WO2021124974A1 - Imaging device - Google Patents
Imaging device Download PDFInfo
- Publication number
- WO2021124974A1 WO2021124974A1 PCT/JP2020/045595 JP2020045595W WO2021124974A1 WO 2021124974 A1 WO2021124974 A1 WO 2021124974A1 JP 2020045595 W JP2020045595 W JP 2020045595W WO 2021124974 A1 WO2021124974 A1 WO 2021124974A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- gate electrode
- circuit
- pixel
- imaging device
- Prior art date
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 96
- 239000010410 layer Substances 0.000 claims abstract description 332
- 239000004065 semiconductor Substances 0.000 claims abstract description 94
- 238000006243 chemical reaction Methods 0.000 claims abstract description 35
- 239000000758 substrate Substances 0.000 claims abstract description 33
- 239000011229 interlayer Substances 0.000 claims abstract description 15
- 239000011159 matrix material Substances 0.000 claims abstract description 9
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 37
- 229920005591 polysilicon Polymers 0.000 claims description 37
- 230000003321 amplification Effects 0.000 claims description 36
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 36
- 229910052751 metal Inorganic materials 0.000 claims description 17
- 239000002184 metal Substances 0.000 claims description 17
- 230000004888 barrier function Effects 0.000 claims description 16
- 238000009413 insulation Methods 0.000 claims description 5
- 238000000034 method Methods 0.000 description 32
- 238000009792 diffusion process Methods 0.000 description 25
- 238000007667 floating Methods 0.000 description 25
- 238000001514 detection method Methods 0.000 description 23
- 238000004891 communication Methods 0.000 description 17
- 238000012545 processing Methods 0.000 description 16
- 238000012546 transfer Methods 0.000 description 15
- 230000006870 function Effects 0.000 description 12
- 238000010586 diagram Methods 0.000 description 11
- 238000005530 etching Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- 238000002674 endoscopic surgery Methods 0.000 description 10
- 238000000926 separation method Methods 0.000 description 9
- 238000013461 design Methods 0.000 description 8
- 239000007769 metal material Substances 0.000 description 8
- 210000001519 tissue Anatomy 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 6
- 238000010030 laminating Methods 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 150000002736 metal compounds Chemical class 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 230000005284 excitation Effects 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 238000001356 surgical procedure Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000010336 energy treatment Methods 0.000 description 3
- 208000005646 Pneumoperitoneum Diseases 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- MOFVSTNWEDAEEK-UHFFFAOYSA-M indocyanine green Chemical compound [Na+].[O-]S(=O)(=O)CCCCN1C2=CC=C3C=CC=CC3=C2C(C)(C)C1=CC=CC=CC=CC1=[N+](CCCCS([O-])(=O)=O)C2=CC=C(C=CC=C3)C3=C2C1(C)C MOFVSTNWEDAEEK-UHFFFAOYSA-M 0.000 description 2
- 229960004657 indocyanine green Drugs 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 240000004050 Pentaglottis sempervirens Species 0.000 description 1
- 235000004522 Pentaglottis sempervirens Nutrition 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 230000003187 abdominal effect Effects 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000002073 fluorescence micrograph Methods 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910052845 zircon Inorganic materials 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/76—Addressed sensors, e.g. MOS or CMOS sensors
Definitions
- This disclosure relates to an imaging device.
- An image pickup device having a three-dimensional structure is obtained by, for example, three-dimensionally stacking a semiconductor substrate having a plurality of sensor pixels and a semiconductor layer having a pixel circuit that converts the charge obtained by each sensor pixel into a pixel signal. It is configured (see Patent Document 1).
- the image pickup apparatus transmits a pixel signal based on a semiconductor substrate provided with a plurality of sensor pixels performing photoelectric conversion arranged in a matrix and charges output from each of the sensor pixels.
- the gate electrode of at least one or more transistors included in the pixel circuit includes a plurality of pixel circuits for output, a circuit layer provided on the semiconductor substrate via an interlayer insulating layer, and the circuit. It extends to the plurality of pixel circuits in the plane of the layer and is electrically connected to the gate electrode of the same type of transistor provided for each of the plurality of pixel circuits.
- the image pickup apparatus is based on a semiconductor substrate provided with a plurality of sensor pixels for photoelectric conversion arranged in a matrix and charges output from the plurality of sensor pixels. It has a plurality of pixel circuits for outputting pixel signals, a circuit layer provided on the semiconductor substrate via an interlayer insulating layer, and a gate electrode of at least one or more transistors included in the pixel circuit. Is embedded and provided from above the semiconductor layer included in the circuit layer to the inside of the semiconductor layer.
- a semiconductor substrate in which a plurality of sensor pixels are arranged in a matrix and a pixel that outputs a pixel signal based on the charge output from each of the sensor pixels.
- a circuit layer having a plurality of circuits is laminated, and the gate electrodes of at least one or more transistors included in the pixel circuit are extended to the plurality of pixel circuits and are provided for each of the plurality of pixel circuits. It is electrically connected to the gate electrode of the same type of transistor.
- the image pickup apparatus can reduce the number of wirings extending to the plurality of pixel circuits in the multilayer wiring layer provided above the circuit layer.
- FIG. 1 is a vertical cross-sectional view illustrating a laminated structure of an image pickup apparatus 1 to which the technique according to the present disclosure is applied.
- the image pickup apparatus 1 has a first laminate 10 including sensor pixels that perform photoelectric conversion, and a second laminate 20 including a pixel circuit that converts charges output from the sensor pixels into pixel signals. It is composed of stacking.
- the image pickup device 1 is a so-called back-illuminated image pickup device, and for example, a color filter 40 and a light receiving lens 50 are provided on the light incident surface (also referred to as the back surface) of the first laminated body 10.
- the first laminated body 10 is configured by laminating a first insulating layer 46 on a semiconductor substrate 11.
- the semiconductor substrate 11 is, for example, a silicon substrate, and a photodiode PD, which is an n-type semiconductor region, is provided for each sensor pixel 12.
- the light that has passed through the light receiving lens 50 and the color filter 40 and is incident on the first laminated body 10 is photoelectrically converted by the photodiode PD.
- the element separation unit 43 is provided with an insulating material so as to extend in the normal direction of one main surface of the semiconductor substrate 11, and electrically separates the adjacent sensor pixels 12.
- the element separation unit 43 may be provided, for example, so as to penetrate the semiconductor substrate 11 with SiO 2.
- the semiconductor substrate 11 is provided with a p-well layer 42, which is a p-type semiconductor region, in a part of the surface side on which the first insulating layer 46 is laminated, and p-wells are provided on the side surface of the element separation portion 43.
- Layer 44 is provided.
- the p-well layer 44 is a conductive type (specifically, p-type) semiconductor region different from the photodiode PD, and suppresses the generation of dark current due to a defect generated at the interface between the semiconductor substrate 11 and the element separation portion 43. To do.
- a fixed charge film 45 is provided on the light receiving surface side of the semiconductor substrate 11.
- the fixed charge film 45 is provided with an insulating film having a negative fixed charge, and suppresses the generation of dark current due to the interface state on the light receiving surface side of the semiconductor substrate 11.
- the fixed charge film 45 may be provided with, for example, hafnium oxide, zircon oxide, aluminum oxide, titanium oxide, tantalum oxide, or the like.
- the first laminated body 10 is provided with a transfer transistor TR and a floating diffusion FD for each sensor pixel 12.
- the transfer transistor TR and the floating diffusion FD are provided on the side of the semiconductor substrate 11 opposite to the light incident surface side.
- the transfer transistor TR is a so-called vertical transistor, and takes out the electric charge photoelectrically converted by the photodiode PD provided inside the semiconductor substrate 11.
- the floating diffusion FD is provided inside the p-well layer 42 as a conductive type (specifically, n-type) semiconductor region different from the p-well layer 42, and charges read by the transfer transistor TR. accumulate.
- the color filter 40 is provided on the surface (so-called back surface) opposite to the surface (so-called front surface) on which the first insulating layer 46 is provided on the semiconductor substrate 11. Specifically, the color filter 40 is provided in contact with the fixed charge film 45 for each sensor pixel 12, for example. The light receiving lens 50 is provided in contact with the color filter 40 for each one or a plurality of sensor pixels 12, for example.
- the second laminated body 20 is configured by laminating a second insulating layer 57 on the circuit layer 21.
- the circuit layer 21 includes a semiconductor layer 48 made of a semiconductor material such as silicon and a circuit insulating layer 47 made of an insulating material.
- a through wiring 54 is provided in the circuit insulating layer 47.
- the through wiring 54 is electrically insulated from the semiconductor layer 48 by covering the side surface with the circuit insulating layer 47.
- the through wiring 54 extends in the normal direction of one main surface of the circuit layer 21, and comprises a floating diffusion FD provided on the semiconductor substrate 11 and a multilayer wiring layer 23 provided on the second insulating layer 57. Connect electrically.
- one through wiring 54 may be provided for each sensor pixel 12.
- the second laminated body 20 may be provided by sequentially laminating the semiconductor layer 48, the circuit insulating layer 47, and the second insulating layer 57 on the first insulating layer 46.
- the circuit layer 21 and the silicon substrate on which the second insulating layer 57 is formed in advance are arranged so that the circuit layer 21 and the first insulating layer 46 face each other (that is, face-to-back).
- It may be provided by laminating with the first laminated body 10.
- a pixel circuit is provided in the circuit layer 21 and the second insulating layer 57 of the second laminated body 20.
- the pixel circuit is provided in, for example, a through wiring 54 electrically connected to the floating diffusion FD, a multilayer wiring layer 23 and a contact plug 59 provided in the second insulating layer 57, and a field effect transistor 22 provided in the circuit layer 21. It is composed of.
- One pixel circuit is provided for each one or a plurality of sensor pixels 12, for example.
- the pixel circuit converts the charges output from each of the sensor pixels 12 and stored in the floating diffusion FD into pixel signals. For example, one pixel circuit may be provided for every four sensor pixels 12.
- FIG. 2 is an equivalent circuit diagram illustrating the circuit structure of the image pickup apparatus 1.
- the image pickup apparatus 1 includes, for example, a photodiode PD, a transfer transistor TR, a floating diffusion FD, an FD conversion gain switching transistor FDG, a reset transistor RST, an amplification transistor AMP, and a selection transistor SEL. And.
- the photodiode PD, the transfer transistor TR, and the floating diffusion FD are provided in the first laminated body 10.
- the FD conversion gain switching transistor FDG, the reset transistor RST, the amplification transistor AMP, and the selection transistor SEL are provided in the second laminated body 20.
- the photodiode PD performs photoelectric conversion to generate an electric charge according to the amount of received light.
- the cathode of the photodiode PD is electrically connected to the source of the transfer transistor TR, and the anode of the photodiode PD is electrically connected to the reference potential line (eg, ground).
- the transfer transistor TR is, for example, a vertical MOS (Metal Oxide Semiconductor) transistor, and transfers the charge photoelectrically converted by the photodiode PD to the floating diffusion FD.
- the source of the transfer transistor TR is electrically connected to the cathode of the photodiode PD.
- the drain of the transfer transistor TR is electrically connected to the floating diffusion FD, and the gate of the transfer transistor TR is electrically connected to the pixel drive line.
- the floating diffusion FD temporarily holds the electric charge output from the photodiode PD via the transfer transistor TR.
- the floating diffusion FD is electrically connected to the drain of the transfer transistor TR, the gate of the amplification transistor AMP, and the source of the reset transistor RST.
- the FD conversion gain switching transistor FDG is, for example, a MOS transistor, and is provided to switch the charge-voltage conversion efficiency in the pixel circuit.
- the FD conversion gain switching transistor FDG is turned on, the capacitance C of the floating diffusion FD can be increased by the gate capacitance of the FD conversion gain switching transistor FDG as compared with the off state.
- the charge Q stored in the floating diffusion FD is represented by the product of the capacitance C and the voltage V
- the capacitance C of the floating diffusion FD when the capacitance C of the floating diffusion FD is large, the voltage V after conversion by the amplification transistor AMP becomes low. It ends up.
- the charge Q output from the photodiode PD when the charge Q output from the photodiode PD is large, the charge Q from the photodiode PD cannot be held by the floating diffusion FD unless the capacitance C of the floating diffusion FD is sufficiently large. It is also important that the capacitance C of the floating diffusion FD is appropriately large so that the voltage V converted by the amplification transistor AMP does not become excessively high.
- the FD conversion gain switching transistor FDG can switch the charge-voltage conversion efficiency in the pixel circuit by switching the on or off state to change the capacitance C of the floating diffusion FD.
- the reset transistor RST is, for example, a MOS transistor, and resets the potential of the floating diffusion FD to the potential of the power supply line VDD.
- the source of the reset transistor RST is electrically connected to the floating diffusion FD.
- the drain of the reset transistor RST is electrically connected to the power supply line VDD, and the gate of the reset transistor RST is electrically connected to the pixel drive line.
- the amplification transistor AMP is, for example, a MOS transistor, and generates a voltage signal as a pixel signal according to the level of electric charge held in the floating diffusion FD.
- the amplification transistor AMP constitutes a so-called source follower type amplifier, and outputs a pixel signal having a voltage corresponding to the level of electric charge generated by the photodiode PD.
- the drain of the amplification transistor AMP is electrically connected to the power supply line VDD.
- the source of the amplification transistor AMP is electrically connected to the drain of the selection transistor SEL, and the gate of the amplification transistor AMP is electrically connected to the source of the reset transistor RST.
- the selection transistor SEL is, for example, a MOS transistor, and controls the output timing of the pixel signal from the pixel circuit.
- the amplification transistor AMP can amplify the potential of the floating diffusion FD and output a voltage corresponding to the amplified potential via the vertical signal line.
- the drain of the selection transistor SEL is electrically connected to the source of the amplification transistor AMP.
- the source of the selection transistor SEL is electrically connected to the vertical signal line, and the gate of the selection transistor SEL is electrically connected to the pixel drive line.
- the image pickup apparatus 1 can output a pixel signal corresponding to the amount of light incident on the sensor pixel 12 of the first laminated body 10 from the pixel circuit.
- FIG. 3 is a schematic explanatory view showing a planar arrangement of each transistor in the circuit layer 21 of the image pickup apparatus 1 according to the embodiment of the present disclosure.
- the FD conversion gain switching transistor FDG, the reset transistor RST, the amplification transistor AMP, and the selection transistor are applied to the circuit layer 21 of the second laminated body 20.
- SEL is provided.
- the gate electrodes of at least one or more transistors other than the amplification transistor AMP are extended over a plurality of pixel circuits, so that the gates of the same type of transistors in the plurality of pixel circuits are gated. It is used as a wiring that electrically connects electrodes.
- the gate electrodes of the FD conversion gain switching transistor FDG, the reset transistor RST, and the selection transistor SEL, excluding the amplification transistor AMP are of the same type as the other pixel circuits. Together with the gate electrode of the transistor, it is electrically connected to a pixel drive line or a vertical signal line.
- the wiring for electrically connecting each of these gate electrodes can be provided, for example, in the multilayer wiring layer 23 inside the second insulating layer 57.
- the wiring provided in the multilayer wiring layer 23 has become narrower and narrower in pitch. Therefore, the process difficulty in forming the wiring in the multilayer wiring layer 23 is increasing.
- the image pickup apparatus 1 In the image pickup apparatus 1 according to the present embodiment, at least one or more gate electrodes of the FD conversion gain switching transistor FDG, the reset transistor RST, or the selection transistor SEL and the gate electrodes of the same type of transistors of a plurality of pixel circuits are electrically connected.
- the wiring connected to is provided on the circuit layer 21 integrally with the gate electrode. According to this, the image pickup apparatus 1 can widen the width and pitch of the wiring formed in the multi-layer wiring layer 23 by reducing the number of wirings formed in the multi-layer wiring layer 23. Therefore, the multi-layer wiring layer 1 can be widened. The process difficulty in forming 23 can be reduced. Further, the image pickup apparatus 1 can reduce the resistance and capacitance of the wiring formed on the multilayer wiring layer 23 by widening the width and pitch of the wiring formed on the multilayer wiring layer 23.
- sensor pixels 12 and pixel circuits are provided in the same plane, so it is difficult to form wiring extending over a plurality of pixel circuits due to the demand for arrangement of each element. Is.
- the image pickup apparatus 1 according to the present embodiment has a three-dimensional structure, the sensor pixels 12 and the pixel circuits can be stacked in the vertical direction. As a result, the image pickup apparatus 1 can reduce the number of elements provided in the circuit layer 21, so that it is possible to form wiring extending over a plurality of pixel circuits.
- the image pickup apparatus 1 by sharing one pixel circuit among the four sensor pixels 12, the area where one pixel circuit is formed is compared with the case where the pixel circuit is formed for each sensor pixel 12. The size can be expanded four times. This makes it possible for the image pickup apparatus 1 to more easily secure a region in which wiring extending over a plurality of pixel circuits is formed.
- the first direction for example, FIG. 3
- the semiconductor layer 48 is provided so as to extend in the vertical direction facing the third layer.
- the gate electrode 25 of the reset transistor RST, the gate electrode 26 of the FD conversion gain switching transistor FDG, and the gate electrode 28 of the selection transistor SEL are placed in a second direction (for example, in the left-right direction facing FIG. 3) perpendicular to the first direction. ), And crossing with the semiconductor layer 48, each transistor is formed.
- the gate electrode 25 of the reset transistor RST, the gate electrode 26 of the FD conversion gain switching transistor FDG, and the gate electrode 28 of the selection transistor SEL extend in the second direction over a plurality of repeating regions RU. Therefore, it functions as a wiring for electrically connecting the gate electrodes 25 of the reset transistor RST, the gate electrodes 26 of the FD conversion gain switching transistor FDG, and the gate electrodes 28 of the selection transistor SEL. Therefore, since the image pickup apparatus 1 can form a part of the wiring provided in the multilayer wiring layer 23 inside the second insulating layer 57 on the circuit layer 21, the number of wirings provided in the multilayer wiring layer 23 Can be reduced. Therefore, the image pickup apparatus 1 can relax the design rule in the multilayer wiring layer 23.
- the gate electrode 25 of the reset transistor RST, the gate electrode 26 of the FD conversion gain switching transistor FDG, and the gate electrode 28 of the selection transistor SEL are provided so as to extend in the second direction. Such techniques are not limited to such examples. At least one of the gate electrode 25 of the reset transistor RST, the gate electrode 26 of the FD conversion gain switching transistor FDG, and the gate electrode 28 of the selection transistor SEL may be provided so as to extend in the second direction.
- the gate electrode 27 of the amplification transistor AMP is not electrically connected to the gate electrode of the amplification transistor AMP of another pixel circuit, but is electrically connected to the floating diffusion FD. Therefore, the gate electrode 27 of the amplification transistor AMP is provided in a rectangular shape, for example, so as to overlap the inflection point of the semiconductor layer 48. According to this, since the gate electrode 27 of the amplification transistor AMP can have a larger gate length, it is possible to suppress random telegraph noise (Random Conduct Noise: RTN).
- 4A, 5A, 6A, 8, 9A, and 10 to 12 are plan views showing the planar arrangement of each configuration in one cross section of the pixel circuit.
- 4A, 5A, 6A, 8, 9A, and 10 to 12 show only the configuration of the layer of interest, and the configuration of the layer not of interest is omitted.
- the sensor pixel 12 and the pixel circuit of the image pickup apparatus 1 are configured by repeatedly arranging the repeating units RU shown in FIGS. 4A, 5A, 6A, 8, 9A, and 10 to 12 on a plane. ..
- FIG. 4B is a vertical sectional view taken along the AAA cutting line of FIG. 4A
- FIG. 5B is a vertical sectional view taken along the AAA cutting line of FIG. 5A
- FIG. 6B is a B-BB of FIG. 6A. It is a vertical cross-sectional view in the cutting line
- FIG. 9B is a vertical cross-sectional view in the B-BB cutting line of FIG. 9A.
- the semiconductor substrate 11 is provided with element separation portions 43 in a grid pattern so as to separate the sensor pixels 12 arranged in a matrix.
- a polysilicon layer 602 that electrically connects to the semiconductor substrate 11 of each of the four sensor pixels 12 is provided on the intersection of the element separation portions 43 at the center of the repeating unit RU.
- the polysilicon layer 602 functions as a floating diffusion FD shared by the four sensor pixels 12.
- a contact plug 620 penetrating the circuit insulating layer 47 is provided on the polysilicon layer 602 at a later stage.
- a polysilicon layer 601 that electrically connects to the semiconductor substrate 11 is provided.
- the polysilicon layer 601 is provided to electrically connect the anode of the photodiode PD and the reference potential line VSS.
- Contact plugs 625, 626, 627, and 628 penetrating the circuit insulating layer 47 are provided on the polysilicon layer 601 at a later stage.
- vertical gate electrodes TG1, TG2, TG3, and TG4 of the transfer transistor TR are provided, respectively.
- wiring layers 611, 612, 613, and 614 are provided so as to be routed over the element separating portion 43 via the insulating layer 46A.
- the wiring layers 611, 612, 613, and 614 above the element separation unit 43 are provided with contact plugs 621, 622, 623, and 624 that penetrate the circuit insulation layer 47 at a later stage.
- each configuration shown in FIGS. 4A and 4B is embedded in the first insulating layer 46.
- a semiconductor layer 48 is provided on the first insulating layer 46.
- the semiconductor layer 48 is bent twice in the first direction (for example, FIG. 5A) so as to avoid the region where the contact plugs 620, 621, 622, 623, 624, 625, 626, 627, and 628 are provided in the subsequent stage. It is provided so as to extend in the vertical direction (in the vertical direction) facing the.
- the semiconductor layer 48 is provided, for example, by depositing silicon or the like in the above-mentioned predetermined region in an island shape.
- the semiconductor layer 48 shown in FIGS. 5A and 5B is embedded in the circuit insulating layer 47, and the circuit layer 21 is composed of the semiconductor layer 48 and the circuit insulating layer 47.
- the circuit layer 21 includes the gate electrode 25 of the reset transistor RST and the FD conversion gain switching transistor FDG in the second direction (for example, the left-right direction facing FIG. 6A) orthogonal to the first direction in which the semiconductor layer 48 extends.
- a gate electrode 26 and a gate electrode 28 of the selection transistor SEL are provided.
- the gate electrode 25 of the reset transistor RST, the gate electrode 26 of the FD conversion gain switching transistor FDG, and the gate electrode 28 of the selection transistor SEL extend beyond the repetition unit RU, and are the same type of transistors of the other repetition unit RU. It is electrically connected to the gate electrode of. That is, these gate electrodes 25, 26, and 28 also function as wiring for electrically connecting the gate electrodes of the same type of transistors of the plurality of repeating units RU.
- the gate electrode 27 of the amplification transistor AMP is provided, for example, in a rectangular shape in a region overlapping the inflection point of the semiconductor layer 48.
- the gate electrode 25 of the reset transistor RST, the gate electrode 26 of the FD conversion gain switching transistor FDG, the gate electrode 27 of the amplification transistor AMP, and the gate electrode 28 of the selection transistor SEL are provided in the cross-sectional structure shown in FIG. 6B. You may.
- these gate electrodes 25, 26, 27, and 28 are provided on the polysilicon layer 711 embedded in the semiconductor layer 48 via the gate insulating film (not shown) and the polysilicon layer 711.
- the electrode layer 713 may be composed of a barrier layer 712 provided so as to cover the side surface and the bottom surface of the electrode layer 713.
- a groove is formed in the semiconductor layer 48 by etching or the like.
- a gate insulating film (not shown) is formed inside the groove, and the groove is embedded in the polysilicon layer 711.
- the upper portion of the polysilicon layer 711 is retracted (also referred to as recess) to form a groove, and a barrier layer 712 made of a Ti or W metal or a metal compound is formed inside the groove.
- the electrode layer 713 is formed by embedding the groove on the upper part of the polysilicon layer 711 with Cu or the like.
- the gate electrodes 25, 26, 27, 28 may be formed in such a configuration.
- the gate electrodes 25, 26, 27, and 28 having such a structure have channels formed around the polysilicon layer 711 embedded in the semiconductor layer 48, so that the gate length can be made longer. According to this, since the gate electrodes 25, 26, 27, and 28 can reduce the area occupied by the circuit layer 21, the degree of freedom in layout of each configuration in the pixel circuit can be further increased. Further, since the gate electrodes 25, 26, 27, and 28 are provided as a laminated structure of the polysilicon layer 711 and the electrode layer 713, deterioration of the interface state due to the use of the metal gate is suppressed, and the wiring resistance is reduced. The rise can be suppressed. Further, since the gate electrodes 25, 26, 27, 28 can be formed without etching the electrode layer 713 formed of the metal material, the difficulty of the forming process of the gate electrodes 25, 26, 27, 28 can be reduced. Can be lowered.
- the gate electrode 25 of the reset transistor RST, the gate electrode 26 of the FD conversion gain switching transistor FDG, the gate electrode 27 of the amplification transistor AMP, and the gate electrode 28 of the selection transistor SEL are provided in the cross-sectional structure shown in FIG. May be good.
- these gate electrodes 25, 26, 27, 28 are composed of an electrode layer 721 made of a metal material embedded in the semiconductor layer 48 via a gate insulating film (not shown). May be good.
- a gate insulating film (not shown) is formed inside the groove, and the electrode layer 721 is formed by embedding the groove with Cu or the like.
- the gate electrodes 25, 26, 27, 28 may be formed in such a configuration.
- the gate electrodes 25, 26, 27, and 28 having such a structure have a longer gate length because channels are formed around the electrode layer 721 embedded in the semiconductor layer 48. According to this, since the gate electrodes 25, 26, 27, and 28 can reduce the occupied area in the circuit layer 21, the degree of freedom in layout of each configuration in the pixel circuit can be further increased. Further, since the gate electrodes 25, 26, 27, 28 can be formed without etching the electrode layer 721 formed of a metal material, the difficulty of the forming process of the gate electrodes 25, 26, 27, 28 can be reduced. Can be lowered.
- the drain, source, or gate of each transistor is electrically connected to the wiring formed in the upper layer.
- the contacts 631, 632, 633, 634, 635, 636, and 637 are provided so as to penetrate a part of the second insulating layer 57.
- the contacts 631 and 632 are provided on the semiconductor layers 48 on both sides of the gate electrode 25 of the reset transistor RST, respectively.
- the contact 633 is provided on the semiconductor layer 48 on the side opposite to the side where the gate electrode 25 is provided, sandwiching the gate electrode 26 of the FD conversion gain switching transistor FDG.
- the contact 637 is provided on the semiconductor layer 48 on the side opposite to the side where the gate electrode 27 is provided, sandwiching the gate electrode 28 of the selection transistor SEL. Further, the contacts 634 and 636 are provided on the semiconductor layer 48 protruding from the gate electrode 27 of the amplification transistor AMP, respectively, and the contacts 635 are provided on the gate electrode 27 of the amplification transistor AMP.
- the contact plugs 620, 621, 622, 623, 624, 625, 626, 627, and 628 are provided so as to penetrate a part of the circuit insulating layer 47 and the second insulating layer 57. ..
- the contacts 631, 632, 633, 634, 635, 636, 637, and the contact plugs 620, 621, 622, 623, 624, 625, 626, 627, 628 are second insulated. It is embedded in layers 57A and 57B. First wiring layers 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654 are provided on these contacts and contact plugs, respectively.
- the first wiring layer 641 is provided on the contact plug 625, and the first wiring layer 642 is provided on the contact plug 626.
- the first wiring layer 643 is provided on the contact plug 622, the first wiring layer 644 is provided on the contact plug 624, and the first wiring layer 645 is provided on the contact plug 627.
- the first wiring layer 646 is provided on the contact plug 623, the first wiring layer 647 is provided on the contact plug 628, and the first wiring layer 648 is provided on the contact plug 621.
- the first wiring layer 654 is provided above the contact 637, and the first wiring layer 653 is provided above the contact 634.
- the first wiring layer 651 is provided so as to electrically connect the contacts 632 and 636, and the first wiring layer 652 electrically connects the contacts 631, 633, 635 and the contact plug 620. Provided.
- first wiring layers 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654 may be provided in the cross-sectional structure shown in FIG. 9B.
- these first wiring layers 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654 are the metal layers 733 embedded in the second insulating layer 57B. It may be composed of a barrier layer 732 provided so as to cover the side surface and the bottom surface of the metal layer 733.
- a barrier layer 732 made of a Ti or W metal or a metal compound is formed inside the groove. Is formed.
- the metal layer 733 is formed by embedding the groove with Cu or the like.
- the first wiring layers 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654 may be formed in such a configuration.
- the contacts 661, 662, 663, 664, 665, 666, 667, 668, 671, 672, 673 are provided above the first wiring layers 641, 642, 643, 644, 645, 646, 647, 648, 651, 653, 654, the contacts 661, 662, 663, 664, 665, 666, 667, 668, 671, 672, 673 are provided.
- the contact 661 is provided on the first wiring layer 641
- the contact 662 is provided on the first wiring layer 646, and the contact 663 is provided on the first wiring layer 642.
- the contact 664 is provided on the first wiring layer 643, the contact 665 is provided on the first wiring layer 644, and the contact 666 is provided on the first wiring layer 645.
- the contact 667 is provided on the first wiring layer 653, the contact 673 is provided on the first wiring layer 654, and the contact 668 is provided on the first wiring layer 647.
- the contact 671 is provided on the first wiring layer 648, and the contact 672 is provided on the first wiring layer 651.
- the contacts 661, 662, 663, 664, 665, 666, 667, 668, 671, 672, 673 extend in the second direction (horizontal direction facing FIG. 11).
- Second wiring layers 681, 682, 683, 684, 685, 686, 687, 688 are provided.
- the contacts 661, 662, 663, 664, 665, 666, 667, 668, 671, 672, and 673 are embedded in the second insulating layer 57.
- the second wiring layer 681 is provided on the contacts 661 and 663, and the second wiring layer 688 is provided on the contacts 668, 667 and 666.
- the second wiring layers 681 and 688 are electrically connected to the reference potential line VSS.
- the second wiring layer 682 is provided on the contact 662 and supplies an electric potential to the vertical gate electrode TG1.
- the second wiring layer 683 is provided on the contact 671 and supplies an electric potential to the vertical gate electrode TG2.
- the second wiring layer 685 is provided on the contact 664 and supplies an electric potential to the vertical gate electrode TG3.
- the second wiring layer 686 is provided on the contact 665 and supplies an electric potential to the vertical gate electrode TG4.
- the second wiring layer 684 is provided on the contact 672 and is electrically connected to the power supply line VDD.
- the second wiring layer 687 is provided on the contact 673 and is electrically connected to the vertical signal line.
- the third wiring layer 692 is provided so as to be electrically connected to the reference potential line VSS and electrically connected to the second wiring layers 681 and 688 via the contacts 676 and 677.
- the third wiring layer 693 is provided so as to be electrically connected to the vertical signal line and electrically connected to the second wiring layer 687 via the contact 679.
- the third wiring layers 694, 695, 696 are provided so as to be electrically connected to the vertical signal line.
- the third wiring layer 697 is provided so as to be electrically connected to the reference potential line VSS and electrically connected to the second wiring layers 681 and 688 via the contacts 674 and 675.
- the third wiring layer 698 is provided so as to be electrically connected to the power supply line VDD and electrically connected to the second wiring layer 684 via the contact 678.
- the image pickup apparatus 1 according to the present embodiment, among the wiring provided over the plurality of repeating units RU, the wiring connecting each of the gate electrodes 25 of the reset transistor RST and the gate electrode 26 of the FD conversion gain switching transistor FDG, respectively. At least one or more of the wirings connecting the above or the gate electrodes 28 of the selection transistor SEL are provided on the circuit layer 21.
- these wirings are not provided in the same layer as the second wiring layers 681, 682, 683, 684, 685, 686, 687, 688, so that the image pickup apparatus 1 has the second wiring layers 681, 682, 683, The width and pitch of 684, 685, 686, 687, 688 can be further increased. That is, the image pickup apparatus 1 can relax the design rules in the second wiring layers 681, 682, 683, 684, 685, 686, 687, and 688.
- a modification of the image pickup apparatus 1 according to the present embodiment is a cross-sectional structure of the gate electrode 25 of the reset transistor RST, the gate electrode 26 of the FD conversion gain switching transistor FDG, the gate electrode 27 of the amplification transistor, and the gate electrode 28 of the selection transistor SEL. This is an example showing a variation of.
- FIG. 13A is a plan view showing variations in the plan arrangement of the gate electrodes 25, 26, 27, 28 of the pixel circuit.
- FIG. 13B is a vertical cross-sectional view of the B-BB cutting line of FIG. 13A.
- 14 to 16 are vertical cross-sectional views showing a partial variation of the cross-sectional structure in the B-BB cutting line of FIG. 13A.
- the gate electrode 25 of the reset transistor RST, the gate electrode 26 of the FD conversion gain switching transistor FDG, the gate electrode 27 of the amplification transistor, and the gate electrode 28 of the selection transistor SEL are gate insulating films 740.
- a groove is formed in the interlayer insulating film 744 by etching or the like.
- the gate insulating film 740 and the polysilicon layer 741 are sequentially laminated on the bottom surface of the groove.
- the upper portion of the polysilicon layer 711 is retracted (also referred to as recess) to form a groove, and a barrier layer 742 made of a Ti or W metal or a metal compound is formed inside the groove.
- the electrode layer 743 is formed by embedding the groove on the upper part of the polysilicon layer 741 with Cu or the like. Thereby, the gate electrodes 25, 26, 27 and 28 can be formed.
- the gate electrodes 25, 26, 27, and 28 having such a structure are provided as a laminated structure of the polysilicon layer 741 and the electrode layer 743, thereby suppressing deterioration of the interface state due to the use of the metal gate and at the same time. It is possible to suppress an increase in wiring resistance. Further, since the gate electrodes 25, 26, 27, 28 can be formed without etching the electrode layer 743 formed of the metal material, the difficulty of the forming process of the gate electrodes 25, 26, 27, 28 can be reduced. Can be lowered. Since the width required for the gate electrode and the width required for wiring are different between the gate electrodes 25, 26, 27, and 28, the width provided on the semiconductor layer 48 and the width provided on the circuit insulating layer 47 are different. Is provided so as to be different from.
- the gate electrode 25 of the reset transistor RST, the gate electrode 26 of the FD conversion gain switching transistor FDG, the gate electrode 27 of the amplification transistor AMP, and the gate electrode 28 of the selection transistor SEL have a cross-sectional structure shown in FIGS. 14 to 16. It may be provided.
- these gate electrodes 25, 26, 27, 28 may be composed of an electrode layer 751 made of a metal material provided on the semiconductor layer 48 via the gate insulating film 750. ..
- the gate electrodes 25, 26, 27, and 28 may be configured by sequentially laminating a gate insulating film 750 and an electrode layer 751 made of a metal material on the semiconductor layer 48.
- the gate electrodes 25, 26, 27, 28 having such a structure can be formed as a simpler structure. Further, since the widths required for the gate electrodes and the widths required for wiring are different between the gate electrodes 25, 26, 27, and 28, the gate electrodes 25, 26, 27, and 28 are provided on the semiconductor layer 48 and the circuit insulating layer 47. It is provided so as to be different from the width to be provided. Since the gate electrodes 25, 26, 27, and 28 having such a structure are formed as a metal gate, the gate insulating film 750 is made of a so-called High-k material.
- these gate electrodes 25, 26, 27, 28 are provided on the polysilicon layer 761 provided on the semiconductor layer 48 and the polysilicon layer 711 via the gate insulating film 760. It may be composed of the barrier layer 762 provided and the electrode layer 763 provided on the barrier layer 762.
- the gate electrodes 25, 26, 27, and 28 have a gate insulating film 760, a polysilicon layer 761, a barrier layer 762 made of a metal or a metal compound of Ti or W, and an electrode layer 763 made of Cu or the like on the semiconductor layer 48. May be configured by sequentially laminating.
- the gate electrodes 25, 26, 27, and 28 having such a structure are provided as a laminated structure of the polysilicon layer 761 and the electrode layer 763, thereby suppressing deterioration of the interface state due to the use of the metal gate and at the same time. It is possible to suppress an increase in wiring resistance. Since the width required for the gate electrode and the width required for wiring are different between the gate electrodes 25, 26, 27, and 28, the width provided on the semiconductor layer 48 and the width provided on the circuit insulating layer 47 are different. Is provided so as to be different from.
- these gate electrodes 25, 26, 27, 28 have an electrode layer 772 embedded in an interlayer insulating film 770 provided on the semiconductor layer 48, and side surfaces and bottom surfaces of the electrode layer 772. It may be composed of a barrier layer 771 provided so as to cover the barrier layer 771. For example, after the interlayer insulating film 770 is formed on the semiconductor layer 48, a groove is formed in the interlayer insulating film 770 by etching or the like. Next, the electrode layer 772 is formed by embedding the groove with Cu or the like.
- the gate electrodes 25, 26, 27, 28 may be formed in such a configuration.
- the gate electrodes 25, 26, 27, 28 having such a structure can be formed without etching the electrode layer 713 formed of the metal material, the process of forming the gate electrodes 25, 26, 27, 28 Difficulty can be reduced. Since the width required for the gate electrode and the width required for wiring are different between the gate electrodes 25, 26, 27, and 28, the width provided on the semiconductor layer 48 and the width provided on the circuit insulating layer 47 are different. Is provided so as to be different from.
- FIG. 17A is a plan view showing variations in the plan arrangement of the gate electrodes 25, 26, 27, 28 of the pixel circuit.
- 17B is a vertical cross-sectional view of the B-BB cutting line of FIG. 17A
- FIG. 17C is a vertical cross-sectional view of the C-CC cutting line of FIG. 17A.
- these gate electrodes 25, 26, 28 have a semiconductor layer (not shown) via a gate insulating film (not shown), similarly to the gate electrodes 25, 26, 28 shown in FIG. 6B. It may be composed of a polysilicon layer 711 embedded in 48, an electrode layer 713 provided on the polysilicon layer 711, and a barrier layer 712 provided so as to cover the side surface and the bottom surface of the electrode layer 713. ..
- the gate electrode 27 of the amplification transistor AMP has a polysilicon layer 781 in which the first opening 781A and the second opening 781B formed in the semiconductor layer 48 are embedded via a gate insulating film (not shown). It may be composed of an electrode layer 783 provided on the polysilicon layer 781 and a barrier layer 782 provided so as to cover the side surface and the bottom surface of the electrode layer 783.
- the amplification transistor AMP may be provided in a so-called FinFET structure in which the semiconductor layer 48 sandwiched between the first opening 781A and the second opening 781B is used as a channel.
- the semiconductor layer 48 sandwiched between the first opening 781A and the second opening 781B has a channel perpendicular to the paper surface of FIG. 17C. It is formed.
- the Accelerated Transistor AMP having a FinFET structure electrons flow in the center of the channel away from the interface of the semiconductor layer 48, so that random telegraph noise (Random Telegraph Noise: RTN) can be further suppressed.
- the gate electrodes 25, 26, 27, 28 having such a structure can be formed by the same process. For example, after forming an interlayer insulating film on the semiconductor layer 48, a groove, a first opening 781A, and a second opening 781B are formed in the semiconductor layer 48 by etching or the like. Next, a gate insulating film (not shown) is formed inside the groove, and the groove, the first opening 781A, and the second opening 781B are embedded in the polysilicon layers 711 and 781.
- the upper portions of the polysilicon layers 711 and 781 are retracted (also referred to as recesses) to form a groove, and the barrier layers 712 and 782 made of a Ti or W metal or a metal compound are formed inside the groove.
- the electrode layers 713 and 783 are formed by embedding the groove on the upper part of the polysilicon layer 711 with Cu or the like.
- the gate electrodes 25, 26, 27, 28 may be formed in such a configuration.
- the gate electrodes 25, 26, and 28 have channels formed around the polysilicon layer 711 embedded in the semiconductor layer 48, the gate length can be made longer. According to this, since the gate electrodes 25, 26, and 28 can reduce the area occupied by the circuit layer 21, the degree of freedom in layout of each configuration in the pixel circuit can be further increased. Further, since the gate electrode 27 can form the amplification transistor AMP as a FinFET structure, the electrons flowing through the channel can be separated from the interface of the semiconductor layer 48. According to this, the gate electrode 27 can further suppress the RTN and can reduce the area occupied by the circuit layer 21, so that the degree of freedom in layout of each configuration in the pixel circuit can be further increased. it can.
- the gate electrodes 25, 26, 27, and 28 are provided as a laminated structure of the polysilicon layer 711 and the electrode layer 713, deterioration of the interface state due to the use of the metal gate is suppressed, and the wiring resistance is reduced. The rise can be suppressed. Further, since the gate electrodes 25, 26, 27, 28 can be formed without etching the electrode layer 713 formed of the metal material, the difficulty of the forming process of the gate electrodes 25, 26, 27, 28 can be reduced. Can be lowered.
- FIG. 18 is a block diagram showing an example of a schematic configuration of an imaging system 900 including the imaging device 1 according to the present embodiment.
- FIG. 19 is a flowchart showing the flow of the imaging operation in the imaging system 900.
- the imaging system 900 is, for example, an imaging device such as a digital still camera or a video camera, or an electronic device such as a mobile terminal device such as a smartphone or a tablet terminal.
- the image pickup system 900 includes, for example, a lens group 941, a shutter 942, an image pickup device 1 according to the present embodiment, a DSP circuit 943, a frame memory 944, a display unit 945, a storage unit 946, and an operation unit 947.
- a power supply unit 948 is provided.
- the image pickup device 1, the DSP circuit 943, the frame memory 944, the display unit 945, the storage unit 946, the operation unit 947, and the power supply unit 948 are connected to each other via the bus line 949.
- the image pickup device 1 outputs image data according to the incident light that has passed through the lens group 941 and the shutter 942.
- the DSP circuit 943 is a signal processing circuit that processes a signal (that is, image data) output from the image pickup apparatus 1.
- the frame memory 944 temporarily holds the image data processed by the DSP circuit 943 in frame units.
- the display unit 945 is a panel-type display device such as a liquid crystal panel or an organic EL (Electroluminescence) panel, and displays a moving image or a still image captured by the image pickup device 1.
- the storage unit 946 includes a recording medium such as a semiconductor memory or a hard disk, and records image data of a moving image or a still image captured by the imaging device 1.
- the operation unit 947 outputs operation commands for various functions of the image pickup system 900 based on the operation by the user.
- the power supply unit 948 is various power sources that supply the operating power of the image pickup device 1, the DSP circuit 943, the frame memory 944, the display unit 945, the storage unit 946, and the operation unit 947.
- the user instructs the start of imaging by operating the operation unit 947 (S101).
- the operation unit 947 transmits an imaging command to the imaging device 1 (S102).
- the imaging device 1 executes imaging by a predetermined imaging method (S103).
- the image pickup device 1 outputs the captured image data to the DSP circuit 943.
- the DSP circuit 943 performs predetermined signal processing (for example, noise reduction processing) on the image data output from the image pickup apparatus 1 (S104).
- the DSP circuit 943 holds the image data to which the predetermined signal processing has been performed in the frame memory 944.
- the frame memory 944 stores the image data in the storage unit 946 (S105). In this way, the imaging in the imaging system 900 is performed.
- the technology according to the present disclosure (the present technology) can be applied to various products.
- the technology according to the present disclosure is realized as a device mounted on a moving body of any kind such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility, an airplane, a drone, a ship, and a robot. You may.
- FIG. 20 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile control system to which the technology according to the present disclosure can be applied.
- the vehicle control system 12000 includes a plurality of electronic control units connected via the communication network 12001.
- the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside information detection unit 12030, an in-vehicle information detection unit 12040, and an integrated control unit 12050.
- a microcomputer 12051, an audio image output unit 12052, and an in-vehicle network I / F (interface) 12053 are shown as a functional configuration of the integrated control unit 12050.
- the drive system control unit 12010 controls the operation of the device related to the drive system of the vehicle according to various programs.
- the drive system control unit 12010 provides a driving force generator for generating the driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism for adjusting and a braking device for generating a braking force of a vehicle.
- the body system control unit 12020 controls the operation of various devices mounted on the vehicle body according to various programs.
- the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, blinkers or fog lamps.
- the body system control unit 12020 may be input with radio waves transmitted from a portable device that substitutes for the key or signals of various switches.
- the body system control unit 12020 receives inputs of these radio waves or signals and controls a vehicle door lock device, a power window device, a lamp, and the like.
- the vehicle outside information detection unit 12030 detects information outside the vehicle equipped with the vehicle control system 12000.
- the image pickup unit 12031 is connected to the vehicle exterior information detection unit 12030.
- the vehicle outside information detection unit 12030 causes the image pickup unit 12031 to capture an image of the outside of the vehicle and receives the captured image.
- the vehicle exterior information detection unit 12030 may perform object detection processing or distance detection processing such as a person, a vehicle, an obstacle, a sign, or a character on the road surface based on the received image.
- the imaging unit 12031 is an optical sensor that receives light and outputs an electric signal according to the amount of the light received.
- the image pickup unit 12031 can output an electric signal as an image or can output it as distance measurement information. Further, the light received by the imaging unit 12031 may be visible light or invisible light such as infrared light.
- the in-vehicle information detection unit 12040 detects the in-vehicle information.
- a driver state detection unit 12041 that detects the driver's state is connected to the in-vehicle information detection unit 12040.
- the driver state detection unit 12041 includes, for example, a camera that images the driver, and the in-vehicle information detection unit 12040 determines the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated, or it may be determined whether the driver is dozing.
- the microcomputer 12051 calculates the control target value of the driving force generator, the steering mechanism, or the braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, and the drive system control unit.
- a control command can be output to 12010.
- the microcomputer 12051 realizes ADAS (Advanced Driver Assistance System) functions including vehicle collision avoidance or impact mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, vehicle lane deviation warning, and the like. It is possible to perform cooperative control for the purpose of.
- ADAS Advanced Driver Assistance System
- the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, and the like based on the information around the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, so that the driver can control the driver. It is possible to perform coordinated control for the purpose of automatic driving, etc., which runs autonomously without depending on the operation.
- the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information outside the vehicle acquired by the vehicle exterior information detection unit 12030.
- the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the external information detection unit 12030, and performs coordinated control for the purpose of anti-glare such as switching the high beam to the low beam. It can be carried out.
- the audio image output unit 12052 transmits an output signal of at least one of audio and an image to an output device capable of visually or audibly notifying information to the passenger or the outside of the vehicle.
- an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are exemplified as output devices.
- the display unit 12062 may include, for example, at least one of an onboard display and a heads-up display.
- FIG. 21 is a diagram showing an example of the installation position of the imaging unit 12031.
- the vehicle 12100 has image pickup units 12101, 12102, 12103, 12104, 12105 as the image pickup unit 12031.
- the imaging units 12101, 12102, 12103, 12104, 12105 are provided at positions such as the front nose, side mirrors, rear bumpers, back doors, and the upper part of the windshield in the vehicle interior of the vehicle 12100, for example.
- the imaging unit 12101 provided on the front nose and the imaging unit 12105 provided on the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 12100.
- the imaging units 12102 and 12103 provided in the side mirrors mainly acquire images of the side of the vehicle 12100.
- the imaging unit 12104 provided on the rear bumper or the back door mainly acquires an image of the rear of the vehicle 12100.
- the images in front acquired by the imaging units 12101 and 12105 are mainly used for detecting a preceding vehicle or a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or the like.
- FIG. 21 shows an example of the photographing range of the imaging units 12101 to 12104.
- the imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose
- the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided on the side mirrors, respectively
- the imaging range 12114 indicates the imaging range of the imaging units 12102 and 12103.
- the imaging range of the imaging unit 12104 provided on the rear bumper or the back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, a bird's-eye view image of the vehicle 12100 as viewed from above can be obtained.
- At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information.
- at least one of the image pickup units 12101 to 12104 may be a stereo camera composed of a plurality of image pickup elements, or may be an image pickup element having pixels for phase difference detection.
- the microcomputer 12051 has a distance to each three-dimensional object within the imaging range 12111 to 12114 based on the distance information obtained from the imaging units 12101 to 12104, and a temporal change of this distance (relative velocity with respect to the vehicle 12100).
- a predetermined speed for example, 0 km / h or more.
- the microcomputer 12051 can set an inter-vehicle distance to be secured in front of the preceding vehicle in advance, and can perform automatic braking control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. In this way, it is possible to perform coordinated control for the purpose of automatic driving or the like in which the vehicle travels autonomously without depending on the operation of the driver.
- the microcomputer 12051 converts three-dimensional object data related to a three-dimensional object into two-wheeled vehicles, ordinary vehicles, large vehicles, pedestrians, utility poles, and other three-dimensional objects based on the distance information obtained from the imaging units 12101 to 12104. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into obstacles that can be seen by the driver of the vehicle 12100 and obstacles that are difficult to see. Then, the microcomputer 12051 determines the collision risk indicating the risk of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, the microcomputer 12051 via the audio speaker 12061 or the display unit 12062. By outputting an alarm to the driver and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be provided.
- At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays.
- the microcomputer 12051 can recognize a pedestrian by determining whether or not a pedestrian is present in the captured image of the imaging units 12101 to 12104.
- pedestrian recognition includes, for example, a procedure for extracting feature points in an image captured by an imaging unit 12101 to 12104 as an infrared camera, and pattern matching processing for a series of feature points indicating the outline of an object to determine whether or not the pedestrian is a pedestrian. It is done by the procedure to determine.
- the audio image output unit 12052 When the microcomputer 12051 determines that a pedestrian is present in the captured images of the imaging units 12101 to 12104 and recognizes the pedestrian, the audio image output unit 12052 outputs a square contour line for emphasizing the recognized pedestrian.
- the display unit 12062 is controlled so as to superimpose and display. Further, the audio image output unit 12052 may control the display unit 12062 so as to display an icon or the like indicating a pedestrian at a desired position.
- the above is an example of a mobile control system to which the technology according to the present disclosure can be applied.
- the technique according to the present disclosure can be applied to the imaging unit 12031 among the configurations described above.
- the wiring design rule provided in the multilayer wiring layer is relaxed, so that the wiring resistance and the wiring capacity are reduced, so that higher speed photography can be performed. According to this, in the moving body control system, even when the moving body is moving at a higher speed, the control using the captured image can be performed with higher accuracy.
- FIG. 22 is a diagram showing an example of a schematic configuration of an endoscopic surgery system to which the technique according to the present disclosure (the present technique) can be applied.
- FIG. 22 shows a surgeon (doctor) 11131 performing surgery on patient 11132 on patient bed 11133 using the endoscopic surgery system 11000.
- the endoscopic surgery system 11000 includes an endoscope 11100, other surgical tools 11110 such as an abdominal tube 11111 and an energy treatment tool 11112, and a support arm device 11120 that supports the endoscope 11100.
- a cart 11200 equipped with various devices for endoscopic surgery.
- the endoscope 11100 is composed of a lens barrel 11101 in which a region having a predetermined length from the tip is inserted into the body cavity of the patient 11132, and a camera head 11102 connected to the base end of the lens barrel 11101.
- the endoscope 11100 configured as a so-called rigid mirror having a rigid barrel 11101 is illustrated, but the endoscope 11100 may be configured as a so-called flexible mirror having a flexible barrel. Good.
- An opening in which an objective lens is fitted is provided at the tip of the lens barrel 11101.
- a light source device 11203 is connected to the endoscope 11100, and the light generated by the light source device 11203 is guided to the tip of the lens barrel by a light guide extending inside the lens barrel 11101 to be an objective. It is irradiated toward the observation target in the body cavity of the patient 11132 through the lens.
- the endoscope 11100 may be a direct endoscope, a perspective mirror, or a side endoscope.
- An optical system and an image pickup element are provided inside the camera head 11102, and the reflected light (observation light) from the observation target is focused on the image pickup element by the optical system.
- the observation light is photoelectrically converted by the image sensor, and an electric signal corresponding to the observation light, that is, an image signal corresponding to the observation image is generated.
- the image signal is transmitted as RAW data to the camera control unit (CCU: Camera Control Unit) 11201.
- CCU Camera Control Unit
- the CCU11201 is composed of a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and the like, and comprehensively controls the operations of the endoscope 11100 and the display device 11202. Further, the CCU 11201 receives an image signal from the camera head 11102, and performs various image processing on the image signal for displaying an image based on the image signal, such as development processing (demosaic processing).
- a CPU Central Processing Unit
- GPU Graphics Processing Unit
- the display device 11202 displays an image based on the image signal processed by the CCU 11201 under the control of the CCU 11201.
- the light source device 11203 is composed of, for example, a light source such as an LED (Light Emitting Diode), and supplies irradiation light to the endoscope 11100 when photographing an operating part or the like.
- a light source such as an LED (Light Emitting Diode)
- LED Light Emitting Diode
- the input device 11204 is an input interface for the endoscopic surgery system 11000.
- the user can input various information and input instructions to the endoscopic surgery system 11000 via the input device 11204.
- the user inputs an instruction to change the imaging conditions (type of irradiation light, magnification, focal length, etc.) by the endoscope 11100.
- the treatment tool control device 11205 controls the drive of the energy treatment tool 11112 for cauterizing, incising, sealing a blood vessel, or the like of a tissue.
- the pneumoperitoneum device 11206 uses a gas in the pneumoperitoneum tube 11111 to inflate the body cavity of the patient 11132 for the purpose of securing the field of view by the endoscope 11100 and securing the work space of the operator.
- the recorder 11207 is a device capable of recording various information related to surgery.
- the printer 11208 is a device capable of printing various information related to surgery in various formats such as text, images, and graphs.
- the light source device 11203 that supplies the irradiation light to the endoscope 11100 when photographing the surgical site can be composed of, for example, an LED, a laser light source, or a white light source composed of a combination thereof.
- a white light source is configured by combining RGB laser light sources, the output intensity and output timing of each color (each wavelength) can be controlled with high accuracy. Therefore, the light source device 11203 adjusts the white balance of the captured image. It can be carried out.
- the laser light from each of the RGB laser light sources is irradiated to the observation target in a time-division manner, and the drive of the image sensor of the camera head 11102 is controlled in synchronization with the irradiation timing to correspond to each of RGB. It is also possible to capture the image in a time-division manner. According to this method, a color image can be obtained without providing a color filter on the image sensor.
- the drive of the light source device 11203 may be controlled so as to change the intensity of the output light at predetermined time intervals.
- the drive of the image sensor of the camera head 11102 in synchronization with the timing of changing the light intensity to acquire an image in a time-divided manner and synthesizing the image, so-called high dynamic without blackout and overexposure. A range image can be generated.
- the light source device 11203 may be configured to be able to supply light in a predetermined wavelength band corresponding to special light observation.
- special light observation for example, by utilizing the wavelength dependence of light absorption in body tissue to irradiate light in a narrow band as compared with the irradiation light (that is, white light) in normal observation, the surface layer of the mucous membrane.
- a so-called narrow band imaging is performed in which a predetermined tissue such as a blood vessel is photographed with high contrast.
- fluorescence observation may be performed in which an image is obtained by fluorescence generated by irradiating with excitation light.
- the body tissue is irradiated with excitation light to observe the fluorescence from the body tissue (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally injected into the body tissue and the body tissue is injected. It is possible to obtain a fluorescence image by irradiating excitation light corresponding to the fluorescence wavelength of the reagent.
- the light source device 11203 may be configured to be capable of supplying narrow band light and / or excitation light corresponding to such special light observation.
- FIG. 23 is a block diagram showing an example of the functional configuration of the camera head 11102 and CCU11201 shown in FIG. 22.
- the camera head 11102 includes a lens unit 11401, an imaging unit 11402, a driving unit 11403, a communication unit 11404, and a camera head control unit 11405.
- CCU11201 includes a communication unit 11411, an image processing unit 11412, and a control unit 11413.
- the camera head 11102 and CCU11201 are communicatively connected to each other by a transmission cable 11400.
- the lens unit 11401 is an optical system provided at a connection portion with the lens barrel 11101.
- the observation light taken in from the tip of the lens barrel 11101 is guided to the camera head 11102 and incident on the lens unit 11401.
- the lens unit 11401 is configured by combining a plurality of lenses including a zoom lens and a focus lens.
- the image pickup unit 11402 is composed of an image pickup element.
- the image sensor constituting the image pickup unit 11402 may be one (so-called single plate type) or a plurality (so-called multi-plate type).
- each image pickup element may generate an image signal corresponding to each of RGB, and a color image may be obtained by synthesizing them.
- the image pickup unit 11402 may be configured to have a pair of image pickup elements for acquiring image signals for the right eye and the left eye corresponding to 3D (Dimensional) display, respectively.
- the 3D display enables the operator 11131 to more accurately grasp the depth of the biological tissue in the surgical site.
- a plurality of lens units 11401 may be provided corresponding to each image pickup element.
- the imaging unit 11402 does not necessarily have to be provided on the camera head 11102.
- the imaging unit 11402 may be provided inside the lens barrel 11101 immediately after the objective lens.
- the drive unit 11403 is composed of an actuator, and the zoom lens and focus lens of the lens unit 11401 are moved by a predetermined distance along the optical axis under the control of the camera head control unit 11405. As a result, the magnification and focus of the image captured by the imaging unit 11402 can be adjusted as appropriate.
- the communication unit 11404 is composed of a communication device for transmitting and receiving various information to and from the CCU11201.
- the communication unit 11404 transmits the image signal obtained from the image pickup unit 11402 as RAW data to the CCU 11201 via the transmission cable 11400.
- the communication unit 11404 receives a control signal for controlling the drive of the camera head 11102 from the CCU 11201 and supplies the control signal to the camera head control unit 11405.
- the control signal includes, for example, information to specify the frame rate of the captured image, information to specify the exposure value at the time of imaging, and / or information to specify the magnification and focus of the captured image, and the like. Contains information about the condition.
- the above-mentioned imaging conditions such as frame rate, exposure value, magnification, and focus may be appropriately specified by the user, or may be automatically set by the control unit 11413 of CCU11201 based on the acquired image signal. Good.
- the so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function are mounted on the endoscope 11100.
- the camera head control unit 11405 controls the drive of the camera head 11102 based on the control signal from the CCU 11201 received via the communication unit 11404.
- the communication unit 11411 is composed of a communication device for transmitting and receiving various information to and from the camera head 11102.
- the communication unit 11411 receives an image signal transmitted from the camera head 11102 via the transmission cable 11400.
- the communication unit 11411 transmits a control signal for controlling the drive of the camera head 11102 to the camera head 11102.
- Image signals and control signals can be transmitted by telecommunications, optical communication, or the like.
- the image processing unit 11412 performs various image processing on the image signal which is the RAW data transmitted from the camera head 11102.
- the control unit 11413 performs various controls related to the imaging of the surgical site and the like by the endoscope 11100 and the display of the captured image obtained by the imaging of the surgical site and the like. For example, the control unit 11413 generates a control signal for controlling the drive of the camera head 11102.
- control unit 11413 causes the display device 11202 to display an image captured by the surgical unit or the like based on the image signal processed by the image processing unit 11412.
- the control unit 11413 may recognize various objects in the captured image by using various image recognition techniques. For example, the control unit 11413 detects the shape, color, and the like of the edge of an object included in the captured image to remove surgical tools such as forceps, a specific biological part, bleeding, and mist when using the energy treatment tool 11112. Can be recognized.
- the control unit 11413 may superimpose and display various surgical support information on the image of the surgical unit by using the recognition result. By superimposing and displaying the surgical support information and presenting it to the surgeon 11131, it is possible to reduce the burden on the surgeon 11131 and to allow the surgeon 11131 to proceed with the surgery reliably.
- the transmission cable 11400 that connects the camera head 11102 and CCU11201 is an electric signal cable that supports electric signal communication, an optical fiber that supports optical communication, or a composite cable thereof.
- the communication is performed by wire using the transmission cable 11400, but the communication between the camera head 11102 and the CCU11201 may be performed wirelessly.
- the technique according to the present disclosure can be suitably applied to the imaging unit 11402 provided on the camera head 11102 of the endoscope 11100.
- the wiring design rule provided in the multilayer wiring layer is relaxed, so that the wiring resistance and the wiring capacity are reduced, so that higher speed photography can be performed. According to this, in the endoscopic surgery system, even when the endoscope 11100 is moved at high speed, it is possible to acquire a photographed image with high accuracy, so that the operability of the user can be improved.
- the technology according to the present disclosure can also have the following configuration.
- the gate electrodes of at least one or more transistors provided in the circuit layer to a plurality of pixel circuits, the gate electrodes are provided for each of the plurality of pixel circuits. It can function as a wiring for electrically connecting the gate electrodes of the same type of transistor.
- the image pickup apparatus can reduce the number of wirings extending to the plurality of pixel circuits in the multilayer wiring layer provided above the circuit layer. Therefore, the image pickup apparatus can relax the design rule in the multilayer wiring layer.
- the effects produced by the techniques according to the present disclosure are not necessarily limited to the effects described herein, and may be any of the effects described in the present disclosure.
- the gate electrodes of at least one or more transistors included in the pixel circuit are provided so as to extend to the plurality of the pixel circuits in the plane of the circuit layer, and are provided for each of the plurality of pixel circuits of the same type.
- An imaging device that is electrically connected to the gate electrode of the transistor.
- the gate electrode includes a metal layer and a polysilicon layer.
- barrier layers are provided on the bottom surface and side surfaces of the metal layer.
- the transistor is a transistor other than an amplification transistor that converts a charge signal output from the sensor pixel into a voltage signal.
- a semiconductor substrate in which a plurality of sensor pixels for photoelectric conversion are arranged in a matrix and It has a plurality of pixel circuits that output pixel signals based on the charges output from the plurality of sensor pixels, and includes a circuit layer provided on the semiconductor substrate via an interlayer insulation layer.
- An image pickup apparatus in which gate electrodes of at least one or more transistors included in the pixel circuit are embedded from above the semiconductor layer included in the circuit layer to the inside of the semiconductor layer.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Electromagnetism (AREA)
- Solid State Image Pick-Up Elements (AREA)
Abstract
This imaging device is provided with a semiconductor substrate having a plurality of sensor pixels for performing photoelectric conversion arrayed in a matrix, and a circuit layer including a plurality of pixel circuits that output pixel signals on the basis of charges output from each of the sensor pixels, the circuit layer being disposed on the semiconductor substrate with an interlayer dielectric layer therebetween. A gate electrode of at least one transistor included in the pixel circuits extends across the plurality of pixel circuits in the plane of the circuit layer, and electrically connects to the gate electrode of the same type of the transistor provided in each of the plurality of the pixel circuits.
Description
本開示は、撮像装置に関する。
This disclosure relates to an imaging device.
従来、二次元構造の撮像装置の1画素あたりの面積の微細化は、微細プロセスの導入、及び実装密度の向上によって実現されてきた。近年、撮像装置のさらなる小型化、及び画素の高密度化を実現するために、三次元構造の撮像装置が開発されている。三次元構造の撮像装置は、例えば、複数のセンサ画素を有する半導体基板と、各センサ画素で得られた電荷を画素信号に変換する画素回路を有する半導体層とを三次元的に積層することで構成される(特許文献1参照)。
Conventionally, miniaturization of the area per pixel of an image pickup device having a two-dimensional structure has been realized by introducing a fine process and improving the mounting density. In recent years, an image pickup device having a three-dimensional structure has been developed in order to further reduce the size of the image pickup device and increase the density of pixels. An image pickup device having a three-dimensional structure is obtained by, for example, three-dimensionally stacking a semiconductor substrate having a plurality of sensor pixels and a semiconductor layer having a pixel circuit that converts the charge obtained by each sensor pixel into a pixel signal. It is configured (see Patent Document 1).
このような撮像装置では、1画素あたりの面積の微細化によって、複数の画素に亘って延在して設けられる配線等の間隔がより狭くなるため、配線を形成する際のプロセス難度が上昇している。そこで、複数の画素に亘って設けられる配線の密度を低減することで、配線のデザインルールを緩和することが望まれる。
In such an imaging device, as the area per pixel is miniaturized, the intervals between the wirings and the like extending over a plurality of pixels become narrower, which increases the process difficulty in forming the wirings. ing. Therefore, it is desired to relax the wiring design rule by reducing the density of the wiring provided over the plurality of pixels.
よって、配線のデザインルールが緩和された撮像装置を提供することが望ましい。
Therefore, it is desirable to provide an imaging device in which the wiring design rules are relaxed.
本開示の一実施形態に係る撮像装置は、光電変換を行う複数のセンサ画素が行列状に配列されて設けられた半導体基板と、前記センサ画素の各々から出力された電荷に基づいて画素信号を出力する画素回路を複数有し、前記半導体基板の上に層間絶縁層を介して設けられた回路層と、を備え、前記画素回路に含まれる少なくとも1つ以上のトランジスタのゲート電極は、前記回路層の面内にて複数の前記画素回路に延在して設けられ、複数の前記画素回路ごとに設けられた同種の前記トランジスタの前記ゲート電極と電気的に接続する。
The image pickup apparatus according to the embodiment of the present disclosure transmits a pixel signal based on a semiconductor substrate provided with a plurality of sensor pixels performing photoelectric conversion arranged in a matrix and charges output from each of the sensor pixels. The gate electrode of at least one or more transistors included in the pixel circuit includes a plurality of pixel circuits for output, a circuit layer provided on the semiconductor substrate via an interlayer insulating layer, and the circuit. It extends to the plurality of pixel circuits in the plane of the layer and is electrically connected to the gate electrode of the same type of transistor provided for each of the plurality of pixel circuits.
また、本開示の他の実施形態に係る撮像装置は、光電変換を行う複数のセンサ画素が行列状に配列されて設けられた半導体基板と、前記複数のセンサ画素から出力された電荷に基づいて画素信号をそれぞれ出力する画素回路を複数有し、前記半導体基板の上に層間絶縁層を介して設けられた回路層と、を備え、前記画素回路に含まれる少なくとも1つ以上のトランジスタのゲート電極は、前記回路層に含まれる半導体層の上から前記半導体層の内部にかけて埋め込まれて設けられる。
Further, the image pickup apparatus according to another embodiment of the present disclosure is based on a semiconductor substrate provided with a plurality of sensor pixels for photoelectric conversion arranged in a matrix and charges output from the plurality of sensor pixels. It has a plurality of pixel circuits for outputting pixel signals, a circuit layer provided on the semiconductor substrate via an interlayer insulating layer, and a gate electrode of at least one or more transistors included in the pixel circuit. Is embedded and provided from above the semiconductor layer included in the circuit layer to the inside of the semiconductor layer.
本開示の一実施形態に係る撮像装置によれば、複数のセンサ画素が行列状に配列されて設けられた半導体基板と、センサ画素の各々から出力された電荷に基づいて画素信号を出力する画素回路を複数有する回路層とが積層されており、画素回路に含まれる少なくとも1つ以上のトランジスタのゲート電極は、複数の画素回路に延在して設けられ、複数の画素回路ごとに設けられた同種のトランジスタのゲート電極と電気的に接続する。これにより、例えば、撮像装置は、回路層の上層に設けられる多層配線層において、複数の画素回路に延在して設けられる配線の数を減少させることができる。
According to the image pickup apparatus according to the embodiment of the present disclosure, a semiconductor substrate in which a plurality of sensor pixels are arranged in a matrix and a pixel that outputs a pixel signal based on the charge output from each of the sensor pixels. A circuit layer having a plurality of circuits is laminated, and the gate electrodes of at least one or more transistors included in the pixel circuit are extended to the plurality of pixel circuits and are provided for each of the plurality of pixel circuits. It is electrically connected to the gate electrode of the same type of transistor. Thereby, for example, the image pickup apparatus can reduce the number of wirings extending to the plurality of pixel circuits in the multilayer wiring layer provided above the circuit layer.
以下、本開示における実施形態について、図面を参照して詳細に説明する。以下で説明する実施形態は本開示の一具体例であって、本開示にかかる技術が以下の態様に限定されるわけではない。また、本開示の各構成要素の配置、寸法、及び寸法比等についても、各図に示す様態に限定されるわけではない。
Hereinafter, the embodiments in the present disclosure will be described in detail with reference to the drawings. The embodiments described below are specific examples of the present disclosure, and the technique according to the present disclosure is not limited to the following aspects. Further, the arrangement, dimensions, dimensional ratio, etc. of each component of the present disclosure are not limited to the modes shown in the respective figures.
なお、説明は以下の順序で行う。
1.技術的背景
2.概要
3.実施例
4.変形例
5.適用例 The explanation will be given in the following order.
1. 1. Technical background 2. Overview 3. Example 4. Modification example 5. Application example
1.技術的背景
2.概要
3.実施例
4.変形例
5.適用例 The explanation will be given in the following order.
1. 1. Technical background 2. Overview 3. Example 4. Modification example 5. Application example
<1.技術的背景>
まず、図1及び図2を参照して、本開示の技術的背景について説明する。 <1. Technical background >
First, the technical background of the present disclosure will be described with reference to FIGS. 1 and 2.
まず、図1及び図2を参照して、本開示の技術的背景について説明する。 <1. Technical background >
First, the technical background of the present disclosure will be described with reference to FIGS. 1 and 2.
図1は、本開示に係る技術が適用される撮像装置1の積層構造を説明する縦断面図である。図1に示すように、撮像装置1は、光電変換を行うセンサ画素を含む第1積層体10に、センサ画素から出力された電荷を画素信号に変換する画素回路を含む第2積層体20を積層することで構成される。撮像装置1は、いわゆる裏面照射型の撮像装置であり、第1積層体10の光入射面(裏面とも称される)には、例えば、カラーフィルタ40、及び受光レンズ50が設けられる。
FIG. 1 is a vertical cross-sectional view illustrating a laminated structure of an image pickup apparatus 1 to which the technique according to the present disclosure is applied. As shown in FIG. 1, the image pickup apparatus 1 has a first laminate 10 including sensor pixels that perform photoelectric conversion, and a second laminate 20 including a pixel circuit that converts charges output from the sensor pixels into pixel signals. It is composed of stacking. The image pickup device 1 is a so-called back-illuminated image pickup device, and for example, a color filter 40 and a light receiving lens 50 are provided on the light incident surface (also referred to as the back surface) of the first laminated body 10.
第1積層体10は、半導体基板11上に第1絶縁層46を積層して構成される。半導体基板11は、例えば、シリコン基板であり、センサ画素12ごとに、n型の半導体領域であるフォトダイオードPDが設けられる。受光レンズ50、及びカラーフィルタ40を通過して第1積層体10に入射した光は、フォトダイオードPDにて光電変換される。
The first laminated body 10 is configured by laminating a first insulating layer 46 on a semiconductor substrate 11. The semiconductor substrate 11 is, for example, a silicon substrate, and a photodiode PD, which is an n-type semiconductor region, is provided for each sensor pixel 12. The light that has passed through the light receiving lens 50 and the color filter 40 and is incident on the first laminated body 10 is photoelectrically converted by the photodiode PD.
センサ画素12の各々は、素子分離部43によって分離される。素子分離部43は、半導体基板11の一主面の法線方向に延在するように絶縁性材料にて設けられ、隣接するセンサ画素12を電気的に分離する。素子分離部43は、例えば、SiO2にて半導体基板11を貫通するように設けられてもよい。
Each of the sensor pixels 12 is separated by the element separation unit 43. The element separation unit 43 is provided with an insulating material so as to extend in the normal direction of one main surface of the semiconductor substrate 11, and electrically separates the adjacent sensor pixels 12. The element separation unit 43 may be provided, for example, so as to penetrate the semiconductor substrate 11 with SiO 2.
また、半導体基板11には、例えば、第1絶縁層46が積層される面側の一部領域にp型の半導体領域であるpウェル層42が設けられ、素子分離部43の側面にpウェル層44が設けられる。pウェル層44は、フォトダイオードPDとは異なる導電型(具体的にはp型)の半導体領域であり、半導体基板11と素子分離部43との界面に生じた欠陥による暗電流の発生を抑制する。
Further, for example, the semiconductor substrate 11 is provided with a p-well layer 42, which is a p-type semiconductor region, in a part of the surface side on which the first insulating layer 46 is laminated, and p-wells are provided on the side surface of the element separation portion 43. Layer 44 is provided. The p-well layer 44 is a conductive type (specifically, p-type) semiconductor region different from the photodiode PD, and suppresses the generation of dark current due to a defect generated at the interface between the semiconductor substrate 11 and the element separation portion 43. To do.
さらに、半導体基板11の受光面側には、固定電荷膜45が設けられる。固定電荷膜45は、負の固定電荷を有する絶縁膜にて設けられ、半導体基板11の受光面側の界面準位に起因する暗電流の発生を抑制する。固定電荷膜45は、例えば、酸化ハフニウム、酸化ジルコン、酸化アルミニウム、酸化チタン、又は酸化タンタル等にて設けられてもよい。
Further, a fixed charge film 45 is provided on the light receiving surface side of the semiconductor substrate 11. The fixed charge film 45 is provided with an insulating film having a negative fixed charge, and suppresses the generation of dark current due to the interface state on the light receiving surface side of the semiconductor substrate 11. The fixed charge film 45 may be provided with, for example, hafnium oxide, zircon oxide, aluminum oxide, titanium oxide, tantalum oxide, or the like.
第1積層体10には、センサ画素12ごとに、転送トランジスタTRと、フローティングディフュージョンFDとが設けられる。具体的には、転送トランジスタTR、及びフローティングディフュージョンFDは、半導体基板11の光入射面側と反対側に設けられる。転送トランジスタTRは、いわゆる縦型トランジスタであり、半導体基板11の内部に設けられたフォトダイオードPDによって光電変換された電荷を取り出す。フローティングディフュージョンFDは、pウェル層42の内部にて、pウェル層42とは異なる導電型(具体的には、n型)の半導体領域として設けられ、転送トランジスタTRにて読み出された電荷を蓄積する。
The first laminated body 10 is provided with a transfer transistor TR and a floating diffusion FD for each sensor pixel 12. Specifically, the transfer transistor TR and the floating diffusion FD are provided on the side of the semiconductor substrate 11 opposite to the light incident surface side. The transfer transistor TR is a so-called vertical transistor, and takes out the electric charge photoelectrically converted by the photodiode PD provided inside the semiconductor substrate 11. The floating diffusion FD is provided inside the p-well layer 42 as a conductive type (specifically, n-type) semiconductor region different from the p-well layer 42, and charges read by the transfer transistor TR. accumulate.
カラーフィルタ40は、半導体基板11の第1絶縁層46が設けられた面(いわゆる表面)と反対側の面(いわゆる裏面)に設けられる。具体的には、カラーフィルタ40は、例えば、センサ画素12ごとに固定電荷膜45に接して設けられる。受光レンズ50は、例えば、1つ又は複数のセンサ画素12ごとにカラーフィルタ40に接して設けられる。
The color filter 40 is provided on the surface (so-called back surface) opposite to the surface (so-called front surface) on which the first insulating layer 46 is provided on the semiconductor substrate 11. Specifically, the color filter 40 is provided in contact with the fixed charge film 45 for each sensor pixel 12, for example. The light receiving lens 50 is provided in contact with the color filter 40 for each one or a plurality of sensor pixels 12, for example.
第2積層体20は、回路層21の上に第2絶縁層57を積層して構成される。回路層21は、シリコン等の半導体材料で構成された半導体層48と、絶縁性材料で構成された回路絶縁層47とを含む。
The second laminated body 20 is configured by laminating a second insulating layer 57 on the circuit layer 21. The circuit layer 21 includes a semiconductor layer 48 made of a semiconductor material such as silicon and a circuit insulating layer 47 made of an insulating material.
回路絶縁層47には、貫通配線54が設けられる。貫通配線54は、回路絶縁層47にて側面を覆われることによって、半導体層48と電気的に絶縁される。貫通配線54は、回路層21の一主面の法線方向に延在しており、半導体基板11に設けられたフローティングディフュージョンFDと、第2絶縁層57に設けられた多層配線層23とを電気的に接続する。貫通配線54は、例えば、センサ画素12ごとに1つ設けられてもよい。
A through wiring 54 is provided in the circuit insulating layer 47. The through wiring 54 is electrically insulated from the semiconductor layer 48 by covering the side surface with the circuit insulating layer 47. The through wiring 54 extends in the normal direction of one main surface of the circuit layer 21, and comprises a floating diffusion FD provided on the semiconductor substrate 11 and a multilayer wiring layer 23 provided on the second insulating layer 57. Connect electrically. For example, one through wiring 54 may be provided for each sensor pixel 12.
なお、第2積層体20は、第1絶縁層46の上に半導体層48、回路絶縁層47、及び第2絶縁層57を順次積層することで設けられてもよい。または、第2積層体20は、回路層21、及び第2絶縁層57をあらかじめ形成したシリコン基板等を回路層21と第1絶縁層46とが対向するように(すなわち、フェイストゥーバックにて)第1積層体10と貼り合わせることで設けられてもよい。
The second laminated body 20 may be provided by sequentially laminating the semiconductor layer 48, the circuit insulating layer 47, and the second insulating layer 57 on the first insulating layer 46. Alternatively, in the second laminated body 20, the circuit layer 21 and the silicon substrate on which the second insulating layer 57 is formed in advance are arranged so that the circuit layer 21 and the first insulating layer 46 face each other (that is, face-to-back). ) It may be provided by laminating with the first laminated body 10.
第2積層体20の回路層21、及び第2絶縁層57には、画素回路が設けられる。画素回路は、例えば、フローティングディフュージョンFDと電気的に接続する貫通配線54、第2絶縁層57に設けられた多層配線層23及びコンタクトプラグ59、並びに回路層21に設けられた電界効果トランジスタ22にて構成される。画素回路は、例えば、1つ又は複数のセンサ画素12ごとに1つずつ設けられる。画素回路は、センサ画素12の各々から出力され、フローティングディフュージョンFDに蓄積された電荷を画素信号に変換する。画素回路は、例えば、4つのセンサ画素12ごとに1つずつ設けられてもよい。
A pixel circuit is provided in the circuit layer 21 and the second insulating layer 57 of the second laminated body 20. The pixel circuit is provided in, for example, a through wiring 54 electrically connected to the floating diffusion FD, a multilayer wiring layer 23 and a contact plug 59 provided in the second insulating layer 57, and a field effect transistor 22 provided in the circuit layer 21. It is composed of. One pixel circuit is provided for each one or a plurality of sensor pixels 12, for example. The pixel circuit converts the charges output from each of the sensor pixels 12 and stored in the floating diffusion FD into pixel signals. For example, one pixel circuit may be provided for every four sensor pixels 12.
図2は、撮像装置1の回路構造を説明する等価回路図である。図2に示すように、撮像装置1は、例えば、フォトダイオードPDと、転送トランジスタTRと、フローティングディフュージョンFDと、FD変換ゲイン切替トランジスタFDGと、リセットトランジスタRSTと、増幅トランジスタAMPと、選択トランジスタSELとを備える。
FIG. 2 is an equivalent circuit diagram illustrating the circuit structure of the image pickup apparatus 1. As shown in FIG. 2, the image pickup apparatus 1 includes, for example, a photodiode PD, a transfer transistor TR, a floating diffusion FD, an FD conversion gain switching transistor FDG, a reset transistor RST, an amplification transistor AMP, and a selection transistor SEL. And.
上述したように、フォトダイオードPD、転送トランジスタTR、及びフローティングディフュージョンFDは、第1積層体10に設けられる。FD変換ゲイン切替トランジスタFDG、リセットトランジスタRST、増幅トランジスタAMP、及び選択トランジスタSELは、第2積層体20に設けられる。
As described above, the photodiode PD, the transfer transistor TR, and the floating diffusion FD are provided in the first laminated body 10. The FD conversion gain switching transistor FDG, the reset transistor RST, the amplification transistor AMP, and the selection transistor SEL are provided in the second laminated body 20.
フォトダイオードPDは、光電変換を行い、受光量に応じた電荷を発生させる。フォトダイオードPDのカソードは、転送トランジスタTRのソースに電気的に接続され、フォトダイオードPDのアノードは、基準電位線(例えば、グラウンド)に電気的に接続される。
The photodiode PD performs photoelectric conversion to generate an electric charge according to the amount of received light. The cathode of the photodiode PD is electrically connected to the source of the transfer transistor TR, and the anode of the photodiode PD is electrically connected to the reference potential line (eg, ground).
転送トランジスタTRは、例えば、縦型のMOS(Metal Oxide Semiconductor)トランジスタであり、フォトダイオードPDにて光電変換された電荷をフローティングディフュージョンFDに転送する。転送トランジスタTRのソースは、フォトダイオードPDのカソードに電気的に接続される。転送トランジスタTRのドレインは、フローティングディフュージョンFDに電気的に接続され、転送トランジスタTRのゲートは、画素駆動線に電気的に接続される。
The transfer transistor TR is, for example, a vertical MOS (Metal Oxide Semiconductor) transistor, and transfers the charge photoelectrically converted by the photodiode PD to the floating diffusion FD. The source of the transfer transistor TR is electrically connected to the cathode of the photodiode PD. The drain of the transfer transistor TR is electrically connected to the floating diffusion FD, and the gate of the transfer transistor TR is electrically connected to the pixel drive line.
フローティングディフュージョンFDは、転送トランジスタTRを介してフォトダイオードPDから出力された電荷を一時的に保持する。フローティングディフュージョンFDは、転送トランジスタTRのドレイン、増幅トランジスタAMPのゲート、及びリセットトランジスタRSTのソースと電気的に接続される。
The floating diffusion FD temporarily holds the electric charge output from the photodiode PD via the transfer transistor TR. The floating diffusion FD is electrically connected to the drain of the transfer transistor TR, the gate of the amplification transistor AMP, and the source of the reset transistor RST.
FD変換ゲイン切替トランジスタFDGは、例えば、MOSトランジスタであり、画素回路における電荷-電圧変換効率を切り替えるために設けられる。FD変換ゲイン切替トランジスタFDGは、オン状態となることで、オフ状態と比較してFD変換ゲイン切替トランジスタFDGのゲート容量の分だけフローティングディフュージョンFDの容量Cを大きくすることができる。
The FD conversion gain switching transistor FDG is, for example, a MOS transistor, and is provided to switch the charge-voltage conversion efficiency in the pixel circuit. When the FD conversion gain switching transistor FDG is turned on, the capacitance C of the floating diffusion FD can be increased by the gate capacitance of the FD conversion gain switching transistor FDG as compared with the off state.
フローティングディフュージョンFDに蓄積される電荷Qは、容量Cと、電圧Vとの積で表されるため、フローティングディフュージョンFDの容量Cが大きい場合、増幅トランジスタAMPでの変換後の電圧Vが低くなってしまう。一方、フォトダイオードPDから出力される電荷Qが大きい場合、フローティングディフュージョンFDの容量Cが十分に大きくなければフォトダイオードPDからの電荷QをフローティングディフュージョンFDにて保持しきれなくなってしまう。また、フローティングディフュージョンFDの容量Cは、増幅トランジスタAMPにて変換された電圧Vが過度に高くなりすぎないように、適度に大きいことも重要である。
Since the charge Q stored in the floating diffusion FD is represented by the product of the capacitance C and the voltage V, when the capacitance C of the floating diffusion FD is large, the voltage V after conversion by the amplification transistor AMP becomes low. It ends up. On the other hand, when the charge Q output from the photodiode PD is large, the charge Q from the photodiode PD cannot be held by the floating diffusion FD unless the capacitance C of the floating diffusion FD is sufficiently large. It is also important that the capacitance C of the floating diffusion FD is appropriately large so that the voltage V converted by the amplification transistor AMP does not become excessively high.
したがって、FD変換ゲイン切替トランジスタFDGは、オン又はオフの状態を切り替えてフローティングディフュージョンFDの容量Cを可変とすることで、画素回路における電荷-電圧変換効率を切り替えることができる。
Therefore, the FD conversion gain switching transistor FDG can switch the charge-voltage conversion efficiency in the pixel circuit by switching the on or off state to change the capacitance C of the floating diffusion FD.
リセットトランジスタRSTは、例えば、MOSトランジスタであり、フローティングディフュージョンFDの電位を電源線VDDの電位にリセットする。リセットトランジスタRSTのソースは、フローティングディフュージョンFDに電気的に接続される。リセットトランジスタRSTのドレインは、電源線VDDに電気的に接続され、リセットトランジスタRSTのゲートは、画素駆動線に電気的に接続される。
The reset transistor RST is, for example, a MOS transistor, and resets the potential of the floating diffusion FD to the potential of the power supply line VDD. The source of the reset transistor RST is electrically connected to the floating diffusion FD. The drain of the reset transistor RST is electrically connected to the power supply line VDD, and the gate of the reset transistor RST is electrically connected to the pixel drive line.
増幅トランジスタAMPは、例えば、MOSトランジスタであり、フローティングディフュージョンFDに保持された電荷のレベルに応じた電圧信号を画素信号として生成する。増幅トランジスタAMPは、いわゆるソースフォロア型の増幅器を構成しており、フォトダイオードPDで発生した電荷のレベルに応じた電圧の画素信号を出力する。増幅トランジスタAMPのドレインは、電源線VDDに電気的に接続される。増幅トランジスタAMPのソースは、選択トランジスタSELのドレインに電気的に接続され、増幅トランジスタAMPのゲートは、リセットトランジスタRSTのソースに電気的に接続される。
The amplification transistor AMP is, for example, a MOS transistor, and generates a voltage signal as a pixel signal according to the level of electric charge held in the floating diffusion FD. The amplification transistor AMP constitutes a so-called source follower type amplifier, and outputs a pixel signal having a voltage corresponding to the level of electric charge generated by the photodiode PD. The drain of the amplification transistor AMP is electrically connected to the power supply line VDD. The source of the amplification transistor AMP is electrically connected to the drain of the selection transistor SEL, and the gate of the amplification transistor AMP is electrically connected to the source of the reset transistor RST.
選択トランジスタSELは、例えば、MOSトランジスタであり、画素回路からの画素信号の出力タイミングを制御する。選択トランジスタSELがオン状態となることで、増幅トランジスタAMPは、フローティングディフュージョンFDの電位を増幅し、垂直信号線を介して、増幅した電位に応じた電圧を出力することができる。選択トランジスタSELのドレインは、増幅トランジスタAMPのソースに電気的に接続される。選択トランジスタSELのソースは、垂直信号線に電気的に接続され、選択トランジスタSELのゲートは、画素駆動線に電気的に接続される。
The selection transistor SEL is, for example, a MOS transistor, and controls the output timing of the pixel signal from the pixel circuit. When the selection transistor SEL is turned on, the amplification transistor AMP can amplify the potential of the floating diffusion FD and output a voltage corresponding to the amplified potential via the vertical signal line. The drain of the selection transistor SEL is electrically connected to the source of the amplification transistor AMP. The source of the selection transistor SEL is electrically connected to the vertical signal line, and the gate of the selection transistor SEL is electrically connected to the pixel drive line.
以上の構成により、撮像装置1は、第1積層体10のセンサ画素12に入射した光量に応じた画素信号を画素回路から出力することができる。
With the above configuration, the image pickup apparatus 1 can output a pixel signal corresponding to the amount of light incident on the sensor pixel 12 of the first laminated body 10 from the pixel circuit.
<2.概要>
続いて、図3を参照して、本開示に係る技術の概要について説明する。図3は、本開示の一実施形態に係る撮像装置1の回路層21における各トランジスタの平面配置を示す模式的な説明図である。 <2. Overview>
Subsequently, the outline of the technique according to the present disclosure will be described with reference to FIG. FIG. 3 is a schematic explanatory view showing a planar arrangement of each transistor in thecircuit layer 21 of the image pickup apparatus 1 according to the embodiment of the present disclosure.
続いて、図3を参照して、本開示に係る技術の概要について説明する。図3は、本開示の一実施形態に係る撮像装置1の回路層21における各トランジスタの平面配置を示す模式的な説明図である。 <2. Overview>
Subsequently, the outline of the technique according to the present disclosure will be described with reference to FIG. FIG. 3 is a schematic explanatory view showing a planar arrangement of each transistor in the
図1及び図2を参照して説明したように、撮像装置1では、第2積層体20の回路層21に、例えば、FD変換ゲイン切替トランジスタFDG、リセットトランジスタRST、増幅トランジスタAMP、及び選択トランジスタSELが設けられる。本実施形態に係る撮像装置1では、増幅トランジスタAMPを除く少なくとも1つ以上のトランジスタのゲート電極は、複数の画素回路に亘って延在されることで、複数の画素回路の同種のトランジスタのゲート電極を電気的に接続する配線として用いられる。
As described with reference to FIGS. 1 and 2, in the image pickup apparatus 1, for example, the FD conversion gain switching transistor FDG, the reset transistor RST, the amplification transistor AMP, and the selection transistor are applied to the circuit layer 21 of the second laminated body 20. SEL is provided. In the image pickup apparatus 1 according to the present embodiment, the gate electrodes of at least one or more transistors other than the amplification transistor AMP are extended over a plurality of pixel circuits, so that the gates of the same type of transistors in the plurality of pixel circuits are gated. It is used as a wiring that electrically connects electrodes.
具体的には、図2の等価回路図で示したように、増幅トランジスタAMPを除く、FD変換ゲイン切替トランジスタFDG、リセットトランジスタRST、及び選択トランジスタSELのゲート電極は、他の画素回路の同種のトランジスタのゲート電極と共に画素駆動線又は垂直信号線などに電気的に接続される。これらのゲート電極の各々を電気的に接続する配線は、例えば、第2絶縁層57の内部の多層配線層23に設けることも可能である。しかしながら、センサ画素12の微細化に伴って、画素回路が設けられる領域の微細化が進行した結果、多層配線層23に設けられる配線は、より狭幅化及び狭ピッチ化している。そのため、多層配線層23にて配線を形成する際のプロセス難度が上昇している。
Specifically, as shown in the equivalent circuit diagram of FIG. 2, the gate electrodes of the FD conversion gain switching transistor FDG, the reset transistor RST, and the selection transistor SEL, excluding the amplification transistor AMP, are of the same type as the other pixel circuits. Together with the gate electrode of the transistor, it is electrically connected to a pixel drive line or a vertical signal line. The wiring for electrically connecting each of these gate electrodes can be provided, for example, in the multilayer wiring layer 23 inside the second insulating layer 57. However, as the sensor pixel 12 has been miniaturized, the area where the pixel circuit is provided has been miniaturized, and as a result, the wiring provided in the multilayer wiring layer 23 has become narrower and narrower in pitch. Therefore, the process difficulty in forming the wiring in the multilayer wiring layer 23 is increasing.
本実施形態に係る撮像装置1では、FD変換ゲイン切替トランジスタFDG、リセットトランジスタRST、又は選択トランジスタSELの少なくとも1つ以上のゲート電極と、複数の画素回路の同種のトランジスタのゲート電極とを電気的に接続する配線が回路層21の上にゲート電極と一体化して設けられる。これによれば、撮像装置1は、多層配線層23に形成される配線の数を減少させることで、多層配線層23に形成される配線の幅及びピッチを広げることができるため、多層配線層23を形成する際のプロセス難度を低下させることができる。また、撮像装置1は、多層配線層23に形成される配線の幅及びピッチを広げることで、多層配線層23に形成される配線の抵抗及び容量を低減することができる。
In the image pickup apparatus 1 according to the present embodiment, at least one or more gate electrodes of the FD conversion gain switching transistor FDG, the reset transistor RST, or the selection transistor SEL and the gate electrodes of the same type of transistors of a plurality of pixel circuits are electrically connected. The wiring connected to is provided on the circuit layer 21 integrally with the gate electrode. According to this, the image pickup apparatus 1 can widen the width and pitch of the wiring formed in the multi-layer wiring layer 23 by reducing the number of wirings formed in the multi-layer wiring layer 23. Therefore, the multi-layer wiring layer 1 can be widened. The process difficulty in forming 23 can be reduced. Further, the image pickup apparatus 1 can reduce the resistance and capacitance of the wiring formed on the multilayer wiring layer 23 by widening the width and pitch of the wiring formed on the multilayer wiring layer 23.
二次元構造の撮像装置では、同一平面内にセンサ画素12、及び画素回路が設けられるため、複数の画素回路に亘って延在する配線を形成することは、各要素の配置の要請上、困難である。一方で、本実施形態に係る撮像装置1は、三次元構造であるため、センサ画素12と、画素回路とを縦方向に積層することができる。これにより、撮像装置1は、回路層21に設けられる要素の数を減少させることができるため、複数の画素回路に亘って延在する配線を形成することが可能となる。また、撮像装置1では、4つのセンサ画素12で1つの画素回路を共有することで、センサ画素12ごとに画素回路が形成された場合と比較して、1つの画素回路が形成される領域の大きさを4倍に拡大することができる。これにより、撮像装置1は、複数の画素回路に亘って延在する配線が形成される領域をより容易に確保することが可能となる。
In an imaging device having a two-dimensional structure, sensor pixels 12 and pixel circuits are provided in the same plane, so it is difficult to form wiring extending over a plurality of pixel circuits due to the demand for arrangement of each element. Is. On the other hand, since the image pickup apparatus 1 according to the present embodiment has a three-dimensional structure, the sensor pixels 12 and the pixel circuits can be stacked in the vertical direction. As a result, the image pickup apparatus 1 can reduce the number of elements provided in the circuit layer 21, so that it is possible to form wiring extending over a plurality of pixel circuits. Further, in the image pickup apparatus 1, by sharing one pixel circuit among the four sensor pixels 12, the area where one pixel circuit is formed is compared with the case where the pixel circuit is formed for each sensor pixel 12. The size can be expanded four times. This makes it possible for the image pickup apparatus 1 to more easily secure a region in which wiring extending over a plurality of pixel circuits is formed.
例えば、図3に示すように、本開示に係る技術が適用された撮像装置1では、画素回路が設けられる繰り返し領域RUに対して、2回の折曲を介して第1方向(例えば、図3に正対して上下方向)に延在するように半導体層48が設けられる。また、リセットトランジスタRSTのゲート電極25、FD変換ゲイン切替トランジスタFDGのゲート電極26、及び選択トランジスタSELのゲート電極28を第1方向と直交する第2方向(例えば、図3に正対して左右方向)に延在させ、半導体層48と交差させることで、各トランジスタが形成される。
For example, as shown in FIG. 3, in the image pickup apparatus 1 to which the technique according to the present disclosure is applied, the first direction (for example, FIG. The semiconductor layer 48 is provided so as to extend in the vertical direction facing the third layer. Further, the gate electrode 25 of the reset transistor RST, the gate electrode 26 of the FD conversion gain switching transistor FDG, and the gate electrode 28 of the selection transistor SEL are placed in a second direction (for example, in the left-right direction facing FIG. 3) perpendicular to the first direction. ), And crossing with the semiconductor layer 48, each transistor is formed.
これによれば、リセットトランジスタRSTのゲート電極25、FD変換ゲイン切替トランジスタFDGのゲート電極26、及び選択トランジスタSELのゲート電極28は、複数の繰り返し領域RUに亘って第2方向に延在することで、リセットトランジスタRSTのゲート電極25同士、FD変換ゲイン切替トランジスタFDGのゲート電極26同士、及び選択トランジスタSELのゲート電極28同士を電気的に接続する配線として機能する。したがって、撮像装置1は、第2絶縁層57の内部の多層配線層23に設けられる配線の一部を回路層21の上に形成することができるため、多層配線層23に設けられる配線の数を減少させることができる。したがって、撮像装置1は、多層配線層23におけるデザインルールを緩和することができる。
According to this, the gate electrode 25 of the reset transistor RST, the gate electrode 26 of the FD conversion gain switching transistor FDG, and the gate electrode 28 of the selection transistor SEL extend in the second direction over a plurality of repeating regions RU. Therefore, it functions as a wiring for electrically connecting the gate electrodes 25 of the reset transistor RST, the gate electrodes 26 of the FD conversion gain switching transistor FDG, and the gate electrodes 28 of the selection transistor SEL. Therefore, since the image pickup apparatus 1 can form a part of the wiring provided in the multilayer wiring layer 23 inside the second insulating layer 57 on the circuit layer 21, the number of wirings provided in the multilayer wiring layer 23 Can be reduced. Therefore, the image pickup apparatus 1 can relax the design rule in the multilayer wiring layer 23.
図3では、リセットトランジスタRSTのゲート電極25、FD変換ゲイン切替トランジスタFDGのゲート電極26、及び選択トランジスタSELのゲート電極28が第2方向に延在するように設けられているが、本開示に係る技術はかかる例示に限定されない。リセットトランジスタRSTのゲート電極25、FD変換ゲイン切替トランジスタFDGのゲート電極26、及び選択トランジスタSELのゲート電極28は、少なくとも1つ以上が第2方向に延在するように設けられていればよい。
In FIG. 3, the gate electrode 25 of the reset transistor RST, the gate electrode 26 of the FD conversion gain switching transistor FDG, and the gate electrode 28 of the selection transistor SEL are provided so as to extend in the second direction. Such techniques are not limited to such examples. At least one of the gate electrode 25 of the reset transistor RST, the gate electrode 26 of the FD conversion gain switching transistor FDG, and the gate electrode 28 of the selection transistor SEL may be provided so as to extend in the second direction.
なお、増幅トランジスタAMPのゲート電極27は、他の画素回路の増幅トランジスタAMPのゲート電極と電気的に接続されず、フローティングディフュージョンFDと電気的に接続される。そのため、増幅トランジスタAMPのゲート電極27は、例えば、半導体層48の折曲点と重なるように矩形形状にて設けられる。これによれば、増幅トランジスタAMPのゲート電極27は、ゲート長をより大きくすることができるため、ランダムテレグラフノイズ(Random Telegraph Noise:RTN)を抑制することが可能である。
The gate electrode 27 of the amplification transistor AMP is not electrically connected to the gate electrode of the amplification transistor AMP of another pixel circuit, but is electrically connected to the floating diffusion FD. Therefore, the gate electrode 27 of the amplification transistor AMP is provided in a rectangular shape, for example, so as to overlap the inflection point of the semiconductor layer 48. According to this, since the gate electrode 27 of the amplification transistor AMP can have a larger gate length, it is possible to suppress random telegraph noise (Random Telegraph Noise: RTN).
<3.実施例>
続いて、図4A~図12を参照して、本実施形態に係る撮像装置1の具体的な構造について説明する。図4A、図5A、図6A、図8、図9A、図10~図12は、画素回路の一断面における各構成の平面配置を示す平面図である。図4A、図5A、図6A、図8、図9A、図10~図12では、着目した層の構成のみを示しており、着目していない層の構成についての図示は省略している。撮像装置1のセンサ画素12及び画素回路は、図4A、図5A、図6A、図8、図9A、図10~図12に示す繰り返し単位RUが平面上に繰り返し配列されることで構成される。 <3. Example>
Subsequently, a specific structure of theimage pickup apparatus 1 according to the present embodiment will be described with reference to FIGS. 4A to 12. 4A, 5A, 6A, 8, 9A, and 10 to 12 are plan views showing the planar arrangement of each configuration in one cross section of the pixel circuit. 4A, 5A, 6A, 8, 9A, and 10 to 12 show only the configuration of the layer of interest, and the configuration of the layer not of interest is omitted. The sensor pixel 12 and the pixel circuit of the image pickup apparatus 1 are configured by repeatedly arranging the repeating units RU shown in FIGS. 4A, 5A, 6A, 8, 9A, and 10 to 12 on a plane. ..
続いて、図4A~図12を参照して、本実施形態に係る撮像装置1の具体的な構造について説明する。図4A、図5A、図6A、図8、図9A、図10~図12は、画素回路の一断面における各構成の平面配置を示す平面図である。図4A、図5A、図6A、図8、図9A、図10~図12では、着目した層の構成のみを示しており、着目していない層の構成についての図示は省略している。撮像装置1のセンサ画素12及び画素回路は、図4A、図5A、図6A、図8、図9A、図10~図12に示す繰り返し単位RUが平面上に繰り返し配列されることで構成される。 <3. Example>
Subsequently, a specific structure of the
また、図4Bは、図4AのA-AA切断線における縦断面図であり、図5Bは、図5AのA-AA切断線における縦断面図であり、図6Bは、図6AのB-BB切断線における縦断面図であり、図9Bは、図9AのB-BB切断線における縦断面図である。
4B is a vertical sectional view taken along the AAA cutting line of FIG. 4A, FIG. 5B is a vertical sectional view taken along the AAA cutting line of FIG. 5A, and FIG. 6B is a B-BB of FIG. 6A. It is a vertical cross-sectional view in the cutting line, and FIG. 9B is a vertical cross-sectional view in the B-BB cutting line of FIG. 9A.
図4A及び図4Bに示すように、半導体基板11には、行列状に配置されたセンサ画素12を離隔するように、格子状に素子分離部43が設けられる。繰り返し単位RUの中心の素子分離部43の交点上には、4つのセンサ画素12の各々の半導体基板11と電気的に接続するポリシリコン層602が設けられる。ポリシリコン層602は、4つのセンサ画素12で共有されるフローティングディフュージョンFDとして機能する。ポリシリコン層602の上には、後段にて、回路絶縁層47を貫通するコンタクトプラグ620が設けられる。
As shown in FIGS. 4A and 4B, the semiconductor substrate 11 is provided with element separation portions 43 in a grid pattern so as to separate the sensor pixels 12 arranged in a matrix. A polysilicon layer 602 that electrically connects to the semiconductor substrate 11 of each of the four sensor pixels 12 is provided on the intersection of the element separation portions 43 at the center of the repeating unit RU. The polysilicon layer 602 functions as a floating diffusion FD shared by the four sensor pixels 12. A contact plug 620 penetrating the circuit insulating layer 47 is provided on the polysilicon layer 602 at a later stage.
また、ポリシリコン層602と対角線上の素子分離部43の交点には、半導体基板11と電気的に接続するポリシリコン層601が設けられる。ポリシリコン層601は、フォトダイオードPDのアノードと基準電位線VSSとを電気的に接続するために設けられる。ポリシリコン層601の上には、後段にて、回路絶縁層47を貫通するコンタクトプラグ625、626、627、628が設けられる。
Further, at the intersection of the polysilicon layer 602 and the element separation portion 43 on the diagonal line, a polysilicon layer 601 that electrically connects to the semiconductor substrate 11 is provided. The polysilicon layer 601 is provided to electrically connect the anode of the photodiode PD and the reference potential line VSS. Contact plugs 625, 626, 627, and 628 penetrating the circuit insulating layer 47 are provided on the polysilicon layer 601 at a later stage.
さらに、4つのセンサ画素12の各々の中央には、転送トランジスタTRの縦型ゲート電極TG1、TG2、TG3、TG4がそれぞれ設けられる。縦型ゲート電極TG1、TG2、TG3、TG4の上には、絶縁層46Aを介して、素子分離部43の上まで引き回す配線層611、612、613、614が設けられる。素子分離部43の上の配線層611、612、613、614には、後段にて、回路絶縁層47を貫通するコンタクトプラグ621、622、623、624が設けられる。
Further, at the center of each of the four sensor pixels 12, vertical gate electrodes TG1, TG2, TG3, and TG4 of the transfer transistor TR are provided, respectively. On the vertical gate electrodes TG1, TG2, TG3, and TG4, wiring layers 611, 612, 613, and 614 are provided so as to be routed over the element separating portion 43 via the insulating layer 46A. The wiring layers 611, 612, 613, and 614 above the element separation unit 43 are provided with contact plugs 621, 622, 623, and 624 that penetrate the circuit insulation layer 47 at a later stage.
図5A及び図5Bに示すように、図4A及び図4Bで示した各構成は、第1絶縁層46にて埋め込まれる。第1絶縁層46の上には、半導体層48が設けられる。半導体層48は、後段にて、コンタクトプラグ620、621、622、623、624、625、626、627、628が設けられる領域を避けるように、2回折曲して第1方向(例えば、図5Aに正対して上下方向)に延在するように設けられる。半導体層48は、例えば、シリコン等を上述した所定の領域に島状に堆積することで設けられる。
As shown in FIGS. 5A and 5B, each configuration shown in FIGS. 4A and 4B is embedded in the first insulating layer 46. A semiconductor layer 48 is provided on the first insulating layer 46. The semiconductor layer 48 is bent twice in the first direction (for example, FIG. 5A) so as to avoid the region where the contact plugs 620, 621, 622, 623, 624, 625, 626, 627, and 628 are provided in the subsequent stage. It is provided so as to extend in the vertical direction (in the vertical direction) facing the. The semiconductor layer 48 is provided, for example, by depositing silicon or the like in the above-mentioned predetermined region in an island shape.
図6A及び図6Bに示すように、図5A及び図5Bで示した半導体層48は、回路絶縁層47にて埋め込まれ、半導体層48及び回路絶縁層47にて回路層21が構成される。回路層21には、半導体層48が延伸する第1方向と直交する第2方向(例えば、図6Aに正対して左右方向)に、リセットトランジスタRSTのゲート電極25、FD変換ゲイン切替トランジスタFDGのゲート電極26、及び選択トランジスタSELのゲート電極28が設けられる。リセットトランジスタRSTのゲート電極25、FD変換ゲイン切替トランジスタFDGのゲート電極26、及び選択トランジスタSELのゲート電極28は、繰り返し単位RUを越えて延在しており、他の繰り返し単位RUの同種のトランジスタのゲート電極と電気的に接続している。すなわち、これらのゲート電極25、26、28は、複数の繰り返し単位RUの同種のトランジスタのゲート電極を電気的に接続する配線としても機能する。
As shown in FIGS. 6A and 6B, the semiconductor layer 48 shown in FIGS. 5A and 5B is embedded in the circuit insulating layer 47, and the circuit layer 21 is composed of the semiconductor layer 48 and the circuit insulating layer 47. The circuit layer 21 includes the gate electrode 25 of the reset transistor RST and the FD conversion gain switching transistor FDG in the second direction (for example, the left-right direction facing FIG. 6A) orthogonal to the first direction in which the semiconductor layer 48 extends. A gate electrode 26 and a gate electrode 28 of the selection transistor SEL are provided. The gate electrode 25 of the reset transistor RST, the gate electrode 26 of the FD conversion gain switching transistor FDG, and the gate electrode 28 of the selection transistor SEL extend beyond the repetition unit RU, and are the same type of transistors of the other repetition unit RU. It is electrically connected to the gate electrode of. That is, these gate electrodes 25, 26, and 28 also function as wiring for electrically connecting the gate electrodes of the same type of transistors of the plurality of repeating units RU.
また、増幅トランジスタAMPのゲート電極27は、例えば、半導体層48の折曲点と重なる領域に矩形形状にて設けられる。
Further, the gate electrode 27 of the amplification transistor AMP is provided, for example, in a rectangular shape in a region overlapping the inflection point of the semiconductor layer 48.
ここで、リセットトランジスタRSTのゲート電極25、FD変換ゲイン切替トランジスタFDGのゲート電極26、増幅トランジスタAMPのゲート電極27、及び選択トランジスタSELのゲート電極28は、図6Bに示す断面構造にて設けられてもよい。
Here, the gate electrode 25 of the reset transistor RST, the gate electrode 26 of the FD conversion gain switching transistor FDG, the gate electrode 27 of the amplification transistor AMP, and the gate electrode 28 of the selection transistor SEL are provided in the cross-sectional structure shown in FIG. 6B. You may.
具体的には、これらのゲート電極25、26、27、28は、ゲート絶縁膜(図示せず)を介して半導体層48に埋め込まれたポリシリコン層711と、ポリシリコン層711の上に設けられた電極層713と、電極層713の側面及び底面を覆うように設けられたバリア層712とで構成されてもよい。
Specifically, these gate electrodes 25, 26, 27, and 28 are provided on the polysilicon layer 711 embedded in the semiconductor layer 48 via the gate insulating film (not shown) and the polysilicon layer 711. The electrode layer 713 may be composed of a barrier layer 712 provided so as to cover the side surface and the bottom surface of the electrode layer 713.
例えば、半導体層48の上に層間絶縁膜が形成された後、エッチング等を用いて、半導体層48に溝が形成される。次に、溝の内側にゲート絶縁膜(図示せず)が形成され、該溝がポリシリコン層711にて埋め込まれる。続いて、ポリシリコン層711の上部を後退(リセスとも称される)させて溝が形成され、該溝の内側にTi又はWの金属又は金属化合物からなるバリア層712が形成される。その後、ポリシリコン層711の上部の溝をCuなどで埋め込むことで電極層713が形成される。ゲート電極25、26、27、28は、このような構成にて形成されてもよい。
For example, after an interlayer insulating film is formed on the semiconductor layer 48, a groove is formed in the semiconductor layer 48 by etching or the like. Next, a gate insulating film (not shown) is formed inside the groove, and the groove is embedded in the polysilicon layer 711. Subsequently, the upper portion of the polysilicon layer 711 is retracted (also referred to as recess) to form a groove, and a barrier layer 712 made of a Ti or W metal or a metal compound is formed inside the groove. After that, the electrode layer 713 is formed by embedding the groove on the upper part of the polysilicon layer 711 with Cu or the like. The gate electrodes 25, 26, 27, 28 may be formed in such a configuration.
このような構造のゲート電極25、26、27、28は、半導体層48に埋め込まれたポリシリコン層711の周囲にチャネルが形成されるため、ゲート長をより長くすることができる。これによれば、ゲート電極25、26、27、28は、回路層21における占有する面積を縮小することができるため、画素回路における各構成のレイアウト自由度をより高めることできる。また、ゲート電極25、26、27、28は、ポリシリコン層711、及び電極層713の積層構造として設けられることで、メタルゲートを用いることによる界面準位の劣化を抑制すると共に、配線抵抗の上昇を抑制することができる。さらに、ゲート電極25、26、27、28は、金属材料にて形成される電極層713をエッチングすることなく形成することができるため、ゲート電極25、26、27、28の形成プロセスの難度を低下させることができる。
The gate electrodes 25, 26, 27, and 28 having such a structure have channels formed around the polysilicon layer 711 embedded in the semiconductor layer 48, so that the gate length can be made longer. According to this, since the gate electrodes 25, 26, 27, and 28 can reduce the area occupied by the circuit layer 21, the degree of freedom in layout of each configuration in the pixel circuit can be further increased. Further, since the gate electrodes 25, 26, 27, and 28 are provided as a laminated structure of the polysilicon layer 711 and the electrode layer 713, deterioration of the interface state due to the use of the metal gate is suppressed, and the wiring resistance is reduced. The rise can be suppressed. Further, since the gate electrodes 25, 26, 27, 28 can be formed without etching the electrode layer 713 formed of the metal material, the difficulty of the forming process of the gate electrodes 25, 26, 27, 28 can be reduced. Can be lowered.
また、リセットトランジスタRSTのゲート電極25、FD変換ゲイン切替トランジスタFDGのゲート電極26、増幅トランジスタAMPのゲート電極27、及び選択トランジスタSELのゲート電極28は、図7に示す断面構造にて設けられてもよい。
Further, the gate electrode 25 of the reset transistor RST, the gate electrode 26 of the FD conversion gain switching transistor FDG, the gate electrode 27 of the amplification transistor AMP, and the gate electrode 28 of the selection transistor SEL are provided in the cross-sectional structure shown in FIG. May be good.
図7に示すように、これらのゲート電極25、26、27、28は、ゲート絶縁膜(図示せず)を介して半導体層48に埋め込まれた金属材料からなる電極層721にて構成されてもよい。例えば、半導体層48の上に層間絶縁膜が形成された後、エッチング等を用いて、半導体層48に溝が形成される。次に、溝の内側にゲート絶縁膜(図示せず)が形成され、該溝をCuなどで埋め込むことで、電極層721が形成される。ゲート電極25、26、27、28は、このような構成にて形成されてもよい。
As shown in FIG. 7, these gate electrodes 25, 26, 27, 28 are composed of an electrode layer 721 made of a metal material embedded in the semiconductor layer 48 via a gate insulating film (not shown). May be good. For example, after an interlayer insulating film is formed on the semiconductor layer 48, a groove is formed in the semiconductor layer 48 by etching or the like. Next, a gate insulating film (not shown) is formed inside the groove, and the electrode layer 721 is formed by embedding the groove with Cu or the like. The gate electrodes 25, 26, 27, 28 may be formed in such a configuration.
このような構造のゲート電極25、26、27、28は、半導体層48に埋め込まれた電極層721の周囲にチャネルが形成されるため、ゲート長をより長くすることができる。これによれば、ゲート電極25、26、27、28は、回路層21における占有面積を縮小することができるため、画素回路における各構成のレイアウト自由度をより高めることできる。また、ゲート電極25、26、27、28は、金属材料にて形成される電極層721をエッチングすることなく形成することができるため、ゲート電極25、26、27、28の形成プロセスの難度を低下させることができる。
The gate electrodes 25, 26, 27, and 28 having such a structure have a longer gate length because channels are formed around the electrode layer 721 embedded in the semiconductor layer 48. According to this, since the gate electrodes 25, 26, 27, and 28 can reduce the occupied area in the circuit layer 21, the degree of freedom in layout of each configuration in the pixel circuit can be further increased. Further, since the gate electrodes 25, 26, 27, 28 can be formed without etching the electrode layer 721 formed of a metal material, the difficulty of the forming process of the gate electrodes 25, 26, 27, 28 can be reduced. Can be lowered.
図8に示すように、半導体層48、及び増幅トランジスタAMPのゲート電極27の上には、各トランジスタのドレイン、ソース、又はゲートと、上層に形成される配線とを電気的に接続するためのコンタクト631、632、633、634、635、636、637が第2絶縁層57の一部を貫通して設けられる。具体的には、コンタクト631、632は、リセットトランジスタRSTのゲート電極25を挟んで両側の半導体層48の上にそれぞれ設けられる。また、コンタクト633は、FD変換ゲイン切替トランジスタFDGのゲート電極26を挟んで、ゲート電極25が設けられた側と反対側の半導体層48の上に設けられる。また、コンタクト637は、選択トランジスタSELのゲート電極28を挟んで、ゲート電極27が設けられた側と反対側の半導体層48の上に設けられる。さらに、コンタクト634、636は、増幅トランジスタAMPのゲート電極27から突出した半導体層48の上にそれぞれ設けられ、コンタクト635は、増幅トランジスタAMPのゲート電極27の上に設けられる。
As shown in FIG. 8, on the semiconductor layer 48 and the gate electrode 27 of the amplification transistor AMP, the drain, source, or gate of each transistor is electrically connected to the wiring formed in the upper layer. The contacts 631, 632, 633, 634, 635, 636, and 637 are provided so as to penetrate a part of the second insulating layer 57. Specifically, the contacts 631 and 632 are provided on the semiconductor layers 48 on both sides of the gate electrode 25 of the reset transistor RST, respectively. Further, the contact 633 is provided on the semiconductor layer 48 on the side opposite to the side where the gate electrode 25 is provided, sandwiching the gate electrode 26 of the FD conversion gain switching transistor FDG. Further, the contact 637 is provided on the semiconductor layer 48 on the side opposite to the side where the gate electrode 27 is provided, sandwiching the gate electrode 28 of the selection transistor SEL. Further, the contacts 634 and 636 are provided on the semiconductor layer 48 protruding from the gate electrode 27 of the amplification transistor AMP, respectively, and the contacts 635 are provided on the gate electrode 27 of the amplification transistor AMP.
また、図8に示すように、コンタクトプラグ620、621、622、623、624、625、626、627、628は、回路絶縁層47、第2絶縁層57の一部を貫通するように設けられる。
Further, as shown in FIG. 8, the contact plugs 620, 621, 622, 623, 624, 625, 626, 627, and 628 are provided so as to penetrate a part of the circuit insulating layer 47 and the second insulating layer 57. ..
図9A及び図9Bに示すように、コンタクト631、632、633、634、635、636、637、及びコンタクトプラグ620、621、622、623、624、625、626、627、628は、第2絶縁層57A、57Bにて埋め込まれる。これらのコンタクト、及びコンタクトプラグの上には、第1配線層641、642、643、644、645、646、647、648、651、652、653、654がそれぞれ設けられる。
As shown in FIGS. 9A and 9B, the contacts 631, 632, 633, 634, 635, 636, 637, and the contact plugs 620, 621, 622, 623, 624, 625, 626, 627, 628 are second insulated. It is embedded in layers 57A and 57B. First wiring layers 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654 are provided on these contacts and contact plugs, respectively.
具体的には、第1配線層641は、コンタクトプラグ625の上に設けられ、第1配線層642は、コンタクトプラグ626の上に設けられる。第1配線層643は、コンタクトプラグ622の上に設けられ、第1配線層644は、コンタクトプラグ624の上に設けられ、第1配線層645は、コンタクトプラグ627の上に設けられる。第1配線層646は、コンタクトプラグ623の上に設けられ、第1配線層647は、コンタクトプラグ628の上に設けられ、第1配線層648は、コンタクトプラグ621の上に設けられる。第1配線層654は、コンタクト637の上に設けられ、第1配線層653は、コンタクト634の上に設けられる。また、第1配線層651は、コンタクト632、636を電気的に接続するように設けられ、第1配線層652は、コンタクト631、633、635、及びコンタクトプラグ620を電気的に接続するように設けられる。
Specifically, the first wiring layer 641 is provided on the contact plug 625, and the first wiring layer 642 is provided on the contact plug 626. The first wiring layer 643 is provided on the contact plug 622, the first wiring layer 644 is provided on the contact plug 624, and the first wiring layer 645 is provided on the contact plug 627. The first wiring layer 646 is provided on the contact plug 623, the first wiring layer 647 is provided on the contact plug 628, and the first wiring layer 648 is provided on the contact plug 621. The first wiring layer 654 is provided above the contact 637, and the first wiring layer 653 is provided above the contact 634. Further, the first wiring layer 651 is provided so as to electrically connect the contacts 632 and 636, and the first wiring layer 652 electrically connects the contacts 631, 633, 635 and the contact plug 620. Provided.
ここで、第1配線層641、642、643、644、645、646、647、648、651、652、653、654は、図9Bに示す断面構造にて設けられてもよい。
Here, the first wiring layers 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654 may be provided in the cross-sectional structure shown in FIG. 9B.
具体的には、これらの第1配線層641、642、643、644、645、646、647、648、651、652、653、654は、第2絶縁層57Bに埋め込まれた金属層733と、金属層733の側面及び底面を覆うように設けられたバリア層732とで構成されてもよい。例えば、第2絶縁層57A、57Bが形成された後、エッチング等を用いて、第2絶縁層57Bに溝が形成され、該溝の内側にTi又はWの金属又は金属化合物からなるバリア層732が形成される。その後、該溝をCuなどで埋め込むことで金属層733が形成される。第1配線層641、642、643、644、645、646、647、648、651、652、653、654は、このような構成にて形成されてもよい。
Specifically, these first wiring layers 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654 are the metal layers 733 embedded in the second insulating layer 57B. It may be composed of a barrier layer 732 provided so as to cover the side surface and the bottom surface of the metal layer 733. For example, after the second insulating layers 57A and 57B are formed, a groove is formed in the second insulating layer 57B by etching or the like, and a barrier layer 732 made of a Ti or W metal or a metal compound is formed inside the groove. Is formed. After that, the metal layer 733 is formed by embedding the groove with Cu or the like. The first wiring layers 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654 may be formed in such a configuration.
図10に示すように、第1配線層641、642、643、644、645、646、647、648、651、653、654の上には、コンタクト661、662、663、664、665、666、667、668、671、672、673が設けられる。具体的には、コンタクト661は、第1配線層641の上に設けられ、コンタクト662は、第1配線層646の上に設けられ、コンタクト663は、第1配線層642の上に設けられる。コンタクト664は、第1配線層643の上に設けられ、コンタクト665は、第1配線層644の上に設けられ、コンタクト666は、第1配線層645の上に設けられる。コンタクト667は、第1配線層653の上に設けられ、コンタクト673は、第1配線層654の上に設けられ、コンタクト668は、第1配線層647の上に設けられる。コンタクト671は、第1配線層648の上に設けられ、コンタクト672は、第1配線層651の上に設けられる。
As shown in FIG. 10, above the first wiring layers 641, 642, 643, 644, 645, 646, 647, 648, 651, 653, 654, the contacts 661, 662, 663, 664, 665, 666, 667, 668, 671, 672, 673 are provided. Specifically, the contact 661 is provided on the first wiring layer 641, the contact 662 is provided on the first wiring layer 646, and the contact 663 is provided on the first wiring layer 642. The contact 664 is provided on the first wiring layer 643, the contact 665 is provided on the first wiring layer 644, and the contact 666 is provided on the first wiring layer 645. The contact 667 is provided on the first wiring layer 653, the contact 673 is provided on the first wiring layer 654, and the contact 668 is provided on the first wiring layer 647. The contact 671 is provided on the first wiring layer 648, and the contact 672 is provided on the first wiring layer 651.
図11に示すように、コンタクト661、662、663、664、665、666、667、668、671、672、673の上には、第2方向(図11に正対して左右方向)に延在する第2配線層681、682、683、684、685、686、687、688が設けられる。なお、コンタクト661、662、663、664、665、666、667、668、671、672、673は、第2絶縁層57にて埋め込まれる。
As shown in FIG. 11, the contacts 661, 662, 663, 664, 665, 666, 667, 668, 671, 672, 673 extend in the second direction (horizontal direction facing FIG. 11). Second wiring layers 681, 682, 683, 684, 685, 686, 687, 688 are provided. The contacts 661, 662, 663, 664, 665, 666, 667, 668, 671, 672, and 673 are embedded in the second insulating layer 57.
具体的には、第2配線層681は、コンタクト661、663の上に設けられ、第2配線層688は、コンタクト668、667、666の上に設けられる。第2配線層681、688は、基準電位線VSSと電気的に接続される。第2配線層682は、コンタクト662の上に設けられ、縦型ゲート電極TG1に電位を供給する。第2配線層683は、コンタクト671の上に設けられ、縦型ゲート電極TG2に電位を供給する。第2配線層685は、コンタクト664の上に設けられ、縦型ゲート電極TG3に電位を供給する。第2配線層686は、コンタクト665の上に設けられ、縦型ゲート電極TG4に電位を供給する。第2配線層684は、コンタクト672の上に設けられ、電源線VDDと電気的に接続される。第2配線層687は、コンタクト673の上に設けられ、垂直信号線と電気的に接続される。
Specifically, the second wiring layer 681 is provided on the contacts 661 and 663, and the second wiring layer 688 is provided on the contacts 668, 667 and 666. The second wiring layers 681 and 688 are electrically connected to the reference potential line VSS. The second wiring layer 682 is provided on the contact 662 and supplies an electric potential to the vertical gate electrode TG1. The second wiring layer 683 is provided on the contact 671 and supplies an electric potential to the vertical gate electrode TG2. The second wiring layer 685 is provided on the contact 664 and supplies an electric potential to the vertical gate electrode TG3. The second wiring layer 686 is provided on the contact 665 and supplies an electric potential to the vertical gate electrode TG4. The second wiring layer 684 is provided on the contact 672 and is electrically connected to the power supply line VDD. The second wiring layer 687 is provided on the contact 673 and is electrically connected to the vertical signal line.
図12に示すように、第2配線層681、682、683、684、685、686、687、688の上には、コンタクト674、675、676、677、678、679を介して、第1方向(図12に正対して上下方向)に延在する第3配線層692、693、694、695、696、697、698が設けられる。なお、これらのコンタクト、及び配線層は、第2絶縁層57にて埋め込まれる。
As shown in FIG. 12, on the second wiring layer 681, 682, 683, 684, 685, 686, 687, 688 via the contacts 674, 675, 676, 677, 678, 679, the first direction. Third wiring layers 692, 693, 694, 695, 696, 697, 698 extending in (vertical direction facing FIG. 12) are provided. These contacts and the wiring layer are embedded in the second insulating layer 57.
具体的には、第3配線層692は、基準電位線VSSと電気的に接続し、コンタクト676、677を介して第2配線層681、688と電気的に接続するように設けられる。第3配線層693は、垂直信号線と電気的に接続し、コンタクト679を介して第2配線層687と電気的に接続するように設けられる。第3配線層694、695、696は、垂直信号線と電気的に接続するように設けられる。第3配線層697は、基準電位線VSSと電気的に接続し、コンタクト674、675を介して第2配線層681、688と電気的に接続するように設けられる。第3配線層698は、電源線VDDと電気的に接続し、コンタクト678を介して第2配線層684と電気的に接続するように設けられる。
Specifically, the third wiring layer 692 is provided so as to be electrically connected to the reference potential line VSS and electrically connected to the second wiring layers 681 and 688 via the contacts 676 and 677. The third wiring layer 693 is provided so as to be electrically connected to the vertical signal line and electrically connected to the second wiring layer 687 via the contact 679. The third wiring layers 694, 695, 696 are provided so as to be electrically connected to the vertical signal line. The third wiring layer 697 is provided so as to be electrically connected to the reference potential line VSS and electrically connected to the second wiring layers 681 and 688 via the contacts 674 and 675. The third wiring layer 698 is provided so as to be electrically connected to the power supply line VDD and electrically connected to the second wiring layer 684 via the contact 678.
以上にて、本実施形態に係る撮像装置1の具体的な構造について説明した。本実施形態に係る撮像装置1では、複数の繰り返し単位RUに亘って設けられる配線のうち、リセットトランジスタRSTのゲート電極25の各々を接続する配線、FD変換ゲイン切替トランジスタFDGのゲート電極26の各々を接続する配線、又は選択トランジスタSELのゲート電極28の各々を接続する配線の少なくとも1つ以上が回路層21の上に設けられる。これにより、これらの配線が第2配線層681、682、683、684、685、686、687、688と同層に設けられないため、撮像装置1は、第2配線層681、682、683、684、685、686、687、688の幅及びピッチをより広げることができる。すなわち、撮像装置1は、第2配線層681、682、683、684、685、686、687、688におけるデザインルールを緩和することができる。
The specific structure of the image pickup apparatus 1 according to the present embodiment has been described above. In the image pickup apparatus 1 according to the present embodiment, among the wiring provided over the plurality of repeating units RU, the wiring connecting each of the gate electrodes 25 of the reset transistor RST and the gate electrode 26 of the FD conversion gain switching transistor FDG, respectively. At least one or more of the wirings connecting the above or the gate electrodes 28 of the selection transistor SEL are provided on the circuit layer 21. As a result, these wirings are not provided in the same layer as the second wiring layers 681, 682, 683, 684, 685, 686, 687, 688, so that the image pickup apparatus 1 has the second wiring layers 681, 682, 683, The width and pitch of 684, 685, 686, 687, 688 can be further increased. That is, the image pickup apparatus 1 can relax the design rules in the second wiring layers 681, 682, 683, 684, 685, 686, 687, and 688.
<4.変形例>
続いて、図13A~17Cを参照して、本実施形態に係る撮像装置1の変形例について説明する。本実施形態に係る撮像装置1の変形例は、リセットトランジスタRSTのゲート電極25、FD変換ゲイン切替トランジスタFDGのゲート電極26、増幅トランジスタのゲート電極27、及び選択トランジスタSELのゲート電極28の断面構造のバリエーションを示す例である。 <4. Modification example>
Subsequently, a modified example of theimage pickup apparatus 1 according to the present embodiment will be described with reference to FIGS. 13A to 17C. A modification of the image pickup apparatus 1 according to the present embodiment is a cross-sectional structure of the gate electrode 25 of the reset transistor RST, the gate electrode 26 of the FD conversion gain switching transistor FDG, the gate electrode 27 of the amplification transistor, and the gate electrode 28 of the selection transistor SEL. This is an example showing a variation of.
続いて、図13A~17Cを参照して、本実施形態に係る撮像装置1の変形例について説明する。本実施形態に係る撮像装置1の変形例は、リセットトランジスタRSTのゲート電極25、FD変換ゲイン切替トランジスタFDGのゲート電極26、増幅トランジスタのゲート電極27、及び選択トランジスタSELのゲート電極28の断面構造のバリエーションを示す例である。 <4. Modification example>
Subsequently, a modified example of the
図13Aは、画素回路のゲート電極25、26、27、28の平面配置のバリエーションを示す平面図である。図13Bは、図13AのB-BB切断線における縦断面図である。図14~図16は、図13AのB-BB切断線における断面構造の一部のバリエーションを示す縦断面図である。
FIG. 13A is a plan view showing variations in the plan arrangement of the gate electrodes 25, 26, 27, 28 of the pixel circuit. FIG. 13B is a vertical cross-sectional view of the B-BB cutting line of FIG. 13A. 14 to 16 are vertical cross-sectional views showing a partial variation of the cross-sectional structure in the B-BB cutting line of FIG. 13A.
図13A及び図13Bに示すように、リセットトランジスタRSTのゲート電極25、FD変換ゲイン切替トランジスタFDGのゲート電極26、増幅トランジスタのゲート電極27、及び選択トランジスタSELのゲート電極28は、ゲート絶縁膜740を介して半導体層48の上に設けられたポリシリコン層741と、ポリシリコン層741の上に設けられた電極層743と、電極層743の側面及び底面を覆うように設けられたバリア層742とで構成されてもよい。
As shown in FIGS. 13A and 13B, the gate electrode 25 of the reset transistor RST, the gate electrode 26 of the FD conversion gain switching transistor FDG, the gate electrode 27 of the amplification transistor, and the gate electrode 28 of the selection transistor SEL are gate insulating films 740. The polysilicon layer 741 provided on the semiconductor layer 48, the electrode layer 743 provided on the polysilicon layer 741, and the barrier layer 742 provided so as to cover the side surfaces and the bottom surface of the electrode layer 743. It may be composed of and.
例えば、半導体層48の上に層間絶縁膜744が形成された後、エッチング等を用いて、層間絶縁膜744に溝が形成される。次に、溝の底面にゲート絶縁膜740、及びポリシリコン層741が順次積層される。続いて、ポリシリコン層711の上部を後退(リセスとも称される)させて溝が形成され、該溝の内側にTi又はWの金属又は金属化合物からなるバリア層742が形成される。その後、ポリシリコン層741の上部の溝をCuなどで埋め込むことで電極層743が形成される。これにより、ゲート電極25、26、27、28を形成することができる。
For example, after the interlayer insulating film 744 is formed on the semiconductor layer 48, a groove is formed in the interlayer insulating film 744 by etching or the like. Next, the gate insulating film 740 and the polysilicon layer 741 are sequentially laminated on the bottom surface of the groove. Subsequently, the upper portion of the polysilicon layer 711 is retracted (also referred to as recess) to form a groove, and a barrier layer 742 made of a Ti or W metal or a metal compound is formed inside the groove. After that, the electrode layer 743 is formed by embedding the groove on the upper part of the polysilicon layer 741 with Cu or the like. Thereby, the gate electrodes 25, 26, 27 and 28 can be formed.
このような構造のゲート電極25、26、27、28は、ポリシリコン層741、及び電極層743の積層構造として設けられることで、メタルゲートを用いることによる界面準位の劣化を抑制すると共に、配線抵抗の上昇を抑制することができる。さらに、ゲート電極25、26、27、28は、金属材料にて形成される電極層743をエッチングすることなく形成することができるため、ゲート電極25、26、27、28の形成プロセスの難度を低下させることができる。ゲート電極25、26、27、28は、ゲート電極として求められる幅と、配線として求められる幅とが異なるため、半導体層48の上に設けられる幅と、回路絶縁層47の上に設けられる幅とが異なるように設けられる。
The gate electrodes 25, 26, 27, and 28 having such a structure are provided as a laminated structure of the polysilicon layer 741 and the electrode layer 743, thereby suppressing deterioration of the interface state due to the use of the metal gate and at the same time. It is possible to suppress an increase in wiring resistance. Further, since the gate electrodes 25, 26, 27, 28 can be formed without etching the electrode layer 743 formed of the metal material, the difficulty of the forming process of the gate electrodes 25, 26, 27, 28 can be reduced. Can be lowered. Since the width required for the gate electrode and the width required for wiring are different between the gate electrodes 25, 26, 27, and 28, the width provided on the semiconductor layer 48 and the width provided on the circuit insulating layer 47 are different. Is provided so as to be different from.
また、リセットトランジスタRSTのゲート電極25、FD変換ゲイン切替トランジスタFDGのゲート電極26、増幅トランジスタAMPのゲート電極27、及び選択トランジスタSELのゲート電極28は、図14~図16に示す断面構造にて設けられてもよい。
Further, the gate electrode 25 of the reset transistor RST, the gate electrode 26 of the FD conversion gain switching transistor FDG, the gate electrode 27 of the amplification transistor AMP, and the gate electrode 28 of the selection transistor SEL have a cross-sectional structure shown in FIGS. 14 to 16. It may be provided.
図14に示すように、これらのゲート電極25、26、27、28は、ゲート絶縁膜750を介して半導体層48の上に設けられた金属材料からなる電極層751にて構成されてもよい。例えば、ゲート電極25、26、27、28は、半導体層48の上にゲート絶縁膜750、及び金属材料からなる電極層751が順次積層されることで構成されてもよい。
As shown in FIG. 14, these gate electrodes 25, 26, 27, 28 may be composed of an electrode layer 751 made of a metal material provided on the semiconductor layer 48 via the gate insulating film 750. .. For example, the gate electrodes 25, 26, 27, and 28 may be configured by sequentially laminating a gate insulating film 750 and an electrode layer 751 made of a metal material on the semiconductor layer 48.
このような構造のゲート電極25、26、27、28は、より単純な構造として形成され得る。また、ゲート電極25、26、27、28は、ゲート電極として求められる幅と、配線として求められる幅とが異なるため、半導体層48の上に設けられる幅と、回路絶縁層47の上に設けられる幅とが異なるように設けられる。なお、このような構造のゲート電極25、26、27、28は、メタルゲートとして構成されるため、ゲート絶縁膜750は、いわゆるHigh-k材料にて構成される。
The gate electrodes 25, 26, 27, 28 having such a structure can be formed as a simpler structure. Further, since the widths required for the gate electrodes and the widths required for wiring are different between the gate electrodes 25, 26, 27, and 28, the gate electrodes 25, 26, 27, and 28 are provided on the semiconductor layer 48 and the circuit insulating layer 47. It is provided so as to be different from the width to be provided. Since the gate electrodes 25, 26, 27, and 28 having such a structure are formed as a metal gate, the gate insulating film 750 is made of a so-called High-k material.
図15に示すように、これらのゲート電極25、26、27、28は、ゲート絶縁膜760を介して半導体層48の上に設けられたポリシリコン層761と、ポリシリコン層711の上に設けられたバリア層762と、バリア層762の上に設けられた電極層763とで構成されてもよい。例えば、ゲート電極25、26、27、28は、半導体層48の上にゲート絶縁膜760、ポリシリコン層761、Ti又はWの金属又は金属化合物からなるバリア層762、Cuなどからなる電極層763を順次積層することで構成されてもよい。
As shown in FIG. 15, these gate electrodes 25, 26, 27, 28 are provided on the polysilicon layer 761 provided on the semiconductor layer 48 and the polysilicon layer 711 via the gate insulating film 760. It may be composed of the barrier layer 762 provided and the electrode layer 763 provided on the barrier layer 762. For example, the gate electrodes 25, 26, 27, and 28 have a gate insulating film 760, a polysilicon layer 761, a barrier layer 762 made of a metal or a metal compound of Ti or W, and an electrode layer 763 made of Cu or the like on the semiconductor layer 48. May be configured by sequentially laminating.
このような構造のゲート電極25、26、27、28は、ポリシリコン層761、及び電極層763の積層構造として設けられることで、メタルゲートを用いることによる界面準位の劣化を抑制すると共に、配線抵抗の上昇を抑制することができる。ゲート電極25、26、27、28は、ゲート電極として求められる幅と、配線として求められる幅とが異なるため、半導体層48の上に設けられる幅と、回路絶縁層47の上に設けられる幅とが異なるように設けられる。
The gate electrodes 25, 26, 27, and 28 having such a structure are provided as a laminated structure of the polysilicon layer 761 and the electrode layer 763, thereby suppressing deterioration of the interface state due to the use of the metal gate and at the same time. It is possible to suppress an increase in wiring resistance. Since the width required for the gate electrode and the width required for wiring are different between the gate electrodes 25, 26, 27, and 28, the width provided on the semiconductor layer 48 and the width provided on the circuit insulating layer 47 are different. Is provided so as to be different from.
図16に示すように、これらのゲート電極25、26、27、28は、半導体層48の上に設けられた層間絶縁膜770に埋め込まれた電極層772と、電極層772の側面及び底面を覆うように設けられたバリア層771とで構成されてもよい。例えば、半導体層48の上に層間絶縁膜770を形成した後、エッチング等を用いて、層間絶縁膜770に溝が形成される。次に、該溝をCuなどで埋め込むことで、電極層772が形成される。ゲート電極25、26、27、28は、このような構成にて形成されてもよい。
As shown in FIG. 16, these gate electrodes 25, 26, 27, 28 have an electrode layer 772 embedded in an interlayer insulating film 770 provided on the semiconductor layer 48, and side surfaces and bottom surfaces of the electrode layer 772. It may be composed of a barrier layer 771 provided so as to cover the barrier layer 771. For example, after the interlayer insulating film 770 is formed on the semiconductor layer 48, a groove is formed in the interlayer insulating film 770 by etching or the like. Next, the electrode layer 772 is formed by embedding the groove with Cu or the like. The gate electrodes 25, 26, 27, 28 may be formed in such a configuration.
このような構造のゲート電極25、26、27、28は、金属材料にて形成される電極層713をエッチングすることなく形成することができるため、ゲート電極25、26、27、28の形成プロセスの難度を低下させることができる。ゲート電極25、26、27、28は、ゲート電極として求められる幅と、配線として求められる幅とが異なるため、半導体層48の上に設けられる幅と、回路絶縁層47の上に設けられる幅とが異なるように設けられる。
Since the gate electrodes 25, 26, 27, 28 having such a structure can be formed without etching the electrode layer 713 formed of the metal material, the process of forming the gate electrodes 25, 26, 27, 28 Difficulty can be reduced. Since the width required for the gate electrode and the width required for wiring are different between the gate electrodes 25, 26, 27, and 28, the width provided on the semiconductor layer 48 and the width provided on the circuit insulating layer 47 are different. Is provided so as to be different from.
図17Aは、画素回路のゲート電極25、26、27、28の平面配置のバリエーションを示す平面図である。図17Bは、図17AのB-BB切断線における縦断面図であり、図17Cは、図17AのC-CC切断線における縦断面図である。
FIG. 17A is a plan view showing variations in the plan arrangement of the gate electrodes 25, 26, 27, 28 of the pixel circuit. 17B is a vertical cross-sectional view of the B-BB cutting line of FIG. 17A, and FIG. 17C is a vertical cross-sectional view of the C-CC cutting line of FIG. 17A.
図17A~図17Cに示すように、これらのゲート電極25、26、28は、図6Bで示したゲート電極25、26、28と同様に、ゲート絶縁膜(図示せず)を介して半導体層48に埋め込まれたポリシリコン層711と、ポリシリコン層711の上に設けられた電極層713と、電極層713の側面及び底面を覆うように設けられたバリア層712とで構成されてもよい。
As shown in FIGS. 17A to 17C, these gate electrodes 25, 26, 28 have a semiconductor layer (not shown) via a gate insulating film (not shown), similarly to the gate electrodes 25, 26, 28 shown in FIG. 6B. It may be composed of a polysilicon layer 711 embedded in 48, an electrode layer 713 provided on the polysilicon layer 711, and a barrier layer 712 provided so as to cover the side surface and the bottom surface of the electrode layer 713. ..
また、増幅トランジスタAMPのゲート電極27は、半導体層48に形成された第1の開口部781A、及び第2の開口部781Bを、ゲート絶縁膜(図示せず)を介して埋め込むポリシリコン層781と、ポリシリコン層781の上に設けられた電極層783と、電極層783の側面及び底面を覆うように設けられたバリア層782とで構成されてもよい。
Further, the gate electrode 27 of the amplification transistor AMP has a polysilicon layer 781 in which the first opening 781A and the second opening 781B formed in the semiconductor layer 48 are embedded via a gate insulating film (not shown). It may be composed of an electrode layer 783 provided on the polysilicon layer 781 and a barrier layer 782 provided so as to cover the side surface and the bottom surface of the electrode layer 783.
すなわち、増幅トランジスタAMPは、第1の開口部781A、及び第2の開口部781Bにて挟まれた半導体層48をチャネルとする、いわゆるFinFET構造にて設けられてもよい。具体的には、FinFET構造の増幅トランジスタAMPでは、第1の開口部781A、及び第2の開口部781Bにて挟まれた半導体層48にて、図17Cの紙面に対して垂直方向にチャネルが形成される。FinFET構造の増幅トランジスタAMPでは、電子が半導体層48の界面から離れたチャネルの中央を流れるため、ランダムテレグラフノイズ(Random Telegraph Noise:RTN)をさらに抑制することが可能である。
That is, the amplification transistor AMP may be provided in a so-called FinFET structure in which the semiconductor layer 48 sandwiched between the first opening 781A and the second opening 781B is used as a channel. Specifically, in the FinFET structure amplification transistor AMP, the semiconductor layer 48 sandwiched between the first opening 781A and the second opening 781B has a channel perpendicular to the paper surface of FIG. 17C. It is formed. In the Accelerated Transistor AMP having a FinFET structure, electrons flow in the center of the channel away from the interface of the semiconductor layer 48, so that random telegraph noise (Random Telegraph Noise: RTN) can be further suppressed.
このような構造のゲート電極25、26、27、28は、同様の工程にて形成することができる。例えば、半導体層48の上に層間絶縁膜を形成した後、エッチング等を用いて、半導体層48に溝、第1の開口部781A、及び第2の開口部781Bが形成される。次に、溝の内側にゲート絶縁膜(図示せず)が形成され、該溝、第1の開口部781A、及び第2の開口部781Bがポリシリコン層711、781にて埋め込まれる。続いて、ポリシリコン層711、781の上部を後退(リセスとも称される)させて溝を形成し、該溝の内側にTi又はWの金属又は金属化合物からなるバリア層712、782が形成される。その後、ポリシリコン層711の上部の溝をCuなどで埋め込むことで電極層713、783が形成される。ゲート電極25、26、27、28は、このような構成にて形成されてもよい。
The gate electrodes 25, 26, 27, 28 having such a structure can be formed by the same process. For example, after forming an interlayer insulating film on the semiconductor layer 48, a groove, a first opening 781A, and a second opening 781B are formed in the semiconductor layer 48 by etching or the like. Next, a gate insulating film (not shown) is formed inside the groove, and the groove, the first opening 781A, and the second opening 781B are embedded in the polysilicon layers 711 and 781. Subsequently, the upper portions of the polysilicon layers 711 and 781 are retracted (also referred to as recesses) to form a groove, and the barrier layers 712 and 782 made of a Ti or W metal or a metal compound are formed inside the groove. To. After that, the electrode layers 713 and 783 are formed by embedding the groove on the upper part of the polysilicon layer 711 with Cu or the like. The gate electrodes 25, 26, 27, 28 may be formed in such a configuration.
ゲート電極25、26、28は、半導体層48に埋め込まれたポリシリコン層711の周囲にチャネルが形成されるため、ゲート長をより長くすることができる。これによれば、ゲート電極25、26、28は、回路層21における占有する面積を縮小することができるため、画素回路における各構成のレイアウト自由度をより高めることできる。また、ゲート電極27は、増幅トランジスタAMPをFinFET構造として構成することができるため、チャネルを流れる電子を半導体層48の界面から離すことができる。これによれば、ゲート電極27は、RTNをさらに抑制することが可能であり、かつ回路層21における占有する面積を縮小することができるため、画素回路における各構成のレイアウト自由度をより高めることできる。
Since the gate electrodes 25, 26, and 28 have channels formed around the polysilicon layer 711 embedded in the semiconductor layer 48, the gate length can be made longer. According to this, since the gate electrodes 25, 26, and 28 can reduce the area occupied by the circuit layer 21, the degree of freedom in layout of each configuration in the pixel circuit can be further increased. Further, since the gate electrode 27 can form the amplification transistor AMP as a FinFET structure, the electrons flowing through the channel can be separated from the interface of the semiconductor layer 48. According to this, the gate electrode 27 can further suppress the RTN and can reduce the area occupied by the circuit layer 21, so that the degree of freedom in layout of each configuration in the pixel circuit can be further increased. it can.
また、ゲート電極25、26、27、28は、ポリシリコン層711、及び電極層713の積層構造として設けられることで、メタルゲートを用いることによる界面準位の劣化を抑制すると共に、配線抵抗の上昇を抑制することができる。さらに、ゲート電極25、26、27、28は、金属材料にて形成される電極層713をエッチングすることなく形成することができるため、ゲート電極25、26、27、28の形成プロセスの難度を低下させることができる。
Further, since the gate electrodes 25, 26, 27, and 28 are provided as a laminated structure of the polysilicon layer 711 and the electrode layer 713, deterioration of the interface state due to the use of the metal gate is suppressed, and the wiring resistance is reduced. The rise can be suppressed. Further, since the gate electrodes 25, 26, 27, 28 can be formed without etching the electrode layer 713 formed of the metal material, the difficulty of the forming process of the gate electrodes 25, 26, 27, 28 can be reduced. Can be lowered.
<5.適用例>
以下では、図18~図23を参照して、本実施形態に係る撮像装置1の適用例について説明する。 <5. Application example>
Hereinafter, an application example of theimage pickup apparatus 1 according to the present embodiment will be described with reference to FIGS. 18 to 23.
以下では、図18~図23を参照して、本実施形態に係る撮像装置1の適用例について説明する。 <5. Application example>
Hereinafter, an application example of the
(撮像システムへの適用)
まず、図18及び図19を参照して、本開示の一実施形態に係る撮像装置の撮像システムへの適用例について説明する。図18は、本実施形態に係る撮像装置1を備えた撮像システム900の概略構成の一例を示すブロック図である。図19は、撮像システム900における撮像動作の流れを示すフローチャート図である。 (Application to imaging system)
First, an example of application of the imaging apparatus according to the embodiment of the present disclosure to an imaging system will be described with reference to FIGS. 18 and 19. FIG. 18 is a block diagram showing an example of a schematic configuration of animaging system 900 including the imaging device 1 according to the present embodiment. FIG. 19 is a flowchart showing the flow of the imaging operation in the imaging system 900.
まず、図18及び図19を参照して、本開示の一実施形態に係る撮像装置の撮像システムへの適用例について説明する。図18は、本実施形態に係る撮像装置1を備えた撮像システム900の概略構成の一例を示すブロック図である。図19は、撮像システム900における撮像動作の流れを示すフローチャート図である。 (Application to imaging system)
First, an example of application of the imaging apparatus according to the embodiment of the present disclosure to an imaging system will be described with reference to FIGS. 18 and 19. FIG. 18 is a block diagram showing an example of a schematic configuration of an
図18に示すように、撮像システム900は、例えば、デジタルスチルカメラ若しくはビデオカメラ等の撮像装置、又はスマートフォン若しくはタブレット型端末等の携帯端末装置などの電子機器である。
As shown in FIG. 18, the imaging system 900 is, for example, an imaging device such as a digital still camera or a video camera, or an electronic device such as a mobile terminal device such as a smartphone or a tablet terminal.
撮像システム900は、例えば、レンズ群941と、シャッタ942と、本実施形態に係る撮像装置1と、DSP回路943と、フレームメモリ944と、表示部945と、記憶部946と、操作部947と、電源部948とを備える。撮像システム900において、撮像装置1、DSP回路943、フレームメモリ944、表示部945、記憶部946、操作部947、及び電源部948は、バスライン949を介して相互に接続されている。
The image pickup system 900 includes, for example, a lens group 941, a shutter 942, an image pickup device 1 according to the present embodiment, a DSP circuit 943, a frame memory 944, a display unit 945, a storage unit 946, and an operation unit 947. , A power supply unit 948 is provided. In the image pickup system 900, the image pickup device 1, the DSP circuit 943, the frame memory 944, the display unit 945, the storage unit 946, the operation unit 947, and the power supply unit 948 are connected to each other via the bus line 949.
撮像装置1は、レンズ群941、及びシャッタ942を通過した入射光に応じた画像データを出力する。DSP回路943は、撮像装置1から出力される信号(すなわち、画像データ)を処理する信号処理回路である。フレームメモリ944は、DSP回路943により処理された画像データをフレーム単位で一時的に保持する。表示部945は、例えば、液晶パネル、又は有機EL(Electro Luminescence)パネル等のパネル型表示装置であり、撮像装置1で撮像された動画又は静止画を表示する。記憶部946は、半導体メモリやハードディスク等の記録媒体を含み、撮像装置1で撮像された動画又は静止画の画像データを記録する。操作部947は、ユーザによる操作に基づいて、撮像システム900が有する各種の機能についての操作指令を出力する。電源部948は、撮像装置1、DSP回路943、フレームメモリ944、表示部945、記憶部946、及び操作部947の動作電力を供給する各種電源である。
The image pickup device 1 outputs image data according to the incident light that has passed through the lens group 941 and the shutter 942. The DSP circuit 943 is a signal processing circuit that processes a signal (that is, image data) output from the image pickup apparatus 1. The frame memory 944 temporarily holds the image data processed by the DSP circuit 943 in frame units. The display unit 945 is a panel-type display device such as a liquid crystal panel or an organic EL (Electroluminescence) panel, and displays a moving image or a still image captured by the image pickup device 1. The storage unit 946 includes a recording medium such as a semiconductor memory or a hard disk, and records image data of a moving image or a still image captured by the imaging device 1. The operation unit 947 outputs operation commands for various functions of the image pickup system 900 based on the operation by the user. The power supply unit 948 is various power sources that supply the operating power of the image pickup device 1, the DSP circuit 943, the frame memory 944, the display unit 945, the storage unit 946, and the operation unit 947.
次に、撮像システム900における撮像手順について説明する。
Next, the imaging procedure in the imaging system 900 will be described.
図19に示すように、ユーザは、操作部947を操作することにより撮像開始を指示する(S101)。これにより、操作部947は、撮像指令を撮像装置1に送信する(S102)。撮像装置1は、撮像指令を受けることで、所定の撮像方式での撮像を実行する(S103)。
As shown in FIG. 19, the user instructs the start of imaging by operating the operation unit 947 (S101). As a result, the operation unit 947 transmits an imaging command to the imaging device 1 (S102). Upon receiving an imaging command, the imaging device 1 executes imaging by a predetermined imaging method (S103).
撮像装置1は、撮像された画像データをDSP回路943に出力する。DSP回路943は、撮像装置1から出力された画像データに所定の信号処理(例えば、ノイズ低減処理など)を行う(S104)。DSP回路943は、所定の信号処理がなされた画像データをフレームメモリ944に保持させる。その後、フレームメモリ944は、画像データを記憶部946に記憶させる(S105)。このようにして、撮像システム900における撮像が行われる。
The image pickup device 1 outputs the captured image data to the DSP circuit 943. The DSP circuit 943 performs predetermined signal processing (for example, noise reduction processing) on the image data output from the image pickup apparatus 1 (S104). The DSP circuit 943 holds the image data to which the predetermined signal processing has been performed in the frame memory 944. After that, the frame memory 944 stores the image data in the storage unit 946 (S105). In this way, the imaging in the imaging system 900 is performed.
(移動体制御システムへの適用)
本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。 (Application to mobile control system)
The technology according to the present disclosure (the present technology) can be applied to various products. For example, the technology according to the present disclosure is realized as a device mounted on a moving body of any kind such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility, an airplane, a drone, a ship, and a robot. You may.
本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。 (Application to mobile control system)
The technology according to the present disclosure (the present technology) can be applied to various products. For example, the technology according to the present disclosure is realized as a device mounted on a moving body of any kind such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility, an airplane, a drone, a ship, and a robot. You may.
図20は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。
FIG. 20 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile control system to which the technology according to the present disclosure can be applied.
車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図20に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。
The vehicle control system 12000 includes a plurality of electronic control units connected via the communication network 12001. In the example shown in FIG. 20, the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside information detection unit 12030, an in-vehicle information detection unit 12040, and an integrated control unit 12050. Further, as a functional configuration of the integrated control unit 12050, a microcomputer 12051, an audio image output unit 12052, and an in-vehicle network I / F (interface) 12053 are shown.
駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。
The drive system control unit 12010 controls the operation of the device related to the drive system of the vehicle according to various programs. For example, the drive system control unit 12010 provides a driving force generator for generating the driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism for adjusting and a braking device for generating a braking force of a vehicle.
ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。
The body system control unit 12020 controls the operation of various devices mounted on the vehicle body according to various programs. For example, the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, blinkers or fog lamps. In this case, the body system control unit 12020 may be input with radio waves transmitted from a portable device that substitutes for the key or signals of various switches. The body system control unit 12020 receives inputs of these radio waves or signals and controls a vehicle door lock device, a power window device, a lamp, and the like.
車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。
The vehicle outside information detection unit 12030 detects information outside the vehicle equipped with the vehicle control system 12000. For example, the image pickup unit 12031 is connected to the vehicle exterior information detection unit 12030. The vehicle outside information detection unit 12030 causes the image pickup unit 12031 to capture an image of the outside of the vehicle and receives the captured image. The vehicle exterior information detection unit 12030 may perform object detection processing or distance detection processing such as a person, a vehicle, an obstacle, a sign, or a character on the road surface based on the received image.
撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。
The imaging unit 12031 is an optical sensor that receives light and outputs an electric signal according to the amount of the light received. The image pickup unit 12031 can output an electric signal as an image or can output it as distance measurement information. Further, the light received by the imaging unit 12031 may be visible light or invisible light such as infrared light.
車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。
The in-vehicle information detection unit 12040 detects the in-vehicle information. For example, a driver state detection unit 12041 that detects the driver's state is connected to the in-vehicle information detection unit 12040. The driver state detection unit 12041 includes, for example, a camera that images the driver, and the in-vehicle information detection unit 12040 determines the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated, or it may be determined whether the driver is dozing.
マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。
The microcomputer 12051 calculates the control target value of the driving force generator, the steering mechanism, or the braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, and the drive system control unit. A control command can be output to 12010. For example, the microcomputer 12051 realizes ADAS (Advanced Driver Assistance System) functions including vehicle collision avoidance or impact mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, vehicle lane deviation warning, and the like. It is possible to perform cooperative control for the purpose of.
また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
Further, the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, and the like based on the information around the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, so that the driver can control the driver. It is possible to perform coordinated control for the purpose of automatic driving, etc., which runs autonomously without depending on the operation.
また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。
Further, the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information outside the vehicle acquired by the vehicle exterior information detection unit 12030. For example, the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the external information detection unit 12030, and performs coordinated control for the purpose of anti-glare such as switching the high beam to the low beam. It can be carried out.
音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図20の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。
The audio image output unit 12052 transmits an output signal of at least one of audio and an image to an output device capable of visually or audibly notifying information to the passenger or the outside of the vehicle. In the example of FIG. 20, an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are exemplified as output devices. The display unit 12062 may include, for example, at least one of an onboard display and a heads-up display.
図21は、撮像部12031の設置位置の例を示す図である。
FIG. 21 is a diagram showing an example of the installation position of the imaging unit 12031.
図21では、車両12100は、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。
In FIG. 21, the vehicle 12100 has image pickup units 12101, 12102, 12103, 12104, 12105 as the image pickup unit 12031.
撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。撮像部12101及び12105で取得される前方の画像は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。
The imaging units 12101, 12102, 12103, 12104, 12105 are provided at positions such as the front nose, side mirrors, rear bumpers, back doors, and the upper part of the windshield in the vehicle interior of the vehicle 12100, for example. The imaging unit 12101 provided on the front nose and the imaging unit 12105 provided on the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 12100. The imaging units 12102 and 12103 provided in the side mirrors mainly acquire images of the side of the vehicle 12100. The imaging unit 12104 provided on the rear bumper or the back door mainly acquires an image of the rear of the vehicle 12100. The images in front acquired by the imaging units 12101 and 12105 are mainly used for detecting a preceding vehicle or a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or the like.
なお、図21には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。
Note that FIG. 21 shows an example of the photographing range of the imaging units 12101 to 12104. The imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose, the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided on the side mirrors, respectively, and the imaging range 12114 indicates the imaging range of the imaging units 12102 and 12103. The imaging range of the imaging unit 12104 provided on the rear bumper or the back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, a bird's-eye view image of the vehicle 12100 as viewed from above can be obtained.
撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。
At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information. For example, at least one of the image pickup units 12101 to 12104 may be a stereo camera composed of a plurality of image pickup elements, or may be an image pickup element having pixels for phase difference detection.
例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
For example, the microcomputer 12051 has a distance to each three-dimensional object within the imaging range 12111 to 12114 based on the distance information obtained from the imaging units 12101 to 12104, and a temporal change of this distance (relative velocity with respect to the vehicle 12100). By obtaining, it is possible to extract as the preceding vehicle a three-dimensional object that is the closest three-dimensional object on the traveling path of the vehicle 12100 and that travels in substantially the same direction as the vehicle 12100 at a predetermined speed (for example, 0 km / h or more). it can. Further, the microcomputer 12051 can set an inter-vehicle distance to be secured in front of the preceding vehicle in advance, and can perform automatic braking control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. In this way, it is possible to perform coordinated control for the purpose of automatic driving or the like in which the vehicle travels autonomously without depending on the operation of the driver.
例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。
For example, the microcomputer 12051 converts three-dimensional object data related to a three-dimensional object into two-wheeled vehicles, ordinary vehicles, large vehicles, pedestrians, utility poles, and other three-dimensional objects based on the distance information obtained from the imaging units 12101 to 12104. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into obstacles that can be seen by the driver of the vehicle 12100 and obstacles that are difficult to see. Then, the microcomputer 12051 determines the collision risk indicating the risk of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, the microcomputer 12051 via the audio speaker 12061 or the display unit 12062. By outputting an alarm to the driver and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be provided.
撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。
At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays. For example, the microcomputer 12051 can recognize a pedestrian by determining whether or not a pedestrian is present in the captured image of the imaging units 12101 to 12104. Such pedestrian recognition includes, for example, a procedure for extracting feature points in an image captured by an imaging unit 12101 to 12104 as an infrared camera, and pattern matching processing for a series of feature points indicating the outline of an object to determine whether or not the pedestrian is a pedestrian. It is done by the procedure to determine. When the microcomputer 12051 determines that a pedestrian is present in the captured images of the imaging units 12101 to 12104 and recognizes the pedestrian, the audio image output unit 12052 outputs a square contour line for emphasizing the recognized pedestrian. The display unit 12062 is controlled so as to superimpose and display. Further, the audio image output unit 12052 may control the display unit 12062 so as to display an icon or the like indicating a pedestrian at a desired position.
以上、本開示に係る技術が適用され得る移動体制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、撮像部12031に適用され得る。本開示に係る技術によれば、多層配線層に設けられる配線のデザインルールが緩和されることで、配線抵抗及び配線容量が減少するため、より高速の撮影を行うことができる。これによれば、移動体制御システムにおいて、移動体がより高速で移動している場合でも、撮影画像を利用した制御をより高い精度で行うことができる。
The above is an example of a mobile control system to which the technology according to the present disclosure can be applied. The technique according to the present disclosure can be applied to the imaging unit 12031 among the configurations described above. According to the technique according to the present disclosure, the wiring design rule provided in the multilayer wiring layer is relaxed, so that the wiring resistance and the wiring capacity are reduced, so that higher speed photography can be performed. According to this, in the moving body control system, even when the moving body is moving at a higher speed, the control using the captured image can be performed with higher accuracy.
(内視鏡手術システムへの適用)
図22は、本開示に係る技術(本技術)が適用され得る内視鏡手術システムの概略的な構成の一例を示す図である。 (Application to endoscopic surgery system)
FIG. 22 is a diagram showing an example of a schematic configuration of an endoscopic surgery system to which the technique according to the present disclosure (the present technique) can be applied.
図22は、本開示に係る技術(本技術)が適用され得る内視鏡手術システムの概略的な構成の一例を示す図である。 (Application to endoscopic surgery system)
FIG. 22 is a diagram showing an example of a schematic configuration of an endoscopic surgery system to which the technique according to the present disclosure (the present technique) can be applied.
図22では、術者(医師)11131が、内視鏡手術システム11000を用いて、患者ベッド11133上の患者11132に手術を行っている様子が図示されている。図示するように、内視鏡手術システム11000は、内視鏡11100と、気腹チューブ11111やエネルギー処置具11112等の、その他の術具11110と、内視鏡11100を支持する支持アーム装置11120と、内視鏡下手術のための各種の装置が搭載されたカート11200と、から構成される。
FIG. 22 shows a surgeon (doctor) 11131 performing surgery on patient 11132 on patient bed 11133 using the endoscopic surgery system 11000. As shown, the endoscopic surgery system 11000 includes an endoscope 11100, other surgical tools 11110 such as an abdominal tube 11111 and an energy treatment tool 11112, and a support arm device 11120 that supports the endoscope 11100. , A cart 11200 equipped with various devices for endoscopic surgery.
内視鏡11100は、先端から所定の長さの領域が患者11132の体腔内に挿入される鏡筒11101と、鏡筒11101の基端に接続されるカメラヘッド11102と、から構成される。図示する例では、硬性の鏡筒11101を有するいわゆる硬性鏡として構成される内視鏡11100を図示しているが、内視鏡11100は、軟性の鏡筒を有するいわゆる軟性鏡として構成されてもよい。
The endoscope 11100 is composed of a lens barrel 11101 in which a region having a predetermined length from the tip is inserted into the body cavity of the patient 11132, and a camera head 11102 connected to the base end of the lens barrel 11101. In the illustrated example, the endoscope 11100 configured as a so-called rigid mirror having a rigid barrel 11101 is illustrated, but the endoscope 11100 may be configured as a so-called flexible mirror having a flexible barrel. Good.
鏡筒11101の先端には、対物レンズが嵌め込まれた開口部が設けられている。内視鏡11100には光源装置11203が接続されており、当該光源装置11203によって生成された光が、鏡筒11101の内部に延設されるライトガイドによって当該鏡筒の先端まで導光され、対物レンズを介して患者11132の体腔内の観察対象に向かって照射される。なお、内視鏡11100は、直視鏡であってもよいし、斜視鏡又は側視鏡であってもよい。
An opening in which an objective lens is fitted is provided at the tip of the lens barrel 11101. A light source device 11203 is connected to the endoscope 11100, and the light generated by the light source device 11203 is guided to the tip of the lens barrel by a light guide extending inside the lens barrel 11101 to be an objective. It is irradiated toward the observation target in the body cavity of the patient 11132 through the lens. The endoscope 11100 may be a direct endoscope, a perspective mirror, or a side endoscope.
カメラヘッド11102の内部には光学系及び撮像素子が設けられており、観察対象からの反射光(観察光)は当該光学系によって当該撮像素子に集光される。当該撮像素子によって観察光が光電変換され、観察光に対応する電気信号、すなわち観察像に対応する画像信号が生成される。当該画像信号は、RAWデータとしてカメラコントロールユニット(CCU: Camera Control Unit)11201に送信される。
An optical system and an image pickup element are provided inside the camera head 11102, and the reflected light (observation light) from the observation target is focused on the image pickup element by the optical system. The observation light is photoelectrically converted by the image sensor, and an electric signal corresponding to the observation light, that is, an image signal corresponding to the observation image is generated. The image signal is transmitted as RAW data to the camera control unit (CCU: Camera Control Unit) 11201.
CCU11201は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等によって構成され、内視鏡11100及び表示装置11202の動作を統括的に制御する。さらに、CCU11201は、カメラヘッド11102から画像信号を受け取り、その画像信号に対して、例えば現像処理(デモザイク処理)等の、当該画像信号に基づく画像を表示するための各種の画像処理を施す。
The CCU11201 is composed of a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and the like, and comprehensively controls the operations of the endoscope 11100 and the display device 11202. Further, the CCU 11201 receives an image signal from the camera head 11102, and performs various image processing on the image signal for displaying an image based on the image signal, such as development processing (demosaic processing).
表示装置11202は、CCU11201からの制御により、当該CCU11201によって画像処理が施された画像信号に基づく画像を表示する。
The display device 11202 displays an image based on the image signal processed by the CCU 11201 under the control of the CCU 11201.
光源装置11203は、例えばLED(Light Emitting Diode)等の光源から構成され、術部等を撮影する際の照射光を内視鏡11100に供給する。
The light source device 11203 is composed of, for example, a light source such as an LED (Light Emitting Diode), and supplies irradiation light to the endoscope 11100 when photographing an operating part or the like.
入力装置11204は、内視鏡手術システム11000に対する入力インタフェースである。ユーザは、入力装置11204を介して、内視鏡手術システム11000に対して各種の情報の入力や指示入力を行うことができる。例えば、ユーザは、内視鏡11100による撮像条件(照射光の種類、倍率及び焦点距離等)を変更する旨の指示等を入力する。
The input device 11204 is an input interface for the endoscopic surgery system 11000. The user can input various information and input instructions to the endoscopic surgery system 11000 via the input device 11204. For example, the user inputs an instruction to change the imaging conditions (type of irradiation light, magnification, focal length, etc.) by the endoscope 11100.
処置具制御装置11205は、組織の焼灼、切開又は血管の封止等のためのエネルギー処置具11112の駆動を制御する。気腹装置11206は、内視鏡11100による視野の確保及び術者の作業空間の確保の目的で、患者11132の体腔を膨らめるために、気腹チューブ11111を介して当該体腔内にガスを送り込む。レコーダ11207は、手術に関する各種の情報を記録可能な装置である。プリンタ11208は、手術に関する各種の情報を、テキスト、画像又はグラフ等各種の形式で印刷可能な装置である。
The treatment tool control device 11205 controls the drive of the energy treatment tool 11112 for cauterizing, incising, sealing a blood vessel, or the like of a tissue. The pneumoperitoneum device 11206 uses a gas in the pneumoperitoneum tube 11111 to inflate the body cavity of the patient 11132 for the purpose of securing the field of view by the endoscope 11100 and securing the work space of the operator. To send. The recorder 11207 is a device capable of recording various information related to surgery. The printer 11208 is a device capable of printing various information related to surgery in various formats such as text, images, and graphs.
なお、内視鏡11100に術部を撮影する際の照射光を供給する光源装置11203は、例えばLED、レーザ光源又はこれらの組み合わせによって構成される白色光源から構成することができる。RGBレーザ光源の組み合わせにより白色光源が構成される場合には、各色(各波長)の出力強度及び出力タイミングを高精度に制御することができるため、光源装置11203において撮像画像のホワイトバランスの調整を行うことができる。また、この場合には、RGBレーザ光源それぞれからのレーザ光を時分割で観察対象に照射し、その照射タイミングに同期してカメラヘッド11102の撮像素子の駆動を制御することにより、RGBそれぞれに対応した画像を時分割で撮像することも可能である。当該方法によれば、当該撮像素子にカラーフィルタを設けなくても、カラー画像を得ることができる。
The light source device 11203 that supplies the irradiation light to the endoscope 11100 when photographing the surgical site can be composed of, for example, an LED, a laser light source, or a white light source composed of a combination thereof. When a white light source is configured by combining RGB laser light sources, the output intensity and output timing of each color (each wavelength) can be controlled with high accuracy. Therefore, the light source device 11203 adjusts the white balance of the captured image. It can be carried out. Further, in this case, the laser light from each of the RGB laser light sources is irradiated to the observation target in a time-division manner, and the drive of the image sensor of the camera head 11102 is controlled in synchronization with the irradiation timing to correspond to each of RGB. It is also possible to capture the image in a time-division manner. According to this method, a color image can be obtained without providing a color filter on the image sensor.
また、光源装置11203は、出力する光の強度を所定の時間ごとに変更するようにその駆動が制御されてもよい。その光の強度の変更のタイミングに同期してカメラヘッド11102の撮像素子の駆動を制御して時分割で画像を取得し、その画像を合成することにより、いわゆる黒つぶれ及び白とびのない高ダイナミックレンジの画像を生成することができる。
Further, the drive of the light source device 11203 may be controlled so as to change the intensity of the output light at predetermined time intervals. By controlling the drive of the image sensor of the camera head 11102 in synchronization with the timing of changing the light intensity to acquire an image in a time-divided manner and synthesizing the image, so-called high dynamic without blackout and overexposure. A range image can be generated.
また、光源装置11203は、特殊光観察に対応した所定の波長帯域の光を供給可能に構成されてもよい。特殊光観察では、例えば、体組織における光の吸収の波長依存性を利用して、通常の観察時における照射光(すなわち、白色光)に比べて狭帯域の光を照射することにより、粘膜表層の血管等の所定の組織を高コントラストで撮影する、いわゆる狭帯域光観察(Narrow Band Imaging)が行われる。あるいは、特殊光観察では、励起光を照射することにより発生する蛍光により画像を得る蛍光観察が行われてもよい。蛍光観察では、体組織に励起光を照射し当該体組織からの蛍光を観察すること(自家蛍光観察)、又はインドシアニングリーン(ICG)等の試薬を体組織に局注するとともに当該体組織にその試薬の蛍光波長に対応した励起光を照射し蛍光像を得ること等を行うことができる。光源装置11203は、このような特殊光観察に対応した狭帯域光及び/又は励起光を供給可能に構成され得る。
Further, the light source device 11203 may be configured to be able to supply light in a predetermined wavelength band corresponding to special light observation. In special light observation, for example, by utilizing the wavelength dependence of light absorption in body tissue to irradiate light in a narrow band as compared with the irradiation light (that is, white light) in normal observation, the surface layer of the mucous membrane. A so-called narrow band imaging (Narrow Band Imaging) is performed in which a predetermined tissue such as a blood vessel is photographed with high contrast. Alternatively, in the special light observation, fluorescence observation may be performed in which an image is obtained by fluorescence generated by irradiating with excitation light. In fluorescence observation, the body tissue is irradiated with excitation light to observe the fluorescence from the body tissue (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally injected into the body tissue and the body tissue is injected. It is possible to obtain a fluorescence image by irradiating excitation light corresponding to the fluorescence wavelength of the reagent. The light source device 11203 may be configured to be capable of supplying narrow band light and / or excitation light corresponding to such special light observation.
図23は、図22に示すカメラヘッド11102及びCCU11201の機能構成の一例を示すブロック図である。
FIG. 23 is a block diagram showing an example of the functional configuration of the camera head 11102 and CCU11201 shown in FIG. 22.
カメラヘッド11102は、レンズユニット11401と、撮像部11402と、駆動部11403と、通信部11404と、カメラヘッド制御部11405と、を有する。CCU11201は、通信部11411と、画像処理部11412と、制御部11413と、を有する。カメラヘッド11102とCCU11201とは、伝送ケーブル11400によって互いに通信可能に接続されている。
The camera head 11102 includes a lens unit 11401, an imaging unit 11402, a driving unit 11403, a communication unit 11404, and a camera head control unit 11405. CCU11201 includes a communication unit 11411, an image processing unit 11412, and a control unit 11413. The camera head 11102 and CCU11201 are communicatively connected to each other by a transmission cable 11400.
レンズユニット11401は、鏡筒11101との接続部に設けられる光学系である。鏡筒11101の先端から取り込まれた観察光は、カメラヘッド11102まで導光され、当該レンズユニット11401に入射する。レンズユニット11401は、ズームレンズ及びフォーカスレンズを含む複数のレンズが組み合わされて構成される。
The lens unit 11401 is an optical system provided at a connection portion with the lens barrel 11101. The observation light taken in from the tip of the lens barrel 11101 is guided to the camera head 11102 and incident on the lens unit 11401. The lens unit 11401 is configured by combining a plurality of lenses including a zoom lens and a focus lens.
撮像部11402は、撮像素子で構成される。撮像部11402を構成する撮像素子は、1つ(いわゆる単板式)であってもよいし、複数(いわゆる多板式)であってもよい。撮像部11402が多板式で構成される場合には、例えば各撮像素子によってRGBそれぞれに対応する画像信号が生成され、それらが合成されることによりカラー画像が得られてもよい。あるいは、撮像部11402は、3D(Dimensional)表示に対応する右目用及び左目用の画像信号をそれぞれ取得するための1対の撮像素子を有するように構成されてもよい。3D表示が行われることにより、術者11131は術部における生体組織の奥行きをより正確に把握することが可能になる。なお、撮像部11402が多板式で構成される場合には、各撮像素子に対応して、レンズユニット11401も複数系統設けられ得る。
The image pickup unit 11402 is composed of an image pickup element. The image sensor constituting the image pickup unit 11402 may be one (so-called single plate type) or a plurality (so-called multi-plate type). When the image pickup unit 11402 is composed of a multi-plate type, for example, each image pickup element may generate an image signal corresponding to each of RGB, and a color image may be obtained by synthesizing them. Alternatively, the image pickup unit 11402 may be configured to have a pair of image pickup elements for acquiring image signals for the right eye and the left eye corresponding to 3D (Dimensional) display, respectively. The 3D display enables the operator 11131 to more accurately grasp the depth of the biological tissue in the surgical site. When the image pickup unit 11402 is composed of a multi-plate type, a plurality of lens units 11401 may be provided corresponding to each image pickup element.
また、撮像部11402は、必ずしもカメラヘッド11102に設けられなくてもよい。例えば、撮像部11402は、鏡筒11101の内部に、対物レンズの直後に設けられてもよい。
Further, the imaging unit 11402 does not necessarily have to be provided on the camera head 11102. For example, the imaging unit 11402 may be provided inside the lens barrel 11101 immediately after the objective lens.
駆動部11403は、アクチュエータによって構成され、カメラヘッド制御部11405からの制御により、レンズユニット11401のズームレンズ及びフォーカスレンズを光軸に沿って所定の距離だけ移動させる。これにより、撮像部11402による撮像画像の倍率及び焦点が適宜調整され得る。
The drive unit 11403 is composed of an actuator, and the zoom lens and focus lens of the lens unit 11401 are moved by a predetermined distance along the optical axis under the control of the camera head control unit 11405. As a result, the magnification and focus of the image captured by the imaging unit 11402 can be adjusted as appropriate.
通信部11404は、CCU11201との間で各種の情報を送受信するための通信装置によって構成される。通信部11404は、撮像部11402から得た画像信号をRAWデータとして伝送ケーブル11400を介してCCU11201に送信する。
The communication unit 11404 is composed of a communication device for transmitting and receiving various information to and from the CCU11201. The communication unit 11404 transmits the image signal obtained from the image pickup unit 11402 as RAW data to the CCU 11201 via the transmission cable 11400.
また、通信部11404は、CCU11201から、カメラヘッド11102の駆動を制御するための制御信号を受信し、カメラヘッド制御部11405に供給する。当該制御信号には、例えば、撮像画像のフレームレートを指定する旨の情報、撮像時の露出値を指定する旨の情報、並びに/又は撮像画像の倍率及び焦点を指定する旨の情報等、撮像条件に関する情報が含まれる。
Further, the communication unit 11404 receives a control signal for controlling the drive of the camera head 11102 from the CCU 11201 and supplies the control signal to the camera head control unit 11405. The control signal includes, for example, information to specify the frame rate of the captured image, information to specify the exposure value at the time of imaging, and / or information to specify the magnification and focus of the captured image, and the like. Contains information about the condition.
なお、上記のフレームレートや露出値、倍率、焦点等の撮像条件は、ユーザによって適宜指定されてもよいし、取得された画像信号に基づいてCCU11201の制御部11413によって自動的に設定されてもよい。後者の場合には、いわゆるAE(Auto Exposure)機能、AF(Auto Focus)機能及びAWB(Auto White Balance)機能が内視鏡11100に搭載されていることになる。
The above-mentioned imaging conditions such as frame rate, exposure value, magnification, and focus may be appropriately specified by the user, or may be automatically set by the control unit 11413 of CCU11201 based on the acquired image signal. Good. In the latter case, the so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function are mounted on the endoscope 11100.
カメラヘッド制御部11405は、通信部11404を介して受信したCCU11201からの制御信号に基づいて、カメラヘッド11102の駆動を制御する。
The camera head control unit 11405 controls the drive of the camera head 11102 based on the control signal from the CCU 11201 received via the communication unit 11404.
通信部11411は、カメラヘッド11102との間で各種の情報を送受信するための通信装置によって構成される。通信部11411は、カメラヘッド11102から、伝送ケーブル11400を介して送信される画像信号を受信する。
The communication unit 11411 is composed of a communication device for transmitting and receiving various information to and from the camera head 11102. The communication unit 11411 receives an image signal transmitted from the camera head 11102 via the transmission cable 11400.
また、通信部11411は、カメラヘッド11102に対して、カメラヘッド11102の駆動を制御するための制御信号を送信する。画像信号や制御信号は、電気通信や光通信等によって送信することができる。
Further, the communication unit 11411 transmits a control signal for controlling the drive of the camera head 11102 to the camera head 11102. Image signals and control signals can be transmitted by telecommunications, optical communication, or the like.
画像処理部11412は、カメラヘッド11102から送信されたRAWデータである画像信号に対して各種の画像処理を施す。
The image processing unit 11412 performs various image processing on the image signal which is the RAW data transmitted from the camera head 11102.
制御部11413は、内視鏡11100による術部等の撮像、及び、術部等の撮像により得られる撮像画像の表示に関する各種の制御を行う。例えば、制御部11413は、カメラヘッド11102の駆動を制御するための制御信号を生成する。
The control unit 11413 performs various controls related to the imaging of the surgical site and the like by the endoscope 11100 and the display of the captured image obtained by the imaging of the surgical site and the like. For example, the control unit 11413 generates a control signal for controlling the drive of the camera head 11102.
また、制御部11413は、画像処理部11412によって画像処理が施された画像信号に基づいて、術部等が映った撮像画像を表示装置11202に表示させる。この際、制御部11413は、各種の画像認識技術を用いて撮像画像内における各種の物体を認識してもよい。例えば、制御部11413は、撮像画像に含まれる物体のエッジの形状や色等を検出することにより、鉗子等の術具、特定の生体部位、出血、エネルギー処置具11112の使用時のミスト等を認識することができる。制御部11413は、表示装置11202に撮像画像を表示させる際に、その認識結果を用いて、各種の手術支援情報を当該術部の画像に重畳表示させてもよい。手術支援情報が重畳表示され、術者11131に提示されることにより、術者11131の負担を軽減することや、術者11131が確実に手術を進めることが可能になる。
Further, the control unit 11413 causes the display device 11202 to display an image captured by the surgical unit or the like based on the image signal processed by the image processing unit 11412. At this time, the control unit 11413 may recognize various objects in the captured image by using various image recognition techniques. For example, the control unit 11413 detects the shape, color, and the like of the edge of an object included in the captured image to remove surgical tools such as forceps, a specific biological part, bleeding, and mist when using the energy treatment tool 11112. Can be recognized. When displaying the captured image on the display device 11202, the control unit 11413 may superimpose and display various surgical support information on the image of the surgical unit by using the recognition result. By superimposing and displaying the surgical support information and presenting it to the surgeon 11131, it is possible to reduce the burden on the surgeon 11131 and to allow the surgeon 11131 to proceed with the surgery reliably.
カメラヘッド11102及びCCU11201を接続する伝送ケーブル11400は、電気信号の通信に対応した電気信号ケーブル、光通信に対応した光ファイバ、又はこれらの複合ケーブルである。
The transmission cable 11400 that connects the camera head 11102 and CCU11201 is an electric signal cable that supports electric signal communication, an optical fiber that supports optical communication, or a composite cable thereof.
ここで、図示する例では、伝送ケーブル11400を用いて有線で通信が行われていたが、カメラヘッド11102とCCU11201との間の通信は無線で行われてもよい。
Here, in the illustrated example, the communication is performed by wire using the transmission cable 11400, but the communication between the camera head 11102 and the CCU11201 may be performed wirelessly.
以上、本開示に係る技術が適用され得る内視鏡手術システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、内視鏡11100のカメラヘッド11102に設けられた撮像部11402に好適に適用され得る。本開示に係る技術によれば、多層配線層に設けられる配線のデザインルールが緩和されることで、配線抵抗及び配線容量が減少するため、より高速の撮影を行うことができる。これによれば、内視鏡手術システムにおいて、内視鏡11100を高速で動かした場合でも、高精度の撮影画像を取得することができるため、ユーザの操作性を向上させることができる。
The above is an example of an endoscopic surgery system to which the technology according to the present disclosure can be applied. Among the configurations described above, the technique according to the present disclosure can be suitably applied to the imaging unit 11402 provided on the camera head 11102 of the endoscope 11100. According to the technique according to the present disclosure, the wiring design rule provided in the multilayer wiring layer is relaxed, so that the wiring resistance and the wiring capacity are reduced, so that higher speed photography can be performed. According to this, in the endoscopic surgery system, even when the endoscope 11100 is moved at high speed, it is possible to acquire a photographed image with high accuracy, so that the operability of the user can be improved.
以上、実施形態、及び変形例を挙げて、本開示にかかる技術を説明した。ただし、本開示にかかる技術は、上記実施の形態等に限定されるわけではなく、種々の変形が可能である。
The techniques related to the present disclosure have been described above with reference to embodiments and modifications. However, the technique according to the present disclosure is not limited to the above-described embodiment and the like, and various modifications can be made.
さらに、各実施形態で説明した構成および動作の全てが本開示の構成および動作として必須であるとは限らない。たとえば、各実施形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素は、任意の構成要素として理解されるべきである。
Furthermore, not all of the configurations and operations described in each embodiment are essential as the configurations and operations of the present disclosure. For example, among the components in each embodiment, the components not described in the independent claims indicating the highest level concept of the present disclosure should be understood as arbitrary components.
本明細書および添付の特許請求の範囲全体で使用される用語は、「限定的でない」用語と解釈されるべきである。例えば、「含む」又は「含まれる」という用語は、「含まれるとして記載された様態に限定されない」と解釈されるべきである。「有する」という用語は、「有するとして記載された様態に限定されない」と解釈されるべきである。
The terms used throughout this specification and the appended claims should be construed as "non-limiting" terms. For example, the term "contains" or "contains" should be construed as "not limited to the mode described as being included." The term "have" should be construed as "not limited to the mode described as having."
本明細書で使用した用語には、単に説明の便宜のために用いており、構成及び動作を限定する目的で使用したわけではない用語が含まれる。たとえば、「右」、「左」、「上」、「下」などの用語は、参照している図面上での方向を示しているにすぎない。また、「内側」、「外側」という用語は、それぞれ、注目要素の中心に向かう方向、注目要素の中心から離れる方向を示しているにすぎない。これらに類似する用語や同様の趣旨の用語についても同様である。
The terms used in this specification include terms used solely for convenience of explanation and not used for the purpose of limiting the configuration and operation. For example, terms such as "right", "left", "top", and "bottom" only indicate the direction on the referenced drawing. Further, the terms "inside" and "outside" merely indicate the direction toward the center of the attention element and the direction away from the center of the attention element, respectively. The same applies to terms similar to these and terms having a similar purpose.
なお、本開示にかかる技術は、以下のような構成を取ることも可能である。以下の構成を備える本開示にかかる技術によれば、回路層に設けられる少なくとも1つ以上のトランジスタのゲート電極を複数の画素回路に延在して設けることで、複数の画素回路ごとに設けられた同種のトランジスタのゲート電極を電気的に接続する配線として機能させることができる。これにより、例えば、撮像装置は、回路層の上層に設けられる多層配線層において、複数の画素回路に延在して設けられる配線の数を減少させることができる。よって、撮像装置は、多層配線層におけるデザインルールを緩和することができる。本開示にかかる技術が奏する効果は、ここに記載された効果に必ずしも限定されるわけではなく、本開示中に記載されたいずれの効果であってもよい。
(1)
光電変換を行う複数のセンサ画素が行列状に配列されて設けられた半導体基板と、
前記センサ画素の各々から出力された電荷に基づいて画素信号を出力する画素回路を複数有し、前記半導体基板の上に層間絶縁層を介して設けられた回路層と
を備え、
前記画素回路に含まれる少なくとも1つ以上のトランジスタのゲート電極は、前記回路層の面内にて複数の前記画素回路に延在して設けられ、複数の前記画素回路ごとに設けられた同種の前記トランジスタの前記ゲート電極と電気的に接続する、撮像装置。
(2)
前記画素回路は、所定の数の前記センサ画素ごとに設けられる、上記(1)に記載の撮像装置。
(3)
前記画素回路に含まれる複数の前記トランジスタの前記ゲート電極は、前記回路層の面内にて同一方向の複数の前記画素回路に延在して設けられる、上記(1)又は(2)に記載の撮像装置。
(4)
前記ゲート電極は、前記回路層の面内の一方向に延在する帯状形状にて設けられる、上記(1)~(3)のいずれか一項に記載の撮像装置。
(5)
前記ゲート電極は、前記回路層の上から前記回路層の内部にかけて埋め込まれて設けられる、上記(1)~(4)のいずれか一項に記載の撮像装置。
(6)
前記ゲート電極のうち前記回路層の内部に埋め込まれた部分は、ポリシリコンで設けられる、上記(5)に記載の撮像装置。
(7)
前記ゲート電極は、前記回路層の上に設けられる、上記(1)~(4)のいずれか一項に記載の撮像装置。
(8)
前記ゲート電極は、前記回路層の上に設けられた絶縁層に形成された開口部を埋め込むように設けられる、上記(1)~(4)のいずれか一項に記載の撮像装置。
(9)
前記ゲート電極は、金属層と、ポリシリコン層とを含む、上記(1)~(8)のいずれか一項に記載の撮像装置。
(10)
前記金属層の底面及び側面には、バリア層が設けられる、上記(9)に記載の撮像装置。
(11)
前記トランジスタは、前記センサ画素から出力された電荷信号を電圧信号に変換する増幅トランジスタ以外のトランジスタである、上記(1)~(10)のいずれか一項に記載の撮像装置。
(12)
前記増幅トランジスタのゲート電極は、前記回路層に含まれる半導体層に設けられた第1の開口部、及び第2の開口部を埋め込むように設けられる、上記(11)に記載の撮像装置。
(13)
光電変換を行う複数のセンサ画素が行列状に配列されて設けられた半導体基板と、
前記複数のセンサ画素から出力された電荷に基づいて画素信号をそれぞれ出力する画素回路を複数有し、前記半導体基板の上に層間絶縁層を介して設けられた回路層と
を備え、
前記画素回路に含まれる少なくとも1つ以上のトランジスタのゲート電極は、前記回路層に含まれる半導体層の上から前記半導体層の内部にかけて埋め込まれて設けられる、撮像装置。 The technology according to the present disclosure can also have the following configuration. According to the technique according to the present disclosure having the following configuration, by extending the gate electrodes of at least one or more transistors provided in the circuit layer to a plurality of pixel circuits, the gate electrodes are provided for each of the plurality of pixel circuits. It can function as a wiring for electrically connecting the gate electrodes of the same type of transistor. Thereby, for example, the image pickup apparatus can reduce the number of wirings extending to the plurality of pixel circuits in the multilayer wiring layer provided above the circuit layer. Therefore, the image pickup apparatus can relax the design rule in the multilayer wiring layer. The effects produced by the techniques according to the present disclosure are not necessarily limited to the effects described herein, and may be any of the effects described in the present disclosure.
(1)
A semiconductor substrate in which a plurality of sensor pixels for photoelectric conversion are arranged in a matrix and
It has a plurality of pixel circuits that output pixel signals based on the charges output from each of the sensor pixels, and includes a circuit layer provided on the semiconductor substrate via an interlayer insulation layer.
The gate electrodes of at least one or more transistors included in the pixel circuit are provided so as to extend to the plurality of the pixel circuits in the plane of the circuit layer, and are provided for each of the plurality of pixel circuits of the same type. An imaging device that is electrically connected to the gate electrode of the transistor.
(2)
The imaging device according to (1) above, wherein the pixel circuit is provided for each of a predetermined number of the sensor pixels.
(3)
The above (1) or (2), wherein the gate electrodes of the plurality of transistors included in the pixel circuit are provided so as to extend to the plurality of pixel circuits in the same direction in the plane of the circuit layer. Imaging device.
(4)
The imaging device according to any one of (1) to (3) above, wherein the gate electrode is provided in a band shape extending in one direction in the plane of the circuit layer.
(5)
The imaging device according to any one of (1) to (4) above, wherein the gate electrode is embedded from above the circuit layer to the inside of the circuit layer.
(6)
The imaging device according to (5) above, wherein a portion of the gate electrode embedded inside the circuit layer is provided with polysilicon.
(7)
The imaging device according to any one of (1) to (4) above, wherein the gate electrode is provided on the circuit layer.
(8)
The imaging device according to any one of (1) to (4) above, wherein the gate electrode is provided so as to embed an opening formed in an insulating layer provided on the circuit layer.
(9)
The imaging device according to any one of (1) to (8) above, wherein the gate electrode includes a metal layer and a polysilicon layer.
(10)
The imaging device according to (9) above, wherein barrier layers are provided on the bottom surface and side surfaces of the metal layer.
(11)
The imaging device according to any one of (1) to (10) above, wherein the transistor is a transistor other than an amplification transistor that converts a charge signal output from the sensor pixel into a voltage signal.
(12)
The imaging device according to (11) above, wherein the gate electrode of the amplification transistor is provided so as to embed a first opening and a second opening provided in the semiconductor layer included in the circuit layer.
(13)
A semiconductor substrate in which a plurality of sensor pixels for photoelectric conversion are arranged in a matrix and
It has a plurality of pixel circuits that output pixel signals based on the charges output from the plurality of sensor pixels, and includes a circuit layer provided on the semiconductor substrate via an interlayer insulation layer.
An image pickup apparatus in which gate electrodes of at least one or more transistors included in the pixel circuit are embedded from above the semiconductor layer included in the circuit layer to the inside of the semiconductor layer.
(1)
光電変換を行う複数のセンサ画素が行列状に配列されて設けられた半導体基板と、
前記センサ画素の各々から出力された電荷に基づいて画素信号を出力する画素回路を複数有し、前記半導体基板の上に層間絶縁層を介して設けられた回路層と
を備え、
前記画素回路に含まれる少なくとも1つ以上のトランジスタのゲート電極は、前記回路層の面内にて複数の前記画素回路に延在して設けられ、複数の前記画素回路ごとに設けられた同種の前記トランジスタの前記ゲート電極と電気的に接続する、撮像装置。
(2)
前記画素回路は、所定の数の前記センサ画素ごとに設けられる、上記(1)に記載の撮像装置。
(3)
前記画素回路に含まれる複数の前記トランジスタの前記ゲート電極は、前記回路層の面内にて同一方向の複数の前記画素回路に延在して設けられる、上記(1)又は(2)に記載の撮像装置。
(4)
前記ゲート電極は、前記回路層の面内の一方向に延在する帯状形状にて設けられる、上記(1)~(3)のいずれか一項に記載の撮像装置。
(5)
前記ゲート電極は、前記回路層の上から前記回路層の内部にかけて埋め込まれて設けられる、上記(1)~(4)のいずれか一項に記載の撮像装置。
(6)
前記ゲート電極のうち前記回路層の内部に埋め込まれた部分は、ポリシリコンで設けられる、上記(5)に記載の撮像装置。
(7)
前記ゲート電極は、前記回路層の上に設けられる、上記(1)~(4)のいずれか一項に記載の撮像装置。
(8)
前記ゲート電極は、前記回路層の上に設けられた絶縁層に形成された開口部を埋め込むように設けられる、上記(1)~(4)のいずれか一項に記載の撮像装置。
(9)
前記ゲート電極は、金属層と、ポリシリコン層とを含む、上記(1)~(8)のいずれか一項に記載の撮像装置。
(10)
前記金属層の底面及び側面には、バリア層が設けられる、上記(9)に記載の撮像装置。
(11)
前記トランジスタは、前記センサ画素から出力された電荷信号を電圧信号に変換する増幅トランジスタ以外のトランジスタである、上記(1)~(10)のいずれか一項に記載の撮像装置。
(12)
前記増幅トランジスタのゲート電極は、前記回路層に含まれる半導体層に設けられた第1の開口部、及び第2の開口部を埋め込むように設けられる、上記(11)に記載の撮像装置。
(13)
光電変換を行う複数のセンサ画素が行列状に配列されて設けられた半導体基板と、
前記複数のセンサ画素から出力された電荷に基づいて画素信号をそれぞれ出力する画素回路を複数有し、前記半導体基板の上に層間絶縁層を介して設けられた回路層と
を備え、
前記画素回路に含まれる少なくとも1つ以上のトランジスタのゲート電極は、前記回路層に含まれる半導体層の上から前記半導体層の内部にかけて埋め込まれて設けられる、撮像装置。 The technology according to the present disclosure can also have the following configuration. According to the technique according to the present disclosure having the following configuration, by extending the gate electrodes of at least one or more transistors provided in the circuit layer to a plurality of pixel circuits, the gate electrodes are provided for each of the plurality of pixel circuits. It can function as a wiring for electrically connecting the gate electrodes of the same type of transistor. Thereby, for example, the image pickup apparatus can reduce the number of wirings extending to the plurality of pixel circuits in the multilayer wiring layer provided above the circuit layer. Therefore, the image pickup apparatus can relax the design rule in the multilayer wiring layer. The effects produced by the techniques according to the present disclosure are not necessarily limited to the effects described herein, and may be any of the effects described in the present disclosure.
(1)
A semiconductor substrate in which a plurality of sensor pixels for photoelectric conversion are arranged in a matrix and
It has a plurality of pixel circuits that output pixel signals based on the charges output from each of the sensor pixels, and includes a circuit layer provided on the semiconductor substrate via an interlayer insulation layer.
The gate electrodes of at least one or more transistors included in the pixel circuit are provided so as to extend to the plurality of the pixel circuits in the plane of the circuit layer, and are provided for each of the plurality of pixel circuits of the same type. An imaging device that is electrically connected to the gate electrode of the transistor.
(2)
The imaging device according to (1) above, wherein the pixel circuit is provided for each of a predetermined number of the sensor pixels.
(3)
The above (1) or (2), wherein the gate electrodes of the plurality of transistors included in the pixel circuit are provided so as to extend to the plurality of pixel circuits in the same direction in the plane of the circuit layer. Imaging device.
(4)
The imaging device according to any one of (1) to (3) above, wherein the gate electrode is provided in a band shape extending in one direction in the plane of the circuit layer.
(5)
The imaging device according to any one of (1) to (4) above, wherein the gate electrode is embedded from above the circuit layer to the inside of the circuit layer.
(6)
The imaging device according to (5) above, wherein a portion of the gate electrode embedded inside the circuit layer is provided with polysilicon.
(7)
The imaging device according to any one of (1) to (4) above, wherein the gate electrode is provided on the circuit layer.
(8)
The imaging device according to any one of (1) to (4) above, wherein the gate electrode is provided so as to embed an opening formed in an insulating layer provided on the circuit layer.
(9)
The imaging device according to any one of (1) to (8) above, wherein the gate electrode includes a metal layer and a polysilicon layer.
(10)
The imaging device according to (9) above, wherein barrier layers are provided on the bottom surface and side surfaces of the metal layer.
(11)
The imaging device according to any one of (1) to (10) above, wherein the transistor is a transistor other than an amplification transistor that converts a charge signal output from the sensor pixel into a voltage signal.
(12)
The imaging device according to (11) above, wherein the gate electrode of the amplification transistor is provided so as to embed a first opening and a second opening provided in the semiconductor layer included in the circuit layer.
(13)
A semiconductor substrate in which a plurality of sensor pixels for photoelectric conversion are arranged in a matrix and
It has a plurality of pixel circuits that output pixel signals based on the charges output from the plurality of sensor pixels, and includes a circuit layer provided on the semiconductor substrate via an interlayer insulation layer.
An image pickup apparatus in which gate electrodes of at least one or more transistors included in the pixel circuit are embedded from above the semiconductor layer included in the circuit layer to the inside of the semiconductor layer.
本出願は、日本国特許庁において2019年12月16日に出願された日本特許出願番号第2019-226397号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。
This application claims priority on the basis of Japanese Patent Application No. 2019-226397 filed at the Japan Patent Office on December 16, 2019, and the entire contents of this application are referred to in this application. Incorporate for application.
当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。
One of ordinary skill in the art can conceive of various modifications, combinations, sub-combinations, and changes, depending on design requirements and other factors, which are included in the appended claims and their equivalents. It is understood that it is something to be done.
Claims (13)
- 光電変換を行う複数のセンサ画素が行列状に配列されて設けられた半導体基板と、
前記センサ画素の各々から出力された電荷に基づいて画素信号を出力する画素回路を複数有し、前記半導体基板の上に層間絶縁層を介して設けられた回路層と
を備え、
前記画素回路に含まれる少なくとも1つ以上のトランジスタのゲート電極は、前記回路層の面内にて複数の前記画素回路に延在して設けられ、複数の前記画素回路ごとに設けられた同種の前記トランジスタの前記ゲート電極と電気的に接続する、撮像装置。 A semiconductor substrate in which a plurality of sensor pixels for photoelectric conversion are arranged in a matrix and
It has a plurality of pixel circuits that output pixel signals based on the charges output from each of the sensor pixels, and includes a circuit layer provided on the semiconductor substrate via an interlayer insulation layer.
The gate electrodes of at least one or more transistors included in the pixel circuit are provided so as to extend to the plurality of the pixel circuits in the plane of the circuit layer, and are provided for each of the plurality of pixel circuits of the same type. An imaging device that is electrically connected to the gate electrode of the transistor. - 前記画素回路は、所定の数の前記センサ画素ごとに設けられる、請求項1に記載の撮像装置。 The imaging device according to claim 1, wherein the pixel circuit is provided for each of a predetermined number of the sensor pixels.
- 前記画素回路に含まれる複数の前記トランジスタの前記ゲート電極は、前記回路層の面内にて同一方向の複数の前記画素回路に延在して設けられる、請求項1に記載の撮像装置。 The imaging device according to claim 1, wherein the gate electrodes of the plurality of transistors included in the pixel circuit are provided so as to extend to the plurality of pixel circuits in the same direction in the plane of the circuit layer.
- 前記ゲート電極は、前記回路層の面内の一方向に延在する帯状形状にて設けられる、請求項1に記載の撮像装置。 The imaging device according to claim 1, wherein the gate electrode is provided in a band shape extending in one direction in the plane of the circuit layer.
- 前記ゲート電極は、前記回路層の上から前記回路層の内部にかけて埋め込まれて設けられる、請求項1に記載の撮像装置。 The imaging device according to claim 1, wherein the gate electrode is embedded from above the circuit layer to the inside of the circuit layer.
- 前記ゲート電極のうち前記回路層の内部に埋め込まれた部分は、ポリシリコンで設けられる、請求項5に記載の撮像装置。 The imaging device according to claim 5, wherein a portion of the gate electrode embedded inside the circuit layer is provided with polysilicon.
- 前記ゲート電極は、前記回路層の上に設けられる、請求項1に記載の撮像装置。 The imaging device according to claim 1, wherein the gate electrode is provided on the circuit layer.
- 前記ゲート電極は、前記回路層の上に設けられた絶縁層に形成された開口部を埋め込むように設けられる、請求項1に記載の撮像装置。 The imaging device according to claim 1, wherein the gate electrode is provided so as to embed an opening formed in an insulating layer provided on the circuit layer.
- 前記ゲート電極は、金属層と、ポリシリコン層とを含む、請求項1に記載の撮像装置。 The imaging device according to claim 1, wherein the gate electrode includes a metal layer and a polysilicon layer.
- 前記金属層の底面及び側面には、バリア層が設けられる、請求項9に記載の撮像装置。 The imaging device according to claim 9, wherein barrier layers are provided on the bottom surface and the side surfaces of the metal layer.
- 前記トランジスタは、前記センサ画素から出力された電荷信号を電圧信号に変換する増幅トランジスタ以外のトランジスタである、請求項1に記載の撮像装置。 The imaging device according to claim 1, wherein the transistor is a transistor other than an amplification transistor that converts a charge signal output from the sensor pixel into a voltage signal.
- 前記増幅トランジスタのゲート電極は、前記回路層に含まれる半導体層に設けられた第1の開口部、及び第2の開口部を埋め込むように設けられる、請求項11に記載の撮像装置。 The imaging device according to claim 11, wherein the gate electrode of the amplification transistor is provided so as to embed a first opening and a second opening provided in the semiconductor layer included in the circuit layer.
- 光電変換を行う複数のセンサ画素が行列状に配列されて設けられた半導体基板と、
前記複数のセンサ画素から出力された電荷に基づいて画素信号をそれぞれ出力する画素回路を複数有し、前記半導体基板の上に層間絶縁層を介して設けられた回路層と
を備え、
前記画素回路に含まれる少なくとも1つ以上のトランジスタのゲート電極は、前記回路層に含まれる半導体層の上から前記半導体層の内部にかけて埋め込まれて設けられる、撮像装置。 A semiconductor substrate in which a plurality of sensor pixels for photoelectric conversion are arranged in a matrix and
It has a plurality of pixel circuits that output pixel signals based on the charges output from the plurality of sensor pixels, and includes a circuit layer provided on the semiconductor substrate via an interlayer insulation layer.
An image pickup apparatus in which gate electrodes of at least one or more transistors included in the pixel circuit are embedded from above the semiconductor layer included in the circuit layer to the inside of the semiconductor layer.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019226397 | 2019-12-16 | ||
JP2019-226397 | 2019-12-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021124974A1 true WO2021124974A1 (en) | 2021-06-24 |
Family
ID=76478685
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/045595 WO2021124974A1 (en) | 2019-12-16 | 2020-12-08 | Imaging device |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW202139447A (en) |
WO (1) | WO2021124974A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023112769A1 (en) * | 2021-12-15 | 2023-06-22 | ソニーセミコンダクタソリューションズ株式会社 | Solid-state image-capturing device and electronic apparatus |
WO2023136174A1 (en) * | 2022-01-13 | 2023-07-20 | ソニーセミコンダクタソリューションズ株式会社 | Solid-state imaging device and electronic device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009188049A (en) * | 2008-02-04 | 2009-08-20 | Texas Instr Japan Ltd | Solid-state imaging device |
JP2012019169A (en) * | 2010-07-09 | 2012-01-26 | Panasonic Corp | Solid-state imaging device |
JP2012164971A (en) * | 2011-02-07 | 2012-08-30 | Samsung Electronics Co Ltd | Image sensor |
JP2015162679A (en) * | 2014-02-27 | 2015-09-07 | 三星電子株式会社Samsung Electronics Co.,Ltd. | Image sensor having trench including negative charge material and method of fabricating the same |
JP2016103615A (en) * | 2014-11-28 | 2016-06-02 | キヤノン株式会社 | Imaging device manufacturing method, imaging device and imaging system |
-
2020
- 2020-12-08 WO PCT/JP2020/045595 patent/WO2021124974A1/en active Application Filing
- 2020-12-09 TW TW109143467A patent/TW202139447A/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009188049A (en) * | 2008-02-04 | 2009-08-20 | Texas Instr Japan Ltd | Solid-state imaging device |
JP2012019169A (en) * | 2010-07-09 | 2012-01-26 | Panasonic Corp | Solid-state imaging device |
JP2012164971A (en) * | 2011-02-07 | 2012-08-30 | Samsung Electronics Co Ltd | Image sensor |
JP2015162679A (en) * | 2014-02-27 | 2015-09-07 | 三星電子株式会社Samsung Electronics Co.,Ltd. | Image sensor having trench including negative charge material and method of fabricating the same |
JP2016103615A (en) * | 2014-11-28 | 2016-06-02 | キヤノン株式会社 | Imaging device manufacturing method, imaging device and imaging system |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023112769A1 (en) * | 2021-12-15 | 2023-06-22 | ソニーセミコンダクタソリューションズ株式会社 | Solid-state image-capturing device and electronic apparatus |
WO2023136174A1 (en) * | 2022-01-13 | 2023-07-20 | ソニーセミコンダクタソリューションズ株式会社 | Solid-state imaging device and electronic device |
Also Published As
Publication number | Publication date |
---|---|
TW202139447A (en) | 2021-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020189534A1 (en) | Image capture element and semiconductor element | |
WO2020059702A1 (en) | Imaging device | |
CN112585750B (en) | Semiconductor device with a semiconductor device having a plurality of semiconductor chips | |
WO2021106732A1 (en) | Imaging device and electronic instrument | |
US20230139176A1 (en) | Imaging device and electronic apparatus | |
WO2020158515A1 (en) | Solid-state imaging element, electronic apparatus, and method for manufacturing solid-state imaging element | |
JP2019012739A (en) | Solid state imaging device and imaging apparatus | |
WO2021100332A1 (en) | Semiconductor device, solid-state image capturing device, and electronic device | |
WO2020261817A1 (en) | Solid-state imaging element and method for manufacturing solid-state imaging element | |
WO2021124974A1 (en) | Imaging device | |
WO2019181466A1 (en) | Imaging element and electronic device | |
WO2022172711A1 (en) | Photoelectric conversion element and electronic device | |
KR20240058850A (en) | Light detection device, manufacturing method and electronic device for light detection device | |
TWI810326B (en) | Photoelectric conversion element | |
TWI853058B (en) | Solid-state imaging device and electronic apparatus | |
WO2024057814A1 (en) | Light-detection device and electronic instrument | |
WO2022130987A1 (en) | Solid-state imaging device and method for manufacturing same | |
WO2022137864A1 (en) | Imaging device and electronic apparatus | |
US20240038807A1 (en) | Solid-state imaging device | |
WO2021215299A1 (en) | Imaging element and imaging device | |
WO2024202671A1 (en) | Light detection device and electronic apparatus | |
WO2024202748A1 (en) | Light detection device and electronic device | |
WO2021059676A1 (en) | Image-capturing device and electronic apparatus | |
WO2022124131A1 (en) | Light-receiving element, light-receiving device, and electronic apparatus | |
WO2023047632A1 (en) | Imaging device and electronic apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20900898 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20900898 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |