WO2021125250A1 - Polymer membrane and nonaqueous electrolyte battery - Google Patents

Polymer membrane and nonaqueous electrolyte battery Download PDF

Info

Publication number
WO2021125250A1
WO2021125250A1 PCT/JP2020/047072 JP2020047072W WO2021125250A1 WO 2021125250 A1 WO2021125250 A1 WO 2021125250A1 JP 2020047072 W JP2020047072 W JP 2020047072W WO 2021125250 A1 WO2021125250 A1 WO 2021125250A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyvinyl acetal
polymer film
mass
based resin
polymer
Prior art date
Application number
PCT/JP2020/047072
Other languages
French (fr)
Japanese (ja)
Inventor
俊充 田中
有紀 太田
真緒 ▲高▼山
能久 乾
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019228477A external-priority patent/JP2021096984A/en
Priority claimed from JP2019228480A external-priority patent/JP2021096985A/en
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Publication of WO2021125250A1 publication Critical patent/WO2021125250A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to polymer membranes and non-aqueous electrolyte batteries.
  • Patent Document 1 silicon-based negative electrode active material having a larger theoretical capacity per mass than a conventional carbon-based negative electrode active material as the negative electrode active material to increase the energy density
  • Patent Document 2 metallic lithium having a theoretical capacity of 3861.7 mAh / g as the negative electrode active material
  • Patent Document 3 a lithium-sulfur secondary battery using sulfur having a theoretical capacity of 1672 mAh / g has been developed.
  • Patent Document 4 discloses, as an organic solid electrolyte, a polymer electrolyte containing polyvinyl acetal and an ionic dissociable salt as main components and substantially composed of only solid content (Patent Document 4).
  • Patent Document 5 discloses a secondary battery including a polymer electrolyte containing polyvinyl acetal, a solvent, and an electrolyte salt.
  • Japanese Unexamined Patent Publication No. 2018-20602 Japanese Unexamined Patent Publication No. 2017-16904 International Publication No. 2016/068043 Japanese Patent No. 362030 Japanese Patent No. 4466416
  • the silicon-based negative electrode active material When a silicon-based negative electrode active material is used for high output and high capacity, the silicon-based negative electrode active material has a large expansion and contraction during charging and discharging, so that the electrodes are liable to crack or have defects due to charging and discharging, and the battery life. And stability may decrease. Further, when metallic lithium is used, dendrites (dendritic Li) are formed on the lithium negative electrode thin film during charging, which may cause an internal short circuit and ignition. Further, when sulfur is used as the positive electrode active material, the reaction intermediate product may elute and the battery life may be shortened.
  • All-solid-state batteries can impart flame retardancy and thermal / chemical stability to the electrolyte, so it is easy to ensure safety and durability, but higher output, higher capacity, and longer battery life. It is difficult to achieve both, and it cannot be said that the all-solid-state battery has sufficiently high ionic conductivity as compared with the liquid-based battery.
  • an object of the present invention is to provide a polymer film for a non-aqueous electrolyte battery, which has high ionic conductivity and can contribute to extending the life of the battery.
  • A represents the mass (g) of the polymer film before immersion, and B represents the dry mass (g) of the polymer film after immersion].
  • the crosslinked structure is a structure derived from a crosslinking agent having a reactive group for a hydroxyl group.
  • the polyvinyl acetal-based resin is at least one selected from the group consisting of polyvinyl butyral, polyvinyl nonanal and polyvinyl octanal.
  • a polymer film for a non-aqueous electrolyte battery which has high ionic conductivity and can contribute to extending the life of the battery.
  • the polymer membrane of the present invention is a polymer membrane for non-aqueous electrolyte batteries, and contains a polyvinyl acetal-based resin having a hydroxyl group content of 56 to 90 mol%.
  • the polyvinyl acetal-based resin contained in the polymer film of the present invention has a hydroxyl group content of 56 to 90 mol%, preferably 58 to 90 mol%, more preferably 60 to 90 mol%, still more preferably 62 to 90 mol%. Have. When the amount of hydroxyl groups of the polyvinyl acetal-based resin is less than 56 mol%, the solubility of the polyvinyl acetal-based resin in the electrolytic solution becomes high, and the polyvinyl acetal-based resin is easily dissolved in the electrolytic solution.
  • the polymer film is easily affected by the electrolytic solution, the mechanical strength of the polymer film is lowered, and the life of the battery containing the polymer film is easily shortened. Further, the polymer film is easily dissolved in the electrolytic solution, which may cause a decrease in battery safety. Further, when the amount of hydroxyl groups of the polyvinyl acetal resin exceeds 90 mol%, in addition to industrial difficulty in synthesis, the swelling property of the polymer film is also lowered, and the ionic conductivity cannot be sufficiently enhanced. .. In addition, the solubility of the polyvinyl acetal-based resin in an organic solvent is lowered, and the film-forming property of the polymer film is lowered.
  • a polymer membrane containing a polyvinyl acetal resin having a hydroxyl group amount within the above range has high ionic conductivity and can contribute to extending the life of a battery, but for example, high electrolytic solution resistance. It is considered that the present invention has swellability, mechanical strength, and the like, and the present invention is not limited to the mechanism described later, but the following reasons can be considered.
  • the polyvinyl acetal resin contained in the polymer film has many hydroxyl groups, hydrogen bonds between the hydroxyl groups result in a partially crystalline film, which enhances the strength of the gel-like polymer film swollen with the electrolytic solution. Therefore, it is considered that the mechanical stability can be improved.
  • the number of hydroxyl groups is large, the solubility in an organic solvent can be reduced and the electrolytic solution resistance can be improved. Further, it is considered that the large number of hydroxyl groups makes it easy to promote the dissociation of the lithium salt in the non-aqueous electrolyte battery and enhance the ionic conductivity. Further, since the resin has an acetalized structure, even when there are many hydroxyl groups, the acetal group acts as a spacer between the polymer chains due to steric hindrance due to the acetal group, and the polymer film is swollen by the electrolytic solution. Can be promoted. As a result, it is considered that high ionic conductivity can be achieved.
  • the amount of hydroxyl groups in the polyvinyl acetal-based resin is preferably 58 mol% or more, more preferably 60 mol% or more, still more preferably 62 mol% or more, still more preferably, from the viewpoint of easily improving the chemical stability of the polymer film. Is 63 mol% or more, particularly preferably 67 mol% or more, particularly more preferably 70 mol% or more, and extremely preferably 73 mol% or more. Further, the amount of the hydroxyl group is preferably 89 mol% or less from the viewpoint of easily increasing the swelling rate of the polymer film and easily improving the ionic conductivity and easily improving the production efficiency of the polymer film. It is preferably 88 mol% or less, still more preferably 85 mol% or less, and even more preferably 80 mol% or less. The amount of hydroxyl groups in the polyvinyl acetal resin can be calculated by the method described in Examples.
  • the amount of hydroxyl groups of the polyvinyl acetal-based resin is desired by a method of adjusting the amount of the raw material polyvinyl alcohol resin with respect to aldehyde when synthesizing the polyvinyl acetal-based resin, a method of adjusting the saponification degree of the raw material polyvinyl alcohol, or the like. It can be adjusted to a range.
  • the degree of acetalization of the polyvinyl acetal-based resin is preferably 10 to 38 mol%, more preferably 10 to 35 mol%, still more preferably 10 to 38 mol%, in terms of the total acetalization degree regardless of whether acetalization of a single aldehyde or a mixed aldehyde is used. Is 10 to 34 mol%, even more preferably 11 to 32 mol%, particularly preferably 11 to 30 mol%, and most preferably 12 to 30 mol%.
  • the degree of acetalization is at least the above lower limit, it is easy to improve the low solubility of the polymer membrane in the electrolytic solution (electrolyte resistance) and the electrochemical stability (oxidation-reduction resistance).
  • the degree of acetalization is not more than the above upper limit, the swelling of the polymer membrane containing the polyvinyl acetal resin due to the electrolytic solution is appropriately increased, and the ionic conductivity of the non-aqueous electrolyte battery containing the polymer film is likely to be improved.
  • the degree of acetalization can be calculated by, for example, the method described in Examples.
  • the degree of acetalization of the polyvinyl acetal-based resin is adjusted to the above desired range by a method of adjusting the amount of aldehyde with respect to the raw material polyvinyl alcohol resin when synthesizing the polyvinyl acetal-based resin, a method of adjusting the degree of saponification of the raw material polyvinyl alcohol, or the like. can do.
  • the amount of acetyl group in the polyvinyl acetal resin is preferably 10 mol% or less, more preferably 5 mol% or less, still more preferably 1 mol% or less.
  • the amount of the acetyl group is preferably 0.1 mol% or more.
  • the affinity of the residual ester group derived from the resin manufacturing process for the organic solvent is likely to be lowered, and the solubility and swelling degree in the organic solvent are likely to be lowered. It is easy to stabilize the slurry.
  • the amount of acetyl group can be calculated by, for example, the method described in Examples.
  • the amount of acetyl groups in the polyvinyl acetal-based resin can be adjusted to the above-mentioned desired range by a method of adjusting the saponification degree of the raw material polyvinyl alcohol.
  • the degree of polymerization of the polyvinyl acetal resin is preferably 250 or more, more preferably 300 or more, still more preferably 1,000 or more, and particularly preferably 1,500 or more.
  • the degree of polymerization is preferably 5,000 or less, more preferably 4,000 or less, still more preferably 3,000 or less, and even more preferably 2,000 or less.
  • the degree of polymerization is not more than the above upper limit, the resin has good solubility in a solvent and a homogeneous film can be easily obtained. Further, when it is at least the above lower limit, the film forming property is good and the electrolytic solution resistance can be easily obtained.
  • the degree of polymerization can be measured according to JIS-K6726.
  • the degree of polymerization of the polyvinyl acetal-based resin can be adjusted to the above-mentioned desired range by a method of adjusting the degree of polymerization of the raw material polyvinyl alcohol resin (or the raw material polyvinyl acetate resin).
  • the saponification degree of the polyvinyl acetal resin is preferably 90 mol% or more, more preferably 95 mol% or more, and further preferably 99 mol% or more.
  • the upper limit of the saponification degree is preferably 99.9 mol% or less.
  • the saponification degree of the polyvinyl acetal-based resin means the saponification degree of the polyvinyl alcohol-based resin before acetalization, and can be measured according to JIS-K6726.
  • polyvinyl acetal-based resin examples include a resin obtained by acetalizing a polyvinyl alcohol-based resin.
  • the polyvinyl alcohol-based resin mainly has a structural unit derived from vinyl alcohol and a structural unit derived from vinyl ester, but a configuration derived from a monomer other than these structural units as long as the effect of the present invention is not impaired. It may include units.
  • Other monomers include ⁇ -olefins such as ethylene, propylene, 1-butene, isobutene and 1-hexene; acrylic acid, methacrylic acid, crotonic acid, phthalic acid, phthalic anhydride, maleic acid and maleine anhydride.
  • Unsaturated acids such as acids, itaconic acids, itaconic acids anhydride and salts thereof or alkyl esters thereof having 1 to 18 carbon atoms; acrylamide, N-alkylacrylamide having 1 to 18 carbon atoms, N, N-dimethylacrylamide, 2- Acrylamides such as acrylamide propanesulfonic acid and its salts, acrylamidepropyldimethylamine and its acid salts or quaternary salts thereof; methacrylamide, N-alkylmethacrylicamide having 1 to 18 carbon atoms, N, N-dimethylmethacrylate, 2 -Methylamides such as methacrylamide propanesulfonic acid and its salts, methacrylicamide propyldimethylamine and its salts or quaternary salts thereof; N-vinylamides such as N-vinylpyrrolidone, N-vinylformamide, N-vinylacetamide.
  • Vinyl cyanide such as acrylonitrile and methacrylonitrile
  • vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, n-propyl vinyl ether, i-propyl vinyl ether and n-butyl vinyl ether
  • allyl acetate propyl allyl ether, butyl allyl ether, hexyl Allyl ethers such as allyl ethers
  • vinyl halides such as vinyl chloride, vinyl fluoride, vinyl bromide
  • vinylidene halides such as vinylidene chloride and vinylidene fluoride
  • vinylsilanes such as trimethoxyvinylsilane
  • polyoxyalkylene allyl Compounds having an oxyalkylene group such as ether; isopropenyl acetate; 3-butene-1-ol, 4-pentene-1-ol, 5-hexene-1-ol, 7-octen-1-ol,
  • ⁇ -olefins such as ethylene, propylene, 1-butene, isobutene and 1-hexene; N-vinylpyrrolidone, N-vinylformamide, N-vinylacetamide from the viewpoint of availability and copolymerizability.
  • N-vinylamides such as: methyl vinyl ether, ethyl vinyl ether, n-propyl vinyl ether, i-propyl vinyl ether, n-butyl vinyl ether and other vinyl ethers; allyl acetate; propyl allyl ether, butyl allyl ether, hexyl allyl ether and the like.
  • These monomers can be used alone or in combination of two or more.
  • the content of the structural units derived from other monomers other than the structural units derived from vinyl alcohol and the structural units derived from vinyl ester is usually 20 with respect to the total number of moles of the structural units constituting the polyvinyl alcohol-based resin. It is mol% or less, preferably 10 mol% or less, and more preferably 5 mol% or less.
  • the polyvinyl alcohol-based resin can be produced by a known method, for example, a method of saponifying a resin obtained by polymerizing vinyl alcohol and the above-mentioned monomer in a solvent such as alcohol.
  • a solvent such as alcohol.
  • the solvent used in this method include lower alcohols such as methanol and ethanol, and methanol can be preferably used.
  • the solvent used for the saponification reaction preferably contains a solvent such as acetone, methyl acetate, ethyl acetate, and benzene in an amount of, for example, 40% by mass or less based on the total amount of the solvent used, in addition to the above-mentioned lower alcohol. You may be doing it.
  • an alkali metal hydroxide such as potassium hydroxide or sodium hydroxide
  • an alkali catalyst such as sodium methoxyde
  • an acid catalyst such as mineral acid
  • the temperature of the saponification reaction is not particularly limited, but is preferably in the range of 20 to 60 ° C.
  • the vinyl alcohol-based resin obtained by the saponification reaction is washed and then dried.
  • the saponification degree of the polyvinyl alcohol-based resin is preferably 90 mol% or more, more preferably 95 mol% or more, and further preferably 99 mol% or more.
  • the upper limit of the saponification degree is preferably 99.9 mol% or less.
  • the saponification degree of the polyvinyl acetal-based resin in the present specification is the saponification degree of the polyvinyl alcohol-based resin before acetalization.
  • the polyvinyl acetal-based resin can be produced, for example, by acetalizing the polyvinyl alcohol-based resin with an aldehyde.
  • the acetalization method is not particularly limited, and examples thereof include a precipitation method and a solid-liquid reaction method.
  • the precipitation method for example, water or acetone is used as a solvent, the raw material polyvinyl alcohol-based resin is dissolved in water or acetone, and a catalyst such as acid is added to carry out an acetalization reaction, and the produced polyvinyl acetal-based resin is produced. Is a method of precipitating and neutralizing the acid used as a catalyst to obtain a solid powder.
  • the solid-liquid reaction method is a method in which the reaction can be carried out in the same manner as the precipitation method, except that a solvent in which the raw material polyvinyl alcohol-based resin is not dissolved is used. Regardless of which method is used, the obtained polyvinyl acetal-based resin powder contains impurities such as unreacted aldehydes and salts generated by neutralization. Therefore, the impurities are soluble in order to remove these impurities.
  • a high-purity polyvinyl acetal-based resin can be obtained by extraction or evaporative removal using a different solvent.
  • aldehyde used for acetalization examples include aliphatic aldehydes such as formaldehyde, acetaldehyde, propyl aldehyde, n-butyl aldehyde (1-butanal), sec-butyl aldehyde, octyl aldehyde, dodecyl aldehyde, and nonyl aldehyde; cyclohexanecarbaldehyde.
  • Cyclooctanecarbaldehyde trimethylcyclohexanecarbaldehyde, cyclopentylaldehyde, dimethylcyclohexanecarbaldehyde, methylcyclohexanecarbaldehyde, methylcyclopentylaldehyde and other alicyclic aldehydes; ⁇ -campolenealdehyde, ferlandral, cyclocitral, trimethyltetra Terpen-based aldehydes such as hydrobenzaldehyde, ⁇ -pyronenaldehyde, miltenal, dihydromiltenal, and camphenilan aldehyde; aromatics such as benzaldehyde, naphthaldehyde, anthralaldehyde, phenylacetaldehyde, tolualdehyde, dimethylbenzaldehyde, cuminaldehyde, and benzylaldehyde
  • aldehydes unsaturated aldehydes such as cyclohexene aldehydes, dimethylcyclohexene aldehydes, and acrolein; aldehydes having heterocycles such as furfural and 5-methylfurfural; hemiacetals such as glucose and glucosamine; having amino groups such as 4-aminobutylaldehyde.
  • aldehydes These aldehydes can be used alone or in combination of two or more.
  • aldehyde instead of aldehyde or in combination with aldehyde, aliphatic ketones such as 2-propanone, methyl ethyl ketone, 3-pentanone and 2-hexanone; aliphatic alicyclic ketones such as cyclopentanone and cyclohexanone; and acetophenone, benzophenone and the like. It is also possible to use the aromatic ketone of.
  • the aldehyde used for acetalization is preferably a fat from the viewpoint that it is easy to increase the free volume between the polymer chains due to the steric disorder of the acetal group, and as a result, it is easy to improve the swelling property by the electrolytic solution and improve the ionic conductivity.
  • the polyvinyl acetal-based resin is also preferably a polyvinyl acetal-based resin acetalized with an aliphatic aldehyde, and more preferably a polyvinyl acetal-based resin acetalized with an aliphatic aldehyde having 4 to 12 carbon atoms.
  • a polyvinyl acetal-based resin acetalized with an aliphatic aldehyde having 4 to 9 carbon atoms is more preferable.
  • the polyvinyl acetal-based resin is even more preferably at least one selected from the group consisting of polyvinyl butyral, polyvinyl nonanal and polyvinyl octanal.
  • the acid catalyst a known acid can be used, and examples thereof include inorganic acids such as sulfuric acid, hydrochloric acid and nitric acid, and organic acids such as paratoluenesulfonic acid.
  • the acid catalyst is usually used in an amount such that the acid concentration in the final system of the acetalization reaction is 0.5 to 5.0% by mass, but the acid catalyst is not limited to this concentration.
  • a predetermined amount of these acid catalysts may be added at one time, but in the case of the precipitation method, the polyvinyl acetal-based resin having relatively fine particles is added in an appropriate number of times in order to precipitate and precipitate. Is preferable.
  • the solid-liquid reaction method it is preferable to add a predetermined amount at the beginning of the reaction from the viewpoint of reaction efficiency.
  • the polyvinyl acetal-based resin contained in the polymer film of the present invention has a crosslinked structure.
  • the cross-linked structure is not particularly limited as long as it is a structure for cross-linking polyvinyl acetal-based resins with each other, but is preferably a structure derived from a cross-linking agent having a reactive group for a hydroxyl group, and more preferably an addition reaction with a hydroxyl group and / or. It is a structure derived from a cross-linking agent that undergoes a ring-opening reaction.
  • the polyvinyl acetal-based resin may have a cross-linked structure derived from one kind of cross-linking agent, or may have a cross-linked structure derived from two or more kinds of cross-linking agents. In the preferred embodiment, it is possible to provide a polymer film for a non-aqueous electrolyte battery, which has high mechanical strength and electrolytic solution resistance.
  • the crosslinking agent having a reactive group for a hydroxyl group (hereinafter, also referred to as “hydroxyl reactive group”) has a reactive group for a hydroxyl group.
  • the cross-linking agent having at least one is not particularly limited, but for example, a compound having two or more hydroxyl-reactive groups, a compound having at least one hydroxyl-reactive group and at least one ethylenically unsaturated group, and the like can be used. Can be mentioned.
  • hydroxyl group reactive group examples include an isocyanate group, an epoxy group, a carboxyl group, an acid anhydride group, an aldehyde group, an acyl group and the like.
  • the hydroxyl group-reactive group is preferably a group that does not generate desorbed substances such as water during the reaction with the hydroxyl group. Since such a cross-linking agent having a hydroxyl-reactive group does not generate an elimination product during the reaction with the uncross-linked polyvinyl acetal-based resin, impurities are not contained in the obtained polymer film.
  • the cross-linking agent is preferably a cross-linking agent that undergoes an addition reaction and / or a ring-opening reaction with a hydroxyl group, and is more preferably selected from the group consisting of an isocyanate group, an epoxy group and an acid anhydride group.
  • a cross-linking agent having at least one hydroxyl group-reactive group is preferably a cross-linking agent that undergoes an addition reaction and / or a ring-opening reaction with a hydroxyl group, and is more preferably selected from the group consisting of an isocyanate group, an epoxy group and an acid anhydride group.
  • the cross-linking agent When the cross-linking agent has at least one hydroxyl group-reactive group selected from the group consisting of, for example, an isocyanate group and an acid anhydride group, the cross-linking agent can be said to be a cross-linking agent that undergoes an addition reaction with a hydroxyl group.
  • the cross-linking agent that undergoes an addition reaction with a hydroxyl group refers to a cross-linking agent that is added to an uncrosslinked polyvinyl acetal-based resin without the cross-linking agent being accompanied by an elimination reaction of water or the like.
  • the cross-linking agent has, for example, at least one epoxy group as a hydroxyl-reactive group
  • the cross-linking agent is a cross-linking agent that undergoes a ring-opening (ring-opening addition) reaction with the hydroxyl group.
  • the cross-linking agent is preferably a compound having two or more hydroxyl-reactive groups and / or a compound having at least one hydroxyl-reactive group and at least one ethylenically unsaturated group.
  • the cross-linking agent is a compound having two or more hydroxyl-reactive groups
  • one hydroxyl-reactive group of the cross-linking agent reacts with the hydroxyl group of the polyvinyl acetal-based resin before cross-linking
  • the other hydroxyl-reactive group Reacts with another hydroxyl group of another polyvinyl acetal-based resin, whereby the polyvinyl acetal-based resin contains a crosslinked structure.
  • Such cross-linking agents preferably include polyfunctional isocyanates, isocyanuric acid derivatives, polyfunctional epoxides, acid anhydrides and the like.
  • the polyfunctional epoxide include sorbitol polyglycidyl ether, polyglycerol polyglycidyl ether, diethylene glycol diglycidyl ether, diglycerol polyglycidyl ether, glycerol polyglycidyl ether, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, and tripropylene.
  • Examples thereof include glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether and their polymers, and triglycidyl isocyanurate.
  • Examples of the polyfunctional isocyanate include hexamethylene diisocyanate, toluene 2,4-diisocyanate, 1,6-diisocyanate hexane, isofornyl diisocyanate, diphenylmethane diisocyanate, and polymethylene polyphenyl polyisocyanate.
  • Examples of the acid anhydride include succinic anhydride, glutanic anhydride, maleic anhydride, citraconic anhydride, glutaconic anhydride, itaconic anhydride, diglycolic anhydride, cyclohexanedicarboxylic acid anhydride, and cyclopentanetetracarboxylic acid dianhydride.
  • Examples include phenylsuccinic anhydride and phenylsuccinic anhydride.
  • the cross-linking agent is a compound having at least one hydroxyl-reactive group and at least one ethylenically unsaturated group
  • at least one hydroxyl-reactive group of the cross-linking agent is a hydroxyl group of the polyvinyl acetal resin before cross-linking.
  • a cross-linking agent having an ethylenically unsaturated group is incorporated into the polyvinyl acetal-based resin.
  • the crosslinked structure can be introduced into the polyvinyl acetal-based resin by photocrosslinking (photopolymerizing) the ethylenically unsaturated groups with each other by photocrosslinking.
  • the ethylenically unsaturated group is not particularly limited as long as it is a photocrosslinkable group, and for example, a (meth) acryloyl group, a vinyl group, an allyl group, a propagyl group, a butenyl group, an ethynyl group, a maleimide group, a nadiimide group, and the like.
  • examples thereof include (meth) acryloyloxy group and (meth) acryloylamide group, which are preferably (meth) acryloyl group, (meth) acryloyloxy group and (meth) acryloylamide group from the viewpoint of reactivity in photocrosslinking. ..
  • the polymer membrane of the present invention may contain a crosslinking accelerator.
  • a crosslinking accelerator for example, an acid catalyst such as sulfuric acid, hydrochloric acid or acetic acid, a metal hydride such as sodium hydride, or a base such as a metal alkoxide such as sodium methoxide or sodium ethoxide can be used.
  • the content thereof can be appropriately adjusted according to the type of the cross-linking agent contained in the polymer film and the amount thereof.
  • the cross-linking agent 0.1 to 30 parts by mass is preferable, 0.5 to 10 parts by mass is more preferable, and 0.5 to 8 parts by mass is further preferable.
  • the content of the polymerization initiator is within this range, the electrolytic solution elution resistance of the polymer film can be further enhanced.
  • the polymer film of the present invention may contain a polymerization initiator.
  • a polymerization initiator for example, when ultraviolet rays are used as active energy rays, photopolymerization initiators such as benzoin-based, acetophenone-based, thioxanthone-based, phosphine oxide-based and peroxide-based, sulfonium salt-based, and iodonium salt-based are used. be able to.
  • the content thereof can be appropriately adjusted according to the type and amount of the crosslinked agent contained in the polymer film.
  • 100 parts by mass of the cross-linking agent 0.1 to 30 parts by mass is preferable, 0.5 to 10 parts by mass is more preferable, and 0.5 to 8 parts by mass is further preferable.
  • the content of the polymerization initiator is within this range, the electrolytic solution elution resistance of the polymer film can be further enhanced.
  • the polymer film may further contain a photosensitizer.
  • Photosensitizers include xanthone compounds such as xanthone, thioxanthone (eg, 2,4-diethylthioxanthone, 2-isopropylthioxanthone, etc.); anthracene, alkoxy group-containing anthracene (eg, dibutoxyanthracene, etc.); Examples include phenothiazine and rubrene.
  • the polymerization reaction of the polymerizable liquid crystal contained in the composition can be further promoted.
  • the amount of the photosensitizer added can be appropriately adjusted according to the type and amount of the photopolymerization initiator and the cross-linking agent, but is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the cross-linking agent. 5 to 10 parts by mass is more preferable, and 0.5 to 8 parts by mass is further preferable.
  • the polyvinyl acetal-based resin contained in the polymer film has a crosslinked structure, for example, a hydroxyl group-reactive group that does not generate desorbed substances during the crosslinking reaction.
  • Having a cross-linked structure derived from the cross-linking agent has means that, for example, using a Fourier-converted infrared spectrophotometer or the like, disappearance of peaks derived from functional groups (for example, isocyanate group or epoxy group) involved in cross-linking and cross-linking are performed. It can be confirmed by the appearance of a peak derived from a group formed later (for example, an amide group or an ether group).
  • the amount of the cross-linking agent added to the polyvinyl acetal-based resin contained in the polymer film of the present invention is the electrolyte resistance elution resistance and mechanical stability of the polymer film. From the viewpoint of properties, it is preferably 2% by mass or more, more preferably 3% by mass or more, still more preferably 5% by mass, based on the total amount of the polyvinyl acetal-based resin having a crosslinked structure contained in the crosslinked polymer film. That is all.
  • the amount of the cross-linking agent added in the above embodiment is preferably 30% by mass or less, more preferably 25% by mass or less, still more preferably 20% by mass or less, from the viewpoint of swelling property and ionic conductivity of the polymer membrane. Even more preferably, it is 15% by mass or less.
  • the amount of the cross-linking agent added may be calculated by measuring the amount of the cross-linked structure in the polyvinyl acetal-based resin contained in the polymer film, or from the charging ratio when producing the polyvinyl acetal-based resin having the cross-linked structure. It may be calculated.
  • the present invention in one aspect of the present invention in which the polyvinyl acetal-based resin has a crosslinked structure, the present invention is not limited to the mechanism described later, but the polyvinyl acetal-based resin contained in the polymer film has many hydroxyl groups and has many hydroxyl groups. It is considered that having the crosslinked structure makes it possible to further increase the strength of the polymer film in the gel state swollen with the electrolytic solution and improve the mechanical stability. Further, it is considered that the solubility in an organic solvent can be further reduced by having a large number of hydroxyl groups and a crosslinked structure.
  • the large number of hydroxyl groups facilitates the dissociation of the lithium salt in the non-aqueous electrolyte battery and further enhances the ionic conductivity.
  • the resin since the resin has an acetalized structure, even when there are many hydroxyl groups, the acetal group acts as a spacer between the polymer chains due to steric hindrance due to the acetal group, and the polymer film is swollen by the electrolytic solution. Is considered to be easier to promote. As a result, it is considered that high electrolytic solution resistance, swelling property, and mechanical strength can be easily enhanced, and ionic conductivity can be imparted while enhancing mechanical stability.
  • the amount of hydroxyl groups in the polyvinyl acetal resin is preferably 58 mol% or more, more preferably 58 mol% or more, from the viewpoint of easily improving the chemical stability of the polymer film. It is 60 mol% or more, more preferably 62 mol% or more, still more preferably 65 mol% or more.
  • the amount of the hydroxyl group is preferably 89 mol% or less, more preferably, from the viewpoint of easily increasing the swelling rate of the polymer film, easily improving the ionic conductivity, and easily improving the production efficiency of the polymer film.
  • the amount of hydroxyl groups in the polyvinyl acetal-based resin is the amount of hydroxyl groups in the polyvinyl acetal-based resin after cross-linking. Therefore, if some of the hydroxyl groups of the polyvinyl acetal-based resin before cross-linking contribute to the cross-linking reaction and do not exist as hydroxyl groups after cross-linking, the amount of the groups is not included in the amount of hydroxyl groups of the polyvinyl acetal-based resin after cross-linking. ..
  • the amount of hydroxyl groups of the polyvinyl acetal-based resin contained in the polymer film of the present invention in the above aspect is determined by using a solution containing the resin when the polyvinyl acetal-based resin contained in the polymer film is dissolved in a solvent for NMR measurement. It can be calculated using a nuclear magnetic resonance spectroscope as a measurement sample. Even when no solution is used, the amount of hydroxyl groups can be calculated relatively using an IR spectrophotometer or the amount of hydroxyl groups for the polyvinyl acetal-based resin before cross-linking, and the amount of cross-linking agent added and the reaction rate can be used to calculate the amount of polyvinyl after cross-linking. It is also possible to calculate the amount of hydroxyl groups in the acetal resin. For example, the amount of hydroxyl groups of the polyvinyl acetal-based resin contained in the polymer film may be calculated by the method described in Examples.
  • the polymer film of the present invention is a film containing the above-mentioned polyvinyl acetal resin.
  • the polymer film of the present invention may contain one kind of polyvinyl acetal-based resin, or may contain two or more kinds of polyvinyl acetal-based resins.
  • the polymer film may contain polyvinyl acetal-based resins having different acetalization degree, acetyl group amount, hydroxyl group amount, degree of polymerization and / or monomer component and the like.
  • the thickness of the polymer film may be appropriately set according to the purpose of using the polymer film, but from the viewpoint of mechanical strength, it is preferably 0.01 ⁇ m or more, more preferably 0.01 ⁇ m or more in the state before swelling by the electrolytic solution. Is 0.08 ⁇ m or more, more preferably 0.3 ⁇ m or more. From the viewpoint of ionic conductivity, it is preferably 60 ⁇ m or less, more preferably 40 ⁇ m or less, and further preferably 20 ⁇ m or less.
  • the thickness of the polymer film can be determined by ellipsometry, transmission measurement, reflectance measurement, optical film thickness measurement method such as laser microscope, film thickness measurement method using X-ray such as fluorescent X-ray, X-CT, constant pressure. It can be measured by using a film thickness measurement, a stylus type surface shape measurement method such as SPM, or the like.
  • the polyvinyl acetal-based resin contained in the polymer film may have a crosslinked structure.
  • the polymer membrane of the present invention containing a polyvinyl acetal-based resin having a hydroxyl group content of 56 to 90 mol% has low electrolyte solubility.
  • having low solubility in an electrolytic solution means that the solubility in an organic solvent contained in the electrolytic solution is low, and the polyvinyl acetal-based resin contained in the polymer film is difficult to elute by contact with the organic solvent. Represents.
  • the solubility of the electrolytic solution can be evaluated by, for example, using diethyl carbonate as an organic solvent and measuring the elution rate with respect to the solvent. Specifically, when the polymer membrane of the present invention was immersed in diethyl carbonate at 60 ° C.
  • the elution rate calculated by the above method is preferably 7% or less, more preferably 6% or less, still more preferably 5% or less, still more preferably 4.5% or less.
  • the lower limit of the above elution rate may be 0% or more because it is preferable that it does not substantially elute into diethyl carbonate.
  • the mass of B after immersion in the polymer film is the dry mass of the polymer film after immersion. Therefore, for example, when the polymer membrane swells in diethyl carbonate under the above conditions, after removing diethyl carbonate by drying, the dry mass of the polymer membrane after immersion is measured to calculate the elution rate.
  • the elution rate can be adjusted within the above range by adjusting the hydroxyl group weight, molecular weight, presence / absence and type of crosslinked structure of the polyvinyl acetal resin.
  • the polymer film of the present invention containing a polyvinyl acetal-based resin having a hydroxyl group content of 56 to 90 mol% has an appropriate swelling property with respect to an electrolytic solution.
  • an electrolytic solution By swelling the polymer film in the electrolytic solution and holding the electrolytic solution, it is easy to suppress the leakage of the electrolytic solution, and it is easy to improve the ionic conductivity.
  • the polymer film of the present invention was placed in 1-ethyl-3-methylimidazolium bis (fluorosulfonyl) imide at a concentration of 1 mol / L of lithium bis (fluorosulfonyl) imide at 25 ° C. for 24 hours.
  • the swelling rate calculated by is preferably 20% or more, more preferably 25% or more, further preferably 30% or more, still more preferably 40% or more, particularly preferably 43% or more, and particularly more preferably 45% or more. , Very preferably 50% or more, very more preferably 53% or more.
  • the mass of D after immersion in the polymer film is the mass of the swollen polymer film after immersion, and is the mass of the swollen polymer film containing the above solution incorporated in the polymer film. Is.
  • the swelling rate is at least the above lower limit, the lithium ion conductivity of the polymer film can be more easily improved.
  • the upper limit of the swelling rate is not particularly limited, but from the viewpoint of designing the battery, it is preferably 125% or less, more preferably 100% or less, still more preferably 75% or less.
  • the swelling rate can be adjusted within the above range by adjusting the hydroxyl group weight, molecular weight, presence / absence and type of crosslinked structure of the polyvinyl acetal resin.
  • the polyvinyl acetal-based resin contains a polyvinyl acetal-based resin having a hydroxyl group content of 62 to 90 mol%.
  • the polymer membrane of the present invention containing the polyvinyl acetal-based resin has lower electrolyte solubility. When the polymer membrane of the present invention in this embodiment was immersed in diethyl carbonate at 60 ° C.
  • the elution rate calculated by the above method is preferably 7% or less, more preferably 6% or less, still more preferably 5% or less, still more preferably 4.5% or less.
  • the lower limit of the above elution rate may be 0% or more because it is preferable that it does not substantially elute into diethyl carbonate.
  • the polymer film of the present invention containing a polyvinyl acetal-based resin having a hydroxyl group amount of 62 to 90 mol% which is one aspect of the present invention, has more appropriate swelling property with respect to an electrolytic solution.
  • an electrolytic solution By swelling the polymer film in the electrolytic solution and holding the electrolytic solution, it becomes easier to suppress the leakage of the electrolytic solution, and it becomes easier to improve the ionic conductivity.
  • the polymer film of the present invention was placed in 1-ethyl-3-methylimidazolium bis (fluorosulfonyl) imide at a concentration of 1 mol / L of lithium bis (fluorosulfonyl) imide at 25 ° C. for 24 hours.
  • the swelling rate calculated by the above is preferably 40% or more, more preferably 43% or more, further preferably 45% or more, still more preferably 50% or more, and particularly preferably 53% or more.
  • the upper limit of the swelling rate is not particularly limited, but from the viewpoint of designing the battery, it is preferably 125% or less, more preferably 100% or less, still more preferably 75% or less.
  • the polymer membrane containing the polyvinyl acetal-based resin has high electrolytic solution resistance.
  • having electrolyte resistance means that the electrolyte solution has lower solubility in an organic solvent, and the polyvinyl acetal resin contained in the polymer film is less likely to elute due to contact with the organic solvent. Represents that.
  • the resistance to the electrolytic solution can also be evaluated by, for example, using diethyl carbonate as an organic solvent and measuring the elution rate with respect to the solvent.
  • the elution rate calculated by is preferably 2% or less, more preferably 1.5% or less, still more preferably 1.2% or less, still more preferably 1.0% or less, and particularly preferably 0.8% or less. Is.
  • the lower limit of the above elution rate may be 0% or more because it is preferable that it does not substantially elute into diethyl carbonate.
  • the polymer membrane containing the polyvinyl acetal-based resin has an appropriate swelling property with respect to an electrolytic solution.
  • the polymer film of the present invention in the above embodiment is subjected to 1-ethyl-3-methylimidazolium bis (fluorosulfonyl) at a concentration of 1 mol / L of lithium bis (fluorosulfonyl) imide at 25 ° C. for 24 hours.
  • the following formula [In the formula, C represents the mass (g) of the polymer film before immersion, and D represents the mass (g) of the polymer film after immersion].
  • the swelling rate calculated by the above method is preferably 20% or more, more preferably 25% or more, still more preferably 30% or more.
  • the mass of D after immersion in the polymer film is the mass of the swollen polymer film after immersion, and is the mass of the swollen polymer film containing the above solution incorporated in the polymer film.
  • the upper limit of the swelling rate is not particularly limited, but from the viewpoint of designing the battery, it is preferably 125% or less, more preferably 100% or less, still more preferably 75% or less, still more preferably 60% or less.
  • the polymer film containing the polyvinyl acetal-based resin can easily increase the mechanical strength.
  • the polymer film of the present invention is immersed in a solution in which lithium bis (fluorosulfonyl) imide is dissolved in 1-ethyl-3-methylimidazolium bis (fluorosulfonyl) imide at a concentration of 1 mol / L at 25 ° C. for 24 hours.
  • the swollen polymer film thus obtained was used as a measurement sample and measured at 25 ° C.
  • tensile strength 620 kgf / cm 2 or more, even more preferably 640 kgf / cm 2 or more, and particularly preferably 660 kgf / cm 2 or more.
  • the upper limit of the tensile strength is not particularly limited, for example 4,000kgf / cm 2 or less, 3,500kgf / cm 2 or less, may be 2,500kgf / cm 2 or less and the like.
  • the amount of the above-mentioned specific polyvinyl acetal-based resin contained in the polymer film of the present invention is preferably 50% by mass or more, more preferably 50% by mass or more, based on the total mass of the polymer film, from the viewpoint of swellability to the electrolytic solution. Is 70% by mass or more, more preferably 80% by mass or more, and even more preferably 90% by mass or more.
  • the upper limit of the amount of the above-mentioned specific polyvinyl acetal-based resin contained in the polymer film of the present invention is not particularly limited, and may be 100% by mass or less.
  • the polymer film of the present invention may or may not contain other components in addition to the above-mentioned polyvinyl acetal-based resin.
  • Other components that can be contained in the polymer membrane of the present invention include, for example, a cross-linking agent, a surfactant, a defoaming agent, a release agent, an anti-blocking agent, an adhesive, a metal scavenger, and the like.
  • the content of the other component may be appropriately selected depending on the purpose of blending the component, but from the viewpoint of ionic conductivity, it is preferably 15% by mass or less, more preferably 15% by mass or less, based on the total mass of the polymer membrane. Is 10% by mass or less, more preferably 5% by mass or less.
  • the cross-linking agent may be contained in the polymer membrane of the present invention as a structure for cross-linking the above-mentioned polyvinyl acetal-based resin.
  • the method for producing the polymer film of the present invention containing the polyvinyl acetal-based resin is not particularly limited, but for example, a polyvinyl acetal-based resin solution containing the polyvinyl acetal-based resin and at least one solvent is demolded as necessary.
  • the polymer film of the present invention can be produced by coating on the applied base material, drying the coating film, and peeling off the base material. Further, each member such as the positive electrode, the negative electrode, the separator, and the current collector used in the battery may be directly coated with the polyvinyl acetal resin solution of the present invention and dried to prepare a film.
  • the method for producing the polymer film containing the polyvinyl acetal resin is not particularly limited, but for example, before crosslinking.
  • a polyvinyl acetal resin solution containing a polyvinyl acetal resin, at least one solvent, and a cross-linking agent is applied onto a base material which has been subjected to a mold release treatment, if necessary, and the coating film is dried, and then the coating film is dried.
  • the polymer film of the present invention according to the above embodiment can be produced by cross-linking the polyvinyl acetal resin by heating and / or irradiating with energy rays or the like and peeling off the base material. Further, the cross-linking agent may be contained later by a coat or the like. Further, the polyvinyl acetal-based resin solution may contain a polymerization initiator and a photosensitizer. A polymer film may be produced using a solution containing the crosslinked polyvinyl acetal resin.
  • each member such as the positive electrode, the negative electrode, the separator, and the current collector used in the battery is directly coated with the solution containing the polyvinyl acetal resin of the present invention or the solution containing the cross-linking agent and the polyvinyl acetal resin before cross-linking.
  • the film may be prepared by drying and, if necessary, performing a cross-linking reaction by heating and / or irradiation with energy rays or the like.
  • the cross-linking conditions may be appropriately adjusted depending on the cross-linking agent used and the base material.
  • the cross-linking agent has a heat-reactive group such as an isocyanate group, an epoxy group, a carboxyl group, or an acid anhydride group (hereinafter,
  • a heat-reactive cross-linking agent also referred to as a heat-reactive cross-linking agent
  • the cross-linked structure can be introduced into the polyvinyl acetal resin by heating at a temperature of preferably 60 to 180 ° C., more preferably 70 to 150 ° C.
  • a cross-linking agent having a photo-cross-linking group such as a (meth) acrylate group (hereinafter, also referred to as a photo-crosslinking cross-linking agent) is used as the cross-linking agent
  • a mercury lamp or the like is used for the dry coating film described later.
  • the solvent for dissolving the polyvinyl acetal-based resin is not particularly limited as long as it is a solvent capable of dissolving the polyvinyl acetal-based resin.
  • solvents include cyclic amide solvents such as N-alkylpyrrolidone such as N-methylpyrrolidone, N-ethylpyrrolidone, N-methyl- ⁇ -methylpyrrolidone, N-ethyl- ⁇ -methylpyrrolidone; N, N- Amido solvents such as dimethylformamide, N, N-dimethylacetamide; cyclic ether solvents such as tetrahydrofuran, dioxane, morpholin, N-methylmorpholin; sulfoxide solvents such as dimethyl sulfoxide; sulfone solvents such as sulfolane and the like can be mentioned.
  • a cyclic amide solvent is preferable.
  • the polyvinyl acetal resin can be sufficiently dissolved and the viscosity of the obtained polyvinyl acetal resin solution can be reduced, so that the coatability of the polyvinyl acetal resin solution is improved. It is easy to improve the uniformity of the obtained polymer film.
  • the content of the polyvinyl acetal resin contained in the polyvinyl acetal resin solution is preferably 1 to 30% by mass, more preferably 3 to 20% by mass, and particularly preferably 5 to 5 to 30% by mass, based on the total amount of the polyvinyl acetal resin solution. It is 10% by mass.
  • the content of the polyvinyl acetal-based resin is at least the above lower limit, the coatability is good and the film is easily formed. Further, when it is not more than the above upper limit, it is easy to prepare a polyvinyl acetal-based resin solution.
  • the polymer membrane of the present invention is a polymer membrane for non-aqueous electrolyte batteries.
  • the present invention also provides a non-aqueous electrolyte battery containing the polymer membrane of the present invention.
  • the polymer membrane of the present invention has high ionic conductivity when used in a portion of a non-aqueous electrolyte battery that comes into contact with an electrolytic solution, and can contribute to the safety and long life of the battery. Therefore, the polymer film of the present invention can be used as a component that comes into contact with at least one member of the positive electrode, the negative electrode, and the separator.
  • the polymer membrane of the present invention is not limited in its state as long as it is a membrane containing the above-mentioned specific polyvinyl acetal-based resin, and when used in a non-aqueous electrolyte battery, it swells with an electrolytic solution or the like. It may be in a gel state or a gel state film.
  • the polymer membrane of the present invention preferably the polymer membrane in one embodiment of the present invention in which the polyvinyl acetal resin has a crosslinked structure, is not particularly limited in purpose as long as it is used in a non-aqueous electrolyte battery, and is not limited to an electrolyte. It can also be used in the above applications.
  • the polymer film of the present invention preferably a polyvinyl acetal resin having a crosslinked structure, preferably has at least a part of the polymer film in contact with an electrolytic solution. It is used as a component, more preferably as an electrolyte, and even more preferably as a gel electrolyte.
  • the non-aqueous electrolyte battery of the present invention (sometimes referred to simply as a "battery”) includes at least the polymer film of the present invention, electrodes (negative electrode and positive electrode), and an electrolytic solution.
  • the non-aqueous electrolyte battery of the present invention may further include a separator.
  • Examples of the non-aqueous electrolyte battery of the present invention include a lithium ion battery, a lithium metal battery, a sodium ion battery, a potassium ion battery, a magnesium battery, a lithium sulfur battery, an all-solid-state lithium battery, a metal air battery, and a lithium ion capacitor. Be done.
  • the positive electrode and the negative electrode contained in the non-aqueous electrolyte battery include a cured body and a current collector of the positive electrode or the negative electrode active material, respectively.
  • the cured product may contain a binder (for example, a binder resin) if necessary.
  • a material conventionally used as a negative electrode active material for non-aqueous electrolyte batteries can be used, and examples thereof include amorphous carbon, artificial graphite, natural graphite (graphite), and mesocarbon microbeads ( MCMB), pitch-based carbon fibers, carbon black, activated carbon, carbon fibers, hard carbon, soft carbon, mesoporous carbon, carbonaceous materials such as conductive polymers such as polyacene, represented by SiO x , SnO x , LiTIO x Composite metal oxides and other metal oxides, lithium metals, lithium-based metals such as lithium alloys , metal compounds such as TiS 2 and LiTiS 2 , composite materials of metal oxides and carbonaceous materials, magnesium, iron, zinc , Metals such as aluminum and the like.
  • amorphous carbon such as artificial graphite, natural graphite (graphite), and mesocarbon microbeads (MCMB), pitch-based carbon fibers, carbon black, activated
  • the positive electrode active material for example, a material conventionally used as a positive electrode active material of a non-aqueous electrolyte battery can be used, and examples thereof include TiS 2 , TiS 3 , amorphous MoS 3 , and Cu 2. Transition metal oxides such as V 2 O 3 , amorphous V 2 O-P 2 O 5 , MoO 3 , V 2 O 5 , V 6 O 13 , LiCo O 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4, etc.
  • lithium-containing composite metal oxides P 2 -Na 2/3 Ni 1/3 Mn 2/3 O 2, NaCrO 2, Na 2/3 [Fe 1/2 Mn 1/2] O 2, NaMnO, Na x Sodium-containing composite metal oxides such as CoO 2 , potassium-containing composite metal oxides such as K 2 Mn [Fe (CN) 6 ], K x MnO 2 , K x Fe 0.5 Mn 0.5 O 2 , KFeSO 4 F, etc. , Mo 3 S, MgTi 2 S 4 , V 2 O 5 , NVO, MgFeSiO 4 , carbon paper, carbon material, sulfur-based and the like.
  • These positive electrode active materials can be used alone or in combination of two or more.
  • the positive electrode and the negative electrode contained in the non-aqueous electrolyte battery may further contain a conductive auxiliary agent.
  • the conductive auxiliary agent is used to increase the output of the non-aqueous electrolyte battery, and can be appropriately selected depending on the case where it is used for the positive electrode or the negative electrode. Examples thereof include graphite, acetylene black, and carbon black. , Ketjen black, vapor-grown carbon fiber and the like. Among these, acetylene black is preferable from the viewpoint that the obtained non-aqueous electrolyte battery can easily increase the output.
  • the content of the conductive auxiliary agent is preferably 0.1 to 15 parts by mass, more preferably 1 to 10 parts by mass, based on 100 parts by mass of the active material. More preferably, it is 3 to 10 parts by mass.
  • the content of the conductive auxiliary agent is in the above range, there is a sufficient conductive auxiliary effect without lowering the battery capacity.
  • a material conventionally used as a negative electrode active material of a non-aqueous electrolyte battery can be used, and examples thereof include SBR, NBR, acrylic rubber, hydroxyethyl cellulose, carboxymethyl cellulose, polyvinylidene fluoride, and acrylic type. , Polyamide-imide type, polyvinylcor type and the like.
  • the binder used for the negative electrode and the positive electrode is particularly a polymer compound having a vinyl alcohol-based material or a copolymer containing vinyl acetal and / or vinyl ester, which is the same material as the polymer film of the present invention. It is expected that the electrode position will be displaced from the polymer film of the present invention and the productivity will be improved by preventing the active material from falling off. Therefore, it is more preferable to use the same kind of material as the polymer film of the present invention as the binder. On the other hand, from the viewpoint of the balance between availability and productivity improvement, it is one of the preferred embodiments to use an SBR emulsion.
  • the positive electrode and / or the negative electrode may be added with a flame retardant aid, a thickener, a defoaming agent, a leveling agent, an adhesion imparting agent, etc., if necessary.
  • a flame retardant aid e.g., a flame retardant aid, a thickener, a defoaming agent, a leveling agent, an adhesion imparting agent, etc., if necessary.
  • a material conventionally used as a separator for a non-aqueous electrolyte battery can be used, and examples thereof include a porous film made of polyolefins such as polypropylene and polyethylene, fluororesin, cellulose, and polyamides. Examples thereof include non-woven fabrics, and those obtained by laminating them can also be used.
  • a composition containing a positive electrode or negative electrode active material, a binder resin, and one or more kinds of solvents (hereinafter, also referred to as a slurry composition) is applied to a current collector, and the solvent is removed by drying or the like. Obtainable. Further, the electrode may be rolled after drying.
  • the current collector is not particularly limited as long as it is made of a conductive material, and examples thereof include metal materials such as iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, and platinum. These current collectors can be used alone or in combination of two or more.
  • aluminum is preferable as the positive electrode current collector
  • copper is preferable as the negative electrode current collector from the viewpoint of the adhesiveness of the active material and the discharge capacity.
  • the method of applying the slurry composition to the current collector is not particularly limited, and examples thereof include an extrusion coater, a reverse roller, a doctor blade, and an applicator.
  • the coating amount of the slurry composition is appropriately selected according to the desired thickness of the cured product derived from the slurry composition.
  • Examples of the electrode rolling method include a mold press and a roll press.
  • the press pressure is preferably 1 to 40 MPa from the viewpoint of easily increasing the battery capacity.
  • the thickness of the current collector is preferably 1 to 20 ⁇ m, more preferably 2 to 15 ⁇ m.
  • the thickness of the cured product is preferably 10 to 400 ⁇ m, more preferably 20 to 300 ⁇ m.
  • the thickness of the electrode is preferably 20 to 200 ⁇ m.
  • the electrolyte solution contained in the non-aqueous electrolyte battery of the present invention may contain an electrolyte salt, an organic solvent and / or an additive, or may be a solid electrolyte, an ionic liquid, or an ionic liquid containing an electrolyte salt.
  • the electrolyte salt may be solid, liquid, or gel as long as it is used in a normal non-aqueous electrolyte battery, and exhibits a function as a battery depending on the type of the negative electrode active material and the positive electrode active material. You can select the one as appropriate.
  • electrolyte salt for example, LiClO 4, LiBF 6, LiPF 6, LiTFSA, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiB 10 Cl 10, LiAlC l4, LiCl, LiBr, LiB (C 2 H 5 ) 4 , CF 3 SO 3 Li, CH 3 SO 3 Li, LiCF 3 SO 3 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 N, lower aliphatic lithium carboxylate, NaPF 6 , NaTFSA, NaFSI, KFSI, KPF 6 , Mg (TFSA) 2 , Mg [N (CF 3 SO 2 ) 2 ] 2, and the like.
  • the solvent contained in the electrolytic solution is not particularly limited, and specific examples thereof include carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, ethylmethyl carbonate, diethyl carbonate, and vinylene carbonate; ⁇ -butyl lactone and the like.
  • Solvents such as trimethoxymethane, 1,2-dimethoxyethane, diethyl ether, 2-ethoxyethane, tetrahydrofuran, 2-methyl tetrahydrofuran, diethylene glycol diethyl ether; sulfoxides such as dimethylsulfoxide; 1,3-dioxolane Oxoranes such as 4-methyl-1,3-dioxolane; Nitrogen-containing compounds such as acetonitrile and nitromethane; Organic acid esters such as methyl formate, methyl acetate, ethyl acetate, butyl acetate, methyl propionate, ethyl propionate and the like.
  • Inorganic acid esters such as triethyl phosphate, dimethyl carbonate, diethyl carbonate; diglimes; triglimes; sulfolanes; oxazolidinones such as 3-methyl-2-oxazolidinone; 1,3-propanesulton, 1,4-butanesulton , Naphthaltons and the like, and these can be used alone or in combination of two or more.
  • a gel-like electrolytic solution a nitrile-based polymer, an acrylic-based polymer, a fluorine-based polymer, an alkylene oxide-based polymer, or the like can be added as a gelling agent.
  • the additive contained in the electrolytic solution is not particularly limited, and examples thereof include VC, VEC, FEC, and LiFSI.
  • the solid electrolyte is not particularly limited , and is sulfide-based such as Li 2 SP 2 S 5 , LGPS, LSiPSCl, LSiSnPS, oxide-based such as LLTO, LATP, LLZO, LAGP, LIPON, and polymer such as PEO-LiTFSI.
  • sulfide-based such as Li 2 SP 2 S 5 , LGPS, LSiPSCl, LSiSnPS, oxide-based such as LLTO, LATP, LLZO, LAGP, LIPON, and polymer such as PEO-LiTFSI.
  • Examples thereof include a system, a complex system such as LiBH 4 , LiBH 4- LiI, LiBH 4- LiNH 2 , LiBH 4- P 2 S 5, and a hydride system such as crosobolan and carboran.
  • the ionic liquid used as the electrolytic solution is not particularly limited, and is, for example, ammonium-based, pyrrolidinium-based, pyridinium-based, imidazolium-based, piperidinium-based, pyrazolium-based, oxazolium-based, pyridadinium-based, phosphonium-based, sulfonium-based, triazolium-based, and and one or more cations selected from among the mixture BF 4 -, PF 6 -, AsF 6 -, SbF 6 -, AlCl 4 -, HSO 4 -, ClO 4 -, CH 3 SO 3 -, (F 5 O2) 2 N - is selected from among -, (C 2 F 5 SO 2) 2 N -, (C 2 F 5 SO 2) (CF 3 SO 2) N - and (CF 3 SO 2) 2 N Examples thereof include compounds containing one or more types of anions selected from at least one.
  • the method for manufacturing the non-aqueous electrolyte battery is not particularly limited, and for example, the following manufacturing method is exemplified.
  • the polymer film of the present invention is independently produced, and a laminate that is laminated so as to be in contact with the negative electrode and / or the positive electrode is wound or folded according to the shape of the battery and placed in a battery container to contain an electrolytic solution. Inject and seal.
  • each member such as the positive electrode, the negative electrode, and the separator used for the battery is directly coated with the polyvinyl acetal-based resin solution of the present invention, and dried to form a film to prepare a battery by the method as described above. May be good.
  • the shape of the battery may be any of known coin type, button type, sheet type, cylindrical type, square type, flat type and the like.
  • the non-aqueous electrolyte battery of the present invention is useful for various applications. For example, it is very useful as a battery used in a mobile terminal that requires miniaturization, thinning, weight reduction, and high performance. Further, it can be suitably used for batteries of equipment requiring flexibility, for example, winding type dry batteries and laminated type batteries.
  • ⁇ Analysis of polyvinyl acetal resin> The degree of polymerization, the degree of saponification, the degree of acetalization, the amount of acetyl groups, and the amount of hydroxyl groups of the polyvinyl acetal-based resins used in Examples and Comparative Examples were measured according to the methods shown below.
  • the degree of polymerization, the degree of saponification, the degree of acetalization, and the amount of acetyl groups are values that do not change depending on the manufacturing process of the polymer film, and therefore the polyvinyl used as a raw material.
  • the value measured for the acetal-based resin may be used as the value for the polyvinyl acetal-based resin contained in the polymer film.
  • the value measured for the polyvinyl acetal-based resin used as the raw material is the polymer. It may be a value for the polyvinyl acetal resin contained in the film.
  • the degree of polymerization, the degree of saponification, the degree of acetalization, and the amount of acetyl groups and the amount of hydroxyl groups which are values that do not change depending on the manufacturing process of the polymer film, are the values before cross-linking used as raw materials.
  • the value measured for the polyvinyl acetal-based resin of the above may be used as the value for the cross-linked polyvinyl acetal-based resin contained in the polymer film.
  • the amount of hydroxyl groups in the polyvinyl acetal-based resin after cross-linking was measured by the method described later.
  • the amount of acetyl group was determined from the strength.
  • (D) Amount of hydroxyl group From the degree of acetalization and the amount of acetyl groups calculated above, the amount of hydroxyl group was calculated according to the following formula. When a polyvinyl acetal-based resin having a crosslinked structure was used, the amount of hydroxyl groups in the polyvinyl acetal-based resin before cross-linking was calculated according to the above formula.
  • LiFSI Lithium bis (fluorosulfonyl) imide
  • EMI-FSI 1-ethyl-3-methylimidazolium bis (fluorosulfonyl) imide
  • 1M-LiFSI, EMI-FSI, Kishida Manufactured by Chemical Co., Ltd.
  • a polyvinyl acetal-based resin film was prepared by applying the polyvinyl acetal-based resin solution prepared in Examples and Comparative Examples onto the release-treated polyethylene terephthalate film and drying the film.
  • the prepared film was used as a measurement sample and measured by the ATR method using a Fourier transform infrared spectrophotometer (FT / IR6600, manufactured by JASCO Corporation).
  • FT / IR6600 Fourier transform infrared spectrophotometer
  • the reaction rate is calculated from the reduction rate of the absorption peak of 810 cm -1 derived from the double bond.
  • reaction rate is calculated from the reduction rate of the absorption peak of 2300 cm-1 derived from the isocyanate group.
  • reaction rate is calculated from the reduction rate of the absorption peak of 910 cm -1 derived from the epoxy group.
  • a sheet of polyvinyl acetal resin was prepared by applying the polyvinyl acetal resin solution prepared in Examples and Comparative Examples onto the release-treated polyethylene terephthalate film and drying the film. After obtaining a test piece according to JIS K 7162-1B from the obtained sheet, the tensile strength was determined using a tensile tester (Autograph AG5000B, manufactured by Shimadzu Corporation) under the conditions of 500 mm / min and 25 ° C. It was measured. In addition, a tensile test was also carried out on the membrane swollen under the same conditions as described above.
  • Example 1 Polyvinyl acetal resin solution (1)
  • acetone 100 g of water, and 12.3 g of 1-butanal were added, and polyvinyl alcohol (saponification degree 99 mol%, average degree of polymerization 1700) was added while stirring with a magnetic stirrer.
  • 50 g was added over 1 minute.
  • a mixed solution of 50 g of water and 21.2 g of 47 mass% sulfuric acid was added dropwise from a dropping funnel over 5 minutes, the temperature was raised to 30 ° C., and the reaction was carried out for 5 hours.
  • a 1 mol / L aqueous sodium hydroxide solution was added until the pH reached 8, and then the solid was removed by filtration.
  • the solid substance was washed 5 times with a mixed solvent having a mass ratio of acetone and water of 1: 1 and then dried at 120 ° C. and a pressure of 0.005 MPa for 6 hours to obtain a polyvinyl acetal resin (1). ..
  • the amount of acetyl group, degree of acetalization and amount of hydroxyl group of the obtained polyvinyl acetal resin were measured by the above method.
  • NMP N-methylpyrrolidone
  • Polymer membrane (1) The polyvinyl acetal-based resin solution (1) obtained above is applied on a release-treated polyethylene terephthalate film using a baker-type applicator (SA-201, manufactured by Tester Sangyo Co., Ltd.), and then at 80 ° C. for 3 The polymer film (1) was obtained by drying for a time. The thickness of the obtained polymer film (1) was 23 ⁇ m.
  • SA-201 baker-type applicator
  • the polymer film (1) was transferred to a glove box (manufactured by Miwa Seisakusho) in an argon gas atmosphere.
  • a tripolar cell was prepared using the prepared polymer membrane (1), and ionic conductivity was measured. The results are shown in the table.
  • a laminate cell was prepared using the above polymer film (1), and a charge / discharge test was carried out at a rate of 0.2 C for 100 cycles. The results are shown in the table.
  • Example 2 In the preparation of the polyvinyl acetal-based resin of Example 1, the polyvinyl acetal-based resin (2) was obtained in the same manner as in Example 1 except that 10 g of 1-butarnal was used instead of 12.3 g of 1-butanal. It was. Using the obtained polyvinyl acetal-based resin (2), a polyvinyl acetal-based resin solution (2) was prepared in the same manner as in Example 1, and the polymer was used in the same manner as in Example 1. A film (2) (thickness 16 ⁇ m) was obtained.
  • Example 3 In the preparation of the polyvinyl acetal-based resin of Example 1, the polyvinyl acetal-based resin (3) was the same as in Example 1 except that 4.4 g of 1-butarnal was used instead of 12.3 g of 1-butanal. Got Using the obtained polyvinyl acetal-based resin (3), a polyvinyl acetal-based resin solution (3) was prepared in the same manner as in Example 1, and the polymer was used in the same manner as in Example 1. A film (3) (thickness 19 ⁇ m) was obtained.
  • Example 4 In the preparation of the polyvinyl acetal-based resin of Example 1, the polyvinyl acetal-based resin (4) was the same as in Example 1 except that 18.8 g of 1-nonanal was used instead of 12.3 g of 1-butanal. Got Using the obtained polyvinyl acetal-based resin (4), a polyvinyl acetal-based resin solution (4) was prepared in the same manner as in Example 1, and the polymer was used in the same manner as in Example 1. A film (4) (thickness 20 ⁇ m) was obtained.
  • Example 5 To a three-necked flask equipped with a reflux condenser and a thermometer, 150 g of acetone, 100 g of water, and 18.8 g of 1-nonanaal were added, and polyvinyl alcohol (saponification degree 99 mol%, average degree of polymerization 2400) was added while stirring with a magnetic stirrer. 50 g was added over 1 minute. A mixed solution of 50 g of water and 21.2 g of 47 mass% sulfuric acid was added dropwise from a dropping funnel over 5 minutes, the temperature was raised to 30 ° C., and the reaction was carried out for 5 hours.
  • a 1 mol / L aqueous sodium hydroxide solution was added until the pH reached 8, and then the solid was removed by filtration.
  • the solid substance was washed 5 times with a mixed solvent having a mass ratio of acetone and water of 1: 1 and then dried at 120 ° C. and a pressure of 0.005 MPa for 6 hours to obtain a polyvinyl acetal resin (5). .. 95 parts by mass of NMP is added to 5 parts by mass of the obtained polyvinyl acetal resin (5), and the mass of the polyvinyl acetal resin (5) is 5% by mass with respect to the mass of the polyvinyl acetal resin solution.
  • An acetal-based resin solution (5) was obtained. Using the resin solution, a polymer film (5) (thickness 19 ⁇ m) was obtained in the same manner as in Example 1.
  • Example 6 In the preparation of the polyvinyl acetal-based resin of Example 1, the polyvinyl acetal-based resin (6) was the same as in Example 1 except that 25.3 g of 1-octanal was used instead of 12.3 g of 1-butanal. Got Using the obtained polyvinyl acetal-based resin (6), a polyvinyl acetal-based resin solution (6) was prepared in the same manner as in Example 1, and the polymer was used in the same manner as in Example 1. A film (6) (thickness 18 ⁇ m) was obtained.
  • Example 7 In the preparation of the polyvinyl acetal-based resin of Example 1, the polyvinyl acetal-based resin (7) was the same as in Example 1 except that 13.3 g of 1-octanal was used instead of 12.3 g of 1-butanal. Got Using the obtained polyvinyl acetal-based resin (7), a polyvinyl acetal-based resin solution (7) was prepared in the same manner as in Example 1, and the polymer was used in the same manner as in Example 1. A film (7) (thickness 17 ⁇ m) was obtained.
  • Example 1 In the preparation of the polyvinyl acetal-based resin of Example 1, the polyvinyl acetal-based resin (8) was the same as in Example 1 except that 29.2 g of 1-butanol was used instead of 12.3 g of 1-butanal. Got Using the obtained polyvinyl acetal-based resin (8), a polyvinyl acetal-based resin solution (8) was prepared in the same manner as in Example 1, and the polymer was used in the same manner as in Example 1. A film (8) (thickness 20 ⁇ m) was obtained.
  • Example 2 In the preparation of the polyvinyl acetal-based resin of Example 1, the polyvinyl acetal-based resin (9) was the same as in Example 1 except that 19.2 g of 1-butanol was used instead of 12.3 g of 1-butanal. Got Using the obtained polyvinyl acetal-based resin (9), a polyvinyl acetal-based resin solution (9) was prepared in the same manner as in Example 1, and the polymer was used in the same manner as in Example 1. A film (9) (thickness 17 ⁇ m) was obtained.
  • Example 1 Using the polymer film (11) obtained above, the elution rate, swelling rate, and piercing strength were carried out in the same manner as in Example 1. Although the ionic conductivity was measured, the polymer membrane (11) did not swell in the electrolytic solution, the ionic conductivity was 0 Scm- 1 , and the ionic conductivity was not shown. Therefore, the cycle test was not conducted.
  • a fluorine-based resin solution was obtained by adding 95 parts by mass of NMP to 5 parts by mass of polyvinylidene fluoride (PVDF; manufactured by HSV900 Kynar). Using the resin solution, a polymer film (13) (thickness 23 ⁇ m) was obtained in the same manner as in Example 1.
  • PVDF polyvinylidene fluoride
  • Example 7 ⁇ Comparative Example 7>
  • a cycle test was similarly carried out using a polyethylene terephthalate film that had been release-treated without coating the polymer film (1). The results are shown in the table.
  • Example 8> Polyvinyl acetal resin solution (15)
  • acetone 100 g of water, and 12.3 g of 1-butanal were added, and polyvinyl alcohol (saponification degree 99 mol%, average degree of polymerization 1700) was added while stirring with a magnetic stirrer.
  • 50 g was added over 1 minute.
  • a mixed solution of 50 g of water and 21.2 g of 47 mass% sulfuric acid was added dropwise from a dropping funnel over 5 minutes, the temperature was raised to 30 ° C., and the reaction was carried out for 5 hours.
  • a 1 mol / L aqueous sodium hydroxide solution was added until the pH reached 8, and then the solid was removed by filtration.
  • the solid was washed 5 times with a mixed solvent having a mass ratio of acetone and water of 1: 1 and then dried at 120 ° C. and a pressure of 0.005 MPa for 6 hours to obtain a polyvinyl acetal resin.
  • 89.7 parts by mass of the obtained polyvinyl acetal resin 5 parts by mass of a photocrosslinkable cross-linking agent (a) (2-isocyanatoethyl acrylate), and 0.15 parts of a photopolymerization initiator (1-hydroxycyclohexylphenylketone).
  • NMP N-methylpyrrolidone
  • Polymer membrane (15) The polyvinyl acetal-based resin solution (15) obtained above is applied on a release-treated polyethylene terephthalate film using a baker-type applicator (SA-201, manufactured by Tester Sangyo Co., Ltd.), and then at 80 ° C. for 3 A polymer film was obtained by drying for a time. Next, the obtained polymer film was irradiated with ultraviolet light at 24 mW for 60 seconds using a high-pressure mercury lamp (TOSCURE401, manufactured by Toshiba Corporation) and crosslinked to obtain a polymer film (15). The thickness of the obtained polymer film (15) was 18 ⁇ m.
  • SA-201 baker-type applicator
  • TOSCURE401 high-pressure mercury lamp
  • the polymer film (15) was transferred to a glove box (manufactured by Miwa Seisakusho) in an argon gas atmosphere.
  • a tripolar cell was prepared using the prepared polymer membrane (15), and ionic conductivity was measured. The results are shown in the table.
  • a laminate cell was prepared using the above polymer film (15), and a charge / discharge test was carried out at a rate of 0.2 C for 100 cycles. The results are shown in the table.
  • Example 9 A polyvinyl acetal resin was obtained in the same manner as in Example 8 except that 24.3 g of nonanal was used instead of 12.3 g of 1-butanal in the preparation of the polyvinyl acetal resin of Example 8. Using the obtained polyvinyl acetal-based resin, a polyvinyl acetal-based resin solution (16) was prepared in the same manner as in Example 8, and the polymer film (16) was prepared in the same manner as in Example 8 using the resin solution. ) (Thickness 18 ⁇ m) was obtained.
  • Example 10 A polyvinyl acetal resin was obtained in the same manner as in Example 8 except that 20.1 g of octanal was used instead of 12.3 g of 1-butanal in the preparation of the polyvinyl acetal resin of Example 8. Using the obtained polyvinyl acetal-based resin, a polyvinyl acetal-based resin solution (17) was prepared in the same manner as in Example 8, and the polymer film (17) was prepared in the same manner as in Example 8 using the resin solution. ) (Thickness 15 ⁇ m) was obtained.
  • Example 11 In the preparation of the polyvinyl acetal-based resin solution of Example 8, the same procedure as in Example 8 except that the heat-reactive cross-linking agent (b) (hexamethylene diisocyanate) was used instead of the cross-linking agent (a). , Polyvinyl acetal resin solution (18) was obtained. In the preparation of the polymer film using the resin solution, a polymer film (18) (thickness 16 ⁇ m) was obtained in the same manner as in Example 8 except that UV treatment was not performed.
  • the heat-reactive cross-linking agent (b) hexamethylene diisocyanate
  • Example 12 A polyvinyl acetal resin was obtained in the same manner as in Example 11 except that 24.3 g of nonanal was used instead of 12.3 g of 1-butanal in the preparation of the polyvinyl acetal resin of Example 11. Using the obtained polyvinyl acetal-based resin, a polyvinyl acetal-based resin solution (19) was prepared in the same manner as in Example 11, and the polymer film (19) was prepared in the same manner as in Example 11 using the resin solution. ) (Thickness 17 ⁇ m) was obtained.
  • Example 13 A polyvinyl acetal resin was obtained in the same manner as in Example 11 except that 20.1 g of octanal was used instead of 12.3 g of 1-butanal in the preparation of the polyvinyl acetal resin of Example 11. Using the obtained polyvinyl acetal-based resin, a polyvinyl acetal-based resin solution (20) was prepared in the same manner as in Example 11, and the polymer film (20) was prepared in the same manner as in Example 11 using the resin solution. ) (Thickness 21 ⁇ m) was obtained.
  • Example 14 In the preparation of the polyvinyl acetal-based resin solution of Example 8, a photo-crosslinkable cross-linking agent (c) (acrylic acid (3,4-epoxycyclohexyl) methyl) was used instead of the cross-linking agent (a), and a polymerization initiator was used. A polyvinyl acetal-based resin solution (21) was obtained in the same manner as in Example 8 except that 0.25 parts by mass of sodium ethoxydo was used. In the preparation of the polymer film using the resin solution, a polymer film (21) (thickness 18 ⁇ m) was obtained in the same manner as in Example 8 except that the drying temperature was set to 100 ° C.
  • Example 10 A polymer film (24) (thickness 18 ⁇ m) was obtained in the same manner as in Example 11 except that the amount of the cross-linking agent (b) added in Example 11 was 10% by mass.
  • a fluorine-based resin solution was obtained by adding 95 parts by mass of NMP to 5 parts by mass of polyvinylidene fluoride (PVDF; manufactured by HSV900 Kynar). Using the resin solution, a polymer film (25) (thickness 18 ⁇ m) was obtained in the same manner as in Example 8.
  • PVDF polyvinylidene fluoride
  • the polymer films of Examples 1 to 7 containing a polyvinyl acetal-based resin having a hydroxyl group content of 56 to 90 mol% (preferably 62 to 90 mol%) have a low elution rate and have electrolytic solution resistance, and are films.
  • the piercing strength was also high. Since the polymer membranes of Examples 1 to 7 also have high ionic conductivity, it was confirmed that inserting the polymer membrane into the battery can contribute to the improvement of cycle characteristics. On the other hand, it was confirmed that the polymer films of Comparative Examples 1 to 3 having a hydroxyl group content of less than 56 mol% had a high elution rate and could not stably retain their shape in the electrolytic solution.
  • the polymer film of Comparative Example 4 did not correspond to a polyvinyl acetal-based resin because it was not acetalized, and was not a film that had no ionic conductivity and could be incorporated into a battery.
  • the polymer film of Comparative Example 5 was a film of polyvinyl alcohol that was not acetalized but swelled in the electrolytic solution, but it was confirmed that the ionic conductivity was low because the swelling property was low.
  • the piercing strength of the film was low, and the cycle characteristics of the battery containing the film were also low.
  • the polymer membranes of Examples 8 to 14 containing a polyvinyl acetal-based resin having a hydroxyl group content of 56 to 90 mol% and a crosslinked structure have electrolytic solution resistance due to a low elution rate, and are contained in the electrolytic solution.
  • the film shape retention was high, and the tensile strength of the film was also high.
  • the batteries containing the polymer films of Examples 8 to 14 have high ionic conductivity and excellent cycle characteristics. It is considered that this is because the polymer film has high mechanical strength and electrolyte resistance, and the collapse of the electrode due to expansion and contraction of the active material is suppressed.
  • the polymer film of Comparative Example 8 containing the polyvinyl acetal-based resin having a hydroxyl group content of less than 56 mol% had a high elution rate and could not retain its shape in the electrolytic solution for a long period of time. .. Further, it was confirmed that the battery containing the polymer film of Comparative Example 8 had insufficient cycle characteristics, which caused the polymer film to have low mechanical strength and electrolyte resistance, and the electrode collapsed due to expansion and contraction of the active material. It is probable that it could not be suppressed.
  • the polymer membrane of Comparative Example 9 containing the modified polyvinyl alcohol having a hydroxyl group content of 90 mol% or more did not show swelling property to the electrolytic solution, and the ionic conductivity could not be measured.
  • the polymer membrane of Comparative Example 10 containing a polyvinyl acetal-based resin having a low hydroxyl group content of less than 56 mol% has a low elution rate and electrolyte resistance, but has low swelling property and low mechanical strength.
  • the cycle characteristics of the battery containing the polymer film were also poor. It was confirmed that the polymer film of Comparative Example 11 had a lower tensile strength and poorer cycle characteristics than the polymer film containing the specific polyvinyl acetal-based resin of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

The present invention relates to a polymer membrane for nonaqueous electrolyte batteries, said polymer membrane containing a polyvinyl acetal resin that has a hydroxyl group amount of from 56% by mole to 90% by mole.

Description

高分子膜及び非水電解質電池Polymer membrane and non-aqueous electrolyte battery
 本発明は、高分子膜及び非水電解質電池に関する。 The present invention relates to polymer membranes and non-aqueous electrolyte batteries.
 近年、携帯電話、ノート型パソコン、パッド型情報端末機器などの携帯端末や電気自動車及びハイブリット自動車等の普及に伴い、種々の非水電解質電池が開発されており、特に現在は電池の高出力化、高容量化を重視した開発が行われている。 In recent years, with the spread of mobile terminals such as mobile phones, notebook computers, pad-type information terminal devices, electric vehicles, hybrid vehicles, etc., various non-aqueous electrolyte batteries have been developed. , Development is being carried out with an emphasis on increasing capacity.
 例えば、負極活物質として、従来の炭素系負極活物質よりも質量当たりの理論容量が大きいシリコン系負極活物質を用い、エネルギー密度を高めることが検討されている(特許文献1)。また、負極活物質として、理論容量が3861.7mAh/gとなる金属リチウムを用いる検討もなされている(特許文献2)。 For example, it has been studied to use a silicon-based negative electrode active material having a larger theoretical capacity per mass than a conventional carbon-based negative electrode active material as the negative electrode active material to increase the energy density (Patent Document 1). Further, it has been studied to use metallic lithium having a theoretical capacity of 3861.7 mAh / g as the negative electrode active material (Patent Document 2).
 さらに、正極活物質としては理論容量が1672mAh/gとなる硫黄を用いたリチウム硫黄二次電池の開発が行われている(特許文献3)。 Further, as a positive electrode active material, a lithium-sulfur secondary battery using sulfur having a theoretical capacity of 1672 mAh / g has been developed (Patent Document 3).
 電池の高出力化及び高容量化に伴い、より高い安全性もまた求められている。 Along with the increase in output and capacity of batteries, higher safety is also required.
 安全性の向上に関し、固体電解質を用いた全固体電池が検討されている。例えば特許文献4には、有機固体電解質として、ポリビニルアセタール及びイオン解離性塩を主成分とする、実質的に固形分だけから構成される高分子電解質が開示されている(特許文献4)。 Regarding the improvement of safety, an all-solid-state battery using a solid electrolyte is being studied. For example, Patent Document 4 discloses, as an organic solid electrolyte, a polymer electrolyte containing polyvinyl acetal and an ionic dissociable salt as main components and substantially composed of only solid content (Patent Document 4).
 さらに、非水電解質電池において、高分子化合物に電解液を保持させたゲル状の高分子電解質を用いた電池も検討されている。例えば特許文献5には、ポリビニルアセタールと溶媒と電解質塩とを含む高分子電解質を備える二次電池が開示されている。 Further, as a non-aqueous electrolyte battery, a battery using a gel-like polymer electrolyte in which a polymer compound holds an electrolytic solution is also being studied. For example, Patent Document 5 discloses a secondary battery including a polymer electrolyte containing polyvinyl acetal, a solvent, and an electrolyte salt.
特開2018-206602号公報Japanese Unexamined Patent Publication No. 2018-20602 特開2017-16904号公報Japanese Unexamined Patent Publication No. 2017-16904 国際公開第2016/068043号International Publication No. 2016/068043 特許第3623050号公報Japanese Patent No. 362030 特許第4466416号公報Japanese Patent No. 4466416
 高出力化及び高容量化を目指しシリコン系負極活物質を用いる場合、シリコン系負極活物質は充放電時の膨張収縮が大きいため、充放電に伴い電極の割れや欠陥が生じやすく、電池の寿命及び安定性が低下する場合がある。また、金属リチウムを用いる場合、リチウム負極薄膜上に充電時デンドライト(樹枝状Li)が形成され、それによって内部短絡し発火が生じる場合がある。さらに、正極活物質として硫黄を用いる場合、反応中間生成物が溶出し、電池の寿命が短くなる場合がある。 When a silicon-based negative electrode active material is used for high output and high capacity, the silicon-based negative electrode active material has a large expansion and contraction during charging and discharging, so that the electrodes are liable to crack or have defects due to charging and discharging, and the battery life. And stability may decrease. Further, when metallic lithium is used, dendrites (dendritic Li) are formed on the lithium negative electrode thin film during charging, which may cause an internal short circuit and ignition. Further, when sulfur is used as the positive electrode active material, the reaction intermediate product may elute and the battery life may be shortened.
 全固体電池は、電解質に難燃性及び熱的・化学的安定性を付与することができるため、安全性及び耐久性を確保し易いものの、高出力化及び高容量化と電池の高寿命化とを両立させることは難しく、全固体電池は液系電池と比較して、イオン伝導性が十分高いとはいえない。 All-solid-state batteries can impart flame retardancy and thermal / chemical stability to the electrolyte, so it is easy to ensure safety and durability, but higher output, higher capacity, and longer battery life. It is difficult to achieve both, and it cannot be said that the all-solid-state battery has sufficiently high ionic conductivity as compared with the liquid-based battery.
 従って、本発明は、高いイオン伝導性を有すると共に、電池の高寿命化に寄与することが可能な、非水電解質電池用の高分子膜を提供することを課題とする。 Therefore, an object of the present invention is to provide a polymer film for a non-aqueous electrolyte battery, which has high ionic conductivity and can contribute to extending the life of the battery.
 本発明者らは、前記課題を解決するため詳細に検討を重ね、本発明を完成するに至った。即ち、本発明は、以下の好適な態様を包含する。
〔1〕水酸基量が56~90モル%であるポリビニルアセタール系樹脂を含有する、非水電解質電池用の高分子膜。
〔2〕60℃で1時間、ジエチルカーボネートに浸漬させたとき、次の式:
Figure JPOXMLDOC01-appb-M000006
[式中、Aは高分子膜の浸漬前の質量(g)を表し、Bは高分子膜の浸漬後の乾燥質量(g)を表す]
により算出される溶出率が7%以下である、前記〔1〕に記載の高分子膜。
〔3〕25℃で24時間、リチウムビス(フルオロスルホニル)イミドが1mol/Lの濃度で1-エチル-3-メチルイミダゾリウムビス(フルオロスルホニル)イミド中に溶解した溶液に浸漬させたとき、次の式:
Figure JPOXMLDOC01-appb-M000007
[式中、Cは高分子膜の浸漬前の質量(g)を表し、Dは高分子膜の浸漬後の質量(g)を表す]
により算出される膨潤率が20%以上である、前記〔1〕又は〔2〕に記載の高分子膜。
〔4〕ポリビニルアセタール系樹脂の水酸基量が62~90モル%である、前記〔1〕~〔3〕のいずれかに記載の高分子膜。
〔5〕25℃で24時間、リチウムビス(フルオロスルホニル)イミドが1mol/Lの濃度で1-エチル-3-メチルイミダゾリウムビス(フルオロスルホニル)イミド中に溶解した溶液に浸漬させたとき、次の式:
Figure JPOXMLDOC01-appb-M000008
[式中、Cは高分子膜の浸漬前の質量(g)を表し、Dは高分子膜の浸漬後の質量(g)を表す]
により算出される膨潤率が40%以上である、前記〔4〕に記載の高分子膜。
〔6〕ポリビニルアセタール系樹脂は架橋構造を有する、前記〔1〕に記載の非水電解質電池用の高分子膜。
〔7〕60℃で1時間、ジエチルカーボネートに浸漬させたとき、次の式:
Figure JPOXMLDOC01-appb-M000009
[式中、Aは高分子膜の浸漬前の質量(g)を表し、Bは高分子膜の浸漬後の乾燥質量(g)を表す]
により算出される溶出率が2%以下である、前記〔6〕に記載の高分子膜。
〔8〕25℃で24時間、リチウムビス(フルオロスルホニル)イミドが1mol/Lの濃度で1-エチル-3-メチルイミダゾリウムビス(フルオロスルホニル)イミド中に溶解した溶液に浸漬させたとき、次の式:
Figure JPOXMLDOC01-appb-M000010
[式中、Cは高分子膜の浸漬前の質量(g)を表し、Dは高分子膜の浸漬後の質量(g)を表す]
により算出される膨潤率が20%以上である、前記〔6〕又は〔7〕に記載の高分子膜。
〔9〕前記架橋構造は、水酸基に対する反応性基を有する架橋剤に由来する構造である、前記〔6〕~〔8〕のいずれかに記載の高分子膜。
〔10〕ポリビニルアセタール系樹脂は、ポリビニルブチラール、ポリビニルノナナール及びポリビニルオクタナールからなる群から選択される少なくとも1種である、前記〔1〕~〔9〕のいずれかに記載の高分子膜。
〔11〕ポリビニルアセタール系樹脂の重合度は250~5,000である、前記〔1〕~〔10〕のいずれかに記載の高分子膜。
〔12〕ポリビニルアセタール系樹脂のけん化度は90モル%以上である、前記〔1〕~〔11〕のいずれかに記載の高分子膜。
〔13〕前記〔1〕~〔12〕のいずれかに記載の高分子膜を含む、非水電解質電池。
The present inventors have repeated detailed studies in order to solve the above-mentioned problems, and have completed the present invention. That is, the present invention includes the following preferred embodiments.
[1] A polymer film for a non-aqueous electrolyte battery containing a polyvinyl acetal-based resin having a hydroxyl group content of 56 to 90 mol%.
[2] When immersed in diethyl carbonate at 60 ° C. for 1 hour, the following formula:
Figure JPOXMLDOC01-appb-M000006
[In the formula, A represents the mass (g) of the polymer film before immersion, and B represents the dry mass (g) of the polymer film after immersion].
The polymer membrane according to the above [1], wherein the dissolution rate calculated by the above method is 7% or less.
[3] When immersed in a solution in which lithium bis (fluorosulfonyl) imide was dissolved in 1-ethyl-3-methylimidazolium bis (fluorosulfonyl) imide at a concentration of 1 mol / L at 25 ° C. for 24 hours, the following Formula:
Figure JPOXMLDOC01-appb-M000007
[In the formula, C represents the mass (g) of the polymer film before immersion, and D represents the mass (g) of the polymer film after immersion].
The polymer film according to the above [1] or [2], wherein the swelling rate calculated by the above method is 20% or more.
[4] The polymer film according to any one of [1] to [3] above, wherein the polyvinyl acetal resin has a hydroxyl group content of 62 to 90 mol%.
[5] When immersed in a solution in which lithium bis (fluorosulfonyl) imide was dissolved in 1-ethyl-3-methylimidazolium bis (fluorosulfonyl) imide at a concentration of 1 mol / L at 25 ° C. for 24 hours, the following Formula:
Figure JPOXMLDOC01-appb-M000008
[In the formula, C represents the mass (g) of the polymer film before immersion, and D represents the mass (g) of the polymer film after immersion].
The polymer film according to the above [4], wherein the swelling rate calculated by the above method is 40% or more.
[6] The polymer film for a non-aqueous electrolyte battery according to the above [1], wherein the polyvinyl acetal-based resin has a crosslinked structure.
[7] When immersed in diethyl carbonate at 60 ° C. for 1 hour, the following formula:
Figure JPOXMLDOC01-appb-M000009
[In the formula, A represents the mass (g) of the polymer film before immersion, and B represents the dry mass (g) of the polymer film after immersion].
The polymer membrane according to the above [6], wherein the dissolution rate calculated by the above method is 2% or less.
[8] When immersed in a solution in which lithium bis (fluorosulfonyl) imide was dissolved in 1-ethyl-3-methylimidazolium bis (fluorosulfonyl) imide at a concentration of 1 mol / L at 25 ° C. for 24 hours, the following Formula:
Figure JPOXMLDOC01-appb-M000010
[In the formula, C represents the mass (g) of the polymer film before immersion, and D represents the mass (g) of the polymer film after immersion].
The polymer film according to the above [6] or [7], wherein the swelling rate calculated by the above method is 20% or more.
[9] The polymer membrane according to any one of [6] to [8] above, wherein the crosslinked structure is a structure derived from a crosslinking agent having a reactive group for a hydroxyl group.
[10] The polymer membrane according to any one of [1] to [9] above, wherein the polyvinyl acetal-based resin is at least one selected from the group consisting of polyvinyl butyral, polyvinyl nonanal and polyvinyl octanal.
[11] The polymer film according to any one of [1] to [10] above, wherein the polyvinyl acetal-based resin has a degree of polymerization of 250 to 5,000.
[12] The polymer film according to any one of [1] to [11] above, wherein the degree of saponification of the polyvinyl acetal resin is 90 mol% or more.
[13] A non-aqueous electrolyte battery comprising the polymer membrane according to any one of the above [1] to [12].
 本発明によれば、高いイオン伝導性を有すると共に、電池の高寿命化に寄与することが可能な、非水電解質電池用の高分子膜を提供することができる。 According to the present invention, it is possible to provide a polymer film for a non-aqueous electrolyte battery, which has high ionic conductivity and can contribute to extending the life of the battery.
 以下、本発明の実施の形態について詳細に説明する。なお、本発明の範囲はここで説明する実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更をすることができる。 Hereinafter, embodiments of the present invention will be described in detail. The scope of the present invention is not limited to the embodiments described here, and various modifications can be made without departing from the spirit of the present invention.
 本発明の高分子膜は、非水電解質電池用の高分子膜であり、水酸基量が56~90モル%であるポリビニルアセタール系樹脂を含有する。 The polymer membrane of the present invention is a polymer membrane for non-aqueous electrolyte batteries, and contains a polyvinyl acetal-based resin having a hydroxyl group content of 56 to 90 mol%.
(ポリビニルアセタール系樹脂)
 本発明の高分子膜に含まれるポリビニルアセタール系樹脂は、56~90モル%、好ましくは58~90モル%、より好ましくは60~90モル%、さらに好ましくは62~90モル%の水酸基量を有する。ポリビニルアセタール系樹脂の水酸基量が56モル%未満である場合、電解液に対するポリビニルアセタール系樹脂の溶解度が高くなり、ポリビニルアセタール系樹脂が電解液中へ溶解しやすくなる。その結果、高分子膜が電解液による影響を受けやすくなり、高分子膜の力学強度が低下し、該高分子膜を含む電池の寿命が低下しやすくなる。さらに、高分子膜が電解液中へ溶解しやすいことにより、電池の安全性の低下を引き起こす場合がある。また、ポリビニルアセタール系樹脂の水酸基量が90モル%を超える場合、工業的に合成が困難となることに加えて、高分子膜の膨潤性も低下し、イオン伝導性を十分に高めることができない。また、ポリビニルアセタール系樹脂の有機溶媒への溶解性が低下し、高分子膜の成膜性が低下する。
(Polyvinyl acetal resin)
The polyvinyl acetal-based resin contained in the polymer film of the present invention has a hydroxyl group content of 56 to 90 mol%, preferably 58 to 90 mol%, more preferably 60 to 90 mol%, still more preferably 62 to 90 mol%. Have. When the amount of hydroxyl groups of the polyvinyl acetal-based resin is less than 56 mol%, the solubility of the polyvinyl acetal-based resin in the electrolytic solution becomes high, and the polyvinyl acetal-based resin is easily dissolved in the electrolytic solution. As a result, the polymer film is easily affected by the electrolytic solution, the mechanical strength of the polymer film is lowered, and the life of the battery containing the polymer film is easily shortened. Further, the polymer film is easily dissolved in the electrolytic solution, which may cause a decrease in battery safety. Further, when the amount of hydroxyl groups of the polyvinyl acetal resin exceeds 90 mol%, in addition to industrial difficulty in synthesis, the swelling property of the polymer film is also lowered, and the ionic conductivity cannot be sufficiently enhanced. .. In addition, the solubility of the polyvinyl acetal-based resin in an organic solvent is lowered, and the film-forming property of the polymer film is lowered.
 上記の範囲内の水酸基量を有するポリビニルアセタール系樹脂を含む高分子膜が、高いイオン伝導性を有すると共に、電池の高寿命化に寄与できる理由は明らかではないが、例えば高い耐電解液性、膨潤性、及び力学強度等を有することによると考えられ、本発明は後述するメカニズムに何ら限定されるものではないが、次の理由が考えられる。高分子膜に含まれるポリビニルアセタール系樹脂が多くの水酸基を有する場合、水酸基同士の水素結合により、一部結晶性を持つ膜となり、電解液で膨潤したゲル状態の高分子膜の強度を高めることができるため、力学的安定性を向上させることができると考えられる。また、水酸基が多いことにより、有機溶媒に対する溶解性を低減させ、耐電解液性を高めることができる。さらに、水酸基が多いことにより、非水電解質電池においてリチウム塩の解離を促進しやすく、イオン伝導性を高めることができると考えられる。さらに、樹脂がアセタール化された構造を有することにより、水酸基が多い場合であっても、アセタール基による立体障害により、アセタール基が高分子鎖間でスペーサーとして働き、電解液による高分子膜の膨潤を促進することができる。その結果、高いイオン伝導性を達成することができると考えられる。 It is not clear why a polymer membrane containing a polyvinyl acetal resin having a hydroxyl group amount within the above range has high ionic conductivity and can contribute to extending the life of a battery, but for example, high electrolytic solution resistance. It is considered that the present invention has swellability, mechanical strength, and the like, and the present invention is not limited to the mechanism described later, but the following reasons can be considered. When the polyvinyl acetal resin contained in the polymer film has many hydroxyl groups, hydrogen bonds between the hydroxyl groups result in a partially crystalline film, which enhances the strength of the gel-like polymer film swollen with the electrolytic solution. Therefore, it is considered that the mechanical stability can be improved. Further, since the number of hydroxyl groups is large, the solubility in an organic solvent can be reduced and the electrolytic solution resistance can be improved. Further, it is considered that the large number of hydroxyl groups makes it easy to promote the dissociation of the lithium salt in the non-aqueous electrolyte battery and enhance the ionic conductivity. Further, since the resin has an acetalized structure, even when there are many hydroxyl groups, the acetal group acts as a spacer between the polymer chains due to steric hindrance due to the acetal group, and the polymer film is swollen by the electrolytic solution. Can be promoted. As a result, it is considered that high ionic conductivity can be achieved.
 ポリビニルアセタール系樹脂の水酸基量は、高分子膜の化学的安定性を向上させやすい観点から、好ましくは58モル%以上、より好ましくは60モル%以上、さらに好ましくは62モル%以上、さらにより好ましくは63モル%以上、とりわけ好ましくは67モル%以上、とりわけより好ましくは70モル%以上、きわめて好ましくは73モル%以上である。また、該水酸基量は、高分子膜の膨潤率を高めやすく、イオン伝導性を向上させやすい観点、及び、高分子膜の製造効率を向上させやすい観点からは、好ましくは89モル%以下、より好ましくは88モル%以下、さらに好ましくは85モル%以下、さらにより好ましくは80モル%以下である。なお、ポリビニルアセタール系樹脂の水酸基量は実施例に記載の方法により算出できる。 The amount of hydroxyl groups in the polyvinyl acetal-based resin is preferably 58 mol% or more, more preferably 60 mol% or more, still more preferably 62 mol% or more, still more preferably, from the viewpoint of easily improving the chemical stability of the polymer film. Is 63 mol% or more, particularly preferably 67 mol% or more, particularly more preferably 70 mol% or more, and extremely preferably 73 mol% or more. Further, the amount of the hydroxyl group is preferably 89 mol% or less from the viewpoint of easily increasing the swelling rate of the polymer film and easily improving the ionic conductivity and easily improving the production efficiency of the polymer film. It is preferably 88 mol% or less, still more preferably 85 mol% or less, and even more preferably 80 mol% or less. The amount of hydroxyl groups in the polyvinyl acetal resin can be calculated by the method described in Examples.
 ここで、ポリビニルアセタール系樹脂の水酸基量は、ポリビニルアセタール系樹脂を合成する際の原料ポリビニルアルコール樹脂のアルデヒドに対する量を調整する方法、原料ポリビニルアルコールのけん化度を調整する方法等により、上記所望の範囲に調整することができる。 Here, the amount of hydroxyl groups of the polyvinyl acetal-based resin is desired by a method of adjusting the amount of the raw material polyvinyl alcohol resin with respect to aldehyde when synthesizing the polyvinyl acetal-based resin, a method of adjusting the saponification degree of the raw material polyvinyl alcohol, or the like. It can be adjusted to a range.
 ポリビニルアセタール系樹脂のアセタール化度は、単独アルデヒド、混合アルデヒドのいずれのアセタール化を用いる場合でも、全アセタール化度で、好ましくは10~38モル%、より好ましくは10~35モル%、さらに好ましくは10~34モル%、さらにより好ましくは11~32モル%、とりわけ好ましくは11~30モル%、最も好ましくは12~30モル%である。アセタール化度が上記の下限以上であると、高分子膜の電解液に対する低い溶解性(耐電解液性)と、電気化学安定性(耐酸化還元性)を向上させやすい。アセタール化度が上記の上限以下であると、ポリビニルアセタール系樹脂を含む高分子膜の電解液による膨潤を適度に高め、高分子膜を含む非水電解質電池のイオン伝導性を向上させやすい。なお、アセタール化度は、例えば実施例に記載の方法により算出できる。ポリビニルアセタール系樹脂のアセタール化度は、ポリビニルアセタール系樹脂を合成する際の原料ポリビニルアルコール樹脂に対するアルデヒドの量を調整する方法、原料ポリビニルアルコールのけん化度を調整する方法等により上記所望の範囲に調整することができる。 The degree of acetalization of the polyvinyl acetal-based resin is preferably 10 to 38 mol%, more preferably 10 to 35 mol%, still more preferably 10 to 38 mol%, in terms of the total acetalization degree regardless of whether acetalization of a single aldehyde or a mixed aldehyde is used. Is 10 to 34 mol%, even more preferably 11 to 32 mol%, particularly preferably 11 to 30 mol%, and most preferably 12 to 30 mol%. When the degree of acetalization is at least the above lower limit, it is easy to improve the low solubility of the polymer membrane in the electrolytic solution (electrolyte resistance) and the electrochemical stability (oxidation-reduction resistance). When the degree of acetalization is not more than the above upper limit, the swelling of the polymer membrane containing the polyvinyl acetal resin due to the electrolytic solution is appropriately increased, and the ionic conductivity of the non-aqueous electrolyte battery containing the polymer film is likely to be improved. The degree of acetalization can be calculated by, for example, the method described in Examples. The degree of acetalization of the polyvinyl acetal-based resin is adjusted to the above desired range by a method of adjusting the amount of aldehyde with respect to the raw material polyvinyl alcohol resin when synthesizing the polyvinyl acetal-based resin, a method of adjusting the degree of saponification of the raw material polyvinyl alcohol, or the like. can do.
 ポリビニルアセタール系樹脂のアセチル基量は、好ましくは10モル%以下、より好ましくは5モル%以下、さらに好ましくは1モル%以下である。また、該アセチル基量は、好ましくは0.1モル%以上である。アセチル基量が上記の上限以下であると、ポリビニルアセタール系樹脂の電解液への溶解を防止しやすく、電気化学安定性(耐酸化還元性)及び力学強度を向上させやすい。また、上記の下限以上であれば、樹脂の製造工程に由来する残留エステル基による有機溶媒への親和性を低下させやすく、有機溶媒への溶解度及び膨潤度を低下させやすいため、樹脂製造過程のスラリーを安定化させやすい。なお、アセチル基量は、例えば実施例に記載の方法により算出できる。ポリビニルアセタール系樹脂のアセチル基量は、原料ポリビニルアルコールのけん化度を調整する方法により上記所望の範囲に調整することができる。 The amount of acetyl group in the polyvinyl acetal resin is preferably 10 mol% or less, more preferably 5 mol% or less, still more preferably 1 mol% or less. The amount of the acetyl group is preferably 0.1 mol% or more. When the amount of the acetyl group is not more than the above upper limit, it is easy to prevent the polyvinyl acetal resin from being dissolved in the electrolytic solution, and it is easy to improve the electrochemical stability (oxidation-reduction resistance) and the mechanical strength. Further, if it is equal to or higher than the above lower limit, the affinity of the residual ester group derived from the resin manufacturing process for the organic solvent is likely to be lowered, and the solubility and swelling degree in the organic solvent are likely to be lowered. It is easy to stabilize the slurry. The amount of acetyl group can be calculated by, for example, the method described in Examples. The amount of acetyl groups in the polyvinyl acetal-based resin can be adjusted to the above-mentioned desired range by a method of adjusting the saponification degree of the raw material polyvinyl alcohol.
 ポリビニルアセタール系樹脂の重合度は、好ましくは250以上、より好ましくは300以上、さらに好ましくは1,000以上、特に好ましくは1,500以上である。また、該重合度は、好ましくは5,000以下、より好ましくは4,000以下、さらに好ましくは3,000以下、さらにより好ましくは2,000以下である。重合度が上記の上限以下であると、樹脂の溶媒への溶解性が良く、均質な膜を得やすい。また、上記の下限以上であれば、成膜性が良く、耐電解液性を得やすい。なお、重合度は、JIS-K6726に従って測定することができる。ポリビニルアセタール系樹脂の重合度は、原料ポリビニルアルコール樹脂(あるいはその原料のポリ酢酸ビニル樹脂)の重合度を調整する方法により上記所望の範囲に調整することができる。 The degree of polymerization of the polyvinyl acetal resin is preferably 250 or more, more preferably 300 or more, still more preferably 1,000 or more, and particularly preferably 1,500 or more. The degree of polymerization is preferably 5,000 or less, more preferably 4,000 or less, still more preferably 3,000 or less, and even more preferably 2,000 or less. When the degree of polymerization is not more than the above upper limit, the resin has good solubility in a solvent and a homogeneous film can be easily obtained. Further, when it is at least the above lower limit, the film forming property is good and the electrolytic solution resistance can be easily obtained. The degree of polymerization can be measured according to JIS-K6726. The degree of polymerization of the polyvinyl acetal-based resin can be adjusted to the above-mentioned desired range by a method of adjusting the degree of polymerization of the raw material polyvinyl alcohol resin (or the raw material polyvinyl acetate resin).
 ポリビニルアセタール系樹脂のけん化度は、好ましくは90モル%以上、より好ましくは95モル%以上、さらに好ましくは99モル%以上である。けん化度が上記の下限以上であると、樹脂製造工程に由来する残留エステル基による有機溶媒への親和性を低下させやすく、有機溶媒への溶解度及び膨潤度を低下させやすいため、樹脂製造過程のスラリーを安定化させやすい。けん化度の上限は好ましくは99.9モル%以下である。なお、本明細書において、ポリビニルアセタール系樹脂のけん化度は、アセタール化する前のポリビニルアルコール系樹脂のけん化度を意味し、JIS-K6726に従って測定することができる。 The saponification degree of the polyvinyl acetal resin is preferably 90 mol% or more, more preferably 95 mol% or more, and further preferably 99 mol% or more. When the saponification degree is equal to or higher than the above lower limit, the affinity of the residual ester group derived from the resin manufacturing process with respect to the organic solvent is likely to be lowered, and the solubility in the organic solvent and the degree of swelling are likely to be lowered. It is easy to stabilize the slurry. The upper limit of the saponification degree is preferably 99.9 mol% or less. In the present specification, the saponification degree of the polyvinyl acetal-based resin means the saponification degree of the polyvinyl alcohol-based resin before acetalization, and can be measured according to JIS-K6726.
 ポリビニルアセタール系樹脂としては、例えばポリビニルアルコール系樹脂をアセタール化した樹脂が挙げられる。 Examples of the polyvinyl acetal-based resin include a resin obtained by acetalizing a polyvinyl alcohol-based resin.
 ポリビニルアルコール系樹脂は、主にビニルアルコール由来の構成単位とビニルエステル由来の構成単位を有するが、本発明の効果を損なわない範囲で、これらの構成単位以外の他の単量体に由来する構成単位を含んでいてもよい。他の単量体としては、例えばエチレン、プロピレン、1-ブテン、イソブテン、1-ヘキセンなどのα-オレフィン類;アクリル酸、メタクリル酸、クロトン酸、フタル酸、無水フタル酸、マレイン酸、無水マレイン酸、イタコン酸、無水イタコン酸などの不飽和酸類及びその塩又はその炭素数1~18のアルキルエステル類;アクリルアミド、炭素数1~18のN-アルキルアクリルアミド、N,N-ジメチルアクリルアミド、2-アクリルアミドプロパンスルホン酸及びその塩、アクリルアミドプロピルジメチルアミン及びその酸塩又はその4級塩などのアクリルアミド類;メタクリルアミド、炭素数1~18のN-アルキルメタクリルアミド、N,N-ジメチルメタクリルアミド、2-メタクリルアミドプロパンスルホン酸及びその塩、メタクリルアミドプロピルジメチルアミン及びその酸塩又はその4級塩などのメタクリルアミド類;N-ビニルピロリドン、N-ビニルホルムアミド、N-ビニルアセトアミドなどのN-ビニルアミド類;アクリロニトリル、メタクリロニトリルなどのシアン化ビニル類;メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、i-プロピルビニルエーテル、n-ブチルビニルエーテルなどのビニルエーテル類;アリルアセテート;プロピルアリルエーテル、ブチルアリルエーテル、ヘキシルアリルエーテル等のアリルエーテル類;塩化ビニル、フッ化ビニル、臭化ビニルなどのハロゲン化ビニル類;塩化ビニリデン、フッ化ビニリデンなどのハロゲン化ビニリデン類;トリメトキシビニルシランなどのビニルシラン類;ポリオキシアルキレンアリルエーテルなどのオキシアルキレン基を有する化合物;酢酸イソプロペニル;3-ブテン-1-オール、4-ペンテン-1-オール、5-ヘキセン-1-オール、7-オクテン-1-オール、9-デセン-1-オール、3-メチル-3-ブテン-1-オールなどのヒドロキシ基含有のα-オレフィン類;フマール酸、マレイン酸、イタコン酸、無水マレイン酸、無水フタル酸、無水トリメリット酸などに由来するカルボキシル基を有する化合物;エチレンスルホン酸、アリルスルホン酸、メタアリルスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸などに由来するスルホン酸基を有する単量体;ビニロキシエチルトリメチルアンモニウムクロリド、ビニロキシブチルトリメチルアンモニウムクロリド、ビニロキシエチルジメチルアミン、ビニロキシメチルジエチルアミン、N-アクリルアミドメチルトリメチルアンモニウムクロリド、N-アクリルアミドエチルトリメチルアンモニウムクロリド、N-アクリルアミドジメチルアミン、アリルトリメチルアンモニウムクロリド、メタアリルトリメチルアンモニウムクロリド、ジメチルアリルアミン、アリルエチルアミンなどに由来するカチオン基を有する化合物などが挙げられる。これらの中でも、入手のしやすさや共重合性の観点から、エチレン、プロピレン、1-ブテン、イソブテン、1-ヘキセンなどのα-オレフィン類;N-ビニルピロリドン、N-ビニルホルムアミド、N-ビニルアセトアミドなどのN-ビニルアミド類;メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、i-プロピルビニルエーテル、n-ブチルビニルエーテルなどのビニルエーテル類;アリルアセテート;プロピルアリルエーテル、ブチルアリルエーテル、ヘキシルアリルエーテルなどのアリルエーテル類;ポリオキシアルキレンアリルエーテルなどのオキシアルキレン基を有する単量体;3-ブテン-1-オール、4-ペンテン-1-オール、5-ヘキセン-1-オール、7-オクテン-1-オール、9-デセン-1-オール、3-メチル-3-ブテン-1-オールなどのヒドロキシ基含有のα-オレフィン類などが好ましい。これらの単量体は単独又は二種以上組み合わせて使用できる。 The polyvinyl alcohol-based resin mainly has a structural unit derived from vinyl alcohol and a structural unit derived from vinyl ester, but a configuration derived from a monomer other than these structural units as long as the effect of the present invention is not impaired. It may include units. Other monomers include α-olefins such as ethylene, propylene, 1-butene, isobutene and 1-hexene; acrylic acid, methacrylic acid, crotonic acid, phthalic acid, phthalic anhydride, maleic acid and maleine anhydride. Unsaturated acids such as acids, itaconic acids, itaconic acids anhydride and salts thereof or alkyl esters thereof having 1 to 18 carbon atoms; acrylamide, N-alkylacrylamide having 1 to 18 carbon atoms, N, N-dimethylacrylamide, 2- Acrylamides such as acrylamide propanesulfonic acid and its salts, acrylamidepropyldimethylamine and its acid salts or quaternary salts thereof; methacrylamide, N-alkylmethacrylicamide having 1 to 18 carbon atoms, N, N-dimethylmethacrylate, 2 -Methylamides such as methacrylamide propanesulfonic acid and its salts, methacrylicamide propyldimethylamine and its salts or quaternary salts thereof; N-vinylamides such as N-vinylpyrrolidone, N-vinylformamide, N-vinylacetamide. Vinyl cyanide such as acrylonitrile and methacrylonitrile; vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, n-propyl vinyl ether, i-propyl vinyl ether and n-butyl vinyl ether; allyl acetate; propyl allyl ether, butyl allyl ether, hexyl Allyl ethers such as allyl ethers; vinyl halides such as vinyl chloride, vinyl fluoride, vinyl bromide; vinylidene halides such as vinylidene chloride and vinylidene fluoride; vinylsilanes such as trimethoxyvinylsilane; polyoxyalkylene allyl Compounds having an oxyalkylene group such as ether; isopropenyl acetate; 3-butene-1-ol, 4-pentene-1-ol, 5-hexene-1-ol, 7-octen-1-ol, 9-decene- Hydroxy group-containing α-olefins such as 1-ol and 3-methyl-3-buten-1-ol; derived from fumaric acid, maleic acid, itaconic acid, maleic anhydride, phthalic anhydride, trimellitic anhydride, etc. Compounds having a carboxyl group; ethylene sulfonic acid, allylsulfonic acid, metaallylsulfonic acid, monomers having a sulfonic acid group derived from 2-acrylamide-2-methylpropanesulfonic acid, etc .; vinyloxyethyltrimethylammonium chloride, Vinyloxybutyltrimethylammonium Lolide, vinyloxyethyl dimethylamine, vinyloxymethyl diethylamine, N-acrylamide methyl trimethyl ammonium chloride, N-acrylamide ethyl trimethyl ammonium chloride, N-acrylamide dimethylamine, allyl trimethyl ammonium chloride, methallyl trimethyl ammonium chloride, dimethyl allyl amine, allyl Examples thereof include compounds having a cationic group derived from ethylamine and the like. Among these, α-olefins such as ethylene, propylene, 1-butene, isobutene and 1-hexene; N-vinylpyrrolidone, N-vinylformamide, N-vinylacetamide from the viewpoint of availability and copolymerizability. N-vinylamides such as: methyl vinyl ether, ethyl vinyl ether, n-propyl vinyl ether, i-propyl vinyl ether, n-butyl vinyl ether and other vinyl ethers; allyl acetate; propyl allyl ether, butyl allyl ether, hexyl allyl ether and the like. Classes; monomers having an oxyalkylene group such as polyoxyalkylene allyl ether; 3-butene-1-ol, 4-pentene-1-ol, 5-hexene-1-ol, 7-octen-1-ol, Hydroxy group-containing α-olefins such as 9-decene-1-ol and 3-methyl-3-butene-1-ol are preferable. These monomers can be used alone or in combination of two or more.
 ビニルアルコール由来の構成単位及びビニルエステル由来の構成単位以外の、他の単量体に由来する構成単位の含有量は、ポリビニルアルコール系樹脂を構成する構成単位の総モル数に対して、通常20モル%以下、好ましくは10モル%以下、より好ましくは5モル%以下である。 The content of the structural units derived from other monomers other than the structural units derived from vinyl alcohol and the structural units derived from vinyl ester is usually 20 with respect to the total number of moles of the structural units constituting the polyvinyl alcohol-based resin. It is mol% or less, preferably 10 mol% or less, and more preferably 5 mol% or less.
 ポリビニルアルコール系樹脂は、ビニルアルコールと必要に応じて前記単量体とを重合した樹脂を、公知の方法、例えばアルコール等の溶媒に溶解した状態でけん化する方法により製造できる。この方法で使用される溶媒としては、例えばメタノール、エタノール等の低級アルコールが挙げられ、メタノールを好適に使用できる。けん化反応に使用される溶媒は、好ましくは上記の低級アルコールに加えて、使用する溶媒の全量に基づいて例えば40質量%以下の量で、アセトン、酢酸メチル、酢酸エチル、ベンゼンなどの溶媒を含有していてもよい。けん化反応に用いられる触媒としては、水酸化カリウム、水酸化ナトリウムなどのアルカリ金属の水酸化物、ナトリウムメトキシドなどのアルカリ触媒、又は鉱酸などの酸触媒が使用される。けん化反応の温度について特に制限はないが、20~60℃の範囲が好ましい。けん化反応によって得られるビニルアルコール系樹脂は、洗浄後、乾燥に付される。 The polyvinyl alcohol-based resin can be produced by a known method, for example, a method of saponifying a resin obtained by polymerizing vinyl alcohol and the above-mentioned monomer in a solvent such as alcohol. Examples of the solvent used in this method include lower alcohols such as methanol and ethanol, and methanol can be preferably used. The solvent used for the saponification reaction preferably contains a solvent such as acetone, methyl acetate, ethyl acetate, and benzene in an amount of, for example, 40% by mass or less based on the total amount of the solvent used, in addition to the above-mentioned lower alcohol. You may be doing it. As the catalyst used in the saponification reaction, an alkali metal hydroxide such as potassium hydroxide or sodium hydroxide, an alkali catalyst such as sodium methoxyde, or an acid catalyst such as mineral acid is used. The temperature of the saponification reaction is not particularly limited, but is preferably in the range of 20 to 60 ° C. The vinyl alcohol-based resin obtained by the saponification reaction is washed and then dried.
 ポリビニルアルコール系樹脂のけん化度は、好ましくは90モル%以上、より好ましくは95モル%以上、さらに好ましくは99モル%以上である。けん化度が上記の下限以上であると、樹脂製造工程に由来する残留エステル基による有機溶媒への親和性を低下させやすく、有機溶媒への溶解度及び膨潤度を低下させやすく、樹脂製造時のスラリーを安定化させやすい。けん化度の上限は好ましくは99.9モル%以下である。上記に述べた通り、本明細書におけるポリビニルアセタール系樹脂のけん化度は、アセタール化する前のポリビニルアルコール系樹脂のけん化度である。 The saponification degree of the polyvinyl alcohol-based resin is preferably 90 mol% or more, more preferably 95 mol% or more, and further preferably 99 mol% or more. When the saponification degree is equal to or higher than the above lower limit, the affinity of the residual ester group derived from the resin manufacturing process with respect to the organic solvent is likely to be lowered, the solubility in the organic solvent and the degree of swelling are likely to be lowered, and the slurry at the time of resin manufacturing is likely to be lowered. Is easy to stabilize. The upper limit of the saponification degree is preferably 99.9 mol% or less. As described above, the saponification degree of the polyvinyl acetal-based resin in the present specification is the saponification degree of the polyvinyl alcohol-based resin before acetalization.
 ポリビニルアセタール系樹脂は、例えば、前記ポリビニルアルコール系樹脂をアルデヒドにより、アセタール化することにより製造できる。アセタール化の方法としては、特に限定されず、例えば沈殿法や固液反応法等が挙げられる。沈殿法は、溶媒として例えば水やアセトンを用い、原料であるポリビニルアルコール系樹脂を水やアセトンに溶解しておいて、酸などの触媒を加えてアセタール化反応を行い、生成したポリビニルアセタール系樹脂を沈澱させ、触媒として用いた酸を中和し、固体粉末として得る方法である。固液反応法は、原料であるポリビニルアルコール系樹脂が溶解しない溶媒を使用する点が異なるだけで、その他は、沈殿法と同様に反応を行い得る方法である。いずれの方法による場合でも、得られるポリビニルアセタール系樹脂の粉末の中には、未反応のアルデヒド及び中和によって生じた塩等の不純物が含まれるため、この不純物を除くために、不純物が可溶な溶媒を用いて抽出又は蒸発除去することで純度の高いポリビニルアセタール系樹脂を得ることができる。 The polyvinyl acetal-based resin can be produced, for example, by acetalizing the polyvinyl alcohol-based resin with an aldehyde. The acetalization method is not particularly limited, and examples thereof include a precipitation method and a solid-liquid reaction method. In the precipitation method, for example, water or acetone is used as a solvent, the raw material polyvinyl alcohol-based resin is dissolved in water or acetone, and a catalyst such as acid is added to carry out an acetalization reaction, and the produced polyvinyl acetal-based resin is produced. Is a method of precipitating and neutralizing the acid used as a catalyst to obtain a solid powder. The solid-liquid reaction method is a method in which the reaction can be carried out in the same manner as the precipitation method, except that a solvent in which the raw material polyvinyl alcohol-based resin is not dissolved is used. Regardless of which method is used, the obtained polyvinyl acetal-based resin powder contains impurities such as unreacted aldehydes and salts generated by neutralization. Therefore, the impurities are soluble in order to remove these impurities. A high-purity polyvinyl acetal-based resin can be obtained by extraction or evaporative removal using a different solvent.
 アセタール化に使用するアルデヒドとしては、例えば、ホルムアルデヒド、アセトアルデヒド、プロピルアルデヒド、n-ブチルアルデヒド(1-ブタナール)、sec-ブチルアルデヒド、オクチルアルデヒド、ドデシルアルデヒド、ノニルアルデヒドなどの脂肪族アルデヒド;シクロヘキサンカルボアルデヒド、シクロオクタンカルボアルデヒド、トリメチルシクロヘキサンカルボアルデヒド、シクロペンチルアルデヒド、ジメチルシクロヘキサンカルボアルデヒド、メチルシクロヘキサンカルボアルデヒド、メチルシクロペンチルアルデヒドなどの脂肪脂環式アルデヒド;α-カンフォレンアルデヒド、フェランドラール、シクロシトラール、トリメチルテトラハイドロベンズアルデヒド、α-ピロネンアルデヒド、ミルテナール、ジヒドロミルテナール、カンフェニランアルデヒドなどのテルペン系アルデヒド;ベンズアルデヒド、ナフトアルデヒド、アントラアルデヒド、フェニルアセトアルデヒド、トルアルデヒド、ジメチルベンズアルデヒド、クミンアルデヒド、ベンジルアルデヒドなどの芳香族アルデヒド;シクロヘキセンアルデヒド、ジメチルシクロヘキセンアルデヒド、アクロレインなどの不飽和アルデヒド;フルフラール、5-メチルフルフラールなどの複素環を有するアルデヒド;グルコース、グルコサミンなどのヘミアセタール;4-アミノブチルアルデヒドなどのアミノ基を有するアルデヒド等が挙げられる。これらのアルデヒドは単独又は二種以上組み合わせて使用できる。また、アルデヒドの代わり又はアルデヒドと併用して、2-プロパノン、メチルエチルケトン、3-ペンタノン、2-ヘキサノンなどの脂肪族ケトン;シクロペンタノン、シクロヘキサノンなどの脂肪脂環式ケトン;及び、アセトフェノン、ベンゾフェノンなどの芳香族ケトンなどを用いることもできる。アセタール化に使用するアルデヒドは、アセタール基の立体障害により高分子鎖間における自由体積を高めやすく、その結果、電解液による膨潤性を向上させ、イオン伝導性を向上させやすい観点から、好ましくは脂肪族アルデヒド、より好ましくは炭素数4~12の脂肪族アルデヒド、さらに好ましくは炭素数4~9の脂肪族アルデヒド、さらにより好ましくはブチルアルデヒド(ブタナール、ブチラール)、ノニルアルデヒド(ノナナール)、及びオクチルアルデヒド(オクタナール)である。したがって、ポリビニルアセタール系樹脂も同様に、好ましくは脂肪族アルデヒドでアセタール化されたポリビニルアセタール系樹脂であり、より好ましくは炭素数4~12の脂肪族アルデヒドでアセタール化されたポリビニルアセタール系樹脂であり、さらに好ましくは炭素数4~9の脂肪族アルデヒドでアセタール化されたポリビニルアセタール系樹脂である。ポリビニルアセタール系樹脂はさらにより好ましくはポリビニルブチラール、ポリビニルノナナール及びポリビニルオクタナールからなる群から選択される少なくとも1種である。 Examples of the aldehyde used for acetalization include aliphatic aldehydes such as formaldehyde, acetaldehyde, propyl aldehyde, n-butyl aldehyde (1-butanal), sec-butyl aldehyde, octyl aldehyde, dodecyl aldehyde, and nonyl aldehyde; cyclohexanecarbaldehyde. , Cyclooctanecarbaldehyde, trimethylcyclohexanecarbaldehyde, cyclopentylaldehyde, dimethylcyclohexanecarbaldehyde, methylcyclohexanecarbaldehyde, methylcyclopentylaldehyde and other alicyclic aldehydes; α-campolenealdehyde, ferlandral, cyclocitral, trimethyltetra Terpen-based aldehydes such as hydrobenzaldehyde, α-pyronenaldehyde, miltenal, dihydromiltenal, and camphenilan aldehyde; aromatics such as benzaldehyde, naphthaldehyde, anthralaldehyde, phenylacetaldehyde, tolualdehyde, dimethylbenzaldehyde, cuminaldehyde, and benzylaldehyde. Group aldehydes; unsaturated aldehydes such as cyclohexene aldehydes, dimethylcyclohexene aldehydes, and acrolein; aldehydes having heterocycles such as furfural and 5-methylfurfural; hemiacetals such as glucose and glucosamine; having amino groups such as 4-aminobutylaldehyde. Examples include aldehydes. These aldehydes can be used alone or in combination of two or more. Also, instead of aldehyde or in combination with aldehyde, aliphatic ketones such as 2-propanone, methyl ethyl ketone, 3-pentanone and 2-hexanone; aliphatic alicyclic ketones such as cyclopentanone and cyclohexanone; and acetophenone, benzophenone and the like. It is also possible to use the aromatic ketone of. The aldehyde used for acetalization is preferably a fat from the viewpoint that it is easy to increase the free volume between the polymer chains due to the steric disorder of the acetal group, and as a result, it is easy to improve the swelling property by the electrolytic solution and improve the ionic conductivity. Group aldehydes, more preferably aliphatic aldehydes having 4 to 12 carbon atoms, even more preferably aliphatic aldehydes having 4 to 9 carbon atoms, even more preferably butyl aldehydes (butanal, butyral), nonyl aldehydes (nonanal), and octyl aldehydes. (Octanar). Therefore, the polyvinyl acetal-based resin is also preferably a polyvinyl acetal-based resin acetalized with an aliphatic aldehyde, and more preferably a polyvinyl acetal-based resin acetalized with an aliphatic aldehyde having 4 to 12 carbon atoms. A polyvinyl acetal-based resin acetalized with an aliphatic aldehyde having 4 to 9 carbon atoms is more preferable. The polyvinyl acetal-based resin is even more preferably at least one selected from the group consisting of polyvinyl butyral, polyvinyl nonanal and polyvinyl octanal.
 酸触媒としては、公知の酸を用いることができ、その例としては、硫酸、塩酸、硝酸等の無機酸、及びパラトルエンスルホン酸などの有機酸が挙げられる。酸触媒は、アセタール化反応の最終系における酸濃度が0.5~5.0質量%となる量で通常用いられるが、この濃度に限定されるものではない。これらの酸触媒は、所定量を1度に添加してもよいが、沈殿法の場合、比較的細かい粒子のポリビニルアセタール系樹脂を析出沈澱させるために、適当な回数に分割して添加するのが好ましい。一方、固液反応法の場合は、所定量を反応のはじめに一括して添加するのが反応効率の点から好ましい。 As the acid catalyst, a known acid can be used, and examples thereof include inorganic acids such as sulfuric acid, hydrochloric acid and nitric acid, and organic acids such as paratoluenesulfonic acid. The acid catalyst is usually used in an amount such that the acid concentration in the final system of the acetalization reaction is 0.5 to 5.0% by mass, but the acid catalyst is not limited to this concentration. A predetermined amount of these acid catalysts may be added at one time, but in the case of the precipitation method, the polyvinyl acetal-based resin having relatively fine particles is added in an appropriate number of times in order to precipitate and precipitate. Is preferable. On the other hand, in the case of the solid-liquid reaction method, it is preferable to add a predetermined amount at the beginning of the reaction from the viewpoint of reaction efficiency.
 本発明の好ましい一態様において、本発明の高分子膜に含まれるポリビニルアセタール系樹脂は、架橋構造を有する。該架橋構造は、ポリビニルアセタール系樹脂同士を架橋する構造である限り特に限定されないが、好ましくは水酸基に対する反応性基を有する架橋剤に由来する構造であり、より好ましくは水酸基と付加反応及び/又は開環反応する架橋剤に由来する構造である。架橋剤として、水酸基と付加反応又は開環反応する架橋剤を使用する場合、これらの架橋剤は架橋反応時に水等の脱離物を生じないため、水等の脱離物が高分子膜及び非水電解質電池内部に混入することを防止しやすいため好ましい。ポリビニルアセタール系樹脂は、1種類の架橋剤に由来する架橋構造を有していてもよいし、2種以上の架橋剤に由来する架橋構造を有していてもよい。当該好ましい一態様においては、高い力学強度及び耐電解液性を有する、非水電解質電池用の高分子膜を提供することができる。 In a preferred embodiment of the present invention, the polyvinyl acetal-based resin contained in the polymer film of the present invention has a crosslinked structure. The cross-linked structure is not particularly limited as long as it is a structure for cross-linking polyvinyl acetal-based resins with each other, but is preferably a structure derived from a cross-linking agent having a reactive group for a hydroxyl group, and more preferably an addition reaction with a hydroxyl group and / or. It is a structure derived from a cross-linking agent that undergoes a ring-opening reaction. When a cross-linking agent that undergoes an addition reaction or a ring-opening reaction with a hydroxyl group is used as the cross-linking agent, these cross-linking agents do not generate desorbed substances such as water during the cross-linking reaction. It is preferable because it is easy to prevent the mixture from being mixed inside the non-aqueous electrolyte battery. The polyvinyl acetal-based resin may have a cross-linked structure derived from one kind of cross-linking agent, or may have a cross-linked structure derived from two or more kinds of cross-linking agents. In the preferred embodiment, it is possible to provide a polymer film for a non-aqueous electrolyte battery, which has high mechanical strength and electrolytic solution resistance.
 本発明の高分子膜に含まれるポリビニルアセタール系樹脂が、架橋構造を有する場合、水酸基に対する反応性基(以下、「水酸基反応性基」とも称する)を有する架橋剤は、水酸基に対する反応性基を少なくとも1つ有する架橋剤であれば特に限定されないが、例えば2個以上の水酸基反応性基を有する化合物、少なくとも1個の水酸基反応性基と少なくとも1個のエチレン性不飽和基を有する化合物等が挙げられる。水酸基反応性基としては、例えば、イソシアネート基、エポキシ基、カルボキシル基、酸無水物基、アルデヒド基、アシル基等が挙げられる。水酸基反応性基は、水酸基との反応時に水等の脱離物を発生させない基であることが好ましい。このような水酸基反応性基を有する架橋剤は、未架橋のポリビニルアセタール系樹脂との反応時に脱離生成物を生成しないため、得られる高分子膜中にも不純物が含有されない。未架橋のポリビニルアセタール系樹脂との反応時に脱離物を発生させない水酸基反応性基を有する架橋剤を用いる場合には、反応によって生じる脱離生成物等の不純物が電解液や活物質等と反応することを防止しやすく、電池への影響が生じる可能性を低減することができる。このような観点から、架橋剤は、好ましくは、水酸基と付加反応及び/又は開環反応する架橋剤であり、より好ましくは、イソシアネート基、エポキシ基及び酸無水物基からなる群から選択される少なくとも1つの水酸基反応性基を有する架橋剤である。 When the polyvinyl acetal resin contained in the polymer film of the present invention has a crosslinked structure, the crosslinking agent having a reactive group for a hydroxyl group (hereinafter, also referred to as “hydroxyl reactive group”) has a reactive group for a hydroxyl group. The cross-linking agent having at least one is not particularly limited, but for example, a compound having two or more hydroxyl-reactive groups, a compound having at least one hydroxyl-reactive group and at least one ethylenically unsaturated group, and the like can be used. Can be mentioned. Examples of the hydroxyl group reactive group include an isocyanate group, an epoxy group, a carboxyl group, an acid anhydride group, an aldehyde group, an acyl group and the like. The hydroxyl group-reactive group is preferably a group that does not generate desorbed substances such as water during the reaction with the hydroxyl group. Since such a cross-linking agent having a hydroxyl-reactive group does not generate an elimination product during the reaction with the uncross-linked polyvinyl acetal-based resin, impurities are not contained in the obtained polymer film. When a cross-linking agent having a hydroxyl group-reactive group that does not generate a desorbed product during the reaction with an uncrosslinked polyvinyl acetal resin is used, impurities such as desorbed products generated by the reaction react with an electrolytic solution, an active material, or the like. It is easy to prevent this from happening, and the possibility of affecting the battery can be reduced. From this point of view, the cross-linking agent is preferably a cross-linking agent that undergoes an addition reaction and / or a ring-opening reaction with a hydroxyl group, and is more preferably selected from the group consisting of an isocyanate group, an epoxy group and an acid anhydride group. A cross-linking agent having at least one hydroxyl group-reactive group.
 架橋剤が、例えばイソシアネート基及び酸無水物基からなる群から選択される少なくとも1つの水酸基反応性基を有する場合、該架橋剤は、水酸基と付加反応する架橋剤であるといえる。なお、水酸基と付加反応する架橋剤とは、架橋剤が水等の脱離反応を伴うことなく、未架橋のポリビニルアセタール系樹脂に付加する架橋剤を指す。また、架橋剤が、例えば水酸基反応性基として少なくとも1つのエポキシ基を有する場合、該架橋剤は、水酸基と開環(開環付加)反応する架橋剤であるといえる。 When the cross-linking agent has at least one hydroxyl group-reactive group selected from the group consisting of, for example, an isocyanate group and an acid anhydride group, the cross-linking agent can be said to be a cross-linking agent that undergoes an addition reaction with a hydroxyl group. The cross-linking agent that undergoes an addition reaction with a hydroxyl group refers to a cross-linking agent that is added to an uncrosslinked polyvinyl acetal-based resin without the cross-linking agent being accompanied by an elimination reaction of water or the like. Further, when the cross-linking agent has, for example, at least one epoxy group as a hydroxyl-reactive group, it can be said that the cross-linking agent is a cross-linking agent that undergoes a ring-opening (ring-opening addition) reaction with the hydroxyl group.
 架橋剤は、好ましくは2個以上の水酸基反応性基を有する化合物及び/又少なくとも1個の水酸基反応性基と少なくとも1個のエチレン性不飽和基とを有する化合物である。架橋剤が、2個以上の水酸基反応性基を有する化合物である場合、架橋剤の一方の水酸基反応性基が架橋前のポリビニルアセタール系樹脂の水酸基と反応し、別の一方の水酸基反応性基が別のポリビニルアセタール系樹脂の別の水酸基と反応し、それによって、ポリビニルアセタール系樹脂が架橋構造を含むことになる。このような架橋剤としては、好ましくは多官能性イソシアネート、イソシアヌル酸誘導体、多官能性エポキシド、酸無水物等が挙げられる。多官能性エポキシドとしては、例えば、ソルビトールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、ジグリセロールポリグリシジルエーテル、グリセロールポリグリシジルエーテル、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル及びそれらのポリマー、イソシアヌル酸トリグリシジルなどが挙げられる。多官能性イソシアネートとしては、例えば、ヘキサメチレンジイソシアネート、2,4-ジイソシアン酸トルエン、1,6-ジイソシアネートヘキサン、イソフォルニルジイソシアネート、ジフェニルメタンジイソシアネート、ポリメチレンポリフェニルポリイソシアネートなどが挙げられる。酸無水物としては、例えば、無水コハク酸、無水グルタン酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、無水ジグリコール酸、シクロヘキサンジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物及びフェニルコハク酸無水物などが挙げられる。 The cross-linking agent is preferably a compound having two or more hydroxyl-reactive groups and / or a compound having at least one hydroxyl-reactive group and at least one ethylenically unsaturated group. When the cross-linking agent is a compound having two or more hydroxyl-reactive groups, one hydroxyl-reactive group of the cross-linking agent reacts with the hydroxyl group of the polyvinyl acetal-based resin before cross-linking, and the other hydroxyl-reactive group Reacts with another hydroxyl group of another polyvinyl acetal-based resin, whereby the polyvinyl acetal-based resin contains a crosslinked structure. Such cross-linking agents preferably include polyfunctional isocyanates, isocyanuric acid derivatives, polyfunctional epoxides, acid anhydrides and the like. Examples of the polyfunctional epoxide include sorbitol polyglycidyl ether, polyglycerol polyglycidyl ether, diethylene glycol diglycidyl ether, diglycerol polyglycidyl ether, glycerol polyglycidyl ether, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, and tripropylene. Examples thereof include glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether and their polymers, and triglycidyl isocyanurate. Examples of the polyfunctional isocyanate include hexamethylene diisocyanate, toluene 2,4-diisocyanate, 1,6-diisocyanate hexane, isofornyl diisocyanate, diphenylmethane diisocyanate, and polymethylene polyphenyl polyisocyanate. Examples of the acid anhydride include succinic anhydride, glutanic anhydride, maleic anhydride, citraconic anhydride, glutaconic anhydride, itaconic anhydride, diglycolic anhydride, cyclohexanedicarboxylic acid anhydride, and cyclopentanetetracarboxylic acid dianhydride. Examples include phenylsuccinic anhydride and phenylsuccinic anhydride.
 架橋剤が、少なくとも1個の水酸基反応性基と少なくとも1個のエチレン性不飽和基を有する化合物である場合、架橋剤の少なくとも1個の水酸基反応性基が架橋前のポリビニルアセタール系樹脂の水酸基と反応し、エチレン性不飽和基を有する架橋剤がポリビニルアセタール系樹脂に組み込まれる。次いで、光架橋により、該エチレン性不飽和基同士を光架橋(光重合)させることにより、ポリビニルアセタール系樹脂に架橋構造を導入することができる。エチレン性不飽和基としては、光架橋可能な基である限り特に限定されないが、例えば、(メタ)アクリロイル基、ビニル基、アリル基、プロパギル基、ブテニル基、エチニル基、マレイミド基、ナジイミド基、(メタ)アクリロイルオキシ基、(メタ)アクリロイルアミド基等が挙げられ、光架橋における反応性の観点から、好ましくは(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、(メタ)アクリロイルアミド基である。 When the cross-linking agent is a compound having at least one hydroxyl-reactive group and at least one ethylenically unsaturated group, at least one hydroxyl-reactive group of the cross-linking agent is a hydroxyl group of the polyvinyl acetal resin before cross-linking. A cross-linking agent having an ethylenically unsaturated group is incorporated into the polyvinyl acetal-based resin. Next, the crosslinked structure can be introduced into the polyvinyl acetal-based resin by photocrosslinking (photopolymerizing) the ethylenically unsaturated groups with each other by photocrosslinking. The ethylenically unsaturated group is not particularly limited as long as it is a photocrosslinkable group, and for example, a (meth) acryloyl group, a vinyl group, an allyl group, a propagyl group, a butenyl group, an ethynyl group, a maleimide group, a nadiimide group, and the like. Examples thereof include (meth) acryloyloxy group and (meth) acryloylamide group, which are preferably (meth) acryloyl group, (meth) acryloyloxy group and (meth) acryloylamide group from the viewpoint of reactivity in photocrosslinking. ..
 ポリビニルアセタール系樹脂が架橋構造を有する本発明の一態様において、本発明の高分子膜は架橋促進剤を含んでいてもよい。架橋促進剤としては、例えば硫酸、塩酸、酢酸などの酸触媒、水素化ナトリウムなどの金属水素化物、ナトリウムメトキシド、ナトリウムエトキシドなどの金属アルコキシドなどの塩基を使用することができる。 In one aspect of the present invention in which the polyvinyl acetal resin has a crosslinked structure, the polymer membrane of the present invention may contain a crosslinking accelerator. As the cross-linking accelerator, for example, an acid catalyst such as sulfuric acid, hydrochloric acid or acetic acid, a metal hydride such as sodium hydride, or a base such as a metal alkoxide such as sodium methoxide or sodium ethoxide can be used.
 ポリビニルアセタール系樹脂が架橋構造を有し、高分子膜が架橋促進剤を含有する場合、その含有量は、高分子膜に含有される架橋剤の種類およびその量に応じて適宜調節できるが、架橋剤100質量部に対して、0.1~30質量部が好ましく、0.5~10質量部がより好ましく、0.5~8質量部がさらに好ましい。重合開始剤の含有量が、この範囲内であれば、高分子膜の耐電解液溶出性をより高めることができる。 When the polyvinyl acetal resin has a cross-linked structure and the polymer film contains a cross-linking accelerator, the content thereof can be appropriately adjusted according to the type of the cross-linking agent contained in the polymer film and the amount thereof. With respect to 100 parts by mass of the cross-linking agent, 0.1 to 30 parts by mass is preferable, 0.5 to 10 parts by mass is more preferable, and 0.5 to 8 parts by mass is further preferable. When the content of the polymerization initiator is within this range, the electrolytic solution elution resistance of the polymer film can be further enhanced.
 ポリビニルアセタール系樹脂が架橋構造を有する本発明の一態様において、本発明の高分子膜は重合開始剤を含んでいてもよい。重合開始剤としては、例えば活性エネルギー線として紫外線を使用する場合、ベンゾイン系、アセトフェノン系、チオキサントン系、フォスフィンオキシド系及びパーオキシド系、スルホニウム塩系、ヨードニウム塩系等の光重合開始剤を使用することができる。 In one aspect of the present invention in which the polyvinyl acetal resin has a crosslinked structure, the polymer film of the present invention may contain a polymerization initiator. As the polymerization initiator, for example, when ultraviolet rays are used as active energy rays, photopolymerization initiators such as benzoin-based, acetophenone-based, thioxanthone-based, phosphine oxide-based and peroxide-based, sulfonium salt-based, and iodonium salt-based are used. be able to.
 ポリビニルアセタール系樹脂が架橋構造を有し、高分子膜が重合開始剤を含有する場合、その含有量は、高分子膜に含有される架橋剤の種類およびその量に応じて適宜調節できるが、架橋剤100質量部に対して、0.1~30質量部が好ましく、0.5~10質量部がより好ましく、0.5~8質量部がさらに好ましい。重合開始剤の含有量が、この範囲内であれば、高分子膜の耐電解液溶出性をより高めることができる。 When the polyvinyl acetal resin has a crosslinked structure and the polymer film contains a polymerization initiator, the content thereof can be appropriately adjusted according to the type and amount of the crosslinked agent contained in the polymer film. With respect to 100 parts by mass of the cross-linking agent, 0.1 to 30 parts by mass is preferable, 0.5 to 10 parts by mass is more preferable, and 0.5 to 8 parts by mass is further preferable. When the content of the polymerization initiator is within this range, the electrolytic solution elution resistance of the polymer film can be further enhanced.
 ポリビニルアセタール系樹脂が架橋構造を有し、高分子膜が光重合開始剤を含有する場合、高分子膜は光増感剤をさらに含有していてもよい。光増感剤としては、キサントン、チオキサントンなどのキサントン化合物(例えば、2,4-ジエチルチオキサントン、2-イソプロピルチオキサントンなど);アントラセン、アルコキシ基含有アントラセン(例えば、ジブトキシアントラセンなど)などのアントラセン化合物;フェノチアジンおよびルブレンが挙げられる。 When the polyvinyl acetal resin has a crosslinked structure and the polymer film contains a photopolymerization initiator, the polymer film may further contain a photosensitizer. Photosensitizers include xanthone compounds such as xanthone, thioxanthone (eg, 2,4-diethylthioxanthone, 2-isopropylthioxanthone, etc.); anthracene, alkoxy group-containing anthracene (eg, dibutoxyanthracene, etc.); Examples include phenothiazine and rubrene.
 ポリビニルアセタール系樹脂が架橋構造を有し、高分子膜が光重合開始剤および光増感剤を含有する場合、該組成物に含有される重合性液晶の重合反応をより促進することができる。光増感剤の添加量は、光重合開始剤および架橋剤の種類およびその量に応じて適宜調節できるが、架橋剤100質量部に対して、0.1~30質量部が好ましく、0.5~10質量部がより好ましく、0.5~8質量部がさらに好ましい。 When the polyvinyl acetal resin has a crosslinked structure and the polymer film contains a photopolymerization initiator and a photosensitizer, the polymerization reaction of the polymerizable liquid crystal contained in the composition can be further promoted. The amount of the photosensitizer added can be appropriately adjusted according to the type and amount of the photopolymerization initiator and the cross-linking agent, but is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the cross-linking agent. 5 to 10 parts by mass is more preferable, and 0.5 to 8 parts by mass is further preferable.
 ポリビニルアセタール系樹脂が架橋構造を有する本発明の一態様において、高分子膜に含まれるポリビニルアセタール系樹脂が、架橋構造を有すること、例えば、架橋反応時に脱離物を発生させない水酸基反応性基を有する架橋剤に由来する架橋構造を有することは、例えばフーリエ変換赤外分光光度計等を用いて、架橋に関与する官能基(例えばイソシアネート基又はエポキシ基等)に由来するピークの消失と、架橋後に形成される基(例えばアミド基又はエーテル基)に由来するピークの出現により確認することができる。 In one aspect of the present invention in which the polyvinyl acetal-based resin has a crosslinked structure, the polyvinyl acetal-based resin contained in the polymer film has a crosslinked structure, for example, a hydroxyl group-reactive group that does not generate desorbed substances during the crosslinking reaction. Having a cross-linked structure derived from the cross-linking agent has means that, for example, using a Fourier-converted infrared spectrophotometer or the like, disappearance of peaks derived from functional groups (for example, isocyanate group or epoxy group) involved in cross-linking and cross-linking are performed. It can be confirmed by the appearance of a peak derived from a group formed later (for example, an amide group or an ether group).
 ポリビニルアセタール系樹脂が架橋構造を有する本発明の一態様において、本発明の高分子膜に含まれるポリビニルアセタール系樹脂における架橋剤の添加量は、高分子膜の耐電解液溶出性及び力学的安定性の観点から、架橋後の高分子膜に含まれる、架橋構造を有するポリビニルアセタール系樹脂の総量に基づいて、好ましくは2質量%以上、より好ましくは3質量%以上、さらに好ましくは5質量%以上である。また、上記態様における該架橋剤の添加量は、高分子膜の膨潤性及びイオン伝導性の観点から、好ましくは30質量%以下、より好ましくは25質量%以下、さらに好ましくは20質量%以下、さらにより好ましくは15質量%以下である。架橋剤の添加量は、高分子膜に含まれるポリビニルアセタール系樹脂における架橋構造の量を測定することにより算出してもよいし、架橋構造を有するポリビニルアセタール系樹脂を製造する際の仕込み比から算出してもよい。 In one aspect of the present invention in which the polyvinyl acetal-based resin has a cross-linked structure, the amount of the cross-linking agent added to the polyvinyl acetal-based resin contained in the polymer film of the present invention is the electrolyte resistance elution resistance and mechanical stability of the polymer film. From the viewpoint of properties, it is preferably 2% by mass or more, more preferably 3% by mass or more, still more preferably 5% by mass, based on the total amount of the polyvinyl acetal-based resin having a crosslinked structure contained in the crosslinked polymer film. That is all. The amount of the cross-linking agent added in the above embodiment is preferably 30% by mass or less, more preferably 25% by mass or less, still more preferably 20% by mass or less, from the viewpoint of swelling property and ionic conductivity of the polymer membrane. Even more preferably, it is 15% by mass or less. The amount of the cross-linking agent added may be calculated by measuring the amount of the cross-linked structure in the polyvinyl acetal-based resin contained in the polymer film, or from the charging ratio when producing the polyvinyl acetal-based resin having the cross-linked structure. It may be calculated.
 ポリビニルアセタール系樹脂が架橋構造を有する本発明の一態様において、本発明は後述するメカニズムに何ら限定されるものではないが、高分子膜に含まれるポリビニルアセタール系樹脂が多くの水酸基を有すると共に、架橋構造を有することにより、電解液で膨潤したゲル状態の高分子膜の強度をより高めることができ、力学的安定性を向上させることができると考えられる。また、水酸基が多いこと及び架橋構造を有することにより、有機溶媒に対する溶解性をより低減させることができると考えられる。さらに、水酸基が多いことにより、非水電解質電池においてリチウム塩の解離を促進しやすく、イオン伝導性をより高めやすいと考えられる。さらに、樹脂がアセタール化された構造を有することにより、水酸基が多い場合であっても、アセタール基による立体障害により、アセタール基が高分子鎖間でスペーサーとして働き、電解液による高分子膜の膨潤をより促進しやすいと考えられる。その結果、高い耐電解液性、膨潤性、及び力学強度を高めやく、力学的安定性を高めつつ、イオン伝導性も付与することができると考えられる。 In one aspect of the present invention in which the polyvinyl acetal-based resin has a crosslinked structure, the present invention is not limited to the mechanism described later, but the polyvinyl acetal-based resin contained in the polymer film has many hydroxyl groups and has many hydroxyl groups. It is considered that having the crosslinked structure makes it possible to further increase the strength of the polymer film in the gel state swollen with the electrolytic solution and improve the mechanical stability. Further, it is considered that the solubility in an organic solvent can be further reduced by having a large number of hydroxyl groups and a crosslinked structure. Further, it is considered that the large number of hydroxyl groups facilitates the dissociation of the lithium salt in the non-aqueous electrolyte battery and further enhances the ionic conductivity. Further, since the resin has an acetalized structure, even when there are many hydroxyl groups, the acetal group acts as a spacer between the polymer chains due to steric hindrance due to the acetal group, and the polymer film is swollen by the electrolytic solution. Is considered to be easier to promote. As a result, it is considered that high electrolytic solution resistance, swelling property, and mechanical strength can be easily enhanced, and ionic conductivity can be imparted while enhancing mechanical stability.
 ポリビニルアセタール系樹脂が架橋構造を有する本発明の一態様において、ポリビニルアセタール系樹脂の水酸基量は、高分子膜の化学的安定性を向上させやすい観点から、好ましくは58モル%以上、より好ましくは60モル%以上、さらに好ましくは62モル%以上、さらにより好ましくは65モル%以上である。また、該水酸基量は、高分子膜の膨潤率を高めやすく、イオン伝導性を向上させやすい観点、及び、高分子膜の製造効率を向上させやすい観点から、好ましくは89モル%以下、より好ましくは88モル%以下、さらに好ましくは85モル%以下、さらにより好ましくは82モル%以下である。なお、ポリビニルアセタール系樹脂が架橋構造を有する場合、ポリビニルアセタール系樹脂の水酸基量は、架橋後のポリビニルアセタール系樹脂の水酸基量である。したがって、架橋前のポリビニルアセタール系樹脂が有する水酸基の一部が架橋反応に寄与し、架橋後には水酸基として存在しない場合、当該基の量は架橋後のポリビニルアセタール系樹脂の水酸基量には含めない。ここで、上記態様における本発明の高分子膜に含まれるポリビニルアセタール系樹脂の水酸基量は、NMR測定用溶剤に高分子膜に含まれるポリビニルアセタール系樹脂が溶解する場合、該樹脂を含む溶液を測定試料とし、核磁気共鳴分光装置を用いて算出することができる。また、溶液を用いない場合でも、IR分光光度計を用いて相対的に算出するか、架橋前のポリビニルアセタール系樹脂について水酸基量を算出し、架橋剤の添加量と反応率から架橋後のポリビニルアセタール系樹脂の水酸基量を算出することもできる。例えば、実施例に記載の方法により、高分子膜に含まれるポリビニルアセタール系樹脂の水酸基量を算出してよい。 In one aspect of the present invention in which the polyvinyl acetal resin has a crosslinked structure, the amount of hydroxyl groups in the polyvinyl acetal resin is preferably 58 mol% or more, more preferably 58 mol% or more, from the viewpoint of easily improving the chemical stability of the polymer film. It is 60 mol% or more, more preferably 62 mol% or more, still more preferably 65 mol% or more. The amount of the hydroxyl group is preferably 89 mol% or less, more preferably, from the viewpoint of easily increasing the swelling rate of the polymer film, easily improving the ionic conductivity, and easily improving the production efficiency of the polymer film. Is 88 mol% or less, more preferably 85 mol% or less, still more preferably 82 mol% or less. When the polyvinyl acetal-based resin has a crosslinked structure, the amount of hydroxyl groups in the polyvinyl acetal-based resin is the amount of hydroxyl groups in the polyvinyl acetal-based resin after cross-linking. Therefore, if some of the hydroxyl groups of the polyvinyl acetal-based resin before cross-linking contribute to the cross-linking reaction and do not exist as hydroxyl groups after cross-linking, the amount of the groups is not included in the amount of hydroxyl groups of the polyvinyl acetal-based resin after cross-linking. .. Here, the amount of hydroxyl groups of the polyvinyl acetal-based resin contained in the polymer film of the present invention in the above aspect is determined by using a solution containing the resin when the polyvinyl acetal-based resin contained in the polymer film is dissolved in a solvent for NMR measurement. It can be calculated using a nuclear magnetic resonance spectroscope as a measurement sample. Even when no solution is used, the amount of hydroxyl groups can be calculated relatively using an IR spectrophotometer or the amount of hydroxyl groups for the polyvinyl acetal-based resin before cross-linking, and the amount of cross-linking agent added and the reaction rate can be used to calculate the amount of polyvinyl after cross-linking. It is also possible to calculate the amount of hydroxyl groups in the acetal resin. For example, the amount of hydroxyl groups of the polyvinyl acetal-based resin contained in the polymer film may be calculated by the method described in Examples.
(高分子膜)
 本発明の高分子膜は、上記のポリビニルアセタール系樹脂を含む膜である。本発明の高分子膜は、1種類のポリビニルアセタール系樹脂を含んでいてもよいし、2種以上のポリビニルアセタール系樹脂を含んでいてもよい。高分子膜が2種以上のポリビニルアセタール系樹脂を含む場合、アセタール化度、アセチル基量、水酸基量、重合度及び/又は単量体成分等において互いに異なるポリビニルアセタール系樹脂を含んでよい。高分子膜の厚さは、高分子膜を使用する目的に応じて適宜設定してよいが、力学強度の観点から、電解液により膨潤する前の状態で、好ましくは0.01μm以上、より好ましくは0.08μm以上、さらに好ましくは0.3μm以上である。また、イオン伝導性の観点から、好ましくは60μm以下、より好ましくは40μm以下、さらに好ましくは20μm以下である。高分子膜の厚さは、エリプソメトリー、透過率測定、反射率測定、レーザー顕微鏡などの光学的膜厚測定法、蛍光X線、X-CT等のX線を用いた膜厚測定法、定圧膜厚測定、SPM等の触針式表面形状測定法などを用いて測定することができる。本発明の一態様において、高分子膜に含まれるポリビニルアセタール系樹脂は架橋構造を有していてもよい。
(Polymer membrane)
The polymer film of the present invention is a film containing the above-mentioned polyvinyl acetal resin. The polymer film of the present invention may contain one kind of polyvinyl acetal-based resin, or may contain two or more kinds of polyvinyl acetal-based resins. When the polymer film contains two or more kinds of polyvinyl acetal-based resins, it may contain polyvinyl acetal-based resins having different acetalization degree, acetyl group amount, hydroxyl group amount, degree of polymerization and / or monomer component and the like. The thickness of the polymer film may be appropriately set according to the purpose of using the polymer film, but from the viewpoint of mechanical strength, it is preferably 0.01 μm or more, more preferably 0.01 μm or more in the state before swelling by the electrolytic solution. Is 0.08 μm or more, more preferably 0.3 μm or more. From the viewpoint of ionic conductivity, it is preferably 60 μm or less, more preferably 40 μm or less, and further preferably 20 μm or less. The thickness of the polymer film can be determined by ellipsometry, transmission measurement, reflectance measurement, optical film thickness measurement method such as laser microscope, film thickness measurement method using X-ray such as fluorescent X-ray, X-CT, constant pressure. It can be measured by using a film thickness measurement, a stylus type surface shape measurement method such as SPM, or the like. In one aspect of the present invention, the polyvinyl acetal-based resin contained in the polymer film may have a crosslinked structure.
 56~90モル%の水酸基量を有するポリビニルアセタール系樹脂を含む本発明の高分子膜は、低い電解液溶解性を有する。本明細書において、低い電解液溶解性を有するとは、電解液に含まれる有機溶媒に対する溶解性が低く、該有機溶媒との接触により高分子膜に含まれるポリビニルアセタール系樹脂が溶出しにくいことを表す。電解液溶解性の評価は、例えば有機溶媒としてジエチルカーボネートを用い、該溶媒に対する溶出率を測定することにより行うことができる。具体的には、本発明の高分子膜は、60℃で1時間、ジエチルカーボネートに浸漬させたとき、次の式:
Figure JPOXMLDOC01-appb-M000011
[式中、Aは高分子膜の浸漬前の質量(g)を表し、Bは高分子膜の浸漬後の質量(g)を表す]
により算出される溶出率が、好ましくは7%以下、より好ましくは6%以下、さらに好ましくは5%以下、さらにより好ましくは4.5%以下である。ジエチルカーボネートに浸漬させたときの溶出率が上記の上限以下である場合、高分子膜の電解液溶解性を低下させやすい。上記の溶出率の下限は、ジエチルカーボネートに実質的に溶出しないことが好ましいため、0%以上であってよい。ここで、Bの高分子膜の浸漬後の質量は、浸漬後の高分子膜の乾燥質量である。そのため、例えば高分子膜が上記の条件下でジエチルカーボネートに膨潤する場合、乾燥によりジエチルカーボネートを除去後、高分子膜の浸漬後の乾燥質量を測定し、溶出率を算出する。溶出率は、ポリビニルアセタール系樹脂の水酸基量、分子量、及び、架橋構造の有無及び種類等を調整することによって、上記の範囲に調整することができる。
The polymer membrane of the present invention containing a polyvinyl acetal-based resin having a hydroxyl group content of 56 to 90 mol% has low electrolyte solubility. In the present specification, having low solubility in an electrolytic solution means that the solubility in an organic solvent contained in the electrolytic solution is low, and the polyvinyl acetal-based resin contained in the polymer film is difficult to elute by contact with the organic solvent. Represents. The solubility of the electrolytic solution can be evaluated by, for example, using diethyl carbonate as an organic solvent and measuring the elution rate with respect to the solvent. Specifically, when the polymer membrane of the present invention was immersed in diethyl carbonate at 60 ° C. for 1 hour, the following formula:
Figure JPOXMLDOC01-appb-M000011
[In the formula, A represents the mass (g) before immersion of the polymer film, and B represents the mass (g) after immersion of the polymer film]
The elution rate calculated by the above method is preferably 7% or less, more preferably 6% or less, still more preferably 5% or less, still more preferably 4.5% or less. When the elution rate when immersed in diethyl carbonate is not more than the above upper limit, the solubility of the polymer membrane in the electrolytic solution tends to be lowered. The lower limit of the above elution rate may be 0% or more because it is preferable that it does not substantially elute into diethyl carbonate. Here, the mass of B after immersion in the polymer film is the dry mass of the polymer film after immersion. Therefore, for example, when the polymer membrane swells in diethyl carbonate under the above conditions, after removing diethyl carbonate by drying, the dry mass of the polymer membrane after immersion is measured to calculate the elution rate. The elution rate can be adjusted within the above range by adjusting the hydroxyl group weight, molecular weight, presence / absence and type of crosslinked structure of the polyvinyl acetal resin.
 56~90モル%の水酸基量を有するポリビニルアセタール系樹脂を含む本発明の高分子膜は、電解液に対して適度な膨潤性を有する。高分子膜が電解液に膨潤し、電解液を保持することにより、電解液の漏液を抑制しやすく、また、イオン伝導性も向上させやすくなる。具体的には、本発明の高分子膜を、25℃で24時間、リチウムビス(フルオロスルホニル)イミドが1mol/Lの濃度で1-エチル-3-メチルイミダゾリウムビス(フルオロスルホニル)イミド中に溶解した溶液に浸漬させたとき、次の式:
Figure JPOXMLDOC01-appb-M000012
[式中、Cは高分子膜の浸漬前の質量(g)を表し、Dは高分子膜の浸漬後の質量(g)を表す]
により算出される膨潤率が、好ましくは20%以上、より好ましくは25%以上、さらに好ましくは30%以上、さらにより好ましくは40%以上、とりわけ好ましくは43%以上、とりわけより好ましくは45%以上、きわめて好ましくは50%以上、きわめてより好ましくは53%以上である。ここで、Dの高分子膜の浸漬後の質量は、浸漬後の膨潤した高分子膜の質量であり、高分子膜中に取り込まれた上記の溶液を含む膨潤した状態の高分子膜の質量である。膨潤率が上記の下限以上である場合、高分子膜のリチウムイオン伝導性をより向上させやすい。該膨潤率の上限は特に限定されないが、電池を設計する観点からは、好ましくは125%以下、より好ましくは100%以下、さらに好ましくは75%以下である。膨潤率は、ポリビニルアセタール系樹脂の水酸基量、分子量、及び、架橋構造の有無及び種類等を調整することによって、上記の範囲に調整することができる。
The polymer film of the present invention containing a polyvinyl acetal-based resin having a hydroxyl group content of 56 to 90 mol% has an appropriate swelling property with respect to an electrolytic solution. By swelling the polymer film in the electrolytic solution and holding the electrolytic solution, it is easy to suppress the leakage of the electrolytic solution, and it is easy to improve the ionic conductivity. Specifically, the polymer film of the present invention was placed in 1-ethyl-3-methylimidazolium bis (fluorosulfonyl) imide at a concentration of 1 mol / L of lithium bis (fluorosulfonyl) imide at 25 ° C. for 24 hours. When immersed in the dissolved solution, the following formula:
Figure JPOXMLDOC01-appb-M000012
[In the formula, C represents the mass (g) of the polymer film before immersion, and D represents the mass (g) of the polymer film after immersion].
The swelling rate calculated by is preferably 20% or more, more preferably 25% or more, further preferably 30% or more, still more preferably 40% or more, particularly preferably 43% or more, and particularly more preferably 45% or more. , Very preferably 50% or more, very more preferably 53% or more. Here, the mass of D after immersion in the polymer film is the mass of the swollen polymer film after immersion, and is the mass of the swollen polymer film containing the above solution incorporated in the polymer film. Is. When the swelling rate is at least the above lower limit, the lithium ion conductivity of the polymer film can be more easily improved. The upper limit of the swelling rate is not particularly limited, but from the viewpoint of designing the battery, it is preferably 125% or less, more preferably 100% or less, still more preferably 75% or less. The swelling rate can be adjusted within the above range by adjusting the hydroxyl group weight, molecular weight, presence / absence and type of crosslinked structure of the polyvinyl acetal resin.
 本発明の好ましい一態様において、ポリビニルアセタール系樹脂は、62~90モル%の水酸基量を有するポリビニルアセタール系樹脂を含む。該ポリビニルアセタール系樹脂を含む本発明の高分子膜は、より低い電解液溶解性を有する。この態様における本発明の高分子膜は、60℃で1時間、ジエチルカーボネートに浸漬させたとき、次の式:
Figure JPOXMLDOC01-appb-M000013
[式中、Aは高分子膜の浸漬前の質量(g)を表し、Bは高分子膜の浸漬後の質量(g)を表す]
により算出される溶出率が、好ましくは7%以下、より好ましくは6%以下、さらに好ましくは5%以下、さらにより好ましくは4.5%以下である。ジエチルカーボネートに浸漬させたときの溶出率が上記の上限以下である場合、高分子膜の電解液溶解性をより低下させやすい。上記の溶出率の下限は、ジエチルカーボネートに実質的に溶出しないことが好ましいため、0%以上であってよい。
In a preferred embodiment of the present invention, the polyvinyl acetal-based resin contains a polyvinyl acetal-based resin having a hydroxyl group content of 62 to 90 mol%. The polymer membrane of the present invention containing the polyvinyl acetal-based resin has lower electrolyte solubility. When the polymer membrane of the present invention in this embodiment was immersed in diethyl carbonate at 60 ° C. for 1 hour, the following formula:
Figure JPOXMLDOC01-appb-M000013
[In the formula, A represents the mass (g) before immersion of the polymer film, and B represents the mass (g) after immersion of the polymer film]
The elution rate calculated by the above method is preferably 7% or less, more preferably 6% or less, still more preferably 5% or less, still more preferably 4.5% or less. When the elution rate when immersed in diethyl carbonate is not more than the above upper limit, the solubility of the polymer membrane in the electrolytic solution is likely to be lowered. The lower limit of the above elution rate may be 0% or more because it is preferable that it does not substantially elute into diethyl carbonate.
 本発明の一態様である62~90モル%の水酸基量を有するポリビニルアセタール系樹脂を含む本発明の高分子膜は、電解液に対してより適度な膨潤性を有する。高分子膜が電解液に膨潤し、電解液を保持することにより、電解液の漏液をより抑制しやすく、また、イオン伝導性もより向上させやすくなる。具体的には、本発明の高分子膜を、25℃で24時間、リチウムビス(フルオロスルホニル)イミドが1mol/Lの濃度で1-エチル-3-メチルイミダゾリウムビス(フルオロスルホニル)イミド中に溶解した溶液に浸漬させたとき、次の式:
Figure JPOXMLDOC01-appb-M000014
[式中、Cは高分子膜の浸漬前の質量(g)を表し、Dは高分子膜の浸漬後の質量(g)を表す]
により算出される膨潤率が、好ましくは40%以上、より好ましくは43%以上、さらに好ましくは45%以上、さらにより好ましくは50%以上、とりわけ好ましくは53%以上である。膨潤率が上記の下限以上である場合、高分子膜のリチウムイオン伝導性をより向上させやすい。該膨潤率の上限は特に限定されないが、電池を設計する観点からは、好ましくは125%以下、より好ましくは100%以下、さらに好ましくは75%以下である。
The polymer film of the present invention containing a polyvinyl acetal-based resin having a hydroxyl group amount of 62 to 90 mol%, which is one aspect of the present invention, has more appropriate swelling property with respect to an electrolytic solution. By swelling the polymer film in the electrolytic solution and holding the electrolytic solution, it becomes easier to suppress the leakage of the electrolytic solution, and it becomes easier to improve the ionic conductivity. Specifically, the polymer film of the present invention was placed in 1-ethyl-3-methylimidazolium bis (fluorosulfonyl) imide at a concentration of 1 mol / L of lithium bis (fluorosulfonyl) imide at 25 ° C. for 24 hours. When immersed in the dissolved solution, the following formula:
Figure JPOXMLDOC01-appb-M000014
[In the formula, C represents the mass (g) of the polymer film before immersion, and D represents the mass (g) of the polymer film after immersion].
The swelling rate calculated by the above is preferably 40% or more, more preferably 43% or more, further preferably 45% or more, still more preferably 50% or more, and particularly preferably 53% or more. When the swelling rate is at least the above lower limit, the lithium ion conductivity of the polymer film can be more easily improved. The upper limit of the swelling rate is not particularly limited, but from the viewpoint of designing the battery, it is preferably 125% or less, more preferably 100% or less, still more preferably 75% or less.
 56~90モル%の水酸基量を有するポリビニルアセタール系樹脂が架橋構造を有する本発明の一態様において、該ポリビニルアセタール系樹脂を含む高分子膜は、高い耐電解液性を有する。本明細書において、耐電解液性を有するとは、電解液に含まれる有機溶媒に対する溶解性がより低く、該有機溶媒との接触により高分子膜に含まれるポリビニルアセタール系樹脂がより溶出しにくいことを表す。耐電解液性の評価も、例えば有機溶媒としてジエチルカーボネートを用い、該溶媒に対する溶出率を測定することにより行うことができる。具体的には、ポリビニルアセタール系樹脂が架橋構造を有する本発明の一態様における高分子膜は、60℃で1時間、ジエチルカーボネートに浸漬させたとき、次の式:
Figure JPOXMLDOC01-appb-M000015
[式中、Aは高分子膜の浸漬前の質量(g)を表し、Bは高分子膜の浸漬後の質量(g)を表す]
により算出される溶出率が、好ましくは2%以下、より好ましくは1.5%以下、さらに好ましくは1.2%以下、さらにより好ましくは1.0%以下、特に好ましくは0.8%以下である。上記の溶出率の下限は、ジエチルカーボネートに実質的に溶出しないことが好ましいため、0%以上であってよい。ジエチルカーボネートに浸漬させたときの溶出率が上記の上限以下である場合、高分子膜の耐電解液性を高めやすい。
In one aspect of the present invention in which a polyvinyl acetal-based resin having a hydroxyl group content of 56 to 90 mol% has a crosslinked structure, the polymer membrane containing the polyvinyl acetal-based resin has high electrolytic solution resistance. In the present specification, having electrolyte resistance means that the electrolyte solution has lower solubility in an organic solvent, and the polyvinyl acetal resin contained in the polymer film is less likely to elute due to contact with the organic solvent. Represents that. The resistance to the electrolytic solution can also be evaluated by, for example, using diethyl carbonate as an organic solvent and measuring the elution rate with respect to the solvent. Specifically, when the polymer membrane in one embodiment of the present invention in which the polyvinyl acetal resin has a crosslinked structure is immersed in diethyl carbonate at 60 ° C. for 1 hour, the following formula:
Figure JPOXMLDOC01-appb-M000015
[In the formula, A represents the mass (g) before immersion of the polymer film, and B represents the mass (g) after immersion of the polymer film]
The elution rate calculated by is preferably 2% or less, more preferably 1.5% or less, still more preferably 1.2% or less, still more preferably 1.0% or less, and particularly preferably 0.8% or less. Is. The lower limit of the above elution rate may be 0% or more because it is preferable that it does not substantially elute into diethyl carbonate. When the elution rate when immersed in diethyl carbonate is not more than the above upper limit, it is easy to improve the electrolytic solution resistance of the polymer membrane.
 56~90モル%の水酸基量を有するポリビニルアセタール系樹脂が架橋構造を有する本発明の一態様において、該ポリビニルアセタール系樹脂を含む高分子膜は、電解液に対して適度な膨潤性を有する。高分子膜が電解液に膨潤し、電解液を保持することにより、電解液の漏液を抑制しやすく、また、イオン伝導性も向上させやすくなる。具体的には、上記態様における本発明の高分子膜を、25℃で24時間、リチウムビス(フルオロスルホニル)イミドが1mol/Lの濃度で1-エチル-3-メチルイミダゾリウムビス(フルオロスルホニル)イミド中に溶解した溶液に浸漬させたとき、次の式:
Figure JPOXMLDOC01-appb-M000016
[式中、Cは高分子膜の浸漬前の質量(g)を表し、Dは高分子膜の浸漬後の質量(g)を表す]
により算出される膨潤率が、好ましくは20%以上、より好ましくは25%以上、さらに好ましくは30%以上である。ここで、Dの高分子膜の浸漬後の質量は、浸漬後の膨潤した高分子膜の質量であり、高分子膜中に取り込まれた上記の溶液を含む膨潤した状態の高分子膜の質量である。膨潤率が上記の下限以上である場合、高分子膜のリチウムイオン伝導性をより向上させやすい。該膨潤率の上限は特に限定されないが、電池を設計する観点からは、好ましくは125%以下、より好ましくは100%以下、さらに好ましくは75%以下、さらにより好ましくは60%以下である。
In one aspect of the present invention in which a polyvinyl acetal-based resin having a hydroxyl group content of 56 to 90 mol% has a crosslinked structure, the polymer membrane containing the polyvinyl acetal-based resin has an appropriate swelling property with respect to an electrolytic solution. By swelling the polymer film in the electrolytic solution and holding the electrolytic solution, it is easy to suppress the leakage of the electrolytic solution, and it is easy to improve the ionic conductivity. Specifically, the polymer film of the present invention in the above embodiment is subjected to 1-ethyl-3-methylimidazolium bis (fluorosulfonyl) at a concentration of 1 mol / L of lithium bis (fluorosulfonyl) imide at 25 ° C. for 24 hours. When immersed in a solution dissolved in imide, the following formula:
Figure JPOXMLDOC01-appb-M000016
[In the formula, C represents the mass (g) of the polymer film before immersion, and D represents the mass (g) of the polymer film after immersion].
The swelling rate calculated by the above method is preferably 20% or more, more preferably 25% or more, still more preferably 30% or more. Here, the mass of D after immersion in the polymer film is the mass of the swollen polymer film after immersion, and is the mass of the swollen polymer film containing the above solution incorporated in the polymer film. Is. When the swelling rate is at least the above lower limit, the lithium ion conductivity of the polymer film can be more easily improved. The upper limit of the swelling rate is not particularly limited, but from the viewpoint of designing the battery, it is preferably 125% or less, more preferably 100% or less, still more preferably 75% or less, still more preferably 60% or less.
 56~90モル%の水酸基量を有するポリビニルアセタール系樹脂が架橋構造を有する本発明の一態様において、該ポリビニルアセタール系樹脂を含む高分子膜は、力学強度を高めやすい観点から、上記態様における本発明の高分子膜を、25℃で24時間、リチウムビス(フルオロスルホニル)イミドが1mol/Lの濃度で1-エチル-3-メチルイミダゾリウムビス(フルオロスルホニル)イミド中に溶解した溶液に浸漬させて得た、膨潤した高分子膜を測定試料とし、JIS K 7162-1Bに従い、25℃、500mm/分で測定して、好ましくは580kgf/cm以上、より好ましくは600kgf/cm以上、さらに好ましくは620kgf/cm以上、さらにより好ましくは640kgf/cm以上、とりわけ好ましくは660kgf/cm以上の引張強さを有する。引張強さの上限は特に限定されないが、例えば4,000kgf/cm以下、3,500kgf/cm以下、2,500kgf/cm以下等であってよい。 In one embodiment of the present invention in which a polyvinyl acetal-based resin having a hydroxyl group content of 56 to 90 mol% has a crosslinked structure, the polymer film containing the polyvinyl acetal-based resin can easily increase the mechanical strength. The polymer film of the present invention is immersed in a solution in which lithium bis (fluorosulfonyl) imide is dissolved in 1-ethyl-3-methylimidazolium bis (fluorosulfonyl) imide at a concentration of 1 mol / L at 25 ° C. for 24 hours. The swollen polymer film thus obtained was used as a measurement sample and measured at 25 ° C. and 500 mm / min according to JIS K 7162-1B, preferably 580 kgf / cm 2 or more, more preferably 600 kgf / cm 2 or more, and further. It preferably has a tensile strength of 620 kgf / cm 2 or more, even more preferably 640 kgf / cm 2 or more, and particularly preferably 660 kgf / cm 2 or more. The upper limit of the tensile strength is not particularly limited, for example 4,000kgf / cm 2 or less, 3,500kgf / cm 2 or less, may be 2,500kgf / cm 2 or less and the like.
 本発明の高分子膜に含まれる上記の特定のポリビニルアセタール系樹脂の量は、電解液への膨潤性の観点から、高分子膜の全質量に基づいて、好ましくは50質量%以上、より好ましくは70質量%以上、さらに好ましくは80質量%以上、さらにより好ましくは90質量%以上である。本発明の高分子膜に含まれる上記の特定のポリビニルアセタール系樹脂の量の上限は特に限定されず、100質量%以下であればよい。 The amount of the above-mentioned specific polyvinyl acetal-based resin contained in the polymer film of the present invention is preferably 50% by mass or more, more preferably 50% by mass or more, based on the total mass of the polymer film, from the viewpoint of swellability to the electrolytic solution. Is 70% by mass or more, more preferably 80% by mass or more, and even more preferably 90% by mass or more. The upper limit of the amount of the above-mentioned specific polyvinyl acetal-based resin contained in the polymer film of the present invention is not particularly limited, and may be 100% by mass or less.
 本発明の高分子膜は、上記のポリビニルアセタール系樹脂以外に、他の成分を含有していてもよいし、他の成分を含有しなくてもよい。本発明の高分子膜が含有し得る他の成分としては、例えば、架橋剤、界面活性剤、脱泡剤、離形剤、ブロッキング防止剤、接着剤、金属捕捉剤等が挙げられる。他の成分の含有量は、該成分の配合目的に応じて適宜選択してよいが、イオン伝導性の観点からは、高分子膜の全質量に基づいて、好ましくは15質量%以下、より好ましくは10質量%以下、さらに好ましくは5質量%以下である。本発明の高分子膜がさらに架橋剤を含有する場合、該架橋剤は上記のポリビニルアセタール系樹脂を架橋する構造として本発明の高分子膜に含まれていてもよい。 The polymer film of the present invention may or may not contain other components in addition to the above-mentioned polyvinyl acetal-based resin. Other components that can be contained in the polymer membrane of the present invention include, for example, a cross-linking agent, a surfactant, a defoaming agent, a release agent, an anti-blocking agent, an adhesive, a metal scavenger, and the like. The content of the other component may be appropriately selected depending on the purpose of blending the component, but from the viewpoint of ionic conductivity, it is preferably 15% by mass or less, more preferably 15% by mass or less, based on the total mass of the polymer membrane. Is 10% by mass or less, more preferably 5% by mass or less. When the polymer membrane of the present invention further contains a cross-linking agent, the cross-linking agent may be contained in the polymer membrane of the present invention as a structure for cross-linking the above-mentioned polyvinyl acetal-based resin.
 ポリビニルアセタール系樹脂を含む本発明の高分子膜の製造方法は特に限定されないが、例えばポリビニルアセタール系樹脂と少なくとも1種の溶媒とを含むポリビニルアセタール系樹脂溶液を、必要に応じて離形処理を施した基材上に塗工し、塗膜を乾燥させ、基材を剥離除去することにより、本発明の高分子膜を製造することができる。また、電池に用いる正極、負極、セパレータ、集電体などの各部材に本発明のポリビニルアセタール系樹脂溶液を直接コートし、乾燥させて膜を作製してもよい。 The method for producing the polymer film of the present invention containing the polyvinyl acetal-based resin is not particularly limited, but for example, a polyvinyl acetal-based resin solution containing the polyvinyl acetal-based resin and at least one solvent is demolded as necessary. The polymer film of the present invention can be produced by coating on the applied base material, drying the coating film, and peeling off the base material. Further, each member such as the positive electrode, the negative electrode, the separator, and the current collector used in the battery may be directly coated with the polyvinyl acetal resin solution of the present invention and dried to prepare a film.
 56~90モル%の水酸基量を有するポリビニルアセタール系樹脂が架橋構造を有する本発明の一態様においても、該ポリビニルアセタール系樹脂を含む高分子膜の製造方法は特に限定されないが、例えば架橋前のポリビニルアセタール系樹脂と、少なくとも1種の溶媒と、架橋剤とを含むポリビニルアセタール系樹脂溶液を、必要に応じて離形処理を施した基材上に塗工し、塗膜を乾燥させ、次いで、加熱及び/又はエネルギー線照射等によりポリビニルアセタール系樹脂を架橋し、基材を剥離除去することにより、上記態様における本発明の高分子膜を製造することができる。また、架橋剤を後からコート等によって含有させてもよい。さらにポリビニルアセタール系樹脂溶液は重合開始剤や光増感剤を含んでいてもよい。架橋後のポリビニルアセタール系樹脂を含む溶液を用いて高分子膜を製造してもよい。また、電池に用いる正極、負極、セパレータ、集電体などの各部材に、本発明のポリビニルアセタール系樹脂を含む溶液、又は、架橋剤と架橋前のポリビニルアセタール系樹脂を含む溶液を直接コートし、乾燥させると共に必要に応じて加熱及び/又はエネルギー線照射等による架橋反応を行い、膜を作製してもよい。
 架橋条件は、使用する架橋剤や基材に応じて適宜調整してよいが、例えば架橋剤としてイソシアネート基、エポキシ基、カルボキシル基、酸無水物基などの熱反応性基を有する架橋剤(以下において熱反応性架橋剤とも称する)を用いる場合、好ましくは60~180℃、より好ましくは70~150℃の温度で加熱して、ポリビニルアセタール系樹脂に架橋構造を導入することができる。また、例えば架橋剤として、(メタ)アクリレート基などの光架橋性基を有する架橋剤(以下において光架橋性架橋剤とも称する)を用いる場合、後述する乾燥塗膜に、水銀ランプ等を用いて紫外線照射することにより、ポリビニルアセタール系樹脂に架橋構造を導入することができる。
Also in one aspect of the present invention in which the polyvinyl acetal resin having a hydroxyl group content of 56 to 90 mol% has a crosslinked structure, the method for producing the polymer film containing the polyvinyl acetal resin is not particularly limited, but for example, before crosslinking. A polyvinyl acetal resin solution containing a polyvinyl acetal resin, at least one solvent, and a cross-linking agent is applied onto a base material which has been subjected to a mold release treatment, if necessary, and the coating film is dried, and then the coating film is dried. The polymer film of the present invention according to the above embodiment can be produced by cross-linking the polyvinyl acetal resin by heating and / or irradiating with energy rays or the like and peeling off the base material. Further, the cross-linking agent may be contained later by a coat or the like. Further, the polyvinyl acetal-based resin solution may contain a polymerization initiator and a photosensitizer. A polymer film may be produced using a solution containing the crosslinked polyvinyl acetal resin. Further, each member such as the positive electrode, the negative electrode, the separator, and the current collector used in the battery is directly coated with the solution containing the polyvinyl acetal resin of the present invention or the solution containing the cross-linking agent and the polyvinyl acetal resin before cross-linking. The film may be prepared by drying and, if necessary, performing a cross-linking reaction by heating and / or irradiation with energy rays or the like.
The cross-linking conditions may be appropriately adjusted depending on the cross-linking agent used and the base material. For example, the cross-linking agent has a heat-reactive group such as an isocyanate group, an epoxy group, a carboxyl group, or an acid anhydride group (hereinafter, When a heat-reactive cross-linking agent (also referred to as a heat-reactive cross-linking agent) is used, the cross-linked structure can be introduced into the polyvinyl acetal resin by heating at a temperature of preferably 60 to 180 ° C., more preferably 70 to 150 ° C. Further, for example, when a cross-linking agent having a photo-cross-linking group such as a (meth) acrylate group (hereinafter, also referred to as a photo-crosslinking cross-linking agent) is used as the cross-linking agent, a mercury lamp or the like is used for the dry coating film described later. By irradiating with ultraviolet rays, a crosslinked structure can be introduced into the polyvinyl acetal resin.
 ポリビニルアセタール系樹脂を溶解する溶媒は、前記ポリビニルアセタール系樹脂を溶解可能な溶媒であれば特に限定されない。溶媒の例としては、N-メチルピロリドン、N-エチルピロリドン、N-メチル-α-メチルピロリドン、N-エチル-α-メチルピロリドン等のN-アルキルピロリドンなどの環状アミド系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド系溶媒;テトラヒドロフラン、ジオキサン、モルホリン、N-メチルモルホリン等の環状エーテル系溶媒;ジメチルスルホキシド等のスルホキシド系溶媒;スルホラン等のスルホン系溶媒などが挙げられる。これらの溶媒は単独又は二種以上を組み合わせて使用できる。これらの中でも、環状アミド系溶媒が好ましい。環状アミド系溶媒を使用すると、ポリビニルアセタール系樹脂を十分に溶解させることができ、得られるポリビニルアセタール系樹脂溶液の粘度を低減させることができるため、ポリビニルアセタール系樹脂溶液の塗工性を向上させやすく、得られる高分子膜の均一性を高めやすい。 The solvent for dissolving the polyvinyl acetal-based resin is not particularly limited as long as it is a solvent capable of dissolving the polyvinyl acetal-based resin. Examples of solvents include cyclic amide solvents such as N-alkylpyrrolidone such as N-methylpyrrolidone, N-ethylpyrrolidone, N-methyl-α-methylpyrrolidone, N-ethyl-α-methylpyrrolidone; N, N- Amido solvents such as dimethylformamide, N, N-dimethylacetamide; cyclic ether solvents such as tetrahydrofuran, dioxane, morpholin, N-methylmorpholin; sulfoxide solvents such as dimethyl sulfoxide; sulfone solvents such as sulfolane and the like can be mentioned. .. These solvents can be used alone or in combination of two or more. Among these, a cyclic amide solvent is preferable. When the cyclic amide solvent is used, the polyvinyl acetal resin can be sufficiently dissolved and the viscosity of the obtained polyvinyl acetal resin solution can be reduced, so that the coatability of the polyvinyl acetal resin solution is improved. It is easy to improve the uniformity of the obtained polymer film.
 ポリビニルアセタール系樹脂溶液に含まれるポリビニルアセタール系樹脂の含有量は、ポリビニルアセタール系樹脂溶液の総量に基づいて、好ましくは1~30質量%、より好ましくは3~20質量%、特に好ましくは5~10質量%である。ポリビニルアセタール系樹脂の含有量が上記の下限以上であると、塗工性が良く成膜しやすい。また、上記の上限以下であると、ポリビニルアセタール系樹脂溶液を調製しやすい。 The content of the polyvinyl acetal resin contained in the polyvinyl acetal resin solution is preferably 1 to 30% by mass, more preferably 3 to 20% by mass, and particularly preferably 5 to 5 to 30% by mass, based on the total amount of the polyvinyl acetal resin solution. It is 10% by mass. When the content of the polyvinyl acetal-based resin is at least the above lower limit, the coatability is good and the film is easily formed. Further, when it is not more than the above upper limit, it is easy to prepare a polyvinyl acetal-based resin solution.
(非水電解質電池)
 本発明の高分子膜は、非水電解質電池用の高分子膜である。また、本発明は、本発明の高分子膜を含む非水電解質電池も提供する。本発明の高分子膜は、非水電解質電池において、電解液と接触する部分において使用されることにより、高いイオン伝導性を有し、電池の安全性及び高寿命化に寄与することができる。そのため、本発明の高分子膜は、正極、負極、セパレータの少なくとも1つの部材に接触する部品として使用することができる。なお、本発明の高分子膜は、上記の特定のポリビニルアセタール系樹脂を含む膜である限り、その状態は限定されず、非水電解質電池において使用される際には、電解液等によって膨潤している状態でもよいし、ゲル状態の膜であってもよい。本発明の高分子膜、好ましくはポリビニルアセタール系樹脂が架橋構造を有する本発明の一態様における高分子膜は、非水電解質電池において使用される限り、その使用目的は特に限定されず、電解質以外の用途においても使用することが可能である。本発明の高分子膜、好ましくはポリビニルアセタール系樹脂が架橋構造を有する本発明の一態様における高分子膜は、非水電解質電池において、好ましくは高分子膜の少なくとも一部が電解液と接触する部品として使用され、より好ましくは電解質として使用され、さらに好ましくはゲル電解質として使用される。
(Non-aqueous electrolyte battery)
The polymer membrane of the present invention is a polymer membrane for non-aqueous electrolyte batteries. The present invention also provides a non-aqueous electrolyte battery containing the polymer membrane of the present invention. The polymer membrane of the present invention has high ionic conductivity when used in a portion of a non-aqueous electrolyte battery that comes into contact with an electrolytic solution, and can contribute to the safety and long life of the battery. Therefore, the polymer film of the present invention can be used as a component that comes into contact with at least one member of the positive electrode, the negative electrode, and the separator. The polymer membrane of the present invention is not limited in its state as long as it is a membrane containing the above-mentioned specific polyvinyl acetal-based resin, and when used in a non-aqueous electrolyte battery, it swells with an electrolytic solution or the like. It may be in a gel state or a gel state film. The polymer membrane of the present invention, preferably the polymer membrane in one embodiment of the present invention in which the polyvinyl acetal resin has a crosslinked structure, is not particularly limited in purpose as long as it is used in a non-aqueous electrolyte battery, and is not limited to an electrolyte. It can also be used in the above applications. In a non-aqueous electrolyte battery, the polymer film of the present invention, preferably a polyvinyl acetal resin having a crosslinked structure, preferably has at least a part of the polymer film in contact with an electrolytic solution. It is used as a component, more preferably as an electrolyte, and even more preferably as a gel electrolyte.
 本発明の非水電解質電池(単に「電池」という場合がある)は、本発明の高分子膜と電極(負極及び正極)と電解液とを少なくとも備える。本発明の非水電解質電池は、さらにセパレータを含んでいてもよい。本発明の非水電解質電池は、例えば、リチウムイオン電池、リチウム金属電池、ナトリウムイオン電池、カリウムイオン電池、マグネシウム電池、リチウム硫黄電池、全固体型リチウム電池、金属空気電池、リチウムイオンキャパシタなどが挙げられる。 The non-aqueous electrolyte battery of the present invention (sometimes referred to simply as a "battery") includes at least the polymer film of the present invention, electrodes (negative electrode and positive electrode), and an electrolytic solution. The non-aqueous electrolyte battery of the present invention may further include a separator. Examples of the non-aqueous electrolyte battery of the present invention include a lithium ion battery, a lithium metal battery, a sodium ion battery, a potassium ion battery, a magnesium battery, a lithium sulfur battery, an all-solid-state lithium battery, a metal air battery, and a lithium ion capacitor. Be done.
 非水電解質電池に含まれる正極及び負極は、それぞれ、正極又は負極活物質の硬化体と集電体とを含む。該硬化体は、必要に応じてバインダー(例えばバインダー樹脂)を含有してもよい。 The positive electrode and the negative electrode contained in the non-aqueous electrolyte battery include a cured body and a current collector of the positive electrode or the negative electrode active material, respectively. The cured product may contain a binder (for example, a binder resin) if necessary.
 負極活物質は、従来から非水電解質電池の負極活物質として用いられている材料を使用することができ、その例としては、アモルファスカーボン、人工グラファイト、天然グラファイト(黒鉛)、メソカーボンマイクロビーズ(MCMB)、ピッチ系炭素繊維、カーボンブラック、活性炭、カーボンファイバー、ハードカーボン、ソフトカーボン、メソポーラスカーボン、ポリアセン等の導電性高分子などの炭素質材料、SiO、SnO、LiTiOで表される複合金属酸化物やその他の金属酸化物やリチウム金属、リチウム合金などのリチウム系金属、TiS、LiTiSなどの金属化合物及び、金属酸化物と炭素質材料との複合材料、マグネシウム、鉄、亜鉛、アルミニウムなどの金属などが挙げられる。 As the negative electrode active material, a material conventionally used as a negative electrode active material for non-aqueous electrolyte batteries can be used, and examples thereof include amorphous carbon, artificial graphite, natural graphite (graphite), and mesocarbon microbeads ( MCMB), pitch-based carbon fibers, carbon black, activated carbon, carbon fibers, hard carbon, soft carbon, mesoporous carbon, carbonaceous materials such as conductive polymers such as polyacene, represented by SiO x , SnO x , LiTIO x Composite metal oxides and other metal oxides, lithium metals, lithium-based metals such as lithium alloys , metal compounds such as TiS 2 and LiTiS 2 , composite materials of metal oxides and carbonaceous materials, magnesium, iron, zinc , Metals such as aluminum and the like.
 正極活物質としては、例えば、従来から非水電解質電池の正極活物質として用いられている材料を使用することができ、その例としては、TiS、TiS、非晶質MoS、Cu、非晶質VO-P、MoO、V、V13などの遷移金属酸化物やLiCoO、LiNiO、LiMnO、LiMnなどのリチウム含有複合金属酸化物、P-Na2/3Ni1/3Mn2/3、NaCrO、Na2/3[Fe1/2Mn1/2]O、NaMnO、NaCoOなどのナトリウム含有複合金属酸化物、KMn[Fe(CN)]、KMnO、KFe0.5Mn0.5、KFeSOFなどカリウム含有複合金属酸化物、MoS、MgTi、V、NVO、MgFeSiO、カーボンペーパー、炭素材料、硫黄系などが挙げられる。これらの正極活物質は単独又は二種以上組み合わせて使用できる。 As the positive electrode active material, for example, a material conventionally used as a positive electrode active material of a non-aqueous electrolyte battery can be used, and examples thereof include TiS 2 , TiS 3 , amorphous MoS 3 , and Cu 2. Transition metal oxides such as V 2 O 3 , amorphous V 2 O-P 2 O 5 , MoO 3 , V 2 O 5 , V 6 O 13 , LiCo O 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4, etc. lithium-containing composite metal oxides, P 2 -Na 2/3 Ni 1/3 Mn 2/3 O 2, NaCrO 2, Na 2/3 [Fe 1/2 Mn 1/2] O 2, NaMnO, Na x Sodium-containing composite metal oxides such as CoO 2 , potassium-containing composite metal oxides such as K 2 Mn [Fe (CN) 6 ], K x MnO 2 , K x Fe 0.5 Mn 0.5 O 2 , KFeSO 4 F, etc. , Mo 3 S, MgTi 2 S 4 , V 2 O 5 , NVO, MgFeSiO 4 , carbon paper, carbon material, sulfur-based and the like. These positive electrode active materials can be used alone or in combination of two or more.
 非水電解質電池に含まれる正極及び負極は、さらに導電助剤を含んでいてもよい。導電助剤は、非水電解質電池を高出力化するために用いられるものであり、正極又は負極に使用する場合に応じて適宜選択でき、その例としては、例えば、黒鉛、アセチレンブラック、カーボンブラック、ケッチェンブラック、気相成長炭素繊維等が挙げられる。得られる非水電解質電池が高出力化しやすい観点から、これらの中でも、アセチレンブラックが好ましい。 The positive electrode and the negative electrode contained in the non-aqueous electrolyte battery may further contain a conductive auxiliary agent. The conductive auxiliary agent is used to increase the output of the non-aqueous electrolyte battery, and can be appropriately selected depending on the case where it is used for the positive electrode or the negative electrode. Examples thereof include graphite, acetylene black, and carbon black. , Ketjen black, vapor-grown carbon fiber and the like. Among these, acetylene black is preferable from the viewpoint that the obtained non-aqueous electrolyte battery can easily increase the output.
 正極及び/又は負極が導電助剤を含有する場合、導電助剤の含有量は、活物質100質量部に対して、好ましくは0.1~15質量部、より好ましくは1~10質量部、さらに好ましくは3~10質量部である。導電助剤の含有量が上記範囲であると、電池容量を低下させることなく十分な導電補助効果がある。 When the positive electrode and / or the negative electrode contains a conductive auxiliary agent, the content of the conductive auxiliary agent is preferably 0.1 to 15 parts by mass, more preferably 1 to 10 parts by mass, based on 100 parts by mass of the active material. More preferably, it is 3 to 10 parts by mass. When the content of the conductive auxiliary agent is in the above range, there is a sufficient conductive auxiliary effect without lowering the battery capacity.
 バインダーとしては、従来から非水電解質電池の負極活物質として用いられている材料を使用することができ、その例としてはSBR、NBR、アクリルゴム、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ポリフッ化ビニリデン、アクリル系、ポリアミド-イミド系、ポリビニルコール系などが挙げられる。 As the binder, a material conventionally used as a negative electrode active material of a non-aqueous electrolyte battery can be used, and examples thereof include SBR, NBR, acrylic rubber, hydroxyethyl cellulose, carboxymethyl cellulose, polyvinylidene fluoride, and acrylic type. , Polyamide-imide type, polyvinylcor type and the like.
 負極や正極に用いるバインダーは、特に、本発明の高分子膜と同種の材料である、ビニルアルコール系や、ビニルアセタール及び/又はビニルエステルを含む共重合体を有する高分子化合物を用いることで、本発明の高分子膜との電極位置ずれや、活物質脱落防止による生産性向上が期待される。このため、バインダーとして本発明の高分子膜と同種の材料を用いることがより好ましい。一方、入手容易性と生産性向上のバランスから、SBR系エマルションを用いることも好適な態様の1つである。 The binder used for the negative electrode and the positive electrode is particularly a polymer compound having a vinyl alcohol-based material or a copolymer containing vinyl acetal and / or vinyl ester, which is the same material as the polymer film of the present invention. It is expected that the electrode position will be displaced from the polymer film of the present invention and the productivity will be improved by preventing the active material from falling off. Therefore, it is more preferable to use the same kind of material as the polymer film of the present invention as the binder. On the other hand, from the viewpoint of the balance between availability and productivity improvement, it is one of the preferred embodiments to use an SBR emulsion.
 正極及び/又は負極は、前記バインダー、前記活物質及び前記導電助剤以外にも、必要に応じて、難燃助剤、増粘剤、消泡剤、レベリング剤、密着性付与剤等の添加剤を含むことができる。 In addition to the binder, the active material, and the conductive auxiliary agent, the positive electrode and / or the negative electrode may be added with a flame retardant aid, a thickener, a defoaming agent, a leveling agent, an adhesion imparting agent, etc., if necessary. Can include agents.
 セパレータは、従来から非水電解質電池のセパレータとして用いられている材料を使用することができ、その例としてはポリプロピレン、ポリエチレン等のポリオレフィン類、フッ素樹脂、セルロース、ポリアミド類等からなる多孔質フィルム、不織布などが挙げられ、それらを積層したものを用いることもできる。 As the separator, a material conventionally used as a separator for a non-aqueous electrolyte battery can be used, and examples thereof include a porous film made of polyolefins such as polypropylene and polyethylene, fluororesin, cellulose, and polyamides. Examples thereof include non-woven fabrics, and those obtained by laminating them can also be used.
 電極は、正極又は負極活物質とバインダー樹脂と、さらに1種以上の溶媒とを含む組成物(以下において、スラリー組成物とも称する)を集電体に塗布し、溶媒を乾燥等により除去して得ることができる。また、乾燥後に電極を圧延処理してもよい。 For the electrode, a composition containing a positive electrode or negative electrode active material, a binder resin, and one or more kinds of solvents (hereinafter, also referred to as a slurry composition) is applied to a current collector, and the solvent is removed by drying or the like. Obtainable. Further, the electrode may be rolled after drying.
 集電体としては、導電性材料からなるものであれば、特に限定されず、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などの金属材料などが挙げられる。これらの集電体は単独又は二種以上組み合わせて使用できる。集電体の中でも、活物質の接着性及び放電容量の観点から、正極集電体としてはアルミニウムが好ましく、負極集電体としては銅が好ましい。 The current collector is not particularly limited as long as it is made of a conductive material, and examples thereof include metal materials such as iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, and platinum. These current collectors can be used alone or in combination of two or more. Among the current collectors, aluminum is preferable as the positive electrode current collector, and copper is preferable as the negative electrode current collector from the viewpoint of the adhesiveness of the active material and the discharge capacity.
 スラリー組成物を集電体に塗布する方法としては、特に限定されないが、例えば、押出しコーター、リバースローラー、ドクターブレード、アプリケーター等が挙げられる。スラリー組成物の塗布量は、スラリー組成物由来の硬化体の所望とする厚みに応じて、適宜選択される。 The method of applying the slurry composition to the current collector is not particularly limited, and examples thereof include an extrusion coater, a reverse roller, a doctor blade, and an applicator. The coating amount of the slurry composition is appropriately selected according to the desired thickness of the cured product derived from the slurry composition.
 電極の圧延方法としては、金型プレスやロールプレスなどの方法が挙げられる。プレス圧としては、電池容量を高めやすい観点から、1~40MPaが好ましい。 Examples of the electrode rolling method include a mold press and a roll press. The press pressure is preferably 1 to 40 MPa from the viewpoint of easily increasing the battery capacity.
 集電体の厚さは、好ましくは1~20μm、より好ましくは2~15μmである。また、硬化体の厚さは好ましくは10~400μmであり、より好ましくは20~300μmである。電極の厚さは好ましくは20~200μmである。 The thickness of the current collector is preferably 1 to 20 μm, more preferably 2 to 15 μm. The thickness of the cured product is preferably 10 to 400 μm, more preferably 20 to 300 μm. The thickness of the electrode is preferably 20 to 200 μm.
 本発明の非水電解質電池に含まれる電解液は、電解質塩、有機溶媒及び/又は添加剤を含むものであってもよいし、固体電解質やイオン液体及び電解質塩含有イオン液体でもよい。該電解質塩は、通常の非水電解質電池に用いられるものであれば、固体状、液状、ゲル状のいずれでもよく、負極活物質、正極活物質の種類に応じて電池としての機能を発揮するものを適宜選択すればよい。具体的な電解質塩としては、例えば、LiClO、LiBF、LiPF、LiTFSA、LiCFSO、LiCFCO、LiAsF、LiSbF、LiB10Cl10、LiAlCl4、LiCl、LiBr、LiB(C、CFSOLi、CHSOLi、LiCFSO、LiCSO、Li(CFSON、低級脂肪族カルボン酸リチウム、NaPF、NaTFSA、NaFSI、KFSI、KPF、Mg(TFSA)、Mg[N(CFSO]などが挙げられる。 The electrolyte solution contained in the non-aqueous electrolyte battery of the present invention may contain an electrolyte salt, an organic solvent and / or an additive, or may be a solid electrolyte, an ionic liquid, or an ionic liquid containing an electrolyte salt. The electrolyte salt may be solid, liquid, or gel as long as it is used in a normal non-aqueous electrolyte battery, and exhibits a function as a battery depending on the type of the negative electrode active material and the positive electrode active material. You can select the one as appropriate. Specific electrolyte salt, for example, LiClO 4, LiBF 6, LiPF 6, LiTFSA, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiB 10 Cl 10, LiAlC l4, LiCl, LiBr, LiB (C 2 H 5 ) 4 , CF 3 SO 3 Li, CH 3 SO 3 Li, LiCF 3 SO 3 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 N, lower aliphatic lithium carboxylate, NaPF 6 , NaTFSA, NaFSI, KFSI, KPF 6 , Mg (TFSA) 2 , Mg [N (CF 3 SO 2 ) 2 ] 2, and the like.
 電解液に含まれる溶媒は、特に限定されず、その具体例としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、ビニレンカーボネートなどのカーボネート類;γ-ブチルラクトンなどのラクトン類;トリメトキシメタン、1,2-ジメトキシエタン、ジエチルエーテル、2-エトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジエチレングリコールジエチルエーテルなどのエーテル類;ジメチルスルホキシドなどのスルホキシド類;1,3-ジオキソラン、4―メチル-1,3―ジオキソランなどのオキソラン類;アセトニトリルやニトロメタンなどの含窒素化合物類;ギ酸メチル、酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチルなどの有機酸エステル類;リン酸トリエチル、炭酸ジメチル、炭酸ジエチルなどの無機酸エステル類;ジグライム類;トリグライム類;スルホラン類;3-メチル-2-オキサゾリジノンなどのオキサゾリジノン類;1,3-プロパンスルトン、1,4-ブタンスルトン、ナフタスルトンなどのスルトン類などが挙げられ、これらは単独又は二種以上組み合わせて使用できる。ゲル状の電解液を用いるときは、ゲル化剤としてニトリル系重合体、アクリル系重合体、フッ素系重合体、アルキレンオキサイド系重合体などを加えることができる。 The solvent contained in the electrolytic solution is not particularly limited, and specific examples thereof include carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, ethylmethyl carbonate, diethyl carbonate, and vinylene carbonate; γ-butyl lactone and the like. Solvents; ethers such as trimethoxymethane, 1,2-dimethoxyethane, diethyl ether, 2-ethoxyethane, tetrahydrofuran, 2-methyl tetrahydrofuran, diethylene glycol diethyl ether; sulfoxides such as dimethylsulfoxide; 1,3-dioxolane Oxoranes such as 4-methyl-1,3-dioxolane; Nitrogen-containing compounds such as acetonitrile and nitromethane; Organic acid esters such as methyl formate, methyl acetate, ethyl acetate, butyl acetate, methyl propionate, ethyl propionate and the like. Inorganic acid esters such as triethyl phosphate, dimethyl carbonate, diethyl carbonate; diglimes; triglimes; sulfolanes; oxazolidinones such as 3-methyl-2-oxazolidinone; 1,3-propanesulton, 1,4-butanesulton , Naphthaltons and the like, and these can be used alone or in combination of two or more. When a gel-like electrolytic solution is used, a nitrile-based polymer, an acrylic-based polymer, a fluorine-based polymer, an alkylene oxide-based polymer, or the like can be added as a gelling agent.
 電解液に含まれる添加剤は、特に限定されず、VC、VEC、FEC、LiFSIなどが挙げられる。 The additive contained in the electrolytic solution is not particularly limited, and examples thereof include VC, VEC, FEC, and LiFSI.
 固体電解質は特に限定されず、LiS-P、LGPS、LSiPSCl、LSiSnPSなどの硫化物系、LLTO、LATP、LLZO、LAGP、LIPONなどの酸化物系、PEO-LiTFSIなどの高分子系、LiBH、LiBH-LiI、LiBH-LiNH、LiBH-Pなどの錯体系、クロソボラン、カーボランなどの水素化物系などが挙げられる。 The solid electrolyte is not particularly limited , and is sulfide-based such as Li 2 SP 2 S 5 , LGPS, LSiPSCl, LSiSnPS, oxide-based such as LLTO, LATP, LLZO, LAGP, LIPON, and polymer such as PEO-LiTFSI. Examples thereof include a system, a complex system such as LiBH 4 , LiBH 4- LiI, LiBH 4- LiNH 2 , LiBH 4- P 2 S 5, and a hydride system such as crosobolan and carboran.
 電解液として使用されるイオン液体は、特に限定されず、例えばアンモニウム系、ピロリジニウム系、ピリジニウム系、イミダゾリウム系、ピペリジニウム系、ピラゾリウム系、オキサゾリウム系、ピリダジニウム系、ホスホニウム系、スルホニウム系、トリアゾリウム系及びその混合物のうちから選択された1以上の陽イオンとBF 、PF 、AsF 、SbF 、AlCl 、HSO 、ClO 、CHSO 、(FO2)、(CSO、(CSO)(CFSO)N及び(CFSOの内から選択された少なくとも一つから選択された1種類以上の陰イオンを含む化合物などが挙げられる。 The ionic liquid used as the electrolytic solution is not particularly limited, and is, for example, ammonium-based, pyrrolidinium-based, pyridinium-based, imidazolium-based, piperidinium-based, pyrazolium-based, oxazolium-based, pyridadinium-based, phosphonium-based, sulfonium-based, triazolium-based, and and one or more cations selected from among the mixture BF 4 -, PF 6 -, AsF 6 -, SbF 6 -, AlCl 4 -, HSO 4 -, ClO 4 -, CH 3 SO 3 -, (F 5 O2) 2 N - is selected from among -, (C 2 F 5 SO 2) 2 N -, (C 2 F 5 SO 2) (CF 3 SO 2) N - and (CF 3 SO 2) 2 N Examples thereof include compounds containing one or more types of anions selected from at least one.
 非水電解質電池を製造する方法としては、特に限定されないが、例えば、次の製造方法が例示される。例えば、本発明の高分子膜を単独で作製し、負極及び/又は正極と接するように重ね合わせた積層体を、電池形状に応じて巻く、折るなどして、電池容器に入れ、電解液を注入して封口する。また、電池に用いる正極、負極、セパレータなどの各部材に本発明のポリビニルアセタール系樹脂溶液を直接コートし、乾燥させて膜にした部材を用いて上述したような方法にて電池を作製してもよい。電池の形状は、公知のコイン型、ボタン型、シート型、円筒型、角型、扁平型などいずれであってもよい。 The method for manufacturing the non-aqueous electrolyte battery is not particularly limited, and for example, the following manufacturing method is exemplified. For example, the polymer film of the present invention is independently produced, and a laminate that is laminated so as to be in contact with the negative electrode and / or the positive electrode is wound or folded according to the shape of the battery and placed in a battery container to contain an electrolytic solution. Inject and seal. Further, each member such as the positive electrode, the negative electrode, and the separator used for the battery is directly coated with the polyvinyl acetal-based resin solution of the present invention, and dried to form a film to prepare a battery by the method as described above. May be good. The shape of the battery may be any of known coin type, button type, sheet type, cylindrical type, square type, flat type and the like.
 本発明の非水電解質電池は、様々な用途に有用である。例えば、小型化、薄型化、軽量化、高性能化の要求される携帯端末に使用される電池としても非常に有用である。また、柔軟性が求められる機器の電池、例えば巻回型乾電池、ラミネート型電池にも好適に用いることができる。 The non-aqueous electrolyte battery of the present invention is useful for various applications. For example, it is very useful as a battery used in a mobile terminal that requires miniaturization, thinning, weight reduction, and high performance. Further, it can be suitably used for batteries of equipment requiring flexibility, for example, winding type dry batteries and laminated type batteries.
 以下に、本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例中の%は特に断らない限り質量に関するものである。まず、測定方法及び評価方法を以下に示す。 Hereinafter, the present invention will be described with reference to Examples, but the present invention is not limited to these Examples. In addition,% in an Example is related to mass unless otherwise specified. First, the measurement method and the evaluation method are shown below.
<ポリビニルアセタール系樹脂の分析>
 実施例及び比較例で使用したポリビニルアセタール系樹脂の重合度、けん化度、アセタール化度、アセチル基量、及び水酸基量を以下に示す方法に従って測定した。なお、実施例及び比較例で使用したポリビニルアセタール系樹脂に関し、重合度、けん化度、アセタール化度、アセチル基量は、高分子膜の製造工程により変化しない値であるため、原料として使用したポリビニルアセタール系樹脂について測定した値を、高分子膜に含まれるポリビニルアセタール系樹脂についての値としてよい。なお、ポリビニルアセタール系樹脂が架橋構造を有さない場合には、水酸基量も高分子膜の製造工程により変化しない値であるため、原料として使用したポリビニルアセタール系樹脂について測定した値を、高分子膜に含まれるポリビニルアセタール系樹脂についての値としてよい。ポリビニルアセタール系樹脂が架橋構造を有する場合には、高分子膜の製造工程により変化しない値である重合度、けん化度、アセタール化度、及びアセチル基量及び水酸基量は、原料として使用した架橋前のポリビニルアセタール系樹脂について測定した値を、高分子膜に含まれる架橋後のポリビニルアセタール系樹脂についての値としてよい。また、架橋後のポリビニルアセタール系樹脂の水酸基量は後述する方法で測定した。
<Analysis of polyvinyl acetal resin>
The degree of polymerization, the degree of saponification, the degree of acetalization, the amount of acetyl groups, and the amount of hydroxyl groups of the polyvinyl acetal-based resins used in Examples and Comparative Examples were measured according to the methods shown below. Regarding the polyvinyl acetal-based resins used in Examples and Comparative Examples, the degree of polymerization, the degree of saponification, the degree of acetalization, and the amount of acetyl groups are values that do not change depending on the manufacturing process of the polymer film, and therefore the polyvinyl used as a raw material. The value measured for the acetal-based resin may be used as the value for the polyvinyl acetal-based resin contained in the polymer film. When the polyvinyl acetal-based resin does not have a crosslinked structure, the amount of hydroxyl groups does not change depending on the polymer film manufacturing process. Therefore, the value measured for the polyvinyl acetal-based resin used as the raw material is the polymer. It may be a value for the polyvinyl acetal resin contained in the film. When the polyvinyl acetal resin has a crosslinked structure, the degree of polymerization, the degree of saponification, the degree of acetalization, and the amount of acetyl groups and the amount of hydroxyl groups, which are values that do not change depending on the manufacturing process of the polymer film, are the values before cross-linking used as raw materials. The value measured for the polyvinyl acetal-based resin of the above may be used as the value for the cross-linked polyvinyl acetal-based resin contained in the polymer film. The amount of hydroxyl groups in the polyvinyl acetal-based resin after cross-linking was measured by the method described later.
(a)重合度及びけん化度
 JIS-K6726に従って、ポリビニルアルコール(ポリビニルアセタール系樹脂をアセタール化する前の樹脂)の重合度及びけん化度を測定し、ポリビニルアセタール系樹脂の重合度及びけん化度とした。
(A) Degree of polymerization and degree of saponification According to JIS-K6726, the degree of polymerization and saponification of polyvinyl alcohol (resin before acetalization of polyvinyl acetal resin) was measured and used as the degree of polymerization and saponification of polyvinyl acetal resin. ..
(b)アセタール化度
 ポリビニルアセタール系樹脂を、標準試料であるテトラメチルシランを0.03体積%含有したジメチルスルホキシド-d6(DMSO-d6)に溶解し、測定機器として、核磁気共鳴分光装置(「AVance 600」、Bruker製)を用いて、共鳴周波数1H 600MHz及び温度25℃の条件下で測定した。ビニルアセタール単位のメチル基(0.87ppm)に由来するピーク強度と、ビニルアルコール単位、ビニルエステル単位、及びビニルアセタール単位の主鎖中のメチレン基(1.14~1.94ppm)に由来するピーク強度からアセタール化度を求めた。
(B) Degree of Acetalization A polyvinyl acetal-based resin is dissolved in dimethyl sulfoxide-d6 (DMSO-d6) containing 0.03% by volume of tetramethylsilane, which is a standard sample, and used as a measuring instrument by a nuclear magnetic resonance spectrometer ( It was measured using "AVance 600" (manufactured by Bruker) under the conditions of a resonance frequency of 1H 600 MHz and a temperature of 25 ° C. Peak intensity derived from the methyl group (0.87 ppm) of the vinyl acetal unit and peak derived from the methylene group (1.14 to 1.94 ppm) in the main chain of the vinyl alcohol unit, the vinyl ester unit, and the vinyl acetal unit. The degree of acetalization was determined from the strength.
(c)アセチル基量
 ポリビニルアセタール系樹脂を、標準試料であるテトラメチルシランを0.03体積%含有したジメチルスルホキシド-d6(DMSO-d6)に溶解し、測定機器として、核磁気共鳴分光装置(「AVance 600」、Bruker製)を用いて、共鳴周波数1H 600MHz及び温度25℃の条件下で測定した。ビニルエステル単位のメチル基(1.94ppm)に由来するピーク強度と、ビニルアルコール単位、ビニルエステル単位、及びビニルアセタール単位の主鎖中のメチレン基(0.87~1.70ppm)に由来するピーク強度からアセチル基量を求めた。
(C) Acetyl Group Amount Polypolyacetal-based resin is dissolved in dimethyl sulfoxide-d6 (DMSO-d6) containing 0.03% by volume of tetramethylsilane, which is a standard sample, and used as a measuring instrument by a nuclear magnetic resonance spectrometer (c). It was measured using "AVance 600" (manufactured by Bruker) under the conditions of a resonance frequency of 1H 600 MHz and a temperature of 25 ° C. The peak intensity derived from the methyl group (1.94 ppm) of the vinyl ester unit and the peak derived from the methylene group (0.87 to 1.70 ppm) in the main chain of the vinyl alcohol unit, the vinyl ester unit, and the vinyl acetal unit. The amount of acetyl group was determined from the strength.
(d)水酸基量
 上記で算出したアセタール化度とアセチル基量から、次の式に従い、水酸基量を算出した。
Figure JPOXMLDOC01-appb-M000017
 なお、架橋構造を有するポリビニルアセタール系樹脂を用いる場合には、上記の式に従い、架橋前のポリビニルアセタール系樹脂における水酸基量を算出した。
(D) Amount of hydroxyl group From the degree of acetalization and the amount of acetyl groups calculated above, the amount of hydroxyl group was calculated according to the following formula.
Figure JPOXMLDOC01-appb-M000017
When a polyvinyl acetal-based resin having a crosslinked structure was used, the amount of hydroxyl groups in the polyvinyl acetal-based resin before cross-linking was calculated according to the above formula.
<高分子膜の分析>
(e)溶出率
 実施例及び比較例で得た高分子膜を、打ちぬき機を用いφ14mmの円形状に打ち抜き、5gのジエチルカーボネートに浸漬、60℃で1時間静置後、取り出したフィルムを80℃3時間の条件で乾燥処理を行った。得られた浸漬乾燥後のフィルム質量を測定し、浸漬乾燥後の質量変化率を次の式より算出し、溶出率とした。
Figure JPOXMLDOC01-appb-M000018
[式中、Aは高分子膜の浸漬前の質量(g)を表し、Bは高分子膜の浸漬後の乾燥質量(g)を表す]
<Analysis of polymer membrane>
(E) Elution rate The polymer films obtained in Examples and Comparative Examples were punched into a circular shape of φ14 mm using a punching machine, immersed in 5 g of diethyl carbonate, allowed to stand at 60 ° C. for 1 hour, and then taken out. The drying treatment was carried out under the condition of 80 ° C. for 3 hours. The mass of the obtained film after immersion and drying was measured, and the mass change rate after immersion and drying was calculated from the following formula and used as the elution rate.
Figure JPOXMLDOC01-appb-M000018
[In the formula, A represents the mass (g) of the polymer film before immersion, and B represents the dry mass (g) of the polymer film after immersion].
(f)膨潤率
 実施例及び比較例で得た高分子膜を、打ちぬき機を用いφ14mmの円形状に打ち抜き、電解液に25℃で24時間浸漬後、高分子膜を取り出し、高分子膜表面に付着した溶液をウエスで拭きとり除去した後、浸漬後の高分子膜の質量を測定し、浸漬後の質量変化率を次の式により算出し、膨潤度(%)とした。電解液にはリチウム ビス(フルオロスルホニル)イミド(LiFSI)を1-エチル-3-メチルイミダゾリウム ビス(フルオロスルホニル)イミド(EMI-FSI)に溶解させたもの(1M-LiFSI、EMI-FSI、キシダ化学株式会社製)を用いた。
Figure JPOXMLDOC01-appb-M000019
[式中、Cは高分子膜の浸漬前の質量(g)を表し、Dは高分子膜の浸漬後の質量(g)を表す]
(F) Swelling rate The polymer films obtained in Examples and Comparative Examples are punched into a circular shape of φ14 mm using a punching machine, immersed in an electrolytic solution at 25 ° C. for 24 hours, and then the polymer film is taken out and the polymer film is taken out. After wiping off the solution adhering to the surface with a waste cloth, the mass of the polymer film after immersion was measured, and the rate of change in mass after immersion was calculated by the following formula and used as the degree of swelling (%). Lithium bis (fluorosulfonyl) imide (LiFSI) dissolved in 1-ethyl-3-methylimidazolium bis (fluorosulfonyl) imide (EMI-FSI) in the electrolytic solution (1M-LiFSI, EMI-FSI, Kishida) (Manufactured by Chemical Co., Ltd.) was used.
Figure JPOXMLDOC01-appb-M000019
[In the formula, C represents the mass (g) of the polymer film before immersion, and D represents the mass (g) of the polymer film after immersion].
(g)イオン伝導度測定
 実施例及び比較例で得た高分子膜に電解液(mol/L LiFSI EMI-FSI、キシダ化学株式会社製)を350μL含浸させて得たゲル電解質を用い、作用極に白金を、参照極及び対極にLi金属を用いた三極セルを作製した。インピーダンス測定装置(ポテンショ/ガルバノスタット(SI1287、ソーラトロン社製)及び周波数応答アナライザ(FRA、ソーラトロン社製))を用い、振幅10mV、測定周波数0.01~1MHzの範囲にて交流インピーダンス測定を実施し、得られた抵抗と厚みからイオン伝導度(Scm-1)を算出した。
(G) Ion Conductivity Measurement Using a gel electrolyte obtained by impregnating the polymer films obtained in Examples and Comparative Examples with 350 μL of an electrolytic solution (mol / L LiFSI EMI-FSI, manufactured by Kishida Chemical Co., Ltd.), the working electrode. A triode cell was prepared using platinum as the reference electrode and Li metal as the reference electrode and the counter electrode. Using an impedance measuring device (potential / galvanostat (SI1287, manufactured by Solartron) and frequency response analyzer (FRA, manufactured by Solartron)), AC impedance measurement was performed in the range of amplitude 10 mV and measurement frequency 0.01 to 1 MHz. , Ion conductivity (Scm -1 ) was calculated from the obtained resistance and thickness.
(h)突き刺し強度測定
 実施例及び比較例で得た高分子膜を、2cm角にカットし、テクスチャーアナライザー(XT Plus、 EKO Instruments製)にて温度25℃、突き刺し速度2mm/s、φ1mmのシリンダー型プローブを用いることによって測定を行った。
また、2cm角にカットし、上記の膨潤率の測定と同条件にて膨潤させた膜についても同様に突き刺し強度の測定を実施した。
(H) Measurement of piercing strength The polymer films obtained in Examples and Comparative Examples were cut into 2 cm squares, and a cylinder with a texture analyzer (XT Plus, manufactured by EKO Instruments) had a temperature of 25 ° C., a piercing speed of 2 mm / s, and a diameter of 1 mm. Measurements were made using a type probe.
Further, the piercing strength of the film cut into 2 cm squares and swollen under the same conditions as the above-mentioned measurement of the swelling rate was measured in the same manner.
(i)サイクル試験
(セルの作製)
 実施例及び比較例で得た高分子膜を作製するための調製液(ポリビニルアセタール系樹脂溶液)をセパレータに膜厚1~2μmとなるように塗工した。セパレータ付き高分子膜を40℃12時間減圧乾燥した後、5.1×5.0cmのサイズに切り出した。次いで、Cu集電箔付き負極(天然黒鉛+SiOフープ10.3mg/cm、1.45g・cm、八山製)を4.8×4.5cm、Al集電箔付き正極(LCO正極板25.3mg/cm片面仕様、八山製)を4.9×4.7cmのサイズに切出してリードタブを付けた後、これら2枚の電極で、上記サイズに切り出したセパレータ付き高分子膜を挟み込んだ。挟み込んだものをアルミラミネートパックの中に、及びリードタブがアルミラミネートパックの外に出るようにして設置した後、電解液(エチレンカーボネート(EC)/エチルメチルカーボネート(EMC)/ジメチルカーボネート(DMC)=1/1/1、1.0M LiPF)350μlを減圧封入することによりラミネートセルを作製した。
(サイクル特性の算出方法)
 作製したセルを25℃の恒温槽中に入れ、インピーダンス測定装置(ポテンショ/ガルバノスタット(SI1287、ソーラトロン社製)及び周波数応答アナライザ(FRA、ソーラトロン社製))にて交流インピーダンス測定を実施し、初期5サイクル実施後、セルを再封止し、その後の1サイクル目の放電容量をE、100サイクル目の放電容量をFとしたとき、放電容量維持率を下記式によって算出し、サイクル特性とした。
サイクル特性(%)=F/E×100
(I) Cycle test (cell preparation)
The preparation solution (polyvinyl acetal resin solution) for producing the polymer films obtained in Examples and Comparative Examples was applied to a separator so as to have a film thickness of 1 to 2 μm. The polymer membrane with a separator was dried under reduced pressure at 40 ° C. for 12 hours, and then cut into a size of 5.1 × 5.0 cm. Next, the negative electrode with Cu current collector foil (natural graphite + SiO hoop 10.3 mg / cm 2 , 1.45 g · cm 3 , manufactured by Yayama) was 4.8 x 4.5 cm, and the positive electrode with Al current collector foil (LCO positive electrode plate). 25.3 mg / cm 2 single-sided specification, manufactured by Yayama) was cut out to a size of 4.9 x 4.7 cm and a lead tab was attached, and then these two electrodes were used to cut out a polymer film with a separator to the above size. I sandwiched it. After installing the sandwiched material in the aluminum laminate pack and so that the lead tab comes out of the aluminum laminate pack, the electrolytic solution (ethylene carbonate (EC) / ethyl methyl carbonate (EMC) / dimethyl carbonate (DMC) = A laminate cell was prepared by encapsulating 350 μl of 1/1/1, 1.0 M LiPF 6) under reduced pressure.
(Calculation method of cycle characteristics)
The prepared cell was placed in a constant temperature bath at 25 ° C., and AC impedance was measured with an impedance measuring device (potential / galvanostat (SI1287, manufactured by Solartron) and frequency response analyzer (FRA, manufactured by Solartron)). After 5 cycles, the cell was resealed, and when the discharge capacity in the 1st cycle was E and the discharge capacity in the 100th cycle was F, the discharge capacity retention rate was calculated by the following formula and used as the cycle characteristics. ..
Cycle characteristics (%) = F / E x 100
(j)厚さ
 高分子膜の厚さは、厚み測定器(定圧厚さ測定器PG-02J、テフロック社製)を用いて測定した。
(J) Thickness The thickness of the polymer film was measured using a thickness measuring device (constant pressure thickness measuring device PG-02J, manufactured by Teflock Co., Ltd.).
 架橋構造を有するポリビニルアセタール系樹脂を用いる場合には、さらに以下を測定した。 When using a polyvinyl acetal-based resin having a crosslinked structure, the following was further measured.
<高分子膜の分析-(k)反応率>
 離形処理されたポリエチレンテレフタレートフィルム上に実施例及び比較例で調製したポリビニルアセタール系樹脂溶液を塗工、乾燥することで、ポリビニルアセタール系樹脂膜を作製した。作製した膜を測定試料とし、フーリエ変換赤外分光光度計(FT/IR6600、日本分光社製)を用い、ATR法にて測定した。
 エチレン性不飽和結合を有する架橋剤を用いる場合、二重結合に由来する810cm-1の吸収ピークの減少率から、反応率を算出する。また、イソシアネート基を有する架橋剤を用いる場合、イソシアネート基に由来する2300cm-1の吸収ピークの減少率から、反応率を算出する。エポキシ基を有する架橋剤を用いる場合、エポキシ基に由来する910cm-1の吸収ピークの減少率から、反応率を算出する。反応率の算出式は次の通りである。
反応率[%]={(架橋前の各波数における吸収強度-架橋後の各波数における吸収強度)/架橋前の各波数における吸収強度}×100
<Analysis of Polymer Membrane- (k) Reaction Rate>
A polyvinyl acetal-based resin film was prepared by applying the polyvinyl acetal-based resin solution prepared in Examples and Comparative Examples onto the release-treated polyethylene terephthalate film and drying the film. The prepared film was used as a measurement sample and measured by the ATR method using a Fourier transform infrared spectrophotometer (FT / IR6600, manufactured by JASCO Corporation).
When a cross-linking agent having an ethylenically unsaturated bond is used, the reaction rate is calculated from the reduction rate of the absorption peak of 810 cm -1 derived from the double bond. When a cross-linking agent having an isocyanate group is used, the reaction rate is calculated from the reduction rate of the absorption peak of 2300 cm-1 derived from the isocyanate group. When a cross-linking agent having an epoxy group is used, the reaction rate is calculated from the reduction rate of the absorption peak of 910 cm -1 derived from the epoxy group. The formula for calculating the reaction rate is as follows.
Reaction rate [%] = {(absorption intensity at each wave number before cross-linking-absorption intensity at each wave number after cross-linking) / absorption intensity at each wave number before cross-linking} × 100
<高分子膜の分析-(l)架橋後のポリビニルアセタール系樹脂の水酸基量>
 架橋後のポリビニルアセタール系樹脂の水酸基量は、架橋前のポリビニルアセタール系樹脂について測定したアセタール化度及びアセチル基量と、上記の反応率から、次の式により算出した。
水酸基量(架橋後)[モル%]=100-アセタール化度[モル%]-アセチル基量[モル%]-(架橋剤添加量[モル%]×反応率[%]/100)
<Analysis of Polymer Membrane- (l) Amount of Hydroxyl Group in Polyvinyl Acetal Resin after Crosslinking>
The amount of hydroxyl groups in the polyvinyl acetal-based resin after cross-linking was calculated by the following formula from the acetalization degree and the amount of acetyl groups measured for the polyvinyl acetal-based resin before cross-linking and the above reaction rate.
Amount of hydroxyl group (after cross-linking) [mol%] = 100-degree of acetalization [mol%] -amount of acetyl group [mol%]-(amount of cross-linking agent added [mol%] x reaction rate [%] / 100)
<高分子膜の分析-(m)力学特性>
 離形処理されたポリエチレンテレフタレートフィルム上に実施例及び比較例で調製したポリビニルアセタール系樹脂溶液を塗工、乾燥することで、ポリビニルアセタール系樹脂のシートを作製した。得られたシートからJIS K 7162-1Bに準じた試験片を得た後、500mm/分、25℃の条件下で引張り試験機(オートグラフAG5000B、島津製作所社製)を用い、引張強さを測定した。また、上記同条件にて膨潤させた膜についても同様に引っ張り試験を実施した。
<Analysis of polymer membrane- (m) Mechanical properties>
A sheet of polyvinyl acetal resin was prepared by applying the polyvinyl acetal resin solution prepared in Examples and Comparative Examples onto the release-treated polyethylene terephthalate film and drying the film. After obtaining a test piece according to JIS K 7162-1B from the obtained sheet, the tensile strength was determined using a tensile tester (Autograph AG5000B, manufactured by Shimadzu Corporation) under the conditions of 500 mm / min and 25 ° C. It was measured. In addition, a tensile test was also carried out on the membrane swollen under the same conditions as described above.
<実施例1>
(ポリビニルアセタール系樹脂溶液(1))
 還流冷却管、温度計を備え付けた三つ口フラスコに、アセトン150g、水100g、1-ブタナール12.3gを加え、マグネティックスターラーで撹拌しながらポリビニルアルコール(けん化度99モル%、平均重合度1700)50gを1分間かけて添加した。水50gと47質量%硫酸21.2gの混合溶液を滴下漏斗から5分間かけて滴下し、30℃に昇温して5時間反応を行った。1モル/L水酸化ナトリウム水溶液をpHが8になるまで加えた後、ろ過により固形物を取り出した。アセトンと水の質量比1:1の混合溶媒で前記固形物の洗浄を5回行った後、120℃、圧力0.005MPaで6時間乾燥させることで、ポリビニルアセタール系樹脂(1)を得た。得られたポリビニルアセタール系樹脂のアセチル基量、アセタール化度及び水酸基量を上記の方法で測定した。
 得られたポリビニルアセタール系樹脂(1)5質量部に、N-メチルピロリドン(NMP)95質量部を加えて、ポリビニルアセタール系樹脂(1)の質量が、ポリビニルアセタール系樹脂溶液の質量に対して5質量%である、ポリビニルアセタール系樹脂溶液(1)を得た。
<Example 1>
(Polyvinyl acetal resin solution (1))
To a three-necked flask equipped with a reflux condenser and a thermometer, 150 g of acetone, 100 g of water, and 12.3 g of 1-butanal were added, and polyvinyl alcohol (saponification degree 99 mol%, average degree of polymerization 1700) was added while stirring with a magnetic stirrer. 50 g was added over 1 minute. A mixed solution of 50 g of water and 21.2 g of 47 mass% sulfuric acid was added dropwise from a dropping funnel over 5 minutes, the temperature was raised to 30 ° C., and the reaction was carried out for 5 hours. A 1 mol / L aqueous sodium hydroxide solution was added until the pH reached 8, and then the solid was removed by filtration. The solid substance was washed 5 times with a mixed solvent having a mass ratio of acetone and water of 1: 1 and then dried at 120 ° C. and a pressure of 0.005 MPa for 6 hours to obtain a polyvinyl acetal resin (1). .. The amount of acetyl group, degree of acetalization and amount of hydroxyl group of the obtained polyvinyl acetal resin were measured by the above method.
95 parts by mass of N-methylpyrrolidone (NMP) is added to 5 parts by mass of the obtained polyvinyl acetal resin (1), and the mass of the polyvinyl acetal resin (1) is based on the mass of the polyvinyl acetal resin solution. A polyvinyl acetal-based resin solution (1) in an amount of 5% by mass was obtained.
(高分子膜(1))
 上記で得られたポリビニルアセタール系樹脂溶液(1)を、離形処理されたポリエチレンテレフタレートフィルム上にベーカー式アプリケーター(SA-201、テスター産業株式会社製)を用いて塗布した後、80℃で3時間乾燥することにより高分子膜(1)を得た。得られた高分子膜(1)の厚さは23μmであった。
(Polymer membrane (1))
The polyvinyl acetal-based resin solution (1) obtained above is applied on a release-treated polyethylene terephthalate film using a baker-type applicator (SA-201, manufactured by Tester Sangyo Co., Ltd.), and then at 80 ° C. for 3 The polymer film (1) was obtained by drying for a time. The thickness of the obtained polymer film (1) was 23 μm.
 上記で得られた高分子膜を用いて溶出率、膨潤率、突き刺し強度を測定した。結果を表に示す。 The elution rate, swelling rate, and piercing strength were measured using the polymer film obtained above. The results are shown in the table.
 上記高分子膜(1)をアルゴンガス雰囲気下のグローブボックス(美和製作所製)に移送した。作製した高分子膜(1)を用いて、三極セルを作製し、イオン伝導度測定を実施した。結果を表に示す。 The polymer film (1) was transferred to a glove box (manufactured by Miwa Seisakusho) in an argon gas atmosphere. A tripolar cell was prepared using the prepared polymer membrane (1), and ionic conductivity was measured. The results are shown in the table.
 上記高分子膜(1)を用いて、ラミネートセルを作製し、0.2Cのレートにて充放電試験を100サイクル実施した。結果を表に示す。 A laminate cell was prepared using the above polymer film (1), and a charge / discharge test was carried out at a rate of 0.2 C for 100 cycles. The results are shown in the table.
<実施例2>
 実施例1のポリビニルアセタール系樹脂の調製において、1-ブタナール12.3gに代えて、1-ブタナール10gを用いたこと以外は、実施例1と同様にして、ポリビニルアセタール系樹脂(2)を得た。得られたポリビニルアセタール系樹脂(2)を用いて、実施例1と同様にして、ポリビニルアセタール系樹脂溶液(2)を調製し、該樹脂溶液を用いて、実施例1と同様にして高分子膜(2)(厚さ16μm)を得た。
<Example 2>
In the preparation of the polyvinyl acetal-based resin of Example 1, the polyvinyl acetal-based resin (2) was obtained in the same manner as in Example 1 except that 10 g of 1-butarnal was used instead of 12.3 g of 1-butanal. It was. Using the obtained polyvinyl acetal-based resin (2), a polyvinyl acetal-based resin solution (2) was prepared in the same manner as in Example 1, and the polymer was used in the same manner as in Example 1. A film (2) (thickness 16 μm) was obtained.
 上記で得られた高分子膜(2)を用いて実施例1と同様に、溶出率、膨潤率、突き刺し強度、イオン伝導度測定及びサイクル試験を実施した。結果を表に示す。 Using the polymer membrane (2) obtained above, elution rate, swelling rate, puncture strength, ionic conductivity measurement and cycle test were carried out in the same manner as in Example 1. The results are shown in the table.
<実施例3>
 実施例1のポリビニルアセタール系樹脂の調製において、1-ブタナール12.3gに代えて、1-ブタナール4.4gを用いたこと以外は、実施例1と同様にして、ポリビニルアセタール系樹脂(3)を得た。得られたポリビニルアセタール系樹脂(3)を用いて、実施例1と同様にして、ポリビニルアセタール系樹脂溶液(3)を調製し、該樹脂溶液を用いて、実施例1と同様にして高分子膜(3)(厚さ19μm)を得た。
<Example 3>
In the preparation of the polyvinyl acetal-based resin of Example 1, the polyvinyl acetal-based resin (3) was the same as in Example 1 except that 4.4 g of 1-butarnal was used instead of 12.3 g of 1-butanal. Got Using the obtained polyvinyl acetal-based resin (3), a polyvinyl acetal-based resin solution (3) was prepared in the same manner as in Example 1, and the polymer was used in the same manner as in Example 1. A film (3) (thickness 19 μm) was obtained.
 上記で得られた高分子膜(3)を用いて実施例1と同様に、溶出率、膨潤率、突き刺し強度、イオン伝導度測定及びサイクル試験を実施した。結果を表に示す。 Using the polymer membrane (3) obtained above, elution rate, swelling rate, piercing strength, ionic conductivity measurement and cycle test were carried out in the same manner as in Example 1. The results are shown in the table.
<実施例4>
 実施例1のポリビニルアセタール系樹脂の調製において、1-ブタナール12.3gに代えて、1-ノナナール18.8gを用いたこと以外は、実施例1と同様にして、ポリビニルアセタール系樹脂(4)を得た。得られたポリビニルアセタール系樹脂(4)を用いて、実施例1と同様にして、ポリビニルアセタール系樹脂溶液(4)を調製し、該樹脂溶液を用いて、実施例1と同様にして高分子膜(4)(厚さ20μm)を得た。
<Example 4>
In the preparation of the polyvinyl acetal-based resin of Example 1, the polyvinyl acetal-based resin (4) was the same as in Example 1 except that 18.8 g of 1-nonanal was used instead of 12.3 g of 1-butanal. Got Using the obtained polyvinyl acetal-based resin (4), a polyvinyl acetal-based resin solution (4) was prepared in the same manner as in Example 1, and the polymer was used in the same manner as in Example 1. A film (4) (thickness 20 μm) was obtained.
 上記で得られた高分子膜(4)を用いて実施例1と同様に、溶出率、膨潤率、突き刺し強度、イオン伝導度測定及びサイクル試験を実施した。結果を表に示す。 Using the polymer membrane (4) obtained above, elution rate, swelling rate, piercing strength, ionic conductivity measurement and cycle test were carried out in the same manner as in Example 1. The results are shown in the table.
<実施例5>
 還流冷却管、温度計を備え付けた三つ口フラスコに、アセトン150g、水100g、1-ノナナール18.8gを加え、マグネティックスターラーで撹拌しながらポリビニルアルコール(けん化度99モル%、平均重合度2400)50gを1分間かけて添加した。水50gと47質量%硫酸21.2gの混合溶液を滴下漏斗から5分間かけて滴下し、30℃に昇温して5時間反応を行った。1モル/L水酸化ナトリウム水溶液をpHが8になるまで加えた後、ろ過により固形物を取り出した。アセトンと水の質量比1:1の混合溶媒で前記固形物の洗浄を5回行った後、120℃、圧力0.005MPaで6時間乾燥させることで、ポリビニルアセタール系樹脂(5)を得た。得られたポリビニルアセタール系樹脂(5)5質量部に、NMP95質量部を加えて、ポリビニルアセタール系樹脂(5)の質量が、ポリビニルアセタール系樹脂溶液の質量に対して5質量%である、ポリビニルアセタール系樹脂溶液(5)を得た。該樹脂溶液を用いて、実施例1と同様にして高分子膜(5)(厚さ19μm)を得た。
<Example 5>
To a three-necked flask equipped with a reflux condenser and a thermometer, 150 g of acetone, 100 g of water, and 18.8 g of 1-nonanaal were added, and polyvinyl alcohol (saponification degree 99 mol%, average degree of polymerization 2400) was added while stirring with a magnetic stirrer. 50 g was added over 1 minute. A mixed solution of 50 g of water and 21.2 g of 47 mass% sulfuric acid was added dropwise from a dropping funnel over 5 minutes, the temperature was raised to 30 ° C., and the reaction was carried out for 5 hours. A 1 mol / L aqueous sodium hydroxide solution was added until the pH reached 8, and then the solid was removed by filtration. The solid substance was washed 5 times with a mixed solvent having a mass ratio of acetone and water of 1: 1 and then dried at 120 ° C. and a pressure of 0.005 MPa for 6 hours to obtain a polyvinyl acetal resin (5). .. 95 parts by mass of NMP is added to 5 parts by mass of the obtained polyvinyl acetal resin (5), and the mass of the polyvinyl acetal resin (5) is 5% by mass with respect to the mass of the polyvinyl acetal resin solution. An acetal-based resin solution (5) was obtained. Using the resin solution, a polymer film (5) (thickness 19 μm) was obtained in the same manner as in Example 1.
 上記で得られた高分子膜(5)を用いて実施例1と同様に、溶出率、膨潤率、突き刺し強度、イオン伝導度測定及びサイクル試験を実施した。結果を表に示す。 Using the polymer membrane (5) obtained above, elution rate, swelling rate, piercing strength, ionic conductivity measurement and cycle test were carried out in the same manner as in Example 1. The results are shown in the table.
<実施例6>
 実施例1のポリビニルアセタール系樹脂の調製において、1-ブタナール12.3gに代えて、1-オクタナール25.3gを用いたこと以外は、実施例1と同様にして、ポリビニルアセタール系樹脂(6)を得た。得られたポリビニルアセタール系樹脂(6)を用いて、実施例1と同様にして、ポリビニルアセタール系樹脂溶液(6)を調製し、該樹脂溶液を用いて、実施例1と同様にして高分子膜(6)(厚さ18μm)を得た。
<Example 6>
In the preparation of the polyvinyl acetal-based resin of Example 1, the polyvinyl acetal-based resin (6) was the same as in Example 1 except that 25.3 g of 1-octanal was used instead of 12.3 g of 1-butanal. Got Using the obtained polyvinyl acetal-based resin (6), a polyvinyl acetal-based resin solution (6) was prepared in the same manner as in Example 1, and the polymer was used in the same manner as in Example 1. A film (6) (thickness 18 μm) was obtained.
 上記で得られた高分子膜(6)を用いて実施例1と同様に、溶出率、膨潤率、突き刺し強度、イオン伝導度測定及びサイクル試験を実施した。結果を表に示す。 Using the polymer membrane (6) obtained above, elution rate, swelling rate, puncture strength, ionic conductivity measurement and cycle test were carried out in the same manner as in Example 1. The results are shown in the table.
<実施例7>
 実施例1のポリビニルアセタール系樹脂の調製において、1-ブタナール12.3gに代えて、1-オクタナール13.3gを用いたこと以外は、実施例1と同様にして、ポリビニルアセタール系樹脂(7)を得た。得られたポリビニルアセタール系樹脂(7)を用いて、実施例1と同様にして、ポリビニルアセタール系樹脂溶液(7)を調製し、該樹脂溶液を用いて、実施例1と同様にして高分子膜(7)(厚さ17μm)を得た。
<Example 7>
In the preparation of the polyvinyl acetal-based resin of Example 1, the polyvinyl acetal-based resin (7) was the same as in Example 1 except that 13.3 g of 1-octanal was used instead of 12.3 g of 1-butanal. Got Using the obtained polyvinyl acetal-based resin (7), a polyvinyl acetal-based resin solution (7) was prepared in the same manner as in Example 1, and the polymer was used in the same manner as in Example 1. A film (7) (thickness 17 μm) was obtained.
 上記で得られた高分子膜(7)を用いて実施例1と同様に、溶出率、膨潤率、突き刺し強度、イオン伝導度測定及びサイクル試験を実施した。結果を表に示す。 Using the polymer membrane (7) obtained above, elution rate, swelling rate, puncture strength, ionic conductivity measurement and cycle test were carried out in the same manner as in Example 1. The results are shown in the table.
<比較例1>
 実施例1のポリビニルアセタール系樹脂の調製において、1-ブタナール12.3gに代えて、1-ブタナール29.2gを用いたこと以外は、実施例1と同様にして、ポリビニルアセタール系樹脂(8)を得た。得られたポリビニルアセタール系樹脂(8)を用いて、実施例1と同様にして、ポリビニルアセタール系樹脂溶液(8)を調製し、該樹脂溶液を用いて、実施例1と同様にして高分子膜(8)(厚さ20μm)を得た。
<Comparative example 1>
In the preparation of the polyvinyl acetal-based resin of Example 1, the polyvinyl acetal-based resin (8) was the same as in Example 1 except that 29.2 g of 1-butanol was used instead of 12.3 g of 1-butanal. Got Using the obtained polyvinyl acetal-based resin (8), a polyvinyl acetal-based resin solution (8) was prepared in the same manner as in Example 1, and the polymer was used in the same manner as in Example 1. A film (8) (thickness 20 μm) was obtained.
 上記で得られた高分子膜(8)を用いて実施例1と同様に、溶出率、膨潤率、突き刺し強度、イオン伝導度測定及びサイクル試験を実施した。結果を表に示す。 Using the polymer membrane (8) obtained above, elution rate, swelling rate, piercing strength, ionic conductivity measurement and cycle test were carried out in the same manner as in Example 1. The results are shown in the table.
<比較例2>
 実施例1のポリビニルアセタール系樹脂の調製において、1-ブタナール12.3gに代えて、1-ブタナール19.2gを用いたこと以外は、実施例1と同様にして、ポリビニルアセタール系樹脂(9)を得た。得られたポリビニルアセタール系樹脂(9)を用いて、実施例1と同様にして、ポリビニルアセタール系樹脂溶液(9)を調製し、該樹脂溶液を用いて、実施例1と同様にして高分子膜(9)(厚さ17μm)を得た。
<Comparative example 2>
In the preparation of the polyvinyl acetal-based resin of Example 1, the polyvinyl acetal-based resin (9) was the same as in Example 1 except that 19.2 g of 1-butanol was used instead of 12.3 g of 1-butanal. Got Using the obtained polyvinyl acetal-based resin (9), a polyvinyl acetal-based resin solution (9) was prepared in the same manner as in Example 1, and the polymer was used in the same manner as in Example 1. A film (9) (thickness 17 μm) was obtained.
 上記で得られた高分子膜(9)を用いて実施例1と同様に、溶出率、膨潤率、突き刺し強度、イオン伝導度測定及びサイクル試験を実施した。結果を表に示す。 Using the polymer membrane (9) obtained above, elution rate, swelling rate, puncture strength, ionic conductivity measurement and cycle test were carried out in the same manner as in Example 1. The results are shown in the table.
<比較例3>
 ポリビニルホルマール(東京化成工業社製)5質量部を、NMP95質量部に溶解してポリビニルアセタール系樹脂溶液(10)を調製し、該樹脂溶液を用いて、実施例1と同様にして高分子膜(10)(厚さ18μm)を得た。
<Comparative example 3>
5 parts by mass of polyvinyl formal (manufactured by Tokyo Chemical Industry Co., Ltd.) is dissolved in 95 parts by mass of NMP to prepare a polyvinyl acetal-based resin solution (10), and the resin solution is used to prepare a polymer film in the same manner as in Example 1. (10) (thickness 18 μm) was obtained.
 上記で得られた高分子膜(10)を用いて実施例1と同様に、溶出率、膨潤率、突き刺し強度及びイオン伝導度測定を実施した。突き刺し試験においては、膜が膨潤前の形状を保持することができず、突き刺し試験を実施できなかった。そのため、サイクル特性は実施できなかった。結果を表に示す。 Using the polymer membrane (10) obtained above, the elution rate, swelling rate, piercing strength and ionic conductivity were measured in the same manner as in Example 1. In the puncture test, the membrane could not retain its pre-swelling shape and the puncture test could not be performed. Therefore, the cycle characteristics could not be implemented. The results are shown in the table.
<比較例4>
 ポリビニルアルコール(けん化度99%、PVA-117、クラレ製)の10質量%水溶液を調製し、実施例1と同様にして高分子膜(11)(厚さ10μm)を得た。
<Comparative example 4>
A 10% by mass aqueous solution of polyvinyl alcohol (saponification degree 99%, PVA-117, manufactured by Kuraray) was prepared, and a polymer film (11) (thickness 10 μm) was obtained in the same manner as in Example 1.
 上記で得られた高分子膜(11)を用いて実施例1と同様に、溶出率、膨潤率、突き刺し強度を実施した。イオン伝導度測定を実施したものの、高分子膜(11)は電解液に膨潤せず、イオン伝導度は0Scm-1となり、イオン伝導性を示さなかった。そのため、サイクル試験は実施しなかった。 Using the polymer film (11) obtained above, the elution rate, swelling rate, and piercing strength were carried out in the same manner as in Example 1. Although the ionic conductivity was measured, the polymer membrane (11) did not swell in the electrolytic solution, the ionic conductivity was 0 Scm- 1 , and the ionic conductivity was not shown. Therefore, the cycle test was not conducted.
<比較例5>
 ポリビニルアルコール(けん化度80%、PVA-417、クラレ製)の10質量%水溶液を調製し、実施例1と同様にして高分子膜(12)(厚さ10μm)を得た。
<Comparative example 5>
A 10% by mass aqueous solution of polyvinyl alcohol (saponification degree 80%, PVA-417, manufactured by Kuraray) was prepared, and a polymer film (12) (thickness 10 μm) was obtained in the same manner as in Example 1.
 上記で得られた高分子膜(12)を用いて実施例1と同様に、溶出率、膨潤率、突き刺し強度、イオン伝導度測定及びサイクル試験を実施した。結果を表に示す。 Using the polymer membrane (12) obtained above, elution rate, swelling rate, puncture strength, ionic conductivity measurement and cycle test were carried out in the same manner as in Example 1. The results are shown in the table.
<比較例6>
 ポリフッ化ビニリデン(PVDF;HSV900 Kynar社製)5質量部に、NMP95質量部を加えて、フッ素系樹脂溶液を得た。該樹脂溶液を用いて、実施例1と同様にして高分子膜(13)(厚さ23μm)を得た。
<Comparative Example 6>
A fluorine-based resin solution was obtained by adding 95 parts by mass of NMP to 5 parts by mass of polyvinylidene fluoride (PVDF; manufactured by HSV900 Kynar). Using the resin solution, a polymer film (13) (thickness 23 μm) was obtained in the same manner as in Example 1.
 上記で得られた高分子膜(13)を用いて実施例1と同様に、溶出率、膨潤率、突き刺し強度、イオン伝導度測定及びサイクル試験を実施した。結果を表に示す。 Using the polymer membrane (13) obtained above, elution rate, swelling rate, puncture strength, ionic conductivity measurement and cycle test were carried out in the same manner as in Example 1. The results are shown in the table.
<比較例7>
 実施例1において、高分子膜(1)をコートせず、離形処理されたポリエチレンテレフタレートフィルムを用いて、同様にサイクル試験を実施した。結果を表に示す。
<Comparative Example 7>
In Example 1, a cycle test was similarly carried out using a polyethylene terephthalate film that had been release-treated without coating the polymer film (1). The results are shown in the table.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
<実施例8>
(ポリビニルアセタール系樹脂溶液(15))
 還流冷却管、温度計を備え付けた三つ口フラスコに、アセトン150g、水100g、1-ブタナール12.3gを加え、マグネティックスターラーで撹拌しながらポリビニルアルコール(けん化度99モル%、平均重合度1700)50gを1分間かけて添加した。水50gと47質量%硫酸21.2gの混合溶液を滴下漏斗から5分間かけて滴下し、30℃に昇温して5時間反応を行った。1モル/L水酸化ナトリウム水溶液をpHが8になるまで加えた後、ろ過により固形物を取り出した。アセトンと水の質量比1:1の混合溶媒で前記固形物の洗浄を5回行った後、120℃、圧力0.005MPaで6時間乾燥させることで、ポリビニルアセタール系樹脂を得た。得られたポリビニルアセタール系樹脂89.7質量部に、光架橋性の架橋剤(a)(2-イソシアナトエチルアクリレート)5質量部、光重合開始剤(1-ヒドロキシシクロヘキシルフェニルケトン)0.15質量部、及びN-メチルピロリドン(NMP)を加えて混合し、80℃で2時間加熱撹拌することでアクリロイル基を有するポリビニルアセタール系樹脂を含有するポリビニルアセタール系樹脂溶液(15)(固形分:約5質量%)を得た。
<Example 8>
(Polyvinyl acetal resin solution (15))
To a three-necked flask equipped with a reflux condenser and a thermometer, 150 g of acetone, 100 g of water, and 12.3 g of 1-butanal were added, and polyvinyl alcohol (saponification degree 99 mol%, average degree of polymerization 1700) was added while stirring with a magnetic stirrer. 50 g was added over 1 minute. A mixed solution of 50 g of water and 21.2 g of 47 mass% sulfuric acid was added dropwise from a dropping funnel over 5 minutes, the temperature was raised to 30 ° C., and the reaction was carried out for 5 hours. A 1 mol / L aqueous sodium hydroxide solution was added until the pH reached 8, and then the solid was removed by filtration. The solid was washed 5 times with a mixed solvent having a mass ratio of acetone and water of 1: 1 and then dried at 120 ° C. and a pressure of 0.005 MPa for 6 hours to obtain a polyvinyl acetal resin. 89.7 parts by mass of the obtained polyvinyl acetal resin, 5 parts by mass of a photocrosslinkable cross-linking agent (a) (2-isocyanatoethyl acrylate), and 0.15 parts of a photopolymerization initiator (1-hydroxycyclohexylphenylketone). A polyvinyl acetal resin solution (15) containing a polyvinyl acetal resin having an acryloyl group by adding parts by mass and N-methylpyrrolidone (NMP), mixing, and heating and stirring at 80 ° C. for 2 hours (solid content:). About 5% by mass) was obtained.
(高分子膜(15))
 上記で得られたポリビニルアセタール系樹脂溶液(15)を、離形処理されたポリエチレンテレフタレートフィルム上にベーカー式アプリケーター(SA-201、テスター産業株式会社製)を用いて塗布した後、80℃で3時間乾燥することにより高分子膜を得た。次に、得られた高分子膜に対し、高圧水銀ランプ(TOSCURE401、東芝社製)を用い、24mWで60秒間紫外光を照射し、架橋を施し、高分子膜(15)を得た。得られた高分子膜(15)の厚さは18μmであった。
(Polymer membrane (15))
The polyvinyl acetal-based resin solution (15) obtained above is applied on a release-treated polyethylene terephthalate film using a baker-type applicator (SA-201, manufactured by Tester Sangyo Co., Ltd.), and then at 80 ° C. for 3 A polymer film was obtained by drying for a time. Next, the obtained polymer film was irradiated with ultraviolet light at 24 mW for 60 seconds using a high-pressure mercury lamp (TOSCURE401, manufactured by Toshiba Corporation) and crosslinked to obtain a polymer film (15). The thickness of the obtained polymer film (15) was 18 μm.
 上記で得られた高分子膜を用いて、IR測定を行いイソシアネート反応率及びアクリレート反応率を算出した。また、架橋後のポリビニルアセタール系樹脂における水酸基量を算出した。さらに、上記で得られた高分子膜を用いて溶出率、膨潤率、引張強さを測定した。結果を表に示す。 Using the polymer membrane obtained above, IR measurement was performed to calculate the isocyanate reaction rate and the acrylate reaction rate. In addition, the amount of hydroxyl groups in the polyvinyl acetal-based resin after cross-linking was calculated. Furthermore, the elution rate, swelling rate, and tensile strength were measured using the polymer membrane obtained above. The results are shown in the table.
 上記高分子膜(15)をアルゴンガス雰囲気下のグローブボックス(美和製作所製)に移送した。作製した高分子膜(15)を用いて、三極セルを作製し、イオン伝導性測定を実施した。結果を表に示す。 The polymer film (15) was transferred to a glove box (manufactured by Miwa Seisakusho) in an argon gas atmosphere. A tripolar cell was prepared using the prepared polymer membrane (15), and ionic conductivity was measured. The results are shown in the table.
 上記高分子膜(15)を用いて、ラミネートセルを作製し、0.2Cのレートにて充放電試験を100サイクル実施した。結果を表に示す。 A laminate cell was prepared using the above polymer film (15), and a charge / discharge test was carried out at a rate of 0.2 C for 100 cycles. The results are shown in the table.
<実施例9>
 実施例8のポリビニルアセタール系樹脂の調製において、1-ブタナール12.3gに代えて、ノナナール24.3gを用いたこと以外は、実施例8と同様にして、ポリビニルアセタール系樹脂を得た。得られたポリビニルアセタール系樹脂を用いて、実施例8と同様にして、ポリビニルアセタール系樹脂溶液(16)を調製し、該樹脂溶液を用いて、実施例8と同様にして高分子膜(16)(厚さ18μm)を得た。
<Example 9>
A polyvinyl acetal resin was obtained in the same manner as in Example 8 except that 24.3 g of nonanal was used instead of 12.3 g of 1-butanal in the preparation of the polyvinyl acetal resin of Example 8. Using the obtained polyvinyl acetal-based resin, a polyvinyl acetal-based resin solution (16) was prepared in the same manner as in Example 8, and the polymer film (16) was prepared in the same manner as in Example 8 using the resin solution. ) (Thickness 18 μm) was obtained.
 上記で得られた高分子膜(16)を用いて実施例8と同様に、反応率、溶出率、膨潤率、引張強さ、イオン伝導度測定及びサイクル試験を実施した。結果を表に示す。 Using the polymer membrane (16) obtained above, the reaction rate, elution rate, swelling rate, tensile strength, ionic conductivity measurement and cycle test were carried out in the same manner as in Example 8. The results are shown in the table.
<実施例10>
 実施例8のポリビニルアセタール系樹脂の調製において、1-ブタナール12.3gに代えて、オクタナール20.1gを用いたこと以外は、実施例8と同様にして、ポリビニルアセタール系樹脂を得た。得られたポリビニルアセタール系樹脂を用いて、実施例8と同様にして、ポリビニルアセタール系樹脂溶液(17)を調製し、該樹脂溶液を用いて、実施例8と同様にして高分子膜(17)(厚さ15μm)を得た。
<Example 10>
A polyvinyl acetal resin was obtained in the same manner as in Example 8 except that 20.1 g of octanal was used instead of 12.3 g of 1-butanal in the preparation of the polyvinyl acetal resin of Example 8. Using the obtained polyvinyl acetal-based resin, a polyvinyl acetal-based resin solution (17) was prepared in the same manner as in Example 8, and the polymer film (17) was prepared in the same manner as in Example 8 using the resin solution. ) (Thickness 15 μm) was obtained.
 上記で得られた高分子膜(17)を用いて実施例8と同様に、反応率、溶出率、膨潤率、引張強さ、イオン伝導度測定及びサイクル試験を実施した。結果を表に示す。 Using the polymer membrane (17) obtained above, the reaction rate, elution rate, swelling rate, tensile strength, ionic conductivity measurement and cycle test were carried out in the same manner as in Example 8. The results are shown in the table.
<実施例11>
実施例8のポリビニルアセタール系樹脂溶液の調製において、架橋剤(a)に代えて、熱反応性の架橋剤(b)(ヘキサメチレンジイソシアネート)を用いたこと以外は、実施例8と同様にして、ポリビニルアセタール系樹脂溶液(18)を得た。該樹脂溶液を用いた高分子膜の作製において、UV処理を行っていない以外は実施例8と同様にして高分子膜(18)(厚さ16μm)を得た。
<Example 11>
In the preparation of the polyvinyl acetal-based resin solution of Example 8, the same procedure as in Example 8 except that the heat-reactive cross-linking agent (b) (hexamethylene diisocyanate) was used instead of the cross-linking agent (a). , Polyvinyl acetal resin solution (18) was obtained. In the preparation of the polymer film using the resin solution, a polymer film (18) (thickness 16 μm) was obtained in the same manner as in Example 8 except that UV treatment was not performed.
 上記で得られた高分子膜(18)を用いて実施例8と同様に、反応率、溶出率、膨潤率、引張強さ、イオン伝導度測定及びサイクル試験を実施した。結果を表に示す。 Using the polymer membrane (18) obtained above, the reaction rate, elution rate, swelling rate, tensile strength, ionic conductivity measurement and cycle test were carried out in the same manner as in Example 8. The results are shown in the table.
<実施例12>
 実施例11のポリビニルアセタール系樹脂の調製において、1-ブタナール12.3gに代えて、ノナナール24.3gを用いたこと以外は、実施例11と同様にして、ポリビニルアセタール系樹脂を得た。得られたポリビニルアセタール系樹脂を用いて、実施例11と同様にして、ポリビニルアセタール系樹脂溶液(19)を調製し、該樹脂溶液を用いて、実施例11と同様にして高分子膜(19)(厚さ17μm)を得た。
<Example 12>
A polyvinyl acetal resin was obtained in the same manner as in Example 11 except that 24.3 g of nonanal was used instead of 12.3 g of 1-butanal in the preparation of the polyvinyl acetal resin of Example 11. Using the obtained polyvinyl acetal-based resin, a polyvinyl acetal-based resin solution (19) was prepared in the same manner as in Example 11, and the polymer film (19) was prepared in the same manner as in Example 11 using the resin solution. ) (Thickness 17 μm) was obtained.
 上記で得られた高分子膜(19)を用いて実施例8と同様に、反応率、溶出率、膨潤率、引張強さ、イオン伝導度測定及びサイクル試験を実施した。結果を表に示す。 Using the polymer membrane (19) obtained above, the reaction rate, elution rate, swelling rate, tensile strength, ionic conductivity measurement and cycle test were carried out in the same manner as in Example 8. The results are shown in the table.
<実施例13>
 実施例11のポリビニルアセタール系樹脂の調製において、1-ブタナール12.3gに代えて、オクタナール20.1gを用いたこと以外は、実施例11と同様にして、ポリビニルアセタール系樹脂を得た。得られたポリビニルアセタール系樹脂を用いて、実施例11と同様にして、ポリビニルアセタール系樹脂溶液(20)を調製し、該樹脂溶液を用いて、実施例11と同様にして高分子膜(20)(厚さ21μm)を得た。
<Example 13>
A polyvinyl acetal resin was obtained in the same manner as in Example 11 except that 20.1 g of octanal was used instead of 12.3 g of 1-butanal in the preparation of the polyvinyl acetal resin of Example 11. Using the obtained polyvinyl acetal-based resin, a polyvinyl acetal-based resin solution (20) was prepared in the same manner as in Example 11, and the polymer film (20) was prepared in the same manner as in Example 11 using the resin solution. ) (Thickness 21 μm) was obtained.
 上記で得られた高分子膜(20)を用いて実施例8と同様に、反応率、溶出率、膨潤率、引張強さ、イオン伝導度測定及びサイクル試験を実施した。結果を表に示す。 Using the polymer membrane (20) obtained above, the reaction rate, elution rate, swelling rate, tensile strength, ionic conductivity measurement and cycle test were carried out in the same manner as in Example 8. The results are shown in the table.
<実施例14>
 実施例8のポリビニルアセタール系樹脂溶液の調製において、架橋剤(a)に代えて、光架橋性の架橋剤(c)(アクリル酸(3,4-エポキシシクロヘキシル)メチル)を用い、重合開始剤としてナトリウムエトキシドを0.25質量部用いたこと以外は、実施例8と同様にして、ポリビニルアセタール系樹脂溶液(21)を得た。該樹脂溶液を用いた高分子膜の作製においては、乾燥温度を100℃にしたこと以外は実施例8と同様にして高分子膜(21)(厚さ18μm)を得た。
<Example 14>
In the preparation of the polyvinyl acetal-based resin solution of Example 8, a photo-crosslinkable cross-linking agent (c) (acrylic acid (3,4-epoxycyclohexyl) methyl) was used instead of the cross-linking agent (a), and a polymerization initiator was used. A polyvinyl acetal-based resin solution (21) was obtained in the same manner as in Example 8 except that 0.25 parts by mass of sodium ethoxydo was used. In the preparation of the polymer film using the resin solution, a polymer film (21) (thickness 18 μm) was obtained in the same manner as in Example 8 except that the drying temperature was set to 100 ° C.
 上記で得られた高分子膜(21)を用いて実施例8と同様に、反応率、溶出率、膨潤率、引張強さ、イオン伝導度測定及びサイクル試験を実施した。結果を表に示す。 Using the polymer membrane (21) obtained above, the reaction rate, elution rate, swelling rate, tensile strength, ionic conductivity measurement and cycle test were carried out in the same manner as in Example 8. The results are shown in the table.
<比較例8>
 実施例11のポリビニルアセタール系樹脂の調製において、1-ブチラール12.3gに代えて、1-ブチラール29.2gを用いたこと以外は、実施例11と同様にして高分子膜(22)(厚さ18μm)を得た。
<Comparative Example 8>
In the preparation of the polyvinyl acetal-based resin of Example 11, the polymer film (22) (thickness) was the same as in Example 11 except that 29.2 g of 1-butyral was used instead of 12.3 g of 1-butyral. 18 μm) was obtained.
 上記で得られた高分子膜(22)を用いて実施例8と同様に、反応率、溶出率、膨潤率、引張強さ、イオン伝導度測定及びサイクル試験を実施した。結果を表に示す。 Using the polymer membrane (22) obtained above, the reaction rate, elution rate, swelling rate, tensile strength, ionic conductivity measurement and cycle test were carried out in the same manner as in Example 8. The results are shown in the table.
<比較例9>
 実施例11の高分子膜の調製において、ポリビニルアセタール系樹脂の代わりにポリビニルアルコール(PVA-117、クラレ製)を用いたこと以外は実施例11と同様にして高分子膜(23)(厚さ18μm)を得た。
<Comparative Example 9>
In the preparation of the polymer film of Example 11, the polymer film (23) (thickness) was the same as in Example 11 except that polyvinyl alcohol (PVA-117, manufactured by Kuraray) was used instead of the polyvinyl acetal resin. 18 μm) was obtained.
 上記で得られた高分子膜(23)を用いて実施例8と同様に、反応率、溶出率、膨潤率、引張強さ、イオン伝導度測定及びサイクル試験を実施した。結果を表に示す。 Using the polymer membrane (23) obtained above, the reaction rate, elution rate, swelling rate, tensile strength, ionic conductivity measurement and cycle test were carried out in the same manner as in Example 8. The results are shown in the table.
<比較例10>
 実施例11の架橋剤(b)の添加量を10質量%にしたこと以外は、実施例11と同様にして高分子膜(24)(厚さ18μm)を得た。
<Comparative Example 10>
A polymer film (24) (thickness 18 μm) was obtained in the same manner as in Example 11 except that the amount of the cross-linking agent (b) added in Example 11 was 10% by mass.
 上記で得られた高分子膜(24)を用いて実施例8と同様に、反応率、溶出率、膨潤率、引張強さ、イオン伝導度測定及びサイクル試験を実施した。結果を表に示す。 Using the polymer membrane (24) obtained above, the reaction rate, elution rate, swelling rate, tensile strength, ionic conductivity measurement and cycle test were carried out in the same manner as in Example 8. The results are shown in the table.
<比較例11>
 ポリフッ化ビニリデン(PVDF;HSV900 Kynar社製)5質量部に、NMP95質量部を加えて、フッ素系樹脂溶液を得た。該樹脂溶液を用いて、実施例8と同様にして高分子膜(25)(厚18μm)を得た。
<Comparative Example 11>
A fluorine-based resin solution was obtained by adding 95 parts by mass of NMP to 5 parts by mass of polyvinylidene fluoride (PVDF; manufactured by HSV900 Kynar). Using the resin solution, a polymer film (25) (thickness 18 μm) was obtained in the same manner as in Example 8.
 上記で得られた高分子膜(25)を用いて実施例8と同様に、溶出率、膨潤率、引張強さ、イオン伝導度測定及びサイクル試験を実施した。結果を表に示す。 Using the polymer membrane (25) obtained above, elution rate, swelling rate, tensile strength, ionic conductivity measurement and cycle test were carried out in the same manner as in Example 8. The results are shown in the table.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 水酸基量が56~90モル%であるポリビニルアセタール系樹脂を含有する実施例1~14の高分子膜は、Liイオン電導度が高く、イオン伝導性が高い膜であることが確認された。また、該高分子膜を用いる電池は、サイクル特性も高いことが確認された。 It was confirmed that the polymer films of Examples 1 to 14 containing the polyvinyl acetal-based resin having a hydroxyl group content of 56 to 90 mol% had high Li ion conductivity and high ionic conductivity. It was also confirmed that the battery using the polymer film has high cycle characteristics.
 水酸基量が56~90モル%(好ましくは62~90モル%)であるポリビニルアセタール系樹脂を含有する実施例1~7の高分子膜は、溶出率が低く耐電解液性を有し、膜の突き刺し強度も高かった。実施例1~7の高分子膜はさらに、イオン伝導度も高いことから、該高分子膜を電池に挿入することで、サイクル特性の向上に寄与できることが確認された。これに対し、水酸基量が56モル%未満である比較例1~3の高分子膜は、溶出率が高く、電解液中で安定的に形状を保持できないことが確認された。また、比較例4の高分子膜は、アセタール化されていないためポリビニルアセタール系樹脂に該当せず、イオン伝導性がなく電池に組み込める膜でないことが分かった。また比較例5の高分子膜は、アセタール化されていないが電解液に膨潤するポリビニルアルコールの膜であるが、膨潤性が低い為、イオン伝導性が低いことが確認された。また、膜の突き刺し強度も低く、該膜を含む電池のサイクル特性も低かった。ポリビニルアセタール系樹脂の膜ではない比較例6及び7の高分子膜を含む電池も、本発明の高分子膜を含む電池と比較して、サイクル特性に劣るものであった。 The polymer films of Examples 1 to 7 containing a polyvinyl acetal-based resin having a hydroxyl group content of 56 to 90 mol% (preferably 62 to 90 mol%) have a low elution rate and have electrolytic solution resistance, and are films. The piercing strength was also high. Since the polymer membranes of Examples 1 to 7 also have high ionic conductivity, it was confirmed that inserting the polymer membrane into the battery can contribute to the improvement of cycle characteristics. On the other hand, it was confirmed that the polymer films of Comparative Examples 1 to 3 having a hydroxyl group content of less than 56 mol% had a high elution rate and could not stably retain their shape in the electrolytic solution. Further, it was found that the polymer film of Comparative Example 4 did not correspond to a polyvinyl acetal-based resin because it was not acetalized, and was not a film that had no ionic conductivity and could be incorporated into a battery. Further, the polymer film of Comparative Example 5 was a film of polyvinyl alcohol that was not acetalized but swelled in the electrolytic solution, but it was confirmed that the ionic conductivity was low because the swelling property was low. In addition, the piercing strength of the film was low, and the cycle characteristics of the battery containing the film were also low. The batteries containing the polymer films of Comparative Examples 6 and 7, which are not the films of the polyvinyl acetal resin, were also inferior in cycle characteristics to the batteries containing the polymer film of the present invention.
 水酸基量が56~90モル%であり、架橋構造を有する、ポリビニルアセタール系樹脂を含有する実施例8~14の高分子膜は、溶出率が低いため耐電解液性を有し、電解液中での膜形状維持性が高く、膜の引張強さも高かった。さらに、実施例8~14の高分子膜を含む電池は、イオン電導度も高いと共に、サイクル特性に優れることが確認された。これは、高分子膜の力学強度及び耐電解液性が高く、活物質の膨張収縮に伴う電極の崩壊が抑制されたことによると考えられる。これに対し、水酸基量が56モル%未満であるポリビニルアセタール系樹脂を含有する比較例8の高分子膜は、溶出率が高く、電解液中で長期的に形状を保持できないことが確認された。また比較例8の高分子膜を含む電池はサイクル特性が十分でないことが確認され、これは、高分子膜の力学強度及び耐電解液性が低く、活物質の膨張収縮に伴う電極の崩壊を抑制できなかったことによると考えられる。さらに、水酸基量が90モル%以上である変性ポリビニルアルコールを含む比較例9の高分子膜は、電解液に対する膨潤性を示さず、イオン伝導度が測定できなかった。水酸基量が56モル%未満と低いポリビニルアセタール系樹脂を含有する比較例10の高分子膜は、溶出率が低く耐電解液性は有するものの、膨潤性が低く、かつ力学強度も低いため、該高分子膜を含む電池のサイクル特性も悪い結果となった。比較例11の高分子膜は、本発明の特定のポリビニルアセタール系樹脂を含有する高分子膜と比較して引張強さが低く、サイクル特性も悪いことが確認された。 The polymer membranes of Examples 8 to 14 containing a polyvinyl acetal-based resin having a hydroxyl group content of 56 to 90 mol% and a crosslinked structure have electrolytic solution resistance due to a low elution rate, and are contained in the electrolytic solution. The film shape retention was high, and the tensile strength of the film was also high. Further, it was confirmed that the batteries containing the polymer films of Examples 8 to 14 have high ionic conductivity and excellent cycle characteristics. It is considered that this is because the polymer film has high mechanical strength and electrolyte resistance, and the collapse of the electrode due to expansion and contraction of the active material is suppressed. On the other hand, it was confirmed that the polymer film of Comparative Example 8 containing the polyvinyl acetal-based resin having a hydroxyl group content of less than 56 mol% had a high elution rate and could not retain its shape in the electrolytic solution for a long period of time. .. Further, it was confirmed that the battery containing the polymer film of Comparative Example 8 had insufficient cycle characteristics, which caused the polymer film to have low mechanical strength and electrolyte resistance, and the electrode collapsed due to expansion and contraction of the active material. It is probable that it could not be suppressed. Further, the polymer membrane of Comparative Example 9 containing the modified polyvinyl alcohol having a hydroxyl group content of 90 mol% or more did not show swelling property to the electrolytic solution, and the ionic conductivity could not be measured. The polymer membrane of Comparative Example 10 containing a polyvinyl acetal-based resin having a low hydroxyl group content of less than 56 mol% has a low elution rate and electrolyte resistance, but has low swelling property and low mechanical strength. The cycle characteristics of the battery containing the polymer film were also poor. It was confirmed that the polymer film of Comparative Example 11 had a lower tensile strength and poorer cycle characteristics than the polymer film containing the specific polyvinyl acetal-based resin of the present invention.

Claims (13)

  1.  水酸基量が56~90モル%であるポリビニルアセタール系樹脂を含有する、非水電解質電池用の高分子膜。 A polymer membrane for non-aqueous electrolyte batteries containing a polyvinyl acetal-based resin having a hydroxyl group content of 56 to 90 mol%.
  2.  60℃で1時間、ジエチルカーボネートに浸漬させたとき、次の式:
    Figure JPOXMLDOC01-appb-M000001
    [式中、Aは高分子膜の浸漬前の質量(g)を表し、Bは高分子膜の浸漬後の乾燥質量(g)を表す]
    により算出される溶出率が7%以下である、請求項1に記載の高分子膜。
    When immersed in diethyl carbonate at 60 ° C. for 1 hour, the following formula:
    Figure JPOXMLDOC01-appb-M000001
    [In the formula, A represents the mass (g) of the polymer film before immersion, and B represents the dry mass (g) of the polymer film after immersion].
    The polymer membrane according to claim 1, wherein the dissolution rate calculated by the above method is 7% or less.
  3.  25℃で24時間、リチウムビス(フルオロスルホニル)イミドが1mol/Lの濃度で1-エチル-3-メチルイミダゾリウムビス(フルオロスルホニル)イミド中に溶解した溶液に浸漬させたとき、次の式:
    Figure JPOXMLDOC01-appb-M000002
    [式中、Cは高分子膜の浸漬前の質量(g)を表し、Dは高分子膜の浸漬後の質量(g)を表す]
    により算出される膨潤率が20%以上である、請求項1又は2に記載の高分子膜。
    When immersed in a solution of lithium bis (fluorosulfonyl) imide in 1-ethyl-3-methylimidazolium bis (fluorosulfonyl) imide at a concentration of 1 mol / L at 25 ° C. for 24 hours, the following formula:
    Figure JPOXMLDOC01-appb-M000002
    [In the formula, C represents the mass (g) of the polymer film before immersion, and D represents the mass (g) of the polymer film after immersion].
    The polymer membrane according to claim 1 or 2, wherein the swelling rate calculated by the above method is 20% or more.
  4.  ポリビニルアセタール系樹脂の水酸基量が62~90モル%である、請求項1~3のいずれかに記載の高分子膜。 The polymer film according to any one of claims 1 to 3, wherein the polyvinyl acetal resin has a hydroxyl group content of 62 to 90 mol%.
  5.  25℃で24時間、リチウムビス(フルオロスルホニル)イミドが1mol/Lの濃度で1-エチル-3-メチルイミダゾリウムビス(フルオロスルホニル)イミド中に溶解した溶液に浸漬させたとき、次の式:
    Figure JPOXMLDOC01-appb-M000003
    [式中、Cは高分子膜の浸漬前の質量(g)を表し、Dは高分子膜の浸漬後の質量(g)を表す]
    により算出される膨潤率が40%以上である、請求項4に記載の高分子膜。
    When immersed in a solution of lithium bis (fluorosulfonyl) imide in 1-ethyl-3-methylimidazolium bis (fluorosulfonyl) imide at a concentration of 1 mol / L at 25 ° C. for 24 hours, the following formula:
    Figure JPOXMLDOC01-appb-M000003
    [In the formula, C represents the mass (g) of the polymer film before immersion, and D represents the mass (g) of the polymer film after immersion].
    The polymer membrane according to claim 4, wherein the swelling rate calculated by the above method is 40% or more.
  6.  ポリビニルアセタール系樹脂は架橋構造を有する、請求項1に記載の非水電解質電池用の高分子膜。 The polymer film for a non-aqueous electrolyte battery according to claim 1, wherein the polyvinyl acetal-based resin has a crosslinked structure.
  7.  60℃で1時間、ジエチルカーボネートに浸漬させたとき、次の式:
    Figure JPOXMLDOC01-appb-M000004
    [式中、Aは高分子膜の浸漬前の質量(g)を表し、Bは高分子膜の浸漬後の乾燥質量(g)を表す]
    により算出される溶出率が2%以下である、請求項6に記載の高分子膜。
    When immersed in diethyl carbonate at 60 ° C. for 1 hour, the following formula:
    Figure JPOXMLDOC01-appb-M000004
    [In the formula, A represents the mass (g) of the polymer film before immersion, and B represents the dry mass (g) of the polymer film after immersion].
    The polymer membrane according to claim 6, wherein the dissolution rate calculated by the above method is 2% or less.
  8.  25℃で24時間、リチウムビス(フルオロスルホニル)イミドが1mol/Lの濃度で1-エチル-3-メチルイミダゾリウムビス(フルオロスルホニル)イミド中に溶解した溶液に浸漬させたとき、次の式:
    Figure JPOXMLDOC01-appb-M000005
    [式中、Cは高分子膜の浸漬前の質量(g)を表し、Dは高分子膜の浸漬後の質量(g)を表す]
    により算出される膨潤率が20%以上である、請求項6又は7に記載の高分子膜。
    When immersed in a solution of lithium bis (fluorosulfonyl) imide in 1-ethyl-3-methylimidazolium bis (fluorosulfonyl) imide at a concentration of 1 mol / L at 25 ° C. for 24 hours, the following formula:
    Figure JPOXMLDOC01-appb-M000005
    [In the formula, C represents the mass (g) of the polymer film before immersion, and D represents the mass (g) of the polymer film after immersion].
    The polymer membrane according to claim 6 or 7, wherein the swelling rate calculated by the above method is 20% or more.
  9.  前記架橋構造は、水酸基に対する反応性基を有する架橋剤に由来する構造である、請求項6~8のいずれかに記載の高分子膜。 The polymer membrane according to any one of claims 6 to 8, wherein the crosslinked structure is a structure derived from a crosslinking agent having a reactive group for a hydroxyl group.
  10.  ポリビニルアセタール系樹脂は、ポリビニルブチラール、ポリビニルノナナール及びポリビニルオクタナールからなる群から選択される少なくとも1種である、請求項1~9のいずれかに記載の高分子膜。 The polymer membrane according to any one of claims 1 to 9, wherein the polyvinyl acetal-based resin is at least one selected from the group consisting of polyvinyl butyral, polyvinyl nonanal, and polyvinyl octanal.
  11.  ポリビニルアセタール系樹脂の重合度は250~5,000である、請求項1~10のいずれかに記載の高分子膜。 The polymer film according to any one of claims 1 to 10, wherein the degree of polymerization of the polyvinyl acetal resin is 250 to 5,000.
  12.  ポリビニルアセタール系樹脂のけん化度は90モル%以上である、請求項1~11のいずれかに記載の高分子膜。 The polymer film according to any one of claims 1 to 11, wherein the degree of saponification of the polyvinyl acetal resin is 90 mol% or more.
  13.  請求項1~12のいずれかに記載の高分子膜を含む、非水電解質電池。 A non-aqueous electrolyte battery comprising the polymer membrane according to any one of claims 1 to 12.
PCT/JP2020/047072 2019-12-18 2020-12-17 Polymer membrane and nonaqueous electrolyte battery WO2021125250A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019228477A JP2021096984A (en) 2019-12-18 2019-12-18 Polymer film and non-aqueous electrolyte battery
JP2019-228480 2019-12-18
JP2019-228477 2019-12-18
JP2019228480A JP2021096985A (en) 2019-12-18 2019-12-18 Polymer film and non-aqueous electrolyte battery

Publications (1)

Publication Number Publication Date
WO2021125250A1 true WO2021125250A1 (en) 2021-06-24

Family

ID=76477606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047072 WO2021125250A1 (en) 2019-12-18 2020-12-17 Polymer membrane and nonaqueous electrolyte battery

Country Status (1)

Country Link
WO (1) WO2021125250A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015196369A (en) * 2014-04-03 2015-11-09 富士フイルム株式会社 Transfer film and transparent laminate, production method thereof, capacitance type input device, and image display device
JP2016013623A (en) * 2014-07-01 2016-01-28 三菱樹脂株式会社 Laminated porous film, method for manufacturing laminated porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2016126853A (en) * 2014-12-26 2016-07-11 積水化学工業株式会社 Separator and electrochemical device
JP2019026796A (en) * 2017-08-02 2019-02-21 積水化学工業株式会社 Synthetic resin film, separator for electricity storage device and electricity storage device
JP2019057360A (en) * 2017-09-19 2019-04-11 株式会社東芝 Secondary battery, battery pack, and vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015196369A (en) * 2014-04-03 2015-11-09 富士フイルム株式会社 Transfer film and transparent laminate, production method thereof, capacitance type input device, and image display device
JP2016013623A (en) * 2014-07-01 2016-01-28 三菱樹脂株式会社 Laminated porous film, method for manufacturing laminated porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2016126853A (en) * 2014-12-26 2016-07-11 積水化学工業株式会社 Separator and electrochemical device
JP2019026796A (en) * 2017-08-02 2019-02-21 積水化学工業株式会社 Synthetic resin film, separator for electricity storage device and electricity storage device
JP2019057360A (en) * 2017-09-19 2019-04-11 株式会社東芝 Secondary battery, battery pack, and vehicle

Similar Documents

Publication Publication Date Title
US10361434B2 (en) Binder resin for nonaqueous secondary battery electrode, binder resin composition for nonaqueous secondary battery electrode slurry composition for nonaqueous secondary battery electrode, electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP4878290B2 (en) Polyvinyl acetal resin varnish, gelling agent, non-aqueous electrolyte and electrochemical device
US20160006075A1 (en) Positive electrode and nonaqueous electrolyte secondary battery
WO2018168520A1 (en) Binder composition for non-aqueous electrolyte batteries, and binder aqueous solution for non-aqueous electrolyte batteries, slurry composition for non-aqueous electrolyte batteries, electrode for non-aqueous electrolyte batteries and non-aqueous electrolyte battery each utilizing said binder composition
EP3910704A1 (en) Non-aqueous electrolyte cell electrode binder, non-aqueous electrolyte cell electrode binder solution, non-aqueous electrolyte cell electrode slurry, non-aqueous electrolyte cell electrode, and non-aqueous electrolyte cell
JP2019110125A (en) Binder solution for nonaqueous electrolyte battery electrode
EP3336940A1 (en) Slurry for positive electrode of lithium-ion secondary battery, positive electrode for lithium-ion secondary battery obtained using slurry for positive electrode of lithium-ion secondary battery and production method therefor, and lithium-ion secondary battery provided with positive electrode for lithium-ion secondary battery and production method therefor
JP7183183B2 (en) Binder for non-aqueous electrolyte battery, binder aqueous solution and slurry composition using the same, electrode for non-aqueous electrolyte battery and non-aqueous electrolyte battery
WO2021125250A1 (en) Polymer membrane and nonaqueous electrolyte battery
JP2021096985A (en) Polymer film and non-aqueous electrolyte battery
WO2021256467A1 (en) Binder suitable for electricity storage device electrodes, binder solution for electricity storage device electrodes, electricity storage device electrode slurry, electricity storage device electrode, and electricity storage device
TW201830757A (en) Binder composition for nonaqueous electrolyte battery electrode, hydrogel using binder composition as raw material, slurry composition for nonaqueous electrolyte battery electrode using same, nonaqueous electrolyte battery and negative electrode
JPWO2014098233A1 (en) Binder resin material for energy device electrode, energy device electrode and energy device
JP2021096984A (en) Polymer film and non-aqueous electrolyte battery
JP6138382B1 (en) Binder composition for non-aqueous electrolyte battery, slurry composition for non-aqueous electrolyte battery using the same, non-aqueous electrolyte battery negative electrode, and non-aqueous electrolyte battery
KR20200017060A (en) Aqueous binder for a lithium-ion secondary battery, anode comprising the same, lithium-ion secondary battery comprising the anode, and method for polymerizing copolymer comprised in the binder
KR101800988B1 (en) Resin composition for secondary battery electrodes, solution or dispersion for secondary battery electrodes, slurry for secondary battery electrodes, electrode for secondary batteries, and secondary battery
KR20200019962A (en) Separator for nonaqueous electrolyte batteries and nonaqueous electrolyte battery using same
JP2020167097A (en) Binder for power storage device electrode, slurry composition for power storage device electrode, electrode for power storage device, and power storage device
TWI833722B (en) Binders for non-aqueous electrolyte batteries, aqueous binder solutions and slurry compositions using the same, electrodes for non-aqueous electrolyte batteries and non-aqueous electrolyte batteries
WO2020013231A1 (en) Binder for non-aqueous electrolyte battery electrode, binder solution for non-aqueous electrolyte battery electrode, slurry composition for non-aqueous electrolyte battery electrode, non-aqueous electrolyte battery electrode, and non-aqueous electrolyte battery
WO2019124263A1 (en) Binder solution for non-aqueous electrolyte battery electrode
JP2019110126A (en) Binder for nonaqueous electrolyte battery electrode
WO2021187366A1 (en) Binder suitable for electricity storage device electrodes, binder solution, electricity storage device electrode slurry, electricity storage device electrode, and electricity storage device
WO2024024628A1 (en) Method for producing battery constituent material and electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20902703

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20902703

Country of ref document: EP

Kind code of ref document: A1