유지하는 템퍼링 열처리하였고, 그 후 인장시험을 실시하였다. 인장시험의 결과인 인장강도, 충격인성을 아래 표 1 및 도 1에 나타내었다.
합금조성 (wt%) 식 (1) 인장강도(MPa) 충격인성(J)
C Si Mn Cr Mo V
발명예1 0.38 0.13 0.52 1.22 0.64 0.12 3.668 1456 83
발명예2 0.47 0.25 0.89 1.02 0.85 0.05 3.615 1471 85
발명예3 0.42 0.22 0.73 0.83 0.82 0.09 3.584 1467 86
발명예4 0.43 0.27 0.91 0.98 0.54 0.19 3.578 1458 83
발명예5 0.32 0.23 0.52 0.57 1.47 0.15 5.439 1473 97
비교예1 0.39 0.12 0.54 1.01 0.65 0.11 3.425 1399 77
비교예2 0.46 0.26 0.87 0.93 0.86 0.03 3.432 1424 82
비교예3 0.42 0.23 0.71 0.87 0.72 0.09 3.354 1413 78
비교예4 0.42 0.25 0.83 0.96 0.55 0.15 3.345 1395 84
비교예5 0.33 0.24 0.53 0.53 1.08 0.01 3.506 1398 91
각 발명예는 본 발명이 한정하는 합금조성 및 식 (1)의 값이 3.56 이상을 만족하였다. 반면, 각 비교예는 본 발명이 한정하는 합금조성을 만족하였으나, 식 (1)의 값은 3.56 미만으로 만족시키지 못하였다.
표 1 및 도 1을 참조하면, 발명예 모두 1450MPa 이상의 인장강도를 보이는 것에 비하여, 각 비교예는 템퍼링 열처리 온도가 증가함에 따라 강도 저하의 폭이 커져 1450MPa 미만의 인장강도를 가져 충분한 강도를 확보하지 못하였다.
한편, 통상 열처리를 적용한 경우와 재가열 열처리를 적용한 경우에 각 발명예와 비교예의 물성을 비교하기 위하여, 통상 열처리를 적용한 경우와 재가열 열처리를 적용한 경우로 나누어 각 발명예와 비교예를 제조하였다. 이외에는 표 1에서와 동일한 조건으로 제조하였다.
여기서, 재가열 열처리는 상술한 바에 따른 소입 → 재가열 → 재소입 → 소려 순으로 진행되는 본 발명의 열처리 공정을 의미한다. 반면, 통상 열처리는 본 발명의 소입 → 재가열 → 재소입 → 소려 순으로 진행되는 열처리 공정과는 달리, 재가열, 재소입 열처리 없이 통상적인 Q/T 공정인 소입 → 소려 순으로 진행되는 열처리를 의미한다.
통상 열처리를 적용한 경우와 재가열 열처리를 적용한 경우의 인장시험의 결과를 아래 표 2에 나타내었다.
통상 열처리 재가열 열처리
인장강도(MPa) 충격인성(J) 인장강도(MPa) 충격인성(J)
발명예1 1390 76 1456 83
발명예2 1422 78 1471 85
발명예3 1401 82 1467 86
발명예4 1395 68 1458 83
발명예5 1408 95 1473 97
비교예1 1326 73 1399 77
비교예2 1355 70 1424 82
비교예3 1344 75 1413 78
비교예4 1289 76 1395 84
비교예5 1321 89 1398 91
각 발명예 및 비교예에서 재가열 열처리를 적용한 경우에 비하여 통상 열처리를 적용한 경우에 인장강도 및 충격인성이 저하되었다. 이로부터, 본 발명에 따른 재가열 열처리를 적용하지 않는 경우, 평균 구오스테나이트 결정립 직경을 미세하게 제어할 수 없어 후속되는 소입, 소려 열처리 이후에 충분한 강도를 확보할 수 없으며, 구 구오스테나이트 결정립계의 얇은 필름 형태의 탄화물이 생성되어 충격인성이 저하되는 것을 알 수 있다.
이상의 결과로부터, 본 발명의 실시예에 따르면 고용강화를 일으켜 냉간단조성을 저해하는 Si의 함량을 최소로 하고, 강도 저하를 방지하기 위해 Mo를 첨가하고, 강도 증가 및 결정립 미세화를 위해 V를 첨가하여 소입, 소려 열처리 후 열처리부품의 수소지연파괴 저항성을 확보할 수 있음을 알 수 있다.
본 발명의 실시예에 따르면 구오스테나이트 결정립이 미세화된 부품을 퀜칭 후 500℃ 이상의 고온에서 템퍼링 열처리하여 구오스테나이트 결정립계의 얇은 필름 형태의 탄화물 생성을 방지하고, 구형화된 탄화물이 결정립계 내외부에 분산 분포되도록 한다. 이에 따라, 열처리부품의 수소지연파괴 저항성을 향상되는 것을 알 수 있다.
상술한 바에 있어서, 본 발명의 예시적인 실시예들을 설명하였지만, 본 발명은 이에 한정되지 않으며 해당 기술 분야에서 통상의 지식을 가진 자라면 다음에 기재하는 청구범위의 개념과 범위를 벗어나지 않는 범위 내에서 다양한 변경 및 변형이 가능함을 이해할 수 있을 것이다.
본 발명에 따르면 기계 구조 및 자동차 부품 등으로 적용 가능한 내지연파괴 특성이 우수한 냉간단조용 선재, 부품 및 이들의 제조방법을 제공할 수 있다.

Claims (12)

  1. 중량%로, C: 0.3 내지 0.5%, Si: 0.01 내지 0.3%, Mn: 0.3 내지 1.0%를 포함하고, Cr: 0.3 내지 1.5%, Mo: 0.3 내지 1.5% 및 V: 0.01 내지 0.4%으로 이루어진 그룹으로부터 적어도 2종 이상을 포함하고, 나머지는 Fe 및 기타 불순물을 포함하고,
    미세조직으로, 템퍼드 마르텐사이트 상을 면적분율 95% 이상으로 포함하고, 직경이 300nm 이하인 V계 탄화물을 10개/100㎛ 2 이상으로 포함하는 내지연파괴 특성이 우수한 열처리부품.
  2. 제1항에 있어서,
    하기 식(1)을 만족하는 내지연파괴 특성이 우수한 열처리부품:
    (1) Cr+2.7Mo+6V ≥ 3.56
    (여기서, Cr, Mo, V는 각 원소의 중량%를 의미한다).
  3. 제1항에 있어서,
    상기 V계 탄화물의 종횡비는 10~1:1인 내지연파괴 특성이 우수한 열처리부품.
  4. 제1항에 있어서,
    미세조직으로, 직경이 500nm 이하인 Mo계 탄화물을 20개/100㎛ 2 이상 더 포함하는 내지연파괴 특성이 우수한 열처리부품.
  5. 제1항에 있어서,
    미세조직으로, 직경이 200nm 이하인 Cr계 탄화물을 20개/100㎛ 2 이상 더 포함하는 내지연파괴 특성이 우수한 열처리부품.
  6. 제1항에 있어서,
    구오스테나이트 평균 결정립 직경이 10㎛ 이하인 내지연파괴 특성이 우수한 열처리부품.
  7. 제1항에 있어서,
    인장강도가 1450MPa 이상인 내지연파괴 특성이 우수한 열처리부품.
  8. 제1항에 있어서,
    충격인성이 80J 이상인 내지연파괴 특성이 우수한 열처리부품.
  9. 중량%로, C: 0.3 내지 0.5%, Si: 0.01 내지 0.3%, Mn: 0.3 내지 1.0%를 포함하고, Cr: 0.3 내지 1.5%, Mo: 0.3 내지 1.5% 및 V: 0.01 내지 0.4%으로 이루어진 그룹으로부터 적어도 2종 이상을 포함하고, 나머지는 Fe 및 기타 불순물을 포함하고, 하기 식(1)을 만족하는 선재를 구상화 열처리 및 신선 가공을 1회 이상 수행하여 강선으로 마련하는 단계;
    상기 강선을 냉간단조하여 부품으로 마련하는 단계;
    상기 부품을 가열하는 단계;
    상기 가열된 부품을 소입하는 단계;
    상기 소입된 부품을 850 내지 950℃까지 재가열하는 단계;
    상기 재가열된 부품을 재소입하는 단계; 및
    상기 재소입된 부품을 소려하는 단계;를 포함하고,
    상기 재가열된 부품은 미세조직으로, 직경이 300nm 이하인 V계 탄화물을 10개/100㎛ 2 이상으로 포함하는 내지연파괴 특성이 우수한 열처리부품의 제조방법:
    (1) Cr+2.7Mo+6V ≥ 3.56
    (여기서, Cr, Mo, V는 각 원소의 중량%를 의미한다).
  10. 중량%로, C: 0.3 내지 0.5%, Si: 0.01 내지 0.3%, Mn: 0.3 내지 1.0%를 포함하고, Cr: 0.3 내지 1.5%, Mo: 0.3 내지 1.5% 및 V: 0.01 내지 0.4%으로 이루어진 그룹으로부터 적어도 2종 이상을 포함하고, 나머지는 Fe 및 기타 불순물을 포함하며,
    미세조직은 면적분율로, 베이나이트: 85% 이상, 마르텐사이트: 2 내지 10% 및 펄라이트: 1 내지 5%를 포함하는 냉간단조용 선재.
  11. 제10항에 있어서,
    하기 식(1)을 만족하는 냉간단조용 선재:
    (1) Cr+2.7Mo+6V ≥ 3.56
    (여기서, Cr, Mo, V는 각 원소의 중량%를 의미한다).
  12. 제10항에 있어서,
    구오스테나이트 평균 결정립 직경이 30㎛ 이하인 냉간단조용 선재.
PCT/KR2020/015596 2019-12-18 2020-11-09 내지연파괴 특성이 우수한 냉간단조용 선재, 부품 및 이들의 제조방법 WO2021125555A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/784,458 US20230020467A1 (en) 2019-12-18 2020-11-09 Wire rod and component, for cold forging, each having excellent delayed fracture resistance characteristics, and manufacturing methods therefor
EP20901950.4A EP4060072A1 (en) 2019-12-18 2020-11-09 Wire rod and component, for cold forging, each having excellent delayed fracture resistance characteristics, and manufacturing methods therefor
CN202080092128.9A CN114929922B (zh) 2019-12-18 2020-11-09 各自具有优异的延迟断裂抗力特性的用于冷锻的线材和部件及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0169862 2019-12-18
KR1020190169862A KR102326045B1 (ko) 2019-12-18 2019-12-18 내지연파괴 특성이 우수한 냉간단조용 선재, 부품 및 이들의 제조방법

Publications (1)

Publication Number Publication Date
WO2021125555A1 true WO2021125555A1 (ko) 2021-06-24

Family

ID=76478665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/015596 WO2021125555A1 (ko) 2019-12-18 2020-11-09 내지연파괴 특성이 우수한 냉간단조용 선재, 부품 및 이들의 제조방법

Country Status (5)

Country Link
US (1) US20230020467A1 (ko)
EP (1) EP4060072A1 (ko)
KR (1) KR102326045B1 (ko)
CN (1) CN114929922B (ko)
WO (1) WO2021125555A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230082090A (ko) * 2021-12-01 2023-06-08 주식회사 포스코 내지연파괴 저항성이 향상된 냉간단조용 선재, 강부품 및 이들의 제조방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06306543A (ja) * 1993-04-15 1994-11-01 Nippon Steel Corp 耐遅れ破壊特性に優れた高強度pc棒線とその製造方法
KR20040006248A (ko) * 2002-07-11 2004-01-24 삼화강봉주식회사 냉간압조 특성이 우수한 소입소려 열처리강선
KR100723186B1 (ko) * 2005-12-26 2007-05-29 주식회사 포스코 지연파괴저항성이 우수한 고강도 볼트 및 그 제조기술
KR20160066570A (ko) * 2014-11-18 2016-06-13 주식회사 세아베스틸 연화 소둔 생략이 가능한 냉간압조용 중탄소 합금강 선재의 제조방법
KR20190075378A (ko) * 2017-12-21 2019-07-01 주식회사 포스코 수소지연파괴 저항성이 우수한 고강도 선재, 강재 및 이들의 제조방법
KR102117400B1 (ko) * 2018-08-31 2020-06-01 주식회사 포스코 냉간압조용 선재, 이를 이용한 가공품 및 이들의 제조방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100299443B1 (ko) 1996-12-17 2001-11-22 이구택 내지연파괴특성이우수한초고강도잔류오스테나이트함유강판의제조방법
JP2018003051A (ja) * 2016-06-28 2018-01-11 株式会社神戸製鋼所 疲労特性に優れた熱処理鋼線
KR101867689B1 (ko) * 2016-09-01 2018-06-15 주식회사 포스코 수소취성 저항성이 우수한 고강도 스프링용 강재 및 그 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06306543A (ja) * 1993-04-15 1994-11-01 Nippon Steel Corp 耐遅れ破壊特性に優れた高強度pc棒線とその製造方法
KR20040006248A (ko) * 2002-07-11 2004-01-24 삼화강봉주식회사 냉간압조 특성이 우수한 소입소려 열처리강선
KR100723186B1 (ko) * 2005-12-26 2007-05-29 주식회사 포스코 지연파괴저항성이 우수한 고강도 볼트 및 그 제조기술
KR20160066570A (ko) * 2014-11-18 2016-06-13 주식회사 세아베스틸 연화 소둔 생략이 가능한 냉간압조용 중탄소 합금강 선재의 제조방법
KR20190075378A (ko) * 2017-12-21 2019-07-01 주식회사 포스코 수소지연파괴 저항성이 우수한 고강도 선재, 강재 및 이들의 제조방법
KR102117400B1 (ko) * 2018-08-31 2020-06-01 주식회사 포스코 냉간압조용 선재, 이를 이용한 가공품 및 이들의 제조방법

Also Published As

Publication number Publication date
EP4060072A1 (en) 2022-09-21
KR20210078116A (ko) 2021-06-28
CN114929922B (zh) 2023-12-22
CN114929922A (zh) 2022-08-19
KR102326045B1 (ko) 2021-11-15
US20230020467A1 (en) 2023-01-19

Similar Documents

Publication Publication Date Title
WO2020130560A1 (ko) 가공성이 우수한 냉연강판, 용융아연도금강판 및 이들의 제조방법
WO2019132195A1 (ko) 냉간압조용 선재, 이를 이용한 가공품 및 이들의 제조방법
WO2020046016A1 (ko) 냉간압조용 선재, 이를 이용한 가공품 및 이들의 제조방법
WO2017111290A1 (ko) Pwht 저항성이 우수한 저온 압력용기용 강판 및 그 제조 방법
WO2020222394A1 (ko) 핫 스탬핑 부품 및 그 제조방법
WO2017222159A1 (ko) 가공성이 우수한 고강도 냉연강판 및 그 제조 방법
WO2021100995A1 (ko) 고강도 및 고성형성을 가지는 강판 및 그 제조방법
WO2016111388A1 (ko) 인장강도 1300MPa 이상의 초고강도 도금강판 및 이의 제조방법
WO2021125555A1 (ko) 내지연파괴 특성이 우수한 냉간단조용 선재, 부품 및 이들의 제조방법
WO2021172604A1 (ko) 신선가공성 및 충격인성이 우수한 비조질 선재 및 그 제조방법
WO2021125793A1 (ko) 우수한 수소취성 저항성을 가지는 고강도 냉간압조용 선재 및 그 제조방법
WO2020040388A1 (ko) 인성 및 부식피로특성이 향상된 스프링용 선재, 강선 및 이들의 제조방법
WO2020111857A1 (ko) 크리프 강도가 우수한 크롬-몰리브덴 강판 및 그 제조방법
WO2011081236A1 (ko) 열간 프레스 가공성이 우수한 열처리 강화형 강판 및 그 제조방법
WO2015099214A1 (ko) 강도와 연성이 우수한 열처리 경화형 강판 및 그 제조방법
WO2017222122A1 (ko) 철근 및 이의 제조 방법
WO2018110850A1 (ko) 충격인성이 우수한 고강도 선재 및 그 제조방법
WO2021125471A1 (ko) 초고강도 스프링용 선재, 강선 및 그 제조방법
WO2022131589A1 (ko) 열처리 특성 및 수소지연파괴 특성이 우수한 고강도 냉간압조용 선재, 열처리부품 및 이들의 제조방법
WO2022131752A1 (ko) 지연파괴 저항성이 향상된 선재, 부품 및 그 제조방법
WO2022139277A1 (ko) 공구용 강재 및 그 제조방법
WO2023113442A1 (ko) 드릴링 특성이 우수한 냉간단조용 선재 및 스크류 부품의 제조방법
WO2021125749A2 (ko) 내지연파괴 특성이 우수한 냉간압조용 선재, 부품 및 그 제조방법
WO2023018028A2 (ko) 스프링용 강 및 강선, 그들의 제조방법
WO2013125760A1 (ko) 고주파 열처리 후 초세립을 갖는 기계구조용 부품강 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20901950

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020901950

Country of ref document: EP

Effective date: 20220614

NENP Non-entry into the national phase

Ref country code: DE