WO2021125519A1 - Circulating vertical conveyor system for robots - Google Patents

Circulating vertical conveyor system for robots Download PDF

Info

Publication number
WO2021125519A1
WO2021125519A1 PCT/KR2020/013545 KR2020013545W WO2021125519A1 WO 2021125519 A1 WO2021125519 A1 WO 2021125519A1 KR 2020013545 W KR2020013545 W KR 2020013545W WO 2021125519 A1 WO2021125519 A1 WO 2021125519A1
Authority
WO
WIPO (PCT)
Prior art keywords
rail
rack
carrier
vertical
transfer
Prior art date
Application number
PCT/KR2020/013545
Other languages
French (fr)
Korean (ko)
Inventor
김지만
고영학
Original Assignee
현대무벡스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190169164A external-priority patent/KR102337765B1/en
Priority claimed from KR1020190169165A external-priority patent/KR102334777B1/en
Priority claimed from KR1020190169163A external-priority patent/KR102337764B1/en
Application filed by 현대무벡스 주식회사 filed Critical 현대무벡스 주식회사
Priority to CN202080085988.XA priority Critical patent/CN114787068B/en
Publication of WO2021125519A1 publication Critical patent/WO2021125519A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B9/00Kinds or types of lifts in, or associated with, buildings or other structures
    • B66B9/02Kinds or types of lifts in, or associated with, buildings or other structures actuated mechanically otherwise than by rope or cable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B9/00Kinds or types of lifts in, or associated with, buildings or other structures
    • B66B9/10Kinds or types of lifts in, or associated with, buildings or other structures paternoster type

Definitions

  • the present invention relates to a circulating vertical transport system for a robot, and more particularly, two vertical sections and one or more carriers on a circulating transport rail in which a horizontal section connecting the upper and lower ends of the two vertical sections is formed. It relates to a circulation type vertical conveying system for robots that can greatly improve the amount of goods transported per unit time by allowing a plurality of carriers to operate on a single conveying rail by cyclically moving by an and pinion driving method.
  • a cargo elevator or a dumb waiter that moves the car in the vertical direction is used through a driving method using a rope or chain and a traction machine.
  • a robot in order to construct a vertical transport system for robots that transports cargo by organically moving a plurality of robots on multiple floors, a robot is installed in one hoistway using a driving method different from the conventional driving method using a rope or chain and a hoisting machine. It is required to develop a vertical transport system having a structure that can significantly improve the amount of cargo per unit time by allowing a plurality of carriers to be transported.
  • the present invention is to solve the problems of the prior art mentioned above, and an object of the present invention is to form two vertical sections and a horizontal section connecting the upper and lower ends of the two vertical sections on a circulating transport rail. It is to provide a circular vertical transport system for robots that allows one or more carriers to circulately move by a rack-and-pinion driving method, so that a plurality of carriers can be operated on one transport rail.
  • Another object of the present invention is to form a middle horizontal section of the traverser method in which a middle and middle horizontal rail connecting the middle and middle sections of both vertical sections, and a middle and middle transport rack for transporting carriers while moving along the middle horizontal rail are formed, It is to provide a circular vertical transport system for a robot that allows a specific carrier to bypass a certain section as needed.
  • Another object of the present invention is that the first and second sub-racks are provided in the middle horizontal section so as to be disposed in the spaced space formed when the intermediate transfer rack is separated and the spaced space is formed in the vertical section, the transport of the carrier To provide a circulating vertical transfer system for robots that prevents the path of the vertical section from being cut by the first or second sub-rack even if the interrupted transfer rack is separated for this purpose.
  • Another object of the present invention is that two or more transfer rails running on platforms of different floors are provided, and a connection traverser connecting the transfer rails so that the carrier can move between the transfer rails is provided, so that each An object of the present invention is to provide a circulating vertical transfer system for a robot that can organically control the number of carriers operating on a transfer rail.
  • Another object of the present invention is that the transport rail is provided with a third vertical section in addition to the first and second vertical sections, so that a problem has occurred in the first or second vertical section constituting the circulation path in which the carrier circulates. It is to provide a circulating vertical transport system for robots that allows the third vertical section to form a circulation path in place of the vertical section where the problem occurs.
  • the circulation type vertical conveying system the first and second vertical sections and the first and second vertical sections and the upper and lower horizontal sections connecting the top and bottom connecting the top and bottom horizontal sections are formed circulating transport rails, rack and It includes one or more carriers that cyclically move along the transfer rail by a pinion driving method, and a control panel that controls the operation of the carriers.
  • the first vertical section includes the first rack rail
  • the second vertical section includes the second rack rail
  • the carrier is provided with a pinion gear
  • the first and second rack rails are driven by the pinion gear along the first vertical section.
  • the upper horizontal section includes an upper horizontal rail disposed to connect the upper side of the first rack rail and the upper side of the second rack rail, and moving along the upper horizontal rail to transfer the carrier from the first rack rail to the second rack rail.
  • It includes an upper transport rack, wherein the lower horizontal section is a lower horizontal rail disposed to connect a lower side of the first rack rail and a lower side of the second rack rail, and moves along the lower horizontal rail to move the carrier from the second rack rail to the first It may include a bottom transfer rack that transfers to the rack rails.
  • the control panel allocates the call signal generated to the nearest carrier among empty carriers heading to the platform where the call signal is generated. It may include a call allocator for first allocating a call signal generated at the platform of , and a carrier operation unit for operating and controlling the carrier to be operated according to the call signal allocated by the call allocator.
  • the call allocator takes precedence in the order of occurrence time of the call signals generated at the platform in the excess driving direction.
  • the transfer rail may be provided with an intermediate horizontal section connecting the middle portion of the second rack rail from the middle portion of the first rack rail.
  • the middle horizontal section moves along the middle horizontal rail and the middle horizontal rail arranged to connect the middle part of the first rack rail and the middle part of the second rack rail, and transfers the carrier between the first rack rail and the second rack rail It may include a suspended transfer rack.
  • the first rack rail is divided into a first upper rack rail and a first lower rack rail, the first upper rack rail and the first lower rack rail are spaced apart from each other to form a first spaced apart space in the vertical direction
  • 2 the rack rail is divided into a second upper rack rail and a second lower rack rail, the second upper rack rail and the second lower rack rail are spaced apart from each other to form a second spaced apart in the vertical direction
  • the middle horizontal rail is Across the first and second separation spaces, the intermediate transfer rack may be selectively disposed in the first separation space or the second separation space to connect the first upper and lower rack rails or connect the second upper and lower rack rails.
  • the carrier bypasses the first and second upper rack rails in the first lower rack rail and transfers to the second lower rack rail, or transfers the carrier from the second upper rack rail to the first and bypassing the second lower rack rail and transferring to the first upper rack rail.
  • the control panel when a call signal is generated at the platform of each floor, the control panel includes a call assignment unit for allocating the generated call signal to a carrier, and a transfer rack control unit for operating the interrupted transfer rack so that the moving path of the carrier to which the call signal is assigned is shortened. may include.
  • the transfer rack control unit is configured to allow the assigned carrier to pass the first and second upper rack rails. Control the operation of the intermediate transfer rack to pass, and when a call signal generated at the platform of the floor where the first upper rack rail is arranged is assigned to a carrier moving in the second upper rack rail, the assigned carrier is assigned to the first and second lower Interrupted transfer racks can be motion controlled to bypass the rack rails.
  • the middle horizontal section is a first sub-rack connecting the first upper rack rail and the first lower rack rail when the middle transfer rack is separated from the first separation space, and when the middle transfer rack is separated from the second spaced apart space, the second It may further include a second sub-rack connecting the upper rack rail and the second lower rack rail.
  • first and second temporary arrangement sections in which the first sub-rack or the second sub-rack is temporarily disposed may be formed at both ends of the middle horizontal rail.
  • control panel includes a sub-rack control unit for controlling the operation of the first and second sub-racks, and the sub-rack control unit controls the first sub-rack to be disposed in the first temporary arrangement section when the intermediate transfer rack is directed to the first separation space.
  • the vertical transport system further includes a connection traverser connecting the transport rails, and the control panel may control the connection traverser so that the carrier moves between the transport rails.
  • connection traverser moves along the connection horizontal rail connecting the first vertical section of any one transport rail and the second vertical section of the other different transport rail, and moves along the connection horizontal rail to move the carrier to any one transport rail It may include a connection transfer rack for transporting between the first vertical section and the second vertical section of the other different transfer rail.
  • control panel may control the operation of the operation floor of the carrier differently for each transfer rail.
  • control panel includes a count unit for counting the call signals generated for each platform on which the transfer rail is disposed, a transfer rail determining unit for determining the transfer rail on which the carrier is driven based on the counted number of call signals, and a transfer rail determining unit It may include a connection traverser control unit for controlling the connection traverser so that the carrier moves to another transport rail according to the determination information determined in.
  • the transfer rail determiner may determine the number of carriers operated for each transfer rail according to a ratio of the number of call signals per unit time for each platform on which the transfer rail is disposed.
  • the transfer rail determining unit may prevent a difference in the number of carriers operated for each transfer rail from exceeding a reference value.
  • the transport rail further includes a third vertical section connected by the upper and lower horizontal sections together with the first and second vertical sections, and the control panel includes or includes the third vertical section in the circulation path of the carrier may not do it
  • control panel may include a path determining unit for determining a circulation path to include two or more vertical sections among the first to third vertical sections, and a carrier operating unit for operating and controlling the carrier so as to operate according to the determined circulation path.
  • control panel further includes a section state determination unit for determining an abnormal state of the first to second vertical sections, and the path determining unit includes first to second vertical sections when the first to second vertical sections are determined to be normal. to determine the circulation path, and if any one of the first to second vertical sections is determined to be in an abnormal state, the circulation path may be determined such that the third vertical section is included in place of the abnormal vertical section.
  • control panel further includes a carrier state determination unit for determining the abnormal state of the carrier, the carrier operating unit is a vertical section that is not included in the circulation path of the first to third vertical sections because the carrier determined to be in an abnormal state departs from the circulation path. It is possible to control the operation of the carrier so that it is parked in the parking lot.
  • the path determining unit may determine the circulation path so that a vertical section in which the immovable carrier is located is excluded from the circulation path.
  • the carrier operating unit may operate and control any one carrier to reciprocate along a third vertical section that is not included in the circulation path.
  • one or more carriers are cyclically moved by a rack-and-pinion driving method on a circulating transport rail in which two vertical sections and a horizontal section connecting the upper and lower ends of the two vertical sections are formed.
  • the present invention is formed with a middle horizontal section of the traverser method that is provided with a middle and middle horizontal rail connecting the middle and middle sections of both vertical sections, and a middle and middle transport rack that moves along the middle horizontal rail and transports a carrier.
  • the present invention is provided with the first and second sub-racks in the middle horizontal section to be disposed in the spaced space formed when the intermediate transfer rack is separated and the spaced space is formed in the vertical section, the intermediate transfer rack for the transfer of the carrier Even if this deviation, the path of the vertical section is not broken by the first or second sub-rack, so that even if the middle horizontal section of the traverser method is formed, there is an effect that can minimize the decrease in the efficiency of the circulation movement of the carrier.
  • the present invention is provided with two or more transfer rails that operate on platforms of different floors, and a connection traverser connecting the transfer rails so that the carrier can move between the transfer rails is provided, and operates on each transfer rail according to the traffic volume of the platform
  • the present invention is provided with a third vertical section in addition to the first and second vertical sections on the transport rail, and when a problem occurs in the first or second vertical section constituting the circulation path in which the carrier circulates, the vertical section where the problem occurs
  • the third vertical section By allowing the third vertical section to form a circulation path instead of the section, even if a problem occurs in the first or second vertical section, there is an effect of making it sustainable without stopping the operation.
  • FIG. 1 is a diagram schematically showing a circulating vertical transfer system for a robot according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically illustrating a state in which two transfer rails are provided in a circulating vertical transfer system for a robot according to an embodiment of the present invention.
  • FIG. 3 is a diagram schematically illustrating a transport rail according to an embodiment of the present invention.
  • FIGS. 4A and 4B are diagrams illustrating a driving method in which a carrier moves along a vertical section according to an embodiment of the present invention.
  • FIG. 5 is a diagram illustrating a driving state of a horizontal section according to an embodiment of the present invention.
  • FIG. 6 is a functional block diagram of a control panel according to an embodiment of the present invention.
  • FIG. 7 is a functional block diagram of an operation control unit according to an embodiment of the present invention.
  • FIGS. 8 to 9 are diagrams illustrating an example of allocating a call signal by a call allocator according to an embodiment of the present invention.
  • FIG. 10 is a view showing a transport rail provided with a horizontal section in the middle according to an embodiment of the present invention.
  • FIG. 11 is a diagram illustrating in more detail a middle horizontal section according to an embodiment of the present invention.
  • FIG. 12 is a functional block diagram of an operation control unit and a bypass operation unit according to an embodiment of the present invention.
  • FIG. 13 is a view showing a state in which the operation is connected to two transport rail connection traverser according to an embodiment of the present invention.
  • FIG. 14 is a functional block diagram of a driving control unit and a driving ratio adjusting unit according to an embodiment of the present invention.
  • 15 is a flowchart illustrating a process in which the number of operating carriers for each transport rail is adjusted according to an embodiment of the present invention.
  • 16 is a view showing a state in which a third vertical section is provided on the transfer rail according to an embodiment of the present invention.
  • 17 is a functional block diagram of an operation control unit and an emergency operation control unit according to an embodiment of the present invention.
  • 18A to 20B are diagrams illustrating an example of an emergency operation according to an embodiment of the present invention.
  • 21 is a diagram illustrating an example of an additional operation according to an embodiment of the present invention.
  • FIG. 1 is a view schematically showing a circular vertical transport system for a robot according to an embodiment of the present invention
  • Figure 2 is two transport rails in the circular vertical transport system for a robot according to an embodiment of the present invention It is a diagram schematically showing a state in which it is provided.
  • a vertical transport system includes one or more transport rails 100 forming a circulation path, one or more carriers 200 circulating along the transport rail 100 , and a transport rail 100 . and a control panel 300 connected to the carrier 200 by wire or wirelessly to control the transport rail 100 and the carrier 200 .
  • the carrier 200 is cyclically operated along a circulation path formed by the transfer rail 100 , and a plurality of carriers 200 may be operated on one transfer rail 100 .
  • two or more transport rails 100 may be provided. And when two or more transport rails 100 are provided as described above, each of the transport rails 100 - 1 and 100 - 2 may be connected by a connection traverser 400 .
  • each of the transport rails (100-1, 100-2) forms an individual circulation path, and a plurality of carriers 200 are disposed on each transport rail (100-1, 100-2) to each transport rail ( It circulates along the circulation path formed by 100-1, 100-2), and if necessary, the carrier 200 that was traveling on any one of the transport rails 100-1 through the connection traverser 400 is moved to another.
  • the number of operating carriers 200 for each transfer rail 100-1, 100-2 can be adjusted.
  • FIG. 3 is a view schematically showing a transport rail according to an embodiment of the present invention
  • Figure 4 (a) is a driving method in which the carrier according to an embodiment of the present invention moves along a vertical section It is a drawing shown to explain.
  • FIG. 5 is a view showing a driving state of a horizontal section according to an embodiment of the present invention.
  • the transfer rail 100 is an upper end between the first and second vertical sections 110 and 120 and the first and second vertical sections 110 and 120 . and upper and lower horizontal sections 130 and 140 connecting the lower ends.
  • the first and second vertical sections 110 and 120 and the upper and lower horizontal sections 130 and 140 together form a circulation path, and as described above, the carrier 200 includes the first and second vertical sections ( 110 and 120) and the upper and lower horizontal sections 130 and 140 may be moved and cycled.
  • various objects can be boarded on each carrier 200 , and in the vertical conveyance system according to the present embodiment, the robot R is boarded as an example.
  • the carrier 200 is driven by a rack-and-pinion driving method on the transport rail 100.
  • the first vertical section 110 as shown in (a) and (b) of FIG. 4 is The first rack rail 111 is included, the second vertical section 120 includes the second rack rail 121 , and the carrier 200 is provided with a pinion gear 210 to drive the pinion gear 210 . It can move along the first and second rack rails (111, 121) by the.
  • the upper horizontal section 130 includes an upper horizontal rail 131 disposed to connect an upper side of the first rack rail 111 and an upper side of the second rack rail 121 , and the upper horizontal It moves along the rail 131 and includes an upper transfer rack 132 for transferring the carrier 200 from the first rack rail 111 to the second rack rail 121, and the lower horizontal section 140 is the first A lower horizontal rail 141 disposed to connect the lower side of the rack rail 111 and the lower side of the second rack rail 121, and the carrier 200 while moving along the lower horizontal rail 141, the second rack rail ( 121) may include a lower transfer rack 142 for transferring to the first rack rail 111.
  • the transport direction of the carrier 200 of the upper horizontal rail 131 and the lower horizontal rail 141 is changeable according to the circular movement direction of the carrier 200 in the transport rail 100, and the first rack rail shown in the drawing
  • the positions of the (111) and the second rack rail 121 are also changeable.
  • the upper transfer rack 132 is connected to the first rack rail 111 from the upper side of the first rack rail 111, and the carrier 200 moves from the first rack rail 111 to the upper transfer rack ( 132), the upper transfer rack 132 moves along the upper horizontal rail 131 to a position connected to the second rack rail 121 from the upper side of the second rack rail 121, so that the carrier 200 is To be movable from the upper transfer rack 132 to the second rack rail 121 .
  • the lower transfer rack 142 is the same method as the transfer method of the upper transfer rack 132 described above so that the carrier 200 moves from the lower side of the second rack rail 121 to the lower side of the first rack rail 111 . do.
  • the conveying rail 100 forms a circulation path so that the carrier 200 can circulate, and this circulation method is a plurality of transport rails 100 on one conveyance rail 100 .
  • this circulation method is a plurality of transport rails 100 on one conveyance rail 100 .
  • FIG. 6 is a functional block diagram of a control panel according to an embodiment of the present invention
  • FIG. 7 is a functional block diagram of an operation controller according to an embodiment of the present invention.
  • 8 to 9 are diagrams illustrating an example of call signal assignment by a call allocator according to an embodiment of the present invention.
  • the control panel 300 includes an operation control unit 310 that operates and controls the carrier 200 so that a call signal generated at each platform is allocated while the carrier 200 circulates on the transfer rail 100 , and the carrier ( The bypass operation unit 320 for allowing the 200) to bypass and move a specific section on the transfer rail 100, and the carrier 200 between the transfer rail 100 when a plurality of transfer rails 100 are operated.
  • an emergency operation control unit for emergency operation control when an abnormality occurs in any one of the first or second vertical sections 110 and 120 of the transport rail 100, and an emergency operation control unit ( 340) may be included.
  • a call allocator 311 that preferentially allocates a call signal generated at the platform of the rear floor based on the traveling direction of the carrier, and the call signal allocated by the call allocator 311 It may include a carrier operation unit 312 for operating and controlling the carrier 200 to operate according to the operation.
  • the carrier operation unit 312 drives and controls the pinion gear 210 of the carrier 200 so that the carrier 200 moves along the first and second vertical sections 110 and 120 as well as the carrier 200 . ) can be driven and controlled by the upper and lower transport racks 132 and 142 to enable horizontal movement.
  • the call allocator 311 first allocates the call signal of the second floor, which is a call signal generated at the platform of the rear floor, based on the traveling direction of the carrier 200, but the nearest carrier 200- 1) can be assigned to the 2nd floor call signal.
  • the empty carrier may mean a carrier in which the robot R is not on board and to which a call signal is not assigned at the same time.
  • the call signal of the 4th floor is allocated to the closest carrier 200-2 among the empty carriers heading to the 4th floor, and then the 8th floor is assigned to the closest carrier 200-3 among the empty carriers heading to the 8th floor.
  • a call signal can be assigned.
  • the call allocator 310 allocates the call signal without determining that the carrier 200 is an empty carrier even if the robot R is on the carrier 200 moving upward when allocating the downlink call signal. have.
  • the call allocator 310 is the number of call signals generated in a single direction upward or downward based on the traveling direction of the carrier 200 exceeds the number of carriers 200 running on the corresponding transport rail 100 .
  • the call signal generated at the platform in the excess driving direction can be assigned preferentially according to the order of occurrence time.
  • the number of operating carriers 200 operating on one transfer rail 100 is four, and a downcall signal is generated at the down platform of 5 floors, and each robot WR1 to 5 ) in the order of arrival of the 3rd floor, 8th floor, 2nd floor, 5th floor, and 7th floor, when a downcall signal is generated, the call allocating unit 310 determines that the number of downlink calls is 4 units of the carrier 200. Because it is exceeded, the call signal of the third floor that is generated first can be allocated first, regardless of the platform floor where the call signal of the carrier 200 is generated. In this case, the method of allocating a call signal to the closest carrier 200 - 1 among empty carriers approaching the third floor may be equally applied.
  • the call signal of the 8th floor platform generated in the following order is allocated second, and the remaining call signals can also be allocated according to the time order in which they occur.
  • the call signal of the rear floor is allocated to the front end carrier 200 as usual.
  • the allocation method can be returned.
  • the vertical transfer system allows the call signal to be allocated to the carrier 200 in a manner that maximizes the operation efficiency, thereby preventing the waiting time of the waiting robot R on a specific floor from increasing have.
  • FIG. 10 is a view showing a transport rail provided with a middle horizontal section according to an embodiment of the present invention
  • Figure 11 is a view showing in more detail the middle horizontal section according to an embodiment of the present invention
  • FIG. 12 is a functional block diagram of the operation control unit and the bypass operation unit according to an embodiment of the present invention.
  • the carrier 200 moves to the target position by allowing a partial section of the transfer rail 100 to be bypassed when the carrier 200 travels along the transfer rail 100 .
  • By shortening the distance it is possible to increase the operating efficiency of the carrier 200 .
  • the transfer rail 100 may further include a middle horizontal section 150 connecting the middle part of the second rack rail 121 from the middle part of the first rack rail 111 to the middle part of the second rack rail 121 as shown in FIG. 10 . have.
  • the middle horizontal section 150 includes the middle horizontal rail 151 and the middle horizontal rail 151 arranged to connect the middle part of the first rack rail 111 and the middle part of the second rack rail 121 .
  • Interrupted transport rack that moves along and transports the carrier 200 from the first rack rail 111 to the second rack rail 121, or from the second rack rail 121 to the first rack rail 111 (152). That is, the middle horizontal section 150 also horizontally moves the carrier 200 through the traverser method like the upper horizontal section 130 and the lower horizontal section 140 .
  • the first rack rail 111 is a first upper rail 111a and a first lower rail 111b.
  • the first upper rail 111a and the first lower rail 111b are spaced apart from each other so as to form a first spaced space in the vertical direction
  • the second rack rail 121 is a second upper rail 121a and
  • the second lower rail 121b may be dividedly formed, and the second upper rail 121a and the second lower rail 121b may be spaced apart from each other to form a second spaced apart space in the vertical direction.
  • the middle horizontal rail 151 crosses the first and second spaced apart spaces, and the middle transfer rack 152 is disposed in the first spaced space to connect the first upper and lower rack rails 111a and 111b, or It is disposed in the second spaced apart space to connect the second upper and lower rack rails (121a, 121b). That is, the middle transfer rack 152 not only transfers the carrier 200, but is also disposed in the first spaced space or the second spaced space so that the path of the first rack rail 111 or the second rack rail 121 is not interrupted. It can play a role in continuity.
  • Interrupted transport rack 152 can move the carrier 200 between the first and second rack rails 111 and 121 by moving along the middle horizontal rail 151 in a state where the carrier 200 is located, specifically Interrupted transfer rack 152 is the carrier 200 from the first lower rail (111b) to the second lower rail (121b) so that the carrier 200 bypasses the first and second upper rack rails (111a, 121a) or transfer the carrier 200 from the second upper rail 121a to the first upper rail 111a so that the carrier 200 bypasses the first and second lower rack rails 111b and 121b.
  • Interrupted transfer rack 152 is the carrier 200 from the first lower rail (111b) to the second lower rail (121b) so that the carrier 200 bypasses the first and second upper rack rails (111a, 121a) or transfer the carrier 200 from the second upper rail 121a to the first upper rail 111a so that the carrier 200 bypasses the first and second lower rack rails 111b and 121b.
  • Interrupted transfer rack 152 is selectively disposed in the first or second spaced apart space. Therefore, in a state in which the intermediate transfer rack 152 is disposed in the first separation space, the path of the second rack rail 121 is cut off, and in the state in which the intermediate transfer rack 152 is disposed in the second spaced space, the first rack rail 111 ), the path may be cut off.
  • the middle horizontal section 150 is arranged in the first separation space when the intermediate transfer rack 152 is separated from the first separation space, the first upper rail (111a) and the first lower rail
  • the first sub-rack 153 connecting (111b) and the middle transfer rack 152 are separated from the second spaced apart space, they are disposed in the second spaced space, the second upper rail 121a and the second lower rail 121b ) may further include a second sub-rack 154 for connecting.
  • the middle horizontal rail 151 is a first sub-rack 153 or a second sub-rack 154 at both ends temporarily arranged when not disposed in the first or second spaced apart first and second temporary arrangement section (151a, 151b) may be formed. That is, the middle horizontal rail 151 is formed to extend a predetermined length even after crossing the first spaced apart space or the second spaced space, so that the first sub-rack 153 or the second sub-rack 154 can be temporarily arranged. .
  • bypass operation by the interrupted horizontal section 150 may be performed under the control of the bypass operation unit 320 .
  • the bypass operation unit 320 includes a transfer rack control unit 321 that controls the operation of the interrupted transfer rack 152 based on the call signal allocation information and the carrier 200 operation information and , a sub-rack control unit 322 for controlling the operation of the first sub-rack 153 or the second sub-rack 154 according to the arrangement position of the intermediate transfer rack 152 may be provided.
  • the transfer rack control unit 321 is assigned to the carrier 200 that is moving in the first lower rail 111b when the call signal generated in the platform of the floor where the second lower rail 121b is disposed is assigned to the carrier ( 200) may control the operation of the middle transfer rack 152 to bypass the first and second upper rack rails (111a, 121a).
  • the transfer rack control unit 321 is a carrier assigned based on the carrier location information received from the carrier operation unit 312 after arranging the interrupted transfer rack 152 in the first separation space in the call signal allocation situation as described above. (200) can be controlled to move the middle transfer rack 152 to the second separation space when located in the middle transfer rack 152 is located.
  • the carrier operation unit 312 may temporarily suspend the operation of the carrier when the assigned carrier 200 is located in the interrupted transfer rack 152 .
  • the transfer rack control unit 321 when the transfer rack control unit 321 is assigned to the carrier 200 that is moving in the second upper rail 121a, the call signal generated in the platform of the floor where the first upper rail 111a is disposed, the assigned carrier ( 200) may control the operation of the middle transfer rack 152 to bypass the first and second lower rack rails (111b, 121b).
  • the transfer rack control unit 321 is a carrier assigned based on the carrier location information received from the carrier operation unit 312 after arranging the interrupted transfer rack 152 in the second separation space in the call signal allocation situation as described above. (200) can be controlled to move the middle transfer rack 152 to the first separation space when located in the middle transfer rack 152 is located.
  • This bypass operation shortens the movement path of the carrier 200 when the carrier 200 running at a location where the call signal of the platform is relatively far away, thereby shortening the time for the assigned carrier 200 to arrive at the call platform. have.
  • the sub-rack control unit 322 to prevent the path of the first or second rack rails 111 and 121 from being cut off. can control the operation of the first sub-rack 153 and the second sub-rack 154 .
  • the sub-rack control unit 322 controls the operation so that the first sub-rack 153 is disposed in the first temporary arrangement section 151a when the intermediate transfer rack 152 is directed to the first separation space, and the second sub-rack ( 154) can be controlled to be disposed in the second spaced apart space.
  • the sub-rack control unit 322 controls the operation so that the first sub-rack 153 is disposed in the first spaced space when the intermediate transfer rack 152 is directed to the second spaced space, and the second sub-rack 154 is the second
  • the operation may be controlled to be arranged in the temporary arrangement section 151b.
  • FIG. 13 is a view showing a state in which the operation is connected to two transport rail connection traverser according to an embodiment of the present invention.
  • connection traverser 400 for connecting each transport rail 100 may be provided.
  • the connection traverser 400 connects the first vertical section 110 of the transport rail 100-1 and the second vertical section 120 of the other transport rail 100-2. It may include a connecting horizontal rail 410 that connects, and a connecting transfer rack 420 that moves along the connecting horizontal rail 410 and transfers the carrier 200 between different transfer rails 100 . That is, the connecting transfer rack 420 is a transfer rail 100-1 to another transfer rail 100-2 or another transfer rail 100-2 when the carrier 200 is positioned on the connecting transfer rack 420. ) to the transfer rail 100 - 1 by moving the carrier 200 can be transferred between the transfer rail (100).
  • connection traverser 400 connects between the two transport rails 100-1 and 100-2 and the method of transporting the carrier 200 is different from that of the transport rails 100-1 and 100-2.
  • the first and second vertical sections 110 and 120 are connected between the first and second vertical sections 110 and 120 except that the above-described interrupted horizontal section 150 connects between the first and second vertical sections 110 and 120 except that the carrier 200 is transported.
  • a description of the connection structure of the connection traverser 400 or the carrier 200 transfer method will be omitted.
  • connection traverser 400 is also provided with two sub-racks as in the middle horizontal section 150, so that when the connection transport rack 420 moves, the first or second vertical section instead of the connection transport rack 420
  • the paths of 110 and 120 can be connected without being interrupted, and since the same method as the middle horizontal section 150 can be applied, a detailed description thereof will also be omitted.
  • FIG. 14 is a functional block diagram of a driving control unit and a driving ratio adjusting unit according to an embodiment of the present invention.
  • the platform floor operated for each transfer rail 100 may be different in order to improve the efficiency of operation.
  • one transfer rail 100 can be operated only on platforms from the first floor to the fifth floor, and the other transfer rail 100 is on the fifth floor. It can only be operated on platforms up to the 10th floor.
  • the arrangement position or scale of the transfer rail 100 may also be determined according to the platform floor on which it operates. That is, in the drawings, for convenience, the two transfer rails 100-1 and 100-2 are arranged to be symmetrical to each other, but the arrangement positions in the vertical direction may be different from each other.
  • the operation on a specific floor may increase or decrease depending on the operation time or circumstances. For example, at a specific time, the operation from the 1st floor to the 3rd floor platform may increase and the operation from the 7th floor to the 10th floor may decrease. As such, if the operation on any one transfer rail 100 is concentrated, the transfer Because the traffic of the rail 100 increases, the call assignment of the carrier 200 of the corresponding transfer rail 100 is delayed, and the empty carrier 200 that stops running due to the decrease in traffic in the other transfer rail 100 is frequently can occur
  • the operating ratio adjusting unit 330 may adjust the operating ratio of the carrier 200 between the transport rails 100 as described above.
  • the operation ratio adjusting unit 330 includes a counting unit 331 for counting the call signal generated for each platform where each transfer rail 100-1, 100-2 is disposed, Determination information determined by the transfer rail determining unit 332 and the transfer rail determining unit 332 for determining the transfer rails 100-1 and 100-2 on which the carrier 200 is driven based on the counted number of call signals
  • the carrier 200 may include a connection traverser control unit 333 for controlling the connection transport rack 420 of the connection traverser 300 to move to another transport rail 100 .
  • the transfer rail determining unit 332 is operated for each transfer rail 100-1, 100-2 according to the ratio of the number of call signals per unit time for each platform where the transfer rails 100-1 and 100-2 are disposed.
  • the number of carriers 200 may be determined. For example, when the ratio of the call signals generated per unit time at each platform disposed on the first transfer rail 100-1 and the second transfer rail 100-2 is 6:4, the first and second transfer rails ( The ratio of the number of carriers 200 operating in 100-1 and 100-2) may also be adjusted to be 6:4.
  • the transfer rail determining unit 332 may prevent the difference in the number of carriers 200 operated for each transfer rail 100 from exceeding a reference value. This is to prevent a safety distance between the carriers 200 from being secured because too many carriers 200 are driven on a specific transport rail 100 .
  • connection traverser control unit 333 connects the transfer rack 420 to the transfer rail 100 with the reduced number of operation carriers. ) and then determine the empty carrier based on the carrier operation information received from the carrier operation unit 312, and when the position of the empty carrier is located in the connection transfer rack 420, connect the transfer rack 420 to another transfer rail (100) can be moved.
  • the carrier operation unit 312 may temporarily suspend the operation of the carrier 200 when the empty carrier 200 to be transferred is located in the connection transfer rack 420 .
  • 15 is a flowchart illustrating a process in which the number of operating carriers for each transport rail is adjusted according to an embodiment of the present invention.
  • the count unit 331 calls each transport rail 100
  • the signal is counted (S10).
  • the transfer rail determining unit 332 calculates a ratio of the number of call signals for each transfer rail 100 per unit time (S20), and determines the number of operating carriers for each transfer rail 100 according to the calculated ratio (S30).
  • the transfer rail determining unit 332 determines whether the determined number of carriers has a change in the current number of operating vehicles (S40). If the determined number of carriers is the same as the current number (S40-N), since movement of the additional carriers 200 is not required, the process of adjusting the number of carriers operating is terminated.
  • the transfer rail determiner 332 determines whether a difference in the number of carriers between each transfer rail 100 exceeds a reference value (S50). If it exceeds the reference value (S50-Y), the transfer rail determiner 332 adjusts the number of carriers to the reference value to re-determine the number of carriers running for each transfer rail 100 (S60).
  • the difference value is when the ratio of the number of carriers running between the transfer rails 100 is determined to be 7:3 Since the reference value is not exceeded by 4, the transfer rail determining unit 332 determines the number of running carriers for each transfer rail 100 as 7 and 3, respectively, but when the ratio of the number of running carriers is determined to be 9:1, the difference value is 8 Since it exceeds the reference value of 6, the transfer rail determining unit 332 may recrystallize the difference value to be 6 equal to the reference value, so that the number of operating carriers for each transfer rail 100 is 8 or 2, respectively.
  • the transfer rail determining unit 332 selects an empty carrier to be transferred according to the determined number of running carriers for each transfer rail 100.
  • the connection traverser control unit 333 transfers the selected carrier 200 to another transport rail 100 according to the transport decision information (S80), the number of carriers per transport rail 100 The adjustment process can be terminated.
  • 16 is a view showing a state in which a third vertical section is provided on the transfer rail according to an embodiment of the present invention.
  • a circulation path is formed instead of the first or second vertical section 130 where the abnormality occurs.
  • a third vertical section 160 may be provided.
  • the third vertical section 160 may have upper and lower ends connected to the upper and lower horizontal sections 130 and 140 together with the first and second vertical sections 110 and 120 . .
  • the third vertical section 160 includes the first and second vertical sections 110 . , 120) can be disposed between.
  • the third vertical section 160 has only a difference in its purpose and arrangement position, and since the first or second vertical sections 110 and 120 are formed in the same structure, detailed description of the structure of the third vertical section 160 is to be omitted.
  • FIGS. 18 (a) to 20 (b) show an example of an emergency operation according to an embodiment of the present invention it is one drawing
  • the emergency operation control unit 340 of the control panel 300 controls the emergency operation when an abnormality occurs in any one of the first or second vertical sections 110 and 120 of the transfer rail 100 .
  • the emergency operation control unit 340 circulates the third vertical section 160 instead of the abnormal vertical section. Emergency operation control can be achieved to achieve a route.
  • the emergency operation control unit 340 includes a path determining unit 341 that determines a vertical section constituting a circulation path among the first to third vertical sections 110 , 120 , and 160 , and , A section state determining unit 342 for determining the section state of the first to second vertical sections 110 and 120, and an abnormal state determining unit 343 for determining the abnormal state of each carrier 200.
  • the section state determination unit 342 determines the abnormality of the first or second vertical section 110 or 120 based on the received abnormal signal.
  • the abnormal signal received from the outside may be a signal generated by a manager's input, or may be an object detection signal received from an object detection sensor provided for each vertical section. That is, when the manager determines that there is an abnormality in the first or second vertical sections 110 and 120 through the report reception or status monitoring, an abnormal signal is generated and the section status determination unit 342 that has received the first or second An abnormal state of the vertical sections 110 and 120 may be determined.
  • the section state determination unit 342 determines whether an object other than the carrier 200 is detected in the first or second vertical sections 110 and 120 based on the received object detection signal, and determines that an abnormality has occurred when the object is detected. can judge
  • the path determining unit 341 is shown in Fig. 18(b)
  • the first vertical section 110 in an abnormal state may be excluded from the circulation path, and the third vertical section 160 may form a circulation path together with the second vertical section 120 .
  • the carrier operation unit 312 may operate and control each carrier 200 to travel along the newly determined circulation path.
  • the carrier state determination unit 343 may determine an abnormality of the carrier 200 based on the received signal.
  • the signal received from the outside may be a signal generated by an input of the manager, or may be a control signal transmitted by the carrier operation unit 312 to control the pinion gear 210 and a position signal of the carrier 200 . That is, when the manager determines that there is an abnormality in the specific carrier 200 through receiving a report or monitoring the status, the carrier status determination unit 343 generates an abnormal signal for the specific carrier 200 and receives it determines the abnormality of the carrier. can do.
  • the carrier state determination unit 343 compares the received control signal and the position signal, and even though a signal for driving the pinion gear 210 is received, if a position change of the carrier 200 does not occur, the carrier 200 ) can be judged to be abnormal.
  • the carrier operating unit 312 deviates from the circulation path and the carrier 200 in an abnormal state is separated from the third vertical
  • the carrier 200 may be controlled to be parked in the section 160 .
  • the path determination unit 341 as shown in (a) and (b) of FIG. 20 is the immovable carrier 200 - 6 Determines a circulation path so that the third vertical section 160 forms a circulation path by replacing the first or second vertical section 110, 120 in which is located, and the carrier operation unit 312 is impossible to move. So that the carriers 200-7 other than the carrier 200-6 move along a new circulation path away from the first or second vertical sections 110 and 120 in which the carrier 200-6 in an immovable state is located. It is possible to control the operation of the carrier 200 - 7 .
  • 21 is a diagram illustrating an example of an additional operation according to an embodiment of the present invention.
  • the carrier operating unit 312 is configured so that any one carrier 200 reciprocates in the vertical direction in the third vertical section 160 based on the circulation path determined by the path determining unit 341 ( 200) can be operated and controlled.
  • any one of the carriers 200 - 8 is the third
  • the carrier 200 - 8 may be additionally operated and controlled to reciprocate in the vertical direction along the vertical section 160 .
  • one carrier 200 - 8 forms an independent vertical travel path through the third vertical section 160 and operates. For this reason, the vertical transport system according to the present embodiment has the effect of further improving the amount of cargo per unit time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

The present invention relates to a circulating vertical conveyor system for robots and, more specifically, circulates, by means of a rack-and-pinion driving method, one or more carriers on a circulating transfer rail having two vertical sections and horizontal sections that connect the upper and lower ends of the two vertical sections, thereby enabling the plurality of carriers to operate on one transfer rail. Therefore, the present invention can greatly improve the quantity of goods transported per unit time.

Description

로봇용 순환식 수직반송 시스템Circulating vertical transfer system for robots
본 발명은 로봇용 순환식 수직반송 시스템에 관한 것으로, 더욱 상세하게는 두 개의 수직 구간과, 두 개의 수직 구간의 상 하단을 연결하는 수평 구간이 형성되는 순환식 이송 레일 상을 하나 이상의 캐리어가 랙 앤 피니언 구동방식에 의해 순환 이동하도록 하여, 하나의 이송 레일 상을 다수의 캐리어가 운행될 수 있도록 함으로써 단위 시간당 물동량을 크게 향상시킬 수 있는 로봇용 순환식 수직반송 시스템에 관한 것이다. The present invention relates to a circulating vertical transport system for a robot, and more particularly, two vertical sections and one or more carriers on a circulating transport rail in which a horizontal section connecting the upper and lower ends of the two vertical sections is formed. It relates to a circulation type vertical conveying system for robots that can greatly improve the amount of goods transported per unit time by allowing a plurality of carriers to operate on a single conveying rail by cyclically moving by an and pinion driving method.
일반적으로 건물 내에서 수직으로 화물을 이동시키기 위해서는 로프 또는 체인과 권상기를 이용한 구동방식을 통해 카를 수직 방향으로 이동시키는 화물용 엘리베이터 또는 덤웨이터를 사용한다. In general, in order to move cargo vertically in a building, a cargo elevator or a dumb waiter that moves the car in the vertical direction is used through a driving method using a rope or chain and a traction machine.
이러한 화물용 엘리베이터 또는 덤웨이터는 하나의 승강로에 하나의 카가 배치되어 운행되는 형태로 사용되는데, 이와 같은 로프식 수직반송 시스템은 각 승강로의 시간당 물동량이 제한적이기 때문에 물동량을 일정 이상 증가시키기 위해서는 승강로 수의 증가가 필수적으로 이뤄져야 한다. 하지만, 건물의 구조적 제약에 의해 승강로 수의 증가를 통한 시간당 물동량 증가 방식에는 한계가 존재한다.These freight elevators or dumb waiters are used in a form in which one car is arranged and operated on one hoistway. In this rope-type vertical transport system, since the amount of cargo per hour of each hoistway is limited, in order to increase the amount of cargo over a certain level, the number of hoistways increase is essential. However, there is a limit to the method of increasing the amount of cargo per hour by increasing the number of hoistways due to the structural constraints of the building.
이에, 다수의 로봇이 여러 층을 유기적으로 이동하며 화물을 이송하는 로봇용 수직반송 시스템을 구성하기 위해서는 로프 또는 체인과 권상기를 이용하는 종래의 구동방식과 다른 구동방식을 이용하여 하나의 승강로에 로봇을 이송하는 다수의 캐리어가 운행될 수 있도록 함으로써 단위 시간당 물동량을 크게 향상시킬 수 있는 구조의 수직반송 시스템의 개발이 요구된다.Accordingly, in order to construct a vertical transport system for robots that transports cargo by organically moving a plurality of robots on multiple floors, a robot is installed in one hoistway using a driving method different from the conventional driving method using a rope or chain and a hoisting machine. It is required to develop a vertical transport system having a structure that can significantly improve the amount of cargo per unit time by allowing a plurality of carriers to be transported.
본 발명은 위에서 언급한 종래 기술이 가지는 문제점을 해결하기 위한 것으로 본 발명이 이루고자 하는 목적은, 두 개의 수직 구간과, 두 개의 수직 구간의 상 하단을 연결하는 수평 구간이 형성되는 순환식 이송 레일 상을 하나 이상의 캐리어가 랙 앤 피니언 구동방식에 의해 순환 이동하도록 하여, 하나의 이송 레일 상을 다수의 캐리어가 운행될 수 있도록 하는 로봇용 순환식 수직반송 시스템을 제공하는 것이다.The present invention is to solve the problems of the prior art mentioned above, and an object of the present invention is to form two vertical sections and a horizontal section connecting the upper and lower ends of the two vertical sections on a circulating transport rail. It is to provide a circular vertical transport system for robots that allows one or more carriers to circulately move by a rack-and-pinion driving method, so that a plurality of carriers can be operated on one transport rail.
본 발명이 이루고자 하는 다른 목적은, 양 수직 구간의 중단부를 연결하는 중단 수평 레일과, 중단 수평 레일을 따라 이동하며 캐리어를 이송하는 중단 이송 랙이 구비되는 트래버서 방식의 중단 수평 구간이 형성되어, 필요에 따라 특정 캐리어가 일정 구간을 바이패스 가능하도록 하는 로봇용 순환식 수직반송 시스템을 제공하는 것이다.Another object of the present invention is to form a middle horizontal section of the traverser method in which a middle and middle horizontal rail connecting the middle and middle sections of both vertical sections, and a middle and middle transport rack for transporting carriers while moving along the middle horizontal rail are formed, It is to provide a circular vertical transport system for a robot that allows a specific carrier to bypass a certain section as needed.
본 발명이 이루고자 하는 또 다른 목적은, 중단 이송 랙이 이탈하여 수직 구간에 이격 공간이 형성될 때 형성된 이격 공간에 배치되도록, 중단 수평 구간에 제1 및 제2 서브 랙이 구비되어, 캐리어의 이송을 위해 중단 이송 랙이 이탈하더라도 제1 또는 제2 서브 랙에 의해 수직 구간의 경로가 끊어지지 않도록 하는 로봇용 순환식 수직반송 시스템을 제공하는 것이다.Another object of the present invention is that the first and second sub-racks are provided in the middle horizontal section so as to be disposed in the spaced space formed when the intermediate transfer rack is separated and the spaced space is formed in the vertical section, the transport of the carrier To provide a circulating vertical transfer system for robots that prevents the path of the vertical section from being cut by the first or second sub-rack even if the interrupted transfer rack is separated for this purpose.
본 발명이 이루고자 하는 또 다른 목적은, 서로 다른 층의 승강장을 운행하는 둘 이상의 이송 레일이 구비되고 캐리어가 이송 레일 간에 이동 가능하도록 이송 레일 간을 연결하는 연결 트래버서가 구비되어 승강장의 교통량에 따라 각 이송 레일에서 운행되는 캐리어의 수를 유기적으로 조절 가능하도록 하는 로봇용 순환식 수직반송 시스템을 제공하는 것이다.Another object of the present invention is that two or more transfer rails running on platforms of different floors are provided, and a connection traverser connecting the transfer rails so that the carrier can move between the transfer rails is provided, so that each An object of the present invention is to provide a circulating vertical transfer system for a robot that can organically control the number of carriers operating on a transfer rail.
본 발명이 이루고자 하는 또 다른 목적은, 이송 레일에 제1 및 제2 수직 구간 외에도 제3 수직 구간이 구비되어, 캐리어가 순환 운행되는 순환 경로를 이루는 제1 또는 제2 수직 구간에 문제가 발생하였을 때 문제가 발생한 수직 구간을 대신하여 제3 수직 구간이 순환 경로를 이루도록 하는 로봇용 순환식 수직반송 시스템을 제공하는 것이다.Another object of the present invention is that the transport rail is provided with a third vertical section in addition to the first and second vertical sections, so that a problem has occurred in the first or second vertical section constituting the circulation path in which the carrier circulates. It is to provide a circulating vertical transport system for robots that allows the third vertical section to form a circulation path in place of the vertical section where the problem occurs.
본 실시예에 따른 순환식 수직반송 시스템은, 제1 및 제2 수직 구간과 제1 및 제2 수직 구간 간의 상단 및 하단을 연결하는 상단 및 하단 수평 구간이 형성되는 순환식 이송 레일과, 랙 앤 피니언 구동방식에 의해 이송 레일을 따라 순환 이동하는 하나 이상의 캐리어, 그리고 캐리어를 운행 제어하는 제어반을 포함한다.The circulation type vertical conveying system according to this embodiment, the first and second vertical sections and the first and second vertical sections and the upper and lower horizontal sections connecting the top and bottom connecting the top and bottom horizontal sections are formed circulating transport rails, rack and It includes one or more carriers that cyclically move along the transfer rail by a pinion driving method, and a control panel that controls the operation of the carriers.
이때, 제1 수직 구간은 제1 랙 레일을 포함하고, 제2 수직 구간은 제2 랙 레일을 포함하며, 캐리어에는 피니언 기어가 구비되어 피니언 기어의 구동에 의해 제1 및 제2 랙 레일을 따라 이동할 수 있다.In this case, the first vertical section includes the first rack rail, the second vertical section includes the second rack rail, the carrier is provided with a pinion gear, and the first and second rack rails are driven by the pinion gear along the first vertical section. can move
또한, 상단 수평 구간은 제1 랙 레일의 상측과 제2 랙 레일의 상측을 연결하도록 배치되는 상단 수평 레일과, 상단 수평 레일을 따라 이동하며 캐리어를 제1 랙 레일에서 제2 랙 레일로 이송하는 상단 이송 랙을 포함하고, 하단 수평 구간은 제1 랙 레일의 하측과 제2 랙 레일의 하측을 연결하도록 배치되는 하단 수평 레일과, 하단 수평 레일을 따라 이동하며 캐리어를 제2 랙 레일에서 제1 랙 레일로 이송하는 하단 이송 랙을 포함할 수 있다.In addition, the upper horizontal section includes an upper horizontal rail disposed to connect the upper side of the first rack rail and the upper side of the second rack rail, and moving along the upper horizontal rail to transfer the carrier from the first rack rail to the second rack rail. It includes an upper transport rack, wherein the lower horizontal section is a lower horizontal rail disposed to connect a lower side of the first rack rail and a lower side of the second rack rail, and moves along the lower horizontal rail to move the carrier from the second rack rail to the first It may include a bottom transfer rack that transfers to the rack rails.
또한, 제어반은 승강장에서 호출 신호가 발생하면 호출 신호가 발생한 승강장으로 향하는 빈 캐리어 중 가장 근접한 캐리어에 발생한 호출 신호를 할당하되, 다수개의 승강장에서 호출 신호가 발생하면 캐리어의 운행 방향을 기준으로 후단 층의 승강장에서 발생한 호출 신호를 우선 할당하는 호출 할당부와, 호출 할당부에서 할당된 호출 신호에 따라 운행되도록 캐리어를 운행 제어하는 캐리어 운행부를 포함할 수 있다.In addition, when a call signal is generated at the platform, the control panel allocates the call signal generated to the nearest carrier among empty carriers heading to the platform where the call signal is generated. It may include a call allocator for first allocating a call signal generated at the platform of , and a carrier operation unit for operating and controlling the carrier to be operated according to the call signal allocated by the call allocator.
또한, 호출 할당부는 캐리어의 운행 방향 기준으로 상향 또는 하향의 단일 방향에서 발생된 호출 신호의 개수가 운행 중인 캐리어의 개수를 초과하면, 초과한 운행 방향 승강장에서 발생한 호출 신호는 발생 시간 순서에 따라 우선 할당할 수 있다.In addition, when the number of call signals generated in a single upward or downward single direction based on the driving direction of the carrier exceeds the number of carriers in operation, the call allocator takes precedence in the order of occurrence time of the call signals generated at the platform in the excess driving direction. can be assigned
또한, 이송 레일은 제1 랙 레일의 중단부에서 제2 랙 레일의 중단부를 연결하는 중단 수평 구간이 구비될 수 있다.In addition, the transfer rail may be provided with an intermediate horizontal section connecting the middle portion of the second rack rail from the middle portion of the first rack rail.
또한, 중단 수평 구간은 제1 랙 레일의 중단부와 제2 랙 레일의 중단부를 연결하도록 배치되는 중단 수평 레일과, 중단 수평 레일을 따라 이동하며 캐리어를 제1 랙 레일과 제2 랙 레일 간에 이송하는 중단 이송 랙을 포함할 수 있다.In addition, the middle horizontal section moves along the middle horizontal rail and the middle horizontal rail arranged to connect the middle part of the first rack rail and the middle part of the second rack rail, and transfers the carrier between the first rack rail and the second rack rail It may include a suspended transfer rack.
또한, 제1 랙 레일은 제1 상단 랙 레일과 제1 하단 랙 레일로 분할 형성되되 제1 상단 랙 레일과 제1 하단 랙 레일은 수직 방향으로 제1 이격 공간이 형성되도록 서로 이격 배치되고, 제2 랙 레일은 제2 상단 랙 레일과 제2 하단 랙 레일로 분할 형성되되 제2 상단 랙 레일과 제2 하단 랙 레일은 수직 방향으로 제2 이격 공간이 형성되도록 서로 이격 배치되며, 중단 수평 레일은 제1 및 제2 이격 공간을 가로지르고, 중단 이송 랙은 제1 상단 및 하단 랙 레일을 연결하거나 또는 제2 상단 및 하단 랙 레일을 연결하도록 제1 이격 공간 또는 제2 이격 공간에 선택 배치될 수 있다.In addition, the first rack rail is divided into a first upper rack rail and a first lower rack rail, the first upper rack rail and the first lower rack rail are spaced apart from each other to form a first spaced apart space in the vertical direction, 2 the rack rail is divided into a second upper rack rail and a second lower rack rail, the second upper rack rail and the second lower rack rail are spaced apart from each other to form a second spaced apart in the vertical direction, and the middle horizontal rail is Across the first and second separation spaces, the intermediate transfer rack may be selectively disposed in the first separation space or the second separation space to connect the first upper and lower rack rails or connect the second upper and lower rack rails. have.
또한, 중단 이송 랙은 제어반의 제어에 의해 캐리어가 제1 하단 랙 레일에서 제1 및 제2 상단 랙 레일을 바이패스하고 제2 하단 랙 레일로 이송하거나 또는 캐리어를 제2 상단 랙 레일에서 제1 및 제2 하단 랙 레일을 바이패스하고 제1 상단 랙 레일로 이송할 수 있다.In addition, in the middle transfer rack, under the control of the control panel, the carrier bypasses the first and second upper rack rails in the first lower rack rail and transfers to the second lower rack rail, or transfers the carrier from the second upper rack rail to the first and bypassing the second lower rack rail and transferring to the first upper rack rail.
또한, 제어반은 각층의 승강장에서 호출 신호가 발생하면, 발생된 호출 신호를 캐리어에 할당하는 호출 할당부와, 호출 신호가 할당된 캐리어의 이동 경로가 단축되도록 중단 이송 랙을 동작 제어하는 이송 랙 제어부를 포함할 수 있다.In addition, when a call signal is generated at the platform of each floor, the control panel includes a call assignment unit for allocating the generated call signal to a carrier, and a transfer rack control unit for operating the interrupted transfer rack so that the moving path of the carrier to which the call signal is assigned is shortened. may include.
또한, 이송 랙 제어부는 제2 하단 랙 레일이 배치되는 층의 승강장에서 발생된 호출 신호가 제1 하단 랙 레일에서 이동 중인 캐리어에 할당되면, 할당된 캐리어가 제1 및 제2 상단 랙 레일을 바이패스하도록 중단 이송 랙을 동작 제어하고, 제1 상단 랙 레일이 배치되는 층의 승강장에서 발생된 호출 신호가 제2 상단 랙 레일에서 이동 중인 캐리어에 할당되면, 할당된 캐리어가 제1 및 제2 하단 랙 레일을 바이패스하도록 중단 이송 랙을 동작 제어할 수 있다. In addition, when the call signal generated in the platform of the floor where the second lower rack rail is arranged is assigned to the carrier moving in the first lower rack rail, the transfer rack control unit is configured to allow the assigned carrier to pass the first and second upper rack rails. Control the operation of the intermediate transfer rack to pass, and when a call signal generated at the platform of the floor where the first upper rack rail is arranged is assigned to a carrier moving in the second upper rack rail, the assigned carrier is assigned to the first and second lower Interrupted transfer racks can be motion controlled to bypass the rack rails.
또한, 중단 수평 구간은 중단 이송 랙이 제1 이격 공간에서 이탈하면 제1 상단 랙 레일과 제1 하단 랙 레일을 연결하는 제1 서브 랙과, 중단 이송 랙이 제2 이격 공간에서 이탈하면 제2 상단 랙 레일과 제2 하단 랙 레일을 연결하는 제2 서브 랙을 더 포함할 수 있다.In addition, the middle horizontal section is a first sub-rack connecting the first upper rack rail and the first lower rack rail when the middle transfer rack is separated from the first separation space, and when the middle transfer rack is separated from the second spaced apart space, the second It may further include a second sub-rack connecting the upper rack rail and the second lower rack rail.
또한, 중단 수평 레일은 양 끝단에 제1 서브 랙 또는 제2 서브 랙이 임시 배치되는 제1 및 제2 임시 배치 구간이 형성될 수 있다.In addition, the first and second temporary arrangement sections in which the first sub-rack or the second sub-rack is temporarily disposed may be formed at both ends of the middle horizontal rail.
또한, 제어반은 제1 및 제2 서브 랙을 동작 제어하는 서브 랙 제어부를 포함하고, 서브 랙 제어부는 중단 이송 랙이 제1 이격 공간으로 향하면, 제1 임시 배치 구간에 배치되도록 제1 서브 랙을 동작 제어하며 제2 이격 공간에 배치되도록 제2 서브 랙을 동작 제어하고, 중단 이송 랙이 제2 이격 공간으로 향하면, 제1 이격 공간에 배치되도록 제1 서브 랙을 동작 제어하며 제2 임시 배치 구간에 배치되도록 제2 서브 랙을 동작 제어할 수 있다.In addition, the control panel includes a sub-rack control unit for controlling the operation of the first and second sub-racks, and the sub-rack control unit controls the first sub-rack to be disposed in the first temporary arrangement section when the intermediate transfer rack is directed to the first separation space. Control the operation and control the operation of the second sub-rack to be placed in the second spaced apart space, and when the intermediate transfer rack is directed to the second spaced space, the first sub-rack is operated to be disposed in the first spaced space, and a second temporary arrangement section It is possible to control the operation of the second sub-rack so as to be disposed in the
또한, 이송 레일은 둘 이상 구비되고, 수직반송 시스템은 이송 레일 간을 연결하는 연결 트래버서를 더 포함하며 제어반은 캐리어가 이송 레일 간에 이동하도록 연결 트래버서를 제어할 수 있다.In addition, two or more transport rails are provided, and the vertical transport system further includes a connection traverser connecting the transport rails, and the control panel may control the connection traverser so that the carrier moves between the transport rails.
또한, 연결 트래버서는 어느 하나의 이송 레일의 제1 수직 구간과 다른 하나의 상이 이송 레일의 제2 수직 구간 간을 연결하는 연결 수평 레일과, 연결 수평 레일을 따라 이동하며 캐리어를 어느 하나의 이송 레일의 제1 수직 구간과 다른 하나의 상이 이송 레일의 제2 수직 구간 간에 이송하는 연결 이송 랙을 포함할 수 있다.In addition, the connection traverser moves along the connection horizontal rail connecting the first vertical section of any one transport rail and the second vertical section of the other different transport rail, and moves along the connection horizontal rail to move the carrier to any one transport rail It may include a connection transfer rack for transporting between the first vertical section and the second vertical section of the other different transfer rail.
또한, 제어반은 이송 레일별로 캐리어의 운행 층을 다르게 운행 제어할 수 있다.In addition, the control panel may control the operation of the operation floor of the carrier differently for each transfer rail.
또한, 제어반은 이송 레일이 배치되는 승강장별로 발생된 호출 신호를 카운트하는 카운트부와, 카운트된 호출 신호의 수에 기초하여 캐리어가 운행되는 이송 레일을 결정하는 이송 레일 결정부, 그리고 이송 레일 결정부에서 결정된 결정 정보에 따라 캐리어가 다른 이송 레일로 이동하도록 연결 트래버서를 제어하는 연결 트래버서 제어부를 포함할 수 있다.In addition, the control panel includes a count unit for counting the call signals generated for each platform on which the transfer rail is disposed, a transfer rail determining unit for determining the transfer rail on which the carrier is driven based on the counted number of call signals, and a transfer rail determining unit It may include a connection traverser control unit for controlling the connection traverser so that the carrier moves to another transport rail according to the determination information determined in.
또한, 이송 레일 결정부는 이송 레일이 배치되는 승강장별 단위 시간당 호출 신호 수의 비율에 따라 이송 레일별로 운행되는 캐리어의 대수를 결정할 수 있다.In addition, the transfer rail determiner may determine the number of carriers operated for each transfer rail according to a ratio of the number of call signals per unit time for each platform on which the transfer rail is disposed.
또한, 이송 레일 결정부는 이송 레일별로 운행되는 캐리어의 대수 차가 기준 값을 초과하지 않도록 할 수 있다.In addition, the transfer rail determining unit may prevent a difference in the number of carriers operated for each transfer rail from exceeding a reference value.
또한, 이송 레일은 제1 및 제2 수직 구간과 함께, 상단 및 하단 수평 구간에 의해 연결되는 제3 수직 구간을 더 포함하고, 제어반은 제3 수직 구간을 캐리어의 순환 경로에 포함시키거나 또는 포함시키지 않을 수 있다.In addition, the transport rail further includes a third vertical section connected by the upper and lower horizontal sections together with the first and second vertical sections, and the control panel includes or includes the third vertical section in the circulation path of the carrier may not do it
또한, 제어반은 제1 내지 제3 수직 구간 중 둘 이상의 수직 구간이 포함되도록 순환 경로를 결정하는 경로 결정부와, 결정된 순환 경로에 따라 운행되도록 캐리어를 운행 제어하는 캐리어 운행부를 포함할 수 있다.In addition, the control panel may include a path determining unit for determining a circulation path to include two or more vertical sections among the first to third vertical sections, and a carrier operating unit for operating and controlling the carrier so as to operate according to the determined circulation path.
또한, 제어반은 제1 내지 제2 수직 구간의 이상 상태를 판단하는 구간 상태 판단부를 더 포함하고, 경로 결정부는 제1 내지 제2 수직 구간이 정상 상태로 판단되면 제1 내지 제2 수직 구간을 포함하도록 순환 경로를 결정하고, 제1 내지 제2 수직 구간 중 어느 하나의 수직 구간이 이상 상태로 판단되면 제3 수직 구간이 이상 상태의 수직 구간을 대신하여 포함되도록 순환 경로를 결정할 수 있다.In addition, the control panel further includes a section state determination unit for determining an abnormal state of the first to second vertical sections, and the path determining unit includes first to second vertical sections when the first to second vertical sections are determined to be normal. to determine the circulation path, and if any one of the first to second vertical sections is determined to be in an abnormal state, the circulation path may be determined such that the third vertical section is included in place of the abnormal vertical section.
또한, 제어반은 캐리어의 이상 상태를 판단하는 캐리어 상태 판단부를 더 포함하고, 캐리어 운행부는 이상 상태로 판단된 캐리어가 순환 경로에서 이탈하여 제1 내지 제3 수직 구간 중 순환 경로에 포함되지 않은 수직 구간에 주차되도록 캐리어를 운행 제어할 수 있다.In addition, the control panel further includes a carrier state determination unit for determining the abnormal state of the carrier, the carrier operating unit is a vertical section that is not included in the circulation path of the first to third vertical sections because the carrier determined to be in an abnormal state departs from the circulation path. It is possible to control the operation of the carrier so that it is parked in the parking lot.
또한, 이상 상태의 캐리어가 순환 경로 상에서 이동이 불가한 상태이면, 경로 결정부는 이동이 불가한 캐리어가 위치한 수직 구간이 순환 경로에서 제외되도록 순환 경로를 결정할 수 있다.In addition, if the carrier in the abnormal state is in a state in which movement is impossible on the circulation path, the path determining unit may determine the circulation path so that a vertical section in which the immovable carrier is located is excluded from the circulation path.
또한, 캐리어 운행부는 제1 내지 제2 수직 구간이 순환 경로를 이루도록 결정되면 순환 경로에 포함되지 않는 제3 수직 구간을 따라 왕복 운행하도록 어느 하나의 캐리어를 운행 제어할 수 있다.In addition, when the first to second vertical sections are determined to form a circulation path, the carrier operating unit may operate and control any one carrier to reciprocate along a third vertical section that is not included in the circulation path.
본 발명에 의하면, 두 개의 수직 구간과, 두 개의 수직 구간의 상 하단을 연결하는 수평 구간이 형성되는 순환식 이송 레일 상을 하나 이상의 캐리어가 랙 앤 피니언 구동방식에 의해 순환 이동하도록 하여, 하나의 이송 레일 상을 다수의 캐리어가 운행될 수 있도록 함으로써 단위 시간당 물동량을 크게 향상시킬 수 있는 효과가 있다.According to the present invention, one or more carriers are cyclically moved by a rack-and-pinion driving method on a circulating transport rail in which two vertical sections and a horizontal section connecting the upper and lower ends of the two vertical sections are formed. By allowing a plurality of carriers to operate on the transfer rail, there is an effect that the amount of cargo per unit time can be greatly improved.
또한, 본 발명은 양 수직 구간의 중단부를 연결하는 중단 수평 레일과, 중단 수평 레일을 따라 이동하며 캐리어를 이송하는 중단 이송 랙이 구비되는 트래버서 방식의 중단 수평 구간이 형성되어, 필요에 따라 특정 캐리어가 일정 구간을 바이패스 가능하도록 함으로써 운영 효율을 향상시킬 수 있는 효과가 있다.In addition, the present invention is formed with a middle horizontal section of the traverser method that is provided with a middle and middle horizontal rail connecting the middle and middle sections of both vertical sections, and a middle and middle transport rack that moves along the middle horizontal rail and transports a carrier. By allowing the carrier to bypass a certain section, there is an effect of improving the operating efficiency.
또한, 본 발명은 중단 이송 랙이 이탈하여 수직 구간에 이격 공간이 형성될 때 형성된 이격 공간에 배치되도록, 중단 수평 구간에 제1 및 제2 서브 랙이 구비되어, 캐리어의 이송을 위해 중단 이송 랙이 이탈하더라도 제1 또는 제2 서브 랙에 의해 수직 구간의 경로가 끊어지지 않도록 함으로써 트래버서 방식의 중단 수평 구간이 형성되어도 캐리어의 순환 이동의 효율 저하를 최소화할 수 있는 효과가 있다.In addition, the present invention is provided with the first and second sub-racks in the middle horizontal section to be disposed in the spaced space formed when the intermediate transfer rack is separated and the spaced space is formed in the vertical section, the intermediate transfer rack for the transfer of the carrier Even if this deviation, the path of the vertical section is not broken by the first or second sub-rack, so that even if the middle horizontal section of the traverser method is formed, there is an effect that can minimize the decrease in the efficiency of the circulation movement of the carrier.
또한, 본 발명은 서로 다른 층의 승강장을 운행하는 둘 이상의 이송 레일이 구비되고 캐리어가 이송 레일 간에 이동 가능하도록 이송 레일 간을 연결하는 연결 트래버서가 구비되어, 승강장의 교통량에 따라 각 이송 레일에서 운행되는 캐리어의 수를 유기적으로 조절 가능하도록 함으로써 단위 시간당 물동량을 크게 향상시킬 수 있는 효과가 있다.In addition, the present invention is provided with two or more transfer rails that operate on platforms of different floors, and a connection traverser connecting the transfer rails so that the carrier can move between the transfer rails is provided, and operates on each transfer rail according to the traffic volume of the platform By making the number of carriers to be used organically controllable, there is an effect that the amount of transport per unit time can be greatly improved.
또한, 본 발명은 이송 레일에 제1 및 제2 수직 구간 외에도 제3 수직 구간이 구비되어, 캐리어가 순환 운행되는 순환 경로를 이루는 제1 또는 제2 수직 구간에 문제가 발생하였을 때 문제가 발생한 수직 구간을 대신하여 제3 수직 구간이 순환 경로를 이루도록 함으로써 제1 또는 제2 수직 구간에 문제가 발생하여도 운행을 중단하지 않고 지속 가능하게 하는 효과가 있다.In addition, the present invention is provided with a third vertical section in addition to the first and second vertical sections on the transport rail, and when a problem occurs in the first or second vertical section constituting the circulation path in which the carrier circulates, the vertical section where the problem occurs By allowing the third vertical section to form a circulation path instead of the section, even if a problem occurs in the first or second vertical section, there is an effect of making it sustainable without stopping the operation.
도 1은 본 발명의 일 실시예에 따른 로봇용 순환식 수직반송 시스템을 개략적으로 도시한 도면이다.1 is a diagram schematically showing a circulating vertical transfer system for a robot according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 로봇용 순환식 수직반송 시스템에 두 개의 이송 레일이 구비되는 모습을 개략적으로 도시한 도면이다.2 is a diagram schematically illustrating a state in which two transfer rails are provided in a circulating vertical transfer system for a robot according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 이송 레일을 개략적으로 도시한 도면이다.3 is a diagram schematically illustrating a transport rail according to an embodiment of the present invention.
도 4의 (a), (b)는 본 발명의 일 실시예에 따른 캐리어가 수직 구간을 따라 이동하는 구동방식을 설명하기 위해 도시한 도면이다.4A and 4B are diagrams illustrating a driving method in which a carrier moves along a vertical section according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 수평 구간의 구동 모습을 도시한 도면이다.5 is a diagram illustrating a driving state of a horizontal section according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 제어반의 기능 블록도이다.6 is a functional block diagram of a control panel according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 운행 제어부의 기능 블록도이다.7 is a functional block diagram of an operation control unit according to an embodiment of the present invention.
도 8 내지 도 9는 본 발명의 일 실시예에 따른 호출 할당부의 호출 신호 할당 일례를 도시한 도면이다.8 to 9 are diagrams illustrating an example of allocating a call signal by a call allocator according to an embodiment of the present invention.
도 10은 본 발명의 일 실시예에 따른 중단 수평 구간이 구비된 이송 레일을 도시한 도면이다.10 is a view showing a transport rail provided with a horizontal section in the middle according to an embodiment of the present invention.
도 11은 본 발명의 일 실시예에 따른 중단 수평 구간을 더욱 상세하게 도시한 도면이다.11 is a diagram illustrating in more detail a middle horizontal section according to an embodiment of the present invention.
도 12는 본 발명의 일 실시예에 따른 운행 제어부와 바이패스 운행부의 기능 블록도이다. 12 is a functional block diagram of an operation control unit and a bypass operation unit according to an embodiment of the present invention.
도 13은 본 발명의 일 실시예에 따른 두 개의 이송 레일 연결 트래버서에 연결되어 운행되는 모습을 도시한 도면이다.13 is a view showing a state in which the operation is connected to two transport rail connection traverser according to an embodiment of the present invention.
도 14는 본 발명의 일 실시예에 따른 운행 제어부와 운행 비율 조절부의 기능 블록도이다.14 is a functional block diagram of a driving control unit and a driving ratio adjusting unit according to an embodiment of the present invention.
도 15는 본 발명의 일 실시예에 따른 이송 레일별 운행 캐리어 수가 조절되는 과정을 도시한 순서도이다.15 is a flowchart illustrating a process in which the number of operating carriers for each transport rail is adjusted according to an embodiment of the present invention.
도 16은 본 발명의 일 실시예에 따른 이송 레일에 제3 수직 구간이 구비된 모습을 도시한 도면이다.16 is a view showing a state in which a third vertical section is provided on the transfer rail according to an embodiment of the present invention.
도 17은 본 발명의 일 실시예에 따른 운행 제어부와 비상 운행 제어부의 기능 블록도이다.17 is a functional block diagram of an operation control unit and an emergency operation control unit according to an embodiment of the present invention.
도 18의 (a) 내지 도 20의 (b)는 본 발명의 일 실시예에 따른 비상 운행 일례를 도시한 도면이다.18A to 20B are diagrams illustrating an example of an emergency operation according to an embodiment of the present invention.
도 21은 본 발명의 일 실시예에 따른 추가 운행의 일례를 도시한 도면이다.21 is a diagram illustrating an example of an additional operation according to an embodiment of the present invention.
이하, 본 발명의 바람직한 실시예를 첨부된 도면들을 참조하여 상세히 설명한다. 우선 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. First, in adding reference numerals to the components of each drawing, it should be noted that the same components are given the same reference numerals as much as possible even though they are indicated on different drawings. In addition, in describing the present invention, if it is determined that a detailed description of a related known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted.
도 1은 본 발명의 일 실시예에 따른 로봇용 순환식 수직반송 시스템을 개략적으로 도시한 도면이고, 도 2는 본 발명의 일 실시예에 따른 로봇용 순환식 수직반송 시스템에 두 개의 이송 레일이 구비되는 모습을 개략적으로 도시한 도면이다.1 is a view schematically showing a circular vertical transport system for a robot according to an embodiment of the present invention, Figure 2 is two transport rails in the circular vertical transport system for a robot according to an embodiment of the present invention It is a diagram schematically showing a state in which it is provided.
본 발명의 일 실시예에 따른 수직 반송 시스템은, 순환 경로를 형성하는 하나 이상의 이송 레일(100)과, 이송 레일(100)을 따라 순환 운행되는 하나 이상의 캐리어(200), 그리고 이송 레일(100) 및 캐리어(200)와 유선 또는 무선 연결되어 이송 레일(100) 및 캐리어(200)를 제어하는 제어반(300)을 포함하여 구성된다.A vertical transport system according to an embodiment of the present invention includes one or more transport rails 100 forming a circulation path, one or more carriers 200 circulating along the transport rail 100 , and a transport rail 100 . and a control panel 300 connected to the carrier 200 by wire or wirelessly to control the transport rail 100 and the carrier 200 .
이때, 캐리어(200)는 이송 레일(100)이 형성하는 순환 경로를 따라 순환 운행되며 하나의 이송 레일(100)에는 다수개의 캐리어(200)가 운행될 수 있다. At this time, the carrier 200 is cyclically operated along a circulation path formed by the transfer rail 100 , and a plurality of carriers 200 may be operated on one transfer rail 100 .
도 2를 참조하면, 본 실시예에 따른 이송 레일(100)은 둘 이상 구비될 수 있다. 그리고 이와 같이 이송 레일(100)이 둘 이상 구비될 경우 각각의 이송 레일(100-1, 100-2)은 연결 트래버서(400)에 의해 연결될 수 있다.Referring to FIG. 2 , two or more transport rails 100 according to the present embodiment may be provided. And when two or more transport rails 100 are provided as described above, each of the transport rails 100 - 1 and 100 - 2 may be connected by a connection traverser 400 .
이때, 각각의 이송 레일(100-1, 100-2)은 개별적인 순환 경로를 형성하고 다수개의 캐리어(200)는 각각의 이송 레일(100-1, 100-2)에 배치되어 각각의 이송 레일(100-1, 100-2)이 형성하는 순환 경로를 따라 순환 운행되는데, 필요에 따라서는 연결 트래버서(400)를 통해 어느 하나의 이송 레일(100-1)에서 운행하던 캐리어(200)를 다른 하나의 이송 레일(100-2)로 이동시켜 이송 레일(100-1, 100-2)별 캐리어(200) 운행 대수를 조절할 수 있다. At this time, each of the transport rails (100-1, 100-2) forms an individual circulation path, and a plurality of carriers 200 are disposed on each transport rail (100-1, 100-2) to each transport rail ( It circulates along the circulation path formed by 100-1, 100-2), and if necessary, the carrier 200 that was traveling on any one of the transport rails 100-1 through the connection traverser 400 is moved to another. By moving to one transfer rail 100-2, the number of operating carriers 200 for each transfer rail 100-1, 100-2 can be adjusted.
도 3는 본 발명의 일 실시예에 따른 이송 레일을 개략적으로 도시한 도면이며, 도 4의 (a), (b)는 본 발명의 일 실시예에 따른 캐리어가 수직 구간을 따라 이동하는 구동방식을 설명하기 위해 도시한 도면이다. 그리고 도 5는 본 발명의 일 실시예에 따른 수평 구간의 구동 모습을 도시한 도면이다.Figure 3 is a view schematically showing a transport rail according to an embodiment of the present invention, Figure 4 (a), (b) is a driving method in which the carrier according to an embodiment of the present invention moves along a vertical section It is a drawing shown to explain. And FIG. 5 is a view showing a driving state of a horizontal section according to an embodiment of the present invention.
도 3를 참조하여 이송 레일(100)을 보다 구체적으로 살펴보면, 이송 레일(100)은 제1 및 제2 수직 구간(110, 120)과, 제1 및 제2 수직 구간(110, 120) 간의 상단 및 하단을 연결하는 상단 및 하단 수평 구간(130, 140)을 포함할 수 있다. Looking at the transfer rail 100 in more detail with reference to FIG. 3 , the transfer rail 100 is an upper end between the first and second vertical sections 110 and 120 and the first and second vertical sections 110 and 120 . and upper and lower horizontal sections 130 and 140 connecting the lower ends.
이러한 제1 및 제2 수직 구간(110, 120)과, 상단 및 하단 수평 구간(130, 140)은 함께 순환 경로를 형성하며, 상술한 바와 같이 캐리어(200)는 제1 및 제2 수직 구간(110, 120)과, 상단 및 하단 수평 구간(130, 140)을 따라 이동하며 순환 운행될 수 있다. 여기서 각 캐리어(200)에는 다양한 대상이 탑승 가능하며 본 실시예에 따른 수직반송 시스템에서는 로봇(R)이 탑승하는 것을 예로 하여 설명하기로 한다.The first and second vertical sections 110 and 120 and the upper and lower horizontal sections 130 and 140 together form a circulation path, and as described above, the carrier 200 includes the first and second vertical sections ( 110 and 120) and the upper and lower horizontal sections 130 and 140 may be moved and cycled. Here, various objects can be boarded on each carrier 200 , and in the vertical conveyance system according to the present embodiment, the robot R is boarded as an example.
상술한 바와 같이 캐리어(200)는 이송 레일(100) 상에서 랙 앤 피니언 구동방식에 의해 구동되는데, 이를 위해 도 4의 (a), (b)에 도시된 바와 같이 제1 수직 구간(110)은 제1 랙 레일(111)을 포함하고, 제2수직 구간(120)은 제2 랙 레일(121)을 포함하며, 캐리어(200)에는 피니언 기어(210)가 구비되어 피니언 기어(210)의 구동에 의해 제1 및 제2 랙 레일(111, 121)을 따라 이동할 수 있다. As described above, the carrier 200 is driven by a rack-and-pinion driving method on the transport rail 100. For this purpose, the first vertical section 110 as shown in (a) and (b) of FIG. 4 is The first rack rail 111 is included, the second vertical section 120 includes the second rack rail 121 , and the carrier 200 is provided with a pinion gear 210 to drive the pinion gear 210 . It can move along the first and second rack rails (111, 121) by the.
또한, 도 5에 도시된 바와 같이 상단 수평 구간(130)은 제1 랙 레일(111)의 상측과 제2 랙 레일(121)의 상측을 연결하도록 배치되는 상단 수평 레일(131)과, 상단 수평 레일(131)을 따라 이동하며 캐리어(200)를 제1 랙 레일(111)에서 제2 랙 레일(121)로 이송하는 상단 이송 랙(132)을 포함하고, 하단 수평 구간(140)은 제1 랙 레일(111)의 하측과 제2 랙 레일(121)의 하측을 연결하도록 배치되는 하단 수평 레일(141)과, 하단 수평 레일(141)을 따라 이동하며 캐리어(200)를 제2 랙 레일(121)에서 제1 랙 레일(111)로 이송하는 하단 이송 랙(142)을 포함할 수 있다. 여기서 상단 수평 레일(131)과 하단 수평 레일(141)의 캐리어(200) 이송 방향은 이송 레일(100)에서 캐리어(200)의 순환 이동 방향에 따라 변경 가능하며, 도면에 도시된 제1 랙 레일(111)과 제2 랙 레일(121)의 위치 또한 변경 가능하다.In addition, as shown in FIG. 5 , the upper horizontal section 130 includes an upper horizontal rail 131 disposed to connect an upper side of the first rack rail 111 and an upper side of the second rack rail 121 , and the upper horizontal It moves along the rail 131 and includes an upper transfer rack 132 for transferring the carrier 200 from the first rack rail 111 to the second rack rail 121, and the lower horizontal section 140 is the first A lower horizontal rail 141 disposed to connect the lower side of the rack rail 111 and the lower side of the second rack rail 121, and the carrier 200 while moving along the lower horizontal rail 141, the second rack rail ( 121) may include a lower transfer rack 142 for transferring to the first rack rail 111. Here, the transport direction of the carrier 200 of the upper horizontal rail 131 and the lower horizontal rail 141 is changeable according to the circular movement direction of the carrier 200 in the transport rail 100, and the first rack rail shown in the drawing The positions of the (111) and the second rack rail 121 are also changeable.
즉, 상단 이송 랙(132)은 제1 랙 레일(111)의 상측에서 제1 랙 레일(111)과 연결되도록 하고, 캐리어(200)가 제1 랙 레일(111)로부터 이동하여 상단 이송 랙(132) 상에 배치되면 상단 이송 랙(132)이 제2 랙 레일(121)의 상측에서 제2 랙 레일(121)과 연결되는 위치로 상단 수평 레일(131)을 따라 이동하여 캐리어(200)가 상단 이송 랙(132)으로부터 제2 랙 레일(121)로 이동 가능하도록 한다. 그리고 하단 이송 랙(142)은 상술한 상단 이송 랙(132)의 이송 방법과 동일한 방법으로 캐리어(200)가 제2 랙 레일(121)의 하측에서 제1 랙 레일(111)의 하측으로 이동하도록 한다.That is, the upper transfer rack 132 is connected to the first rack rail 111 from the upper side of the first rack rail 111, and the carrier 200 moves from the first rack rail 111 to the upper transfer rack ( 132), the upper transfer rack 132 moves along the upper horizontal rail 131 to a position connected to the second rack rail 121 from the upper side of the second rack rail 121, so that the carrier 200 is To be movable from the upper transfer rack 132 to the second rack rail 121 . And the lower transfer rack 142 is the same method as the transfer method of the upper transfer rack 132 described above so that the carrier 200 moves from the lower side of the second rack rail 121 to the lower side of the first rack rail 111 . do.
이러한 구성들로 인하여 본 실시예에 따른 수직반송 시스템은 이송 레일(100)이 순환 경로를 형성하여 캐리어(200)가 순환 운행 가능하도록 하며, 이러한 순환 운행 방식은 하나의 이송 레일(100) 상에서 다수대의 캐리어(200)를 운행 가능하게 함으로써 단위 시간당 물동량을 크게 향상시킬 수 있는 효과가 있다.Due to these configurations, in the vertical conveying system according to the present embodiment, the conveying rail 100 forms a circulation path so that the carrier 200 can circulate, and this circulation method is a plurality of transport rails 100 on one conveyance rail 100 . By enabling the carrier 200 to operate, there is an effect that can greatly improve the amount of cargo per unit time.
도 6은 본 발명의 일 실시예에 따른 제어반의 기능 블록도이고, 도 7은 본 발명의 일 실시예에 따른 운행 제어부의 기능 블록도이다. 그리고 도 8 내지 도 9는 본 발명의 일 실시예에 따른 호출 할당부의 호출 신호 할당 일례를 도시한 도면이다.6 is a functional block diagram of a control panel according to an embodiment of the present invention, and FIG. 7 is a functional block diagram of an operation controller according to an embodiment of the present invention. 8 to 9 are diagrams illustrating an example of call signal assignment by a call allocator according to an embodiment of the present invention.
도 6을 참조하면 제어반(300)은 이송 레일(100) 상에서 캐리어(200)가 순환 운행하면서 각 승강장에 발생한 호출 신호가 할당되도록 캐리어(200)를 운행 제어하는 운행 제어부(310)와, 캐리어(200)가 이송 레일(100) 상에서 특정 구간을 바이패스하고 이동하도록 하는 바이패스 운행부(320)와, 다수개의 이송 레일(100)이 운행시 이송 레일(100) 간의 캐리어(200) 운행 대수 비율을 조절하는 운행 비율 조절부(330), 그리고 이송 레일(100)의 제1 또는 제2 수직 구간(110, 120) 중 어느 하나의 수직 구간에 이상이 발생하였을 때 비상 운행 제어하는 비상 운행 제어부(340)를 포함하여 구성될 수 있다.Referring to FIG. 6 , the control panel 300 includes an operation control unit 310 that operates and controls the carrier 200 so that a call signal generated at each platform is allocated while the carrier 200 circulates on the transfer rail 100 , and the carrier ( The bypass operation unit 320 for allowing the 200) to bypass and move a specific section on the transfer rail 100, and the carrier 200 between the transfer rail 100 when a plurality of transfer rails 100 are operated. an emergency operation control unit for emergency operation control when an abnormality occurs in any one of the first or second vertical sections 110 and 120 of the transport rail 100, and an emergency operation control unit ( 340) may be included.
도 7을 참조하여 운행 제어부(310)를 구체적으로 설명하면, 운행 제어부(310)는 승강장에서 호출 신호가 발생하면 호출 신호가 발생한 승강장으로 향하는 빈 캐리어 중 가장 근접한 캐리어(200)에 발생한 호출 신호를 할당하되, 다수개의 승강장에서 호출 신호가 발생하면 캐리어의 운행 방향을 기준으로 후단 층의 승강장에서 발생한 호출 신호를 우선 할당하는 호출 할당부(311)와, 호출 할당부(311)에서 할당된 호출 신호에 따라 운행되도록 캐리어(200)를 운행 제어하는 캐리어 운행부(312)를 포함할 수 있다. 여기서, 캐리어 운행부(312)는 캐리어(200)의 피니언 기어(210)를 구동 제어하여 캐리어(200)가 제1 및 제2 수직 구간(110, 120)을 따라 이동하도록 할 뿐 아니라 캐리어(200)가 수평 이동 가능하도록 상단 및 하단 이송 랙(132, 142)이 구동 제어할 수 있다.When the operation control unit 310 is described in detail with reference to FIG. 7 , when a call signal is generated at the platform, the call signal generated in the nearest carrier 200 among empty carriers heading to the platform where the call signal is generated. However, when a call signal is generated at a plurality of platforms, a call allocator 311 that preferentially allocates a call signal generated at the platform of the rear floor based on the traveling direction of the carrier, and the call signal allocated by the call allocator 311 It may include a carrier operation unit 312 for operating and controlling the carrier 200 to operate according to the operation. Here, the carrier operation unit 312 drives and controls the pinion gear 210 of the carrier 200 so that the carrier 200 moves along the first and second vertical sections 110 and 120 as well as the carrier 200 . ) can be driven and controlled by the upper and lower transport racks 132 and 142 to enable horizontal movement.
도 6을 예시로 하여 보다 구체적으로 설명하면, 하향 운행 방향 승강장에서 대기 중인 로봇(WR)이 2층, 4층, 8층에 존재하여 2층, 4층, 8층에서 하향 호출 신호가 발생하였다면, 호출 할당부(311)는 캐리어(200)의 운행 방향을 기준으로 후단 층의 승강장에서 발생한 호출 신호인 2층의 호출 신호를 우선 할당하되, 2층으로 향하는 빈 캐리어 중 가장 근접한 캐리어(200-1)에 2층의 호출 신호를 할당할 수 있다. 여기서 빈 캐리어란 로봇(R)이 탑승하지 않은 상태이며 동시에 호출 신호가 할당되지 않은 캐리어를 의미할 수 있다. 같은 방법으로, 4층으로 향하는 빈 캐리어 중 가장 근접한 캐리어(200-2)에 4층의 호출 신호를 할당하고, 다음으로 8층으로 향하는 빈 캐리어 중 가장 근접한 캐리어(200-3)에 8층의 호출 신호를 할당할 수 있다. 이때, 본 실시예에 따른 수직반송 시스템은 상향 운행되는 승강장과 하향 운행되는 승강장이 별도로 존재하게 되기 때문에, 상단 수평 구간(130) 또는 하단 수평 구간(140)을 통과한 캐리어(200)는 항상 비어있는 상태의 캐리어(200)이다. 따라서 호출 할당부(310)는 하향 호출 신호를 할당할 때 상향으로 이동 중인 캐리어(200)에 로봇(R)이 탑승 중이더라도 해당 캐리어(200)를 빈 캐리어로 판단하지 않고 호출 신호를 할당할 수 있다.6 as an example, if the robot (WR) waiting at the platform in the downward direction exists on the 2nd, 4th, and 8th floors and a downcall signal is generated on the 2nd, 4th, and 8th floors , the call allocator 311 first allocates the call signal of the second floor, which is a call signal generated at the platform of the rear floor, based on the traveling direction of the carrier 200, but the nearest carrier 200- 1) can be assigned to the 2nd floor call signal. Here, the empty carrier may mean a carrier in which the robot R is not on board and to which a call signal is not assigned at the same time. In the same way, the call signal of the 4th floor is allocated to the closest carrier 200-2 among the empty carriers heading to the 4th floor, and then the 8th floor is assigned to the closest carrier 200-3 among the empty carriers heading to the 8th floor. A call signal can be assigned. At this time, since the vertical transfer system according to the present embodiment has a platform running upward and a platform running downward, the carrier 200 passing through the upper horizontal section 130 or the lower horizontal section 140 is always empty. It is the carrier 200 in the present state. Therefore, the call allocator 310 allocates the call signal without determining that the carrier 200 is an empty carrier even if the robot R is on the carrier 200 moving upward when allocating the downlink call signal. have.
한편, 호출 할당부(310)는 캐리어(200)의 운행 방향 기준으로 상향 또는 하향의 단일 방향에서 발생된 호출 신호의 개수가 해당 이송 레일(100)에서 운행 중인 캐리어(200)의 개수를 초과하면, 초과한 운행 방향 승강장에서 발생한 호출 신호는 발생 시간 순서에 따라 우선 할당할 수 있다.On the other hand, the call allocator 310 is the number of call signals generated in a single direction upward or downward based on the traveling direction of the carrier 200 exceeds the number of carriers 200 running on the corresponding transport rail 100 . , the call signal generated at the platform in the excess driving direction can be assigned preferentially according to the order of occurrence time.
도 9를 예로 하여 구체적으로 설명하면, 어느 한 이송 레일(100)에 운행되는 운행 캐리어(200)의 수가 4대이고, 5개 층의 하향 승강장에서 하향 호출 신호가 발생하였으며 각 로봇(WR1~5)의 도착 순서에 따라 3층, 8층, 2층, 5층, 7층 순으로 하향 호출 신호가 발생한 경우, 호출 할당부(310)는 하향 방향 호출 수가 캐리어(200)의 운행 대수 4대를 초과하였기 때문에 캐리어(200)의 호출 신호가 발생한 승강장 층과 상관없이 가장 먼저 발생된 3층의 호출 신호를 가장 먼저 할당할 수 있다. 이때, 3층으로 접근하는 빈 캐리어 중 가장 근접한 캐리어(200-1)에 호출 신호를 할당하는 방식은 동일하게 적용될 수 있다. 다음 순서로 발생된 8층 승강장의 호출 신호를 두 번째로 할당하며, 나머지 호출 신호도 이와 같이 발생한 시간 순서에 따라 할당할 수 있다. 바람직하게, 더 이상 추가 호출 신호가 발생하지 않고 순차적으로 호출 신호를 할당하다 보면 일측 방향의 호출 신호가 다시 운행 캐리어 대수 이하가 되면 평시와 같이 후단 층의 호출 신호가 전단 캐리어(200)에 할당되도록 할당 방식을 복귀할 있다.9 as an example, the number of operating carriers 200 operating on one transfer rail 100 is four, and a downcall signal is generated at the down platform of 5 floors, and each robot WR1 to 5 ) in the order of arrival of the 3rd floor, 8th floor, 2nd floor, 5th floor, and 7th floor, when a downcall signal is generated, the call allocating unit 310 determines that the number of downlink calls is 4 units of the carrier 200. Because it is exceeded, the call signal of the third floor that is generated first can be allocated first, regardless of the platform floor where the call signal of the carrier 200 is generated. In this case, the method of allocating a call signal to the closest carrier 200 - 1 among empty carriers approaching the third floor may be equally applied. The call signal of the 8th floor platform generated in the following order is allocated second, and the remaining call signals can also be allocated according to the time order in which they occur. Preferably, if no additional call signals are generated and call signals are allocated sequentially, when the call signal in one direction becomes less than the number of operating carriers again, the call signal of the rear floor is allocated to the front end carrier 200 as usual. The allocation method can be returned.
이로써, 본 실시예에 따른 수직반송 시스템은 운행 효율이 극대화되는 방식으로 호출 신호가 캐리어(200)에 할당되도록 하되, 이로 인해 특정 층의 대기 로봇(R)의 대기 시간이 길어지는 것을 방지할 수 있다.Accordingly, the vertical transfer system according to the present embodiment allows the call signal to be allocated to the carrier 200 in a manner that maximizes the operation efficiency, thereby preventing the waiting time of the waiting robot R on a specific floor from increasing have.
도 10은 본 발명의 일 실시예에 따른 중단 수평 구간이 구비된 이송 레일을 도시한 도면이고, 도 11은 본 발명의 일 실시예에 따른 중단 수평 구간을 더욱 상세하게 도시한 도면이다. 그리고 도 12는 본 발명의 일 실시예에 따른 운행 제어부와 바이패스 운행부의 기능 블록도이다. 10 is a view showing a transport rail provided with a middle horizontal section according to an embodiment of the present invention, Figure 11 is a view showing in more detail the middle horizontal section according to an embodiment of the present invention. And FIG. 12 is a functional block diagram of the operation control unit and the bypass operation unit according to an embodiment of the present invention.
본 실시예에 따른 이송 레일(100)에는 캐리어(200)가 이송 레일(100)을 따라 운행 시 이송 레일(100)의 일부 구간을 바이패스 가능하도록 하여 캐리어(200)가 목적 위치까지 이동하는 이동 거리가 단축되도록 함으로써 캐리어(200)의 운행 효율을 증대시킬 수 있다.In the transfer rail 100 according to the present embodiment, the carrier 200 moves to the target position by allowing a partial section of the transfer rail 100 to be bypassed when the carrier 200 travels along the transfer rail 100 . By shortening the distance, it is possible to increase the operating efficiency of the carrier 200 .
이를 위해 이송 레일(100)에는 도 10에 도시된 바와 같이 제1 랙 레일(111)의 중단부에서 제2 랙 레일(121)의 중단부를 연결하는 중단 수평 구간(150)이 추가로 구비될 수 있다.To this end, the transfer rail 100 may further include a middle horizontal section 150 connecting the middle part of the second rack rail 121 from the middle part of the first rack rail 111 to the middle part of the second rack rail 121 as shown in FIG. 10 . have.
구체적으로, 중단 수평 구간(150)은 제1 랙 레일(111)의 중단부와 제2 랙 레일(121)의 중단부를 연결하도록 배치되는 중단 수평 레일(151)과, 중단 수평 레일(151)을 따라 이동하며, 캐리어(200)를 제1 랙 레일(111)에서 제2 랙 레일(121)로 이송하거나, 또는 제2 랙 레일(121)에서 제1 랙 레일(111)로 이송하는 중단 이송 랙(152)을 포함할 수 있다. 즉, 중단 수평 구간(150) 역시 상단 수평 구간(130) 및 하단 수평 구간(140)과 마찬가지로 트래버서 방식을 통해 캐리어(200)를 수평이동 시킨다.Specifically, the middle horizontal section 150 includes the middle horizontal rail 151 and the middle horizontal rail 151 arranged to connect the middle part of the first rack rail 111 and the middle part of the second rack rail 121 . Interrupted transport rack that moves along and transports the carrier 200 from the first rack rail 111 to the second rack rail 121, or from the second rack rail 121 to the first rack rail 111 (152). That is, the middle horizontal section 150 also horizontally moves the carrier 200 through the traverser method like the upper horizontal section 130 and the lower horizontal section 140 .
도 11을 참조하여 보다 구체적으로 설명하면 이송 레일(100)에 중단 수평 구간(150)이 구비되는 경우 제1 랙 레일(111)은 제1 상단 레일(111a)과 제1 하단 레일(111b)로 분할 형성되되 제1 상단 레일(111a)과 제1 하단 레일(111b)은 수직 방향으로 제1 이격 공간이 형성되도록 서로 이격 배치되고, 제2 랙 레일(121)은 제2 상단 레일(121a)과 제2 하단 레일(121b)로 분할 형성되되 제2 상단 레일(121a)과 제2 하단 레일(121b)은 수직 방향으로 제2 이격 공간이 형성되도록 서로 이격 배치될 수 있다. 11, when the intermediate horizontal section 150 is provided on the transfer rail 100, the first rack rail 111 is a first upper rail 111a and a first lower rail 111b. Doedoe divided, the first upper rail 111a and the first lower rail 111b are spaced apart from each other so as to form a first spaced space in the vertical direction, and the second rack rail 121 is a second upper rail 121a and The second lower rail 121b may be dividedly formed, and the second upper rail 121a and the second lower rail 121b may be spaced apart from each other to form a second spaced apart space in the vertical direction.
이때, 중단 수평 레일(151)은 제1 및 제2 이격 공간을 가로지르며, 중단 이송 랙(152)은 제1 이격 공간에 배치되어 제1 상단 및 하단 랙 레일(111a, 111b)을 연결하거나 또는 제2 이격 공간에 배치되어 제2 상단 및 하단 랙 레일(121a, 121b)을 연결할 수 있다. 즉, 중단 이송 랙(152)은 캐리어(200)를 이송시킬 뿐 아니라 제1 이격 공간 또는 제2 이격 공간에 배치되어 제1 랙 레일(111) 또는 제2 랙 레일(121)의 경로가 끊기지 않고 연속되도록 하는 역할을 수행할 수 있다.At this time, the middle horizontal rail 151 crosses the first and second spaced apart spaces, and the middle transfer rack 152 is disposed in the first spaced space to connect the first upper and lower rack rails 111a and 111b, or It is disposed in the second spaced apart space to connect the second upper and lower rack rails (121a, 121b). That is, the middle transfer rack 152 not only transfers the carrier 200, but is also disposed in the first spaced space or the second spaced space so that the path of the first rack rail 111 or the second rack rail 121 is not interrupted. It can play a role in continuity.
중단 이송 랙(152)은 캐리어(200)가 위치한 상태에서 중단 수평 레일(151)을 따라 이동함으로써 캐리어(200)를 제1 및 제2 랙 레일(111, 121) 간을 이동시킬 수 있는데, 구체적으로 중단 이송 랙(152)은 캐리어(200)가 제1 및 제2 상단 랙 레일(111a, 121a)을 바이패스하도록 캐리어(200)를 제1 하단 레일(111b)에서 제2 하단 레일(121b)로 이송하거나, 또는 캐리어(200)가 제1 및 제2 하단 랙 레일(111b, 121b)을 바이패스하도록 캐리어(200)를 제2 상단 레일(121a)에서 제1 상단 레일(111a)로 이송할 수 있다. Interrupted transport rack 152 can move the carrier 200 between the first and second rack rails 111 and 121 by moving along the middle horizontal rail 151 in a state where the carrier 200 is located, specifically Interrupted transfer rack 152 is the carrier 200 from the first lower rail (111b) to the second lower rail (121b) so that the carrier 200 bypasses the first and second upper rack rails (111a, 121a) or transfer the carrier 200 from the second upper rail 121a to the first upper rail 111a so that the carrier 200 bypasses the first and second lower rack rails 111b and 121b. can
중단 이송 랙(152)은 제1 또는 제2 이격 공간에 선택적으로 배치된다. 따라서 중단 이송 랙(152)이 제1 이격 공간에 배치된 상태에서는 제2 랙 레일(121)의 경로가 끊기고 중단 이송 랙(152)이 제2 이격 공간에 배치된 상태에서는 제1 랙 레일(111)의 경로가 끊기는 문제가 발생할 수 있다. Interrupted transfer rack 152 is selectively disposed in the first or second spaced apart space. Therefore, in a state in which the intermediate transfer rack 152 is disposed in the first separation space, the path of the second rack rail 121 is cut off, and in the state in which the intermediate transfer rack 152 is disposed in the second spaced space, the first rack rail 111 ), the path may be cut off.
도 11을 참고하면 이를 방지하기 위해, 중단 수평 구간(150)은 중단 이송 랙(152)이 제1 이격 공간에서 이탈하면 제1 이격 공간에 배치되어 제1 상단 레일(111a)과 제1 하단 레일(111b)을 연결하는 제1 서브 랙(153)과, 중단 이송 랙(152)이 제2 이격 공간에서 이탈하면 제2 이격 공간에 배치되어 제2 상단 레일(121a)과 제2 하단 레일(121b)을 연결하는 제2 서브 랙(154)을 더 포함할 수 있다.Referring to Figure 11, in order to prevent this, the middle horizontal section 150 is arranged in the first separation space when the intermediate transfer rack 152 is separated from the first separation space, the first upper rail (111a) and the first lower rail When the first sub-rack 153 connecting (111b) and the middle transfer rack 152 are separated from the second spaced apart space, they are disposed in the second spaced space, the second upper rail 121a and the second lower rail 121b ) may further include a second sub-rack 154 for connecting.
그리고 중단 수평 레일(151)은 양 끝단에 제1 서브 랙(153) 또는 제2 서브 랙(154)이 제1 또는 제2 이격 공간에 배치되지 않을 때 임시 배치되는 제1 및 제2 임시 배치 구간(151a, 151b)이 형성될 수 있다. 즉, 중단 수평 레일(151)은 제1 이격 공간 또는 제2 이격 공간을 가로지른 이후에도 소정 길이 연장 형성되어 제1 서브 랙(153) 또는 제2 서브 랙(154)이 임시 배치 가능하도록 할 수 있다.And the middle horizontal rail 151 is a first sub-rack 153 or a second sub-rack 154 at both ends temporarily arranged when not disposed in the first or second spaced apart first and second temporary arrangement section (151a, 151b) may be formed. That is, the middle horizontal rail 151 is formed to extend a predetermined length even after crossing the first spaced apart space or the second spaced space, so that the first sub-rack 153 or the second sub-rack 154 can be temporarily arranged. .
한편, 중단 수평 구간(150)에 의한 바이패스 운행은 바이패스 운행부(320)의 제어에 이루어질 수 있다. Meanwhile, the bypass operation by the interrupted horizontal section 150 may be performed under the control of the bypass operation unit 320 .
도 12를 참조하여 보다 구체적으로 설명하면, 바이패스 운행부(320)는 호출 신호 할당 정보와 캐리어(200) 운행 정보에 기초하여 중단 이송 랙(152)을 동작 제어하는 이송 랙 제어부(321)와, 중단 이송 랙(152)의 배치 위치에 따라 제1 서브 랙(153) 또는 제2 서브 랙(154)을 동작 제어하는 서브 랙 제어부(322)가 구비될 수 있다.When described in more detail with reference to FIG. 12 , the bypass operation unit 320 includes a transfer rack control unit 321 that controls the operation of the interrupted transfer rack 152 based on the call signal allocation information and the carrier 200 operation information and , a sub-rack control unit 322 for controlling the operation of the first sub-rack 153 or the second sub-rack 154 according to the arrangement position of the intermediate transfer rack 152 may be provided.
바람직하게, 이송 랙 제어부(321)는 제2 하단 레일(121b)이 배치되는 층의 승강장에서 발생된 호출 신호가 제1 하단 레일(111b)에서 이동 중인 캐리어(200)에 할당되면 할당된 캐리어(200)가 제1 및 제2 상단 랙 레일(111a, 121a)을 바이패스 하도록 중단 이송 랙(152)을 동작 제어할 수 있다. 구체적으로, 이송 랙 제어부(321)는 위와 같은 호출 신호 할당 상황에서 중단 이송 랙(152)을 제1 이격 공간에 배치시킨 후 캐리어 운행부(312)로부터 수신한 캐리어 위치 정보에 기초하여 할당된 캐리어(200)가 중단 이송 랙(152)에 위치하였을 때 중단 이송 랙(152)이 제2 이격 공간으로 이동하도록 동작 제어할 수 있다. 이때, 캐리어 운행부(312)는 할당된 캐리어(200)가 중단 이송 랙(152)에 위치하였을 때 해당 캐리어의 운행을 일시 중지할 수 있다. Preferably, the transfer rack control unit 321 is assigned to the carrier 200 that is moving in the first lower rail 111b when the call signal generated in the platform of the floor where the second lower rail 121b is disposed is assigned to the carrier ( 200) may control the operation of the middle transfer rack 152 to bypass the first and second upper rack rails (111a, 121a). Specifically, the transfer rack control unit 321 is a carrier assigned based on the carrier location information received from the carrier operation unit 312 after arranging the interrupted transfer rack 152 in the first separation space in the call signal allocation situation as described above. (200) can be controlled to move the middle transfer rack 152 to the second separation space when located in the middle transfer rack 152 is located. In this case, the carrier operation unit 312 may temporarily suspend the operation of the carrier when the assigned carrier 200 is located in the interrupted transfer rack 152 .
또한, 이송 랙 제어부(321)는 제1 상단 레일(111a)이 배치되는 층의 승강장에서 발생된 호출 신호가 제2 상단 레일(121a)에서 이동 중인 캐리어(200)에 할당되면, 할당된 캐리어(200)가 제1 및 제2 하단 랙 레일(111b, 121b)을 바이패스하도록 중단 이송 랙(152)을 동작 제어할 수 있다. 구체적으로, 이송 랙 제어부(321)는 위와 같은 호출 신호 할당 상황에서 중단 이송 랙(152)을 제2 이격 공간에 배치시킨 후 캐리어 운행부(312)로부터 수신한 캐리어 위치 정보에 기초하여 할당된 캐리어(200)가 중단 이송 랙(152)에 위치하였을 때 중단 이송 랙(152)이 제1 이격 공간으로 이동하도록 동작 제어할 수 있다.In addition, when the transfer rack control unit 321 is assigned to the carrier 200 that is moving in the second upper rail 121a, the call signal generated in the platform of the floor where the first upper rail 111a is disposed, the assigned carrier ( 200) may control the operation of the middle transfer rack 152 to bypass the first and second lower rack rails (111b, 121b). Specifically, the transfer rack control unit 321 is a carrier assigned based on the carrier location information received from the carrier operation unit 312 after arranging the interrupted transfer rack 152 in the second separation space in the call signal allocation situation as described above. (200) can be controlled to move the middle transfer rack 152 to the first separation space when located in the middle transfer rack 152 is located.
이러한 바이패스 운행은 승강장의 호출 신호가 비교적 먼 위치에서 운행 중인 캐리어(200)가 배치되었을 때 캐리어(200)의 이동 경로를 단축시킴으로써 할당 캐리어(200)가 호출 승강장 까지 도착하는 시간을 단축시킬 수 있다.This bypass operation shortens the movement path of the carrier 200 when the carrier 200 running at a location where the call signal of the platform is relatively far away, thereby shortening the time for the assigned carrier 200 to arrive at the call platform. have.
한편, 상술한 바와 같이 중단 이송 랙(152)이 제1 또는 제2 이격 공간으로부터 이탈하였을 때 제1 또는 제2 랙 레일(111, 121)의 경로가 끊기는 것을 방지하기 위해 서브 랙 제어부(322)는 제1 서브 랙(153)과 제2 서브 랙(154)를 동작 제어할 수 있다.On the other hand, as described above, when the intermediate transfer rack 152 is separated from the first or second separation space, the sub-rack control unit 322 to prevent the path of the first or second rack rails 111 and 121 from being cut off. can control the operation of the first sub-rack 153 and the second sub-rack 154 .
구체적으로, 서브 랙 제어부(322)는 중단 이송 랙(152)이 제1 이격 공간으로 향하면 제1 서브 랙(153)이 제1 임시 배치 구간(151a)에 배치되도록 동작 제어하고 제2 서브 랙(154)이 제2 이격 공간에 배치되도록 동작 제어할 수 있다. Specifically, the sub-rack control unit 322 controls the operation so that the first sub-rack 153 is disposed in the first temporary arrangement section 151a when the intermediate transfer rack 152 is directed to the first separation space, and the second sub-rack ( 154) can be controlled to be disposed in the second spaced apart space.
또한, 서브 랙 제어부(322)는 중단 이송 랙(152)이 제2 이격 공간으로 향하면 제1 서브 랙(153)이 제1 이격 공간에 배치되도록 동작 제어하고 제2 서브 랙(154)은 제2 임시 배치 구간(151b)에 배치되도록 동작 제어할 수 있다. In addition, the sub-rack control unit 322 controls the operation so that the first sub-rack 153 is disposed in the first spaced space when the intermediate transfer rack 152 is directed to the second spaced space, and the second sub-rack 154 is the second The operation may be controlled to be arranged in the temporary arrangement section 151b.
도 13은 본 발명의 일 실시예에 따른 두 개의 이송 레일 연결 트래버서에 연결되어 운행되는 모습을 도시한 도면이다.13 is a view showing a state in which the operation is connected to two transport rail connection traverser according to an embodiment of the present invention.
상술한 바와 같이 본 실시예에 따른 수직반송 시스템은 이송 레일(100)이 둘 이상 구비되면 각 이송 레일(100) 간을 연결하는 연결 트래버서(400)가 구비될 수 있다.As described above, in the vertical transport system according to the present embodiment, when two or more transport rails 100 are provided, a connection traverser 400 for connecting each transport rail 100 may be provided.
도 13을 참조하여 보다 구체적으로 설명하면 연결 트래버서(400)는 이송 레일(100-1)의 제1 수직 구간(110)과 다른 이송 레일(100-2)의 제2 수직 구간(120)을 연결하는 연결 수평 레일(410)과, 연결 수평 레일(410)을 따라 이동하며 캐리어(200)를 서로 다른 이송 레일(100) 간에 이송하는 연결 이송 랙(420)을 포함할 수 있다. 즉, 연결 이송 랙(420)은 캐리어(200)가 연결 이송 랙(420) 상에 위치하였을 때 이송 레일(100-1)에서 다른 이송 레일(100-2)로 또는 다른 이송 레일(100-2)에서 이송 레일로(100-1) 이동함으로써 캐리어(200)를 이송 레일(100) 간에 이송할 수 있다.When described in more detail with reference to FIG. 13 , the connection traverser 400 connects the first vertical section 110 of the transport rail 100-1 and the second vertical section 120 of the other transport rail 100-2. It may include a connecting horizontal rail 410 that connects, and a connecting transfer rack 420 that moves along the connecting horizontal rail 410 and transfers the carrier 200 between different transfer rails 100 . That is, the connecting transfer rack 420 is a transfer rail 100-1 to another transfer rail 100-2 or another transfer rail 100-2 when the carrier 200 is positioned on the connecting transfer rack 420. ) to the transfer rail 100 - 1 by moving the carrier 200 can be transferred between the transfer rail (100).
이때, 연결 트래버서(400)가 두 개의 이송 레일(100-1, 100-2) 간을 연결하고 캐리어(200)를 이송하는 방식은, 서로 다른 이송 레일(100-1, 100-2)의 제1 및 제2 수직 구간(110, 120) 간을 연결하고 캐리어(200)를 이송한다는 것만 다를 뿐 상술한 중단 수평 구간(150)이 제1 및 제2 수직 구간(110, 120) 간을 연결하고 캐리어(200)를 이송하는 방식과 동일한 방식이 적용될 수 있으므로, 연결 트래버서(400)의 연결 구조 또는 캐리어(200) 이송 방식에 대한 설명은 생략하기로 한다.At this time, the connection traverser 400 connects between the two transport rails 100-1 and 100-2 and the method of transporting the carrier 200 is different from that of the transport rails 100-1 and 100-2. The first and second vertical sections 110 and 120 are connected between the first and second vertical sections 110 and 120 except that the above-described interrupted horizontal section 150 connects between the first and second vertical sections 110 and 120 except that the carrier 200 is transported. And since the same method as the method of transferring the carrier 200 can be applied, a description of the connection structure of the connection traverser 400 or the carrier 200 transfer method will be omitted.
또한, 연결 트래버서(400) 역시 중단 수평 구간(150)과 마찬가지로 두 개의 서브 랙이 구비되어 연결 이송 랙(420)이 이동하였을 때 연결 이송 랙(420)을 대신하여 제1 또는 제2 수직 구간(110, 120)의 경로가 끊기지 않고 연결되도록 할 수 있는데, 이 역시 중단 수평 구간(150)과 동일한 방식이 적용될 수 있으므로 이에 관한 구체적인 설명 또한 생략하기로 한다.In addition, the connection traverser 400 is also provided with two sub-racks as in the middle horizontal section 150, so that when the connection transport rack 420 moves, the first or second vertical section instead of the connection transport rack 420 The paths of 110 and 120 can be connected without being interrupted, and since the same method as the middle horizontal section 150 can be applied, a detailed description thereof will also be omitted.
도 14는 본 발명의 일 실시예에 따른 운행 제어부와 운행 비율 조절부의 기능 블록도이다.14 is a functional block diagram of a driving control unit and a driving ratio adjusting unit according to an embodiment of the present invention.
한편, 본 실시예에 다른 수직반송 시스템은 다수개의 이송 레일(100)이 구비되는 경우 운행의 효율을 향상시키기 위해 이송 레일(100)별로 운행되는 승강장 층을 다르게 할 수 있다. 예를 들어 두 개의 이송 레일(100)이 구비되는 경우 어느 하나의 이송 레일(100)은 1층에서 5층까지의 승강장에서만 운행되도록 할 수 있으며, 다른 하나의 이송 레일(100)은 5층에서 10층까지의 승강장에서만 운행되도록 할 수 있다. 이때, 이송 레일(100)의 배치 위치나 규모 역시 운행하는 승강장 층에 따라 결정될 수 있다. 즉, 도면에서는 편의상 두 개의 이송 레일(100-1, 100-2)이 서로 대칭되도록 배치되었지만 서로 간의 상하 방향의 배치 위치가 다를 수 있다. On the other hand, in the vertical transfer system according to the present embodiment, when a plurality of transfer rails 100 are provided, the platform floor operated for each transfer rail 100 may be different in order to improve the efficiency of operation. For example, when two transfer rails 100 are provided, one transfer rail 100 can be operated only on platforms from the first floor to the fifth floor, and the other transfer rail 100 is on the fifth floor. It can only be operated on platforms up to the 10th floor. At this time, the arrangement position or scale of the transfer rail 100 may also be determined according to the platform floor on which it operates. That is, in the drawings, for convenience, the two transfer rails 100-1 and 100-2 are arranged to be symmetrical to each other, but the arrangement positions in the vertical direction may be different from each other.
이때, 운행 시간 또는 상황에 따라 특정 층에서의 운행이 증가하거나 감소할 수 있다. 예를 들면 특정 시간에서 1층에서 3층 승강장까지의 운행이 증가하고 7층에서 10층까지의 운행이 감소할 수 있는데, 이와 같이 어느 하나의 이송 레일(100)에서의 운행이 집중되면 해당 이송 레일(100)의 트래픽이 증가하여 해당 이송 레일(100)의 캐리어(200) 호출 할당이 지체되고, 다른 하나의 이송 레일(100)에서는 트래픽이 감소하여 운행을 쉬는 빈 캐리어(200)가 빈번하게 발생할 수 있다. In this case, the operation on a specific floor may increase or decrease depending on the operation time or circumstances. For example, at a specific time, the operation from the 1st floor to the 3rd floor platform may increase and the operation from the 7th floor to the 10th floor may decrease. As such, if the operation on any one transfer rail 100 is concentrated, the transfer Because the traffic of the rail 100 increases, the call assignment of the carrier 200 of the corresponding transfer rail 100 is delayed, and the empty carrier 200 that stops running due to the decrease in traffic in the other transfer rail 100 is frequently can occur
이러한 문제를 해결하기 위해 운행 비율 조절부(330)는 상술한 바와 같이 이송 레일(100) 간의 캐리어(200) 운행 대수 비율을 조절할 수 있다.In order to solve this problem, the operating ratio adjusting unit 330 may adjust the operating ratio of the carrier 200 between the transport rails 100 as described above.
도 14를 참조하여 보다 구체적으로 설명하면, 운행 비율 조절부(330)는 각 이송 레일(100-1, 100-2)이 배치되는 승강장 별로 발생된 호출 신호를 카운트하는 카운트부(331)와, 카운트된 호출 신호의 수에 기초하여 캐리어(200)가 운행되는 이송 레일(100-1, 100-2)을 결정하는 이송 레일 결정부(332), 그리고 이송 레일 결정부(332)에서 결정된 결정 정보에 따라 캐리어(200)가 다른 이송 레일(100)로 이동하도록 연결 트래버서(300)의 연결 이송 랙(420)을 제어하는 연결 트래버서 제어부(333)를 포함할 수 있다.More specifically, with reference to FIG. 14 , the operation ratio adjusting unit 330 includes a counting unit 331 for counting the call signal generated for each platform where each transfer rail 100-1, 100-2 is disposed, Determination information determined by the transfer rail determining unit 332 and the transfer rail determining unit 332 for determining the transfer rails 100-1 and 100-2 on which the carrier 200 is driven based on the counted number of call signals According to the carrier 200 may include a connection traverser control unit 333 for controlling the connection transport rack 420 of the connection traverser 300 to move to another transport rail 100 .
바람직하게, 이송 레일 결정부(332)는 이송 레일(100-1, 100-2)이 배치되는 승강장별 단위 시간당 호출 신호 수의 비에 따라 이송 레일(100-1, 100-2) 별로 운행되는 캐리어(200)의 대수를 결정할 수 있다. 예를 들어 제1 이송 레일(100-1)과 제2 이송 레일(100-2)에 배치되는 각 승강장에서 단위 시간당 발생된 호출 신호의 비가 6:4일 경우, 제1 및 제2 이송 레일(100-1, 100-2)에서 운행되는 캐리어(200)의 대수 비율도 6:4가 되도록 조절할 수 있다. Preferably, the transfer rail determining unit 332 is operated for each transfer rail 100-1, 100-2 according to the ratio of the number of call signals per unit time for each platform where the transfer rails 100-1 and 100-2 are disposed. The number of carriers 200 may be determined. For example, when the ratio of the call signals generated per unit time at each platform disposed on the first transfer rail 100-1 and the second transfer rail 100-2 is 6:4, the first and second transfer rails ( The ratio of the number of carriers 200 operating in 100-1 and 100-2) may also be adjusted to be 6:4.
이때, 이송 레일 결정부(332)는 이송 레일(100) 별로 운행되는 캐리어(200)의 대수 차가 기준 값을 초과하지 않도록 할 수 있다. 이는 특정 이송 레일(100)에 너무 많은 캐리어(200)가 몰림으로써 캐리어(200) 간의 안전거리가 확보되지 못하는 것을 방지하기 위함이다.At this time, the transfer rail determining unit 332 may prevent the difference in the number of carriers 200 operated for each transfer rail 100 from exceeding a reference value. This is to prevent a safety distance between the carriers 200 from being secured because too many carriers 200 are driven on a specific transport rail 100 .
연결 트래버서 제어부(333)는 캐리어(200)의 운행 대수 결정에 따라 이송 레일(100) 간에 캐리어(200)의 이동이 결정되면, 연결 이송 랙(420)을 운행 캐리어 대수가 줄어든 이송 레일(100)에 배치시킨 후 캐리어 운행부(312)로부터 수신한 캐리어 운행 정보에 기초하여 빈 캐리어를 판단하고 빈 캐리어의 위치가 연결 이송 랙(420)에 위치하였을 때 연결 이송 랙(420)을 다른 이송 레일(100)로 이동시킬 수 있다. 이때, 캐리어 운행부(312)는 이송되는 빈 캐리어(200)가 연결 이송 랙(420)에 위치하였을 때 해당 캐리어(200)의 운행을 일시 중단할 수 있다.When the movement of the carrier 200 is determined between the transfer rails 100 according to the determination of the number of operation of the carrier 200, the connection traverser control unit 333 connects the transfer rack 420 to the transfer rail 100 with the reduced number of operation carriers. ) and then determine the empty carrier based on the carrier operation information received from the carrier operation unit 312, and when the position of the empty carrier is located in the connection transfer rack 420, connect the transfer rack 420 to another transfer rail (100) can be moved. At this time, the carrier operation unit 312 may temporarily suspend the operation of the carrier 200 when the empty carrier 200 to be transferred is located in the connection transfer rack 420 .
도 15는 본 발명의 일 실시예에 따른 이송 레일별 운행 캐리어 수가 조절되는 과정을 도시한 순서도이다.15 is a flowchart illustrating a process in which the number of operating carriers for each transport rail is adjusted according to an embodiment of the present invention.
도 15을 참조하여 본 실시예에 따른 수직반송 시스템에서 각 이송 레일(100-1, 100-2)별 운행 캐리어 수가 조절되는 과정을 살펴보면, 우선 카운트부(331)가 이송 레일(100) 별 호출 신호를 카운트 한다(S10).Referring to FIG. 15 , looking at the process of adjusting the number of traveling carriers for each transport rail 100-1 and 100-2 in the vertical transport system according to the present embodiment, first, the count unit 331 calls each transport rail 100 The signal is counted (S10).
이송 레일 결정부(332)는 단위 시간당 이송 레일(100)별 호출 신호 수의 비율을 산출하고(S20), 산출된 비율에 따라 각 이송 레일(100)별 운행 캐리어 수를 결정한다(S30).The transfer rail determining unit 332 calculates a ratio of the number of call signals for each transfer rail 100 per unit time (S20), and determines the number of operating carriers for each transfer rail 100 according to the calculated ratio (S30).
운행 캐리어 수가 결정되면, 이송 레일 결정부(332)는 결정된 캐리어 수가 현재의 운행 대수에서 변화가 있는지 여부를 판단한다(S40). 만약, 결정된 캐리어 수가 현재의 수와 동일한 경우(S40-N), 추가적인 캐리어(200)의 이동이 요구되지 않으므로 캐리어 운행 대수 조절 과정을 종료한다. When the number of traveling carriers is determined, the transfer rail determining unit 332 determines whether the determined number of carriers has a change in the current number of operating vehicles (S40). If the determined number of carriers is the same as the current number (S40-N), since movement of the additional carriers 200 is not required, the process of adjusting the number of carriers operating is terminated.
반면, 결정된 캐리어 수가 현재와 다를 경우(S40-Y), 이송 레일 결정부(332)는 각 이송 레일(100) 간의 캐리어 대수 차가 기준 값을 초과하는지 판단한다(S50). 만약, 기준 값을 초과하면(S50-Y), 이송 레일 결정부(332)는 캐리어 대수 차를 기준 값으로 조정하여 이송 레일(100)별 운행 캐리어 수를 재결정한다(S60). 예를 들면, 두 개의 이송 레일(100)에서 각각 5대의 캐리어(200)가 운행되고, 차이 기준 값이 6인 경우 이송 레일(100) 간의 운행 캐리어 대수 비가 7:3로 결정났을 때 차이 값이 4로 기준 값을 초과하지 않으므로 이송 레일 결정부(332)는 이송 레일(100)별 운행 캐리어 수를 7개, 3개로 각각 결정하지만, 운행 캐리어 대수 비가 9:1로 결정났을 때 차이 값이 8로 기준 값 6을 초과하므로 이송 레일 결정부(332)는 차이 값이 기준 값과 동일한 6이 되도록 조절하여 이송 레일(100)별 운행 캐리어 수가 8개, 2개가 되도록 재결정 할 수 있다.On the other hand, if the determined number of carriers is different from the current (S40-Y), the transfer rail determiner 332 determines whether a difference in the number of carriers between each transfer rail 100 exceeds a reference value (S50). If it exceeds the reference value (S50-Y), the transfer rail determiner 332 adjusts the number of carriers to the reference value to re-determine the number of carriers running for each transfer rail 100 (S60). For example, when five carriers 200 are each operated on the two transfer rails 100 and the difference reference value is 6, the difference value is when the ratio of the number of carriers running between the transfer rails 100 is determined to be 7:3 Since the reference value is not exceeded by 4, the transfer rail determining unit 332 determines the number of running carriers for each transfer rail 100 as 7 and 3, respectively, but when the ratio of the number of running carriers is determined to be 9:1, the difference value is 8 Since it exceeds the reference value of 6, the transfer rail determining unit 332 may recrystallize the difference value to be 6 equal to the reference value, so that the number of operating carriers for each transfer rail 100 is 8 or 2, respectively.
한편, 차이 값이 기준 값을 초과하지 않거나(S50-N), 또는 운행 캐리어 수가 재결정되면 이송 레일 결정부(332)는 결정된 이송 레일(100) 별 운행 캐리어 수에 맞추어 이송될 빈 캐리어를 선택하여 이송 결정 정보를 생성하고(S70), 연결 트래버서 제어부(333)는 이송 결정 정보에 따라 선택된 캐리어(200)를 다른 이송 레일(100)로 이송시킴으로써(S80), 이송 레일(100)별 캐리어 수 조절 과정을 종료할 수 있다.On the other hand, if the difference value does not exceed the reference value (S50-N), or when the number of running carriers is re-determined, the transfer rail determining unit 332 selects an empty carrier to be transferred according to the determined number of running carriers for each transfer rail 100. By generating transport decision information (S70), the connection traverser control unit 333 transfers the selected carrier 200 to another transport rail 100 according to the transport decision information (S80), the number of carriers per transport rail 100 The adjustment process can be terminated.
도 16은 본 발명의 일 실시예에 따른 이송 레일에 제3 수직 구간이 구비된 모습을 도시한 도면이다.16 is a view showing a state in which a third vertical section is provided on the transfer rail according to an embodiment of the present invention.
본 실시예에 따른 이송 레일(100)에는 제1 또는 제2 수직 구간(110, 120)에 이상이 발생하였을 경우 이상이 발생한 제1 또는 제2 수직 구간(130)을 대신하여 순환 경로를 형성하는 제3 수직 구간(160)이 구비될 수 있다.In the transfer rail 100 according to this embodiment, when an abnormality occurs in the first or second vertical sections 110 and 120, a circulation path is formed instead of the first or second vertical section 130 where the abnormality occurs. A third vertical section 160 may be provided.
도 16을 참조하여 구체적으로 설명하면, 제3 수직 구간(160)은 제1 및 제2 수직 구간(110, 120)과 함께 상단 및 하단 수평 구간(130, 140)에 상단 및 하단이 연결될 수 있다. 바람직하게, 상단 및 하단 수평 구간(130, 140)의 길이를 연장하지 않고도 제3 수직 구간(160)의 추가 연결이 가능하도록, 제3 수직 구간(160)은 제1 및 제2 수직 구간(110, 120) 사이에 배치될 수 있다.Referring specifically to FIG. 16 , the third vertical section 160 may have upper and lower ends connected to the upper and lower horizontal sections 130 and 140 together with the first and second vertical sections 110 and 120 . . Preferably, so that the third vertical section 160 can be additionally connected without extending the length of the upper and lower horizontal sections 130 and 140 , the third vertical section 160 includes the first and second vertical sections 110 . , 120) can be disposed between.
여기서 제3 수직 구간(160)은 그 용도와 배치 위치에 차이가 있을 뿐, 제1 또는 제2 수직 구간(110, 120) 동일한 구조로 형성되므로 제3 수직 구간(160)의 구조에 관한 상세한 설명은 생략하기로 한다.Here, the third vertical section 160 has only a difference in its purpose and arrangement position, and since the first or second vertical sections 110 and 120 are formed in the same structure, detailed description of the structure of the third vertical section 160 is to be omitted.
도 17은 본 발명의 일 실시예에 따른 운행 제어부와 비상 운행 제어부의 기능 블록도이고, 도 18의 (a) 내지 도 20의 (b)는 본 발명의 일 실시예에 따른 비상 운행 일례를 도시한 도면이다.17 is a functional block diagram of an operation control unit and an emergency operation control unit according to an embodiment of the present invention, and FIGS. 18 (a) to 20 (b) show an example of an emergency operation according to an embodiment of the present invention it is one drawing
상술한 바와 같이 제어반(300)의 비상 운행 제어부(340)는 이송 레일(100)의 제1 또는 제2 수직 구간(110, 120) 중 어느 하나의 수직 구간에 이상이 발생하였을 때 비상 운행 제어할 수 있다.As described above, the emergency operation control unit 340 of the control panel 300 controls the emergency operation when an abnormality occurs in any one of the first or second vertical sections 110 and 120 of the transfer rail 100 . can
즉, 비상 운행 제어부(340)는 제1 또는 제2 수직 구간(110, 120) 중 어느 하나의 수직 구간에 이상이 발생하였을 때 이상이 발생한 수직 구간을 대신하여 제3 수직 구간(160)이 순환 경로를 이루도록 비상 운행 제어할 수 있다.That is, when an abnormality occurs in any one of the first or second vertical sections 110 and 120 , the emergency operation control unit 340 circulates the third vertical section 160 instead of the abnormal vertical section. Emergency operation control can be achieved to achieve a route.
도 17을 참조하여 보다 구체적으로 설명하면, 비상 운행 제어부(340)는 제1 내지 제3 수직 구간(110, 120, 160) 중 순환 경로를 구성하는 수직 구간을 결정하는 경로 결정부(341)와, 제1 내지 제2 수직 구간(110, 120)의 구간 상태를 판단하는 구간 상태 판단부(342), 그리고 각 캐리어(200)의 이상 상태를 판단하는 이상 상태 판단부(343)를 포함하여 구성될 수 있다.More specifically, with reference to FIG. 17 , the emergency operation control unit 340 includes a path determining unit 341 that determines a vertical section constituting a circulation path among the first to third vertical sections 110 , 120 , and 160 , and , A section state determining unit 342 for determining the section state of the first to second vertical sections 110 and 120, and an abnormal state determining unit 343 for determining the abnormal state of each carrier 200. can be
구간 상태 판단부(342)는 외부로부터 제1 또는 제2 수직 구간(110, 120)에 대한 이상 신호가 수신되면 수신된 이상 신호에 기초하여 제1 또는 제2 수직 구간(110, 120)의 이상을 판단할 수 있다. 이때, 외부로부터 수신된 이상 신호는 관리자의 입력에 의해 발생한 신호일 수 있으며, 또는 각 수직 구간별로 구비되는 객체 감지 센서로부터 수신된 객체 감지 신호일 수 있다. 즉, 관리자가 신고 접수 또는 상태 모니터링을 통해 제1 또는 제2 수직 구간(110, 120)에 이상이 있다 판단되면 이상 신호를 발생시키고 이를 수신한 구간 상태 판단부(342)가 제1 또는 제2 수직 구간(110, 120)의 이상 상태를 판단할 수 있다. 또한, 구간 상태 판단부(342)는 수신한 객체 감지 신호에 기초하여 제1 또는 제2 수직 구간(110, 120)에 캐리어(200) 외의 객체가 감지되는지 판단하고 객체가 감지되면 이상이 발생한 것으로 판단할 수 있다.When an abnormal signal for the first or second vertical section 110 or 120 is received from the outside, the section state determination unit 342 determines the abnormality of the first or second vertical section 110 or 120 based on the received abnormal signal. can be judged In this case, the abnormal signal received from the outside may be a signal generated by a manager's input, or may be an object detection signal received from an object detection sensor provided for each vertical section. That is, when the manager determines that there is an abnormality in the first or second vertical sections 110 and 120 through the report reception or status monitoring, an abnormal signal is generated and the section status determination unit 342 that has received the first or second An abnormal state of the vertical sections 110 and 120 may be determined. In addition, the section state determination unit 342 determines whether an object other than the carrier 200 is detected in the first or second vertical sections 110 and 120 based on the received object detection signal, and determines that an abnormality has occurred when the object is detected. can judge
도 18의 (a), (b)를 예로 하여 설명하면, 구간 상태 판단부(342)에서 제1 수직 구간(110)을 이상 상태로 판단시, 경로 결정부(341)은 도 18(b)에 도시된 바와 같이 이상 상태의 제1 수직 구간(110)을 순환 경로에서 제외하고 제3 수직 구간(160)이 제2 수직 구간(120)과 함께 순환 경로를 형성하도록 할 수 있다. 이때, 캐리어 운행부(312)는 새롭게 결정된 순환 경로를 따라 운행되도록 각각의 캐리어(200)을 운행 제어할 수 있다.18 (a) and (b) as an example, when the section state determining unit 342 determines that the first vertical section 110 is an abnormal state, the path determining unit 341 is shown in Fig. 18(b) As shown in , the first vertical section 110 in an abnormal state may be excluded from the circulation path, and the third vertical section 160 may form a circulation path together with the second vertical section 120 . In this case, the carrier operation unit 312 may operate and control each carrier 200 to travel along the newly determined circulation path.
한편, 캐리어 상태 판단부(343)는 외부로부터 캐리어(200)에 대한 신호가 수신되면 수신된 신호에 기초하여 캐리어(200)의 이상을 판단할 수 있다. 이때, 외부로부터 수신된 신호는 관리자의 입력에 의해 발생한 신호일 수 있으며, 또는 캐리어 운행부(312)가 피니언 기어(210)의 제어를 위해 발신한 제어 신호와 캐리어(200)의 위치 신호일 수 있다. 즉, 관리자가 신고 접수 또는 상태 모니터링을 통해 특정 캐리어(200)에 이상이 있다 판단되면 특정 캐리어(200)에 대한 이상 신호를 발생시켜 이를 수신한 캐리어 상태 판단부(343)가 캐리어의 이상을 판단할 수 있다. 또한, 캐리어 상태 판단부(343)는 수신한 제어 신호 및 위치 신호를 비교하여 피니언 기어(210)가 구동하도록 하는 신호가 수신되는데도 불구하고 캐리어(200)의 위치 변화가 발생하지 않는다면 캐리어(200)에 이상이 있다 판단할 수 있다. Meanwhile, when a signal for the carrier 200 is received from the outside, the carrier state determination unit 343 may determine an abnormality of the carrier 200 based on the received signal. In this case, the signal received from the outside may be a signal generated by an input of the manager, or may be a control signal transmitted by the carrier operation unit 312 to control the pinion gear 210 and a position signal of the carrier 200 . That is, when the manager determines that there is an abnormality in the specific carrier 200 through receiving a report or monitoring the status, the carrier status determination unit 343 generates an abnormal signal for the specific carrier 200 and receives it determines the abnormality of the carrier. can do. In addition, the carrier state determination unit 343 compares the received control signal and the position signal, and even though a signal for driving the pinion gear 210 is received, if a position change of the carrier 200 does not occur, the carrier 200 ) can be judged to be abnormal.
이때, 캐리어 운행부(312)는 캐리어 상태 판단부(343)의 판단에 기초하여 이상 상태의 캐리어(200)가 발생하면, 발생된 이상 상태의 캐리어(200)가 순환 경로에서 이탈하여 제3 수직 구간(160)에 주차되도록 캐리어(200)을 운행 제어할 수 있다. At this time, when the carrier 200 in an abnormal state occurs based on the determination of the carrier state determination unit 343 , the carrier operating unit 312 deviates from the circulation path and the carrier 200 in an abnormal state is separated from the third vertical The carrier 200 may be controlled to be parked in the section 160 .
도 19의 (a), (b)에 도시된 바를 예로 하여 설명하면, 캐리어 상태 판단부(343)에서 이상 상태의 캐리어(200-6)를 감지하면, 캐리어 운행부(312)는 도 19의 (b)에 도시된 바와 같이 이상 상태의 캐리어(200-6)가 제3 수직 구간(160)에 주차되도록 캐리어(200-6)을 운행 제어할 수 있다.19 (a) and 19 (b) as an example, when the carrier state determination unit 343 detects the carrier 200 - 6 in an abnormal state, the carrier operation unit 312 is shown in FIG. As shown in (b), it is possible to control the operation of the carrier 200 - 6 so that the carrier 200 - 6 in an abnormal state is parked in the third vertical section 160 .
바람직하게, 이상 상태의 캐리어(200)가 이동이 불가능한 상태일 경우, 도 20의 (a), (b)에 도시된 바와 같이 경로 결정부(341)는 이동이 불가한 캐리어(200-6)가 위치한 제1 또는 제2 수직 구간(110, 120)을 대체하여 제3 수직 구간 제3 수직 구간(160)이 순환 경로를 이루도록 순환 경로를 결정하고, 캐리어 운행부(312)는 이동이 불가한 캐리어(200-6)를 제외한 다른 캐리어(200-7)들이 이동이 불가능한 상태의 캐리어(200-6)가 위치한 제1 또는 제2 수직 구간(110, 120)에서 벗어나 새로운 순환 경로를 따라 운행되도록 캐리어(200-7)를 운행 제어할 수 있다.Preferably, when the carrier 200 in an abnormal state is in a non-movable state, the path determination unit 341 as shown in (a) and (b) of FIG. 20 is the immovable carrier 200 - 6 Determines a circulation path so that the third vertical section 160 forms a circulation path by replacing the first or second vertical section 110, 120 in which is located, and the carrier operation unit 312 is impossible to move. So that the carriers 200-7 other than the carrier 200-6 move along a new circulation path away from the first or second vertical sections 110 and 120 in which the carrier 200-6 in an immovable state is located. It is possible to control the operation of the carrier 200 - 7 .
도 21은 본 발명의 일 실시예에 따른 추가 운행의 일례를 도시한 도면이다.21 is a diagram illustrating an example of an additional operation according to an embodiment of the present invention.
본 실시예에 따른 캐리어 운행부(312)는 경로 결정부(341)에서 결정한 순환 경로에 기초하여 제3 수직 구간(160)에서 어느 하나의 캐리어(200)이 상하 방향을 따라 왕복 운행되도록 캐리어(200)를 운행 제어할 수 있다.The carrier operating unit 312 according to the present embodiment is configured so that any one carrier 200 reciprocates in the vertical direction in the third vertical section 160 based on the circulation path determined by the path determining unit 341 ( 200) can be operated and controlled.
구체적으로, 캐리어 운행부(312)은 경로 결정부(341)에서 제1 내지 제2 수직 구간이 순환 경로를 이루도록 결정되면 도 21에 도시된 바와 같이 어느 하나의 캐리어(200-8)가 제3 수직 구간(160)을 따라 상하 방향을 따라 왕복 운행되도록 캐리어(200-8)을 추가운영 제어할 수 있다. Specifically, when the carrier operating unit 312 determines that the first to second vertical sections form a circulation path in the path determining unit 341 , as shown in FIG. 21 , any one of the carriers 200 - 8 is the third The carrier 200 - 8 may be additionally operated and controlled to reciprocate in the vertical direction along the vertical section 160 .
즉, 본 실시예에 따른 수직반송 시스템에서 특별한 이상이 발생하지 않으면 제3 수직 구간(160)을 통해 하나의 캐리어(200-8)가 독립적인 상하방향 운행 경로를 형성하여 운행된다. 이로 인해 본 실시예에 따른 수직반송 시스템은 단위 시간당 물동량을 추가 향상시킬 수 있는 효과가 있다.That is, unless a special abnormality occurs in the vertical conveying system according to the present embodiment, one carrier 200 - 8 forms an independent vertical travel path through the third vertical section 160 and operates. For this reason, the vertical transport system according to the present embodiment has the effect of further improving the amount of cargo per unit time.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다The above description is merely illustrative of the technical spirit of the present invention, and various modifications and variations will be possible without departing from the essential characteristics of the present invention by those skilled in the art to which the present invention pertains. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical spirit of the present invention, but to explain, and the scope of the technical spirit of the present invention is not limited by these embodiments. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the scope equivalent thereto should be construed as being included in the scope of the present invention.

Claims (26)

  1. 제1 및 제2 수직 구간과 상기 제1 및 제2 수직 구간 간의 상단 및 하단을 연결하는 상단 및 하단 수평 구간이 형성되는 순환식 이송 레일;Circulating transport rails in which upper and lower horizontal sections connecting the upper and lower ends between the first and second vertical sections and the first and second vertical sections are formed;
    랙 앤 피니언 구동방식에 의해 상기 이송 레일을 따라 순환 이동하는 하나 이상의 캐리어; 및one or more carriers circulating along the transport rail by a rack-and-pinion driving method; and
    상기 캐리어를 운행 제어하는 제어반을 포함하는 것을 특징으로 하는 순환식 수직반송 시스템.Circulation type vertical conveying system comprising a control panel for controlling the operation of the carrier.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 제1 수직 구간은 제1 랙 레일을 포함하고,The first vertical section includes a first rack rail,
    상기 제2 수직 구간은 제2 랙 레일을 포함하며,The second vertical section includes a second rack rail,
    상기 캐리어에는 피니언 기어가 구비되어 상기 피니언 기어의 구동에 의해 상기 제1 및 제2 랙 레일을 따라 이동하는 것을 특징으로 하는 순환식 수직반송 시스템.The carrier is provided with a pinion gear, and the circulation type vertical conveying system, characterized in that it moves along the first and second rack rails by the driving of the pinion gear.
  3. 제 2 항에 있어서, 3. The method of claim 2,
    상기 상단 수평 구간은The upper horizontal section is
    상기 제1 랙 레일의 상측과 상기 제2 랙 레일의 상측을 연결하도록 배치되는 상단 수평 레일; 및an upper horizontal rail disposed to connect an upper side of the first rack rail and an upper side of the second rack rail; and
    상기 상단 수평 레일을 따라 이동하며 상기 캐리어를 상기 제1 랙 레일에서 상기 제2 랙 레일로 이송하는 상단 이송 랙을 포함하고,and an upper transfer rack that moves along the upper horizontal rail and transfers the carrier from the first rack rail to the second rack rail,
    상기 하단 수평 구간은The lower horizontal section is
    상기 제1 랙 레일의 하측과 상기 제2 랙 레일의 하측을 연결하도록 배치되는 하단 수평 레일; 및a lower horizontal rail disposed to connect a lower side of the first rack rail and a lower side of the second rack rail; and
    상기 하단 수평 레일을 따라 이동하며 상기 캐리어를 상기 제2 랙 레일에서 상기 제1 랙 레일로 이송하는 하단 이송 랙을 포함하는 것을 특징으로 하는 순환식 수직반송 시스템.Circulating vertical conveying system comprising a lower conveying rack moving along the lower horizontal rail and conveying the carrier from the second rack rail to the first rack rail.
  4. 제 3 항에 있어서, 상기 제어반은The method of claim 3, wherein the control panel
    승강장에서 호출 신호가 발생하면 상기 호출 신호가 발생한 승강장으로 향하는 빈 캐리어 중 가장 근접한 캐리어에 발생한 상기 호출 신호를 할당하되, 다수개의 승강장에서 상기 호출 신호가 발생하면 상기 캐리어의 운행 방향을 기준으로 후단 층의 승강장에서 발생한 상기 호출 신호를 우선 할당하는 호출 할당부; 및When a call signal is generated at a platform, the call signal is allocated to the nearest carrier among empty carriers heading to the platform where the call signal is generated. When the call signal is generated at a plurality of platforms, the rear end floor is based on the direction of movement of the carrier. a call allocator for first allocating the call signal generated in the platform of and
    상기 호출 할당부에서 할당된 상기 호출 신호에 따라 운행되도록 상기 캐리어를 운행 제어하는 캐리어 운행부를 포함하는 것을 특징으로 하는 순환식 수직반송 시스템.Circular vertical conveyance system, characterized in that it comprises a carrier operating unit for operating and controlling the carrier so as to operate according to the call signal allocated by the call allocator.
  5. 제 4 항에 있어서, 상기 호출 할당부는5. The method of claim 4, wherein the call allocator
    상기 캐리어의 운행 방향 기준으로 상향 또는 하향의 단일 방향에서 발생된 상기 호출 신호의 개수가 운행 중인 상기 캐리어의 개수를 초과하면, 초과한 운행 방향 승강장에서 발생한 상기 호출 신호는 발생 시간 순서에 따라 우선 할당하는 것을 특징으로 하는 순환식 수직반송 시스템.When the number of the call signals generated in a single upward or downward direction based on the traveling direction of the carrier exceeds the number of the carriers in operation, the call signals generated at the platform in the excess traveling direction are allocated preferentially in the order of generation time Circulation type vertical conveying system, characterized in that.
  6. 제 3 항에 있어서,4. The method of claim 3,
    상기 이송 레일은 상기 제1 랙 레일의 중단부에서 상기 제2 랙 레일의 중단부를 연결하는 중단 수평 구간이 형성되는 것을 특징으로 하는 순환식 수직반송 시스템.The transfer rail is a circular vertical transfer system, characterized in that the middle horizontal section connecting the middle portion of the second rack rail from the middle portion of the first rack rail is formed.
  7. 제 6 항에 있어서, 상기 중단 수평 구간은7. The method of claim 6, wherein the middle horizontal section is
    상기 제1 랙 레일의 중단부와 상기 제2 랙 레일의 중단부를 연결하도록 배치되는 중단 수평 레일; 및a middle horizontal rail arranged to connect the middle part of the first rack rail and the middle part of the second rack rail; and
    상기 중단 수평 레일을 따라 이동하며, 상기 캐리어를 상기 제1 랙 레일과 상기 제2 랙 레일 간에 이송하는 중단 이송 랙을 포함하는 것을 특징으로 하는 순환식 수직반송 시스템.Circular vertical conveying system, characterized in that it moves along the middle horizontal rail, comprising a middle transfer rack for transferring the carrier between the first rack rail and the second rack rail.
  8. 제 7 항에 있어서,8. The method of claim 7,
    상기 제1 랙 레일은 제1 상단 랙 레일과 제1 하단 랙 레일로 분할 형성되되 상기 제1 상단 랙 레일과 상기 제1 하단 랙 레일은 수직 방향으로 제1 이격 공간이 형성되도록 서로 이격 배치되고, The first rack rail is divided into a first upper rack rail and a first lower rack rail, and the first upper rack rail and the first lower rack rail are spaced apart from each other to form a first spaced apart space in a vertical direction;
    상기 제2 랙 레일은 제2 상단 랙 레일과 제2 하단 랙 레일로 분할 형성되되 상기 제2 상단 랙 레일과 상기 제2 하단 랙 레일은 수직 방향으로 제2 이격 공간이 형성되도록 서로 이격 배치되며,The second rack rail is divided into a second upper rack rail and a second lower rack rail, and the second upper rack rail and the second lower rack rail are spaced apart from each other to form a second spaced apart space in a vertical direction,
    상기 중단 수평 레일은 상기 제1 및 제2 이격 공간을 가로지르고, The middle horizontal rail crosses the first and second separation spaces,
    상기 중단 이송 랙은 상기 제1 상단 및 하단 랙 레일을 연결하거나 또는 상기 제2 상단 및 하단 랙 레일을 연결하도록 상기 제1 이격 공간 또는 상기 제2 이격 공간에 선택 배치되는 것을 특징으로 하는 순환식 수직반송 시스템.The middle transfer rack is connected to the first upper and lower rack rails or to connect the second upper and lower rack rails Circulating vertical, characterized in that the first spaced space or the second spaced space selectively arranged in the space conveyance system.
  9. 제 8 항에 있어서, 상기 중단 이송 랙은 9. The method of claim 8, wherein the suspended transport rack is
    상기 제어반의 제어에 의해 상기 캐리어가 상기 제1 하단 랙 레일에서 상기 제1 및 제2 상단 랙 레일을 바이패스하고 상기 제2 하단 랙 레일로 이송하거나 또는 상기 캐리어를 상기 제2 상단 랙 레일에서 상기 제1 및 제2 하단 랙 레일을 바이패스하고 상기 제1 상단 랙 레일로 이송하는 것을 특징으로 하는 순환식 수직반송 시스템. The carrier bypasses the first and second upper rack rails in the first lower rack rail under the control of the control panel and transfers the carrier to the second lower rack rail, or transfers the carrier from the second upper rack rail Circulating vertical conveying system, characterized in that bypassing the first and second lower rack rails and transferring to the first upper rack rail.
  10. 제 9 항에 있어서, 상기 제어반은 10. The method of claim 9, wherein the control panel
    각층의 승강장에서 호출 신호가 발생하면, 발생된 상기 호출 신호를 상기 캐리어에 할당하는 호출 할당부; 및a call allocator for allocating the generated call signal to the carrier when a call signal is generated in the platform of each floor; and
    상기 호출 신호가 할당된 상기 캐리어의 이동 경로가 단축되도록 상기 중단 이송 랙을 동작 제어하는 이송 랙 제어부를 포함하는 것을 특징으로 하는 순환식 수직반송 시스템.Circular vertical conveyance system, characterized in that it comprises a transfer rack control unit for controlling the operation of the interrupted transfer rack so that the moving path of the carrier to which the call signal is assigned is shortened.
  11. 제 10 항에 있어서, 상기 이송 랙 제어부는11. The method of claim 10, wherein the transfer rack control unit
    상기 제2 하단 랙 레일이 배치되는 층의 승강장에서 발생된 상기 호출 신호가 상기 제1 하단 랙 레일에서 이동 중인 상기 캐리어에 할당되면, 할당된 상기 캐리어가 상기 제1 및 제2 상단 랙 레일을 바이패스하도록 상기 중단 이송 랙을 동작 제어하고, 상기 제1 상단 랙 레일이 배치되는 층의 승강장에서 발생된 상기 호출 신호가 상기 제2 상단 랙 레일에서 이동 중인 상기 캐리어에 할당되면, 할당된 상기 캐리어가 상기 제1 및 제2 하단 랙 레일을 바이패스하도록 상기 중단 이송 랙을 동작 제어하는 것을 특징으로 하는 순환식 수직반송 시스템. When the call signal generated at the platform of the floor where the second lower rack rail is disposed is assigned to the carrier moving on the first lower rack rail, the assigned carrier crosses the first and second upper rack rails. Control the operation of the intermediate transfer rack to pass, and when the call signal generated at the platform of the floor where the first upper rack rail is disposed is assigned to the carrier moving in the second upper rack rail, the assigned carrier is Circulating vertical conveying system, characterized in that the operation control of the intermediate conveying rack to bypass the first and second lower rack rails.
  12. 제 8 항에 있어서, 상기 중단 수평 구간은The method of claim 8, wherein the middle horizontal section is
    상기 중단 이송 랙이 상기 제1 이격 공간에서 이탈하면, 상기 제1 상단 랙 레일과 상기 제1 하단 랙 레일을 연결하는 제1 서브 랙; 및When the intermediate transfer rack is separated from the first separation space, the first sub-rack connecting the first upper rack rail and the first lower rack rail; and
    상기 중단 이송 랙이 상기 제2 이격 공간에서 이탈하면, 상기 제2 상단 랙 레일과 상기 제2 하단 랙 레일을 연결하는 제2 서브 랙을 더 포함하는 것을 특징으로 하는 순환식 수직반송 시스템.When the middle transfer rack is separated from the second separation space, the circulation type vertical transfer system further comprising a second sub-rack connecting the second upper rack rail and the second lower rack rail.
  13. 제 12 항에 있어서,13. The method of claim 12,
    상기 중단 수평 레일은 양 끝단에 상기 제1 서브 랙 또는 상기 제2 서브 랙이 임시 배치되는 제1 및 제2 임시 배치 구간이 형성되는 것을 특징으로 하는 순환식 수직반송 시스템.The middle horizontal rail has first and second temporary arrangement sections in which the first sub-rack or the second sub-rack is temporarily disposed at both ends.
  14. 제 13 항에 있어서,14. The method of claim 13,
    상기 제어반은 상기 제1 및 제2 서브 랙을 동작 제어하는 서브 랙 제어부를 포함하고,The control panel includes a sub-rack control unit for controlling the operation of the first and second sub-racks,
    상기 서브 랙 제어부는The sub-rack control unit
    상기 중단 이송 랙이 상기 제1 이격 공간으로 향하면, 상기 제1 임시 배치 구간에 배치되도록 상기 제1 서브 랙을 동작 제어하며 상기 제2 이격 공간에 배치되도록 상기 제2 서브 랙을 동작 제어하고, When the intermediate transfer rack is directed to the first spaced space, the operation control of the first sub-rack to be arranged in the first temporary arrangement section and the operation control of the second sub-rack to be arranged in the second spaced space,
    상기 중단 이송 랙이 상기 제2 이격 공간으로 향하면, 상기 제1 이격 공간에 배치되도록 상기 제1 서브 랙을 동작 제어하며 상기 제2 임시 배치 구간에 배치되도록 상기 제2 서브 랙을 동작 제어하는 것을 특징으로 하는 순환식 수직반송 시스템.When the intermediate transfer rack is directed to the second separation space, the operation control of the first sub-rack to be arranged in the first separation space and the operation control of the second sub-rack to be arranged in the second temporary arrangement section Circulating vertical conveying system.
  15. 제 1 항에 있어서,The method of claim 1,
    상기 이송 레일은 둘 이상 구비되고, 상기 수직반송 시스템은 상기 이송 레일 간을 연결하는 연결 트래버서를 더 포함하며, The transport rail is provided with two or more, the vertical transport system further comprises a connection traverser for connecting the transport rails,
    상기 제어반은 상기 캐리어가 상기 이송 레일 간에 이동하도록 상기 연결 트래버서를 제어하는 것을 특징으로 하는 순환식 수직반송 시스템.The control panel controls the connecting traverser so that the carrier moves between the transport rails.
  16. 제 15 항에 있어서, 상기 연결 트래버서는16. The method of claim 15, wherein the connection traverser
    어느 하나의 상기 이송 레일의 제1 수직 구간과 다른 하나의 상이 이송 레일의 제2 수직 구간 간을 연결하는 연결 수평 레일; 및a connecting horizontal rail connecting the first vertical section of any one of the transport rails and the second vertical section of the different transport rail; and
    상기 연결 수평 레일을 따라 이동하며 상기 캐리어를 어느 하나의 상기 이송 레일의 제1 수직 구간과 다른 하나의 상이 이송 레일의 제2 수직 구간 간에 이송하는 연결 이송 랙을 포함하는 것을 특징으로 하는 순환식 수직반송 시스템.Circular vertical, characterized in that it comprises a connecting transfer rack that moves along the connecting horizontal rail and transfers the carrier between the first vertical section of one of the transport rails and the second vertical section of the other different transport rail conveyance system.
  17. 제 15 항에 있어서,16. The method of claim 15,
    상기 제어반은 상기 이송 레일별로 상기 캐리어의 운행 층을 다르게 운행 제어하는 것을 특징으로 하는 순환식 수직반송 시스템.The control panel is a circulation type vertical conveying system, characterized in that the operating control of the operating layer of the carrier differently for each transport rail.
  18. 제 17 항에 있어서, 상기 제어반은18. The method of claim 17, wherein the control panel is
    상기 이송 레일이 배치되는 승강장별로 발생된 호출 신호를 카운트하는 카운트부;a count unit for counting a call signal generated for each platform where the transfer rail is disposed;
    상기 카운트된 상기 호출 신호의 수에 기초하여 상기 캐리어가 운행되는 상기 이송 레일을 결정하는 이송 레일 결정부; 및a transport rail determining unit configured to determine the transport rail on which the carrier travels based on the counted number of the call signals; and
    상기 이송 레일 결정부에서 결정된 결정 정보에 따라 상기 캐리어가 다른 이송 레일로 이동하도록 상기 연결 트래버서를 제어하는 연결 트래버서 제어부를 포함하는 것을 특징으로 하는 순환식 수직반송 시스템.Circulation type vertical conveying system, characterized in that it comprises a connection traverser control unit for controlling the connection traverser so that the carrier moves to another conveying rail according to the determination information determined by the conveying rail determining unit.
  19. 제 18 항에 있어서, 19. The method of claim 18,
    상기 이송 레일 결정부는 상기 이송 레일이 배치되는 승강장별 단위 시간당 상기 호출 신호 수의 비율에 따라 상기 이송 레일별로 운행되는 상기 캐리어의 대수를 결정하는 것을 특징으로 하는 순환식 수직반송 시스템.The transfer rail determining unit circulating vertical transfer system, characterized in that for determining the number of carriers operated for each transfer rail according to the ratio of the number of call signals per unit time for each platform on which the transfer rail is arranged.
  20. 제 19 항에 있어서,20. The method of claim 19,
    상기 이송 레일 결정부는 상기 이송 레일별로 운행되는 상기 캐리어의 대수 차가 기준 값을 초과하지 않도록 하는 것을 특징으로 하는 순환식 수직반송 시스템.The transfer rail determining unit circulating vertical transfer system, characterized in that the difference in the number of carriers operated for each transfer rail does not exceed a reference value.
  21. 제 1 항에 있어서,The method of claim 1,
    상기 이송 레일은 상기 제1 및 제2 수직 구간과 함께, 상기 상단 및 하단 수평 구간에 의해 연결되는 제3 수직 구간을 더 포함하고,The transport rail further comprises a third vertical section connected by the upper and lower horizontal sections, together with the first and second vertical sections,
    상기 제어반은 상기 제3 수직 구간을 상기 캐리어의 순환 경로에 포함시키거나 또는 포함시키지 않는 것을 특징으로 하는 순환식 수직반송 시스템. The control panel includes the third vertical section in the circulation path of the carrier or does not include the circulation type vertical conveying system, characterized in that not included.
  22. 제 21 항에 있어서, 상기 제어반은22. The method of claim 21, wherein the control panel
    상기 제1 내지 제3 수직 구간 중 둘 이상의 수직 구간이 포함되도록 상기 순환 경로를 결정하는 경로 결정부; 및a path determining unit for determining the circulation path to include at least two vertical sections among the first to third vertical sections; and
    결정된 상기 순환 경로에 따라 운행되도록 상기 캐리어를 운행 제어하는 캐리어 운행부를 포함하는 것을 특징으로 하는 순환식 수직 반송 시스템.Circulation-type vertical conveying system, characterized in that it comprises a carrier operating unit for operating and controlling the carrier to travel according to the determined circulation path.
  23. 제 22 항에 있어서,23. The method of claim 22,
    상기 제어반은 상기 제1 내지 제2 수직 구간의 이상 상태를 판단하는 구간 상태 판단부를 더 포함하고, The control panel further includes a section state determination unit for determining an abnormal state of the first to second vertical sections,
    상기 경로 결정부는 상기 제1 내지 제2 수직 구간이 정상 상태로 판단되면 상기 제1 내지 제2 수직 구간을 포함하도록 상기 순환 경로를 결정하고, 상기 제1 내지 제2 수직 구간 중 어느 하나의 수직 구간이 이상 상태로 판단되면 상기 제3 수직 구간이 이상 상태의 수직 구간을 대신하여 포함되도록 상기 순환 경로를 결정하는 것을 특징으로 하는 순환식 수직반송 시스템.When it is determined that the first to second vertical sections are in a normal state, the path determining unit determines the circulation path to include the first to second vertical sections, and any one vertical section of the first to second vertical sections If it is determined that the abnormal state, the circulation type vertical transport system, characterized in that for determining the circulation path so that the third vertical section is included in place of the vertical section of the abnormal state.
  24. 제 22 항에 있어서, 23. The method of claim 22,
    상기 제어반은 상기 캐리어의 이상 상태를 판단하는 캐리어 상태 판단부를 더 포함하고,The control panel further comprises a carrier state determining unit for determining the abnormal state of the carrier,
    상기 캐리어 운행부는 이상 상태로 판단된 상기 캐리어가 상기 순환 경로에서 이탈하여 상기 제1 내지 제3 수직 구간 중 상기 순환 경로에 포함되지 않은 수직 구간에 주차되도록 상기 캐리어를 운행 제어하는 것을 특징으로 하는 순환식 수직반송 시스템.Circulation characterized in that the carrier operating unit operates and controls the carrier so that the carrier determined to be in an abnormal state departs from the circulation path and parks in a vertical section not included in the circulation path among the first to third vertical sections Expression vertical conveying system.
  25. 제 24 항에 있어서,25. The method of claim 24,
    이상 상태의 상기 캐리어가 상기 순환 경로 상에서 이동이 불가한 상태이면, 상기 경로 결정부는 상기 이동이 불가한 상기 캐리어가 위치한 수직 구간이 상기 순환 경로에서 제외되도록 상기 순환 경로를 결정하는 것을 특징으로 하는 순환식 수직반송 시스템.If the carrier in an abnormal state is in a state in which movement is impossible on the circulation path, the path determining unit determines the circulation path so that a vertical section in which the carrier is not able to move is excluded from the circulation path. Expression vertical conveying system.
  26. 제 23 항에 있어서, 24. The method of claim 23,
    상기 캐리어 운행부는 상기 제1 내지 제2 수직 구간이 상기 순환 경로를 이루도록 결정되면 상기 순환 경로에 포함되지 않는 상기 제3 수직 구간을 따라 왕복 운행하도록 어느 하나의 상기 캐리어를 운행 제어하는 것을 특징으로 하는 순환식 수직반송 시스템.When the first to second vertical sections are determined to form the circulation path, the carrier operating unit operates and controls any one of the carriers to reciprocate along the third vertical section that is not included in the circulation path. Circular vertical conveying system.
PCT/KR2020/013545 2019-12-17 2020-10-06 Circulating vertical conveyor system for robots WO2021125519A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080085988.XA CN114787068B (en) 2019-12-17 2020-10-06 Circulating type vertical conveying system for robot

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR1020190169164A KR102337765B1 (en) 2019-12-17 2019-12-17 Multi rotation type vertical transport system for robot
KR10-2019-0169165 2019-12-17
KR10-2019-0169164 2019-12-17
KR1020190169165A KR102334777B1 (en) 2019-12-17 2019-12-17 Rotation type vertical transport system having reserve operation section for robot
KR1020190169163A KR102337764B1 (en) 2019-12-17 2019-12-17 Rotation type vertical transport system for robot
KR10-2019-0169163 2019-12-17

Publications (1)

Publication Number Publication Date
WO2021125519A1 true WO2021125519A1 (en) 2021-06-24

Family

ID=76477596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/013545 WO2021125519A1 (en) 2019-12-17 2020-10-06 Circulating vertical conveyor system for robots

Country Status (2)

Country Link
CN (1) CN114787068B (en)
WO (1) WO2021125519A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62111886A (en) * 1985-11-07 1987-05-22 山本 三恵 Transport method and transporter thereof
KR20140020649A (en) * 2012-08-10 2014-02-19 남 영 김 Elevator circulating system having middle switch space
KR20150133666A (en) * 2014-05-20 2015-11-30 남 영 김 Three way elevator circulating system
KR20180053047A (en) * 2016-11-11 2018-05-21 유장욱 Circulation type elevator system
US10486941B2 (en) * 2014-09-30 2019-11-26 Inventio Ag Lift system having individually driven cars and a closed track

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200345050Y1 (en) * 2003-12-19 2004-03-18 김영인 One-way circulating elevator system
CN104379484B (en) * 2012-04-26 2018-01-02 铰接细索列车公司 Elevator system
KR101378574B1 (en) * 2012-08-10 2014-03-25 남 영 김 Elevator circulating system having stacked elevator at end of circulating track
JP5986666B1 (en) * 2015-06-18 2016-09-06 住友不動産株式会社 Elevator system
KR20170094599A (en) * 2016-02-11 2017-08-21 남 영 김 Smart elevator circulating system
KR102549518B1 (en) * 2016-06-13 2023-06-29 주식회사 케이씨텍 Substrate turning apparatus and chemical mechanical polishing system having the same
KR101884988B1 (en) * 2016-08-23 2018-08-02 현대엘리베이터주식회사 rope-less elevator
CN110740952B (en) * 2017-06-06 2021-11-23 村田机械株式会社 Inter-floor transport system and inter-floor transport method
EP3670418A4 (en) * 2017-08-19 2021-01-06 Libo Zhou Smart multi-car elevator system
CN107651532A (en) * 2017-09-13 2018-02-02 成都九十度工业产品设计有限公司 A kind of automatic delivery system of high-rise building

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62111886A (en) * 1985-11-07 1987-05-22 山本 三恵 Transport method and transporter thereof
KR20140020649A (en) * 2012-08-10 2014-02-19 남 영 김 Elevator circulating system having middle switch space
KR20150133666A (en) * 2014-05-20 2015-11-30 남 영 김 Three way elevator circulating system
US10486941B2 (en) * 2014-09-30 2019-11-26 Inventio Ag Lift system having individually driven cars and a closed track
KR20180053047A (en) * 2016-11-11 2018-05-21 유장욱 Circulation type elevator system

Also Published As

Publication number Publication date
CN114787068B (en) 2024-01-30
CN114787068A (en) 2022-07-22

Similar Documents

Publication Publication Date Title
KR102337764B1 (en) Rotation type vertical transport system for robot
FI120301B (en) Elevator system
EP3628619A1 (en) Elevator system
JP2000072344A (en) Elevator device
JP2005119875A (en) Lift installation for zonal operation in building, method for zonal operation of the lift installation, and method for improvement of lift installation
JP2006027902A (en) Lift installation having at least three vertical lift shafts mutually adjacently arranged and method for operating the same lift shafts
JP2008308239A (en) Multi-car elevator
WO2015178682A1 (en) Three-way elevator circulation system
US7392883B2 (en) Elevator group control system
WO2020080642A1 (en) Ropeless elevator system
CN105102364A (en) Method and system for modernizing an elevator installation
JP2012086970A (en) Elevator device
WO2021125519A1 (en) Circulating vertical conveyor system for robots
JPH04333478A (en) Guide device for elevator
JPH02270782A (en) Group management control device of elevator
JPH0539173A (en) Operation control method for self-advancing elevator
JP5738740B2 (en) Elevator system
US2589292A (en) Elevator
WO2020246677A1 (en) Double-deck elevator system
EP3626663B1 (en) System and method for effecting transportation by providing passenger handoff between a plurality of elevators
KR102337765B1 (en) Multi rotation type vertical transport system for robot
CN116081413A (en) System for monitoring hall activity to determine whether to cancel elevator service
KR20100004936A (en) Elevator control system
JP2001354365A (en) Control device for elevator
WO2020085621A1 (en) Interlinked elevator apparatuses

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20904155

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20904155

Country of ref document: EP

Kind code of ref document: A1