WO2021124564A1 - Steam curing device and desulfurizing agent production device - Google Patents

Steam curing device and desulfurizing agent production device Download PDF

Info

Publication number
WO2021124564A1
WO2021124564A1 PCT/JP2019/050151 JP2019050151W WO2021124564A1 WO 2021124564 A1 WO2021124564 A1 WO 2021124564A1 JP 2019050151 W JP2019050151 W JP 2019050151W WO 2021124564 A1 WO2021124564 A1 WO 2021124564A1
Authority
WO
WIPO (PCT)
Prior art keywords
supply path
processing container
steam
steam curing
curing device
Prior art date
Application number
PCT/JP2019/050151
Other languages
French (fr)
Japanese (ja)
Inventor
清宏 堀内
徹 柳谷
智基 佐藤
和浩 黒澤
智生 粥川
基裕 山本
美紀子 倉本
Original Assignee
北海道電力株式会社
日揮グローバル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北海道電力株式会社, 日揮グローバル株式会社 filed Critical 北海道電力株式会社
Priority to CN201980101140.9A priority Critical patent/CN114555222A/en
Priority to PCT/JP2019/050151 priority patent/WO2021124564A1/en
Publication of WO2021124564A1 publication Critical patent/WO2021124564A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04

Definitions

  • the present invention relates to a steam curing device for steam curing a solid substance and a desulfurizing agent manufacturing device including the steam curing device.
  • Thermal power plants, coke ovens, etc. use coal or heavy oil as fuel and emit flue gas. Since coal and heavy oil contain sulfur compounds, the flue gas contains a large amount of sulfur oxides (SOx) as air pollutants.
  • SOx sulfur oxides
  • a desulfurization apparatus for desulfurizing flue gas by a mobile layer dry desulfurization method is known. In this desulfurization apparatus, granules of a purifying agent (desulfurizing agent) having desulfurization performance are used. The granules move down in the desulfurization tower to form a moving layer. Then, the flue gas flow is supplied so as to be orthogonal to the moving layer, and desulfurization is performed.
  • Patent Document 1 describes a system including a desulfurizing agent manufacturing facility and a desulfurizing apparatus.
  • This desulfurization apparatus is an apparatus for performing desulfurization of the above-mentioned mobile layer dry desulfurization method, and the desulfurization agent manufacturing equipment includes a steam curing apparatus.
  • the desulfurizing agent is cured by this steam curing device.
  • the steam curing device is provided with a processing container, and the inside of the processing container has a steam atmosphere.
  • a desulfurizing agent is carried into the processing container from the supply channel of the granules for curing.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a technique capable of sealing the steam atmosphere in a processing container in a steam curing device with a simple configuration.
  • the steam curing apparatus of the present invention includes a processing container for steam curing solids and a processing container.
  • a steam supply unit that supplies steam for processing the solid matter into the processing container,
  • a supply path that opens into the processing container and the outside of the processing container in order to supply the solid matter into the processing container.
  • a gas discharge unit that discharges gas in a direction intersecting the supply path in order to allow the solid matter to pass through the supply path and to seal the steam atmosphere in the processing container.
  • gas is discharged into a supply path for supplying a solid substance into the processing container in a direction intersecting the supply path.
  • the vapor atmosphere in the processing container is sealed. Therefore, it is not necessary to provide a drive mechanism such as a valve in the supply path. Therefore, the configuration of the steam curing device can be simplified.
  • FIG. 1 is a configuration diagram showing a desulfurization system 1 according to an embodiment of the present invention.
  • the desulfurization system 1 includes a desulfurization agent production facility 2 which is a desulfurization agent production apparatus, and a desulfurization apparatus 3.
  • the desulfurizing agent manufacturing facility 2 manufactures and cures the desulfurizing agent. Then, the cured desulfurizing agent is transported from the desulfurizing agent manufacturing facility 2 to the desulfurizing apparatus 3.
  • the desulfurization apparatus 3 uses the desulfurization agent to perform desulfurization by a mobile layer dry desulfurization method.
  • the desulfurization apparatus 3 includes a first desulfurization tower 31, a second desulfurization tower 32, storage units 30 and 36, and a flow path forming member 33.
  • the first desulfurization tower 31 and the second desulfurization tower 32 are arranged at intervals in the front-rear direction.
  • the cured desulfurizing agent is transported from the desulfurizing agent manufacturing facility 2 to the storage unit 30, once stored, and then sequentially transported to the second desulfurization tower 32 and the first desulfurization tower 31.
  • Valves 31A and 32A are provided in the lower part of the first desulfurization tower 31 and the lower part of the second desulfurization tower 32, respectively.
  • the desulfurizing agent is lowered by its own weight at a speed corresponding to the opening degree of the valves 31A and 32B. Due to the drop of the desulfurizing agent, a moving layer is formed in the first desulfurization tower 31 and the second desulfurization tower 32.
  • the desulfurizing agent discharged from the first desulfurizing tower 31 is temporarily stored in the storage unit 36 as a used desulfurizing agent. After that, the used desulfurizing agent is transported to the desulfurizing agent manufacturing facility 2.
  • the flow path forming member 33 forms a flow path for the flue gas. This flow path is formed so that the flue gas passes through the first desulfurization tower 31 and the second desulfurization tower 32 in this order.
  • the flow path forming member 33 is provided with an inflow port 34 and an outflow port 35.
  • the inflow port 34 is connected to the flow path of the flue gas of the flue gas source, and the flue gas source is, for example, a thermal power plant.
  • the outflow port 35 discharges the flue gas discharged from the second desulfurization tower 32 to the subsequent equipment.
  • the flue gas flows in from one side surface (front surface) and flows out from the other side surface (rear surface). Therefore, the flue gas flow is orthogonal to the moving layers of the first desulfurization tower 31 and the second desulfurization tower 32.
  • SOx in the flue gas reacts with calcium hydroxide in the desulfurizing agent and is fixed as calcium sulfate. That is, desulfurization is performed.
  • orthogonality is not limited to intersecting vertically, but also includes intersecting at 45 degrees or more and 90 degrees or less.
  • the desulfurization agent manufacturing equipment 2 includes a crusher 20, storage units 21 to 23, measuring instruments 21B to 23B, a mixer 24, a storage unit 25, a kneading machine 26, an extrusion molding machine 27, and a steam curing device. 4 and a dryer 28 are provided.
  • a used desulfurizing agent is supplied to the crusher 20 from the storage unit 36 of the desulfurization apparatus 3, and the crushing machine 20 crushes the used desulfurizing agent.
  • the crushed used desulfurizing agent is stored in the storage unit 21.
  • the storage units 22 and 23 store slaked lime and coal ash, respectively.
  • Discharge valves 21A, 22A, and 23A are provided at the lower ends of the storage portions 21, 22, and 23, respectively, and measuring instruments 21B, 22B, and 23B are provided below the discharge valves 21A, 22A, and 23A, respectively. Has been done. Used desulfurization agent, slaked lime and coal ash are weighed by measuring instruments 21B, 22B and 23B, respectively.
  • the used desulfurization agent, slaked lime and coal ash, which are weighed respectively, are supplied to the mixer 24.
  • the mixer 24 a mixture of used desulfurization agent, slaked lime and coal ash is produced, and the mixture is temporarily stored in the storage unit 25.
  • the mixture in the storage unit 25 is discharged from the discharge valve 25A on the lower side of the storage unit 25 and supplied to the kneader 26.
  • the kneader 26 water is added to the mixture and kneaded to produce a kneaded product.
  • the kneaded product is supplied to the extrusion molding machine 27.
  • the kneaded product is molded by the extrusion molding machine 27 to become granules 40 (not shown in FIG. 2) which is a desulfurizing agent.
  • the storage units 21 to 23, the measuring instruments 21B to 23B, the mixer 24, the storage unit 25, the kneading machine 26, and the extrusion molding machine 27 constitute a granulation unit 29 for granulating the granules 40 which are desulfurizing agents. To do.
  • the granules 40 are transported to the steam curing device 4.
  • the granular material 40 is cured by being heated in a steam atmosphere in the steam curing device 4.
  • the cured granules 40 are transported to the dryer 28.
  • those having a particle size of a predetermined size or less are removed by a vibrating sieve (not shown).
  • a vibrating sieve By the sieving, for example, those having a particle size of 3 mm to 10 mm are conveyed to the storage unit 30 of the desulfurization apparatus 3.
  • a transport mechanism such as a belt conveyor is provided between the extrusion molding machine 27 and the steam curing device 4 or between the dryer 28 and the storage unit 30.
  • the belt conveyor which is a transfer mechanism between the extrusion molding machine 27 and the steam curing device 4, will be exemplified later.
  • the transport of the desulfurizing agent raw material and desulfurizing agent by each transport mechanism is performed in parallel with the processing of each device and device.
  • the desulfurization agent is continuously produced in the desulfurization agent production facility 2 and the desulfurization agent is continuously supplied to the desulfurization apparatus 3. Therefore, desulfurization in the first desulfurization tower 31 and the second desulfurization tower 32 can be continuously performed.
  • the steam curing device 4 will be described in more detail.
  • the granules 40 which are desulfurizing agents, are cured.
  • the curing is performed by heating the granules 40 in a steam atmosphere.
  • This curing increases the hardness of the granular material 40.
  • the increase in hardness prevents the granules 40 from being crushed by impact during transportation to the desulfurization apparatus 3 and during formation of the moving layer in the desulfurization apparatus 3. Therefore, the crushed granules 40 are prevented from entering the gaps between the devices and devices constituting the desulfurization system 1.
  • the curing proceeds a chemical reaction between each compound in the granular material 40.
  • the activity as a desulfurizing agent is increased.
  • the steam curing device 4 is provided with a square-shaped processing container 41 that is elongated in the front-rear direction.
  • the front-rear direction of the processing container 41 is the X direction.
  • the left-right direction of the processing container 41 is the Y direction.
  • the height direction of the processing container 41 is the Z direction. This Z direction is also a vertical direction.
  • the X, Y, and Z directions are orthogonal to each other.
  • FIG. 3 is a longitudinal side view of the steam curing device 4 along the XZ plane.
  • Belt conveyors are provided in two upper and lower stages in the processing container 41, and each belt conveyor extends in the X direction.
  • the upper belt conveyor and the lower belt conveyor are the first belt conveyor 42 and the second belt conveyor 43, respectively.
  • the granules 40 are supplied to the front end portion of the first belt conveyor 42 by dropping the granules 40 in the processing container 41.
  • the first belt conveyor 42 conveys the granules 40 supplied to the front end portion thereof to the rear. Then, the granular material 40 falls from the rear end of the first belt conveyor 42 by gravity.
  • the rear end of the second belt conveyor 43 is arranged so as to receive the falling particles 40.
  • the second belt conveyor 43 conveys the granules 40 received at the rear end to the front.
  • a discharge path 44 is opened at the bottom of the processing container 41. From the front end of the second belt conveyor 43, the cured granules 40 fall into the discharge path 44 by gravity. By dropping the discharge path 44 in this way, the granules 40 are discharged to the outside of the processing container 41.
  • a pipe 46 extending in the X direction is provided at the bottom of the processing container 41.
  • a plurality of pipes 46 are provided at the bottom of the processing container 41 at intervals in the Y direction.
  • a branch pipe 47 branched from the pipe 46 is formed in the pipe 46, and the branch pipe 47 is provided at a plurality of positions of the pipe 46 separated from each other in the X direction. Therefore, the pipe 46 and the branch pipe 47 are configured in a manifold shape.
  • a plurality of pipes extending in the Y direction are provided at the bottom of the processing container 41 at intervals in the X direction, and the branch pipes 47 are separated from each other in the Y direction. It may be formed at a position.
  • the steam can be uniformly dispersed in the processing container 41.
  • hot water 40A is stored in the bottom of the processing container 41, and the steam ejected from the branch pipe 47 rises as bubbles in the hot water 40A and is supplied into the processing container 41.
  • the branch pipe 47 is open upward is illustrated, but the branch pipe 47 may be open laterally or downward.
  • a steam generation mechanism 48 is provided outside the processing container 41, and the upstream side of the pipe 46 is connected to the steam generation mechanism 48. Water vapor is generated by the water vapor generation mechanism 48.
  • This water vapor is supplied to the branch pipe 47 via the pipe 46, and is further discharged upward from the branch pipe 47. As a result, a water vapor atmosphere is formed in the processing container 41.
  • the steam generation mechanism 48, the pipe 46, and the branch pipe 47 are configured as a steam supply unit.
  • Two horizontally long hoppers 51 are provided on the upper side of the front end portion of the processing container 41, and the two hoppers 51 are slightly separated from each other to the left and right. Further, each hopper 51 opens upward, and the opening of each hopper 51 is formed as a supply port when the granular material 40 is supplied to the processing container 41.
  • Reference numeral 75 in FIG. 3 is a third belt conveyor, which is provided on the processing container 41. The granular material 40 falls from the third belt conveyor 75 to the hopper 51 and is supplied into the processing container 41.
  • each hopper 51 is connected to a square cylinder 52 extending in the vertical direction. Therefore, the square tube 52 extends in the vertical direction.
  • the lower end of the square cylinder 52 is connected to the upper part of the processing container 41.
  • a supply path 53 that serves as a passage when the granules 40 are supplied to the processing container 41 is formed, and the supply path 53 is open to the inside of the processing container 41. Therefore, the square cylinder 52 is a peripheral wall forming the supply path 53, and the supply path 53 projects upward from the processing container 41.
  • the supply path 53 is not provided with a drive mechanism such as a valve, and the granular material 40 supplied to the hopper 51 falls down the supply path 53. Due to the drop, the granular material 40 is supplied to the front end portion of the first belt conveyor 42.
  • FIG. 4 is a cross-sectional plan view of the square cylinder 52 and the supply path 53 along the XY plane. Since the supply path 53 and the square tube 52 project vertically from the processing container 41 as described above, FIG. 4 is a view of the supply path 53 and the square tube 52 viewed in the projecting direction. When viewed in the protruding direction in this way, the square cylinder 52 and the supply path 53 form a rectangular shape. The front wall portion and the rear wall portion of the square cylinder 52 are shown as 52A and 52B, respectively, and the wall portions 52A and 52B form the long sides of the rectangle.
  • the left and right wall portions of the square cylinder 52 forming the short side of the rectangle are shown as 52C.
  • the case where compressed air is used as the gas discharged to the supply path 53 will be described.
  • the flow of compressed air discharged to the supply path 53 is indicated by a dotted arrow.
  • a slit 61 is formed in the wall portion 52B on the rear side, and the slit 61 extends along the long side of the rectangle.
  • the slit 61 is a discharge port for compressed air, and the compressed air supplied from the outside of the square cylinder 52 is discharged to the supply path 53.
  • the compressed air is projected obliquely and downward with respect to the vertical axis of the square cylinder 52. Therefore, the discharge direction of the compressed air in the slit 61 is a direction that intersects the supply path 53.
  • FIG. 5 is a cross-sectional view taken along the line AA of FIG. More specifically, FIG.
  • ⁇ 1 is an angle formed by the opening direction (compressed air discharge direction) of the slit 61 and the horizontal plane (indicated by a chain line). This ⁇ 1 is, for example, 45 °, and the compressed air discharged from the slit 61 collides with the wall portion 52A on the front side.
  • a cover 62 is provided on the wall portion 52B of the square cylinder 52.
  • the cover 62 covers the slit 61 from the outside of the square cylinder 52.
  • a diffusion space 63 for supplying compressed air to the slit 61 is formed between the cover 62 and the wall portion 52B.
  • the diffusion space 63 communicates with the slit 61 and is formed along the length direction of the slit 61.
  • Four downstream ends of the air supply pipe 60 are connected to the cover 62. These downstream ends are spaced apart along the length direction of the diffusion space 63 and are open to the diffusion space 63.
  • the upstream side of the air supply pipe 60 merges and is connected to the compressor 65 via the heater 64.
  • the compressed air supplied from the compressor 65 is heated by the heater 64 and then supplied to each part of the diffusion space 63.
  • This compressed air spreads in the diffusion space 63 and is discharged from each part of the slit 61 with high uniformity. Since the compressed air is heated by the heater 64, it becomes hot air and is discharged from the slit 61.
  • FIG. 6 is a cross-sectional view taken along the line BB of FIG. More specifically, FIG. 6 shows a cross section of the supply path 53 and the square tube 52 along the long side of the rectangle when viewed in the XY plane.
  • Slits 66 are formed in each of the left and right wall portions 52C forming the square cylinder 52, and each slit 66 extends along the short side of the rectangle.
  • Each slit 66 is a discharge port for compressed air, and the compressed air supplied from the outside of the square cylinder 52 is discharged to the supply path 53. The compressed air is projected obliquely and downward with respect to the vertical axis of the square cylinder 52.
  • the discharge direction of the compressed air in the slit 66 is also a direction that intersects the supply path 53.
  • ⁇ 2 is an angle formed by the opening direction (compressed air discharge direction) of the slit 66 and the horizontal plane (indicated by a chain line). This ⁇ 2 is, for example, 45 °.
  • a cover 67 is provided on each wall portion 52C.
  • the cover 67 covers the slit 66 from the outside of the square cylinder 52.
  • a diffusion space 68 for supplying compressed air to the slit 66 is formed between the cover 67 and the wall portion 52C.
  • the diffusion space 68 communicates with the slit 66 and is formed along the length direction of the slit 66.
  • the downstream end of the air supply pipe 69 is connected to the cover 67. This downstream end opens into the diffusion space 68.
  • the upstream side of the air supply pipe 69 is connected to, for example, an air supply pipe 60, a heater 64, or a header pipe 601 connecting the heater 64 and the air supply pipe 60.
  • the heated compressed air is supplied to the slit 61 and the diffusion space 63, the heated compressed air is also supplied to the diffusion space 68.
  • This compressed air spreads in the diffusion space 68 and is discharged from each part of the slit 66 with high uniformity. Since the compressed air is heated by the heater 64, it becomes hot air and is discharged from the slit 66.
  • the slits 61, 66, the air supply pipes 60, 69, and the compressor 65 form a gas discharge portion.
  • the flow of water vapor in the processing container 41 is indicated by a solid arrow.
  • the flow of compressed air discharged from the slits 61 and 66 and the flow of water vapor will be described below.
  • the compressed air discharged from the slit 61 collides with the wall portion 52A, it is supplied from above with respect to the collision position, so that it flows downward from the collision position and flows into the processing container 41. That is, the compressed air does not go upward in the supply path 53.
  • the compressed air discharged from each slit 66 is also discharged diagonally downward, it does not go upward but flows into the processing container 41.
  • the compressed air discharged from the slits 61 and 66 in this way is supplied into the processing container 41.
  • the compressed air is heated by the heater 64.
  • the granular material 40 falling in the supply path 53 passes through the air layer due to gravity and is supplied to the first belt conveyor 42 as described above.
  • the above air layer is configured as an air curtain, and while separating the internal atmosphere and the external atmosphere of the processing container 41, it is possible to move the solid particles 40 into the processing container 41. To do.
  • a rotary valve 71 is provided in the supply path 53.
  • the rotary valve 71 includes a rotating shaft 72 extending in the horizontal direction and a plurality of blades 73. The blades 73 project radially from the rotating shaft 72 when viewed in the axial direction of the rotating shaft 72.
  • the water vapor in the processing container 41 rises and enters the supply path 53. Therefore, the water vapor adheres to the surface of the rotary valve 71. Therefore, dew condensation occurs on the surface of the rotary valve 71.
  • the granules 40 before being cured in a water vapor atmosphere have adhesiveness to the solid surface by absorbing moisture. More specifically, the hygroscopic granules 40 have adhesiveness to iron constituting the rotary valve 71 and metals such as steel and carbon steel called SS41 or SS400. Further, the moisture-absorbed granules 40 have adhesiveness (cohesiveness) between the granules 40.
  • the granular material 40 supplied between the blades 73 of the rotary valve 71 that has condensed absorbs moisture and adheres to the surface of the rotary valve 71.
  • the granules 40 supplied to the rotary valve 71 are further adhered to the granules 40 thus adhered. Therefore, the granules 40 aggregate and increase between the blades 73, and the supply path 53 is gradually blocked.
  • the left side of FIG. 7 shows the state before such an obstruction occurred, and the right side of FIG. 7 shows the state before the obstruction occurred.
  • the steam curing device 4 according to the present embodiment seals the atmosphere inside the processing container 41 without using the rotary valve 71. Thereby, such blockage of the supply path 53 is prevented.
  • the operation of the steam curing device 4 will be described below.
  • the inside of the processing container 41 of the steam curing device 4 has the above-mentioned steam atmosphere, and the compressed air heated from the slits 61 and 66 is discharged to each supply path 53 to form an air layer.
  • the granules 40 are continuously supplied to the third belt conveyor 75, and the third belt conveyor 75 continuously conveys the granules 40 toward the hopper 51 and continuously into the processing container 41. Then, the granular material 40 is supplied.
  • the granules 40 supplied to the hopper 51 fall down the supply path 53, pass through the above-mentioned air layer, and are supplied to the first belt conveyor 42, but in the processing container 41. Water vapor is blocked by the air layer and prevents leakage to the outside of the processing container 41.
  • the granules 40 supplied into the processing container 41 are exposed to water vapor and heated to, for example, 90 ° C. to 100 ° C., for example, 95 ° C. for curing.
  • the granules 40 are conveyed in the processing container 41 by the first belt conveyor 42 and the second belt conveyor 43 over, for example, 5 hours to 15 hours, for example, 10 hours.
  • the granular material 40 is supplied from the second belt conveyor 43 to the discharge path 44 and discharged to the outside of the processing container 41.
  • the transfer of the granules 40 by the first belt conveyor 42 and the second belt conveyor 43 is also continuously performed. Therefore, the supply of the granules 40 to the processing container 41 and the discharge of the cured granules 40 from the processing container 41 are performed continuously.
  • compressed air is supplied from the slits 61 and 66 to the supply path 53 that opens to the outside of the processing container 41 via the hopper 51 so as to intersect the supply path 53.
  • the water vapor atmosphere in the processing container 41 is sealed so as not to leak to the outside.
  • the device configuration of the steam curing device 4 is simplified, the supply port is prevented from being blocked by the desulfurizing agent, and the reliability in the operation of the desulfurizing agent manufacturing equipment 2 is improved. Can be made to.
  • the granules 40 can be continuously supplied to the processing container 41 by the third belt conveyor 75. More specifically, in the case of the configuration of the comparative example, the granules 40 cannot be sufficiently supplied into the processing container 41 in, for example, about one day due to the adhesion of the granules 40 to the rotary valve 71. Therefore, in the configuration of the comparative example, it was necessary to stop and clean the rotary valve 71 at least once a day.
  • the apparatus is set so that the production amount of the desulfurizing agent is the minimum, and the third belt conveyor 75 is in a state where the granules 40 are supplied only to one hopper 51 of the steam curing apparatus 4. Meanwhile, the rotary valve 71 of the supply path 53 connected to the other hopper 51 is cleaned to remove the fixed particles 40. After the cleaning work is completed, the third belt conveyor 75 is in a state of supplying the granules 40 only to the other hopper 51. Then, the rotary valve 71 of the supply path 53 connected to one of the hoppers 51 is cleaned.
  • each rotary valve 71 cannot be used in one day, so the cleaning frequency is, for example, once a day. As for the working time, for example, it takes one hour for two workers to clean the two rotary valves 71. Further, when cleaning the rotary valve 71, in order to ensure safety, work such as stopping the rotary valve 71 and releasing the power supply is also performed, so that it takes time and labor for operation other than the cleaning work.
  • cleaning may be performed as appropriate. Specifically, for example, cleaning may be performed when the adhesion of the granular material 40 to the peripheral wall of the supply path 53 is confirmed during the inspection of patrol or the like. Since the structure of the supply path 53 is simple, the working time is 1 to 2 minutes for one worker. Therefore, it is not necessary to reduce the production amount of the desulfurizing agent during the cleaning operation. In addition, there is no need to open the power supply. By using the steam curing device 4 in this way, the labor and time required for maintenance can be greatly reduced, and the productivity of the desulfurizing agent is also increased.
  • the steam curing device 4 since the granules 40 fall down the supply path 53 and are supplied into the processing container 41, it is not necessary to provide a transport mechanism in the supply path 53. Therefore, the manufacturing cost of the device can be reduced more reliably. Then, when the granules 40 are dropped and supplied into the processing container 41 in this way, the slit 61 provided in the wall portion 52B forming the supply path 53 is obliquely directed toward the wall portion 52A facing the wall portion 52B. Discharge compressed air downward. By discharging the compressed air in this way, the discharged air goes downward along the wall portion 52A and flows into the processing container 41. That is, since it is prevented that the air entrains water vapor and flows upward in the supply path 53, it is possible to more reliably prevent the water vapor from leaking to the outside of the processing container 41. That is, a higher sealing effect can be obtained.
  • the wall portion 52A and the wall portion 52B are formed.
  • the supply path 53 can be reliably blocked. Therefore, it is possible to more reliably prevent water vapor from leaking to the outside of the processing container 41.
  • the compressed air is discharged from the slit 66 in the long side direction of the rectangle and in the two directions facing each other, so that the processing container 41 can be more reliably discharged. It is possible to prevent the leakage of water vapor to the outside. Since the discharge direction of the compressed air in the slit 66 is also diagonally downward, it is possible to more reliably prevent the leakage of water vapor.
  • compressed air may be discharged from the wall portion 52A.
  • compressed air is discharged from a slit in the peripheral wall forming the supply path 53, but the configuration is not limited to this.
  • a nozzle may be provided on the peripheral wall, and compressed air may be discharged from the nozzle.
  • compressed air may be discharged from one place, or compressed air may be discharged from a plurality of places. That is, for example, the slit 61 may be divided in the long side direction of the rectangle to open, or a plurality of nozzles may be arranged along the long side direction.
  • the compressed air may be discharged from the wall portions 52A and 52C from a plurality of locations in the same manner as the compressed air is discharged from the wall portions 52B.
  • the supply path 53 when sealing the supply path 53, it may be performed by a gas other than air, or may be performed by an inert gas such as nitrogen gas.
  • the supply path 53 of the granular material 40 is not limited to being rectangular when viewed in the forming direction of the supply path 53, and may be circular (including a perfect circle and an ellipse).
  • the gas discharge direction should be shorter than the direction orthogonal to the discharge direction when the supply path 53 is viewed in the formation direction as described above. Is preferable. That is, when the supply path 53 is rectangular as described above, it is preferable to discharge the gas at least in the short side direction of the rectangle.
  • the supply path 53 is not limited to being formed vertically downward, and may be inclined. That is, the granules 40 may slide down the wall surface forming the supply path 53 to be supplied into the processing container 41. Then, depending on the inclination of the supply path 53, the water vapor can be discharged from the supply path 53 into the processing container 41 together with the air by discharging the air so as to face vertically downward. That is, the compressed air is not limited to being supplied diagonally downward.
  • the desulfurization system 1 described above may be provided, for example, in a coal-fired power plant or for desulfurization of exhaust gas from a coke oven. Further, although an example in which the desulfurizing agent manufacturing facility 2 and the desulfurizing device 3 are integrated as a desulfurization system 1 is shown, the configuration is not limited to such a structure, and the desulfurizing agent manufacturing facility 2 is independent. It may be an installed configuration.
  • Silica (SiO 2 ), alumina (AlO 2 ), etc. are eluted from coal ash, which is one of the raw materials for desulfurizing agents, and slaked lime (Ca (OH) 2 ) and gypsum (CaSO 4 ), which are calcium compounds. By forming a hydrated compound between them, a highly active desulfurizing agent can be obtained.
  • the active source supply material is not limited to coal ash, for example, volcanic ash, slag, diatomaceous earth, and so on. It may be bentonite, diatomaceous earth, blast furnace slag, or the like.
  • quicklime (CaO) may be used as the calcium compound instead of slaked lime.
  • a width adjusting member 54 for adjusting the width of the supply path 53 can be detachably provided on the square cylinder 52 and the hopper 51.
  • the width adjusting member 54 is vertically long and is formed in a plate shape in which two points in the vertical direction are bent.
  • the width adjusting member 54 includes an inclined portion 55, a vertical portion 56, and a horizontal portion 57, and the inclined portion 55, the vertical portion 56, and the horizontal portion 57 are formed to be continuous with each other.
  • the inclined portion 55 overlaps the inclined surface 51A.
  • the lower end of the inclined portion 55 is located closer to the rear side (wall portion 52B side) than the lower end of the inclined surface 51A.
  • the vertical portion 56 is provided apart from the wall portion 52A of the square cylinder 52 on the rear side.
  • the vertical portion 56 faces the wall portion 52A and covers the inner peripheral surface of the wall portion 52A.
  • the horizontal portion 57 extends from the lower end of the vertical portion 56 toward the front side and is connected to the lower side of the wall portion 52A. Then, the compressed air discharged from the slit 61 is discharged toward the vertical portion 56.
  • the width adjusting member 54 reduces the width of the slit 61 in the supply path 53 in the air discharge direction. Therefore, it is possible to suppress a decrease in the air flow velocity in each part of the supply path 53 and perform more reliable sealing.
  • the wall portion 52B of the square cylinder 52 is composed of a main body portion 58 and a separation portion 59.
  • the separation portion 59 is configured so that the height position of the separation portion 59 can be freely changed with respect to the main body portion 58, the hopper 51, and the cover 62.
  • the lower end of the separation portion 59 forms a hole wall on the upper side of the slit 61 which is a discharge port. Therefore, by adjusting the height of the separation portion 59, the upper and lower opening widths of the slit 61, that is, the opening width in the formation direction (vertical direction) of the supply path 53 is adjusted. By adjusting the opening width, the flow velocity of the discharged air can be easily adjusted, and an appropriate sealing property can be obtained.
  • FIG. 9 is a longitudinal side view of the steam curing device 8 which is an example of another steam curing device.
  • the same components as those of the steam curing device 4 are designated by the same reference numerals, and the description thereof will be omitted.
  • the steam curing device 8 includes a processing container 81 and a belt conveyor 82.
  • a pipe 46 and a branch pipe 47 are provided in the processing container 81 in the same manner as in the processing container 41, and the water vapor discharged from the branch pipe 47 creates a water vapor atmosphere in the processing container 81.
  • One end side and the other end side of the belt conveyor 82 extend from the inside of the processing container 81 to the outside of the processing container 81 via the carry-in inlet 83 and the carry-out port 84 provided on the side wall of the processing container 81, respectively.
  • the solid matter 85 is conveyed in the lateral direction by the belt conveyor 82 provided in this way.
  • the carry-in port 83 constitutes a supply path for the solid matter 85.
  • the discharge port 86 opens on the upper side and the discharge port 87 opens on the lower side. Compressed air is discharged upward and downward from the discharge port 86 and the discharge port 87, respectively. In this way, the compressed air discharged from the discharge ports 86 and 87 forms an air layer so as to block the carry-in inlet 83 and the carry-out port 84, and the water vapor atmosphere in the treatment container 81 is sealed as in the treatment container 41.
  • the solid material 85 conveyed by the belt conveyor 82 can pass through the carry-in inlet 83 and the carry-out outlet 84. Then, the solid matter 85 is cured by being exposed to water vapor while moving in the processing container 81.
  • the steam curing apparatus of the present invention may be carried in and out of the processing container by moving the solid material in the lateral direction, and the solid material may be dropped into the processing container and supplied.
  • the solid matter 85 described above is a secondary concrete product such as a U-shaped groove, and is cured by being exposed to water vapor in the processing container 81. Therefore, the solid matter to be steam-cured is not limited to being a granular material, and is not limited to being a raw material for a desulfurizing agent.
  • the processing container may be configured to have a rectangular parallelepiped shape and a vertical cross-sectional view concave shape by opening the upper side. Then, the processing container may be sealed by discharging air from one of the two vertical wall portions facing each other toward the other.
  • a gas such as compressed air
  • the container it is preferable to configure the container so that the opening is narrowed. This is because the area required for the seal can be reduced by the configuration, and the leakage of water vapor can be prevented more reliably.
  • the steam used in the steam curing apparatus of the present invention may be composed of a substance other than water. For example, steam which is water mixed with alcohol may be used.

Abstract

[Problem] To seal a steam atmosphere inside a treatment container of a steam curing device via a simple configuration. [Solution] A steam curing device is configured so as to be provided with: a treatment container in which solid matter is steam cured; a steam supply part that supplies steam for curing the solid matter inside the treatment container; a supply passage that opens inside the treatment container and outside of the treatment container, and supplies the solid matter to the inside of the treatment container; and a gas discharge part that discharges gas in a direction intersecting the supply passage, enables the solid matter to pass through the supply passage, and seals a steam atmosphere inside the treatment container.

Description

蒸気養生装置及び脱硫剤製造装置Steam curing equipment and desulfurizing agent manufacturing equipment
 本発明は、固形物を蒸気養生する蒸気養生装置及び当該蒸気養生装置を含む脱硫剤製造装置に関する。 The present invention relates to a steam curing device for steam curing a solid substance and a desulfurizing agent manufacturing device including the steam curing device.
 火力発電所やコークス炉等は石炭や重油を燃料としており、排煙ガスを排出する。石炭や重油は硫黄化合物を含有しているため、その排煙ガス中には、大気汚染物質として硫黄酸化物(SOx)が多く含まれている。このSOxを除去する装置として、移動層乾式脱硫方式によって排煙ガスの脱硫を行う脱硫装置が知られている。この脱硫装置では、脱硫性能を有する浄化剤(脱硫剤)の粒体が用いられる。この粒体が、脱硫塔内にて降下移動し、移動層が形成される。そして、この移動層と直交するように排煙ガス流が供給され、脱硫が行われる。 Thermal power plants, coke ovens, etc. use coal or heavy oil as fuel and emit flue gas. Since coal and heavy oil contain sulfur compounds, the flue gas contains a large amount of sulfur oxides (SOx) as air pollutants. As an apparatus for removing this SOx, a desulfurization apparatus for desulfurizing flue gas by a mobile layer dry desulfurization method is known. In this desulfurization apparatus, granules of a purifying agent (desulfurizing agent) having desulfurization performance are used. The granules move down in the desulfurization tower to form a moving layer. Then, the flue gas flow is supplied so as to be orthogonal to the moving layer, and desulfurization is performed.
上記の脱硫剤の製造工程について簡単に述べると、先ず、例えば消石灰(Ca(OH))、石炭灰及び石膏(CaSO)からなる混合物に、水が加えられて混練される。続いて、その混練物が成型されて粒体となり、脱硫剤が製造される。そして、この脱硫剤は、水蒸気の供給によって養生される。特許文献1には、脱硫剤製造設備と、脱硫装置と、を含むシステムについて示されている。この脱硫装置は、上記の移動層乾式脱硫方式の脱硫を行う装置であり、脱硫剤製造設備には蒸気養生装置が含まれる。この蒸気養生装置によって、脱硫剤の養生が行われる。蒸気養生装置は処理容器を備えており、この処理容器の内部は水蒸気雰囲気とされている。養生を行うために、粒体の供給路から処理容器内に脱硫剤が搬入される。 To briefly describe the above-mentioned process for producing a desulfurizing agent, first, water is added to a mixture of slaked lime (Ca (OH) 2 ), coal ash and gypsum (CaSO 4) and kneaded. Subsequently, the kneaded product is molded into granules to produce a desulfurizing agent. Then, this desulfurizing agent is cured by supplying water vapor. Patent Document 1 describes a system including a desulfurizing agent manufacturing facility and a desulfurizing apparatus. This desulfurization apparatus is an apparatus for performing desulfurization of the above-mentioned mobile layer dry desulfurization method, and the desulfurization agent manufacturing equipment includes a steam curing apparatus. The desulfurizing agent is cured by this steam curing device. The steam curing device is provided with a processing container, and the inside of the processing container has a steam atmosphere. A desulfurizing agent is carried into the processing container from the supply channel of the granules for curing.
上記の蒸気養生装置において、処理容器内の水蒸気雰囲気をシールするために粒体の供給路を開閉するバルブなどの駆動機構を設けるとする。しかし、当該駆動機構を設けることは、供給路の詰まりの発生原因となるため、点検時の清掃作業等の作業負荷が増大するとともに、脱硫剤の製造効率が下がり、蒸気養生装置の信頼性を損なう要因となる。その一方で、駆動機構を設置せず、供給路が開放されたままで処理容器の外側に水蒸気が漏れると、余分な水蒸気を生成しなければならない。その余分な水蒸気の生成により、エネルギーの利用が非効率的になり、装置の運用コストが高くなってしまう。 In the above steam curing device, it is assumed that a drive mechanism such as a valve for opening and closing the supply path of the granules is provided in order to seal the steam atmosphere in the processing container. However, since providing the drive mechanism causes clogging of the supply path, the workload such as cleaning work at the time of inspection increases, the production efficiency of the desulfurizing agent decreases, and the reliability of the steam curing device is improved. It becomes a factor to damage. On the other hand, if water vapor leaks to the outside of the processing container with the supply path open without installing a drive mechanism, excess water vapor must be generated. The generation of excess water vapor makes the use of energy inefficient and increases the operating cost of the equipment.
特開平02-115039号公報Japanese Unexamined Patent Publication No. 02-115039
 本発明はこのような事情に鑑みてなされたものであり、簡素な構成で蒸気養生装置における処理容器内の蒸気雰囲気をシールすることができる技術を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a technique capable of sealing the steam atmosphere in a processing container in a steam curing device with a simple configuration.
本発明の蒸気養生装置は、固形物を蒸気養生する処理容器と、
 前記処理容器内に前記固形物を処理する蒸気を供給する蒸気供給部と、
 前記固形物を前記処理容器内に供給するために、当該処理容器内と当該処理容器の外部とに各々開口する供給路と、 
 前記供給路において前記固形物を通過可能とすると共に前記処理容器内の蒸気雰囲気をシールするために、当該供給路に対して交差する方向にガスを吐出するガス吐出部と、
 を備える。
The steam curing apparatus of the present invention includes a processing container for steam curing solids and a processing container.
A steam supply unit that supplies steam for processing the solid matter into the processing container,
A supply path that opens into the processing container and the outside of the processing container in order to supply the solid matter into the processing container.
A gas discharge unit that discharges gas in a direction intersecting the supply path in order to allow the solid matter to pass through the supply path and to seal the steam atmosphere in the processing container.
To be equipped.
 本発明によれば、固形物を処理容器内に供給する供給路に、当該供給路に対して交差する方向にガスを吐出する。それによって、処理容器内の蒸気雰囲気がシールされる。従って、バルブなどの駆動機構を当該供給路に設ける必要が無い。それ故に、蒸気養生装置の構成を簡素なものとすることができる。 According to the present invention, gas is discharged into a supply path for supplying a solid substance into the processing container in a direction intersecting the supply path. Thereby, the vapor atmosphere in the processing container is sealed. Therefore, it is not necessary to provide a drive mechanism such as a valve in the supply path. Therefore, the configuration of the steam curing device can be simplified.
本発明に係る脱硫システムの構成図である。It is a block diagram of the desulfurization system which concerns on this invention. 前記脱硫システムに設けられる脱硫剤製造装置の構成図である。It is a block diagram of the desulfurization agent manufacturing apparatus provided in the desulfurization system. 前記脱硫剤製造装置を構成する蒸気養生装置の縦断側面図である。It is a longitudinal side view of the steam curing apparatus which constitutes the desulfurizing agent production apparatus. 前記蒸気養生装置における粒体の供給路の横断平面図である。It is a cross-sectional plan view of the supply path of the granular material in the steam curing apparatus. 前記粒体の供給路の縦断側面図である。It is a longitudinal side view of the supply path of the granular material. 前記粒体の供給路の縦断正面図である。It is a longitudinal front view of the supply path of the granular material. 比較例の蒸気養生装置を構成する供給路の縦断側面図である。It is a longitudinal side view of the supply path which constitutes the steam curing apparatus of the comparative example. 他の構成例に係る前記粒体の供給路の縦断側面図である。It is a vertical sectional side view of the supply path of the said granular material which concerns on another structural example. 前記蒸気養生装置の更に他の構成例を示す縦断側面図である。It is a longitudinal side view which shows still another structural example of the said steam curing apparatus.
 図1は、本発明の一実施形態に係る脱硫システム1について示す構成図である。脱硫システム1は、脱硫剤製造装置である脱硫剤製造設備2と、脱硫装置3と、を含む。脱硫剤製造設備2は、脱硫剤の製造及び養生を行う。そして、脱硫剤製造設備2から養生済みの脱硫剤が、脱硫装置3に搬送される。脱硫装置3はその脱硫剤を用いて、移動層乾式脱硫方式による脱硫を行う。 FIG. 1 is a configuration diagram showing a desulfurization system 1 according to an embodiment of the present invention. The desulfurization system 1 includes a desulfurization agent production facility 2 which is a desulfurization agent production apparatus, and a desulfurization apparatus 3. The desulfurizing agent manufacturing facility 2 manufactures and cures the desulfurizing agent. Then, the cured desulfurizing agent is transported from the desulfurizing agent manufacturing facility 2 to the desulfurizing apparatus 3. The desulfurization apparatus 3 uses the desulfurization agent to perform desulfurization by a mobile layer dry desulfurization method.
脱硫装置3は、第1の脱硫塔31と、第2の脱硫塔32と、貯留部30、36と、流路形成部材33と、を備えている。第1の脱硫塔31及び第2の脱硫塔32は、前後に間隔を置いて配置されている。養生済みの脱硫剤は、脱硫剤製造設備2から貯留部30に搬送されて、一旦貯留された後、第2の脱硫塔32、第1の脱硫塔31に、順次搬送される。第1の脱硫塔31の下部、第2の脱硫塔32の下部には、バルブ31A、32Aが夫々設けられている。第1の脱硫塔31内、第2の脱硫塔32内の夫々において、脱硫剤はバルブ31A、32Bの開度に応じた速度で、自重によって降下する。その脱硫剤の降下によって、第1の脱硫塔31及び第2の脱硫塔32において移動層が形成される。第1の脱硫塔31から排出された脱硫剤は、使用済み脱硫剤として貯留部36に一旦貯留される。その後、使用済み脱硫剤は、脱硫剤製造設備2に搬送される。 The desulfurization apparatus 3 includes a first desulfurization tower 31, a second desulfurization tower 32, storage units 30 and 36, and a flow path forming member 33. The first desulfurization tower 31 and the second desulfurization tower 32 are arranged at intervals in the front-rear direction. The cured desulfurizing agent is transported from the desulfurizing agent manufacturing facility 2 to the storage unit 30, once stored, and then sequentially transported to the second desulfurization tower 32 and the first desulfurization tower 31. Valves 31A and 32A are provided in the lower part of the first desulfurization tower 31 and the lower part of the second desulfurization tower 32, respectively. In each of the first desulfurization tower 31 and the second desulfurization tower 32, the desulfurizing agent is lowered by its own weight at a speed corresponding to the opening degree of the valves 31A and 32B. Due to the drop of the desulfurizing agent, a moving layer is formed in the first desulfurization tower 31 and the second desulfurization tower 32. The desulfurizing agent discharged from the first desulfurizing tower 31 is temporarily stored in the storage unit 36 as a used desulfurizing agent. After that, the used desulfurizing agent is transported to the desulfurizing agent manufacturing facility 2.
流路形成部材33は、排煙ガスの流路を形成する。この流路は、排煙ガスが第1の脱硫塔31、第2の脱硫塔32を順に通過するように形成されている。そして、流路形成部材33には、流入ポート34及び流出ポート35が設けられている。流入ポート34は排煙ガス源の排煙ガスの通流路に接続されており、この排煙ガス源は、例えば火力発電所である。流出ポート35は、第2の脱硫塔32から排出された排煙ガスを、後段の設備に排出する。 The flow path forming member 33 forms a flow path for the flue gas. This flow path is formed so that the flue gas passes through the first desulfurization tower 31 and the second desulfurization tower 32 in this order. The flow path forming member 33 is provided with an inflow port 34 and an outflow port 35. The inflow port 34 is connected to the flow path of the flue gas of the flue gas source, and the flue gas source is, for example, a thermal power plant. The outflow port 35 discharges the flue gas discharged from the second desulfurization tower 32 to the subsequent equipment.
排煙ガスの流れについてさらに説明する。第1の脱硫塔31、第2の脱硫塔32の夫々において、排煙ガスは一方の側面(前面)から流入して、他方の側面(後面)から流出する。従って、排煙ガス流は、第1の脱硫塔31及び第2の脱硫塔32の移動層に対して直交する。そのように直交する際に、排煙ガス中のSOxが、脱硫剤中の水酸化カルシウムと反応し、硫酸カルシウムとして固定される。即ち、脱硫が行われる。なお、本実施形態において、直交とは、垂直に交差することに限らず、45度以上90度以下で交差することを含む。 The flow of flue gas will be further described. In each of the first desulfurization tower 31 and the second desulfurization tower 32, the flue gas flows in from one side surface (front surface) and flows out from the other side surface (rear surface). Therefore, the flue gas flow is orthogonal to the moving layers of the first desulfurization tower 31 and the second desulfurization tower 32. At such orthogonality, SOx in the flue gas reacts with calcium hydroxide in the desulfurizing agent and is fixed as calcium sulfate. That is, desulfurization is performed. In addition, in this embodiment, orthogonality is not limited to intersecting vertically, but also includes intersecting at 45 degrees or more and 90 degrees or less.
続いて、図2を用いて脱硫剤製造設備2について説明する。脱硫剤製造設備2は、粉砕機20と、貯留部21~23と、計量器21B~23Bと、混合機24と、貯留部25と、混練機26と、押し出し成型機27と、蒸気養生装置4と、乾燥機28と、備えている。 Subsequently, the desulfurizing agent manufacturing facility 2 will be described with reference to FIG. The desulfurization agent manufacturing equipment 2 includes a crusher 20, storage units 21 to 23, measuring instruments 21B to 23B, a mixer 24, a storage unit 25, a kneading machine 26, an extrusion molding machine 27, and a steam curing device. 4 and a dryer 28 are provided.
粉砕機20には脱硫装置3の貯留部36から使用済みの脱硫剤が供給され、当該粉砕機20は、その使用済みの脱硫剤を粉砕する。粉砕された使用済み脱硫剤は、貯留部21にて貯留される。貯留部22、23は、消石灰、石炭灰を夫々貯留する。貯留部21、22、23の下端部には、排出バルブ21A、22A、23Aが夫々設けられており、排出バルブ21A、22A、23Aの下方側には、計量器21B、22B、23Bが夫々設けられている。計量器21B、22B、23Bにて、使用済み脱硫剤、消石灰及び石炭灰が夫々計量される。そして、各々計量された使用済み脱硫剤、消石灰及び石炭灰が、混合機24に供給される。混合機24において、使用済み脱硫剤、消石灰及び石炭灰の混合物が生成し、当該混合物は、貯留部25に一旦、貯留される。 A used desulfurizing agent is supplied to the crusher 20 from the storage unit 36 of the desulfurization apparatus 3, and the crushing machine 20 crushes the used desulfurizing agent. The crushed used desulfurizing agent is stored in the storage unit 21. The storage units 22 and 23 store slaked lime and coal ash, respectively. Discharge valves 21A, 22A, and 23A are provided at the lower ends of the storage portions 21, 22, and 23, respectively, and measuring instruments 21B, 22B, and 23B are provided below the discharge valves 21A, 22A, and 23A, respectively. Has been done. Used desulfurization agent, slaked lime and coal ash are weighed by measuring instruments 21B, 22B and 23B, respectively. Then, the used desulfurization agent, slaked lime and coal ash, which are weighed respectively, are supplied to the mixer 24. In the mixer 24, a mixture of used desulfurization agent, slaked lime and coal ash is produced, and the mixture is temporarily stored in the storage unit 25.
貯留部25における混合物は、当該貯留部25の下部側の排出バルブ25Aから排出され、混練機26に供給される。混練機26において、混合物に水が添加されて混練され、混練物が生成する。その混練物は、押し出し成型機27に供給される。押し出し成型機27にて、混練物は成型され、脱硫剤である粒体40(図2では不図示)となる。従って、貯留部21~23、計量器21B~23B、混合機24、貯留部25、混練機26及び押し出し成型機27については、脱硫剤である粒体40を造粒する造粒部29を構成する。 The mixture in the storage unit 25 is discharged from the discharge valve 25A on the lower side of the storage unit 25 and supplied to the kneader 26. In the kneader 26, water is added to the mixture and kneaded to produce a kneaded product. The kneaded product is supplied to the extrusion molding machine 27. The kneaded product is molded by the extrusion molding machine 27 to become granules 40 (not shown in FIG. 2) which is a desulfurizing agent. Therefore, the storage units 21 to 23, the measuring instruments 21B to 23B, the mixer 24, the storage unit 25, the kneading machine 26, and the extrusion molding machine 27 constitute a granulation unit 29 for granulating the granules 40 which are desulfurizing agents. To do.
上記の粒体40は、蒸気養生装置4に搬送される。粒体40は、蒸気養生装置4内で、水蒸気雰囲気で加熱されることによって養生される。養生後の粒体40は、乾燥機28に搬送される。この乾燥機28にて乾燥後の粒体40は、不図示の振動ふるい機によって、所定の粒径以下のものが除かれる。その篩い分けにより、例えば粒径について3mm~10mmであるものが、脱硫装置3の貯留部30に搬送される。 The granules 40 are transported to the steam curing device 4. The granular material 40 is cured by being heated in a steam atmosphere in the steam curing device 4. The cured granules 40 are transported to the dryer 28. As the granules 40 after being dried by the dryer 28, those having a particle size of a predetermined size or less are removed by a vibrating sieve (not shown). By the sieving, for example, those having a particle size of 3 mm to 10 mm are conveyed to the storage unit 30 of the desulfurization apparatus 3.
なお脱硫システム1においては、例えば押し出し成型機27と蒸気養生装置4との間や乾燥機28と貯留部30との間などにおいて、ベルトコンベアなどの搬送機構が設けられている。この搬送機構により、脱硫剤の原料あるいは脱硫剤が、後段の機器や装置へ搬送される。押し出し成型機27と蒸気養生装置4との間の搬送機構であるベルトコンベアについては、後に例示する。各搬送機構による脱硫剤の原料及び脱硫剤の搬送と、各機器及び装置の処理が並行して行われる。それによって、脱硫システム1の稼働中に、脱硫剤製造設備2における脱硫剤の製造、脱硫装置3への脱硫剤の供給が各々連続して行われる。従って、第1の脱硫塔31及び第2の脱硫塔32における脱硫について、連続して行うことができる。 In the desulfurization system 1, for example, a transport mechanism such as a belt conveyor is provided between the extrusion molding machine 27 and the steam curing device 4 or between the dryer 28 and the storage unit 30. By this transport mechanism, the raw material of the desulfurizing agent or the desulfurizing agent is transported to the equipment or device in the subsequent stage. The belt conveyor, which is a transfer mechanism between the extrusion molding machine 27 and the steam curing device 4, will be exemplified later. The transport of the desulfurizing agent raw material and desulfurizing agent by each transport mechanism is performed in parallel with the processing of each device and device. As a result, while the desulfurization system 1 is in operation, the desulfurization agent is continuously produced in the desulfurization agent production facility 2 and the desulfurization agent is continuously supplied to the desulfurization apparatus 3. Therefore, desulfurization in the first desulfurization tower 31 and the second desulfurization tower 32 can be continuously performed.
続いて蒸気養生装置4について、さらに詳しく説明する。この蒸気養生装置4では、脱硫剤である粒体40が養生される。既述したように、粒体40が水蒸気雰囲気にて加熱されることによって、当該養生が行われる。この養生により、粒体40の硬度が高くなる。その硬度の上昇によって、脱硫装置3への搬送時及び脱硫装置3における移動層の形成時に、衝撃による粒体40の破砕が防止される。従って、脱硫システム1を構成する機器や装置の隙間に対する、破砕した粒体40の入り込みが、防止される。それによって、当該機器や装置の不具合の発生が、防止される。また、養生により、粒体40中の各化合物間の化学反応が進行する。その結果、脱硫剤としての活性が高くなる。 Subsequently, the steam curing device 4 will be described in more detail. In this steam curing device 4, the granules 40, which are desulfurizing agents, are cured. As described above, the curing is performed by heating the granules 40 in a steam atmosphere. This curing increases the hardness of the granular material 40. The increase in hardness prevents the granules 40 from being crushed by impact during transportation to the desulfurization apparatus 3 and during formation of the moving layer in the desulfurization apparatus 3. Therefore, the crushed granules 40 are prevented from entering the gaps between the devices and devices constituting the desulfurization system 1. As a result, the occurrence of malfunction of the device or device is prevented. In addition, the curing proceeds a chemical reaction between each compound in the granular material 40. As a result, the activity as a desulfurizing agent is increased.
蒸気養生装置4は、角型で前後に細長の処理容器41を備えている。処理容器41の前後方向をX方向とする。処理容器41の左右方向をY方向とする。処理容器41の高さ方向をZ方向とする。このZ方向は、鉛直方向でもある。X方向、Y方向、Z方向は互いに直交する。図3は、XZ平面に沿った蒸気養生装置4の縦断側面図である。 The steam curing device 4 is provided with a square-shaped processing container 41 that is elongated in the front-rear direction. The front-rear direction of the processing container 41 is the X direction. The left-right direction of the processing container 41 is the Y direction. The height direction of the processing container 41 is the Z direction. This Z direction is also a vertical direction. The X, Y, and Z directions are orthogonal to each other. FIG. 3 is a longitudinal side view of the steam curing device 4 along the XZ plane.
処理容器41内には、ベルトコンベアが上下2段に設けられており、各ベルトコンベアはX方向に延びる。上段側のベルトコンベア、下段側のベルトコンベアを夫々第1のベルトコンベア42、第2のベルトコンベア43とする。後述するように粒体40の処理容器41内における落下によって、当該粒体40は、第1のベルトコンベア42の前端部に供給される。第1のベルトコンベア42は、その前端部に供給された粒体40を後方に搬送する。そして、粒体40は、第1のベルトコンベア42の後端から重力によって落下する。この落下する粒体40を受けるように、第2のベルトコンベア43の後端部が配置されている。第2のベルトコンベア43は、その後端部で受けた粒体40を、前方に搬送する。処理容器41の底部には、排出路44が開口している。第2のベルトコンベア43の前端から、養生済みの粒体40が当該排出路44へ、重力により落下する。そのように排出路44を落下することで、当該粒体40は処理容器41の外に排出される。 Belt conveyors are provided in two upper and lower stages in the processing container 41, and each belt conveyor extends in the X direction. The upper belt conveyor and the lower belt conveyor are the first belt conveyor 42 and the second belt conveyor 43, respectively. As will be described later, the granules 40 are supplied to the front end portion of the first belt conveyor 42 by dropping the granules 40 in the processing container 41. The first belt conveyor 42 conveys the granules 40 supplied to the front end portion thereof to the rear. Then, the granular material 40 falls from the rear end of the first belt conveyor 42 by gravity. The rear end of the second belt conveyor 43 is arranged so as to receive the falling particles 40. The second belt conveyor 43 conveys the granules 40 received at the rear end to the front. A discharge path 44 is opened at the bottom of the processing container 41. From the front end of the second belt conveyor 43, the cured granules 40 fall into the discharge path 44 by gravity. By dropping the discharge path 44 in this way, the granules 40 are discharged to the outside of the processing container 41.
処理容器41内の底部には、X方向に延びる配管46が設けられている。処理容器41内の底部には、Y方向に間隔をあけて複数の配管46が設けられている。この配管46には、当該配管46から分岐した分岐管47が形成されており、分岐管47は配管46におけるX方向に互いに離れた複数の各位置に設けられている。従って、配管46及び分岐管47は、マニホールド状に構成されている。また、図3に示すものではないが、処理容器41の底部には、Y方向に延びる配管が、X方向に間隔をあけて複数設けられ、分岐管47がY方向に互いに離れた複数の各位置に形成されていてもよい。以上のように、X方向およびY方向に複数の分岐管47が分散配置されることで、処理容器41内に蒸気を均一に分散させることができる。本実施形態では、処理容器41の底部には熱水40Aが溜められており、分岐管47から噴出される水蒸気は、熱水40A中で気泡となって上昇し、処理容器41内に供給される。図3では、分岐管47は、上方へ向かって開口している場合を例示しているが、分岐管47は、側方、下方に開口していてもよい。処理容器41の外部には水蒸気生成機構48が設けられており、配管46の上流側は、当該水蒸気生成機構48に接続されている。水蒸気生成機構48にて水蒸気が生成する。この水蒸気が、配管46を介して分岐管47に供給され、さらに分岐管47から上方へ吐出される。それによって、処理容器41内に水蒸気雰囲気が形成される。水蒸気生成機構48、配管46及び分岐管47は、蒸気供給部として構成されている。 A pipe 46 extending in the X direction is provided at the bottom of the processing container 41. A plurality of pipes 46 are provided at the bottom of the processing container 41 at intervals in the Y direction. A branch pipe 47 branched from the pipe 46 is formed in the pipe 46, and the branch pipe 47 is provided at a plurality of positions of the pipe 46 separated from each other in the X direction. Therefore, the pipe 46 and the branch pipe 47 are configured in a manifold shape. Further, although not shown in FIG. 3, a plurality of pipes extending in the Y direction are provided at the bottom of the processing container 41 at intervals in the X direction, and the branch pipes 47 are separated from each other in the Y direction. It may be formed at a position. As described above, by arranging the plurality of branch pipes 47 in the X direction and the Y direction in a dispersed manner, the steam can be uniformly dispersed in the processing container 41. In the present embodiment, hot water 40A is stored in the bottom of the processing container 41, and the steam ejected from the branch pipe 47 rises as bubbles in the hot water 40A and is supplied into the processing container 41. To. In FIG. 3, the case where the branch pipe 47 is open upward is illustrated, but the branch pipe 47 may be open laterally or downward. A steam generation mechanism 48 is provided outside the processing container 41, and the upstream side of the pipe 46 is connected to the steam generation mechanism 48. Water vapor is generated by the water vapor generation mechanism 48. This water vapor is supplied to the branch pipe 47 via the pipe 46, and is further discharged upward from the branch pipe 47. As a result, a water vapor atmosphere is formed in the processing container 41. The steam generation mechanism 48, the pipe 46, and the branch pipe 47 are configured as a steam supply unit.
処理容器41の前端部の上方側には、2つの横長のホッパー51が設けられており、2つのホッパー51は左右に若干離れている。また、各ホッパー51は、上方に向けて開口しており、各ホッパー51の開口は、粒体40が処理容器41に供給される際の供給口として形成されている。なお、図3中75は第3のベルトコンベアであり、処理容器41上に設けられている。粒体40は第3のベルトコンベア75からホッパー51に落下して、処理容器41内に供給される。 Two horizontally long hoppers 51 are provided on the upper side of the front end portion of the processing container 41, and the two hoppers 51 are slightly separated from each other to the left and right. Further, each hopper 51 opens upward, and the opening of each hopper 51 is formed as a supply port when the granular material 40 is supplied to the processing container 41. Reference numeral 75 in FIG. 3 is a third belt conveyor, which is provided on the processing container 41. The granular material 40 falls from the third belt conveyor 75 to the hopper 51 and is supplied into the processing container 41.
そして、各ホッパー51の下端は、鉛直方向に伸びる角筒52に接続されている。従って、角筒52は上下方向に延びている。角筒52の下端は、処理容器41の上部に接続されている。そして、当該角筒52内は、粒体40が処理容器41に供給される際の通路となる供給路53を形成し、当該供給路53は、処理容器41内に対して開口している。従って、角筒52は供給路53を形成する周壁であり、当該供給路53は、処理容器41から上方に向けて突出している。当該供給路53にはバルブなどの駆動機構が設けられておらず、ホッパー51に供給された粒体40は、供給路53を落下する。その落下により、粒体40は第1のベルトコンベア42の前端部に供給される。 The lower end of each hopper 51 is connected to a square cylinder 52 extending in the vertical direction. Therefore, the square tube 52 extends in the vertical direction. The lower end of the square cylinder 52 is connected to the upper part of the processing container 41. Then, in the square cylinder 52, a supply path 53 that serves as a passage when the granules 40 are supplied to the processing container 41 is formed, and the supply path 53 is open to the inside of the processing container 41. Therefore, the square cylinder 52 is a peripheral wall forming the supply path 53, and the supply path 53 projects upward from the processing container 41. The supply path 53 is not provided with a drive mechanism such as a valve, and the granular material 40 supplied to the hopper 51 falls down the supply path 53. Due to the drop, the granular material 40 is supplied to the front end portion of the first belt conveyor 42.
続いて、図4も参照しながら説明を続ける。この図4は、角筒52及び供給路53についてのXY平面に沿った横断平面図である。なお、上記のように供給路53及び角筒52は処理容器41から鉛直方向に突出するので、図4はこれら供給路53及び角筒52を突出方向に見た図である。このように突出方向に見て、角筒52及び供給路53は長方形状をなす。角筒52の前方側の壁部、後方側の壁部を、52A、52Bとして夫々示しており、壁部52A、52Bは、当該長方形の長辺を形成する。また、長方形の短辺を形成する角筒52の左右の壁部を、52Cとして示している。なお、本実施形態では、供給路53に吐出されるガスとして、圧縮空気である場合について説明する。この図4及び後述の図5、図6では、供給路53に吐出される圧縮空気の流れを、点線の矢印で示している。 Subsequently, the description will be continued with reference to FIG. FIG. 4 is a cross-sectional plan view of the square cylinder 52 and the supply path 53 along the XY plane. Since the supply path 53 and the square tube 52 project vertically from the processing container 41 as described above, FIG. 4 is a view of the supply path 53 and the square tube 52 viewed in the projecting direction. When viewed in the protruding direction in this way, the square cylinder 52 and the supply path 53 form a rectangular shape. The front wall portion and the rear wall portion of the square cylinder 52 are shown as 52A and 52B, respectively, and the wall portions 52A and 52B form the long sides of the rectangle. Further, the left and right wall portions of the square cylinder 52 forming the short side of the rectangle are shown as 52C. In this embodiment, the case where compressed air is used as the gas discharged to the supply path 53 will be described. In FIG. 4 and FIGS. 5 and 6 described later, the flow of compressed air discharged to the supply path 53 is indicated by a dotted arrow.
後方側の壁部52Bにはスリット61が形成されており、当該スリット61は上記の長方形の長辺に沿って延びている。このスリット61は圧縮空気の吐出口であり、角筒52の外側から供給された圧縮空気を、供給路53へ吐出する。圧縮空気は、角筒52の鉛直軸に対して斜め、且つ下方に向かって突出される。従って、当該スリット61における圧縮空気の吐出方向は、供給路53に対して交差する方向である。以下、図5も参照して説明する。図5は、図4のA-A矢視断面図である。より具体的に述べると、図5は、供給路53及び角筒52をXY平面で見たときの長方形の短辺に沿った断面を示している。図5中θ1は、スリット61の開口方向(圧縮空気の吐出方向)と、水平面(鎖線で表示している)とのなす角である。このθ1は、例えば45°であり、スリット61から吐出された圧縮空気は、前方側の壁部52Aに衝突する。 A slit 61 is formed in the wall portion 52B on the rear side, and the slit 61 extends along the long side of the rectangle. The slit 61 is a discharge port for compressed air, and the compressed air supplied from the outside of the square cylinder 52 is discharged to the supply path 53. The compressed air is projected obliquely and downward with respect to the vertical axis of the square cylinder 52. Therefore, the discharge direction of the compressed air in the slit 61 is a direction that intersects the supply path 53. Hereinafter, description will be made with reference to FIG. FIG. 5 is a cross-sectional view taken along the line AA of FIG. More specifically, FIG. 5 shows a cross section of the supply path 53 and the square tube 52 along the short side of the rectangle when viewed in the XY plane. In FIG. 5, θ1 is an angle formed by the opening direction (compressed air discharge direction) of the slit 61 and the horizontal plane (indicated by a chain line). This θ1 is, for example, 45 °, and the compressed air discharged from the slit 61 collides with the wall portion 52A on the front side.
角筒52の壁部52Bには、カバー62が設けられている。カバー62は、当該角筒52の外側からスリット61を覆う。そして、カバー62と壁部52Bとの間には、圧縮空気をスリット61に供給するための拡散空間63が形成されている。この拡散空間63は、スリット61に連通すると共に、当該スリット61の長さ方向に沿って形成されている。カバー62には、空気供給管60の下流端が、4つ接続されている。これらの下流端は、拡散空間63の長さ方向に沿って間隔を空けて配置され、拡散空間63に開口している。空気供給管60の上流側は合流し、加熱器64を介してコンプレッサ65に接続されている。従って、コンプレッサ65から供給される圧縮空気は、加熱器64にて加温された後、拡散空間63の各部に供給される。この圧縮空気が拡散空間63を広がり、スリット61の各部から均一性高く吐出される。圧縮空気は加熱器64で加温されているため、熱風となってスリット61から吐出される。 A cover 62 is provided on the wall portion 52B of the square cylinder 52. The cover 62 covers the slit 61 from the outside of the square cylinder 52. A diffusion space 63 for supplying compressed air to the slit 61 is formed between the cover 62 and the wall portion 52B. The diffusion space 63 communicates with the slit 61 and is formed along the length direction of the slit 61. Four downstream ends of the air supply pipe 60 are connected to the cover 62. These downstream ends are spaced apart along the length direction of the diffusion space 63 and are open to the diffusion space 63. The upstream side of the air supply pipe 60 merges and is connected to the compressor 65 via the heater 64. Therefore, the compressed air supplied from the compressor 65 is heated by the heater 64 and then supplied to each part of the diffusion space 63. This compressed air spreads in the diffusion space 63 and is discharged from each part of the slit 61 with high uniformity. Since the compressed air is heated by the heater 64, it becomes hot air and is discharged from the slit 61.
以下、図6も参照しながら説明を続ける。図6は、図4のB-B矢視断面図である。より具体的に述べると、図6は、供給路53及び角筒52をXY平面で見たときの長方形の長辺に沿った断面を示している。角筒52を形成している左右の壁部52Cの各々には、スリット66が形成されており、各スリット66は、上記の長方形の短辺に沿って延びている。各スリット66は圧縮空気の吐出口であり、角筒52の外側から供給された圧縮空気を、供給路53へ吐出する。圧縮空気は、角筒52の鉛直軸に対して斜め、且つ下方に向かって突出される。従ってスリット66における圧縮空気の吐出方向についても、供給路53に対して交差する方向である。図6中θ2は、スリット66の開口方向(圧縮空気の吐出方向)と、水平面(鎖線で表示している)とのなす角である。このθ2は、例えば45°である。 Hereinafter, the description will be continued with reference to FIG. FIG. 6 is a cross-sectional view taken along the line BB of FIG. More specifically, FIG. 6 shows a cross section of the supply path 53 and the square tube 52 along the long side of the rectangle when viewed in the XY plane. Slits 66 are formed in each of the left and right wall portions 52C forming the square cylinder 52, and each slit 66 extends along the short side of the rectangle. Each slit 66 is a discharge port for compressed air, and the compressed air supplied from the outside of the square cylinder 52 is discharged to the supply path 53. The compressed air is projected obliquely and downward with respect to the vertical axis of the square cylinder 52. Therefore, the discharge direction of the compressed air in the slit 66 is also a direction that intersects the supply path 53. In FIG. 6, θ2 is an angle formed by the opening direction (compressed air discharge direction) of the slit 66 and the horizontal plane (indicated by a chain line). This θ2 is, for example, 45 °.
各壁部52Cには、カバー67が設けられている。カバー67は、当該角筒52の外側からスリット66を覆う。そして、カバー67と壁部52Cとの間には、圧縮空気をスリット66に供給するための拡散空間68が形成されている。この拡散空間68は、スリット66に連通すると共に、当該スリット66の長さ方向に沿って形成されている。カバー67には、空気供給管69の下流端が接続されている。この下流端は、拡散空間68に開口している。空気供給管69の上流側は、例えば、空気供給管60、加熱器64または加熱器64と空気供給管60とを繋ぐヘッダー配管601に接続されている。従って、スリット61及び拡散空間63に加温された圧縮空気が供給される際に、拡散空間68にも加温された圧縮空気が供給される。この圧縮空気は当該拡散空間68を広がり、スリット66の各部から均一性高く吐出される。圧縮空気は加熱器64で加温されているため、熱風となってスリット66から吐出される。スリット61、66、空気供給管60、69及びコンプレッサ65は、ガス吐出部を構成する。 A cover 67 is provided on each wall portion 52C. The cover 67 covers the slit 66 from the outside of the square cylinder 52. A diffusion space 68 for supplying compressed air to the slit 66 is formed between the cover 67 and the wall portion 52C. The diffusion space 68 communicates with the slit 66 and is formed along the length direction of the slit 66. The downstream end of the air supply pipe 69 is connected to the cover 67. This downstream end opens into the diffusion space 68. The upstream side of the air supply pipe 69 is connected to, for example, an air supply pipe 60, a heater 64, or a header pipe 601 connecting the heater 64 and the air supply pipe 60. Therefore, when the heated compressed air is supplied to the slit 61 and the diffusion space 63, the heated compressed air is also supplied to the diffusion space 68. This compressed air spreads in the diffusion space 68 and is discharged from each part of the slit 66 with high uniformity. Since the compressed air is heated by the heater 64, it becomes hot air and is discharged from the slit 66. The slits 61, 66, the air supply pipes 60, 69, and the compressor 65 form a gas discharge portion.
ところで、既述した図5では処理容器41内における水蒸気の流れを、実線の矢印で示している。この図5を参照して、スリット61、66から吐出される圧縮空気の流れと、水蒸気の流れと、を以下に説明する。スリット61から吐出された圧縮空気は、壁部52Aに衝突すると、その衝突位置に対して上方から供給されていることにより、当該衝突位置から下方へ向かって流れ、処理容器41内に流入する。つまり当該圧縮空気は、供給路53を上方へ向かわない。また、各スリット66から吐出された圧縮空気も斜め下方に向けて吐出されていることで、上方へは向かわず、処理容器41内へ向かって流れる。なお、このようにスリット61、66から吐出される圧縮空気は、処理容器41内に供給される。このような圧縮空気の流入による処理容器41内の温度の低下を防ぐために、加熱器64による圧縮空気の加温が行われている。 By the way, in FIG. 5 described above, the flow of water vapor in the processing container 41 is indicated by a solid arrow. With reference to FIG. 5, the flow of compressed air discharged from the slits 61 and 66 and the flow of water vapor will be described below. When the compressed air discharged from the slit 61 collides with the wall portion 52A, it is supplied from above with respect to the collision position, so that it flows downward from the collision position and flows into the processing container 41. That is, the compressed air does not go upward in the supply path 53. Further, since the compressed air discharged from each slit 66 is also discharged diagonally downward, it does not go upward but flows into the processing container 41. The compressed air discharged from the slits 61 and 66 in this way is supplied into the processing container 41. In order to prevent the temperature inside the processing container 41 from dropping due to the inflow of compressed air, the compressed air is heated by the heater 64.
スリット61、66から圧縮空気が吐出されると、供給路53を塞ぐ空気層が形成される。処理容器41内の水蒸気については、当該水蒸気が持つ熱の作用により、処理容器41内を上昇して供給路53に流入する。しかし、当該水蒸気は既述した空気層に阻まれ(空気層を通過することができず)、供給路53の上部側へは移動しない。そして、空気層を形成する空気は、上記のように供給路53を下方へ向けて流れるが、移動が阻まれた水蒸気はこの空気の流れに乗って、処理容器41内に戻される。従って、処理容器41の外部への水蒸気の漏れが防止され、処理容器41内の水蒸気雰囲気がシールされる。その一方で、供給路53を落下する粒体40については、重力により空気層を通過して、既述のように第1のベルトコンベア42に供給される。このように上記の空気層はエアカーテンとして構成され、処理容器41の内部の雰囲気と外部の雰囲気とを分離する一方で、固形物である粒体40の処理容器41内への移動を可能にする。 When compressed air is discharged from the slits 61 and 66, an air layer that blocks the supply path 53 is formed. The water vapor in the processing container 41 rises in the processing container 41 and flows into the supply path 53 due to the action of heat contained in the water vapor. However, the water vapor is blocked by the above-mentioned air layer (it cannot pass through the air layer) and does not move to the upper side of the supply path 53. Then, the air forming the air layer flows downward in the supply path 53 as described above, but the water vapor whose movement is blocked is returned to the inside of the processing container 41 by riding on the air flow. Therefore, the leakage of water vapor to the outside of the processing container 41 is prevented, and the water vapor atmosphere inside the processing container 41 is sealed. On the other hand, the granular material 40 falling in the supply path 53 passes through the air layer due to gravity and is supplied to the first belt conveyor 42 as described above. In this way, the above air layer is configured as an air curtain, and while separating the internal atmosphere and the external atmosphere of the processing container 41, it is possible to move the solid particles 40 into the processing container 41. To do.
既述したように圧縮空気によるシールを行う蒸気養生装置4の効果を明確に述べるために、比較例の蒸気養生装置について、図7を用いて説明する。この比較例の蒸気養生装置においては、圧縮空気によるシールが行われないため、スリット61、66が設けられていない。そして比較例の蒸気養生装置では、供給路53に、ロータリーバルブ71が設けられている。ロータリーバルブ71は、水平方向に延びる回転軸72と、複数の羽根73とを備えている。羽根73は回転軸72の軸方向に見て、当該回転軸72から放射状に突出している。 In order to clearly describe the effect of the steam curing device 4 that seals with compressed air as described above, the steam curing device of the comparative example will be described with reference to FIG. 7. In the steam curing device of this comparative example, the slits 61 and 66 are not provided because the seal is not performed by compressed air. In the steam curing device of the comparative example, a rotary valve 71 is provided in the supply path 53. The rotary valve 71 includes a rotating shaft 72 extending in the horizontal direction and a plurality of blades 73. The blades 73 project radially from the rotating shaft 72 when viewed in the axial direction of the rotating shaft 72.
図5でも述べたように、処理容器41内の水蒸気は上昇し、供給路53に進入する。従って、当該水蒸気は、ロータリーバルブ71の表面に付着する。そのため、ロータリーバルブ71の表面に結露が発生する。そして、水蒸気雰囲気で養生される前の粒体40は、吸湿することで固体表面に対して固着性を有する。より詳しく述べると、吸湿した粒体40は、ロータリーバルブ71を構成する鉄や、SS41あるいはSS400と呼ばれる鉄鋼、炭素鋼などの金属に対する固着性を有する。また、吸湿した粒体40は、粒体40間での固着性(凝集性)を備えている。 As described in FIG. 5, the water vapor in the processing container 41 rises and enters the supply path 53. Therefore, the water vapor adheres to the surface of the rotary valve 71. Therefore, dew condensation occurs on the surface of the rotary valve 71. Then, the granules 40 before being cured in a water vapor atmosphere have adhesiveness to the solid surface by absorbing moisture. More specifically, the hygroscopic granules 40 have adhesiveness to iron constituting the rotary valve 71 and metals such as steel and carbon steel called SS41 or SS400. Further, the moisture-absorbed granules 40 have adhesiveness (cohesiveness) between the granules 40.
従って、結露したロータリーバルブ71の羽根73間に供給された粒体40は吸湿し、当該ロータリーバルブ71の表面に固着する。そのように固着した粒体40に、続けてロータリーバルブ71に供給された粒体40が、さらに固着する。そのため、羽根73の間で粒体40が凝集して増大し、次第に供給路53が閉塞されてしまう。図7の左側はこのような閉塞が起きる前の状態、図7の右側は当該閉塞が起きた状態を夫々示している。本実施形態に係る蒸気養生装置4は、ロータリーバルブ71を用いずに処理容器41内の雰囲気をシールする。それによって、このような供給路53の閉塞が防止される。 Therefore, the granular material 40 supplied between the blades 73 of the rotary valve 71 that has condensed absorbs moisture and adheres to the surface of the rotary valve 71. The granules 40 supplied to the rotary valve 71 are further adhered to the granules 40 thus adhered. Therefore, the granules 40 aggregate and increase between the blades 73, and the supply path 53 is gradually blocked. The left side of FIG. 7 shows the state before such an obstruction occurred, and the right side of FIG. 7 shows the state before the obstruction occurred. The steam curing device 4 according to the present embodiment seals the atmosphere inside the processing container 41 without using the rotary valve 71. Thereby, such blockage of the supply path 53 is prevented.
以下、蒸気養生装置4の動作を説明する。蒸気養生装置4の処理容器41内が、既述した水蒸気雰囲気とされ、各供給路53にはスリット61、66から加温された圧縮空気が吐出されて、空気層が形成された状態とされる。その一方で、第3のベルトコンベア75に連続して粒体40が供給され、当該第3のベルトコンベア75は粒体40を連続してホッパー51に向けて搬送し、処理容器41内へ連続して粒体40が供給される。 The operation of the steam curing device 4 will be described below. The inside of the processing container 41 of the steam curing device 4 has the above-mentioned steam atmosphere, and the compressed air heated from the slits 61 and 66 is discharged to each supply path 53 to form an air layer. To. On the other hand, the granules 40 are continuously supplied to the third belt conveyor 75, and the third belt conveyor 75 continuously conveys the granules 40 toward the hopper 51 and continuously into the processing container 41. Then, the granular material 40 is supplied.
図5で説明したように、ホッパー51に供給された粒体40は供給路53を落下し、上記した空気層を通過して、第1のベルトコンベア42に供給されるが、処理容器41内の水蒸気は、空気層に阻まれ、処理容器41の外側への漏洩が防止される。処理容器41内に供給された粒体40は、水蒸気に曝されて例えば90℃~100℃、一例として95℃に加熱されて養生される。第1のベルトコンベア42及び第2のベルトコンベア43により、粒体40は、例えば5時間~15時間、一例として10時間かけて処理容器41内を搬送される。その後、粒体40は、第2のベルトコンベア43から排出路44に供給されて、処理容器41の外部へ排出される。この第1のベルトコンベア42及び第2のベルトコンベア43による粒体40の搬送も連続して行われる。従って、処理容器41への粒体40の供給、処理容器41からの養生済みの粒体40の排出は、各々連続して行われる。 As described with reference to FIG. 5, the granules 40 supplied to the hopper 51 fall down the supply path 53, pass through the above-mentioned air layer, and are supplied to the first belt conveyor 42, but in the processing container 41. Water vapor is blocked by the air layer and prevents leakage to the outside of the processing container 41. The granules 40 supplied into the processing container 41 are exposed to water vapor and heated to, for example, 90 ° C. to 100 ° C., for example, 95 ° C. for curing. The granules 40 are conveyed in the processing container 41 by the first belt conveyor 42 and the second belt conveyor 43 over, for example, 5 hours to 15 hours, for example, 10 hours. After that, the granular material 40 is supplied from the second belt conveyor 43 to the discharge path 44 and discharged to the outside of the processing container 41. The transfer of the granules 40 by the first belt conveyor 42 and the second belt conveyor 43 is also continuously performed. Therefore, the supply of the granules 40 to the processing container 41 and the discharge of the cured granules 40 from the processing container 41 are performed continuously.
以上に述べた蒸気養生装置4によれば、ホッパー51を介して処理容器41の外部に開口する供給路53に、当該供給路53に交差するようにスリット61、66から圧縮空気を供給する。それにより、当該供給路53における粒体40の通過を可能とする一方で、処理容器41内の水蒸気雰囲気については外部へ漏れないようにシールを行っている。このように圧縮空気を用いたシールを行うことにより、余分な水蒸気の生成を防いでエネルギーのロスを抑制しつつ、ロータリーバルブ71のような供給路53を開閉する駆動機構を不要としている。このように駆動機構を不要とすることで、当該蒸気養生装置4の装置構成を簡素なものとして、脱硫剤による供給口の閉塞を防止し、且つ脱硫剤製造設備2の運転における信頼性を向上させることができる。 According to the steam curing device 4 described above, compressed air is supplied from the slits 61 and 66 to the supply path 53 that opens to the outside of the processing container 41 via the hopper 51 so as to intersect the supply path 53. As a result, while allowing the granules 40 to pass through the supply path 53, the water vapor atmosphere in the processing container 41 is sealed so as not to leak to the outside. By sealing with compressed air in this way, it is not necessary to have a drive mechanism for opening and closing the supply path 53 such as the rotary valve 71 while preventing the generation of excess water vapor and suppressing energy loss. By eliminating the need for a drive mechanism in this way, the device configuration of the steam curing device 4 is simplified, the supply port is prevented from being blocked by the desulfurizing agent, and the reliability in the operation of the desulfurizing agent manufacturing equipment 2 is improved. Can be made to.
そして、比較例を挙げて説明したように、ロータリーバルブ71のような駆動機構への粒体40の固着による、供給路53の閉塞を防ぐことができる。そのため、第3のベルトコンベア75により処理容器41へ、粒体40を連続して供給することができる。より具体的に述べると、比較例の構成とする場合は、ロータリーバルブ71への粒体40の固着により、例えば1日程度で、粒体40を十分に処理容器41内に供給できなくなる。そのため、比較例の構成では、少なくとも1日に1回ロータリーバルブ71を停止し、清掃する必要があった。本構成では、ロータリーバルブ71を清掃する必要が無いので、粒体40を処理容器41内に連続して供給することができる。従って、蒸気養生装置4の運転の停止の頻度を低下させることができるため、脱硫剤製造設備2の脱硫剤の生産性が高くなる。 Then, as described with reference to the comparative example, it is possible to prevent the supply path 53 from being blocked due to the adhesion of the granular material 40 to the drive mechanism such as the rotary valve 71. Therefore, the granules 40 can be continuously supplied to the processing container 41 by the third belt conveyor 75. More specifically, in the case of the configuration of the comparative example, the granules 40 cannot be sufficiently supplied into the processing container 41 in, for example, about one day due to the adhesion of the granules 40 to the rotary valve 71. Therefore, in the configuration of the comparative example, it was necessary to stop and clean the rotary valve 71 at least once a day. In this configuration, since it is not necessary to clean the rotary valve 71, the granules 40 can be continuously supplied into the processing container 41. Therefore, since the frequency of stopping the operation of the steam curing device 4 can be reduced, the productivity of the desulfurizing agent in the desulfurizing agent manufacturing equipment 2 is increased.
比較例におけるロータリーバルブ71の清掃について、補足して説明する。この清掃時には、脱硫剤の製造量が最低になるように装置を設定すると共に、第3のベルトコンベア75について、蒸気養生装置4の一方のホッパー51のみに粒体40を供給する状態とする。その間に、他方のホッパー51に接続される供給路53のロータリーバルブ71の清掃作業を行い、固着した粒体40を除去する。その清掃作業終了後は、第3のベルトコンベア75について、他方のホッパー51のみに粒体40を供給する状態とする。そして、一方のホッパー51に接続される供給路53のロータリーバルブ71の清掃作業を行う。上記のように各ロータリーバルブ71は、1日で使用できなくなるので、清掃頻度は例えば1日1回である。作業時間としては例えば2つのロータリーバルブ71を清掃するにあたり、作業員2人で1時間を要する。さらに、当該ロータリーバルブ71の清掃時には安全確保のため、ロータリーバルブ71の停止、電源開放などの作業も行うため、清掃作業以外にも操作の手間や人手が掛かっていた。 Cleaning of the rotary valve 71 in the comparative example will be supplementarily described. At the time of this cleaning, the apparatus is set so that the production amount of the desulfurizing agent is the minimum, and the third belt conveyor 75 is in a state where the granules 40 are supplied only to one hopper 51 of the steam curing apparatus 4. Meanwhile, the rotary valve 71 of the supply path 53 connected to the other hopper 51 is cleaned to remove the fixed particles 40. After the cleaning work is completed, the third belt conveyor 75 is in a state of supplying the granules 40 only to the other hopper 51. Then, the rotary valve 71 of the supply path 53 connected to one of the hoppers 51 is cleaned. As described above, each rotary valve 71 cannot be used in one day, so the cleaning frequency is, for example, once a day. As for the working time, for example, it takes one hour for two workers to clean the two rotary valves 71. Further, when cleaning the rotary valve 71, in order to ensure safety, work such as stopping the rotary valve 71 and releasing the power supply is also performed, so that it takes time and labor for operation other than the cleaning work.
本実施形態に係る蒸気養生装置4のようにエアカーテンを形成する場合は、清掃は適宜行えばよい。具体的には例えば、パトロールなどの点検時にて、供給路53の周壁への粒体40の固着が確認された場合に清掃を行えばよい。供給路53の構造が簡素であるので、作業時間としては作業員1人で1~2分である。従って、清掃作業時に、脱硫剤の製造量を低下させる必要も無い。また、電源開放操作等も必要無い。このように蒸気養生装置4を用いることで、保守に要する手間や時間を大きく低減することができるし、脱硫剤の生産性も高くなる。 When the air curtain is formed as in the steam curing device 4 according to the present embodiment, cleaning may be performed as appropriate. Specifically, for example, cleaning may be performed when the adhesion of the granular material 40 to the peripheral wall of the supply path 53 is confirmed during the inspection of patrol or the like. Since the structure of the supply path 53 is simple, the working time is 1 to 2 minutes for one worker. Therefore, it is not necessary to reduce the production amount of the desulfurizing agent during the cleaning operation. In addition, there is no need to open the power supply. By using the steam curing device 4 in this way, the labor and time required for maintenance can be greatly reduced, and the productivity of the desulfurizing agent is also increased.
また、蒸気養生装置4によれば、粒体40が供給路53を落下して処理容器41内に供給されるため、供給路53に搬送機構を設ける必要が無い。従って、装置の製造コストをより確実に低下させることができる。そして、そのように粒体40を落下させて処理容器41内に供給するにあたり、供給路53を形成する壁部52Bに設けたスリット61から、壁部52Bに対向する壁部52Aに向けて斜め下方に圧縮空気を吐出する。このように圧縮空気を吐出することで、吐出された空気は壁部52Aに沿って下方に向かい、処理容器41に流入する。つまり、空気が水蒸気を巻き込んで供給路53を上方へ向けて流れることが防止されるので、より確実に水蒸気の処理容器41の外部への漏れを防ぐことができる。つまり、より高いシール効果を得ることができる。 Further, according to the steam curing device 4, since the granules 40 fall down the supply path 53 and are supplied into the processing container 41, it is not necessary to provide a transport mechanism in the supply path 53. Therefore, the manufacturing cost of the device can be reduced more reliably. Then, when the granules 40 are dropped and supplied into the processing container 41 in this way, the slit 61 provided in the wall portion 52B forming the supply path 53 is obliquely directed toward the wall portion 52A facing the wall portion 52B. Discharge compressed air downward. By discharging the compressed air in this way, the discharged air goes downward along the wall portion 52A and flows into the processing container 41. That is, since it is prevented that the air entrains water vapor and flows upward in the supply path 53, it is possible to more reliably prevent the water vapor from leaking to the outside of the processing container 41. That is, a higher sealing effect can be obtained.
また、スリット61については、供給路53を形成方向(突出方向)に見たときの当該供給路53がなす長方形の短辺方向に圧縮空気を吐出するため、壁部52Aと壁部52Bとの間の各部において空気の流速が十分に高くなることで、供給路53を確実に塞ぐことができる。従って、より確実に処理容器41の外部への水蒸気の漏れを防ぐことができる。そして、このスリット61からの圧縮空気の吐出に加えて、スリット66から上記の長方形の長辺方向であると共に互いに向かい合う2つの方向に圧縮空気の吐出が行われるので、より確実に処理容器41の外部への水蒸気の漏れを防ぐことができる。スリット66の圧縮空気の吐出方向も斜め下方であるため、さらに確実に水蒸気の漏れを防ぐことができる。 Further, with respect to the slit 61, since compressed air is discharged in the short side direction of the rectangle formed by the supply path 53 when the supply path 53 is viewed in the forming direction (protruding direction), the wall portion 52A and the wall portion 52B are formed. When the flow velocity of air becomes sufficiently high in each part between them, the supply path 53 can be reliably blocked. Therefore, it is possible to more reliably prevent water vapor from leaking to the outside of the processing container 41. Then, in addition to the discharge of the compressed air from the slit 61, the compressed air is discharged from the slit 66 in the long side direction of the rectangle and in the two directions facing each other, so that the processing container 41 can be more reliably discharged. It is possible to prevent the leakage of water vapor to the outside. Since the discharge direction of the compressed air in the slit 66 is also diagonally downward, it is possible to more reliably prevent the leakage of water vapor.
なお、角筒52を構成する壁部52A、52Bのうち、壁部52Aから圧縮空気を吐出してもよい。さらに、既述の例では供給路53を形成する周壁のスリットから圧縮空気を吐出しているが、このような構成に限られない。例えば当該周壁にノズルを設けて、当該ノズルから圧縮空気を吐出してもよい。また、壁部52Bについて、1箇所から圧縮空気を吐出してもよいし、複数箇所から圧縮空気を吐出してもよい。つまり、例えばスリット61が長方形の長辺方向に分割されて開口していてもよいし、当該長辺方向に沿ってノズルが複数配置されていてもよい。また、壁部52A、52Cからの圧縮空気の吐出も、壁部52Bからの圧縮空気の吐出と同様に、複数箇所から行ってもよい。 Of the wall portions 52A and 52B constituting the square cylinder 52, compressed air may be discharged from the wall portion 52A. Further, in the above-described example, compressed air is discharged from a slit in the peripheral wall forming the supply path 53, but the configuration is not limited to this. For example, a nozzle may be provided on the peripheral wall, and compressed air may be discharged from the nozzle. Further, with respect to the wall portion 52B, compressed air may be discharged from one place, or compressed air may be discharged from a plurality of places. That is, for example, the slit 61 may be divided in the long side direction of the rectangle to open, or a plurality of nozzles may be arranged along the long side direction. Further, the compressed air may be discharged from the wall portions 52A and 52C from a plurality of locations in the same manner as the compressed air is discharged from the wall portions 52B.
ところで供給路53をシールするにあたり、空気以外の気体によって行ってもよく、例えば窒素ガスなどの不活性ガスにより行ってもよい。また、粒体40の供給路53は、当該供給路53の形成方向に見て矩形とすることに限られず、円形(正円、楕円を含む)であってもよい。ただし、確実にシールを行うために、既述したように供給路53を形成方向に見たときに、ガスの吐出方向は、当該吐出方向に直交する方向に比べて短くなるように構成することが好ましい。つまり、上記のように供給路53が長方形である場合は、少なくとも当該長方形の短辺方向にガスを吐出することが好ましい。 By the way, when sealing the supply path 53, it may be performed by a gas other than air, or may be performed by an inert gas such as nitrogen gas. Further, the supply path 53 of the granular material 40 is not limited to being rectangular when viewed in the forming direction of the supply path 53, and may be circular (including a perfect circle and an ellipse). However, in order to ensure sealing, the gas discharge direction should be shorter than the direction orthogonal to the discharge direction when the supply path 53 is viewed in the formation direction as described above. Is preferable. That is, when the supply path 53 is rectangular as described above, it is preferable to discharge the gas at least in the short side direction of the rectangle.
また、供給路53は鉛直下方に向けて形成することに限られず、傾斜していてもよい。つまり、供給路53をなす壁面を、粒体40が滑落することで処理容器41内に供給されてもよい。そして、この供給路53の傾き具合によっては鉛直下方に向くように空気を吐出することで、空気と共に水蒸気が供給路53から処理容器41に流れ込むようにすることができる。つまり、圧縮空気としては斜め下方に供給することには限られない。 Further, the supply path 53 is not limited to being formed vertically downward, and may be inclined. That is, the granules 40 may slide down the wall surface forming the supply path 53 to be supplied into the processing container 41. Then, depending on the inclination of the supply path 53, the water vapor can be discharged from the supply path 53 into the processing container 41 together with the air by discharging the air so as to face vertically downward. That is, the compressed air is not limited to being supplied diagonally downward.
既述した脱硫システム1としては、例えば石炭火力発電所に設けてもよいし、コークス炉の排ガスの脱硫を行うために設けてもよい。また、脱硫剤製造設備2と脱硫装置3とが一体となった脱硫システム1として構成されている例を示したが、そのような構成とすることに限られず、脱硫剤製造設備2が単独で設置された構成としてもよい。 The desulfurization system 1 described above may be provided, for example, in a coal-fired power plant or for desulfurization of exhaust gas from a coke oven. Further, although an example in which the desulfurizing agent manufacturing facility 2 and the desulfurizing device 3 are integrated as a desulfurization system 1 is shown, the configuration is not limited to such a structure, and the desulfurizing agent manufacturing facility 2 is independent. It may be an installed configuration.
脱硫剤の原料の一つである石炭灰からは、シリカ(SiO)やアルミナ(AlO)などが溶出し、カルシウム化合物である消石灰(Ca(OH))及び石膏(CaSO)との間で水和化合物を形成することにより、高活性な脱硫剤が得られる。既述の例では、シリカ及びアルミナを供給する活性源供給材として石炭灰を使用する例を示したが、当該活性源供給材は、石炭灰に限らず例えば火山灰、シラス、輝石安石岩、ベントナイト、珪藻土、高炉スラグなどであってもよい。また、カルシウム化合物として消石灰の代わりに生石灰(CaO)を用いてもよい。 Silica (SiO 2 ), alumina (AlO 2 ), etc. are eluted from coal ash, which is one of the raw materials for desulfurizing agents, and slaked lime (Ca (OH) 2 ) and gypsum (CaSO 4 ), which are calcium compounds. By forming a hydrated compound between them, a highly active desulfurizing agent can be obtained. In the above-mentioned example, an example in which coal ash is used as an active source supply material for supplying silica and alumina has been shown, but the active source supply material is not limited to coal ash, for example, volcanic ash, slag, diatomaceous earth, and so on. It may be bentonite, diatomaceous earth, blast furnace slag, or the like. Further, quicklime (CaO) may be used as the calcium compound instead of slaked lime.
続いて図8を用いて、蒸気養生装置4の角筒52及び供給路53の構成について、さらに詳しく説明する。角筒52及びホッパー51には、供給路53の幅を調整する幅調整部材54を着脱自在に設けることができる。この幅調整部材54は縦長であると共に、縦方向の2箇所が折り曲げられた板状に構成されている。幅調整部材54は、傾斜部55、鉛直部56及び水平部57を備えており、傾斜部55、鉛直部56、水平部57は互いに連続して形成されている。 Subsequently, the configuration of the square cylinder 52 and the supply path 53 of the steam curing device 4 will be described in more detail with reference to FIG. A width adjusting member 54 for adjusting the width of the supply path 53 can be detachably provided on the square cylinder 52 and the hopper 51. The width adjusting member 54 is vertically long and is formed in a plate shape in which two points in the vertical direction are bent. The width adjusting member 54 includes an inclined portion 55, a vertical portion 56, and a horizontal portion 57, and the inclined portion 55, the vertical portion 56, and the horizontal portion 57 are formed to be continuous with each other.
ホッパー51の前方側の傾斜面を構成し、ホッパー51の前方側から後方側に向かって下る傾斜面を51Aとすると、傾斜部55は、当該傾斜面51Aに重なる。傾斜部55の下端は傾斜面51Aの下端よりも後方側(壁部52B側)寄りに位置している。鉛直部56は角筒52の壁部52Aに対して後方側に離れて設けられる。鉛直部56は、当該壁部52Aに対向し、当該壁部52Aの内周面を覆う。水平部57は鉛直部56の下端から前方側に向かって延び、壁部52Aの下部側に接続されている。そして、スリット61から吐出された圧縮空気は、鉛直部56に向けて吐出されることになる。そのように幅調整部材54によって、供給路53におけるスリット61の空気の吐出方向の幅が小さくなる。従って、供給路53の各部における空気の流速の低下を抑え、より確実なシールを行うことができる。 Assuming that the inclined surface on the front side of the hopper 51 is formed and the inclined surface descending from the front side to the rear side of the hopper 51 is 51A, the inclined portion 55 overlaps the inclined surface 51A. The lower end of the inclined portion 55 is located closer to the rear side (wall portion 52B side) than the lower end of the inclined surface 51A. The vertical portion 56 is provided apart from the wall portion 52A of the square cylinder 52 on the rear side. The vertical portion 56 faces the wall portion 52A and covers the inner peripheral surface of the wall portion 52A. The horizontal portion 57 extends from the lower end of the vertical portion 56 toward the front side and is connected to the lower side of the wall portion 52A. Then, the compressed air discharged from the slit 61 is discharged toward the vertical portion 56. As such, the width adjusting member 54 reduces the width of the slit 61 in the supply path 53 in the air discharge direction. Therefore, it is possible to suppress a decrease in the air flow velocity in each part of the supply path 53 and perform more reliable sealing.
また、角筒52の壁部52Bは、本体部58と、分離部59と、により構成される。分離部59は、本体部58、ホッパー51及びカバー62に対して高さ位置を変更自在に構成される。この分離部59の下端は、吐出口であるスリット61の上側の孔壁を形成する。従って分離部59の高さを調整することで、スリット61の上下の開口幅、即ち供給路53の形成方向(上下方向)における開口幅が調整される。当該開口幅を調整することで、吐出される空気の流速の調整を容易に行うことができ、適切なシール性を得ることができる。 Further, the wall portion 52B of the square cylinder 52 is composed of a main body portion 58 and a separation portion 59. The separation portion 59 is configured so that the height position of the separation portion 59 can be freely changed with respect to the main body portion 58, the hopper 51, and the cover 62. The lower end of the separation portion 59 forms a hole wall on the upper side of the slit 61 which is a discharge port. Therefore, by adjusting the height of the separation portion 59, the upper and lower opening widths of the slit 61, that is, the opening width in the formation direction (vertical direction) of the supply path 53 is adjusted. By adjusting the opening width, the flow velocity of the discharged air can be easily adjusted, and an appropriate sealing property can be obtained.
図9は他の蒸気養生装置の例である蒸気養生装置8の縦断側面図である。この図9において蒸気養生装置4と同じ構成要素については、同じ符号を付し、説明を省略する。蒸気養生装置4との差異点を中心に説明すると、蒸気養生装置8は、処理容器81とベルトコンベア82とを備えている。処理容器81内には、処理容器41内と同様に配管46及び分岐管47が設けられ、分岐管47から吐出される水蒸気によって、当該処理容器81内は水蒸気雰囲気とされる。ベルトコンベア82の一端側、他端側は、夫々処理容器81の側壁に設けられた搬入口83、搬出口84を夫々介して処理容器81内から処理容器81の外側へ向かって延びる。このように設けられるベルトコンベア82により、横方向に固形物85が搬送される。上記の搬入口83は、固形物85の供給路を構成している。 FIG. 9 is a longitudinal side view of the steam curing device 8 which is an example of another steam curing device. In FIG. 9, the same components as those of the steam curing device 4 are designated by the same reference numerals, and the description thereof will be omitted. Explaining mainly the differences from the steam curing device 4, the steam curing device 8 includes a processing container 81 and a belt conveyor 82. A pipe 46 and a branch pipe 47 are provided in the processing container 81 in the same manner as in the processing container 41, and the water vapor discharged from the branch pipe 47 creates a water vapor atmosphere in the processing container 81. One end side and the other end side of the belt conveyor 82 extend from the inside of the processing container 81 to the outside of the processing container 81 via the carry-in inlet 83 and the carry-out port 84 provided on the side wall of the processing container 81, respectively. The solid matter 85 is conveyed in the lateral direction by the belt conveyor 82 provided in this way. The carry-in port 83 constitutes a supply path for the solid matter 85.
搬入口83及び搬出口84を形成する周壁において、上側には吐出口86が開口すると共に、下側には吐出口87が開口する。吐出口86、吐出口87から、夫々上方、下方に圧縮空気が吐出される。このように各吐出口86、87から吐出される圧縮空気により、搬入口83及び搬出口84を塞ぐように空気層が形成され、処理容器41と同様、処理容器81内の水蒸気雰囲気がシールされる。ただし、ベルトコンベア82によって搬送される固形物85は、搬入口83、搬出口84を通過することができる。そして、当該固形物85は、処理容器81内を移動中に水蒸気に曝されることにより、養生される。 In the peripheral wall forming the carry-in inlet 83 and the carry-out outlet 84, the discharge port 86 opens on the upper side and the discharge port 87 opens on the lower side. Compressed air is discharged upward and downward from the discharge port 86 and the discharge port 87, respectively. In this way, the compressed air discharged from the discharge ports 86 and 87 forms an air layer so as to block the carry-in inlet 83 and the carry-out port 84, and the water vapor atmosphere in the treatment container 81 is sealed as in the treatment container 41. To. However, the solid material 85 conveyed by the belt conveyor 82 can pass through the carry-in inlet 83 and the carry-out outlet 84. Then, the solid matter 85 is cured by being exposed to water vapor while moving in the processing container 81.
このように本発明の蒸気養生装置については、固形物を横方向に移動させて、処理容器に対して搬入出を行ってもよく、固形物を処理容器内に落下して供給する構成とすることには限られない。また、既述の固形物85は、例えばU字溝のようなコンクリート二次製品であり、処理容器81内で水蒸気に曝されて養生される。従って、蒸気養生される固形物としては粒体であることに限られないし、脱硫剤の原料であることにも限られない。 As described above, the steam curing apparatus of the present invention may be carried in and out of the processing container by moving the solid material in the lateral direction, and the solid material may be dropped into the processing container and supplied. Not limited to that. Further, the solid matter 85 described above is a secondary concrete product such as a U-shaped groove, and is cured by being exposed to water vapor in the processing container 81. Therefore, the solid matter to be steam-cured is not limited to being a granular material, and is not limited to being a raw material for a desulfurizing agent.
また処理容器としては、直方体状で且つ上側が開放されることで、縦断面視凹状となるように構成されてもよい。そして、その処理容器について、互いに対向する垂直な2つの壁部のうちの一方から他方へ向けて空気が吐出されてシールがなされる構成であってもよい。ただし蒸気養生装置4のように処理容器内の空間から突出する供給路に圧縮空気などのガスを吐出してシールする既述の構成とすることが好ましい。即ち、容器の開口が窄まったように構成することが好ましい。それは、当該構成によってシールが必要な面積を小さくすることができ、より確実に水蒸気の漏れを防ぐことができるためである。ところで、本発明の蒸気養生装置で用いる蒸気は、水以外の物質により構成されてもよい。例えばアルコールが混入した水である蒸気を用いてもよい。 Further, the processing container may be configured to have a rectangular parallelepiped shape and a vertical cross-sectional view concave shape by opening the upper side. Then, the processing container may be sealed by discharging air from one of the two vertical wall portions facing each other toward the other. However, it is preferable to have the above-described configuration in which a gas such as compressed air is discharged and sealed in a supply path protruding from the space inside the processing container as in the steam curing device 4. That is, it is preferable to configure the container so that the opening is narrowed. This is because the area required for the seal can be reduced by the configuration, and the leakage of water vapor can be prevented more reliably. By the way, the steam used in the steam curing apparatus of the present invention may be composed of a substance other than water. For example, steam which is water mixed with alcohol may be used.
なお、今回開示された実施形態は、全ての点で例示であって制限的なものではないと考えられるべきである。既述の実施形態は、添付の特許請求の範囲及びその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよいし、互いに組み合わされてもよい。 It should be noted that the embodiments disclosed this time are exemplary in all respects and are not considered to be restrictive. The above-described embodiments may be omitted, replaced, modified in various forms, or combined with each other without departing from the scope and purpose of the appended claims.
4        蒸気養生装置
48       水蒸気生成機構
53       供給路
61、66    スリット
 
4 Steam curing device 48 Steam generation mechanism 53 Supply path 61, 66 Slit

Claims (13)

  1.  固形物を蒸気養生する処理容器と、
     前記処理容器内に前記固形物を養生する蒸気を供給する蒸気供給部と、
     前記処理容器内および当該処理容器の外部に対して各々開口し、前記固形物を当該処理容器内に供給する供給路と、
     前記供給路に対して交差する方向にガスを吐出し、当該供給路において前記固形物を通過可能とすると共に前記処理容器内の蒸気雰囲気をシールするガス吐出部と、
     を備える蒸気養生装置。
    A processing container for steam curing solids and
    A steam supply unit that supplies steam for curing the solid matter into the processing container,
    A supply path that opens to the inside of the processing container and the outside of the processing container to supply the solid matter into the processing container, and
    A gas discharge unit that discharges gas in a direction intersecting the supply path to allow the solid matter to pass through the supply path and seals the vapor atmosphere in the processing container.
    A steam curing device equipped with.
  2.  前記固形物は、吸湿することによって固体表面に対して固着性を有する請求項1記載の蒸気養生装置。 The steam curing device according to claim 1, wherein the solid matter has adhesiveness to the solid surface by absorbing moisture.
  3.  前記固形物は、カルシウム化合物と石炭灰とを含む脱硫剤の原料である粒体であり、
     前記蒸気は水蒸気である請求項2記載の蒸気養生装置。
    The solid matter is a granule which is a raw material of a desulfurizing agent containing a calcium compound and coal ash.
    The steam curing device according to claim 2, wherein the steam is steam.
  4. 前記供給路は、前記処理容器から当該処理容器の外部に向けて突出して形成されている請求項1記載の蒸気養生装置。 The steam curing apparatus according to claim 1, wherein the supply path is formed so as to project from the processing container toward the outside of the processing container.
  5.  前記供給路は、上下方向に延びるように形成され、前記固形物を前記処理容器内へ落下させて供給する請求項4記載の蒸気養生装置。 The steam curing device according to claim 4, wherein the supply path is formed so as to extend in the vertical direction, and the solid matter is dropped into the processing container and supplied.
  6.  前記ガス吐出部は、前記供給路を形成する周壁の一部から他の一部に向けて、斜め下方に前記ガスを吐出する請求項5記載の蒸気養生装置。 The steam curing device according to claim 5, wherein the gas discharge unit discharges the gas diagonally downward from a part of the peripheral wall forming the supply path toward the other part.
  7.  前記供給路を突出方向に見て、
     当該供給路における前記ガスの吐出方向は、当該吐出方向に直交する方向に比べて短い請求項4記載の蒸気養生装置。
    Looking at the supply path in the protruding direction,
    The steam curing apparatus according to claim 4, wherein the discharge direction of the gas in the supply path is shorter than the direction orthogonal to the discharge direction.
  8.  前記供給路は、長辺と短辺とを有する長方形状に開口し、
     前記吐出部は、前記供給路に対して前記短辺方向に前記ガスを吐出する請求項1記載の蒸気養生装置。
    The supply path is opened in a rectangular shape having a long side and a short side.
    The steam curing device according to claim 1, wherein the discharge unit discharges the gas in the short side direction with respect to the supply path.
  9.  前記ガス吐出部は、互いに向かい合う2つの前記長辺方向に前記ガスを吐出する請求項8記載の蒸気養生装置。 The steam curing device according to claim 8, wherein the gas discharge unit discharges the gas in two long side directions facing each other.
  10. 前記供給路を形成する周壁に着脱自在であり、前記ガスの吐出方向における当該供給路の幅を調整するための幅調整部材が設けられる請求項1記載の蒸気養生装置。 The steam curing apparatus according to claim 1, wherein the peripheral wall forming the supply path is detachably attached and detached, and a width adjusting member for adjusting the width of the supply path in the gas discharge direction is provided.
  11. 前記ガス吐出部は、供給路を形成する周壁に開口した吐出口を含み、
    前記供給路の延びる形成方向における前記吐出口の幅が調整自在である請求項1記載の蒸気養生装置。
    The gas discharge unit includes a discharge port opened in a peripheral wall forming a supply path.
    The steam curing apparatus according to claim 1, wherein the width of the discharge port in the forming direction in which the supply path extends is adjustable.
  12.  カルシウム化合物と石炭灰とを含む、脱硫剤の原料である粒体を造粒する造粒部と、
     前記固形物として前記粒体が供給され、前記蒸気として前記処理容器内に水蒸気を供給し、当該脱硫剤を養生する請求項1記載の蒸気養生装置と、
     を備える脱硫剤製造装置。
    A granulation part that granulates granules that are raw materials for desulfurization agents, including calcium compounds and coal ash,
    The steam curing apparatus according to claim 1, wherein the granules are supplied as the solid matter, steam is supplied into the processing container as the steam, and the desulfurizing agent is cured.
    Desulfurizing agent manufacturing equipment provided with.
  13. 前記造粒部で造粒された前記粒体を、連続して前記蒸気養生装置の供給路に搬送する搬送機構が設けられる請求項12記載の脱硫剤製造装置。
     
    The desulfurization agent manufacturing apparatus according to claim 12, wherein a transport mechanism is provided for continuously transporting the granulated particles in the granulated portion to the supply path of the steam curing device.
PCT/JP2019/050151 2019-12-20 2019-12-20 Steam curing device and desulfurizing agent production device WO2021124564A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980101140.9A CN114555222A (en) 2019-12-20 2019-12-20 Steam curing device and desulfurizer manufacturing device
PCT/JP2019/050151 WO2021124564A1 (en) 2019-12-20 2019-12-20 Steam curing device and desulfurizing agent production device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/050151 WO2021124564A1 (en) 2019-12-20 2019-12-20 Steam curing device and desulfurizing agent production device

Publications (1)

Publication Number Publication Date
WO2021124564A1 true WO2021124564A1 (en) 2021-06-24

Family

ID=76478367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050151 WO2021124564A1 (en) 2019-12-20 2019-12-20 Steam curing device and desulfurizing agent production device

Country Status (2)

Country Link
CN (1) CN114555222A (en)
WO (1) WO2021124564A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS582131A (en) * 1981-06-30 1983-01-07 Nippon Kokan Kk <Nkk> Powdered granule delivering apparatus
JPH02113904A (en) * 1988-10-24 1990-04-26 Hokkaido Electric Power Co Inc:The Preparation of hydrated cured body of lime-gypsum ash type
JPH08320114A (en) * 1995-05-25 1996-12-03 Azuma Tekko Kk Pug mill
JP2008163399A (en) * 2006-12-28 2008-07-17 Denka Consult & Eng Co Ltd Curing device for agglomerated fine powder
WO2018142538A1 (en) * 2017-02-02 2018-08-09 北海道電力株式会社 Method for operating desulfurization system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07270072A (en) * 1994-03-31 1995-10-20 Trinity Ind Corp Dryer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS582131A (en) * 1981-06-30 1983-01-07 Nippon Kokan Kk <Nkk> Powdered granule delivering apparatus
JPH02113904A (en) * 1988-10-24 1990-04-26 Hokkaido Electric Power Co Inc:The Preparation of hydrated cured body of lime-gypsum ash type
JPH08320114A (en) * 1995-05-25 1996-12-03 Azuma Tekko Kk Pug mill
JP2008163399A (en) * 2006-12-28 2008-07-17 Denka Consult & Eng Co Ltd Curing device for agglomerated fine powder
WO2018142538A1 (en) * 2017-02-02 2018-08-09 北海道電力株式会社 Method for operating desulfurization system

Also Published As

Publication number Publication date
CN114555222A (en) 2022-05-27

Similar Documents

Publication Publication Date Title
RU2753757C1 (en) System and method for desulphurisation and dedusting of off-gases of coke furnaces
CA2618202C (en) Method of removing sulfur dioxide from a flue gas stream
US11285440B2 (en) Exhaust gas pollution reduction
RU2758368C1 (en) System for desulphurisation, denitrification and removal of ammonia
CN108619850B (en) Carbon powder recycling device
JP2009522538A (en) Method and apparatus for reducing NOX emissions in a rotary kiln by selective non-catalytic reduction (SNCR)
SU963460A3 (en) Apparatus for processing metallurgical slag melt
US10145616B2 (en) Method and system for the denitrification of flue gases by means of SNCR (selective non-catalytic reduction) and downstream catalyst for ammonia decomposition
WO2016110213A1 (en) Sludge drying system and method
ITRM20090488A1 (en) ASH EXTRACTION AND TRANSPORTATION SYSTEM READ THROUGH THE STEEL TAPE CONVEYOR.
WO2021124564A1 (en) Steam curing device and desulfurizing agent production device
RU2736838C1 (en) Method of processing granular materials in a vibro-bubbled layer and device for its implementation
US20120070565A1 (en) Operationally reliable coating device for powdery material
KR101493855B1 (en) Apparatus for supplying raw material
CN108465360B (en) High-efficient denitration ammonia injection system
CN108543403B (en) Activated carbon adsorption tower system and SOx/NOx control system
CN102355941A (en) Cascade-type coating device for powdery material and associated method
CN213348332U (en) Active wet removal type activated carbon desulfurization and denitrification system
JPS625221Y2 (en)
CN217947004U (en) Dust suppression device in sintering batching process
SU1447390A1 (en) Arrangement for forming structure of layer
RU2252206C1 (en) Line for producing calcium-ammonium nitrate
CN115532042A (en) Flue gas desulfurization and denitrification device and process for industrial silicon ore heating furnace
SU986576A1 (en) Automatic line for drying sand
CN115624858A (en) Desulfurization adsorbent collecting and recycling system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19956659

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19956659

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP