WO2021187366A1 - Binder suitable for electricity storage device electrodes, binder solution, electricity storage device electrode slurry, electricity storage device electrode, and electricity storage device - Google Patents

Binder suitable for electricity storage device electrodes, binder solution, electricity storage device electrode slurry, electricity storage device electrode, and electricity storage device Download PDF

Info

Publication number
WO2021187366A1
WO2021187366A1 PCT/JP2021/010081 JP2021010081W WO2021187366A1 WO 2021187366 A1 WO2021187366 A1 WO 2021187366A1 JP 2021010081 W JP2021010081 W JP 2021010081W WO 2021187366 A1 WO2021187366 A1 WO 2021187366A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage device
binder
water
mass
soluble resin
Prior art date
Application number
PCT/JP2021/010081
Other languages
French (fr)
Japanese (ja)
Inventor
賢悟 立川
能久 乾
真輔 新居
悠太 田岡
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2022508316A priority Critical patent/JPWO2021187366A1/ja
Priority to CN202180021316.7A priority patent/CN115210914A/en
Publication of WO2021187366A1 publication Critical patent/WO2021187366A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3415Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a binder, a binder solution, a storage device electrode slurry, a power storage device electrode, and a power storage device suitable for a power storage device electrode.
  • mobile terminals such as mobile phones, notebook personal computers, and pad-type information terminal devices have become remarkably widespread.
  • Mobile terminals are required to be more comfortable to carry, and with the rapid progress of miniaturization, thinning, weight reduction and high performance, batteries used in mobile terminals are also becoming smaller, thinner, lighter and lighter. High performance is required.
  • Lithium-ion secondary batteries are often used as power storage devices used as power sources for such mobile terminals.
  • Non-aqueous electrolyte batteries such as lithium ion secondary batteries
  • positive and negative electrodes are installed via a separator, and LiPF 6 , LiBF 4 , LiTFSI (lithium (bistrifluoromethylsulfonylimide)), LiFSI (lithium (bisfluorosulfonylimide)).
  • LiPF 6 LiBF 4
  • LiTFSI lithium (bistrifluoromethylsulfonylimide)
  • LiFSI lithium (bisfluorosulfonylimide)
  • It has a structure in which these electrodes are housed in a container together with an electrolytic solution in which a lithium salt such as)) is dissolved in an organic liquid such as ethylene carbonate.
  • the negative electrode and positive electrode constituting the power storage device are usually obtained by dissolving or dispersing a binder and a thickener in water or a solvent, and mixing the active material, a conductive auxiliary agent (conducting agent), or the like with the binder and a thickener. Is applied to the current collector and then dried with water or a solvent to form a mixed layer.
  • a vinyl alcohol-based polymer hereinafter, also referred to as "PVA"
  • acrylic-based polymer such as acrylic acid
  • a binder of an amide / imide-based polymer and the like are known.
  • an electrode slurry using a solvent is generally used.
  • a solvent include organic solvents such as N-methyl-2-pyrrolidone, dimethylformamide, N, N-dimethylacetamide, N, N-dimethylmethanesulfonamide, and hexamethylphosphoric triamide.
  • organic solvents such as N-methyl-2-pyrrolidone, dimethylformamide, N, N-dimethylacetamide, N, N-dimethylmethanesulfonamide, and hexamethylphosphoric triamide.
  • vinylidene fluoride-based polymer, tetrafluoroethylene-based polymer, fluororubber and the like are known (for example, Patent Documents 3 and 4).
  • a slurry obtained by mixing a binder, a solvent (water or a solvent), an active material, a conductive additive (conductivity-imparting agent), or the like is mixed.
  • Slurry has many problems as shown below, for example, due to the influence of various conditions in the preparation of the slurry and the form of the material such as the binder in the slurry when the electrode is formed by applying the slurry to the current collector. Was occurring.
  • the present invention is less likely to cause gel-like lumps when the water-soluble resin powder is dissolved, and is preferably a uniform electrode (an electrode having a small film thickness variation of the coating electrode), especially when used as a power storage device electrode. It is an object of the present invention to provide a binder that can form a storage device electrode having a low resistance and a high discharge capacity.
  • a binder containing a water-soluble resin powder which is a binder.
  • the water-soluble resin powder is composed of particles having an average particle diameter of 100 to 2,000 ⁇ m. With respect to 50 particles arbitrarily extracted from the particles having a particle size of 100 to 1,000 ⁇ m contained in the water-soluble resin powder, the following formula (1) of each particle is used.
  • r i is the radius of curvature for each angle of the particle
  • R is the radius of the maximum inscribed circle of the particle
  • N is the number of horns that the particle has, However, when the number of corners of the particle is 9 or more, the radius of curvature of 8 corners is adopted in ascending order of radius of curvature, and N is 8.
  • a binder in which the average value PA of the degree of circularity P represented by is 0.1 to 0.8.
  • the binder according to [1], wherein the water-soluble resin is a vinyl alcohol-based polymer.
  • the storage device electrode slurry according to [9] wherein the content of the binder is 0.1 part by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the active material.
  • a power storage device electrode comprising a cured body and a current collector of the power storage device electrode slurry according to [9] or [10].
  • the present invention includes a step of obtaining a crude powder of the water-soluble resin by crushing a resin solid containing the water-soluble resin, and a step of processing the surface of particles constituting the crude powder [1]. The method for producing a binder according to any one of [5].
  • gel-like lumps are less likely to occur when the water-soluble resin powder is dissolved, and when used as a power storage device electrode, a suitable uniform electrode (electrode having a small thickness variation of the coated electrode) is formed. It is possible to provide a binder for a power storage device electrode, which has a low resistance and a high discharge capacity.
  • the binder of the present invention contains a water-soluble resin powder.
  • This powder is composed of particles having an average particle size of 100 to 2,000 ⁇ m, and each of the 50 particles arbitrarily extracted from the particles having a particle size of 100 to 1,000 ⁇ m contained in the water-soluble resin powder is used.
  • the water-soluble resin powder contained in the binder of the present invention has an average roundness PA of 0.1 to 0.8, preferably 0.12 to 0.7, and more preferably 0. It is .14 to 0.65, more preferably 0.16 to 0.6.
  • the water-soluble resin is not particularly limited as long as it has a solubility of 1 g or more of the resin in 100 g of water.
  • water-soluble resins include vinyl alcohol-based polymers and derivatives thereof, acrylic polymers and derivatives such as (meth) acrylic acid, cellulose derivatives such as carboxymethyl cellulose, alginic acid and its neutralized products, and polyvinyl. Examples include pyrrolidone.
  • vinyl alcohol-based polymers and their derivatives have good affinity for active materials used in power storage devices such as carbon materials, metals, and metal oxides, and are therefore preferably used as water-soluble resins. ..
  • PVA When PVA is used as the water-soluble resin, it is usually the main component of the water-soluble resin powder.
  • the main component means the component having the highest content on a mass basis.
  • the content of PVA in the non-volatile content of the water-soluble resin powder is preferably 50% by mass or more, more preferably 70% by mass or more, further preferably 90% by mass or more, and even more preferably 99% by mass or more. ..
  • the upper limit of the content of PVA in the non-volatile content of the water-soluble resin powder may be 100% by mass.
  • Non-volatile components other than PVA that may be contained in the water-soluble resin powder include resins other than PVA, surfactants, plasticizers, defoaming agents, additives such as viscosity modifiers, and compounds used during production. And so on.
  • the content of the volatile matter in the water-soluble resin powder is usually 20% by mass or less, preferably 15% by mass or less, and more preferably 10% by mass or less.
  • Examples of the volatile matter that can be contained in the water-soluble resin powder include alcohol and water.
  • a vinyl alcohol-based polymer (also referred to as "polyvinyl alcohol” or simply "PVA”) is a polymer having a vinyl alcohol unit as a monomer unit (that is, a constituent unit). PVA is usually obtained by saponifying a polyvinyl ester.
  • the ratio of vinyl alcohol units to all monomer units in PVA is preferably 35 mol% or more, more preferably 50 mol% or more, further preferably 70 mol% or more, and more preferably 80 mol% or more or 90 mol% or more. It may be even more preferable.
  • the ratio of the vinyl alcohol unit By setting the ratio of the vinyl alcohol unit to the above lower limit value or more, the passability is enhanced particularly in a high humidity environment, and the water-soluble resin powder in the present invention can be efficiently produced by a production method that undergoes crushing and surface processing. It will be easier to manufacture.
  • the ratio of the vinyl alcohol unit may be 100 mol%, but is preferably 99.99 mol% or less, and more preferably 99 mol% or less.
  • the saponification degree of PVA is preferably 35 mol% or more, more preferably 50 mol% or more, further preferably 70 mol% or more, and even more preferably 80 mol% or more or 90 mol% or more.
  • the saponification degree may be 100 mol% or less, but 99.99 mol% or less is preferable, and 99 mol% or less is more preferable.
  • the degree of saponification can be measured by the method described in JIS K6726: 1994.
  • PVA may have a monomer unit (constituent unit) other than the vinyl alcohol unit and the vinyl ester unit.
  • monomer giving the other monomer unit include ⁇ -olefins such as ethylene, propylene, 1-butene, isobutene and 1-hexene; acrylic acid and methacrylic acid; acrylics such as methyl acrylate and ethyl acrylate.
  • Methacrylate ester such as methyl methacrylate and ethyl methacrylate; acrylamide derivative such as N-methylacrylamide and N-ethylacrylamide; Methacrylate derivative such as N-methylmethacrylate and N-ethylmethacrylate; Methylvinyl ether, Vinyl ethers such as ethyl vinyl ether, n-propyl vinyl ether, isopropyl vinyl ether and n-butyl vinyl ether; hydroxy group-containing vinyl ethers such as ethylene glycol vinyl ether, 1,3-propanediol vinyl ether and 1,4-butanediol vinyl ether; allyl acetate; propyl allyl Allyl ethers such as ethers, butyl allyl ethers, and hexyl allyl ethers; monomers having an oxyalkylene group; isopropenyl acetate; 3-butene-1-ol,
  • the ratio of the above-mentioned other monomer units to the total monomer units in PVA may be preferably 20 mol% or less, and more preferably 10 mol% or less.
  • the ratio of the other monomer units may be, for example, 0.1 mol% or more, and may be 1 mol% or more.
  • the viscosity average degree of polymerization of PVA is not particularly limited, but is preferably 200 or more, more preferably 250 or more, further preferably 400 or more, and particularly preferably 600 or more.
  • the viscosity average degree of polymerization is preferably 5,000 or less, more preferably 4,500 or less, and even more preferably 3,500 or less.
  • the average particle size of the water-soluble resin powder (that is, the particles constituting the water-soluble resin powder) in the present invention is 100 ⁇ m or more, preferably 150 ⁇ m or more, and more preferably 300 ⁇ m or more. When the average particle size is 100 ⁇ m or more, dust explosion is less likely to occur, and safety can be improved.
  • the average particle size is 2,000 ⁇ m or less, preferably 1,500 ⁇ m or less, more preferably 1,000 ⁇ m or less, still more preferably 850 ⁇ m or less. When the average particle size is 2000 ⁇ m or less, it becomes easy to dissolve in a solvent, the generation of gel-like lumps is suppressed, and a uniform electrode can be produced.
  • the average particle size of the water-soluble resin powder (that is, the particles constituting the water-soluble resin powder) can be measured according to the method described in JIS K7369: 2009.
  • Average roundness of the water-soluble resin powder that is, particles constituting the water-soluble resin powder
  • the average value PA is 0.1 or more, preferably 0.2 or more, more preferably 0.25 or more, further preferably 0.3 or more, particularly preferably 0.33 or more, and 0. .35 or higher may be highly preferred.
  • the average roundness is 0.8 or less, preferably 0.7 or less.
  • the productivity of the water-soluble resin powder in the present invention can be increased. Further, the water-soluble resin powder having an average roundness of less than or equal to the above upper limit can be effectively produced by a production method of crushing and surface processing.
  • the average roundness of the water-soluble resin powder (that is, the particles constituting the water-soluble resin powder) can be determined by the following method. Arbitrarily 50 particles are extracted from the particles having a particle size of 100 to 1,000 ⁇ m (or a particle size of 106 to 1,000 ⁇ m based on a sieving net) in the water-soluble resin powder. Particles having a particle size of 100 to 1,000 ⁇ m are sorted as particles that have passed through a sieving net with a nominal opening of 1,000 ⁇ m (16 mesh) and have not passed through a sieving net with a nominal opening of 106 ⁇ m (150 mesh) in sieving. can do.
  • the mechanical sieving can be performed by, for example, the method described in JIS K7369: 2009.
  • the extracted one particle the projection view area of the apparent is maximized, eight corners (corner is less than eight in ascending order of the radius of curvature r i, that is, when the 7 or less, all that extract the corner), for measuring the radius of curvature r i of each the corner.
  • the radius R of the maximum inscribed circle of the particle is measured based on the projection drawing that maximizes the apparent area.
  • the number of angles of the particle is N (when the number of angles of the particle is 9 or more, N is 8), and based on the measured ri and R, the circle of one particle is calculated by the following formula (1). Polishing degree P is required. A low degree of roundness P indicates that the particles have many angular corners, and a high degree of roundness indicates that the particles are rounded.
  • Equation (1) r i is the radius of curvature for each angle of the particle, R is the radius of the maximum inscribed circle of the particle, N is the number of horns that the particle has, However, when the number of corners of the particle is 9 or more, the radius of curvature of 8 corners is adopted in ascending order of radius of curvature, and N is 8.]
  • the above-mentioned circularity P is measured for the extracted 50 particles, and the average value PA of the circularity P of these 50 particles is obtained.
  • This average value PA is the average degree of roundness.
  • the content of particles having a particle size of 100 to 1,000 ⁇ m is not particularly limited, but is 50% by mass or more. Is preferable, 55% by mass or more is more preferable, and 60% by mass or more is further preferable.
  • the upper limit of the content of particles having a particle size of 100 to 1,000 ⁇ m may be 100% by mass.
  • the content of particles having a particle size of 100 to 1,000 ⁇ m in the resin powder is determined by using a sieve net having a nominal opening of 1,000 ⁇ m (16 mesh) and a sieve net having a nominal opening of 106 ⁇ m (150 mesh). It can be obtained according to the method described in 2009.
  • the water-soluble resin powder (that is, the particles constituting the water-soluble resin powder) in the present invention preferably satisfies the following formula (2), satisfies the following formula (2), and has an average particle size of 100 to 1. More preferably, it is 000 ⁇ m. In such a case, it is possible to suppress the fusion of particles and the generation of agglomerates, especially under high humidity. According to the study by the present inventor, the higher the average degree of circularity, the less likely it is that the particles will be fused. On the other hand, especially under high humidity, the water-soluble resin powder containing PVA having a low degree of saponification is affected by its hygroscopicity and the like, so that particles are easily fused.
  • the product (PA ⁇ S) of the average value PA (average circular polishing degree) of the circular polishing degree P and the saponification degree S of PVA is more preferably 19 or more, and further preferably 20 or more.
  • the upper limit of this product (PA ⁇ S) is not particularly limited, but may be, for example, 80 or less, or 60 or less.
  • the angle of repose measured after adjusting the humidity of the water-soluble resin powder in the present invention in an atmosphere of 20 ° C. and 30% humidity for one week is preferably less than 38 °, more preferably less than 35 °.
  • the angle of repose measured after adjusting the humidity of the water-soluble resin powder in the present invention in an atmosphere of 20 ° C. and 65% humidity for one week is preferably less than 40 °, more preferably less than 38 °.
  • the angle of repose of the water-soluble resin powder is so low, it is possible to suppress the fusion of particles even in a high humidity environment.
  • the lower limit of these angles of repose is not particularly limited, but may be, for example, 25 ° or more, or 30 ° or more.
  • the angle of repose of the water-soluble resin powder can be controlled within the above range by controlling the average roundness and the average particle size.
  • the angle of repose of the water-soluble resin powder can be measured according to the method described in JIS 9301-2-2: 1999.
  • the method for producing the water-soluble resin powder in the present invention is not particularly limited, but for example, the following method is preferably used. That is, in one embodiment of the present invention, the method for producing the water-soluble resin powder is A step of obtaining a crude powder of the water-soluble resin by pulverizing a resin solid containing the water-soluble resin (step B), and a step of processing the surface of particles contained in the crude powder (step C). including.
  • step A the step of synthesizing PVA and obtaining a resin solid containing PVA (step A) may be further included.
  • Step A can include, for example, a polymerization step, a saponification step, and the like.
  • the vinyl ester monomer is polymerized to obtain a vinyl ester polymer.
  • the method for polymerizing the vinyl ester monomer include known methods such as a massive polymerization method, a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method. Among these methods, a lumpy polymerization method performed without a solvent and a solution polymerization method performed using a solvent such as alcohol are preferable, and a solution polymerization method of polymerizing in the presence of a lower alcohol is more preferable.
  • an alcohol having 3 or less carbon atoms is preferable, methanol, ethanol, n-propanol and isopropanol are more preferable, and methanol is even more preferable.
  • a batch method or a continuous method can be adopted as the reaction method.
  • vinyl ester monomer examples include vinyl formate, vinyl acetate, vinyl propionate, vinyl valerate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl benzoate, vinyl pivalate, vinyl versatic acid and the like. Be done. Of these, vinyl acetate is preferable.
  • Examples of the initiator used in the polymerization reaction include 2,2'-azobisisobutyronitrile, 2,2'-azobis (2,4-dimethylvaleronitrile), and 2,2'-azobis (4-methoxy).
  • Azo-based initiators such as ⁇ 2,4-dimethylvaleronitrile
  • known initiators such as organic peroxide-based initiators such as benzoyl peroxide and n-propylperoxycarbonate can be mentioned.
  • the polymerization temperature at the time of carrying out the polymerization reaction is not particularly limited, but a range of 5 ° C. or higher and 200 ° C. or lower is suitable.
  • a copolymerizable monomer can be further copolymerized within a range that does not impair the gist of the present invention.
  • a chain transfer agent may coexist for the purpose of adjusting the degree of polymerization of the obtained PVA.
  • chain transfer agent examples include aldehydes such as acetaldehyde, propionaldehyde, butylaldehyde and benzaldehyde; ketones such as acetone, methyl ethyl ketone, hexanone and cyclohexanone; mercaptans such as 2-hydroxyethanethiol; thiocarboxylic acids such as thioacetic acid; trichloroethylene and perchloro. Examples thereof include halogenated hydrocarbons such as ethylene, and among them, aldehydes and ketones are preferably used.
  • the amount of the chain transfer agent added is determined according to the chain transfer constant of the chain transfer agent to be added and the degree of polymerization of the target PVA, but is generally 0.1 to 10% by mass with respect to the vinyl ester used. Is preferable.
  • the vinyl ester polymer is saponified in an alcohol solution using an alkali catalyst or an acid catalyst to obtain PVA.
  • Alcohol decomposition or hydrolysis using a conventionally known basic catalyst such as sodium hydroxide, potassium hydroxide or sodium methoxyde, or an acidic catalyst such as p-toluenesulfonic acid is used for the saponification reaction of the vinyl ester polymer.
  • the reaction is applicable.
  • the solvent used in the saponification reaction include alcohols such as methanol and ethanol; esters such as methyl acetate and ethyl acetate; ketones such as acetone and methyl ethyl ketone; aromatic hydrocarbons such as benzene and toluene.
  • the saponification step can be performed by a belt type reactor, a kneader type reactor, a tower type reactor, or the like.
  • a resin solid containing PVA By going through the saponification step, a resin solid containing PVA can be obtained.
  • the content ratio of PVA in the non-volatile content in the resin solid is, for example, 50% by mass or more, preferably 70% by mass or more, more preferably 90% by mass or more, and further preferably 99% by mass or more.
  • the non-volatile content in the resin solid may be substantially PVA as a main component, but may contain impurities such as sodium acetate, by-products and the like.
  • the average particle size of the particles constituting the crude powder is not limited, but when the surface processing is performed in the step C described later, the resin powder finally obtained in consideration of the reduction in particle size due to the step. It is preferable to set it to be equal to or larger than the average particle size of the body. For example, by setting the average particle size of the particles constituting the crude powder to 100 to 3000 ⁇ m, a resin powder having a desired average particle size can be finally obtained.
  • the obtained crude powder may be saponified again. Further, the obtained crude powder may be subjected to a cleaning treatment for reducing impurities such as sodium acetate, by-products and the like, and a drying treatment for reducing volatile components.
  • the resin solid substance before crushing may be subjected to a cleaning treatment or a drying treatment.
  • step C the surface of the particles constituting the crude powder is processed.
  • a resin solid containing a water-soluble resin such as PVA is crushed, the obtained crude powder usually has a very sharp-edged shape. Therefore, in step C, a water-soluble powder having rounded corners and an average degree of roundness within a predetermined range can be efficiently obtained.
  • the method for producing the water-soluble resin powder in the present invention may also include a sieving step for adjusting the average particle size. Further, after the step C, a cleaning treatment or a drying treatment may be performed.
  • the binder of the present invention may further contain a material for adjusting the viscosity of the binder in a solution state.
  • the material for adjusting the viscosity include polyvalent basic acids such as citric acid, tartaric acid and aspartic acid and salts thereof, condensates thereof, and inorganic substances such as fumed silica and alumina.
  • the amount of these additions is not particularly limited, but is usually preferably 0.01 part by mass or more and 10 parts by mass or less, more preferably 0.02 parts by mass or more and 8 parts by mass or less, still more preferably, with respect to 100 parts by mass of PVA. Is 0.05 parts by mass or more and 5 parts by mass or less.
  • the binder of the present invention or the binder solution for the power storage device electrode of the present invention described later can further contain a compounding agent as long as the effects of the present invention are not impaired.
  • a compounding agent include a light stabilizer, an ultraviolet absorber, a freeze stabilizer, a thickener, a leveling agent, a rheology stabilizer, a thixoxing agent, an antifoaming agent, a plasticizer, a lubricant, and a preservative.
  • the binder of the present invention is obtained by dissolving a water-soluble resin, particularly PVA, and a component other than the water-soluble resin contained as necessary in a solvent (for example, water or NMP) to prepare a solution, and removing the solvent. May be good. Further, the solution may be used as it is for the preparation of a slurry which follows as a binder solution for a power storage device electrode of the present invention, which will be described later. In that case, the composition of the components other than the solvent in the binder solution is the binder of the present invention.
  • the binder of the present invention is contained in the cured product of the slurry composition of the present invention in a state of being mixed with components such as an active material.
  • the binder solution as one embodiment of the present invention contains the binder of the present invention and at least one solvent.
  • the solvent is preferably water or NMP.
  • the solvent is water, it is suitable from the viewpoint of reducing the environmental load and the convenience of the equipment.
  • NMP it is preferable because the active material in the slurry is not deteriorated, especially when it is applied as a slurry for a positive electrode.
  • the binder solution can contain an additive (referred to as Additive A) that can be dissolved in a solvent as long as the effect of the present invention is not impaired.
  • Additive A examples include polyethylene glycol, polyethylene glycol dimethyl ether, polyethylene glycol diglycidyl ether, and polyethyleneimine.
  • the content of the additive A is, for example, 10% by mass or less, preferably 5% by mass or less, and more preferably 1% by mass or less, based on the total amount of the binder solution. In particular, it is preferable that the additive A is not contained.
  • the binder solution is prepared by mixing a water-soluble resin such as PVA, a solvent (for example, water or NMP), and a component other than the aqueous solution resin as described above, which is contained if necessary, by a known method, for example, stirring. And get it.
  • the mixing temperature and mixing time can be appropriately adjusted according to the type of solvent.
  • the binder solution indicates a solution in which the above-mentioned water-soluble resin is dissolved in a solvent.
  • the mass of the water-soluble resin completely dissolved in the solvent, particularly PVA is preferably based on the total mass (100% by mass) of the water-soluble resin used in preparing the binder solution. It means a state of 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more, still more preferably 99% by mass or more, and even more preferably 100% by mass.
  • the content of the water-soluble resin, particularly PVA, in the binder solution of the present invention is preferably 1% by mass or more and 30% by mass or less, more preferably 3% by mass or more and 20% by mass or less, particularly preferably, based on the total amount of the binder solution. Is 5% by mass or more and 15% by mass or less.
  • the content of the water-soluble resin is 1% by mass or more, it is easy to improve the adhesiveness of the active material to the current collector when forming the electrode.
  • the content of the water-soluble resin is 30% by mass or less, it is possible to prevent the active material from rapidly aggregating when forming the electrode.
  • the power storage device electrode slurry as an embodiment of the present invention contains the above-mentioned binder solution and active material.
  • the slurry may be used for either the positive electrode or the negative electrode. Further, it may be used for both the positive electrode and the negative electrode.
  • the active material may be either a positive electrode active material or a negative electrode active material.
  • the type of solvent is not particularly limited, but water or NMP solvent can be preferably used, and can be used alone or in combination of two or more.
  • the negative electrode active material for example, a material conventionally used as a negative electrode active material of a power storage device can be used.
  • conductive such as amorphous carbon, artificial graphite, natural graphite (graphite), mesocarbon microbeads (MCMB), pitch carbon fiber, carbon black, activated carbon, carbon fiber, hard carbon, soft carbon, mesoporous carbon and polyacene.
  • Carbonous materials such as sex polymers, silicon-based compounds such as Si and SiO x , composite metal oxides represented by SnO x and LiTIO x , other metal oxides, lithium metals, lithium-based metals such as lithium alloys, Examples thereof include metal compounds such as TiS 2 and LiTiS 2 , composite materials of metal oxides and carbonaceous materials, hydrogen storage alloys and the like.
  • These negative electrode active materials can be used alone or in combination of two or more.
  • the positive electrode active material for example, a material conventionally used as a positive electrode active material of a power storage device can be used. Examples are transitions such as TiS 2 , TiS 3 , amorphous MoS 3 , Cu 2 V 2 O 3 , amorphous V 2 O-P 2 O 5 , MoO 3 , V 2 O 5 and V 6 O 13. Examples include metal oxides, lithium-containing composite metal oxides such as LiCoO 2 , LiNiO 2 , LiMnO 2 , and LiMn 2 O 4 , manganese dioxide, nickel hydroxide, nickel oxyhydroxide, and the like. These positive electrode active materials can be used alone or in combination of two or more.
  • the slurry may contain a conductive auxiliary agent.
  • the conductive auxiliary agent is used to increase the output of the power storage device, and can be appropriately selected depending on the case where it is used for the positive electrode or the negative electrode. Examples thereof include graphite, acetylene black, carbon black, Ketjen black, vapor-grown carbon fiber and the like. Among these, acetylene black is preferable from the viewpoint that the output of the obtained power storage device can be easily increased.
  • the content of the conductive auxiliary agent is preferably 0.1 part by mass or more and 15 parts by mass or less, and more preferably 1 part by mass or more and 10 parts by mass with respect to 100 parts by mass of the active material. Hereinafter, it is more preferably 3 parts by mass or more and 10 parts by mass or less.
  • the content of the conductive auxiliary agent is within this range, a sufficient conductive auxiliary effect can be obtained without lowering the battery capacity to which the slurry is applied.
  • the content of the binder in the slurry is 0.1 part by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the active material.
  • the content is 0.1 part by mass or more, the adhesiveness of the active material to the current collector is improved, which is advantageous from the viewpoint of maintaining the durability of the applied battery.
  • the content is 20 parts by mass or less, the discharge capacity is likely to be improved.
  • the content range is more preferably 0.2 parts by mass or more and 18 parts by mass or less, further preferably 0.5 parts by mass or more and 16 parts by mass or less, and even more preferably 1 part by mass or more and 12 parts by mass or less.
  • the slurry may contain additives such as flame-retardant aids, thickeners, defoamers, leveling agents, and adhesion-imparting agents, if necessary, in addition to binders, active materials, conductive aids and solvents. can.
  • additives such as flame-retardant aids, thickeners, defoamers, leveling agents, and adhesion-imparting agents, if necessary, in addition to binders, active materials, conductive aids and solvents.
  • the content of the additives is preferably about 0.1% by mass or more and 10% by mass or less based on the total amount of the slurry.
  • the slurry is prepared by mixing binders, active materials and, if necessary, conductive aids, solvents and additives by conventional methods, for example using a mixer such as a ball mill, blender mill, three rolls or the like. Obtainable.
  • the power storage device electrode as an embodiment of the present invention includes the cured body and the current collector of the above-mentioned slurry.
  • the cured product of the slurry is a cured product obtained by removing the solvent in the slurry by drying or the like.
  • the electrode can be obtained by applying the slurry of the present invention to a current collector and removing the solvent by drying or the like. Further, the electrode may be rolled after drying.
  • the current collector is not particularly limited as long as it is made of a conductive material. Examples thereof include metal materials such as iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold and platinum. These current collectors can be used alone or in combination of two or more. Among the current collectors, copper is preferable as the negative electrode current collector, and aluminum is preferable as the positive electrode current collector from the viewpoint of the adhesiveness of the active material and the discharge capacity.
  • the method of applying the slurry to the current collector is not particularly limited, and examples thereof include an extrusion coater, a reverse roller, a doctor blade, and an applicator.
  • the coating amount of the slurry is appropriately selected according to the desired thickness of the cured product derived from the slurry composition.
  • Examples of the electrode rolling method include a mold press and a roll press.
  • the press pressure is preferably 1 MPa or more and 40 MPa or less from the viewpoint of easily increasing the battery capacity.
  • the thickness of the current collector is preferably 1 ⁇ m or more and 200 ⁇ m or less, and more preferably 2 ⁇ m or more and 150 ⁇ m or less.
  • the thickness of the cured product is preferably 10 ⁇ m or more and 800 ⁇ m, and more preferably 20 ⁇ m or more and 600 ⁇ m or less.
  • the thickness of the electrode is preferably 20 ⁇ m or more and 300 ⁇ m or less.
  • the power storage device as one embodiment of the present invention includes the above-mentioned power storage device electrode as a negative electrode and / or a positive electrode.
  • Examples of the power storage device include a lithium ion secondary battery, a sodium ion battery, a lithium sulfur battery, an all-solid-state battery, a lithium ion capacitor, a lithium battery, a nickel hydrogen battery, an alkaline dry battery, and the like.
  • the power storage device of the present invention has excellent electrode uniformity, low electrical resistance, and high discharge capacity.
  • the discharge capacity of the power storage device can be calculated by using, for example, a method of performing a charge / discharge test using a commercially available charge / discharge tester, as shown in Examples described later.
  • the electrolytic solution contained in the power storage device is a solution that dissolves the electrolyte in a solvent.
  • the electrolyte may be in the form of a liquid or a gel as long as it is used in a normal battery, and an electrolyte that exhibits a function as a battery may be appropriately selected depending on the type of the negative electrode active material and the positive electrode active material.
  • Specific electrolytes for example, suitably can be used known lithium salt in the nonaqueous electrolyte battery, LiClO 4, LiBF 6, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiB 10 Cl 10 , LiAlCl 4 , LiCl, LiBr, LiB (C 2 H 5 ) 4 , CF 3 SO 3 Li, CH 3 SO 3 Li, LiCF 3 SO 3 , Li C 4 F 9 SO 3 , Li (CF 3 SO) 2) 2 N, include lower aliphatic carboxylic acid lithium, and the like.
  • Examples of batteries using an aqueous electrolyte include an alkaline aqueous solution containing potassium hydroxide, sodium hydroxide, and lithium hydroxide as solutes.
  • the solvent contained in the electrolytic solution is not particularly limited. Specific examples thereof include carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, ethylmethyl carbonate, diethyl carbonate and vinylene carbonate, lactones such as ⁇ -butyl lactone, trimethoxymethane and 1,2-dimethoxy.
  • carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, ethylmethyl carbonate, diethyl carbonate and vinylene carbonate
  • lactones such as ⁇ -butyl lactone, trimethoxymethane and 1,2-dimethoxy.
  • Ethers such as ethane, diethyl ether, 2-ethoxyethane, tetrahydrofuran and 2-methyltetraxide, sulfoxides such as dimethylsulfoxide, oxolanes such as 1,3-dioxolane and 4-methyl-1,3-dioxolane, acetonitrile and Nitrogen-containing compounds such as nitromethane, organic acid esters such as methyl formate, methyl acetate, ethyl acetate, butyl acetate, methyl propionate and ethyl propionate, inorganic acid esters such as triethyl phosphate, dimethyl carbonate and diethyl carbonate, Examples thereof include jiglimes, triglimes, sulfolans, oxazolidinones such as 3-methyl-2-oxazolidinone, 1,3-propane sulton, and sulton such as 1,4-butane sulton and naft
  • a gel-like electrolytic solution a nitrile-based polymer, an acrylic-based polymer, a fluorine-based polymer, an alkylene oxide-based polymer, or the like can be added as a gelling agent.
  • a conventional electrode can be used for the electrode that does not use the electrode of the present invention.
  • the power storage device of the present invention includes the electrode of the present invention as a negative electrode and a conventional electrode as a positive electrode.
  • the positive electrode is not particularly limited as long as it is a positive electrode normally used for a power storage device.
  • the power storage device of the present invention includes the electrode of the present invention as a positive electrode and a conventional electrode as a negative electrode.
  • the negative electrode is not particularly limited as long as it is a negative electrode normally used for a power storage device.
  • both the positive electrode and the negative electrode may be electrodes containing the binder of the present invention.
  • the method for manufacturing the power storage device of the present invention is not particularly limited, but for example, it can be manufactured as follows. That is, the negative electrode and the positive electrode are overlapped with each other via a separator such as a polypropylene porous membrane, wound and / or folded according to the shape of the battery, put into a battery container, and the electrolytic solution is injected to seal the battery.
  • the shape of the battery may be any of known coin type, button type, sheet type, cylindrical type, square type, flat type and the like.
  • the power storage device of the present invention is useful for various uses. For example, it is very useful as a battery used in a mobile terminal that requires miniaturization, thinning, weight reduction, and high performance. Further, it can be suitably used for batteries of equipment requiring flexibility, for example, winding type dry batteries and laminated type batteries.
  • Variation with respect to average film thickness is 1 ⁇ m or less ⁇ : Variation with respect to average film thickness is greater than 1 ⁇ m and 2 ⁇ m or less ⁇ : Variation with respect to average film thickness is greater than 2 ⁇ m and 3 ⁇ m or less ⁇ : With average film thickness On the other hand, the variation is larger than 3 ⁇ m.
  • a constant current discharge of 0.2 C (about 0.5 mA / cm 2 ) was performed up to 1.5 V with respect to the lithium potential.
  • the coin battery was placed in a constant temperature bath at 25 ° C., initial charge / discharge was performed under the above conditions, and the discharge capacity and DC resistance were measured.
  • the solid content in the binder aqueous solution was 3 parts by mass
  • the solid content of artificial graphite was 96 parts by mass
  • the negative electrode for the battery obtained as described above was transferred to a glove box (manufactured by Miwa Seisakusho Co., Ltd.) in an argon gas atmosphere.
  • Metallic lithium foil (thickness 0.2 mm, ⁇ 16 mm) is used for the positive electrode
  • polypropylene (Cellguard # 2400, made by Polypore) is used for the separator
  • ethylene hexafluorophosphate (LiPF 6) is used as the electrolytic solution.
  • the positive electrode for the battery obtained as described above was transferred to a glove box (manufactured by Miwa Seisakusho Co., Ltd.) in an argon gas atmosphere.
  • Metallic lithium foil (thickness 0.2 mm, ⁇ 16 mm) is used for the negative electrode, polypropylene (Cellguard # 2400, made by Polypore) is used for the separator, and ethylene hexafluorophosphate (LiPF 6) is used as the electrolytic solution.
  • aqueous binder solution having a solid content concentration of 5% by mass, manganese dioxide as a positive electrode active material, and Super-P (manufactured by Timcal) as a conductive auxiliary agent (conductivity-imparting agent) are used. It was put into a special container and kneaded using a planetary stirrer (ARE-250, manufactured by Shinky Co., Ltd.) to prepare a slurry for a positive electrode.
  • ARE-250 manufactured by Shinky Co., Ltd.
  • the solid content in the binder aqueous solution was 3 parts by mass
  • the solid content of manganese dioxide was 95 parts by mass
  • the obtained slurry can be used not only for lithium manganese dioxide batteries but also for alkaline batteries and the like.
  • the slurry for positive electrode obtained as described above was made of aluminum foil (CST8G, manufactured by Fukuda Metal Leaf Powder Industry Co., Ltd.) using a bar coater (T101, manufactured by Matsuo Sangyo Co., Ltd.). It was applied on the current collector. After primary drying in a hot air dryer for 30 minutes at 80 ° C., rolling treatment was performed using a roll press (manufactured by Hosen Co., Ltd.). Then, after punching as a battery electrode ( ⁇ 14 mm), a positive electrode for a coin battery was prepared by secondary drying under reduced pressure conditions at 140 ° C. for 3 hours.
  • the uniformity of the electrodes was evaluated by the method described above. The results are summarized in Table 3 below.
  • the obtained electrode can be used not only for a lithium manganese dioxide battery but also for an alkaline dry battery or the like.
  • the positive electrode for the battery obtained as described above was transferred to a glove box (manufactured by Miwa Seisakusho Co., Ltd.) in an argon gas atmosphere.
  • Metallic lithium foil (thickness 0.2 mm, ⁇ 16 mm) is used for the negative electrode, polypropylene (Cellguard # 2400, made by Polypore) is used for the separator, and ethylene hexafluorophosphate (LiPF 6) is used as the electrolytic solution.
  • the solid content in the binder aqueous solution was 3 parts by mass
  • the solid content of the hydrogen storage alloy was 95 parts by mass
  • the solid content in the binder aqueous solution was 3 parts by mass
  • the solid content of nickel hydroxide was 95 parts by mass
  • a coin battery was manufactured using the negative electrode and positive electrode for the nickel-metal hydride battery obtained as described above.
  • a polypropylene-based separator (Cellguard # 2400, manufactured by Polypore) was used, and an alkaline electrolytic solution containing NaOH was injected as an electrolytic solution.
  • an aqueous solution containing NaOH at 7.5 mol / L was used as the alkaline electrolytic solution.
  • a coin battery (2032 type) was manufactured with such a configuration. With respect to the produced coin battery, the discharge capacity and the DC resistance value were measured by the method described above. The results are summarized in Table 3 below.
  • Example 1 Production of resin powder 1 of PVA1 112.5 kg of vinyl acetate and 37.5 kg of methanol (37.5 kg) in a 250 L reactor equipped with a stirrer, a reflux cooling tube, a nitrogen introduction tube, and an initiator addition port. Vinyl acetate (75% by mass: methanol: 25% by mass) was charged, and the inside of the system was replaced with nitrogen for 30 minutes while bubbling with nitrogen. When the temperature of the reactor was started and the internal temperature reached 60 ° C., 35 g of 2,2'-azobisisobutyronitrile (AIBN) was added to start the polymerization, and the polymerization rate became 50%. By the way, it was cooled and the polymerization was stopped.
  • AIBN 2,2'-azobisisobutyronitrile
  • the solid content concentration at the time of stopping the polymerization was 37.0%. Subsequently, the unreacted vinyl acetate monomer was removed by occasionally adding methanol at 30 ° C. under reduced pressure to obtain a methanol solution (concentration 35%) of polyvinyl acetate (PVAc). Further, 1.86 kg of an alkaline solution (10% methanol solution of sodium hydroxide) was added to 54.05 kg (20 kg of PVAc in the solution) of PVAC prepared by adding methanol to the saponification (10% methanol solution of sodium hydroxide). The PVAc concentration of the saponification solution is 30%, and the molar ratio of sodium hydroxide to the vinyl acetate unit in PVAc is 0.02 mol%).
  • a gel-like substance (resin solid substance) was formed about 1 minute after the addition of the alkaline solution, and this was pulverized with a pulverizer (mixer) for 5 minutes.
  • the pulverized product was left at 40 ° C. for 1 hour to allow saponification to proceed, and then 50 kg of methyl acetate was added to neutralize the remaining alkali.
  • a white solid was obtained by filtration, 200 kg of methanol was added thereto, and the mixture was washed at room temperature for 3 hours. After repeating the above washing operation three times, the white solid obtained by centrifugation was left in a dryer at 65 ° C. for 2 days to obtain a crude powder of PVA1.
  • the degree of polymerization of PVA1 was 1,700 and the degree of saponification was 98.5 mol%.
  • the crude powder of PVA1 was filled in a radige mixer "FKM130D" equipped with a Becker type excavator manufactured by Chuo Kiko Co., Ltd. The surface was processed for 3 hours at a rotation speed of 160 rpm at room temperature in a nitrogen atmosphere. As a result, a resin powder 1 having an average particle diameter of 650 ⁇ m and an average roundness of 0.25 was obtained.
  • Example 11 120.0 kg of vinyl acetate and 30.0 kg of methanol (80% by mass of vinyl acetate: 20% by mass of methanol) in a 250 L reactor equipped with a stirrer, a reflux cooling tube, a nitrogen introduction tube, a comonomer dropping port and an initiator addition port. ) was charged, and the inside of the system was replaced with nitrogen for 30 minutes while bubbling with nitrogen.
  • the temperature of the reactor was started and the internal temperature reached 60 ° C.
  • 2.5 kg of acetaldehyde and 35 g of 2,2'-azobisisobutyronitrile (AIBN) were added to start the polymerization, and the polymerization rate was increased.
  • AIBN 2,2'-azobisisobutyronitrile
  • the solid content concentration at the time of stopping the polymerization was 39.3%.
  • the resin powder 11 of PVA11 was obtained in the same manner as in Example 1 except that the conditions shown in Table 1 were met.
  • Example 12 Polymerization and saponification were carried out in the same manner as in Example 2 described in JP-A-2019-011282, and ethylene-modified PVA (PVA12) having a degree of polymerization of 1850, a degree of saponification of 98.5 mol% and an ethylene unit content of 6 mol% was carried out. Coarse powder was obtained.
  • the resin powder 12 of PVA12 was obtained in the same manner as in Example 1 except that the conditions shown in Table 1 were met.
  • Example 13 112.5 kg of vinyl acetate and 37.5 g of methanol (75% by mass of vinyl acetate: 25% by mass of methanol) in a 250 L reactor equipped with a stirrer, a reflux cooling tube, a nitrogen introduction tube, a comonomer dropping port and an initiator addition port. ), And 220 ml of a methanol solution in which methyl methacrylate was dissolved in 24% by mass was charged, and the inside of the system was replaced with nitrogen for 30 minutes while subjecting to nitrogen bubbling.
  • Example 14 The resin powder 14 of PVA14 was obtained in the same manner as in Example 2 except that the pulverization time by the pulverizer was shortened to 2 minutes and the pulverization was performed coarser than in Example 1.
  • Example 17 A resin powder 17 or the like of PVA17 was obtained in the same manner as in Example 2 except that the surface processing was performed by the apparatus shown in Table 1 instead of the Ladyge mixer.
  • Example 20 The resin powder 20 of PVA20 and the like were obtained in the same manner as in Example 2 except that the crushing time by the crusher was lengthened to 10 minutes, the crushing time was finer than that in Example 1, and the surface processing treatment by the Ladyge mixer was not performed.

Abstract

The present invention provides a binder for electricity storage device electrodes, said binder being not susceptible to the formation of gel-like lumps when dissolved, while enabling the formation of a suitably uniform electrode that has a low resistance and a high discharge capacity if used for an electricity storage device electrode. The present invention discloses a binder which contains a water-soluble resin powder that is composed of particles having an average particle diameter of from 100 to 2,000 μm. With respect to 50 particles randomly selected from the particles contained in the water-soluble resin powder and having a diameter of from 100 to 1,000 μm, the average value PA of the roundness P represented by formula (1) of each particle is from 0.1 to 0.8. (In formula (1), ri represents the radius of curvature of each corner of each particle; R represents the radius of the maximum inscribed circle of each particle; and N represents the number of corners of each particle, provided that if the number of corners of a particle is 9 or more, the radii of curvature of 8 corners are selected in ascending order of the radii of curvature, and N is set to 8.)

Description

蓄電デバイス電極に適したバインダー、バインダー溶液、蓄電デバイス電極スラリー、蓄電デバイス電極および蓄電デバイスBinder suitable for power storage device electrode, binder solution, power storage device electrode slurry, power storage device electrode and power storage device
 本特許出願は日本国特許出願第2020-044897号(出願日:2020年3月16日)についてパリ条約上の優先権を主張するものであり、ここに参照することによって、その全体が本明細書中へ組み込まれるものとする。
 本発明は、蓄電デバイス電極に適したバインダー、バインダー溶液、蓄電デバイス電極スラリー、蓄電デバイス電極および蓄電デバイスに関する。
This patent application claims priority under the Paris Convention with respect to Japanese Patent Application No. 2020-0448997 (filed on March 16, 2020), which is hereby incorporated by reference in its entirety. It shall be incorporated into the book.
The present invention relates to a binder, a binder solution, a storage device electrode slurry, a power storage device electrode, and a power storage device suitable for a power storage device electrode.
 近年、携帯電話、ノート型パソコン、パッド型情報端末機器等の携帯端末の普及が著しい。携帯端末にはより快適な携帯性が求められ、小型化、薄型化、軽量化および高性能化が急速に進むに伴い、携帯端末に用いられる電池にも、小型化、薄型化、軽量化および高性能化が要求されている。このような携帯端末の電源に用いられる蓄電デバイスとして、リチウムイオン二次電池が多用されている。リチウムイオン二次電池等の非水電解質電池は、セパレーターを介して正極と負極を設置し、LiPF、LiBF、LiTFSI(リチウム(ビストリフルオロメチルスルホニルイミド))、LiFSI(リチウム(ビスフルオロスルホニルイミド))のようなリチウム塩をエチレンカーボネート等の有機液体に溶解させた電解液と共に、これらの電極を容器内に収納した構造を有する。 In recent years, mobile terminals such as mobile phones, notebook personal computers, and pad-type information terminal devices have become remarkably widespread. Mobile terminals are required to be more comfortable to carry, and with the rapid progress of miniaturization, thinning, weight reduction and high performance, batteries used in mobile terminals are also becoming smaller, thinner, lighter and lighter. High performance is required. Lithium-ion secondary batteries are often used as power storage devices used as power sources for such mobile terminals. For non-aqueous electrolyte batteries such as lithium ion secondary batteries, positive and negative electrodes are installed via a separator, and LiPF 6 , LiBF 4 , LiTFSI (lithium (bistrifluoromethylsulfonylimide)), LiFSI (lithium (bisfluorosulfonylimide)). It has a structure in which these electrodes are housed in a container together with an electrolytic solution in which a lithium salt such as)) is dissolved in an organic liquid such as ethylene carbonate.
 蓄電デバイスを構成する負極および正極は、通常、バインダーおよび増粘剤を水または溶剤に溶解または分散させ、これに活物質や導電助剤(導電付与剤)等を混合して得られる電極用スラリーを集電体に塗布した後、水または溶剤を乾燥することにより混合層として結着させて形成される。 The negative electrode and positive electrode constituting the power storage device are usually obtained by dissolving or dispersing a binder and a thickener in water or a solvent, and mixing the active material, a conductive auxiliary agent (conducting agent), or the like with the binder and a thickener. Is applied to the current collector and then dried with water or a solvent to form a mixed layer.
 環境への負荷低減や製造装置の簡便性の観点から、特に負極の製造において、電極スラリーに水媒体を用いる動きが急速に進んでいる。このような水媒体用電極スラリーに用いるバインダーとしては、ビニルアルコール系重合体(以下、「PVA」とも称する)、アクリル酸等のアクリル系重合体、アミド/イミド系の重合体のバインダー等が知られている(例えば、特許文献1および2)。 From the viewpoint of reducing the burden on the environment and the convenience of the manufacturing equipment, the movement to use an aqueous medium for the electrode slurry is rapidly advancing, especially in the manufacturing of the negative electrode. As the binder used for such an electrode slurry for an aqueous medium, a vinyl alcohol-based polymer (hereinafter, also referred to as "PVA"), an acrylic-based polymer such as acrylic acid, a binder of an amide / imide-based polymer, and the like are known. (For example, Patent Documents 1 and 2).
 一方、正極の製造においては、一般的に、溶剤を用いる電極スラリーが使用されている。かかる溶剤としては、例えば、N-メチル-2-ピロリドン、ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルメタンスルホンアミド、ヘキサメチルフォスフォリックトリアミド等の有機溶剤が挙げられる。このような有機溶剤用電極スラリーに用いるバインダーとしては、フッ化ビニリデン系重合体、テトラフルオロエチレン系重合体、フッ素ゴム等が知られている(例えば、特許文献3および4) On the other hand, in the production of the positive electrode, an electrode slurry using a solvent is generally used. Examples of such a solvent include organic solvents such as N-methyl-2-pyrrolidone, dimethylformamide, N, N-dimethylacetamide, N, N-dimethylmethanesulfonamide, and hexamethylphosphoric triamide. As the binder used for such an electrode slurry for an organic solvent, vinylidene fluoride-based polymer, tetrafluoroethylene-based polymer, fluororubber and the like are known (for example, Patent Documents 3 and 4).
特開平11-250915号公報Japanese Unexamined Patent Publication No. 11-250915 特開2017-59527号公報JP-A-2017-59527 特開2017-107827号公報JP-A-2017-107827 特開2013-37955号公報Japanese Unexamined Patent Publication No. 2013-37955
 しかしながら、特許文献1~4に記載の負極および正極のいずれの製造においても、バインダー、溶媒(水または溶剤)および活物質や導電助剤(導電付与剤)等を混合して得られるスラリー(電極スラリー)は、これを集電体に塗布して電極を形成する際に、スラリー中におけるバインダー等の材料の形態やスラリー調製における種々の条件が影響して、例えば以下に示すような多くの問題が生じていた。 However, in any of the production of the negative electrode and the positive electrode described in Patent Documents 1 to 4, a slurry (electrode) obtained by mixing a binder, a solvent (water or a solvent), an active material, a conductive additive (conductivity-imparting agent), or the like is mixed. Slurry) has many problems as shown below, for example, due to the influence of various conditions in the preparation of the slurry and the form of the material such as the binder in the slurry when the electrode is formed by applying the slurry to the current collector. Was occurring.
 バインダーとして樹脂粉体を使用する場合、事前に樹脂粉体を水または溶剤(N-メチル-2-ピロリドン(NMP)など)に溶解する必要があるが、水溶性樹脂の粉体においては、配管やサイロ内で粉体を構成する粒子が融着して凝集物が形成され、溶解時にゲル状のダマが生じることがあった。ゲル状のダマを多く含有するバインダー溶液を使用してスラリー調製を行うと、スラリー中の活物質等が分散し難くなる結果、電極を均一に形成することが困難となり、十分な性能、特に低い抵抗、高い放電容量を得ることができなかった。水溶性樹脂粉体が有する水溶性と吸湿性等の性質に起因して、特に湿度が高い環境下においてこのような凝集物の発生や溶解時のゲル状のダマが生じやすいという課題があった。 When using resin powder as a binder, it is necessary to dissolve the resin powder in water or a solvent (N-methyl-2-pyrrolidone (NMP), etc.) in advance, but in the case of water-soluble resin powder, piping In the silo or silo, the particles constituting the powder are fused to form agglomerates, which may cause gel-like lumps at the time of dissolution. When the slurry is prepared using a binder solution containing a large amount of gel-like lumps, it becomes difficult to disperse the active material in the slurry, and as a result, it becomes difficult to form the electrodes uniformly, and the performance is sufficiently low. It was not possible to obtain resistance and high discharge capacity. Due to the water-soluble and hygroscopic properties of the water-soluble resin powder, there is a problem that such agglomerates are likely to be generated and gel-like lumps are likely to occur at the time of dissolution, especially in a high humidity environment. ..
 そこで、本発明は、水溶性樹脂粉体の溶解時にゲル状のダマが生じにくく、とりわけ蓄電デバイス電極に用いた場合に、好適には均一な電極(塗工電極の膜厚ばらつきが小さい電極)を形成することができ、しかも、低い抵抗を有し、かつ高い放電容量を有する蓄電デバイス電極を与えるバインダーを提供することを目的とする。 Therefore, the present invention is less likely to cause gel-like lumps when the water-soluble resin powder is dissolved, and is preferably a uniform electrode (an electrode having a small film thickness variation of the coating electrode), especially when used as a power storage device electrode. It is an object of the present invention to provide a binder that can form a storage device electrode having a low resistance and a high discharge capacity.
 上記目的は、以下の好適な態様を包含する本発明により達成される。
[1] 水溶性樹脂粉体を含むバインダーであって、
 該水溶性樹脂粉体は、平均粒子径が100~2,000μmの粒子から構成され、
 該水溶性樹脂粉体に含まれる粒子径100~1,000μmの粒子から任意に抽出した50個の粒子に関して、各粒子の下記式(1)
Figure JPOXMLDOC01-appb-M000002
[式(1)中、
 riは粒子の角毎の曲率半径であり、
 Rは粒子の最大内接円の半径であり、
 Nは粒子が有する角の数であり、
 但し、粒子の角の数が9以上である場合、曲率半径の小さい順に8個の角の曲率半径を採用し、Nは8とする]
で表される円磨度Pの平均値PAが0.1~0.8である、バインダー。
[2] 前記水溶性樹脂はビニルアルコール系重合体である、[1]に記載のバインダー。
[3] 前記ビニルアルコール系重合体の粘度平均重合度は200~5,000であり、けん化度は35~99.99モル%である、[1]又は[2]に記載のバインダー。
[4] 下記式(2)
  PA×S≧18    (2)
[式(2)中、PAは前記定義と同じであり、Sはビニルアルコール系重合体のけん化度(モル%)である]
を満たし、該水溶性樹脂粉体は平均粒子径が100~1,000μmである、請求項1~3のいずれかに記載のバインダー。
[5] 前記水溶性樹脂粉体において、粒子径100~1,000μmの粒子の含有率は50質量%以上である、[1]~[4]のいずれかに記載のバインダー。
[6] [1]~[5]のいずれかに記載のバインダーを含む蓄電デバイス電極。
[7] [1]~[5]のいずれかに記載のバインダーと水とを含む蓄電デバイス電極用バインダー溶液。
[8] N-メチル-2-ピロリドンを含む、[7]に記載の蓄電デバイス電極用バインダー溶液。
[9] [7]または[8]に記載の蓄電デバイス電極用バインダー溶液と活物質とを含む、蓄電デバイス電極スラリー。
[10] 前記バインダーの含有量は、前記活物質100質量部に対して0.1質量部以上20質量部以下である、[9]に記載の蓄電デバイス電極スラリー。
[11] [9]または[10]に記載の蓄電デバイス電極スラリーの硬化体と集電体とを含む、蓄電デバイス電極。
[12] [11]に記載の蓄電デバイス電極を含む、蓄電デバイス。
[13] 水溶性樹脂を含む樹脂固形物を粉砕することにより、該水溶性樹脂の粗粉体を得る工程、及び
 該粗粉体を構成する粒子の表面を加工する工程
を含む、[1]~[5]のいずれかに記載のバインダーの製造方法。
The above object is achieved by the present invention including the following preferred embodiments.
[1] A binder containing a water-soluble resin powder, which is a binder.
The water-soluble resin powder is composed of particles having an average particle diameter of 100 to 2,000 μm.
With respect to 50 particles arbitrarily extracted from the particles having a particle size of 100 to 1,000 μm contained in the water-soluble resin powder, the following formula (1) of each particle is used.
Figure JPOXMLDOC01-appb-M000002
[In equation (1),
r i is the radius of curvature for each angle of the particle,
R is the radius of the maximum inscribed circle of the particle,
N is the number of horns that the particle has,
However, when the number of corners of the particle is 9 or more, the radius of curvature of 8 corners is adopted in ascending order of radius of curvature, and N is 8.]
A binder in which the average value PA of the degree of circularity P represented by is 0.1 to 0.8.
[2] The binder according to [1], wherein the water-soluble resin is a vinyl alcohol-based polymer.
[3] The binder according to [1] or [2], wherein the vinyl alcohol-based polymer has a viscosity average degree of polymerization of 200 to 5,000 and a saponification degree of 35 to 99.99 mol%.
[4] The following formula (2)
PA × S ≧ 18 (2)
[In the formula (2), PA is the same as the above definition, and S is the saponification degree (mol%) of the vinyl alcohol polymer].
The binder according to any one of claims 1 to 3, wherein the water-soluble resin powder has an average particle size of 100 to 1,000 μm.
[5] The binder according to any one of [1] to [4], wherein the content of particles having a particle size of 100 to 1,000 μm is 50% by mass or more in the water-soluble resin powder.
[6] A power storage device electrode containing the binder according to any one of [1] to [5].
[7] A binder solution for a power storage device electrode containing the binder according to any one of [1] to [5] and water.
[8] The binder solution for a power storage device electrode according to [7], which contains N-methyl-2-pyrrolidone.
[9] A storage device electrode slurry containing the binder solution for a power storage device electrode according to [7] or [8] and an active material.
[10] The storage device electrode slurry according to [9], wherein the content of the binder is 0.1 part by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the active material.
[11] A power storage device electrode comprising a cured body and a current collector of the power storage device electrode slurry according to [9] or [10].
[12] A power storage device including the power storage device electrode according to [11].
[13] The present invention includes a step of obtaining a crude powder of the water-soluble resin by crushing a resin solid containing the water-soluble resin, and a step of processing the surface of particles constituting the crude powder [1]. The method for producing a binder according to any one of [5].
 本発明によれば、水溶性樹脂粉体の溶解時にゲル状のダマが生じにくく、蓄電デバイス電極に用いた場合に、好適に均一な電極(塗工電極の膜厚ばらつきが小さい電極)を形成することができ、しかも、低い抵抗を有し、かつ高い放電容量を与える蓄電デバイス電極用のバインダーを提供することができる。 According to the present invention, gel-like lumps are less likely to occur when the water-soluble resin powder is dissolved, and when used as a power storage device electrode, a suitable uniform electrode (electrode having a small thickness variation of the coated electrode) is formed. It is possible to provide a binder for a power storage device electrode, which has a low resistance and a high discharge capacity.
<樹脂粉体>
 本発明のバインダーは、水溶性樹脂粉体を含む。この粉体は、平均粒子径が100~2,000μmの粒子から構成され、該水溶性樹脂粉体に含まれる粒子径100~1,000μmの粒子から任意に抽出した50個の粒子に関して、各粒子の式(1)
Figure JPOXMLDOC01-appb-M000003
[式(1)中、
 riは粒子の角毎の曲率半径であり、
 Rは粒子の最大内接円の半径であり、
 Nは粒子が有する角の数であり、
 但し、粒子の角の数が9以上である場合、曲率半径の小さい順に8個の角の曲率半径を採用し、Nは8とする]
で表される円磨度Pの平均値PA(以下、「平均円磨度」とも称する)が0.1~0.8である。
<Resin powder>
The binder of the present invention contains a water-soluble resin powder. This powder is composed of particles having an average particle size of 100 to 2,000 μm, and each of the 50 particles arbitrarily extracted from the particles having a particle size of 100 to 1,000 μm contained in the water-soluble resin powder is used. Particle formula (1)
Figure JPOXMLDOC01-appb-M000003
[In equation (1),
r i is the radius of curvature for each angle of the particle,
R is the radius of the maximum inscribed circle of the particle,
N is the number of horns that the particle has,
However, when the number of corners of the particle is 9 or more, the radius of curvature of 8 corners is adopted in ascending order of radius of curvature, and N is 8.]
The average value PA (hereinafter, also referred to as “average circularity”) of the circularity P represented by is 0.1 to 0.8.
 本発明のバインダーに含まれる水溶性樹脂粉体は、上記のとおり平均円磨度PAは0.1~0.8であるが、好ましくは0.12~0.7であり、より好ましくは0.14~0.65であり、さらに好ましくは0.16~0.6である。 As described above, the water-soluble resin powder contained in the binder of the present invention has an average roundness PA of 0.1 to 0.8, preferably 0.12 to 0.7, and more preferably 0. It is .14 to 0.65, more preferably 0.16 to 0.6.
 平均円磨度が上記特定の範囲にあると、従来の水溶性樹脂粉体からなるバインダーと比較して、配管やサイロ内で樹脂粉体の融着に起因する凝集物の発生が生じ難い。この理由は必ずしも明らかでないが、各粒子の角が丸みを帯びているため、粒子同士の接触面積が小さく、その結果として粒子の融着が生じにくいためと推測される。 When the average degree of roundness is within the above-mentioned specific range, agglomerates due to fusion of the resin powder are less likely to occur in the piping or silo as compared with the conventional binder made of water-soluble resin powder. The reason for this is not always clear, but it is presumed that since the corners of each particle are rounded, the contact area between the particles is small, and as a result, the fusion of the particles is unlikely to occur.
 水溶性樹脂は、水100gに対してかかる樹脂1g以上の溶解性を有する樹脂であれば特に限定されない。例えば、このような水溶性樹脂としては、ビニルアルコール系重合体とその誘導体、(メタ)アクリル酸等のアクリル系重合体とその誘導体、カルボキシメチルセルロース等のセルロース誘導体、アルギン酸とその中和物、ポリビニルピロリドン等が挙げられる。 The water-soluble resin is not particularly limited as long as it has a solubility of 1 g or more of the resin in 100 g of water. For example, such water-soluble resins include vinyl alcohol-based polymers and derivatives thereof, acrylic polymers and derivatives such as (meth) acrylic acid, cellulose derivatives such as carboxymethyl cellulose, alginic acid and its neutralized products, and polyvinyl. Examples include pyrrolidone.
 これらのうち、ビニルアルコール系重合体とその誘導体は、炭素材、金属、金属酸化物等の蓄電デバイスに用いられる活物質に対して良好な親和性を有するため、水溶性樹脂として好適に用いられる。 Of these, vinyl alcohol-based polymers and their derivatives have good affinity for active materials used in power storage devices such as carbon materials, metals, and metal oxides, and are therefore preferably used as water-soluble resins. ..
 水溶性樹脂としてPVAを用いる場合、通常、これは水溶性樹脂粉体の主成分とされる。なお、主成分とは、質量基準で最も含有量の多い成分をいう。水溶性樹脂粉体の不揮発分に占めるPVAの含有量は、50質量%以上が好ましく、70質量%以上がより好ましく、90質量%以上がさらに好ましく、99質量%以上がよりさらに好ましい場合もある。水溶性樹脂粉体の不揮発分に占めるPVAの含有量の上限は100質量%であってよい。水溶性樹脂粉体に含まれていてよいPVA以外の不揮発分としては、PVA以外の樹脂、界面活性剤、可塑剤、消泡剤、粘度調整剤等の添加剤、製造時に用いられた各化合物等が挙げられる。また、水溶性樹脂粉体における揮発分の含有量は、通常20質量%以下であり、15質量%以下が好ましく、10質量%以下がより好ましい。水溶性樹脂粉体に含まれ得る揮発分としては、アルコール、水等が挙げられる。 When PVA is used as the water-soluble resin, it is usually the main component of the water-soluble resin powder. The main component means the component having the highest content on a mass basis. The content of PVA in the non-volatile content of the water-soluble resin powder is preferably 50% by mass or more, more preferably 70% by mass or more, further preferably 90% by mass or more, and even more preferably 99% by mass or more. .. The upper limit of the content of PVA in the non-volatile content of the water-soluble resin powder may be 100% by mass. Non-volatile components other than PVA that may be contained in the water-soluble resin powder include resins other than PVA, surfactants, plasticizers, defoaming agents, additives such as viscosity modifiers, and compounds used during production. And so on. The content of the volatile matter in the water-soluble resin powder is usually 20% by mass or less, preferably 15% by mass or less, and more preferably 10% by mass or less. Examples of the volatile matter that can be contained in the water-soluble resin powder include alcohol and water.
 ビニルアルコール系重合体(「ポリビニルアルコール」または単に「PVA」ともいう)は、ビニルアルコール単位を単量体単位(すなわち構成単位)として有する重合体である。PVAは、通常、ポリビニルエステルをけん化することで得られる。PVAにおける全単量体単位に占めるビニルアルコール単位の割合は、35モル%以上が好ましく、50モル%以上がより好ましく、70モル%以上がさらに好ましく、80モル%以上又は90モル%以上がよりさらに好ましい場合もある。ビニルアルコール単位の割合を上記下限値以上とすることで、特に湿度が高い環境下での通過性が高まり、また破砕及び表面加工を経る製造方法によって本発明における水溶性樹脂粉体を効率的に製造しやすくなる。一方、上記ビニルアルコール単位の割合は、100モル%であってよいが、99.99モル%以下が好ましく、99モル%以下がより好ましい。 A vinyl alcohol-based polymer (also referred to as "polyvinyl alcohol" or simply "PVA") is a polymer having a vinyl alcohol unit as a monomer unit (that is, a constituent unit). PVA is usually obtained by saponifying a polyvinyl ester. The ratio of vinyl alcohol units to all monomer units in PVA is preferably 35 mol% or more, more preferably 50 mol% or more, further preferably 70 mol% or more, and more preferably 80 mol% or more or 90 mol% or more. It may be even more preferable. By setting the ratio of the vinyl alcohol unit to the above lower limit value or more, the passability is enhanced particularly in a high humidity environment, and the water-soluble resin powder in the present invention can be efficiently produced by a production method that undergoes crushing and surface processing. It will be easier to manufacture. On the other hand, the ratio of the vinyl alcohol unit may be 100 mol%, but is preferably 99.99 mol% or less, and more preferably 99 mol% or less.
 PVAのけん化度は、35モル%以上が好ましく、50モル%以上がより好ましく、70モル%以上がさらに好ましく、80モル%以上又は90モル%以上がよりさらに好ましい場合もある。けん化度を上記下限値以上とすることで、各種部材に対する接着性が上がり、放電容量などの電池性能が向上しやすく、また破砕及び表面加工を経る製造方法によって本発明における水溶性樹脂粉体を効率的に製造しやすくなる。一方、上記けん化度は、100モル%以下であってよいが、99.99モル%以下が好ましく、99モル%以下がより好ましい。けん化度は、JIS K6726:1994に記載の方法により測定することができる。 The saponification degree of PVA is preferably 35 mol% or more, more preferably 50 mol% or more, further preferably 70 mol% or more, and even more preferably 80 mol% or more or 90 mol% or more. By setting the saponification degree to the above lower limit value or more, the adhesiveness to various members is improved, the battery performance such as the discharge capacity is easily improved, and the water-soluble resin powder in the present invention is produced by a manufacturing method that undergoes crushing and surface processing. It becomes easy to manufacture efficiently. On the other hand, the saponification degree may be 100 mol% or less, but 99.99 mol% or less is preferable, and 99 mol% or less is more preferable. The degree of saponification can be measured by the method described in JIS K6726: 1994.
 PVAは、ビニルアルコール単位及びビニルエステル単位以外の他の単量体単位(構成単位)を有していてもよい。上記他の単量体単位を与える単量体としては、エチレン、プロピレン、1-ブテン、イソブテン、1-ヘキセン等のα-オレフィン;アクリル酸、メタクリル酸;アクリル酸メチル、アクリル酸エチル等のアクリル酸エステル;メタクリル酸メチル、メタクリル酸エチル等のメタクリル酸エステル;N-メチルアクリルアミド、N-エチルアクリルアミド等のアクリルアミド誘導体;N-メチルメタクリルアミド、N-エチルメタクリルアミド等のメタクリルアミド誘導体;メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、イソプロピルビニルエーテル、n-ブチルビニルエーテル等のビニルエーテル;エチレングリコールビニルエーテル、1,3-プロパンジオールビニルエーテル、1,4-ブタンジオールビニルエーテル等のヒドロキシ基含有ビニルエーテル;アリルアセテート;プロピルアリルエーテル、ブチルアリルエーテル、ヘキシルアリルエーテル等のアリルエーテル;オキシアルキレン基を有する単量体;酢酸イソプロペニル;3-ブテン-1-オール、4-ペンテン-1-オール、5-ヘキセン-1-オール、7-オクテン-1-オール、9-デセン-1-オール、3-メチル-3-ブテン-1-オール等のヒドロキシ基含有α-オレフィン;ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、ビニルジメチルメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジエトキシシラン、ビニルジメチルエトキシシラン、3-(メタ)アクリルアミドプロピルトリメトキシシラン、3-(メタ)アクリルアミドプロピルトリエトキシシラン等のシリル基を有する単量体等が挙げられる。これらの中でも、α-オレフィン、アクリル酸、メタクリル酸、アクリル酸エステル及びメタクリル酸エステルが好ましい。 PVA may have a monomer unit (constituent unit) other than the vinyl alcohol unit and the vinyl ester unit. Examples of the monomer giving the other monomer unit include α-olefins such as ethylene, propylene, 1-butene, isobutene and 1-hexene; acrylic acid and methacrylic acid; acrylics such as methyl acrylate and ethyl acrylate. Acid ester; Methacrylate ester such as methyl methacrylate and ethyl methacrylate; acrylamide derivative such as N-methylacrylamide and N-ethylacrylamide; Methacrylate derivative such as N-methylmethacrylate and N-ethylmethacrylate; Methylvinyl ether, Vinyl ethers such as ethyl vinyl ether, n-propyl vinyl ether, isopropyl vinyl ether and n-butyl vinyl ether; hydroxy group-containing vinyl ethers such as ethylene glycol vinyl ether, 1,3-propanediol vinyl ether and 1,4-butanediol vinyl ether; allyl acetate; propyl allyl Allyl ethers such as ethers, butyl allyl ethers, and hexyl allyl ethers; monomers having an oxyalkylene group; isopropenyl acetate; 3-butene-1-ol, 4-penten-1-ol, 5-hexene-1-ol , 7-octen-1-ol, 9-decene-1-ol, 3-methyl-3-buten-1-ol and other hydroxy group-containing α-olefins; vinyltrimethoxysilane, vinylmethyldimethoxysilane, vinyldimethylmethoxy Monomers having a silyl group such as silane, vinyl triethoxysilane, vinyl methyl diethoxysilane, vinyl dimethyl ethoxysilane, 3- (meth) acrylamide propyltrimethoxysilane, 3- (meth) acrylamide propyltriethoxysilane, etc. Can be mentioned. Among these, α-olefin, acrylic acid, methacrylic acid, acrylic acid ester and methacrylic acid ester are preferable.
 PVAにおける全単量体単位に占める上記他の単量体単位の割合は、20モル%以下が好ましいことがあり、10モル%以下がより好ましいことがある。一方、上記他の単量体単位の割合は、例えば0.1モル%以上であってよく、1モル%以上であってもよい。 The ratio of the above-mentioned other monomer units to the total monomer units in PVA may be preferably 20 mol% or less, and more preferably 10 mol% or less. On the other hand, the ratio of the other monomer units may be, for example, 0.1 mol% or more, and may be 1 mol% or more.
 PVAの粘度平均重合度は特に制限されないが、200以上が好ましく、250以上がより好ましく、400以上がさらに好ましく、600以上が特に好ましい。上記粘度平均重合度は、5,000以下が好ましく、4,500以下がより好ましく、3,500以下がさらに好ましい。粘度平均重合度を上記範囲にすることにより、上記平均円磨度を有する樹脂粒子の工業的な製造が容易となる。なお、粘度平均重合度はJIS K6726:1994に準じて測定することができる。すなわち、PVAをけん化度99.5モル%以上に再けん化し、精製した後、30℃の水中で測定した極限粘度[η](単位:リットル/g)から、次式により求めることができる。
  粘度平均重合度=([η]×1,0000/8.29)(1/0.62)
The viscosity average degree of polymerization of PVA is not particularly limited, but is preferably 200 or more, more preferably 250 or more, further preferably 400 or more, and particularly preferably 600 or more. The viscosity average degree of polymerization is preferably 5,000 or less, more preferably 4,500 or less, and even more preferably 3,500 or less. By setting the viscosity average degree of polymerization within the above range, industrial production of resin particles having the above average degree of roundness becomes easy. The viscosity average degree of polymerization can be measured according to JIS K6726: 1994. That is, PVA can be re-saponified to a saponification degree of 99.5 mol% or more, purified, and then determined by the following formula from the ultimate viscosity [η] (unit: liter / g) measured in water at 30 ° C.
Viscosity average degree of polymerization = ([η] × 1,0000 / 8.29) (1 / 0.62)
 本発明における水溶性樹脂粉体(すなわち、水溶性樹脂粉体を構成する粒子)の平均粒子径は100μm以上であり、150μm以上が好ましく、300μm以上がより好ましい。平均粒子径が100μm以上であることで、粉塵爆発が生じ難くなり、安全性を高めることができる。上記平均粒子径は2,000μm以下であり、1,500μm以下が好ましく、1,000μm以下がより好ましく、850μm以下がさらに好ましい。平均粒子径が2000μm以下であることで、溶媒への溶解がしやすくなり、ゲル状のダマの発生を抑え、均一な電極を作製することができる。 The average particle size of the water-soluble resin powder (that is, the particles constituting the water-soluble resin powder) in the present invention is 100 μm or more, preferably 150 μm or more, and more preferably 300 μm or more. When the average particle size is 100 μm or more, dust explosion is less likely to occur, and safety can be improved. The average particle size is 2,000 μm or less, preferably 1,500 μm or less, more preferably 1,000 μm or less, still more preferably 850 μm or less. When the average particle size is 2000 μm or less, it becomes easy to dissolve in a solvent, the generation of gel-like lumps is suppressed, and a uniform electrode can be produced.
 水溶性樹脂粉体(すなわち、水溶性樹脂粉体を構成する粒子)の平均粒子径は、JIS K7369:2009に記載の方法に準拠して測定することができる。 The average particle size of the water-soluble resin powder (that is, the particles constituting the water-soluble resin powder) can be measured according to the method described in JIS K7369: 2009.
 本発明における水溶性樹脂粉体(すなわち、水溶性樹脂粉体を構成する粒子)の平均円磨度(粒子径100~1,000μmの粒子から任意に抽出した50個の粒子の円磨度Pの平均値PA)は0.1以上であることが重要であり、0.2以上が好ましく、0.25以上がより好ましく、0.3以上がさらに好ましく、0.33以上が特に好ましく、0.35以上が極めて好ましいこともある。平均円磨度を0.1以上とすることで、溶媒への溶解がしやすくなり、ゲル状のダマの発生を抑え、均一な電極を作製することができる。一方、上記平均円磨度は0.8以下であることが重要であり、0.7以下が好ましい。平均円磨度を0.8以下とすることで、本発明における水溶性樹脂粉体の生産性を高めることができる。また、平均円磨度が上記上限以下の水溶性樹脂粉体は、破砕及び表面加工を行う製造方法によって、効果的に製造することができる。 Average roundness of the water-soluble resin powder (that is, particles constituting the water-soluble resin powder) in the present invention (roundness P of 50 particles arbitrarily extracted from particles having a particle size of 100 to 1,000 μm) It is important that the average value PA) of is 0.1 or more, preferably 0.2 or more, more preferably 0.25 or more, further preferably 0.3 or more, particularly preferably 0.33 or more, and 0. .35 or higher may be highly preferred. By setting the average roundness to 0.1 or more, it becomes easy to dissolve in a solvent, the generation of gel-like lumps is suppressed, and a uniform electrode can be produced. On the other hand, it is important that the average degree of roundness is 0.8 or less, preferably 0.7 or less. By setting the average roundness to 0.8 or less, the productivity of the water-soluble resin powder in the present invention can be increased. Further, the water-soluble resin powder having an average roundness of less than or equal to the above upper limit can be effectively produced by a production method of crushing and surface processing.
 水溶性樹脂粉体(すなわち、水溶性樹脂粉体を構成する粒子)の平均円磨度は、下記の方法により求めることができる。水溶性樹脂粉体中の粒子径100~1,000μm(又は、ふるい網に基づく粒子径106~1,000μm)の粒子から任意に50個の粒子を抽出する。粒子径100~1,000μmの粒子は、ふるい分けにおいて、公称目開き1,000μm(16メッシュ)のふるい網を通過し、公称目開き106μm(150メッシュ)のふるい網を通過しなかった粒子として選別することができる。上記機械ふるい分けは、例えばJIS K7369:2009に記載の方法により行うことができる。抽出した1つの粒子について、見かけの面積が最大になる投影図に対して、曲率半径rの小さい順に8個の角(角が8個未満、すなわち7個以下の場合には、その全ての角)を抽出し、その角毎の曲率半径rを測定する。また、上記見かけの面積が最大になる投影図に基づき、粒子の最大内接円の半径Rを測定する。粒子が有する角の数をN(粒子が有する角の数が9以上の場合は、Nは8とする)とし、測定したr及びRに基づき、下記式(1)により1つの粒子の円磨度Pが求められる。円磨度Pが低い場合、粒子に角張った角が多いことを示し、円磨度が高い場合は粒子が丸みを帯びていることを示す。 The average roundness of the water-soluble resin powder (that is, the particles constituting the water-soluble resin powder) can be determined by the following method. Arbitrarily 50 particles are extracted from the particles having a particle size of 100 to 1,000 μm (or a particle size of 106 to 1,000 μm based on a sieving net) in the water-soluble resin powder. Particles having a particle size of 100 to 1,000 μm are sorted as particles that have passed through a sieving net with a nominal opening of 1,000 μm (16 mesh) and have not passed through a sieving net with a nominal opening of 106 μm (150 mesh) in sieving. can do. The mechanical sieving can be performed by, for example, the method described in JIS K7369: 2009. The extracted one particle, the projection view area of the apparent is maximized, eight corners (corner is less than eight in ascending order of the radius of curvature r i, that is, when the 7 or less, all that extract the corner), for measuring the radius of curvature r i of each the corner. Further, the radius R of the maximum inscribed circle of the particle is measured based on the projection drawing that maximizes the apparent area. The number of angles of the particle is N (when the number of angles of the particle is 9 or more, N is 8), and based on the measured ri and R, the circle of one particle is calculated by the following formula (1). Polishing degree P is required. A low degree of roundness P indicates that the particles have many angular corners, and a high degree of roundness indicates that the particles are rounded.
Figure JPOXMLDOC01-appb-M000004
[式(1)中、
 riは粒子の角毎の曲率半径であり、
 Rは粒子の最大内接円の半径であり、
 Nは粒子が有する角の数であり、
 但し、粒子の角の数が9以上である場合、曲率半径の小さい順に8個の角の曲率半径を採用し、Nは8とする]
Figure JPOXMLDOC01-appb-M000004
[In equation (1),
r i is the radius of curvature for each angle of the particle,
R is the radius of the maximum inscribed circle of the particle,
N is the number of horns that the particle has,
However, when the number of corners of the particle is 9 or more, the radius of curvature of 8 corners is adopted in ascending order of radius of curvature, and N is 8.]
 抽出した50個の粒子に対して上記円磨度Pの測定を行い、これら50個の粒子の円磨度Pの平均値PAを求める。この平均値PAが平均円磨度である。 The above-mentioned circularity P is measured for the extracted 50 particles, and the average value PA of the circularity P of these 50 particles is obtained. This average value PA is the average degree of roundness.
 本発明における水溶性樹脂粉体において、粒子径100~1,000μm(又は、ふるい網に基づく粒子径106~1,000μm)の粒子の含有率は特に制限されないが、50質量%以上であることが好ましく、55質量%以上がより好ましく、60質量%以上がさらに好ましい。一方、粒子径100~1,000μmの粒子の含有率の上限は、100質量%であってよい。粒子径100~1,000μmの粒子の含有率が上記範囲内であることにより、配管やサイロ内にて粒子同士の融着が生じにくくなり、樹脂粉体の溶解時にゲル状のダマが生じにくくなる。それに伴い、バインダー溶液として電極作製に使用した場合、電極の均一性(均質性)が高まる。樹脂粉体における粒子径100~1,000μmの粒子の含有率は、公称目開き1,000μm(16メッシュ)のふるい網及び公称目開き106μm(150メッシュ)のふるい網を使用し、JIS K7369:2009に記載の方法に沿って求めることができる。 In the water-soluble resin powder of the present invention, the content of particles having a particle size of 100 to 1,000 μm (or a particle size of 106 to 1,000 μm based on a sieve net) is not particularly limited, but is 50% by mass or more. Is preferable, 55% by mass or more is more preferable, and 60% by mass or more is further preferable. On the other hand, the upper limit of the content of particles having a particle size of 100 to 1,000 μm may be 100% by mass. When the content of particles having a particle size of 100 to 1,000 μm is within the above range, fusion of the particles is less likely to occur in the piping or silo, and gel-like lumps are less likely to occur when the resin powder is dissolved. Become. Along with this, when used as a binder solution for electrode fabrication, the uniformity (homogeneity) of the electrode is enhanced. The content of particles having a particle size of 100 to 1,000 μm in the resin powder is determined by using a sieve net having a nominal opening of 1,000 μm (16 mesh) and a sieve net having a nominal opening of 106 μm (150 mesh). It can be obtained according to the method described in 2009.
 本発明における水溶性樹脂粉体(すなわち、水溶性樹脂粉体を構成する粒子)は、下記式(2)を満たすことが好ましく、下記式(2)を満たし、かつ平均粒子径が100~1,000μmであることがより好ましい。このような場合、特に高湿度下における粒子の融着、凝集物の発生を抑えることができる。本発明者の検討によれば、平均円磨度が高いほど、粒子の融着が起きにくい傾向にある。一方、特に高湿度下においては、けん化度の低いPVAを含む水溶性樹脂粉体は、その吸湿性等が影響するため、粒子が融着しやすい。そこで、円磨度Pの平均値PA(平均円磨度)とPVAのけん化度Sとの積(PA×S)を所定値以上とすることで、高湿度下においても粒子の融着を抑えることができる。
  PA×S≧18    (2)
 式(2)中、PAは円磨度Pの平均値である。SはPVAのけん化度(モル%)である。
The water-soluble resin powder (that is, the particles constituting the water-soluble resin powder) in the present invention preferably satisfies the following formula (2), satisfies the following formula (2), and has an average particle size of 100 to 1. More preferably, it is 000 μm. In such a case, it is possible to suppress the fusion of particles and the generation of agglomerates, especially under high humidity. According to the study by the present inventor, the higher the average degree of circularity, the less likely it is that the particles will be fused. On the other hand, especially under high humidity, the water-soluble resin powder containing PVA having a low degree of saponification is affected by its hygroscopicity and the like, so that particles are easily fused. Therefore, by setting the product (PA × S) of the average value PA (average circularity) of the circularity P and the saponification degree S of PVA to a predetermined value or more, the fusion of particles is suppressed even under high humidity. be able to.
PA × S ≧ 18 (2)
In the formula (2), PA is the average value of the degree of roundness P. S is the saponification degree (mol%) of PVA.
 円磨度Pの平均値PA(平均円磨度)とPVAのけん化度Sとの積(PA×S)は、19以上がより好ましく、20以上がさらに好ましい。一方、この積(PA×S)の上限は、特に限定されるものではないが、例えば80以下であってよく、60以下であってもよい。 The product (PA × S) of the average value PA (average circular polishing degree) of the circular polishing degree P and the saponification degree S of PVA is more preferably 19 or more, and further preferably 20 or more. On the other hand, the upper limit of this product (PA × S) is not particularly limited, but may be, for example, 80 or less, or 60 or less.
 本発明における水溶性樹脂粉体を20℃湿度30%の雰囲気下で1週間調湿した後に測定した安息角は、38°未満が好ましく、35°未満がより好ましい。また、本発明における水溶性樹脂粉体を20℃湿度65%の雰囲気下で1週間調湿した後に測定した安息角は、40°未満が好ましく、38°未満がより好ましい。水溶性樹脂粉体の安息角がこのように低い場合、高湿環境下においても、粒子の融着を抑えることができる。なお、これらの安息角の下限は、特に限定されるものではないが、例えば25°以上であってよく、30°以上であってもよい。水溶性樹脂粉体の安息角は、平均円磨度および平均粒子径を制御することによって前記の範囲に制御することができる。また、水溶性樹脂粉体の安息角は、JIS 9301-2-2:1999に記載の方法に沿って測定することができる。 The angle of repose measured after adjusting the humidity of the water-soluble resin powder in the present invention in an atmosphere of 20 ° C. and 30% humidity for one week is preferably less than 38 °, more preferably less than 35 °. The angle of repose measured after adjusting the humidity of the water-soluble resin powder in the present invention in an atmosphere of 20 ° C. and 65% humidity for one week is preferably less than 40 °, more preferably less than 38 °. When the angle of repose of the water-soluble resin powder is so low, it is possible to suppress the fusion of particles even in a high humidity environment. The lower limit of these angles of repose is not particularly limited, but may be, for example, 25 ° or more, or 30 ° or more. The angle of repose of the water-soluble resin powder can be controlled within the above range by controlling the average roundness and the average particle size. The angle of repose of the water-soluble resin powder can be measured according to the method described in JIS 9301-2-2: 1999.
<水溶性樹脂粉体の製造方法>
 本発明における水溶性樹脂粉体の製造方法は特に制限されないが、例えば以下の方法が好ましく用いられる。すなわち、本発明の一実施形態において、水溶性樹脂粉体の製造方法は、
 水溶性樹脂を含む樹脂固形物を粉砕することにより、該水溶性樹脂の粗粉体を得る工程(工程B)、及び
 該粗粉体に含まれる粒子の表面を加工する工程(工程C)
を含む。
<Manufacturing method of water-soluble resin powder>
The method for producing the water-soluble resin powder in the present invention is not particularly limited, but for example, the following method is preferably used. That is, in one embodiment of the present invention, the method for producing the water-soluble resin powder is
A step of obtaining a crude powder of the water-soluble resin by pulverizing a resin solid containing the water-soluble resin (step B), and a step of processing the surface of particles contained in the crude powder (step C).
including.
 本発明における水溶性樹脂粉体において水溶性樹脂としてPVAを使用する場合は、PVAを合成し、PVAを含む樹脂固形物を得る工程(工程A)をさらに含んでよい。 When PVA is used as the water-soluble resin in the water-soluble resin powder of the present invention, the step of synthesizing PVA and obtaining a resin solid containing PVA (step A) may be further included.
(工程A)
 工程Aは、例えば、重合工程、けん化工程等を含むことができる。
(Step A)
Step A can include, for example, a polymerization step, a saponification step, and the like.
 重合工程では、ビニルエステル単量体を重合させてビニルエステル重合体を得る。ビニルエステル単量体を重合する方法としては、例えば塊状重合法、溶液重合法、懸濁重合法、乳化重合法等の公知の方法が挙げられる。これらの方法のうち、無溶媒で行う塊状重合法及びアルコール等の溶媒を用いて行う溶液重合法が好ましく、低級アルコールの存在下で重合する溶液重合法がより好ましい。上記低級アルコールとしては、炭素数3以下のアルコールが好ましく、メタノール、エタノール、n-プロパノール及びイソプロパノールがより好ましく、メタノールがさらに好ましい。塊状重合法や溶液重合法で重合反応を行うにあたって、反応の方式は回分式及び連続式のいずれの方式も採用できる。 In the polymerization step, the vinyl ester monomer is polymerized to obtain a vinyl ester polymer. Examples of the method for polymerizing the vinyl ester monomer include known methods such as a massive polymerization method, a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method. Among these methods, a lumpy polymerization method performed without a solvent and a solution polymerization method performed using a solvent such as alcohol are preferable, and a solution polymerization method of polymerizing in the presence of a lower alcohol is more preferable. As the lower alcohol, an alcohol having 3 or less carbon atoms is preferable, methanol, ethanol, n-propanol and isopropanol are more preferable, and methanol is even more preferable. When carrying out the polymerization reaction by the massive polymerization method or the solution polymerization method, either a batch method or a continuous method can be adopted as the reaction method.
 上記ビニルエステル単量体としては、例えばギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、ピバリン酸ビニル、バーサチック酸ビニル等が挙げられる。中でも、酢酸ビニルが好ましい。 Examples of the vinyl ester monomer include vinyl formate, vinyl acetate, vinyl propionate, vinyl valerate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl benzoate, vinyl pivalate, vinyl versatic acid and the like. Be done. Of these, vinyl acetate is preferable.
 重合反応に使用される開始剤としては、例えば2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)等のアゾ系開始剤;過酸化ベンゾイル、n-プロピルパーオキシカーボネート等の有機過酸化物系開始剤等の公知の開始剤が挙げられる。重合反応を行う際の重合温度については特に制限はないが、5℃以上200℃以下の範囲が適当である。 Examples of the initiator used in the polymerization reaction include 2,2'-azobisisobutyronitrile, 2,2'-azobis (2,4-dimethylvaleronitrile), and 2,2'-azobis (4-methoxy). Azo-based initiators such as −2,4-dimethylvaleronitrile); known initiators such as organic peroxide-based initiators such as benzoyl peroxide and n-propylperoxycarbonate can be mentioned. The polymerization temperature at the time of carrying out the polymerization reaction is not particularly limited, but a range of 5 ° C. or higher and 200 ° C. or lower is suitable.
 ビニルエステル単量体を重合させる際には、本発明の趣旨を損なわない範囲内で、さらに共重合可能な単量体を共重合させることができる。ビニルエステル単量体の重合に際して、得られるPVAの重合度を調節すること等を目的として、連鎖移動剤を共存させてもよい。連鎖移動剤としては、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド、ベンズアルデヒド等のアルデヒド;アセトン、メチルエチルケトン、ヘキサノン、シクロヘキサノン等のケトン;2-ヒドロキシエタンチオール等のメルカプタン;チオ酢酸等のチオカルボン酸;トリクロロエチレン、パークロロエチレン等のハロゲン化炭化水素等が挙げられ、中でもアルデヒド及びケトンが好適に用いられる。連鎖移動剤の添加量は、添加する連鎖移動剤の連鎖移動定数及び目的とするPVAの重合度に応じて決定されるが、一般に、使用されるビニルエステルに対して0.1~10質量%が好ましい。 When polymerizing the vinyl ester monomer, a copolymerizable monomer can be further copolymerized within a range that does not impair the gist of the present invention. When polymerizing the vinyl ester monomer, a chain transfer agent may coexist for the purpose of adjusting the degree of polymerization of the obtained PVA. Examples of the chain transfer agent include aldehydes such as acetaldehyde, propionaldehyde, butylaldehyde and benzaldehyde; ketones such as acetone, methyl ethyl ketone, hexanone and cyclohexanone; mercaptans such as 2-hydroxyethanethiol; thiocarboxylic acids such as thioacetic acid; trichloroethylene and perchloro. Examples thereof include halogenated hydrocarbons such as ethylene, and among them, aldehydes and ketones are preferably used. The amount of the chain transfer agent added is determined according to the chain transfer constant of the chain transfer agent to be added and the degree of polymerization of the target PVA, but is generally 0.1 to 10% by mass with respect to the vinyl ester used. Is preferable.
 けん化工程では、ビニルエステル重合体をアルコール溶液中でアルカリ触媒又は酸触媒を用いてけん化し、PVAを得る。ビニルエステル重合体のけん化反応には、従来公知の水酸化ナトリウム、水酸化カリウム、ナトリウムメトキシド等の塩基性触媒、又はp-トルエンスルホン酸等の酸性触媒を用いた、加アルコール分解又は加水分解反応が適用できる。けん化反応に用いられる溶媒としては、メタノール、エタノール等のアルコール;酢酸メチル、酢酸エチル等のエステル;アセトン、メチルエチルケトン等のケトン;ベンゼン、トルエン等の芳香族炭化水素等が挙げられる。これらは単独で、又は2種以上を組み合わせて用いることができる。これら中でも、メタノール又はメタノールと酢酸メチルとの混合溶液を溶媒として用い、塩基性触媒である水酸化ナトリウムの存在下にけん化反応を行うことが簡便であり好ましい。 In the saponification step, the vinyl ester polymer is saponified in an alcohol solution using an alkali catalyst or an acid catalyst to obtain PVA. Alcohol decomposition or hydrolysis using a conventionally known basic catalyst such as sodium hydroxide, potassium hydroxide or sodium methoxyde, or an acidic catalyst such as p-toluenesulfonic acid is used for the saponification reaction of the vinyl ester polymer. The reaction is applicable. Examples of the solvent used in the saponification reaction include alcohols such as methanol and ethanol; esters such as methyl acetate and ethyl acetate; ketones such as acetone and methyl ethyl ketone; aromatic hydrocarbons such as benzene and toluene. These can be used alone or in combination of two or more. Among these, it is convenient and preferable to carry out the saponification reaction in the presence of sodium hydroxide, which is a basic catalyst, using methanol or a mixed solution of methanol and methyl acetate as a solvent.
 けん化工程は、ベルト型反応器、ニーダー型反応器、塔型反応器等により行うことができる。けん化工程を経ることで、PVAを含む樹脂固形物が得られる。樹脂固形物中の不揮発分に占めるPVAの含有割合は、例えば50質量%以上であり、70質量%以上が好ましく、90質量%以上がより好ましく、99質量%以上がさらに好ましい場合もある。この樹脂固形物中の不揮発分は実質的にPVAを主成分とするものであってよいが、酢酸ナトリウム等の不純物、副生成物等が含まれていてよい。 The saponification step can be performed by a belt type reactor, a kneader type reactor, a tower type reactor, or the like. By going through the saponification step, a resin solid containing PVA can be obtained. The content ratio of PVA in the non-volatile content in the resin solid is, for example, 50% by mass or more, preferably 70% by mass or more, more preferably 90% by mass or more, and further preferably 99% by mass or more. The non-volatile content in the resin solid may be substantially PVA as a main component, but may contain impurities such as sodium acetate, by-products and the like.
(工程B)
 工程Bでは、PVA等の水溶性樹脂を含む樹脂固形物を粉砕する。これにより水溶性樹脂を含む粗粉体が得られる。上記粉砕は、公知の粉砕機により行うことができる。粉砕機としては、得られる粗粉体、ひいては最終的に得られる樹脂粉体を構成する粒子の平均粒子径等を調整するために、粉砕強度等の粉砕の程度を制御可能な装置が好ましい。粉砕強度の調整以外に、処理時間等によっても得られる粗粉体を構成する粒子の平均粒子径等を制御することができる。粗粉体を構成する粒子の平均粒子径は限定されるものではないが、後述する工程Cでの表面加工を行う場合は、該工程による粒度低下を考慮に入れて最終的に得られる樹脂粉体の平均粒子径以上に設定することが好ましい。例えば、粗粉体を構成する粒子の平均粒子径を100~3000μmに設定することで所望の平均粒子径を有する樹脂粉体が最終的に得られる。なお、得られた粗粉体に対して、再度けん化処理を行ってもよい。また、得られた粗粉体に対して、酢酸ナトリウム等の不純物、副生成物等を低減するための洗浄処理、及び揮発分を低減するための乾燥処理等を行ってもよい。粉砕前の樹脂固形物に対して、洗浄処理や乾燥処理を行ってもよい。
(Step B)
In step B, a resin solid containing a water-soluble resin such as PVA is pulverized. As a result, a crude powder containing a water-soluble resin can be obtained. The above pulverization can be performed by a known pulverizer. As the crusher, an apparatus capable of controlling the degree of crushing such as crushing strength is preferable in order to adjust the average particle size and the like of the particles constituting the obtained crude powder and eventually the finally obtained resin powder. In addition to adjusting the crushing strength, the average particle size and the like of the particles constituting the obtained crude powder can also be controlled by the treatment time and the like. The average particle size of the particles constituting the crude powder is not limited, but when the surface processing is performed in the step C described later, the resin powder finally obtained in consideration of the reduction in particle size due to the step. It is preferable to set it to be equal to or larger than the average particle size of the body. For example, by setting the average particle size of the particles constituting the crude powder to 100 to 3000 μm, a resin powder having a desired average particle size can be finally obtained. The obtained crude powder may be saponified again. Further, the obtained crude powder may be subjected to a cleaning treatment for reducing impurities such as sodium acetate, by-products and the like, and a drying treatment for reducing volatile components. The resin solid substance before crushing may be subjected to a cleaning treatment or a drying treatment.
(工程C)
 工程Cでは、粗粉体を構成する粒子の表面を加工する。PVA等の水溶性樹脂を含む樹脂固形物を破砕した場合、通常、得られる粗粉体は非常に角が尖った形状となる。そこで、工程Cにより、角を丸め、平均円磨度が所定範囲の水溶性粉体を効率的に得ることができる。
(Step C)
In step C, the surface of the particles constituting the crude powder is processed. When a resin solid containing a water-soluble resin such as PVA is crushed, the obtained crude powder usually has a very sharp-edged shape. Therefore, in step C, a water-soluble powder having rounded corners and an average degree of roundness within a predetermined range can be efficiently obtained.
 工程Cで用いられる装置としては、粗粉体の表面を研磨することができる限り特に制限はないが、例えば、粉体の充填容器が回転し、粉体同士が接触することにより表面研磨が進むロータリーキルン、容器内で自公転するスクリュー翼によって内容物に三次元運動を与えることが可能な遊星運動型混合機、容器内のパドルやスクリューが回転し、その回転により内部粉体が研磨されるようなミキサー等が挙げられる。ミキサーとしては、ハイスピードミキサー、ヘンシェルミキサー、タービュライザー、レーディゲミキサー等が挙げられる。これら中でも、加工効率の観点から、ミキサーが好ましく、タービュライザー及びレーディゲミキサーがより好ましい。また、工程Cにおいては、加熱しながら粗粉体の表面加工を行ってもよい。 The apparatus used in step C is not particularly limited as long as the surface of the crude powder can be polished. For example, the surface polishing proceeds when the powder filling container rotates and the powders come into contact with each other. A rotary kiln, a planetary motion mixer that can give three-dimensional motion to the contents by a screw blade that revolves in the container, so that the paddle and screw in the container rotate and the internal powder is polished by the rotation. Mixers and the like. Examples of the mixer include a high-speed mixer, a Henschel mixer, a turbulizer, a radige mixer and the like. Among these, from the viewpoint of processing efficiency, a mixer is preferable, and a turbulizer and a radige mixer are more preferable. Further, in the step C, the surface processing of the crude powder may be performed while heating.
 本発明における水溶性樹脂粉体の製造方法は、その他、平均粒子径を調整するためのふるい分け工程等を備えていてもよい。また、工程Cの後に、洗浄処理や乾燥処理を行ってもよい。 The method for producing the water-soluble resin powder in the present invention may also include a sieving step for adjusting the average particle size. Further, after the step C, a cleaning treatment or a drying treatment may be performed.
<蓄電デバイス電極用バインダー溶液>
 本発明のバインダーは、バインダーの溶液状態における粘度を調整する材料をさらに含有してよい。粘度を調整する材料としては、例えば、クエン酸、酒石酸、アスパラギン酸等の多価塩基酸およびその塩、その縮合物、フュームドシリカ、アルミナ等の無機物が挙げられる。これらの添加量は、特に限定されないが、通常、PVA100質量部に対して、好ましくは0.01質量部以上10質量部以下、より好ましくは、0.02質量部以上8質量部以下、さらに好ましくは、0.05質量部以上5質量部以下である。かかる粘度を調整する材料は、より多く含有させる程、本発明のバインダーの溶液状態における粘度を増加させることができる。無機物は、より粒径が小さいものを含有させるほど、バインダーの溶液状態における粘度を増加させ易い。
<Binder solution for power storage device electrodes>
The binder of the present invention may further contain a material for adjusting the viscosity of the binder in a solution state. Examples of the material for adjusting the viscosity include polyvalent basic acids such as citric acid, tartaric acid and aspartic acid and salts thereof, condensates thereof, and inorganic substances such as fumed silica and alumina. The amount of these additions is not particularly limited, but is usually preferably 0.01 part by mass or more and 10 parts by mass or less, more preferably 0.02 parts by mass or more and 8 parts by mass or less, still more preferably, with respect to 100 parts by mass of PVA. Is 0.05 parts by mass or more and 5 parts by mass or less. The more the material for adjusting the viscosity is contained, the more the viscosity of the binder of the present invention in the solution state can be increased. The smaller the particle size of the inorganic substance, the easier it is to increase the viscosity of the binder in the solution state.
 本発明のバインダーまたは後述する本発明の蓄電デバイス電極用バインダー溶液は、本発明の効果を損なわない範囲で、配合剤をさらに含有することができる。配合剤としては、例えば、光安定化剤、紫外線吸収剤、凍結安定化剤、増粘剤、レベリング剤、レオロジー安定化剤、チクソ化剤、消泡剤、可塑剤、潤滑剤、防腐剤、防錆剤、静電防止剤、帯電防止剤、黄変防止剤、pH調整剤、成膜助剤、硬化触媒、架橋反応触媒、架橋剤(グリオキザール、尿素樹脂、メラミン樹脂、多価金属塩、多価イソシアネート、ポリアミドエピクロロヒドリン等)、分散剤等が挙げられる。それぞれの目的に応じて選択したり、組み合わせたりして配合することができる。配合剤の含有量は、バインダーまたは蓄電デバイス電極用バインダー溶液の総量に基づいて、例えば10質量%以下、好ましくは5質量%以下、より好ましくは1質量%以下である。 The binder of the present invention or the binder solution for the power storage device electrode of the present invention described later can further contain a compounding agent as long as the effects of the present invention are not impaired. Examples of the compounding agent include a light stabilizer, an ultraviolet absorber, a freeze stabilizer, a thickener, a leveling agent, a rheology stabilizer, a thixoxing agent, an antifoaming agent, a plasticizer, a lubricant, and a preservative. Anti-corrosive agents, anti-static agents, anti-static agents, anti-yellowing agents, pH adjusters, film-forming aids, curing catalysts, cross-linking reaction catalysts, cross-linking agents (glioxal, urea resin, melamine resin, polyvalent metal salts, Polyhydric isocyanate, polyamide epichlorohydrin, etc.), dispersants, etc. can be mentioned. It can be selected or combined according to each purpose. The content of the compounding agent is, for example, 10% by mass or less, preferably 5% by mass or less, and more preferably 1% by mass or less, based on the total amount of the binder or the binder solution for the power storage device electrode.
 本発明のバインダーは、水溶性樹脂、特にPVAと、必要に応じて含まれる水溶性樹脂以外の成分とを、溶媒(例えば水またはNMP)に溶解させ溶液とし、溶媒を除去することにより得てもよい。また、該溶液をそのまま後述する本発明の蓄電デバイス電極用バインダー溶液として続くスラリーの調製に用いてもよい。その場合、該バインダー溶液中の溶媒以外の成分の組成物が、本発明のバインダーである。本発明のバインダーは、本発明のスラリー組成物の硬化体中においては、活物質等の成分と混合された状態で含まれている。 The binder of the present invention is obtained by dissolving a water-soluble resin, particularly PVA, and a component other than the water-soluble resin contained as necessary in a solvent (for example, water or NMP) to prepare a solution, and removing the solvent. May be good. Further, the solution may be used as it is for the preparation of a slurry which follows as a binder solution for a power storage device electrode of the present invention, which will be described later. In that case, the composition of the components other than the solvent in the binder solution is the binder of the present invention. The binder of the present invention is contained in the cured product of the slurry composition of the present invention in a state of being mixed with components such as an active material.
 本発明の一実施形態としてのバインダー溶液は、本発明のバインダーと、少なくとも1種の溶媒とを含む。溶媒は、水またはNMPが好ましい。溶媒が水である場合は、環境負荷低減や設備の簡便性の観点から好適である。一方、溶媒がNMPである場合は、特に正極用スラリーとして適用される場合に、スラリー中の活物質を劣化させることがないため好適である。 The binder solution as one embodiment of the present invention contains the binder of the present invention and at least one solvent. The solvent is preferably water or NMP. When the solvent is water, it is suitable from the viewpoint of reducing the environmental load and the convenience of the equipment. On the other hand, when the solvent is NMP, it is preferable because the active material in the slurry is not deteriorated, especially when it is applied as a slurry for a positive electrode.
 バインダー溶液は、前述の本発明のバインダーの他に、本発明の効果を損なわない範囲で、溶媒に溶解することが可能な添加剤(添加剤Aとする)を含有することができる。添加剤Aとしては、例えば、ポリエチレングリコール、ポリエチレングリコールジメチルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリエチレンイミン等が挙げられる。添加剤Aの含有量は、バインダー溶液の総量に基づいて、例えば10質量%以下、好ましくは5質量%以下、より好ましくは1質量%以下である。特に、添加剤Aを含まないことが好ましい。 In addition to the binder of the present invention described above, the binder solution can contain an additive (referred to as Additive A) that can be dissolved in a solvent as long as the effect of the present invention is not impaired. Examples of the additive A include polyethylene glycol, polyethylene glycol dimethyl ether, polyethylene glycol diglycidyl ether, and polyethyleneimine. The content of the additive A is, for example, 10% by mass or less, preferably 5% by mass or less, and more preferably 1% by mass or less, based on the total amount of the binder solution. In particular, it is preferable that the additive A is not contained.
 バインダー溶液は、PVA等の水溶性樹脂と、溶媒(例えば水またはNMP)と、必要に応じて含まれる前述したような水溶液樹脂以外の成分とを、公知の方法、例えば撹拌等の方法で混合して得られる。混合温度や混合時間は、溶媒の種類に応じて適宜調整し得る。なお、バインダー溶液は、前述した水溶性樹脂が溶媒に溶解された状態の溶液を示す。溶解された状態とは、溶媒に完全に溶解した水溶性樹脂、特にPVAの質量が、バインダー溶液を作製する際に使用された水溶性樹脂の総質量(100質量%)に対して、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上、よりさらに好ましくは99質量%以上、またさらに好ましくは100質量%である状態を意味する。 The binder solution is prepared by mixing a water-soluble resin such as PVA, a solvent (for example, water or NMP), and a component other than the aqueous solution resin as described above, which is contained if necessary, by a known method, for example, stirring. And get it. The mixing temperature and mixing time can be appropriately adjusted according to the type of solvent. The binder solution indicates a solution in which the above-mentioned water-soluble resin is dissolved in a solvent. In the dissolved state, the mass of the water-soluble resin completely dissolved in the solvent, particularly PVA, is preferably based on the total mass (100% by mass) of the water-soluble resin used in preparing the binder solution. It means a state of 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more, still more preferably 99% by mass or more, and even more preferably 100% by mass.
 本発明のバインダー溶液における水溶性樹脂、特にPVAの含有量は、バインダー溶液の総量に基づいて、好ましくは1質量%以上30質量%以下、より好ましくは3質量%以上20質量%以下、特に好ましくは5質量%以上15質量%以下である。該水溶性樹脂の含有量が1質量%以上であると、電極を形成する際の集電体への活物質の接着性を向上しやすい。該水溶性樹脂の含有量が30質量%以下であると、電極を形成する際の活物質が急激に凝集することを抑制することができる。 The content of the water-soluble resin, particularly PVA, in the binder solution of the present invention is preferably 1% by mass or more and 30% by mass or less, more preferably 3% by mass or more and 20% by mass or less, particularly preferably, based on the total amount of the binder solution. Is 5% by mass or more and 15% by mass or less. When the content of the water-soluble resin is 1% by mass or more, it is easy to improve the adhesiveness of the active material to the current collector when forming the electrode. When the content of the water-soluble resin is 30% by mass or less, it is possible to prevent the active material from rapidly aggregating when forming the electrode.
<蓄電デバイス電極スラリー>
 本発明の一実施形態としての蓄電デバイス電極スラリーは、前述のバインダー溶液と活物質とを含む。
<Storage device electrode slurry>
The power storage device electrode slurry as an embodiment of the present invention contains the above-mentioned binder solution and active material.
 スラリーは、正極および負極のうちのいずれの電極に使用してもよい。また、正極および負極の両方に使用してもよい。活物質は、正極活物質および負極活物質のいずれであってよい。また、溶媒の種類は特に限定されないが、好ましくは、水またはNMP溶媒が使用でき、単独または二種以上を組み合わせて使用できる。 The slurry may be used for either the positive electrode or the negative electrode. Further, it may be used for both the positive electrode and the negative electrode. The active material may be either a positive electrode active material or a negative electrode active material. The type of solvent is not particularly limited, but water or NMP solvent can be preferably used, and can be used alone or in combination of two or more.
 負極活物質としては、例えば、従来から蓄電デバイスの負極活物質として用いられている材料を使用することができる。その例として、アモルファスカーボン、人工グラファイト、天然グラファイト(黒鉛)、メソカーボンマイクロビーズ(MCMB)、ピッチ系炭素繊維、カーボンブラック、活性炭、カーボンファイバー、ハードカーボン、ソフトカーボン、メソポーラスカーボンおよびポリアセン等の導電性高分子等の炭素質材料、Si、SiO等のシリコン系化合物、SnOおよびLiTiOで表される複合金属酸化物やその他の金属酸化物やリチウム金属、リチウム合金等のリチウム系金属、TiSおよびLiTiS等の金属化合物、ならびに、金属酸化物と炭素質材料との複合材料、水素吸蔵合金等が挙げられる。これらの負極活物質は、単独または二種以上組み合わせて使用できる。 As the negative electrode active material, for example, a material conventionally used as a negative electrode active material of a power storage device can be used. Examples are conductive such as amorphous carbon, artificial graphite, natural graphite (graphite), mesocarbon microbeads (MCMB), pitch carbon fiber, carbon black, activated carbon, carbon fiber, hard carbon, soft carbon, mesoporous carbon and polyacene. Carbonous materials such as sex polymers, silicon-based compounds such as Si and SiO x , composite metal oxides represented by SnO x and LiTIO x , other metal oxides, lithium metals, lithium-based metals such as lithium alloys, Examples thereof include metal compounds such as TiS 2 and LiTiS 2 , composite materials of metal oxides and carbonaceous materials, hydrogen storage alloys and the like. These negative electrode active materials can be used alone or in combination of two or more.
 正極活物質としては、例えば、従来から蓄電デバイスの正極活物質として用いられている材料を使用することができる。その例として、TiS、TiS、非晶質MoS、Cu、非晶質VO-P、MoO、VおよびV13等の遷移金属酸化物、ならびにLiCoO、LiNiO、LiMnO、LiMn等のリチウム含有複合金属酸化物、二酸化マンガン、水酸化ニッケル、オキシ水酸化ニッケル等が挙げられる。これらの正極活物質は、単独または二種以上組み合わせて使用できる。 As the positive electrode active material, for example, a material conventionally used as a positive electrode active material of a power storage device can be used. Examples are transitions such as TiS 2 , TiS 3 , amorphous MoS 3 , Cu 2 V 2 O 3 , amorphous V 2 O-P 2 O 5 , MoO 3 , V 2 O 5 and V 6 O 13. Examples include metal oxides, lithium-containing composite metal oxides such as LiCoO 2 , LiNiO 2 , LiMnO 2 , and LiMn 2 O 4 , manganese dioxide, nickel hydroxide, nickel oxyhydroxide, and the like. These positive electrode active materials can be used alone or in combination of two or more.
 スラリーは、導電助剤を含んでいてもよい。導電助剤は、蓄電デバイスを高出力化するために用いられるものであり、正極または負極に使用する場合に応じて適宜選択できる。その例としては、例えば、黒鉛、アセチレンブラック、カーボンブラック、ケッチェンブラック、気相成長炭素繊維等が挙げられる。得られる蓄電デバイスが高出力化しやすい観点から、これらの中でも、好ましくはアセチレンブラックである。 The slurry may contain a conductive auxiliary agent. The conductive auxiliary agent is used to increase the output of the power storage device, and can be appropriately selected depending on the case where it is used for the positive electrode or the negative electrode. Examples thereof include graphite, acetylene black, carbon black, Ketjen black, vapor-grown carbon fiber and the like. Among these, acetylene black is preferable from the viewpoint that the output of the obtained power storage device can be easily increased.
 スラリーが導電助剤を含有する場合、導電助剤の含有量は、活物質100質量部に対して、好ましくは0.1質量部以上15質量部以下、より好ましくは1質量部以上10質量部以下、さらに好ましくは3質量部以上10質量部以下である。導電助剤の含有量が該範囲であると、スラリーが適用される電池容量を低下させることなく、十分な導電補助効果を得ることができる。 When the slurry contains a conductive auxiliary agent, the content of the conductive auxiliary agent is preferably 0.1 part by mass or more and 15 parts by mass or less, and more preferably 1 part by mass or more and 10 parts by mass with respect to 100 parts by mass of the active material. Hereinafter, it is more preferably 3 parts by mass or more and 10 parts by mass or less. When the content of the conductive auxiliary agent is within this range, a sufficient conductive auxiliary effect can be obtained without lowering the battery capacity to which the slurry is applied.
 好ましくは、スラリーにおけるバインダーの含有量は、活物質100質量部に対して、0.1質量部以上20質量部以下である。該含有量が0.1質量部以上であると、集電体への活物質の接着性が向上され、適用される電池の耐久性維持の観点から有利である。さらに、該含有量が20質量部以下であると、放電容量が向上されやすい。該含有量の範囲は、より好ましくは0.2質量部以上18質量部以下、さらに好ましくは0.5質量部以上16質量部以下、よりさらに好ましくは1質量部以上12質量部以下である。 Preferably, the content of the binder in the slurry is 0.1 part by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the active material. When the content is 0.1 part by mass or more, the adhesiveness of the active material to the current collector is improved, which is advantageous from the viewpoint of maintaining the durability of the applied battery. Further, when the content is 20 parts by mass or less, the discharge capacity is likely to be improved. The content range is more preferably 0.2 parts by mass or more and 18 parts by mass or less, further preferably 0.5 parts by mass or more and 16 parts by mass or less, and even more preferably 1 part by mass or more and 12 parts by mass or less.
 スラリーは、バインダー、活物質、導電助剤および溶媒以外にも、必要に応じて、難燃助剤、増粘剤、消泡剤、レベリング剤、密着性付与剤等の添加剤を含むことができる。これらの添加剤を含む場合、添加剤の含有量は、スラリーの総量に基づいて、好ましくは0.1質量%以上10質量%以下程度である。 The slurry may contain additives such as flame-retardant aids, thickeners, defoamers, leveling agents, and adhesion-imparting agents, if necessary, in addition to binders, active materials, conductive aids and solvents. can. When these additives are contained, the content of the additives is preferably about 0.1% by mass or more and 10% by mass or less based on the total amount of the slurry.
 スラリーは、バインダー、活物質、および必要に応じて、導電助剤、溶媒ならびに添加剤を、慣用の方法により、例えばボールミル、ブレンダーミル、3本ロール等の混合機を用いて混合することにより、得ることができる。 The slurry is prepared by mixing binders, active materials and, if necessary, conductive aids, solvents and additives by conventional methods, for example using a mixer such as a ball mill, blender mill, three rolls or the like. Obtainable.
<蓄電デバイス電極>
 本発明の一実施形態としての蓄電デバイス電極は、前述のスラリーの硬化体と集電体とを含む。スラリーの硬化体は、スラリー中の溶媒を乾燥等により除去して得られる硬化物である。
<Storage device electrode>
The power storage device electrode as an embodiment of the present invention includes the cured body and the current collector of the above-mentioned slurry. The cured product of the slurry is a cured product obtained by removing the solvent in the slurry by drying or the like.
 電極は、本発明のスラリーを集電体に塗布し、溶媒を乾燥等により除去して得ることができる。また、乾燥後に電極を圧延処理してもよい。 The electrode can be obtained by applying the slurry of the present invention to a current collector and removing the solvent by drying or the like. Further, the electrode may be rolled after drying.
 集電体は、導電性材料からなるものであれば、特に限定されない。例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金等の金属材料等が挙げられる。これらの集電体は、単独または二種以上組み合わせて使用できる。集電体の中でも、活物質の接着性および放電容量の観点から、負極集電体としては銅が好ましく、正極集電体としてはアルミニウムが好ましい。 The current collector is not particularly limited as long as it is made of a conductive material. Examples thereof include metal materials such as iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold and platinum. These current collectors can be used alone or in combination of two or more. Among the current collectors, copper is preferable as the negative electrode current collector, and aluminum is preferable as the positive electrode current collector from the viewpoint of the adhesiveness of the active material and the discharge capacity.
 スラリーを集電体に塗布する方法としては、特に限定されないが、例えば、押出しコーター、リバースローラー、ドクターブレード、アプリケーター等が挙げられる。スラリーの塗布量は、スラリー組成物由来の硬化体の所望とする厚みに応じて、適宜選択される。 The method of applying the slurry to the current collector is not particularly limited, and examples thereof include an extrusion coater, a reverse roller, a doctor blade, and an applicator. The coating amount of the slurry is appropriately selected according to the desired thickness of the cured product derived from the slurry composition.
 電極の圧延方法としては、金型プレスやロールプレス等の方法が挙げられる。プレス圧としては、電池容量を高めやすい観点から、1MPa以上40MPa以下が好ましい。 Examples of the electrode rolling method include a mold press and a roll press. The press pressure is preferably 1 MPa or more and 40 MPa or less from the viewpoint of easily increasing the battery capacity.
 本発明の電極において、集電体の厚みは、好ましくは1μm以上200μm以下、より好ましくは2μm以上150μm以下である。硬化体の厚みは、好ましくは10μm以上800μm、より好ましくは20μm以上600μm以下である。電極の厚みは、好ましくは20μm以上300μm以下である。 In the electrode of the present invention, the thickness of the current collector is preferably 1 μm or more and 200 μm or less, and more preferably 2 μm or more and 150 μm or less. The thickness of the cured product is preferably 10 μm or more and 800 μm, and more preferably 20 μm or more and 600 μm or less. The thickness of the electrode is preferably 20 μm or more and 300 μm or less.
<蓄電デバイス>
 本発明の一実施形態としての蓄電デバイスは、前述の蓄電デバイス電極を負極および/または正極として含む。
<Power storage device>
The power storage device as one embodiment of the present invention includes the above-mentioned power storage device electrode as a negative electrode and / or a positive electrode.
 蓄電デバイスとしては、例えば、リチウムイオン二次電池、ナトリウムイオン電池、リチウム硫黄電池、全固体電池、リチウムイオンキャパシタ、リチウム電池、ニッケル水素電池、アルカリ乾電池等が挙げられる。 Examples of the power storage device include a lithium ion secondary battery, a sodium ion battery, a lithium sulfur battery, an all-solid-state battery, a lithium ion capacitor, a lithium battery, a nickel hydrogen battery, an alkaline dry battery, and the like.
 本発明の蓄電デバイスは、電極の均一性に優れ、低い電気抵抗、高い放電容量を有している。 The power storage device of the present invention has excellent electrode uniformity, low electrical resistance, and high discharge capacity.
 なお、蓄電デバイスの放電容量は、例えば、後述する実施例に示すように、市販の充放電試験機を用いて充放電試験を実施する方法を用いて算出することができる。 The discharge capacity of the power storage device can be calculated by using, for example, a method of performing a charge / discharge test using a commercially available charge / discharge tester, as shown in Examples described later.
 蓄電デバイスに含まれる電解液は、電解質を溶媒に溶解させる溶液である。該電解質は、通常の電池に用いられるものであれば、液状でもゲル状でもよく、負極活物質および正極活物質の種類に応じて電池としての機能を発揮するものを適宜選択すればよい。具体的な電解質としては、例えば、非水電解質電池においては公知のリチウム塩を好適に使用でき、LiClO、LiBF、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiB10Cl10、LiAlCl、LiCl、LiBr、LiB(C、CFSOLi、CHSOLi、LiCFSO、LiCSO、Li(CFSON、低級脂肪族カルボン酸リチウム等が挙げられる。水系電解質を用いる電池においては、例えば、水酸化カリウム、水酸化ナトリウム、水酸化リチウムを溶質として含むアルカリ水溶液などが挙げられる。 The electrolytic solution contained in the power storage device is a solution that dissolves the electrolyte in a solvent. The electrolyte may be in the form of a liquid or a gel as long as it is used in a normal battery, and an electrolyte that exhibits a function as a battery may be appropriately selected depending on the type of the negative electrode active material and the positive electrode active material. Specific electrolytes, for example, suitably can be used known lithium salt in the nonaqueous electrolyte battery, LiClO 4, LiBF 6, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiB 10 Cl 10 , LiAlCl 4 , LiCl, LiBr, LiB (C 2 H 5 ) 4 , CF 3 SO 3 Li, CH 3 SO 3 Li, LiCF 3 SO 3 , Li C 4 F 9 SO 3 , Li (CF 3 SO) 2) 2 N, include lower aliphatic carboxylic acid lithium, and the like. Examples of batteries using an aqueous electrolyte include an alkaline aqueous solution containing potassium hydroxide, sodium hydroxide, and lithium hydroxide as solutes.
 電解液に含まれる溶媒は、特に限定されない。その具体例としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートおよびビニレンカーボネート等のカーボネート類、γ-ブチルラクトン等のラクトン類、トリメトキシメタン、1,2-ジメトキシエタン、ジエチルエーテル、2-エトキシエタン、テトラヒドロフランおよび2-メチルテトラヒドロフラン等のエーテル類、ジメチルスルホキシド等のスルホキシド類、1,3-ジオキソランおよび4―メチル-1,3―ジオキソラン等のオキソラン類、アセトニトリルやニトロメタン等の含窒素化合物類、ギ酸メチル、酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチルおよびプロピオン酸エチル等の有機酸エステル類、リン酸トリエチル、炭酸ジメチルおよび炭酸ジエチル等の無機酸エステル類、ジグライム類、トリグライム類、スルホラン類、3-メチル-2-オキサゾリジノン等のオキサゾリジノン類、1,3-プロパンスルトン、ならびに1,4-ブタンスルトンおよびナフタスルトン等のスルトン類、水等が挙げられる。これらは、単独または二種以上組み合わせて使用することができる。ゲル状の電解液を用いるときは、ゲル化剤としてニトリル系重合体、アクリル系重合体、フッ素系重合体、アルキレンオキサイド系重合体等を加えることができる。 The solvent contained in the electrolytic solution is not particularly limited. Specific examples thereof include carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, ethylmethyl carbonate, diethyl carbonate and vinylene carbonate, lactones such as γ-butyl lactone, trimethoxymethane and 1,2-dimethoxy. Ethers such as ethane, diethyl ether, 2-ethoxyethane, tetrahydrofuran and 2-methyltetraxide, sulfoxides such as dimethylsulfoxide, oxolanes such as 1,3-dioxolane and 4-methyl-1,3-dioxolane, acetonitrile and Nitrogen-containing compounds such as nitromethane, organic acid esters such as methyl formate, methyl acetate, ethyl acetate, butyl acetate, methyl propionate and ethyl propionate, inorganic acid esters such as triethyl phosphate, dimethyl carbonate and diethyl carbonate, Examples thereof include jiglimes, triglimes, sulfolans, oxazolidinones such as 3-methyl-2-oxazolidinone, 1,3-propane sulton, and sulton such as 1,4-butane sulton and nafta sulton, water and the like. These can be used alone or in combination of two or more. When a gel-like electrolytic solution is used, a nitrile-based polymer, an acrylic-based polymer, a fluorine-based polymer, an alkylene oxide-based polymer, or the like can be added as a gelling agent.
 本発明の電極を正極または負極のいずれか一方に使用する場合、本発明の電極を使用しない方の電極には、慣用の電極を用いることができる。 When the electrode of the present invention is used for either the positive electrode or the negative electrode, a conventional electrode can be used for the electrode that does not use the electrode of the present invention.
 好ましい実施態様の1つにおいて、本発明の蓄電デバイスは、本発明の電極を負極として含み、慣用の電極を正極として含む。正極は、蓄電デバイスに通常使用される正極であれば特に限定されない。 In one of the preferred embodiments, the power storage device of the present invention includes the electrode of the present invention as a negative electrode and a conventional electrode as a positive electrode. The positive electrode is not particularly limited as long as it is a positive electrode normally used for a power storage device.
 あるいは、好ましい別の実施態様の1つにおいて、本発明の蓄電デバイスは、本発明の電極を正極として含み、慣用の電極を負極として含む。負極は、蓄電デバイスに通常使用される負極であれば特に限定されない。 Alternatively, in one of the preferred embodiments, the power storage device of the present invention includes the electrode of the present invention as a positive electrode and a conventional electrode as a negative electrode. The negative electrode is not particularly limited as long as it is a negative electrode normally used for a power storage device.
 また、正極および負極が、いずれも本発明のバインダーを含む電極であってもよい。 Further, both the positive electrode and the negative electrode may be electrodes containing the binder of the present invention.
 本発明の蓄電デバイスを製造する方法としては、特に限定はないが、例えば、次のように製造することができる。すなわち、負極と正極とを、ポリプロピレン多孔膜等のセパレーターを介して重ね合わせ、電池形状に応じて巻く、および/または折る等して、電池容器に入れ、電解液を注入して封口する。電池の形状は、公知のコイン型、ボタン型、シート型、円筒型、角型、扁平型等のいずれであってもよい。 The method for manufacturing the power storage device of the present invention is not particularly limited, but for example, it can be manufactured as follows. That is, the negative electrode and the positive electrode are overlapped with each other via a separator such as a polypropylene porous membrane, wound and / or folded according to the shape of the battery, put into a battery container, and the electrolytic solution is injected to seal the battery. The shape of the battery may be any of known coin type, button type, sheet type, cylindrical type, square type, flat type and the like.
 本発明の蓄電デバイスは、様々な用途に有用である。例えば、小型化、薄型化、軽量化、高性能化の要求される携帯端末に使用される電池としても非常に有用である。また、柔軟性が求められる機器の電池、例えば巻回型乾電池、ラミネート型電池にも好適に用いることができる。 The power storage device of the present invention is useful for various uses. For example, it is very useful as a battery used in a mobile terminal that requires miniaturization, thinning, weight reduction, and high performance. Further, it can be suitably used for batteries of equipment requiring flexibility, for example, winding type dry batteries and laminated type batteries.
 本発明を以下の実施例により具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではない。後述する各実施例および比較例において使用した各PVAの物性値、該各PVAを含むバインダー水溶液およびNMP溶液の評価、電極適用における評価、および電池適用における評価について、以下の方法に従って測定した。 The present invention will be specifically described with reference to the following examples, but the present invention is not limited to these examples. The physical property values of each PVA used in each of the Examples and Comparative Examples described later, the evaluation of the binder aqueous solution and the NMP solution containing each PVA, the evaluation in the electrode application, and the evaluation in the battery application were measured according to the following methods.
[PVAの粘度平均重合度]
 PVAの粘度平均重合度はJIS K6726:1994に準じて測定した。具体的には、PVAのけん化度が99.5モル%未満の場合には、けん化度99.5モル%以上になるまでけん化し、得られたPVAについて、水中、30℃で測定した極限粘度[η](リットル/g)を用いて下記式により粘度平均重合度を求めた。
  粘度平均重合度=([η]×1,0000/8.29)(1/0.62)
[Viscosity average degree of polymerization of PVA]
The viscosity average degree of polymerization of PVA was measured according to JIS K6726: 1994. Specifically, when the degree of saponification of PVA is less than 99.5 mol%, it is saponified until the degree of saponification becomes 99.5 mol% or more, and the obtained PVA is subjected to the ultimate viscosity measured at 30 ° C. in water. Using [η] (liter / g), the viscosity average degree of polymerization was determined by the following formula.
Viscosity average degree of polymerization = ([η] × 1,0000 / 8.29) (1 / 0.62)
[PVAのけん化度]
 PVA(変性PVAを含む)のけん化度は、JIS K6726:1994に記載の方法により求めた。
[Saponification degree of PVA]
The degree of saponification of PVA (including modified PVA) was determined by the method described in JIS K6726: 1994.
[(水溶性)樹脂粉体を構成する粒子の平均粒子径、及び、粒子径100~1,000μmの粒子の含有率]
 JIS標準ふるいを使用して、JIS K7369:2009に記載の方法により樹脂粉体の平均粒子径、及び、粒子径100~1,000μm(又は、ふるい網に基づく粒子径106~1,000μm)の粒子の含有率を求めた。
[Average particle size of particles constituting (water-soluble) resin powder and content of particles having a particle size of 100 to 1,000 μm]
Using a JIS standard sieve, the average particle size of the resin powder and the particle size of 100 to 1,000 μm (or the particle size of 106 to 1,000 μm based on the sieving net) according to the method described in JIS K7369: 2009. The particle content was determined.
[(水溶性)樹脂粉体の平均円磨度]
 上記したふるい分けによって粒子径100~1,000μm(又は、ふるい網に基づく粒子径106~1,000μm)の粒子を選別し、これらの粒子の中から任意の50個を抽出した。これらの粒子に対して、株式会社キーエンス製デジタルマイクロスコープVHX-900を用いた拡大率100倍の画像に基づき、曲率半径r及び最大内接円の半径Rを求め、各粒子の円磨度Pを求めた。50個の粒子の円磨度Pの平均値PAを求め、平均円磨度とした。
[Average roundness of (water-soluble) resin powder]
Particles having a particle size of 100 to 1,000 μm (or a particle size of 106 to 1,000 μm based on a sieving net) were selected by the above-mentioned sieving, and any 50 particles were extracted from these particles. For these particles, based on the expansion 100 times the ratio image using the Keyence Corporation Ltd. digital microscope VHX-900, obtains the radius R of the curvature radius r i and the maximum inscribed circle, the circle of each particle Migakudo I asked for P. The average value PA of the circularity P of 50 particles was obtained and used as the average circularity.
[(水溶性)樹脂粉体の安息角]
 樹脂粉体を20℃湿度30%又は20℃湿度65%の雰囲気下で1週間調湿した。その後、株式会社セイシン企業製マルチテスターMT-1001を用いて、樹脂粉体の安息角を測定した。安息角は、JIS 9301-2-2:1999に記載の方法に沿って測定した。なお、安息角が小さい樹脂粉体ほど、配管やサイロ内で粒子が融着し、凝集物が生じにくいことを発明者らは確認している。
[Angle of repose of (water-soluble) resin powder]
The resin powder was humidity-controlled for 1 week in an atmosphere of 20 ° C. and 30% humidity or 20 ° C. and 65% humidity. Then, the angle of repose of the resin powder was measured using a multi-tester MT-1001 manufactured by Seishin Enterprise Co., Ltd. The angle of repose was measured according to the method described in JIS 9301-2-2: 1999. The inventors have confirmed that the smaller the angle of repose of the resin powder, the less likely it is that particles will fuse in the pipe or silo and agglomerates will form.
[(水溶性)樹脂粉体の溶解性の評価]
 樹脂粉体の溶媒(水またはNMP)への溶解性を確認するため、PVA5質量部に水またはNMP95質量部を加えて攪拌しながら95℃に昇温し、4時間加熱攪拌を行い、PVAの溶解の様子を目視で観察した。冷却後に目開き3mmの金網に通し、以下の基準に従って、溶解性の評価を行った。評価がAのものに関しては、バインダーとして使用した場合、電極の均一性を高めることができる。
 A:金網上に残留物が確認されない。
 B:金網上に透明なゲル状のダマが確認される。
 C:金網上に不透明なゲル状のダマが確認される。
[Evaluation of solubility of (water-soluble) resin powder]
In order to confirm the solubility of the resin powder in the solvent (water or NMP), water or 95 parts by mass of NMP was added to 5 parts by mass of PVA, the temperature was raised to 95 ° C. with stirring, and the mixture was heated and stirred for 4 hours to obtain PVA. The state of dissolution was visually observed. After cooling, it was passed through a wire mesh having a mesh size of 3 mm, and the solubility was evaluated according to the following criteria. When the evaluation is A, when it is used as a binder, the uniformity of the electrode can be improved.
A: No residue is found on the wire mesh.
B: A transparent gel-like lump is confirmed on the wire mesh.
C: An opaque gel-like lump is confirmed on the wire mesh.
[負極および正極適用における電極の均一性(均質性)の評価]
 後述する各実施例および比較例で作製した負極および正極の均一性(均質性)を評価するため、電池用塗工電極の膜厚ばらつきを指標とし、電極4枚、各3点ずつ測定を行った。以下の基準に従って、◎、○、△、×の判定をした。評価が◎、○のものは放電容量、直流抵抗が優れ、評価が◎のものが特に優れる。
 ◎:平均膜厚に対してばらつきが1μm以下
 ○:平均膜厚に対してばらつきが1μmより大きく、2μm以下
 △:平均膜厚に対してばらつきが2μmより大きく、3μm以下
 ×:平均膜厚に対してばらつきが3μmより大きい
[Evaluation of electrode uniformity (homogeneity) when applying negative and positive electrodes]
In order to evaluate the uniformity (homogeneity) of the negative electrode and the positive electrode produced in each of the examples and comparative examples described later, the film thickness variation of the battery coating electrode was used as an index, and four electrodes were measured at three points each. rice field. Judgment of ◎, ○, △, × was made according to the following criteria. Those with a rating of ◎ and ○ are excellent in discharge capacity and DC resistance, and those with a rating of ◎ are particularly excellent.
⊚: Variation with respect to average film thickness is 1 μm or less ◯: Variation with respect to average film thickness is greater than 1 μm and 2 μm or less Δ: Variation with respect to average film thickness is greater than 2 μm and 3 μm or less ×: With average film thickness On the other hand, the variation is larger than 3 μm.
[負極適用におけるリチウムイオン二次電池の放電容量、直流抵抗]
 後述する各実施例および比較例で作製したコイン電池について、市販の充放電試験機(TOSCAT3100、東洋システム製)を用いて試験を実施した。初期充電後に0.1mAの電流を3秒流したときの抵抗値を直流抵抗とした。充電では、リチウム電位に対して0.01Vまで0.2C(約1mA/cm)の定電流充電を行い、さらにリチウム電位に対して0.01Vの定電圧充電を0.02mAの電流となるまで行った。放電では、リチウム電位に対して1.5Vまで0.2C(約0.5mA/cm)の定電流放電を行った。コイン電池を25℃の恒温槽に置き、上述の条件で、初期充放電を実施し、放電容量、直流抵抗を測定した。
[Discharge capacity and DC resistance of lithium-ion secondary battery in negative electrode application]
The coin batteries produced in each of the Examples and Comparative Examples described later were tested using a commercially available charge / discharge tester (TOSCAT3100, manufactured by Toyo System). The resistance value when a current of 0.1 mA was passed for 3 seconds after the initial charge was defined as the DC resistance. In charging, a constant current charge of 0.2 C (about 1 mA / cm 2 ) is performed up to 0.01 V with respect to the lithium potential, and a constant voltage charge of 0.01 V with respect to the lithium potential becomes a current of 0.02 mA. I went to. In the discharge, a constant current discharge of 0.2 C (about 0.5 mA / cm 2 ) was performed up to 1.5 V with respect to the lithium potential. The coin battery was placed in a constant temperature bath at 25 ° C., initial charge / discharge was performed under the above conditions, and the discharge capacity and DC resistance were measured.
[正極適用におけるリチウムイオン二次電池の放電容量、直流抵抗]
 後述する各実施例および比較例で作製したコイン電池について、市販の充放電試験機(TOSCAT3100、東洋システム製)を用いて試験を実施した。初期充電後に0.1mAの電流を3秒流したときの抵抗値を直流抵抗とした。充電では、リチウム電位に対して4.2Vまで0.2C(約1mA/cm)の定電流充電を行った。放電では、リチウム電位に対して0.2C(約0.5mA/cm)の定電流放電を3Vまで行った。コイン電池を25℃の恒温槽に置き、上述の条件で、初期充放電を実施し、放電容量、直流抵抗を測定した。
[Discharge capacity and DC resistance of lithium-ion secondary battery in positive electrode application]
The coin batteries produced in each of the Examples and Comparative Examples described later were tested using a commercially available charge / discharge tester (TOSCAT3100, manufactured by Toyo System). The resistance value when a current of 0.1 mA was passed for 3 seconds after the initial charge was defined as the DC resistance. In charging, constant current charging of 0.2 C (about 1 mA / cm 2 ) was performed up to 4.2 V with respect to the lithium potential. In the discharge, a constant current discharge of 0.2 C (about 0.5 mA / cm 2 ) was performed up to 3 V with respect to the lithium potential. The coin battery was placed in a constant temperature bath at 25 ° C., initial charge / discharge was performed under the above conditions, and the discharge capacity and DC resistance were measured.
[正極適用における二酸化マンガンリチウム電池の放電容量、直流抵抗]
 後述する各実施例および比較例で作製したコイン電池について、市販の充放電試験機(TOSCAT3100、東洋システム製)を用いて試験を実施した。放電前に0.1mAの電流を3秒流したときの抵抗値を直流抵抗値とした。電池電圧が3.2Vとなるように予備放電させ、その後に定抵抗放電(15kΩ)を行い、2.0Vまでの放電容量を測定した。
[Discharge capacity of lithium manganese dioxide battery in positive electrode application, DC resistance]
The coin batteries produced in each of the Examples and Comparative Examples described later were tested using a commercially available charge / discharge tester (TOSCAT3100, manufactured by Toyo System). The resistance value when a current of 0.1 mA was passed for 3 seconds before discharging was defined as the DC resistance value. Pre-discharge was performed so that the battery voltage became 3.2 V, and then constant resistance discharge (15 kΩ) was performed, and the discharge capacity up to 2.0 V was measured.
[正極および負極適用におけるニッケル水素電池の放電容量、直流抵抗]
 後述する各実施例および比較例で作製したコイン電池について、市販の充放電試験機(TOSCAT3100、東洋システム製)を用いて試験を実施した。コイン電池を25℃の恒温槽に置き、0.2Cで充電を行った後、0.4Cで電池の電圧が1.0Vになるまで放電させる充放電作業を5回繰り返し、初期活性化を行った。初期活性化後に0.1mAの電流を3秒流したときの抵抗値を直流抵抗値とした。初期活性化後のコイン電池を0.1Cで充電し、0.2Cで電池の電圧が1.0Vになるまで放電したときの容量を測定し、放電容量とした。
[Discharge capacity and DC resistance of nickel-metal hydride batteries when applying positive and negative electrodes]
The coin batteries produced in each of the Examples and Comparative Examples described later were tested using a commercially available charge / discharge tester (TOSCAT3100, manufactured by Toyo System). The coin battery is placed in a constant temperature bath at 25 ° C., charged at 0.2 C, and then charged / discharged at 0.4 C until the battery voltage reaches 1.0 V. The charging / discharging operation is repeated 5 times for initial activation. rice field. The resistance value when a current of 0.1 mA was passed for 3 seconds after the initial activation was taken as the DC resistance value. The capacity when the coin battery after the initial activation was charged at 0.1 C and discharged at 0.2 C until the voltage of the battery became 1.0 V was measured and used as the discharge capacity.
・リチウムイオン二次電池負極用スラリーの調製
 前述の固形分濃度5質量%のバインダー水溶液、負極活物質としての人造黒鉛(FSN-1、中国杉杉製)、および導電助剤(導電付与剤)としてのSuper-P(ティムカル社製)を専用容器に投入し、遊星攪拌器(ARE-250、シンキー株式会社製)を用いて混練し、負極用スラリーを調製した。投入の際、バインダー水溶液中の固形分が3質量部、人造黒鉛の固形分が96質量部、Super-Pの固形分が1質量部となるようにした。すなわち、負極用スラリー中の活物質と導電助剤とバインダーとの組成比は、固形分として、黒鉛粉末:導電助剤:バインダー=96:1:3(質量比)である。
-Preparation of slurry for negative electrode of lithium ion secondary battery The above-mentioned aqueous binder solution having a solid content concentration of 5% by mass, artificial graphite as a negative electrode active material (FSN-1, manufactured by Sugisugi, China), and a conductive auxiliary agent (conductivity-imparting agent). Super-P (manufactured by Timcal Co., Ltd.) was put into a special container and kneaded using a planetary stirrer (ARE-250, manufactured by Shinky Co., Ltd.) to prepare a slurry for a negative electrode. At the time of charging, the solid content in the binder aqueous solution was 3 parts by mass, the solid content of artificial graphite was 96 parts by mass, and the solid content of Super-P was 1 part by mass. That is, the composition ratio of the active material, the conductive auxiliary agent, and the binder in the slurry for the negative electrode is graphite powder: conductive auxiliary agent: binder = 96: 1: 3 (mass ratio) as the solid content.
・リチウムイオン二次電池用負極の作製
 前述したように得られた負極用スラリーを、バーコーター(T101、松尾産業株式会社製)を用いて銅箔(CST8G、福田金属箔粉工業株式会社製)の集電体上に塗工した。80℃で30分間にわたり、熱風乾燥機で一次乾燥後、ロールプレス(宝泉株式会社製)を用いて圧延処理を行なった。その後、電池用電極(φ14mm)として打ち抜いた後、140℃で3時間にわたり、減圧条件の二次乾燥によってコイン電池用負極を作製した。作製したコイン電池用負極について、前述した方法で電極の均一性の評価を行った。結果は、後の表3にまとめて示す。
-Manufacture of negative electrode for lithium ion secondary battery Copper foil (CST8G, manufactured by Fukuda Metal Leaf Powder Industry Co., Ltd.) was used for the slurry for negative electrode obtained as described above using a bar coater (T101, manufactured by Matsuo Sangyo Co., Ltd.). It was painted on the current collector. After primary drying in a hot air dryer for 30 minutes at 80 ° C., rolling treatment was performed using a roll press (manufactured by Hosen Co., Ltd.). Then, after punching as a battery electrode (φ14 mm), a negative electrode for a coin battery was prepared by secondary drying under reduced pressure conditions at 140 ° C. for 3 hours. With respect to the produced negative electrode for coin batteries, the uniformity of the electrodes was evaluated by the method described above. The results are summarized in Table 3 below.
・リチウムイオン二次電池の作製
 前述したように得られた電池用負極を、アルゴンガス雰囲気下のグローブボックス(美和製作所株式会社製)に移送した。正極には金属リチウム箔(厚さ0.2mm、φ16mm)を用い、セパレーターにはポリプロピレン系(セルガード#2400、ポリポア製)を用い、電解液には六フッ化リン酸リチウム(LiPF)についてエチレンカーボネート(EC)およびエチルメチルカーボネート(EMC)にビニレンカーボネート(VC)を添加した混合溶媒系(1M-LiPF、EC/EMC=3/7vol%、VC質量%)を用いて注入した。かかる構成にて、コイン電池(2032タイプ)を作製した。作製したコイン電池について、前述した方法で放電容量および直流抵抗値の測定を行った。結果は、後の表3にまとめて示す。
-Manufacture of lithium ion secondary battery The negative electrode for the battery obtained as described above was transferred to a glove box (manufactured by Miwa Seisakusho Co., Ltd.) in an argon gas atmosphere. Metallic lithium foil (thickness 0.2 mm, φ16 mm) is used for the positive electrode, polypropylene (Cellguard # 2400, made by Polypore) is used for the separator, and ethylene hexafluorophosphate (LiPF 6) is used as the electrolytic solution. It was injected using a mixed solvent system (1M-LiPF 6 , EC / EMC = 3/7 vol%, VC 2 % by mass) in which vinylene carbonate (VC) was added to carbonate (EC) and ethylmethyl carbonate (EMC). A coin battery (2032 type) was manufactured with such a configuration. With respect to the produced coin battery, the discharge capacity and the DC resistance value were measured by the method described above. The results are summarized in Table 3 below.
・リチウムイオン二次電池正極用スラリーの調製
 さらに、前述の固形分濃度約5質量%のバインダーNMP溶液、正極活物質としてのNCM(日本化学工業社製、「セルシードC-5H」)、および導電助剤(導電付与剤)としてのSuper-P(ティムカル社製)を専用容器に投入し、遊星攪拌器(ARE-250、シンキー株式会社製)を用いて混練し、正極用スラリーを調製した。投入の際、バインダーNMP溶液中の固形分が3質量部、NCMが95質量部、Super-Pの固形分が2質量部となるようにした。すなわち、正極用スラリー中の活物質と導電助剤とバインダーとの組成比は、固形分として、NCM粉末:導電助剤:バインダー=95:2:3(質量比)である。
-Preparation of slurry for positive electrode of lithium ion secondary battery Furthermore, the above-mentioned binder NMP solution having a solid content concentration of about 5% by mass, NCM as a positive electrode active material (manufactured by Nippon Kagaku Kogyo Co., Ltd., "Celseed C-5H"), and conductivity. Super-P (manufactured by Timcal Co., Ltd.) as an auxiliary agent (conductivity-imparting agent) was put into a special container and kneaded using a planetary stirrer (ARE-250, manufactured by Shinky Co., Ltd.) to prepare a slurry for a positive electrode. At the time of charging, the solid content in the binder NMP solution was 3 parts by mass, the NCM was 95 parts by mass, and the solid content of Super-P was 2 parts by mass. That is, the composition ratio of the active material, the conductive auxiliary agent, and the binder in the slurry for the positive electrode is NCM powder: conductive auxiliary agent: binder = 95: 2: 3 (mass ratio) as the solid content.
・リチウムイオン二次電池用正極の作製
 前述したように得られた正極用スラリーを、バーコーター(T101、松尾産業株式会社製)を用いてアルミニウム箔(CST8G、福田金属箔粉工業株式会社製)の集電体上に塗工した。80℃で30分間にわたり、熱風乾燥機で一次乾燥後、ロールプレス(宝泉株式会社製)を用いて圧延処理を行なった。その後、電池用電極(φ14mm)として打ち抜いた後、140℃で3時間にわたり、減圧条件の二次乾燥によってコイン電池用正極を作製した。作製したコイン電池用正極について、前述した方法で電極の均一性の評価を行った。結果は、後の表3にまとめて示す。
-Manufacture of positive electrode for lithium ion secondary battery Aluminum foil (CST8G, manufactured by Fukuda Metal Foil Powder Industry Co., Ltd.) was used to prepare the positive electrode slurry obtained as described above using a bar coater (T101, manufactured by Matsuo Sangyo Co., Ltd.). It was painted on the current collector. After primary drying in a hot air dryer for 30 minutes at 80 ° C., rolling treatment was performed using a roll press (manufactured by Hosen Co., Ltd.). Then, after punching as a battery electrode (φ14 mm), a positive electrode for a coin battery was prepared by secondary drying under reduced pressure conditions at 140 ° C. for 3 hours. With respect to the produced positive electrode for coin batteries, the uniformity of the electrodes was evaluated by the method described above. The results are summarized in Table 3 below.
・リチウムイオン二次電池の作製
 前述したように得られた電池用正極を、アルゴンガス雰囲気下のグローブボックス(美和製作所株式会社製)に移送した。負極には金属リチウム箔(厚さ0.2mm、φ16mm)を用い、セパレーターにはポリプロピレン系(セルガード#2400、ポリポア製)を用い、電解液には六フッ化リン酸リチウム(LiPF)についてエチレンカーボネート(EC)およびエチルメチルカーボネート(EMC)にビニレンカーボネート(VC)を添加した混合溶媒系(1M-LiPF、EC/EMC=3/7vol%、VC質量%)を用いて注入した。かかる構成にて、コイン電池(2032タイプ)を作製した。作製したコイン電池について、前述した方法で放電容量および直流抵抗値の測定を行った。結果は、後の表3にまとめて示す。
-Manufacture of lithium ion secondary battery The positive electrode for the battery obtained as described above was transferred to a glove box (manufactured by Miwa Seisakusho Co., Ltd.) in an argon gas atmosphere. Metallic lithium foil (thickness 0.2 mm, φ16 mm) is used for the negative electrode, polypropylene (Cellguard # 2400, made by Polypore) is used for the separator, and ethylene hexafluorophosphate (LiPF 6) is used as the electrolytic solution. It was injected using a mixed solvent system (1M-LiPF 6 , EC / EMC = 3/7 vol%, VC 2 % by mass) in which vinylene carbonate (VC) was added to carbonate (EC) and ethylmethyl carbonate (EMC). A coin battery (2032 type) was manufactured with such a configuration. With respect to the produced coin battery, the discharge capacity and the DC resistance value were measured by the method described above. The results are summarized in Table 3 below.
・二酸化マンガンリチウム電池正極用スラリーの調製
 前述の固形分濃度5質量%のバインダー水溶液、正極活物質としての二酸化マンガン、および導電助剤(導電付与剤)としてのSuper-P(ティムカル社製)を専用容器に投入し、遊星攪拌器(ARE-250、シンキー株式会社製)を用いて混練し、正極用スラリーを調製した。投入の際、バインダー水溶液中の固形分が3質量部、二酸化マンガンの固形分が95質量部、Super-Pの固形分が2質量部となるようにした。すなわち、正極用スラリー中の活物質と導電助剤とバインダーとの組成比は、固形分として、二酸化マンガン粉末:導電助剤:バインダー=95:2:3(質量比)である。なお、得られたスラリーは二酸化マンガンリチウム電池に限らず、アルカリ乾電池などにも使用可能である。
-Preparation of slurry for positive electrode of lithium manganese dioxide battery The above-mentioned aqueous binder solution having a solid content concentration of 5% by mass, manganese dioxide as a positive electrode active material, and Super-P (manufactured by Timcal) as a conductive auxiliary agent (conductivity-imparting agent) are used. It was put into a special container and kneaded using a planetary stirrer (ARE-250, manufactured by Shinky Co., Ltd.) to prepare a slurry for a positive electrode. At the time of charging, the solid content in the binder aqueous solution was 3 parts by mass, the solid content of manganese dioxide was 95 parts by mass, and the solid content of Super-P was 2 parts by mass. That is, the composition ratio of the active material, the conductive auxiliary agent, and the binder in the slurry for the positive electrode is manganese dioxide powder: conductive auxiliary agent: binder = 95: 2: 3 (mass ratio) as a solid content. The obtained slurry can be used not only for lithium manganese dioxide batteries but also for alkaline batteries and the like.
・二酸化マンガンリチウム電池用正極の作製
 前述したように得られた正極用スラリーを、バーコーター(T101、松尾産業株式会社製)を用いてアルミニウム箔(CST8G、福田金属箔粉工業株式会社製)の集電体上に塗工した。80℃で30分間にわたり、熱風乾燥機で一次乾燥後、ロールプレス(宝泉株式会社製)を用いて圧延処理を行なった。その後、電池用電極(φ14mm)として打ち抜いた後、140℃で3時間にわたり、減圧条件の二次乾燥によってコイン電池用正極を作製した。作製したコイン電池用正極について、前述した方法で電極の均一性の評価を行った。結果は、後の表3にまとめて示す。なお、得られた電極は二酸化マンガンリチウム電池に限らず、アルカリ乾電池などにも使用可能である。
-Manufacture of positive electrode for lithium manganese dioxide battery The slurry for positive electrode obtained as described above was made of aluminum foil (CST8G, manufactured by Fukuda Metal Leaf Powder Industry Co., Ltd.) using a bar coater (T101, manufactured by Matsuo Sangyo Co., Ltd.). It was applied on the current collector. After primary drying in a hot air dryer for 30 minutes at 80 ° C., rolling treatment was performed using a roll press (manufactured by Hosen Co., Ltd.). Then, after punching as a battery electrode (φ14 mm), a positive electrode for a coin battery was prepared by secondary drying under reduced pressure conditions at 140 ° C. for 3 hours. With respect to the produced positive electrode for coin batteries, the uniformity of the electrodes was evaluated by the method described above. The results are summarized in Table 3 below. The obtained electrode can be used not only for a lithium manganese dioxide battery but also for an alkaline dry battery or the like.
・二酸化マンガンリチウム電池の作製
 前述したように得られた電池用正極を、アルゴンガス雰囲気下のグローブボックス(美和製作所株式会社製)に移送した。負極には金属リチウム箔(厚さ0.2mm、φ16mm)を用い、セパレーターにはポリプロピレン系(セルガード#2400、ポリポア製)を用い、電解液には六フッ化リン酸リチウム(LiPF)についてエチレンカーボネート(EC)およびエチルメチルカーボネート(EMC)にビニレンカーボネート(VC)を添加した混合溶媒系(1M-LiPF、EC/EMC=3/7vol%、VC質量%)を用いて注入した。かかる構成にて、コイン電池(2032タイプ)を作製した。作製したコイン電池について、前述した方法で放電容量および直流抵抗値の測定を行った。結果は、後の表3にまとめて示す。
-Manufacture of lithium manganese dioxide battery The positive electrode for the battery obtained as described above was transferred to a glove box (manufactured by Miwa Seisakusho Co., Ltd.) in an argon gas atmosphere. Metallic lithium foil (thickness 0.2 mm, φ16 mm) is used for the negative electrode, polypropylene (Cellguard # 2400, made by Polypore) is used for the separator, and ethylene hexafluorophosphate (LiPF 6) is used as the electrolytic solution. It was injected using a mixed solvent system (1M-LiPF 6 , EC / EMC = 3/7 vol%, VC 2 % by mass) in which vinylene carbonate (VC) was added to carbonate (EC) and ethylmethyl carbonate (EMC). A coin battery (2032 type) was manufactured with such a configuration. With respect to the produced coin battery, the discharge capacity and the DC resistance value were measured by the method described above. The results are summarized in Table 3 below.
・ニッケル水素電池負極用スラリーの調製
 前述の固形分濃度5質量%のバインダー水溶液、負極活物質としての水素吸蔵合金、および導電助剤(導電付与剤)としてのSuper-P(ティムカル社製)を専用容器に投入し、遊星攪拌器(ARE-250、シンキー株式会社製)を用いて混練し、負極用スラリーを調製した。投入の際、バインダー水溶液中の固形分が3質量部、水素吸蔵合金の固形分が95質量部、Super-Pの固形分が2質量部となるようにした。すなわち、負極用スラリー中の活物質と導電助剤とバインダーとの組成比は、固形分として、水素吸蔵合金:導電助剤:バインダー=95:2:3(質量比)である。
-Preparation of nickel-metal hydride battery negative electrode slurry The above-mentioned binder aqueous solution having a solid content concentration of 5% by mass, a hydrogen storage alloy as a negative electrode active material, and Super-P (manufactured by Timcal) as a conductive auxiliary agent (conductivity-imparting agent) are used. It was put into a special container and kneaded using a planetary stirrer (ARE-250, manufactured by Shinky Co., Ltd.) to prepare a slurry for a negative electrode. At the time of charging, the solid content in the binder aqueous solution was 3 parts by mass, the solid content of the hydrogen storage alloy was 95 parts by mass, and the solid content of Super-P was 2 parts by mass. That is, the composition ratio of the active material, the conductive auxiliary agent, and the binder in the slurry for the negative electrode is a hydrogen storage alloy: conductive auxiliary agent: binder = 95: 2: 3 (mass ratio) as a solid content.
・ニッケル水素電池用負極の作製
 前述したように得られた負極用スラリーを、バーコーター(T101、松尾産業株式会社製)を用いて表面にニッケルメッキを施した鉄製パンチングメタル(厚み60μm、孔径1.2mm、開孔率40%)の集電体上に塗工した。80℃で30分間にわたり、熱風乾燥機で一次乾燥後、ロールプレス(宝泉株式会社製)を用いて圧延処理を行なった。その後、電池用電極(φ14mm)として打ち抜いた後、140℃で3時間にわたり、減圧条件の二次乾燥によってコイン電池用負極を作製した。作製したコイン電池用負極について、前述した方法で電極の均一性の評価を行った。結果は、後の表3にまとめて示す。
-Manufacture of negative electrode for nickel-metal hydride battery Iron punching metal (thickness 60 μm, pore diameter 1) whose surface was nickel-plated using a bar coater (T101, manufactured by Matsuo Sangyo Co., Ltd.) for the negative electrode slurry obtained as described above. It was applied on a current collector with a pore size of .2 mm and a hole opening rate of 40%). After primary drying in a hot air dryer for 30 minutes at 80 ° C., rolling treatment was performed using a roll press (manufactured by Hosen Co., Ltd.). Then, after punching as a battery electrode (φ14 mm), a negative electrode for a coin battery was prepared by secondary drying under reduced pressure conditions at 140 ° C. for 3 hours. With respect to the produced negative electrode for coin batteries, the uniformity of the electrodes was evaluated by the method described above. The results are summarized in Table 3 below.
・ニッケル水素電池正極用スラリーの調製
 前述の固形分濃度5質量%のバインダー水溶液、正極活物質としての水酸化ニッケル、および導電助剤(導電付与剤)としてのSuper-P(ティムカル社製)を専用容器に投入し、遊星攪拌器(ARE-250、シンキー株式会社製)を用いて混練し、正極用スラリーを調製した。投入の際、バインダー水溶液中の固形分が3質量部、水酸化ニッケルの固形分が95質量部、Super-Pの固形分が2質量部となるようにした。すなわち、正極用スラリー中の活物質と導電助剤とバインダーとの組成比は、固形分として、水酸化ニッケル:導電助剤:バインダー=95:2:3(質量比)である。
-Preparation of slurry for positive electrode of nickel-metal hydride battery The above-mentioned aqueous solution of a binder having a solid content concentration of 5% by mass, nickel hydroxide as a positive electrode active material, and Super-P (manufactured by Timcal) as a conductive auxiliary agent (conductivity-imparting agent). It was put into a special container and kneaded using a planetary stirrer (ARE-250, manufactured by Shinky Co., Ltd.) to prepare a slurry for a positive electrode. At the time of charging, the solid content in the binder aqueous solution was 3 parts by mass, the solid content of nickel hydroxide was 95 parts by mass, and the solid content of Super-P was 2 parts by mass. That is, the composition ratio of the active material, the conductive auxiliary agent, and the binder in the positive electrode slurry is nickel hydroxide: conductive auxiliary agent: binder = 95: 2: 3 (mass ratio) as a solid content.
・ニッケル水素電池用正極の作製
 前述したように得られた正極用スラリーを、バーコーター(T101、松尾産業株式会社製)を用いてニッケル発泡体(面密度(目付)約300g/m、厚み約1.0mm)の集電体上に塗工した。80℃で30分間にわたり、熱風乾燥機で一次乾燥後、ロールプレス(宝泉株式会社製)を用いて圧延処理を行なった。その後、電池用電極(φ14mm)として打ち抜いた後、140℃で3時間にわたり、減圧条件の二次乾燥によってコイン電池用正極を作製した。作製したコイン電池用正極について、前述した方法で電極の均一性の評価を行った。結果は、後の表3にまとめて示す。
-Manufacture of positive electrode for nickel-metal hydride battery Using a bar coater (T101, manufactured by Matsuo Sangyo Co., Ltd.), a nickel foam (area density (grain) of about 300 g / m 2 and thickness) was used to prepare the positive electrode slurry obtained as described above. It was applied on a current collector (about 1.0 mm). After primary drying in a hot air dryer for 30 minutes at 80 ° C., rolling treatment was performed using a roll press (manufactured by Hosen Co., Ltd.). Then, after punching as a battery electrode (φ14 mm), a positive electrode for a coin battery was prepared by secondary drying under reduced pressure conditions at 140 ° C. for 3 hours. With respect to the produced positive electrode for coin batteries, the uniformity of the electrodes was evaluated by the method described above. The results are summarized in Table 3 below.
・ニッケル水素電池の作製
 前述したように得られたニッケル水素電池用負極と正極を使用し、コイン電池を作製した。セパレーターにはポリプロピレン系(セルガード#2400、ポリポア製)を用い、電解液としてNaOHを含むアルカリ電解液を注入した。アルカリ電解液としては、NaOHを7.5mol/Lで含む水溶液を使用した。かかる構成にて、コイン電池(2032タイプ)を作製した。作製したコイン電池について、前述した方法で放電容量および直流抵抗値の測定を行った。結果は、後の表3にまとめて示す。
-Manufacture of nickel-metal hydride battery A coin battery was manufactured using the negative electrode and positive electrode for the nickel-metal hydride battery obtained as described above. A polypropylene-based separator (Cellguard # 2400, manufactured by Polypore) was used, and an alkaline electrolytic solution containing NaOH was injected as an electrolytic solution. As the alkaline electrolytic solution, an aqueous solution containing NaOH at 7.5 mol / L was used. A coin battery (2032 type) was manufactured with such a configuration. With respect to the produced coin battery, the discharge capacity and the DC resistance value were measured by the method described above. The results are summarized in Table 3 below.
[実施例1]PVA1の樹脂粉体1の製造
 撹拌機、還流冷却管、窒素導入管、及び開始剤の添加口を備えた250Lの反応器に、酢酸ビニル112.5kg及びメタノール37.5kg(酢酸ビニル75質量%:メタノール25質量%)を仕込み、窒素バブリングをしながら30分間系内を窒素置換した。反応器の昇温を開始し、内温が60℃となったところで、2,2’-アゾビスイソブチロニトリル(AIBN)35gを添加し重合を開始し、重合率が50%となったところで冷却し、重合を停止した。重合停止時の固形分濃度は37.0%であった。続いて30℃、減圧下でメタノールを時々添加しながら未反応の酢酸ビニルモノマーの除去を行い、ポリ酢酸ビニル(PVAc)のメタノール溶液(濃度35%)を得た。さらに、これにメタノールを加えて調製したPVAcのメタノール溶液54.05kg(溶液中のPVAc20kg)に、1.86kgのアルカリ溶液(水酸化ナトリウムの10%メタノール溶液)を添加してけん化を行った(けん化溶液のPVAc濃度30%、PVAc中の酢酸ビニルユニットに対する水酸化ナトリウムのモル比0.02モル%)。アルカリ溶液を添加後約1分でゲル状物(樹脂固形物)が生成したので、これを粉砕機(ミキサー)にて5分間粉砕した。粉砕物を40℃で1時間放置してけん化を進行させた後、酢酸メチル50kgを加えて残存するアルカリを中和した。フェノールフタレイン指示薬を用いて中和が終了したことを確認した後、濾別して白色固体を得、これにメタノール200kgを加えて室温で3時間放置洗浄した。上記の洗浄操作を3回繰り返した後、遠心脱液して得られた白色固体を乾燥機中65℃で2日間放置してPVA1の粗粉体を得た。PVA1の重合度は1,700、けん化度は98.5モル%であった。
 次にPVA1の粗粉体を中央機工株式会社製ベッカー型ショベルを搭載したレーディゲミキサー「FKM130D」に充填した。窒素雰囲気の室温下、回転速度160rpmで3時間の表面加工処理を行った。これにより、平均粒子径650μm、平均円磨度0.25の樹脂粉体1が得られた。
[Example 1] Production of resin powder 1 of PVA1 112.5 kg of vinyl acetate and 37.5 kg of methanol (37.5 kg) in a 250 L reactor equipped with a stirrer, a reflux cooling tube, a nitrogen introduction tube, and an initiator addition port. Vinyl acetate (75% by mass: methanol: 25% by mass) was charged, and the inside of the system was replaced with nitrogen for 30 minutes while bubbling with nitrogen. When the temperature of the reactor was started and the internal temperature reached 60 ° C., 35 g of 2,2'-azobisisobutyronitrile (AIBN) was added to start the polymerization, and the polymerization rate became 50%. By the way, it was cooled and the polymerization was stopped. The solid content concentration at the time of stopping the polymerization was 37.0%. Subsequently, the unreacted vinyl acetate monomer was removed by occasionally adding methanol at 30 ° C. under reduced pressure to obtain a methanol solution (concentration 35%) of polyvinyl acetate (PVAc). Further, 1.86 kg of an alkaline solution (10% methanol solution of sodium hydroxide) was added to 54.05 kg (20 kg of PVAc in the solution) of PVAC prepared by adding methanol to the saponification (10% methanol solution of sodium hydroxide). The PVAc concentration of the saponification solution is 30%, and the molar ratio of sodium hydroxide to the vinyl acetate unit in PVAc is 0.02 mol%). A gel-like substance (resin solid substance) was formed about 1 minute after the addition of the alkaline solution, and this was pulverized with a pulverizer (mixer) for 5 minutes. The pulverized product was left at 40 ° C. for 1 hour to allow saponification to proceed, and then 50 kg of methyl acetate was added to neutralize the remaining alkali. After confirming that the neutralization was completed using a phenolphthalein indicator, a white solid was obtained by filtration, 200 kg of methanol was added thereto, and the mixture was washed at room temperature for 3 hours. After repeating the above washing operation three times, the white solid obtained by centrifugation was left in a dryer at 65 ° C. for 2 days to obtain a crude powder of PVA1. The degree of polymerization of PVA1 was 1,700 and the degree of saponification was 98.5 mol%.
Next, the crude powder of PVA1 was filled in a radige mixer "FKM130D" equipped with a Becker type excavator manufactured by Chuo Kiko Co., Ltd. The surface was processed for 3 hours at a rotation speed of 160 rpm at room temperature in a nitrogen atmosphere. As a result, a resin powder 1 having an average particle diameter of 650 μm and an average roundness of 0.25 was obtained.
[実施例2~10、15~16]
 表1に記載の条件としたこと以外は実施例1と同様にして、PVA2の樹脂粉体2等を得た。
[Examples 2 to 10, 15 to 16]
The resin powder 2 and the like of PVA2 were obtained in the same manner as in Example 1 except that the conditions shown in Table 1 were satisfied.
[実施例11]
 撹拌機、還流冷却管、窒素導入管、コモノマー滴下口及び開始剤の添加口を備えた250Lの反応器に、酢酸ビニル120.0kg及びメタノール30.0kg(酢酸ビニル80質量%:メタノール20質量%)を仕込み、窒素バブリングをしながら30分間系内を窒素置換した。反応器の昇温を開始し、内温が60℃となったところで、アセトアルデヒド2.5kg及び2,2’-アゾビスイソブチロニトリル(AIBN)35gを添加し重合を開始し、重合率が50%となったところで冷却し、重合を停止した。重合停止時の固形分濃度は39.3%であった。以下、表1に記載の条件としたこと以外は実施例1と同様にして、PVA11の樹脂粉体11を得た。
[Example 11]
120.0 kg of vinyl acetate and 30.0 kg of methanol (80% by mass of vinyl acetate: 20% by mass of methanol) in a 250 L reactor equipped with a stirrer, a reflux cooling tube, a nitrogen introduction tube, a comonomer dropping port and an initiator addition port. ) Was charged, and the inside of the system was replaced with nitrogen for 30 minutes while bubbling with nitrogen. When the temperature of the reactor was started and the internal temperature reached 60 ° C., 2.5 kg of acetaldehyde and 35 g of 2,2'-azobisisobutyronitrile (AIBN) were added to start the polymerization, and the polymerization rate was increased. When it reached 50%, it was cooled to stop the polymerization. The solid content concentration at the time of stopping the polymerization was 39.3%. Hereinafter, the resin powder 11 of PVA11 was obtained in the same manner as in Example 1 except that the conditions shown in Table 1 were met.
[実施例12]
 特開2019-011282号公報に記載の実施例2と同様の方法で重合及びけん化を行い、重合度1850、けん化度98.5モル%、エチレン単位含有量6モル%のエチレン変性PVA(PVA12)の粗粉体を得た。以下、表1に記載の条件としたこと以外は実施例1と同様にして、PVA12の樹脂粉体12を得た。
[Example 12]
Polymerization and saponification were carried out in the same manner as in Example 2 described in JP-A-2019-011282, and ethylene-modified PVA (PVA12) having a degree of polymerization of 1850, a degree of saponification of 98.5 mol% and an ethylene unit content of 6 mol% was carried out. Coarse powder was obtained. Hereinafter, the resin powder 12 of PVA12 was obtained in the same manner as in Example 1 except that the conditions shown in Table 1 were met.
[実施例13]
 撹拌機、還流冷却管、窒素導入管、コモノマー滴下口及び開始剤の添加口を備えた250Lの反応器に、酢酸ビニル112.5kg、メタノール37.5g(酢酸ビニル75質量%:メタノール25質量%)、及び24質量%でメタクリル酸メチルを溶解したメタノール溶液220mlを仕込み、窒素バブリングをしながら30分間系内を窒素置換した。反応器の昇温を開始し、内温が60℃となったところで、2,2’-アゾビスイソブチロニトリル(AIBN)25gを添加し重合を開始し、上記メタクリル酸メチルのメタノール溶液11Lを逐次投入しながら、重合率が40%となったところで冷却し、重合を停止した。重合停止時の固形分濃度は28.0%であった。以下、表1に記載の条件としたこと以外は実施例1と同様にして、PVA13の樹脂粉体13を得た。
[Example 13]
112.5 kg of vinyl acetate and 37.5 g of methanol (75% by mass of vinyl acetate: 25% by mass of methanol) in a 250 L reactor equipped with a stirrer, a reflux cooling tube, a nitrogen introduction tube, a comonomer dropping port and an initiator addition port. ), And 220 ml of a methanol solution in which methyl methacrylate was dissolved in 24% by mass was charged, and the inside of the system was replaced with nitrogen for 30 minutes while subjecting to nitrogen bubbling. When the temperature of the reactor was raised and the internal temperature reached 60 ° C., 25 g of 2,2'-azobisisobutyronitrile (AIBN) was added to start the polymerization, and the above-mentioned methyl methacrylate solution of methanol (11 L) was started. Was sequentially added and cooled when the polymerization rate reached 40% to stop the polymerization. The solid content concentration at the time of stopping the polymerization was 28.0%. Hereinafter, the resin powder 13 of PVA13 was obtained in the same manner as in Example 1 except that the conditions shown in Table 1 were met.
[実施例14]
 粉砕機による粉砕時間を2分間と短くし、実施例1よりも粗く行ったこと以外は実施例2と同様にして、PVA14の樹脂粉体14を得た。
[Example 14]
The resin powder 14 of PVA14 was obtained in the same manner as in Example 2 except that the pulverization time by the pulverizer was shortened to 2 minutes and the pulverization was performed coarser than in Example 1.
[実施例17~19]
 レーディゲミキサーに代えて、表1に記載の装置で表面加工処理を行ったこと以外は実施例2と同様にして、PVA17の樹脂粉体17等を得た。
[Examples 17 to 19]
A resin powder 17 or the like of PVA17 was obtained in the same manner as in Example 2 except that the surface processing was performed by the apparatus shown in Table 1 instead of the Ladyge mixer.
[実施例20]
粉砕機による粉砕時間を10分間と長くし、実施例1よりも細かく行い、レーディゲミキサーによる表面加工処理を行わなかったこと以外は実施例2と同様にして、PVA20の樹脂粉体20等を得た。
[Example 20]
The resin powder 20 of PVA20 and the like were obtained in the same manner as in Example 2 except that the crushing time by the crusher was lengthened to 10 minutes, the crushing time was finer than that in Example 1, and the surface processing treatment by the Ladyge mixer was not performed. Got
[比較例1]
 粉砕機による粉砕時間を1分間と短くし、実施例14よりもさらに粗く行ったこと以外は実施例2と同様にして、PVA1’の樹脂粉体1’を得た。
[Comparative Example 1]
The resin powder 1'of PVA 1'was obtained in the same manner as in Example 2 except that the crushing time by the crusher was shortened to 1 minute and the crushing time was made coarser than in Example 14.
[比較例2]
 レーディゲミキサーによる表面加工処理を行わなかったこと以外は実施例2と同様にして、PVA2’の樹脂粉体2’を得た。
[Comparative Example 2]
A resin powder 2'of PVA2'was obtained in the same manner as in Example 2 except that the surface processing was not performed by the Ladyge mixer.
 実施例1~20及び比較例1~2で得られた各PVAの重合度及びけん化度、各樹脂粉体の平均円磨度、平均粒子径、及び粒子径100~1,000μmの粒子の含有率、並びに平均円磨度とけん化度との積を表2に示す。 The degree of polymerization and saponification of each PVA obtained in Examples 1 to 20 and Comparative Examples 1 and 2, the average roundness of each resin powder, the average particle size, and the content of particles having a particle size of 100 to 1,000 μm. Table 2 shows the rate and the product of the average degree of roundness and the degree of saponification.
[評価]
 実施例1~20及び比較例1~2で得られた各樹脂粉体について、上記方法にて、20℃湿度30%及び20℃湿度65%の雰囲気下で調湿後の安息角を測定した。測定結果を表2に示す。
[evaluation]
For each of the resin powders obtained in Examples 1 to 20 and Comparative Examples 1 and 2, the angle of repose after humidity control was measured in an atmosphere of 20 ° C. humidity 30% and 20 ° C. humidity 65% by the above method. .. The measurement results are shown in Table 2.
 実施例1~20及び比較例1~2で得られた各樹脂粉体の水・NMPへの溶解性、及び各蓄電デバイスの電極用バインダーとして用いたときの電極均一性(電極均質性)、並びに蓄電デバイス特性を表3に示す。 Solubility of each resin powder obtained in Examples 1 to 20 and Comparative Examples 1 and 2 in water and NMP, and electrode uniformity (electrode homogeneity) when used as an electrode binder for each power storage device. Table 3 shows the characteristics of the power storage device.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表3に示されるように、実施例1~20の樹脂粉体をバインダーとして用いた場合には、水やNMPに溶解した際にゲル状のダマが生じにくいため均一な電極が得られ、その結果、高い放電容量と低い直流抵抗とを有する電池が得られた。一方、平均粒子径が大きい比較例1の樹脂粉体及び平均円磨度が小さい比較例2の樹脂粉体をバインダーとして用いた場合には、水やNMPに溶解した際、ゲル状のダマが生じやすく、それに伴い、電極の均一性が損なわれ、放電容量の低下や直流抵抗の増大が起きる結果となった。 As shown in Table 3, when the resin powders of Examples 1 to 20 are used as a binder, gel-like lumps are unlikely to occur when dissolved in water or NMP, so that a uniform electrode can be obtained. As a result, a battery having a high discharge capacity and a low DC resistance was obtained. On the other hand, when the resin powder of Comparative Example 1 having a large average particle size and the resin powder of Comparative Example 2 having a small average roundness were used as binders, gel-like lumps were generated when dissolved in water or NMP. This is likely to occur, and as a result, the uniformity of the electrodes is impaired, resulting in a decrease in discharge capacity and an increase in DC resistance.

Claims (13)

  1.  水溶性樹脂粉体を含むバインダーであって、
     該水溶性樹脂粉体は、平均粒子径が100~2,000μmの粒子から構成され、
     該水溶性樹脂粉体に含まれる粒子径100~1,000μmの粒子から任意に抽出した50個の粒子に関して、各粒子の下記式(1)
    Figure JPOXMLDOC01-appb-M000001
    [式(1)中、
     riは粒子の角毎の曲率半径であり、
     Rは粒子の最大内接円の半径であり、
     Nは粒子が有する角の数であり、
     但し、粒子の角の数が9以上である場合、曲率半径の小さい順に8個の角の曲率半径を採用し、Nは8とする]
    で表される円磨度Pの平均値PAが0.1~0.8である、バインダー。
    A binder containing water-soluble resin powder.
    The water-soluble resin powder is composed of particles having an average particle diameter of 100 to 2,000 μm.
    With respect to 50 particles arbitrarily extracted from the particles having a particle size of 100 to 1,000 μm contained in the water-soluble resin powder, the following formula (1) of each particle is used.
    Figure JPOXMLDOC01-appb-M000001
    [In equation (1),
    r i is the radius of curvature for each angle of the particle,
    R is the radius of the maximum inscribed circle of the particle,
    N is the number of horns that the particle has,
    However, when the number of corners of the particle is 9 or more, the radius of curvature of 8 corners is adopted in ascending order of radius of curvature, and N is 8.]
    A binder in which the average value PA of the degree of circularity P represented by is 0.1 to 0.8.
  2.  前記水溶性樹脂はビニルアルコール系重合体である、請求項1に記載のバインダー。 The binder according to claim 1, wherein the water-soluble resin is a vinyl alcohol-based polymer.
  3.  前記ビニルアルコール系重合体の粘度平均重合度は200~5,000であり、けん化度は35~99.99モル%である、請求項1又は2に記載のバインダー。 The binder according to claim 1 or 2, wherein the vinyl alcohol-based polymer has an average degree of polymerization of 200 to 5,000 and a degree of saponification of 35 to 99.99 mol%.
  4.  下記式(2)
      PA×S≧18    (2)
    [式(2)中、PAは前記定義と同じであり、Sはビニルアルコール系重合体のけん化度(モル%)である]
    を満たし、該水溶性樹脂粉体は平均粒子径が100~1,000μmである、請求項1~3のいずれかに記載のバインダー。
    The following formula (2)
    PA × S ≧ 18 (2)
    [In the formula (2), PA is the same as the above definition, and S is the saponification degree (mol%) of the vinyl alcohol polymer].
    The binder according to any one of claims 1 to 3, wherein the water-soluble resin powder has an average particle size of 100 to 1,000 μm.
  5.  前記水溶性樹脂粉体において、粒子径100~1,000μmの粒子の含有率は50質量%以上である、請求項1~4のいずれかに記載のバインダー。 The binder according to any one of claims 1 to 4, wherein the content of particles having a particle size of 100 to 1,000 μm is 50% by mass or more in the water-soluble resin powder.
  6.  請求項1~5のいずれかに記載のバインダーを含む蓄電デバイス電極。 A power storage device electrode containing the binder according to any one of claims 1 to 5.
  7.  請求項1~5のいずれかに記載のバインダーと水とを含む蓄電デバイス電極用バインダー溶液。 A binder solution for a power storage device electrode containing the binder and water according to any one of claims 1 to 5.
  8.  N-メチル-2-ピロリドンを含む、請求項7に記載の蓄電デバイス電極用バインダー溶液。 The binder solution for a power storage device electrode according to claim 7, which contains N-methyl-2-pyrrolidone.
  9.  請求項7または8に記載の蓄電デバイス電極用バインダー溶液と活物質とを含む、蓄電デバイス電極スラリー。 A storage device electrode slurry containing the binder solution for a power storage device electrode according to claim 7 or 8 and an active material.
  10.  前記バインダーの含有量は、前記活物質100質量部に対して0.1質量部以上20質量部以下である、請求項9に記載の蓄電デバイス電極スラリー。 The power storage device electrode slurry according to claim 9, wherein the content of the binder is 0.1 part by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the active material.
  11.  請求項9または10に記載の蓄電デバイス電極スラリーの硬化体と集電体とを含む、蓄電デバイス電極。 A power storage device electrode including a cured body and a current collector of the power storage device electrode slurry according to claim 9 or 10.
  12.  請求項11に記載の蓄電デバイス電極を含む、蓄電デバイス。 A power storage device including the power storage device electrode according to claim 11.
  13.  水溶性樹脂を含む樹脂固形物を粉砕することにより、該水溶性樹脂の粗粉体を得る工程、及び
     該粗粉体を構成する粒子の表面を加工する工程
    を含む、請求項1~5のいずれかに記載のバインダーの製造方法。
    Claims 1 to 5 include a step of obtaining a crude powder of the water-soluble resin by crushing a resin solid containing the water-soluble resin, and a step of processing the surface of particles constituting the crude powder. The method for producing a binder according to any one.
PCT/JP2021/010081 2020-03-16 2021-03-12 Binder suitable for electricity storage device electrodes, binder solution, electricity storage device electrode slurry, electricity storage device electrode, and electricity storage device WO2021187366A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022508316A JPWO2021187366A1 (en) 2020-03-16 2021-03-12
CN202180021316.7A CN115210914A (en) 2020-03-16 2021-03-12 Adhesive suitable for electric storage device electrode, adhesive solution, electric storage device electrode slurry, electric storage device electrode, and electric storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-044897 2020-03-16
JP2020044897 2020-03-16

Publications (1)

Publication Number Publication Date
WO2021187366A1 true WO2021187366A1 (en) 2021-09-23

Family

ID=77772134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010081 WO2021187366A1 (en) 2020-03-16 2021-03-12 Binder suitable for electricity storage device electrodes, binder solution, electricity storage device electrode slurry, electricity storage device electrode, and electricity storage device

Country Status (3)

Country Link
JP (1) JPWO2021187366A1 (en)
CN (1) CN115210914A (en)
WO (1) WO2021187366A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016209836A (en) * 2015-05-12 2016-12-15 株式会社クラレ Adsorbent
WO2017029902A1 (en) * 2015-08-14 2017-02-23 旭化成株式会社 Electrode for electrochemical elements

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016209836A (en) * 2015-05-12 2016-12-15 株式会社クラレ Adsorbent
WO2017029902A1 (en) * 2015-08-14 2017-02-23 旭化成株式会社 Electrode for electrochemical elements

Also Published As

Publication number Publication date
CN115210914A (en) 2022-10-18
JPWO2021187366A1 (en) 2021-09-23

Similar Documents

Publication Publication Date Title
CN108140839B (en) Binder for nonaqueous electrolyte secondary battery electrode, method for producing same, and use thereof
JP5195749B2 (en) Method for producing slurry for lithium ion secondary battery electrode
JP5326566B2 (en) Lithium ion secondary battery
US9876231B2 (en) Binder composition for positive electrode of lithium ion secondary battery, slurry composition for positive electrode of lithium ion secondary battery and method of producing the same, method of producing positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP3692965B2 (en) Lithium secondary battery and method for producing positive electrode thereof
KR102129829B1 (en) Slurry for lithium ion secondary battery negative electrodes, electrode for lithium ion secondary batteries, method for producing electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP2010218848A (en) Anode for lithium-ion secondary battery, lithium-ion secondary battery using it, manufacturing method of anode for lithium-ion secondary battery, and slurry used for manufacturing
KR20200014888A (en) Binder composition for nonaqueous electrolyte batteries, aqueous binder solution for nonaqueous electrolyte batteries, slurry composition for nonaqueous electrolyte batteries, electrodes for nonaqueous electrolyte batteries, and nonaqueous electrolyte batteries using the same
JP2014165131A (en) Method for manufacturing slurry composition for lithium ion secondary battery positive electrode use, method for manufacturing lithium ion secondary battery positive electrode, and lithium ion secondary battery
JP2011076981A (en) Manufacturing method of secondary battery positive electrode, slurry for secondary battery positive electrode, and secondary battery
JP2011138621A (en) Manufacturing method of positive electrode of nonaqueous electrolyte secondary battery
JP2014022039A (en) Negative electrode binder for lithium secondary battery
JPWO2018096981A1 (en) Binder for electrochemical devices
TW201840045A (en) Binder composition for non-aqueous electrolyte batteries, and binder aqueous solution for non-aqueous electrolyte batteries, slurry composition and electrod for non-aqueous electrolyte batteries, and non-aqueous electrolyte battery
EP3910704A1 (en) Non-aqueous electrolyte cell electrode binder, non-aqueous electrolyte cell electrode binder solution, non-aqueous electrolyte cell electrode slurry, non-aqueous electrolyte cell electrode, and non-aqueous electrolyte cell
JP2019110125A (en) Binder solution for nonaqueous electrolyte battery electrode
JP4649692B2 (en) Positive electrode mixture paste for lithium secondary battery and lithium secondary battery
JP7183183B2 (en) Binder for non-aqueous electrolyte battery, binder aqueous solution and slurry composition using the same, electrode for non-aqueous electrolyte battery and non-aqueous electrolyte battery
KR20160083718A (en) Composition for preparing negative electrode of lithium secondary battery, method for preparing the same, and lithium secondary battery comprising negative electrode prepared by using the same
WO2012043763A1 (en) Electrode mixture for electricity-storage device, method for manufacturing said electrode mixture, and electricity-storage-device electrode and lithium-ion secondary battery using said electrode mixture
JP2020145062A (en) Negative electrode mixture for secondary battery, negative electrode for secondary battery, and secondary battery
WO2021187366A1 (en) Binder suitable for electricity storage device electrodes, binder solution, electricity storage device electrode slurry, electricity storage device electrode, and electricity storage device
WO2021256467A1 (en) Binder suitable for electricity storage device electrodes, binder solution for electricity storage device electrodes, electricity storage device electrode slurry, electricity storage device electrode, and electricity storage device
KR101623637B1 (en) Slurry composition for electrode and lithium-ion Battery
TWI833722B (en) Binders for non-aqueous electrolyte batteries, aqueous binder solutions and slurry compositions using the same, electrodes for non-aqueous electrolyte batteries and non-aqueous electrolyte batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21772608

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022508316

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21772608

Country of ref document: EP

Kind code of ref document: A1