WO2021124381A1 - Elevator - Google Patents

Elevator Download PDF

Info

Publication number
WO2021124381A1
WO2021124381A1 PCT/JP2019/049118 JP2019049118W WO2021124381A1 WO 2021124381 A1 WO2021124381 A1 WO 2021124381A1 JP 2019049118 W JP2019049118 W JP 2019049118W WO 2021124381 A1 WO2021124381 A1 WO 2021124381A1
Authority
WO
WIPO (PCT)
Prior art keywords
car
alignment device
floor
floor alignment
control unit
Prior art date
Application number
PCT/JP2019/049118
Other languages
French (fr)
Japanese (ja)
Inventor
健史 近藤
真輔 井上
森 和久
大沼 直人
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2019/049118 priority Critical patent/WO2021124381A1/en
Publication of WO2021124381A1 publication Critical patent/WO2021124381A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
    • B66B1/36Means for stopping the cars, cages, or skips at predetermined levels
    • B66B1/40Means for stopping the cars, cages, or skips at predetermined levels and for correct levelling at landings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B9/00Kinds or types of lifts in, or associated with, buildings or other structures
    • B66B9/10Kinds or types of lifts in, or associated with, buildings or other structures paternoster type

Definitions

  • the present invention relates to an elevator.
  • Patent Document 1 describes a technique provided in a car and provided with a floor position correction device for adjusting the floor height of the car.
  • the purpose of this purpose is to provide an elevator that can accurately match the height of the floor of the car with the height of the floor of the destination floor in consideration of the above problems.
  • the elevator supports the car frame connected to the rope, the car room arranged in the car frame, and the car room so as to be movable in the vertical direction, and the floor of the car room. It includes a floor alignment device that adjusts the height of the surface and a control unit that controls the drive of the floor alignment device.
  • the control unit performs a floor alignment correction operation for returning the position of the floor alignment device to the initial position at a predetermined timing.
  • the height of the floor of the car can be accurately matched with the height of the floor of the target floor.
  • FIGS. 1 to 8 The common members in each figure are designated by the same reference numerals.
  • FIG. 1 is a schematic configuration diagram showing a configuration example of the elevator of this example.
  • the elevator shown in FIG. 1 is a multi-car elevator in which a plurality of cars move on the same hoistway.
  • the elevator 1 is a rope connecting the first car 2A and the second car 2B, which move up and down the moving paths 100A and 100B, which will be described later, and the first car 2A and the second car 2B.
  • an upper pulley 4, a lower pulley 5, and a tower inner control unit 6 are provided.
  • the building structure is provided with a first moving path 100A and a second moving path 100B in which the cars 2A and 2B move up and down along the vertical direction.
  • the first movement path 100A and the second movement path 100B are formed adjacent to each other.
  • the building structure is provided with a first reversing path 100C and a second reversing path 100D.
  • the first reversing path 100C is provided at the lower end of the first moving path 100A and the second moving path 100B in the vertical direction
  • the second reversing path 100D is provided in the vertical direction of the first moving path 100A and the second moving path 100B. It is provided at the upper end.
  • the directions of movement of the cars 2A and 2B are reversed from ascending to descending or descending to ascending.
  • the first moving path 100A is provided with the first car position detecting body 7A
  • the second moving path 100B is provided with the second car position detecting body 7B.
  • the car position detectors 7A and 7B are formed with scales and bar codes that can be detected by the car position detection device 15 described later.
  • the first car position detector 7A and the second car position detector 7B are erected in parallel along the vertical direction.
  • the lower end of the car position detectors 7A and 7B in the vertical direction does not reach the first reversal path 100C, and the upper end of the car position detectors 7A and 7B in the vertical direction does not reach the second reversal path 100D. ..
  • a hall switch 121 is provided at the boarding / alighting area 120 where the cars 2A and 2B in the building structure stop.
  • the hall switch 121 is wirelessly or wiredly connected to the tower inner control unit 6 described later.
  • the hall switch 121 transmits a call signal to the tower inner control unit 6.
  • the car call registration is performed in the tower inner control unit 6.
  • the tower inside control unit 6 moves the cars 2A and 2B to the boarding / alighting area 120 registered as a call.
  • Door zone detectors 8A and 8B are provided in the vicinity of the boarding / alighting area 120 on the first movement path 100A and the second movement path 100B.
  • the door zone detectors 8A and 8B are detected by the door zone detection devices 17 provided in the cars 2A and 2B described later. As a result, it is possible to recognize that the cars 2A and 2B have approached the boarding / alighting area 120.
  • the lower pulley 5 is provided on the first reversing path 100C, and the upper pulley 4 is provided on the second reversing path 100D.
  • One of the upper pulley 4 and the lower pulley 5 is a drive pulley, and is rotationally driven by the tower inner control unit 6. Further, a rope 3 is stretched on the upper pulley 4 and the lower pulley 5.
  • the first car 2A and the second car 2B are connected to the rope 3. Then, when the upper pulley 4 or the lower pulley 5 is rotationally driven, the first car 2A, the second car 2B, and the rope 3 circulate and move between the upper pulley 4 and the lower pulley 5.
  • first car 2A and the second car 2B will be described. Since the first car 2A and the second car 2B have the same configuration, the first car 2A will be described here.
  • the first car 2A includes a car frame 11, a hollow car room 12, a floor alignment device 13, a car side control unit 14, a car position detection device 15, and a door zone detection device 17.
  • a rope 3 is connected to the car frame 11.
  • the car side control unit 14 and the car position detecting device 15 are provided in the car frame 11.
  • the car position detecting device 15 detects the position of the car 2A by detecting the scales and barcodes of the car position detecting bodies 7A and 7B provided on the moving paths 100A and 100B. As described above, the car position detectors 7A and 7B do not extend to the first reversing path 100C and the second reversing path 100D. Therefore, when the car position detecting device 15 is separated from the car position detecting bodies 7A and 7B, the car position detecting device 15 determines that the cars 2A and 2B are moving on the first reversing path 100C or the second reversing path 100D. To do.
  • the car side control unit 14 controls the entire first car 2A. Further, the car side control unit 14 is wirelessly or wiredly connected to the tower inner control unit 6. The detailed configuration of the car side control unit 14 will be described later.
  • the car room 12 is arranged in the car frame 11 via the floor alignment device 13. People and luggage get on and off the inside of the car room 12. Further, inside the car room 12, a car switch 16 for registering the destination floor is provided.
  • the floor alignment device 13 is installed in the car frame 11.
  • the floor alignment device 13 supports the car chamber 12 so as to be movable in the vertical direction.
  • the floor alignment device 13 moves the car chamber 12 in the vertical direction to adjust the height of the floor surface 12a of the car chamber 12.
  • the floor alignment device 13 makes the height of the floor surface 12a of the car room 12 match the height of the floor surface of the boarding / alighting area 120.
  • various driving methods such as hydraulic pressure, pneumatic pressure, a pantograph mechanism, an electric winch, a driving mechanism including a rack and a pinion, and the like are applied.
  • the door zone detection device 17 is provided in the car room 12.
  • the door zone detection device 17 includes, for example, a light emitting unit that irradiates light and a light receiving unit that receives light from the light emitting unit. Then, when the cars 2A and 2B move to the door zone detectors 8A and 8B, the light from the light emitting portion of the door zone detector 17 is blocked by the door zone detectors 8A and 8B. As a result, the door zone detection device 17 detects that the cars 2A and 2B have moved to the vicinity of the boarding / alighting area 120.
  • FIG. 2 is a block diagram showing a control system of the elevator 1.
  • the tower inner control unit 6 includes a tower inner determination unit 21, a tower inner storage unit 22, a drive control unit 23, and a tower inner communication unit 24.
  • the tower inner storage unit 22, the drive control unit 23, and the tower inner communication unit 24 are connected to the tower inner determination unit 21.
  • the tower inside determination unit 21 is connected to the hall switch 121 on each floor. Then, a call signal is transmitted from the hall switch 121 on each floor to the tower inside determination unit 21.
  • the tower inside determination unit 21 determines the cars 2A and 2B to be moved to the boarding / alighting area 120 based on the received call signal, and outputs the drive signal to the drive control unit 23.
  • the drive control unit 23 is connected to the upper pulley 4 or the lower pulley 5 which is a drive pulley. Then, the drive control unit 23 controls the drive of the upper pulley 4 or the lower pulley 5 based on the drive signal from the tower inner determination unit 21.
  • the tower inner communication unit 24 transmits / receives information to / from the car side communication unit 34 provided in the car side control unit 14 of each car 2A and 2B. Then, the tower-inside communication unit 24 transmits a command signal from the tower-inside determination unit 21 to the car-side communication units 34 of the cars 2A and 2B. Further, the tower inner communication unit 24 receives a signal from the car side communication unit 34 of each car 2A and 2B and outputs the signal to the tower inner determination unit 21.
  • the car side control unit 14 has a car side determination unit 31, a car side storage unit 32, and a car side communication unit 34.
  • the car side determination unit 31 is connected to the car position detection device 15, the car switch 16, the door zone detection device 17, the car side communication unit 34, and the car side storage unit 32. Further, the car side determination unit 31 is connected to a drive unit 41, a movement amount detection unit 42, and a movable limit detection unit 43 of the floor alignment device 13, which will be described later.
  • the car side determination unit 31 transmits the car position information from the car position detection device 15, the stop floor information from the in-car switch 16, the boarding / alighting area approach information from the door zone detection device 17, and the like via the car side communication unit 34. It is transmitted to the inner control unit 6. Further, the car side determination unit 31 receives the load amount information from the load amount measurement unit that measures the load amount of the car chamber 12 (not shown).
  • the tower inner control unit 6 When the tower inner control unit 6 receives the boarding / alighting area approach information to the destination floor from the car side control unit 14, it controls the drive control unit 23 and stops the drive of the upper pulley 4 or the lower pulley 5. As a result, the cars 2A and 2B can be stopped at any destination floor.
  • the car side determination unit 31 calculates the amount of extension of the rope 3 and the amount of movement of the car chamber 12 in the vertical direction according to the positions of the cars 2A and 2B and the load weight. Then, the car side determination unit 31 calculates the operation command of the floor alignment device 13 according to the calculated result, and outputs the operation command to the floor alignment device 13. Further, the car side determination unit 31 stores the operation command amount in the car side storage unit 32. Further, the car side storage unit 32 stores the initial position T0 of the floor alignment device 13, which will be described later.
  • the floor alignment device 13 has a drive unit 41, a movement amount detection unit 42, and a movable limit detection unit 43.
  • the drive unit 41 drives the car chamber 12 based on an operation command from the car side determination unit 31 to move the car chamber 12 in the vertical direction.
  • the movement amount detection unit 42 is composed of, for example, an encoder or the like, and detects the movement amount of the floor surface 12a. Then, the movement amount detection unit 42 outputs the detected movement amount to the drive unit 41 and the car side determination unit 31. Further, the car side determination unit 31 calculates the operation command amount of the floor alignment device 13 based on the movement amount of the floor surface 12a detected by the movement amount detection unit 42.
  • the Movable limit detector 43 the upper movable limit T MAX or movable limit in the vertical direction above the cab 12 in the bed alignment device 13, that it has reached the lower movable limit T MIN is the movable limit downward To detect.
  • the movable limit detection unit 43 for example, a mechanical pressing switch is applied. Then, when the floor surface 12a presses the pressing switch, the movable limit detection unit 43 detects the upper movable limit TMAX or the lower movable limit TMIN .
  • FIG. 3 is a flowchart showing the floor alignment operation
  • FIG. 4 is an explanatory diagram showing the operation amount of the floor alignment device 13.
  • the vertical axis in FIG. 4 indicates the amount of operation of the floor alignment device 13, and the horizontal axis indicates the position of the car 2A.
  • the operation example shown below an example in which the car 2A moves from the first reversing path 100C will be described.
  • the tower inner control unit 6 controls the drive control unit 23 to drive the upper pulley 4 or the lower pulley 5 which is a drive pulley.
  • the car 2A departs from the first reversing road 100C (step S11).
  • the operating amount of the floor alignment device 13 is 0, and the floor alignment device 13 is located at the initial position T0. ..
  • This initial position T0 is, for example, the central point of the movable range of the floor alignment device 13.
  • the car side control unit 14 calculates the amount of elongation of the rope 3 that fluctuates until the car 2A arrives at the destination floor (step S12).
  • the car 2A and 2B move, the length of the rope 3 from the car 2A and 2B to the upper pulley 4 and the lower pulley 5 changes.
  • the amount of elongation of the rope 3 also changes.
  • the car side control unit 14 calculates the operation command amount of the floor alignment device 13 based on the elongation amount of the rope 3 calculated in the process of step S12. Then, the car side control unit 14 outputs the calculated operation command to the floor alignment device 13 (step S13). As a result, the floor alignment device 13 drives the drive unit 41 based on the operation command output from the car side control unit 14, and moves the car chamber 12 in the vertical direction.
  • the car side determination unit 31 stores the operation command amount output to the floor alignment device 13 in the car side storage unit 32 (step S14).
  • the above-mentioned processes from step S12 to step S14 are performed after the destination floor on which the car 2A stops is determined.
  • the operating amount of the floor alignment device 13 becomes the first operating amount T1. Then, the first operation amount T1 is stored in the car side storage unit 32 in the process of step S14.
  • the car side determination unit 31 When the door zone detection device 17 detects the door zone detectors 8A and 8B on the target floor, the car side determination unit 31 outputs the boarding / alighting area approach information to the tower inner control unit 6. Then, the tower inner control unit 6 controls the drive control unit 23 and stops the drive of the upper pulley 4 or the lower pulley 5. As a result, the car 2A arrives at an arbitrary destination floor and stops (step S15). Since the car room 12 has been moved to a predetermined position by the processing from step S12 to step S13, the floor surface 12a of the car room 12 becomes the same height as the floor surface of the boarding / alighting area 120 on the target floor.
  • the movement amount detection unit 42 of the floor alignment device 13 measures the movement amount of the floor surface 12a due to passengers getting on and off (step S16). Then, the movement amount detection unit 42 outputs the measured movement amount to the car side control unit 14.
  • the car side control unit 14 gives an operation command so that the step on the floor surface of the floor surface 12a of the car 2A is equal to or less than a predetermined threshold value.
  • the amount is calculated and output to the floor alignment device 13 (step S17).
  • the floor alignment device 13 drives the drive unit 41 based on the operation command output from the car side control unit 14, and moves the car chamber 12 in the vertical direction.
  • the amount of operation command to the floor alignment device 13 is calculated based on the amount of movement of the floor surface 12a detected by the movement amount detection unit 42, but the processing is not limited to this. ..
  • the operation command amount to the floor alignment device 13 may be calculated based on the load amount information measured by the load amount measuring unit.
  • the car side determination unit 31 stores the operation command amount output to the floor alignment device 13 in the car side storage unit 32 (step S18).
  • step S19 determines whether or not the car 2A has arrived at the second reversing path 100D (step S19).
  • step S19 when the car side control unit 14 or the tower inner control unit 6 determines that the car 2A has not arrived at the second reversing path 100D (NO determination in step S19), the process of step S12 is performed. Return.
  • the floor alignment device 13 operates according to the change in the amount of elongation of the rope 3.
  • the operating amount of the floor alignment device 13 at this time is the third operating amount T3.
  • the third operation amount T3 is stored in the car side storage unit 32.
  • the load weight of the car 2 changes, and the height of the floor surface 12a of the car room 12 changes. Then, the processes of steps S16 and S17 are performed, and as shown in FIG. 4, the floor alignment device 13 operates with the fourth operating amount T4 in response to the change to the height of the floor surface 12a. Further, in the process of step S18, the fourth operation amount T4 is stored in the car side storage unit 32.
  • the floor alignment device 13 operates with the fifth amount of operation T5 according to the amount of extension. Then, the fifth operation amount T5 is also stored in the car side storage unit 32. Further, the first operation amount T1, the second operation amount T2, the third operation amount T3, the fourth operation amount T4, and the fifth operation amount T5 all indicate the operation amount from the initial position T0.
  • step S19 when the car side control unit 14 or the tower inner control unit 6 determines that the car 2A has arrived at the second reversing path 100D (YES determination in step S19), the process of step S20 is performed. Do. When the car position detecting device 15 is separated from the car position detecting bodies 7A and 7B, it can be determined that the cars 2A and 2B have arrived at the first reversing path 100C or the second reversing path 100D.
  • a detection sensor for detecting the cars 2A and 2B of the first reversing path 100C and the second reversing path 100D may be provided. Based on the detection information of the detection sensor, it may be determined whether or not the cars 2A and 2B have arrived at the first reversing path 100C or the second reversing path 100D.
  • step S20 when the car 2A arrives at the second reversing path 100D, the car side determination unit 31 determines whether or not the number of operation commands to the floor alignment device is equal to or less than a predetermined value. In the process of step S20, when the car side determination unit 31 determines that the number of operation commands is equal to or less than a predetermined value (YES determination in step S20), the car side determination unit 31 executes the floor alignment correction operation (step). S21).
  • step S20 when the car side determination unit 31 determines that the number of operation commands exceeds a predetermined value (NO determination in step S20), the car side determination unit 31 performs an initial position correction operation. (Step S22). Next, the processes of steps S12 to S18 are performed until the car 2A arrives at the first reversal path 100C. Then, when the car 2A arrives at the first reversing road 100C, the process of step S21 or step S22 is performed.
  • FIG. 5 is a flowchart showing the floor alignment correction operation
  • FIG. 6 is a schematic diagram showing the floor alignment correction operation.
  • the position of the floor alignment device 13 does not return to the initial position T0, and the floor alignment device 13 does not return to the initial position T0. May be placed at a position with an error ⁇ T from the initial position T0. If the floor alignment device 13 is operated in this state, the floor alignment device 13 may reach the upper movable limit TMAX or the lower movable limit TMIN , and the height of the floor surface 12a cannot be adjusted accurately. ..
  • This error ⁇ T is caused by the load weight of the second car 2B, which is the other car, and the secular change of the elongation of the rope 3.
  • the floor alignment correction operation is an operation of returning the position of the floor alignment device 13 to the initial position T0.
  • the car side determination unit 31 determines whether or not the total operation command amount of the floor alignment device 13 stored in the car side storage unit 32 is out of the predetermined range (step S31).
  • the total of the operation command amounts is the total value of the first operation amount T1, the second operation amount T2, the third operation amount T3, the fourth operation amount T4, and the fifth operation amount T5. Then, this total amount becomes the error ⁇ T.
  • step S31 when the car side determination unit 31 determines that the total operation command amount is within the predetermined range (NO determination in step S31), the floor alignment correction operation is completed.
  • step S31 when the car side determination unit 31 determines that the total operation command amount is out of the predetermined range, that is, the error ⁇ T exceeds the preset allowable value (step S31). YES determination), the car side determination unit 31 performs the process of step S32.
  • the car side determination unit 31 operates the floor alignment device 13 in the opposite direction by the total of the calculated operation command amounts (error ⁇ T).
  • the reverse direction is the direction opposite to the direction of the total movement amount, and when the total movement amount is a positive value, the floor alignment device 13 is operated in the negative direction and the total movement amount is totaled.
  • the floor alignment device 13 When is a negative value, the floor alignment device 13 is operated in the positive direction.
  • the positive direction is, for example, the upward direction
  • the negative direction is, for example, the downward direction.
  • the floor surface 12a of the floor alignment device 13 and the cab 12 returns to the preset initial position T0. Further, when the process of step S32 is executed, the car side determination unit 31 resets the operation amount stored in the car side storage unit 32.
  • the floor alignment device 13 can always be operated from the initial position T0. Then, the height of the floor surface 12a of the car 2 can be accurately matched with the height of the floor surface of the target floor.
  • FIG. 7 is a flowchart showing the initial position correction operation
  • FIG. 8 is a schematic view showing the initial position correction operation.
  • the initial position T0 of the floor alignment device 13 may shift even if the floor alignment correction operation is performed due to a measurement error of the movement amount detection unit 42, a secular change of the rope 3, or the like.
  • the initial position correction operation is an operation of correcting the deviation of the initial position T0 to the preset initial position T0.
  • the car side determination unit 31 controls the drive unit 41 of the floor alignment device 13 to operate the floor alignment device 13 in either the upward direction or the downward direction (step S41).
  • the car side determination unit 31 determines whether or not the floor alignment device 13 has reached the movable limit based on the detection information of the movable limit detection unit 43 (step S42). Then, the car side determination unit 31 operates the floor alignment device 13 in one direction until the floor alignment device 13 reaches the upper movable limit T MAX or the lower movable limit T MIN, which is the movable limit.
  • step S42 when the floor alignment device 13 reaches the upper movable limit TMAX or the lower movable limit TMIN which is the movable limit (YES determination in step S42), the car side determination unit 31 operates the floor alignment device 13. To stop. Next, the car side determination unit 31 operates the floor alignment device 13 by a predetermined amount in the direction opposite to the moving direction to the movable limit (step S43).
  • the predetermined amount is the amount of movement from the upper movable limit TMAX or the lower movable limit TMIN to the preset initial position T0. This amount of operation is stored in the car side storage unit 32.
  • the floor aligning device 13 since the floor aligning device 13 is operated in the upward direction it is moved to the upper movable limit T MAX, the predetermined amount downward in the processing of step S43, to operate. As a result, the position of the floor alignment device 13 can be returned to the preset initial position T0, and the initial position correction operation is completed.
  • step S42 the determination of whether or not the floor alignment device 13 has reached the movable limit is determined not by the detection information of the moving amount detecting unit 42, which is an encoder, but by a movable limit different from that of the moving amount detecting unit 42.
  • the detection information of the detection unit 43 is used. As a result, it is possible to accurately determine that the floor alignment device 13 has reached the movable limit without being affected by the detection error by the movement amount detecting unit 42. Further, by using a mechanical sensor as the movable limit detection unit 43, the detection accuracy can be improved.
  • the elevator 1 of this example has a floor alignment correction operation for returning the floor alignment device 13 to the initial position T0 at a predetermined timing, and an initial correction for the initial position T0 of the floor alignment device 13 to a preset position.
  • the position correction operation is performed.
  • the floor alignment device 13 can be operated normally, and when the car 2A and 2B stop on an arbitrary floor, the height of the floor surface 12a of the car 2A and 2B is set to the floor surface of the boarding / alighting area 120. Can be matched exactly with the height of.
  • the predetermined timing for performing the floor alignment correction operation and the initial position correction operation the case where the cars 2A and 2B arrive at the reversal paths 100C and 100D is applied.
  • the passengers when moving the cars 2A and 2B on the reversing roads 100C and 100D, no passengers are placed on the cars 2A and 2B.
  • the passenger does not feel uncomfortable when the floor surface 12a moves in the vertical direction due to the floor alignment correction operation and the initial position correction operation.
  • the predetermined timing for performing the floor alignment correction operation and the initial position correction operation is not limited to the time when the cars 2A and 2B arrive at the reversal paths 100C and 100D.
  • a time zone in which there are no passengers using the elevator 1 such as at night or on holidays may be applied.
  • a person detection sensor for detecting the presence or absence of a passenger is provided in the car room 12 of the cars 2A and 2B, and based on the passenger presence / absence information of the person detection sensor, the car side control unit indicates that the passenger is not in the cars 2A and 2B. It may be carried out when 14 judges.
  • car side control unit 14 as a control unit for controlling the floor alignment correction operation and the initial position correction operation has been described, but the present invention is not limited to this, and the control unit is the tower inner control unit 6. May be applied.
  • a multicar elevator having two cars, a first car 2A and a second car 2B, is applied, but the number of cars is not limited to two. Three or more cars may be provided.
  • a circulation type elevator in which the cars 2A and 2B move up on the first movement path 100A and the cars 2A and 2B move down on the second movement path 100B may be used.
  • the cars 2A and 2B may move the first moving path 100A and the second moving path 100B in both the ascending and descending directions.
  • an elevator in which the first car 2A moves up and down only on the first movement path 100A, and the second car 2B connected to the first car 2A via a rope 3 moves up and down only on the second movement path 100B. It can also be applied to.
  • an elevator it can be applied to an elevator in which two car rooms are installed in the upper and lower parts in the vertical direction inside one car frame, so-called double deck elevator.
  • Car side communication Unit 41 ... Drive unit, 42 ... Movement amount detection unit, 43 ... Movable limit detection unit, 100A, 100B ... Movement path, 100C, 100D ... Reverse path, 120 ... Boarding / alighting area, T0 ... Initial position, TMAX ... Upper movable Limit (movable limit), T MIN ... Lower movable limit (movable limit)

Abstract

This elevator comprises a car frame, a car disposed in the car frame, a floor alignment device supporting the car so as to be movable in the vertical direction and adjusting the height of the floor surface of the car, and a control unit controlling drive in the floor alignment device. The control unit executes a floor alignment correction operation at a prescribed time which returns the position of the floor alignment device to an initial position.

Description

エレベーターElevator
 本発明は、エレベーターに関するものである。 The present invention relates to an elevator.
 近年、エレベーターの一例として、同一の移動路内に複数の乗りかごが移動するマルチカーエレベーターが提案されている。従来のこのようなエレベーターとしては、例えば、特許文献1に記載されているようなものがある。特許文献1には、乗りかごに設けられ、該乗りかごの床高さを調整する床位置補正装置を備えた技術が記載されている。 In recent years, as an example of an elevator, a multicar elevator in which a plurality of cars move in the same moving path has been proposed. Conventional such elevators include, for example, those described in Patent Document 1. Patent Document 1 describes a technique provided in a car and provided with a floor position correction device for adjusting the floor height of the car.
特開2008-94597号公報Japanese Unexamined Patent Publication No. 2008-94597
 しかしながら、特許文献1に記載された技術では、床位置補正装置を動作させた後に、床位置補正装置の位置を戻すことなく、継続して床位置補正装置を駆動させていた。その結果、特許文献1に記載された技術では、床位置補正装置が上方向又は下方向の可動限界に到達し、乗りかごの床面の高さを正確に目的階の床面の高さと一致させることができなくなる、という問題を有していた。 However, in the technique described in Patent Document 1, after operating the floor position correction device, the floor position correction device is continuously driven without returning the position of the floor position correction device. As a result, in the technique described in Patent Document 1, the floor position correction device reaches the movable limit in the upward or downward direction, and the height of the floor surface of the car accurately matches the height of the floor surface of the target floor. There was a problem that it could not be made to do.
 本目的は、上記の問題点を考慮し、乗りかごの床面の高さを正確に目的階の床面の高さと一致させることができるエレベーターを提供することにある。 The purpose of this purpose is to provide an elevator that can accurately match the height of the floor of the car with the height of the floor of the destination floor in consideration of the above problems.
 上記課題を解決し、目的を達成するため、エレベーターは、ロープに接続されるかご枠と、かご枠に配置されるかご室と、かご室を上下方向に移動可能に支持し、かご室の床面の高さを調整する床合わせ装置と、床合わせ装置の駆動を制御する制御部と、を備えている。制御部は、所定のタイミングにおいて、床合わせ装置の位置を初期位置に戻す床合わせ補正動作を実施する。 In order to solve the above problems and achieve the purpose, the elevator supports the car frame connected to the rope, the car room arranged in the car frame, and the car room so as to be movable in the vertical direction, and the floor of the car room. It includes a floor alignment device that adjusts the height of the surface and a control unit that controls the drive of the floor alignment device. The control unit performs a floor alignment correction operation for returning the position of the floor alignment device to the initial position at a predetermined timing.
 上記構成のエレベーターによれば、乗りかごの床面の高さを正確に目的階の床面の高さと一致させることができる。 According to the elevator having the above configuration, the height of the floor of the car can be accurately matched with the height of the floor of the target floor.
実施の形態例にかかるエレベーターを示す概略構成図である。It is a schematic block diagram which shows the elevator which concerns on the Example of Embodiment. 実施の形態例にかかるエレベーターの制御系の構成を示すブロック図である。It is a block diagram which shows the structure of the control system of the elevator which concerns on the Example of Embodiment. 実施の形態例にかかるエレベーターにおける床合わせ動作を示すフローチャートである。It is a flowchart which shows the floor alignment operation in the elevator which concerns on embodiment. 実施の形態例にかかるエレベーターにおける床合わせ装置の動作量を示す説明図である。It is explanatory drawing which shows the operation amount of the floor alignment apparatus in the elevator which concerns on embodiment. 実施の形態例にかかるエレベーターにおける床合わせ補正動作を示すフローチャートである。It is a flowchart which shows the floor alignment correction operation in the elevator which concerns on embodiment. 実施の形態例にかかるエレベーターにおける床合わせ補正動作を示す概要図である。It is a schematic diagram which shows the floor alignment correction operation in the elevator which concerns on embodiment. 実施の形態例にかかるエレベーターにおける初期位置補正動作を示すフローチャートである。It is a flowchart which shows the initial position correction operation in the elevator which concerns on embodiment. 実施の形態例にかかるエレベーターにおける初期位置補正動作を示す概要図である。It is a schematic diagram which shows the initial position correction operation in the elevator which concerns on embodiment.
 以下、エレベーターの実施の形態例について、図1~図8を参照して説明する。なお、各図において共通の部材には、同一の符号を付している。 Hereinafter, an example of the embodiment of the elevator will be described with reference to FIGS. 1 to 8. The common members in each figure are designated by the same reference numerals.
1.実施の形態例
1-1.エレベーターの構成
 まず、実施の形態例(以下、「本例」という。)にかかるエレベーターの構成について、図1を参照して説明する。
 図1は、本例のエレベーターの構成例を示す概略構成図である。
1. 1. Embodiment 1-1. Configuration of the Elevator First, the configuration of the elevator according to the embodiment (hereinafter referred to as “this example”) will be described with reference to FIG.
FIG. 1 is a schematic configuration diagram showing a configuration example of the elevator of this example.
 図1に示すエレベーターは、同一の昇降路を複数の乗りかごが移動するマルチカーエレベーターである。図1に示すように、エレベーター1は、後述する移動路100A、100Bを昇降移動する第1乗りかご2A及び第2乗りかご2Bと、第1乗りかご2Aと第2乗りかご2Bを連結するロープ3と、上部プーリ4と、下部プーリ5と、塔内側制御部6と、を備えている。 The elevator shown in FIG. 1 is a multi-car elevator in which a plurality of cars move on the same hoistway. As shown in FIG. 1, the elevator 1 is a rope connecting the first car 2A and the second car 2B, which move up and down the moving paths 100A and 100B, which will be described later, and the first car 2A and the second car 2B. 3, an upper pulley 4, a lower pulley 5, and a tower inner control unit 6 are provided.
 建築構造物には、乗りかご2A、2Bが上下方向に沿って昇降移動する第1移動路100A及び第2移動路100Bが設けられている。第1移動路100Aと第2移動路100Bは、隣接して形成されている。 The building structure is provided with a first moving path 100A and a second moving path 100B in which the cars 2A and 2B move up and down along the vertical direction. The first movement path 100A and the second movement path 100B are formed adjacent to each other.
 また、建築構造物には、第1反転路100Cと、第2反転路100Dが設けられている。第1反転路100Cは、第1移動路100A及び第2移動路100Bの上下方向の下端部に設けられ、第2反転路100Dは、第1移動路100A及び第2移動路100Bの上下方向の上端部に設けられている。第1反転路100C及び第2反転路100Dでは、乗りかご2A、2Bの移動方向の向きが上昇から下降、又は下降から上昇に反転する。なお、乗りかご2A、2Bが第1反転路100C及び第2反転路100Dを通過する際、乗りかご2A、2B内には、乗客は乗らない。 Further, the building structure is provided with a first reversing path 100C and a second reversing path 100D. The first reversing path 100C is provided at the lower end of the first moving path 100A and the second moving path 100B in the vertical direction, and the second reversing path 100D is provided in the vertical direction of the first moving path 100A and the second moving path 100B. It is provided at the upper end. In the first reversal path 100C and the second reversal path 100D, the directions of movement of the cars 2A and 2B are reversed from ascending to descending or descending to ascending. When the cars 2A and 2B pass through the first reversing road 100C and the second reversing road 100D, no passengers get in the cars 2A and 2B.
 第1移動路100Aには、第1かご位置検出体7Aが設けられており、第2移動路100Bには、第2かご位置検出体7Bが設けられている。かご位置検出体7A、7Bには、後述するかご位置検出装置15で検出可能な目盛りやバーコードが形成されている。 The first moving path 100A is provided with the first car position detecting body 7A, and the second moving path 100B is provided with the second car position detecting body 7B. The car position detectors 7A and 7B are formed with scales and bar codes that can be detected by the car position detection device 15 described later.
 第1かご位置検出体7A及び第2かご位置検出体7Bは、上下方向に沿って平行に立設されている。かご位置検出体7A、7Bの上下方向の下端部は、第1反転路100Cまで達しておらず、かご位置検出体7A、7Bの上下方向の上端部は、第2反転路100Dまで達していない。 The first car position detector 7A and the second car position detector 7B are erected in parallel along the vertical direction. The lower end of the car position detectors 7A and 7B in the vertical direction does not reach the first reversal path 100C, and the upper end of the car position detectors 7A and 7B in the vertical direction does not reach the second reversal path 100D. ..
 さらに、建築構造物における乗りかご2A、2Bが停止する乗降場120には、ホールスイッチ121が設けられている。ホールスイッチ121は、後述する塔内側制御部6と無線又は有線により接続されている。ホールスイッチ121が押下されると、ホールスイッチ121は、呼び信号を塔内側制御部6に送信する。そして、塔内側制御部6にかご呼び登録がされる。塔内側制御部6は、呼び登録された乗降場120に乗りかご2A、2Bを移動させる。 Further, a hall switch 121 is provided at the boarding / alighting area 120 where the cars 2A and 2B in the building structure stop. The hall switch 121 is wirelessly or wiredly connected to the tower inner control unit 6 described later. When the hall switch 121 is pressed, the hall switch 121 transmits a call signal to the tower inner control unit 6. Then, the car call registration is performed in the tower inner control unit 6. The tower inside control unit 6 moves the cars 2A and 2B to the boarding / alighting area 120 registered as a call.
 第1移動路100A及び第2移動路100Bにおける乗降場120の近傍には、ドアゾーン検出体8A、8Bが設けられている。ドアゾーン検出体8A、8Bは、後述する乗りかご2A、2Bに設けたドアゾーン検出装置17によって検出される。これにより、乗りかご2A、2Bが乗降場120に接近したことを認識することができる。 Door zone detectors 8A and 8B are provided in the vicinity of the boarding / alighting area 120 on the first movement path 100A and the second movement path 100B. The door zone detectors 8A and 8B are detected by the door zone detection devices 17 provided in the cars 2A and 2B described later. As a result, it is possible to recognize that the cars 2A and 2B have approached the boarding / alighting area 120.
 下部プーリ5は、第1反転路100Cに設けられており、上部プーリ4は、第2反転路100Dに設けられている。上部プーリ4と下部プーリ5のうちいずれか一方は、駆動プーリであり、塔内側制御部6により回転駆動する。また、上部プーリ4と下部プーリ5には、ロープ3が張架さている。 The lower pulley 5 is provided on the first reversing path 100C, and the upper pulley 4 is provided on the second reversing path 100D. One of the upper pulley 4 and the lower pulley 5 is a drive pulley, and is rotationally driven by the tower inner control unit 6. Further, a rope 3 is stretched on the upper pulley 4 and the lower pulley 5.
 ロープ3には、第1乗りかご2Aと第2乗りかご2Bが接続されている。そして、上部プーリ4又は下部プーリ5が回転駆動することで、第1乗りかご2A及び第2乗りかご2B、ロープ3は、上部プーリ4と下部プーリ5の間を循環移動する。 The first car 2A and the second car 2B are connected to the rope 3. Then, when the upper pulley 4 or the lower pulley 5 is rotationally driven, the first car 2A, the second car 2B, and the rope 3 circulate and move between the upper pulley 4 and the lower pulley 5.
 次に、第1乗りかご2A及び第2乗りかご2Bについて説明する。なお、第1乗りかご2A及び第2乗りかご2Bは、それぞれ同一の構成を有しているため、ここでは第1乗りかご2Aについて説明する。 Next, the first car 2A and the second car 2B will be described. Since the first car 2A and the second car 2B have the same configuration, the first car 2A will be described here.
 第1乗りかご2Aは、かご枠11と、中空のかご室12と、床合わせ装置13と、かご側制御部14と、かご位置検出装置15と、ドアゾーン検出装置17と、を備えている。かご枠11には、ロープ3が接続される。 The first car 2A includes a car frame 11, a hollow car room 12, a floor alignment device 13, a car side control unit 14, a car position detection device 15, and a door zone detection device 17. A rope 3 is connected to the car frame 11.
 かご側制御部14及びかご位置検出装置15は、かご枠11に設けられている。かご位置検出装置15は、移動路100A、100Bに設けたかご位置検出体7A、7Bの目盛りやバーコードを検出することで、乗りかご2Aの位置を検出する。上述したように、かご位置検出体7A、7Bは、第1反転路100C及び第2反転路100Dまで延在していない。そのため、かご位置検出装置15がかご位置検出体7A、7Bから外れると、かご位置検出装置15は、乗りかご2A、2Bが第1反転路100C又は第2反転路100Dを移動中であると判断する。 The car side control unit 14 and the car position detecting device 15 are provided in the car frame 11. The car position detecting device 15 detects the position of the car 2A by detecting the scales and barcodes of the car position detecting bodies 7A and 7B provided on the moving paths 100A and 100B. As described above, the car position detectors 7A and 7B do not extend to the first reversing path 100C and the second reversing path 100D. Therefore, when the car position detecting device 15 is separated from the car position detecting bodies 7A and 7B, the car position detecting device 15 determines that the cars 2A and 2B are moving on the first reversing path 100C or the second reversing path 100D. To do.
 かご側制御部14は、第1乗りかご2A全体の制御を行う。また、かご側制御部14は、塔内側制御部6と無線又は有線により接続されている。このかご側制御部14の詳細な構成については、後述する。 The car side control unit 14 controls the entire first car 2A. Further, the car side control unit 14 is wirelessly or wiredly connected to the tower inner control unit 6. The detailed configuration of the car side control unit 14 will be described later.
 かご室12は、かご枠11内に床合わせ装置13を介して配置されている。かご室12の内部に、人や荷物が乗り降りする。また、かご室12の内部には、行き先階を登録するかご内スイッチ16が設けられている。 The car room 12 is arranged in the car frame 11 via the floor alignment device 13. People and luggage get on and off the inside of the car room 12. Further, inside the car room 12, a car switch 16 for registering the destination floor is provided.
 床合わせ装置13は、かご枠11に設置されている。床合わせ装置13は、かご室12を上下方向に移動可能に支持する。床合わせ装置13は、かご側制御部14の制御のもと、かご室12を上下方向に移動させて、かご室12の床面12aの高さを調整する。具体的には、床合わせ装置13は、かご室12の床面12aの高さを、乗降場120の床面の高さと一致させる。床合わせ装置13としては、例えば、油圧、空圧、パンタグラフ機構、電動ウィンチ、ラックとピニオンからなる駆動機構等その他各種の駆動方法が適用される。 The floor alignment device 13 is installed in the car frame 11. The floor alignment device 13 supports the car chamber 12 so as to be movable in the vertical direction. Under the control of the car side control unit 14, the floor alignment device 13 moves the car chamber 12 in the vertical direction to adjust the height of the floor surface 12a of the car chamber 12. Specifically, the floor alignment device 13 makes the height of the floor surface 12a of the car room 12 match the height of the floor surface of the boarding / alighting area 120. As the floor alignment device 13, for example, various driving methods such as hydraulic pressure, pneumatic pressure, a pantograph mechanism, an electric winch, a driving mechanism including a rack and a pinion, and the like are applied.
 ドアゾーン検出装置17は、かご室12に設けられている。ドアゾーン検出装置17としては、例えば、光を照射する発光部と、発光部からの光を受光する受光部とを有している。そして、乗りかご2A、2Bがドアゾーン検出体8A、8Bまで移動すると、ドアゾーン検出装置17の発光部からの光が、ドアゾーン検出体8A、8Bによって遮られる。これにより、ドアゾーン検出装置17は、乗りかご2A、2Bが乗降場120の近傍まで移動したことを検出する。 The door zone detection device 17 is provided in the car room 12. The door zone detection device 17 includes, for example, a light emitting unit that irradiates light and a light receiving unit that receives light from the light emitting unit. Then, when the cars 2A and 2B move to the door zone detectors 8A and 8B, the light from the light emitting portion of the door zone detector 17 is blocked by the door zone detectors 8A and 8B. As a result, the door zone detection device 17 detects that the cars 2A and 2B have moved to the vicinity of the boarding / alighting area 120.
1-2.エレベーターの制御系の構成
 次に、上述した構成を有するエレベーター1の制御系の構成について図2を参照して説明する。
 図2は、エレベーター1の制御系を示すブロック図である。
1-2. Configuration of Elevator Control System Next, the configuration of the control system of the elevator 1 having the above-described configuration will be described with reference to FIG.
FIG. 2 is a block diagram showing a control system of the elevator 1.
 図2に示すように、塔内側制御部6は、塔内側判定部21と、塔内側記憶部22と、駆動制御部23と、塔内側通信部24とを有している。塔内側記憶部22、駆動制御部23及び塔内側通信部24は、塔内側判定部21に接続されている。さらに、塔内側判定部21は、各階のホールスイッチ121と接続している。そして、塔内側判定部21には、各階のホールスイッチ121から呼び信号が送信される。塔内側判定部21は、受信した呼び信号に基づいて、乗降場120に移動させる乗りかご2A、2Bを判断し、駆動信号を駆動制御部23に出力する。 As shown in FIG. 2, the tower inner control unit 6 includes a tower inner determination unit 21, a tower inner storage unit 22, a drive control unit 23, and a tower inner communication unit 24. The tower inner storage unit 22, the drive control unit 23, and the tower inner communication unit 24 are connected to the tower inner determination unit 21. Further, the tower inside determination unit 21 is connected to the hall switch 121 on each floor. Then, a call signal is transmitted from the hall switch 121 on each floor to the tower inside determination unit 21. The tower inside determination unit 21 determines the cars 2A and 2B to be moved to the boarding / alighting area 120 based on the received call signal, and outputs the drive signal to the drive control unit 23.
 駆動制御部23は、駆動プーリである上部プーリ4又は下部プーリ5に接続されている。そして、駆動制御部23は、塔内側判定部21からの駆動信号に基づいて、上部プーリ4又は下部プーリ5の駆動を制御する。 The drive control unit 23 is connected to the upper pulley 4 or the lower pulley 5 which is a drive pulley. Then, the drive control unit 23 controls the drive of the upper pulley 4 or the lower pulley 5 based on the drive signal from the tower inner determination unit 21.
 塔内側通信部24は、各乗りかご2A、2Bのかご側制御部14に設けたかご側通信部34と情報を送受信する。そして、塔内側通信部24は、塔内側判定部21からの指令信号を各乗りかご2A、2Bのかご側通信部34に送信する。また、塔内側通信部24は、各乗りかご2A、2Bのかご側通信部34からの信号を受信し、塔内側判定部21に出力する。 The tower inner communication unit 24 transmits / receives information to / from the car side communication unit 34 provided in the car side control unit 14 of each car 2A and 2B. Then, the tower-inside communication unit 24 transmits a command signal from the tower-inside determination unit 21 to the car-side communication units 34 of the cars 2A and 2B. Further, the tower inner communication unit 24 receives a signal from the car side communication unit 34 of each car 2A and 2B and outputs the signal to the tower inner determination unit 21.
 かご側制御部14は、かご側判定部31と、かご側記憶部32と、かご側通信部34とを有している。かご側判定部31は、かご位置検出装置15、かご内スイッチ16、ドアゾーン検出装置17、かご側通信部34及びかご側記憶部32に接続されている。また、かご側判定部31は、後述する床合わせ装置13の駆動部41、移動量検出部42及び可動限界検出部43に接続されている。 The car side control unit 14 has a car side determination unit 31, a car side storage unit 32, and a car side communication unit 34. The car side determination unit 31 is connected to the car position detection device 15, the car switch 16, the door zone detection device 17, the car side communication unit 34, and the car side storage unit 32. Further, the car side determination unit 31 is connected to a drive unit 41, a movement amount detection unit 42, and a movable limit detection unit 43 of the floor alignment device 13, which will be described later.
 かご側判定部31は、かご位置検出装置15からのかご位置情報、かご内スイッチ16からの停止階情報やドアゾーン検出装置17からの乗降場接近情報等を、かご側通信部34を介して塔内側制御部6に送信する。また、かご側判定部31は、不図示のかご室12の積載量を測定する積載量測定部から積載量情報を受信する。 The car side determination unit 31 transmits the car position information from the car position detection device 15, the stop floor information from the in-car switch 16, the boarding / alighting area approach information from the door zone detection device 17, and the like via the car side communication unit 34. It is transmitted to the inner control unit 6. Further, the car side determination unit 31 receives the load amount information from the load amount measurement unit that measures the load amount of the car chamber 12 (not shown).
 塔内側制御部6は、かご側制御部14から目的階への乗降場接近情報を受信すると、駆動制御部23を制御し、上部プーリ4又は下部プーリ5の駆動を停止させる。これにより、乗りかご2A、2Bを任意の目的階に停止させることができる。 When the tower inner control unit 6 receives the boarding / alighting area approach information to the destination floor from the car side control unit 14, it controls the drive control unit 23 and stops the drive of the upper pulley 4 or the lower pulley 5. As a result, the cars 2A and 2B can be stopped at any destination floor.
 かご側判定部31は、乗りかご2A、2Bの位置や積載重量に応じてロープ3の伸び量や、かご室12の上下方向の移動量を演算する。そして、かご側判定部31は、演算した結果に応じて床合わせ装置13の動作指令を演算し、動作指令を床合わせ装置13に出力する。さらに、かご側判定部31は、動作指令量をかご側記憶部32に格納する。また、かご側記憶部32には、後述する床合わせ装置13の初期位置T0が格納されている。 The car side determination unit 31 calculates the amount of extension of the rope 3 and the amount of movement of the car chamber 12 in the vertical direction according to the positions of the cars 2A and 2B and the load weight. Then, the car side determination unit 31 calculates the operation command of the floor alignment device 13 according to the calculated result, and outputs the operation command to the floor alignment device 13. Further, the car side determination unit 31 stores the operation command amount in the car side storage unit 32. Further, the car side storage unit 32 stores the initial position T0 of the floor alignment device 13, which will be described later.
 床合わせ装置13は、駆動部41と、移動量検出部42と、可動限界検出部43とを有している。駆動部41は、かご側判定部31からの動作指令に基づいて駆動し、かご室12を上下方向に移動させる。 The floor alignment device 13 has a drive unit 41, a movement amount detection unit 42, and a movable limit detection unit 43. The drive unit 41 drives the car chamber 12 based on an operation command from the car side determination unit 31 to move the car chamber 12 in the vertical direction.
 移動量検出部42は、例えば、エンコーダー等から構成されており、床面12aの移動量を検出する。そして、移動量検出部42は、検出した移動量を駆動部41及びかご側判定部31に出力する。また、かご側判定部31は、移動量検出部42が検出した床面12aの移動量に基づいて、床合わせ装置13の動作指令量を演算する。 The movement amount detection unit 42 is composed of, for example, an encoder or the like, and detects the movement amount of the floor surface 12a. Then, the movement amount detection unit 42 outputs the detected movement amount to the drive unit 41 and the car side determination unit 31. Further, the car side determination unit 31 calculates the operation command amount of the floor alignment device 13 based on the movement amount of the floor surface 12a detected by the movement amount detection unit 42.
 可動限界検出部43は、床合わせ装置13におけるかご室12の上下方向の上方への可動限界である上部可動限界TMAX又は、下方への可動限界である下部可動限界TMINに到達したことを検出する。可動限界検出部43としては、例えば、機械式の押圧スイッチが適用される。そして、床面12aが押圧スイッチを押下すると、可動限界検出部43は、上部可動限界TMAX又は下部可動限界TMINを検出する。 Movable limit detector 43, the upper movable limit T MAX or movable limit in the vertical direction above the cab 12 in the bed alignment device 13, that it has reached the lower movable limit T MIN is the movable limit downward To detect. As the movable limit detection unit 43, for example, a mechanical pressing switch is applied. Then, when the floor surface 12a presses the pressing switch, the movable limit detection unit 43 detects the upper movable limit TMAX or the lower movable limit TMIN .
2.動作例
2-1.床合わせ動作例
 次に、上述した構成を有するエレベーター1における床合わせ動作例について図3及び4を参照して説明する。
 図3は、床合わせ動作を示すフローチャート、図4は、床合わせ装置13の動作量を示す説明図である。図4における縦軸は、床合わせ装置13の動作量を示し、横軸は乗りかご2Aの位置を示している。また、以下に示す動作例では、乗りかご2Aが第1反転路100Cから移動する例について説明する。
2. Operation example 2-1. Example of Floor Alignment Operation Next, an example of floor alignment operation in the elevator 1 having the above-described configuration will be described with reference to FIGS. 3 and 4.
FIG. 3 is a flowchart showing the floor alignment operation, and FIG. 4 is an explanatory diagram showing the operation amount of the floor alignment device 13. The vertical axis in FIG. 4 indicates the amount of operation of the floor alignment device 13, and the horizontal axis indicates the position of the car 2A. Further, in the operation example shown below, an example in which the car 2A moves from the first reversing path 100C will be described.
 まず、図3に示すように、塔内側制御部6は、駆動制御部23を制御し、駆動プーリである上部プーリ4又は下部プーリ5を駆動させる。これにより、乗りかご2Aは、第1反転路100Cを出発する(ステップS11)。また、図4に示すように、乗りかご2Aが第1反転路100Cに位置している時、床合わせ装置13の動作量は0であり、床合わせ装置13は初期位置T0に位置している。この初期位置T0は、例えば、床合わせ装置13の可動範囲の中央地点である。 First, as shown in FIG. 3, the tower inner control unit 6 controls the drive control unit 23 to drive the upper pulley 4 or the lower pulley 5 which is a drive pulley. As a result, the car 2A departs from the first reversing road 100C (step S11). Further, as shown in FIG. 4, when the car 2A is located on the first reversing path 100C, the operating amount of the floor alignment device 13 is 0, and the floor alignment device 13 is located at the initial position T0. .. This initial position T0 is, for example, the central point of the movable range of the floor alignment device 13.
 次に、かご側制御部14は、乗りかご2Aが目的地階に到着するまでに変動するロープ3の伸び量を演算する(ステップS12)。ここで、乗りかご2A、2Bが移動することで、ロープ3における乗りかご2A、2Bから上部プーリ4や下部プーリ5までの長さが変化する。そして、ロープ3の長さが変化するため、ロープ3の伸び量も変化する。 Next, the car side control unit 14 calculates the amount of elongation of the rope 3 that fluctuates until the car 2A arrives at the destination floor (step S12). Here, as the car 2A and 2B move, the length of the rope 3 from the car 2A and 2B to the upper pulley 4 and the lower pulley 5 changes. Then, since the length of the rope 3 changes, the amount of elongation of the rope 3 also changes.
 次に、かご側制御部14は、ステップS12の処理で演算したロープ3の伸び量に基づいて、床合わせ装置13の動作指令量を演算する。そして、かご側制御部14は、演算した動作指令を床合わせ装置13に出力する(ステップS13)。これにより、床合わせ装置13は、かご側制御部14から出力された動作指令に基づいて駆動部41を駆動させ、かご室12を上下方向に移動させる。 Next, the car side control unit 14 calculates the operation command amount of the floor alignment device 13 based on the elongation amount of the rope 3 calculated in the process of step S12. Then, the car side control unit 14 outputs the calculated operation command to the floor alignment device 13 (step S13). As a result, the floor alignment device 13 drives the drive unit 41 based on the operation command output from the car side control unit 14, and moves the car chamber 12 in the vertical direction.
 また、かご側判定部31は、床合わせ装置13に出力した動作指令量をかご側記憶部32に格納する(ステップS14)。なお、上述したステップS12からステップS14までの処理は、乗りかご2Aが停止する目的階が確定してから行われる。 Further, the car side determination unit 31 stores the operation command amount output to the floor alignment device 13 in the car side storage unit 32 (step S14). The above-mentioned processes from step S12 to step S14 are performed after the destination floor on which the car 2A stops is determined.
 さらに、図4に示すように、乗りかご2Aが最下階に停止する場合、床合わせ装置13の動作量は、第1動作量T1となる。そして、この第1動作量T1がステップS14の処理でかご側記憶部32に格納される。 Further, as shown in FIG. 4, when the car 2A stops at the lowest floor, the operating amount of the floor alignment device 13 becomes the first operating amount T1. Then, the first operation amount T1 is stored in the car side storage unit 32 in the process of step S14.
 ドアゾーン検出装置17が目的階のドアゾーン検出体8A、8Bを検出すると、かご側判定部31は、塔内側制御部6に乗降場接近情報を出力する。そして、塔内側制御部6は、駆動制御部23を制御し、上部プーリ4又は下部プーリ5の駆動を停止させる。これにより、乗りかご2Aが任意の目的階に到着し、停止する(ステップS15)。ステップS12からステップS13の処理により、かご室12が所定の位置に移動しているため、かご室12の床面12aは、目的階の乗降場120の床面と同じ高さとなる。 When the door zone detection device 17 detects the door zone detectors 8A and 8B on the target floor, the car side determination unit 31 outputs the boarding / alighting area approach information to the tower inner control unit 6. Then, the tower inner control unit 6 controls the drive control unit 23 and stops the drive of the upper pulley 4 or the lower pulley 5. As a result, the car 2A arrives at an arbitrary destination floor and stops (step S15). Since the car room 12 has been moved to a predetermined position by the processing from step S12 to step S13, the floor surface 12a of the car room 12 becomes the same height as the floor surface of the boarding / alighting area 120 on the target floor.
 次に、床合わせ装置13の移動量検出部42によって、乗客の乗り降りによる床面12aの移動量を計測する(ステップS16)。そして、移動量検出部42は、計測した移動量をかご側制御部14に出力する。 Next, the movement amount detection unit 42 of the floor alignment device 13 measures the movement amount of the floor surface 12a due to passengers getting on and off (step S16). Then, the movement amount detection unit 42 outputs the measured movement amount to the car side control unit 14.
 次に、ステップS16の処理に計測した移動量に基づいて、かご側制御部14は、乗りかご2Aの床面12aの乗降場の床面の段差が所定の閾値以下となるように、動作指令量を演算し、床合わせ装置13に出力する(ステップS17)。これにより、床合わせ装置13は、かご側制御部14から出力された動作指令に基づいて駆動部41を駆動させ、かご室12を上下方向に移動させる。 Next, based on the movement amount measured in the process of step S16, the car side control unit 14 gives an operation command so that the step on the floor surface of the floor surface 12a of the car 2A is equal to or less than a predetermined threshold value. The amount is calculated and output to the floor alignment device 13 (step S17). As a result, the floor alignment device 13 drives the drive unit 41 based on the operation command output from the car side control unit 14, and moves the car chamber 12 in the vertical direction.
 なお、ステップS16及びステップS17の処理では、移動量検出部42が検出した床面12aの移動量に基づいて床合わせ装置13への動作指令量を演算したが、これに限定されるものではない。例えば、積載量測定部が測定した積載量情報に基づいて、床合わせ装置13への動作指令量を演算してもよい。 In the processes of steps S16 and S17, the amount of operation command to the floor alignment device 13 is calculated based on the amount of movement of the floor surface 12a detected by the movement amount detection unit 42, but the processing is not limited to this. .. For example, the operation command amount to the floor alignment device 13 may be calculated based on the load amount information measured by the load amount measuring unit.
 また、かご側判定部31は、床合わせ装置13に出力した動作指令量をかご側記憶部32に格納する(ステップS18)。 Further, the car side determination unit 31 stores the operation command amount output to the floor alignment device 13 in the car side storage unit 32 (step S18).
 図4に示すように、乗りかご2Aに最下階で乗客が乗り込み、乗りかご2Aの積載重量が変化したことで、床合わせ装置13の動作量は、第2動作量T2となる。そして、この第2動作量T2がステップS18の処理でかご側記憶部32に格納される。 As shown in FIG. 4, the passengers boarded the car 2A on the lowest floor, and the load weight of the car 2A changed, so that the operating amount of the floor alignment device 13 became the second operating amount T2. Then, the second operation amount T2 is stored in the car side storage unit 32 in the process of step S18.
 そして、乗客や荷物の乗り降りが完了すると、乗りかご2Aのドアが閉じられ、乗りかご2Aが昇降移動する。また、かご側制御部14又は塔内側制御部6は、乗りかご2Aが第2反転路100Dに到着したか否かを判断する(ステップS19)。 Then, when the passengers and luggage get on and off, the door of the car 2A is closed and the car 2A moves up and down. Further, the car side control unit 14 or the tower inner control unit 6 determines whether or not the car 2A has arrived at the second reversing path 100D (step S19).
 ステップS19の処理において、かご側制御部14又は塔内側制御部6は、乗りかご2Aが第2反転路100Dに到着していないと判断した場合(ステップS19のNO判定)、ステップS12の処理に戻る。 In the process of step S19, when the car side control unit 14 or the tower inner control unit 6 determines that the car 2A has not arrived at the second reversing path 100D (NO determination in step S19), the process of step S12 is performed. Return.
 図4に示すように、乗りかご2Aが最下階から最上階に移動する場合、乗りかご2Aが上昇移動することで、ロープ3における上部プーリや下部プーリ5までの長さが変化する。そのため、ロープの伸び量が変化し、ステップS12及びステップS13の処理において、ロープ3の伸び量の変化に応じて、床合わせ装置13が動作する。このときの床合わせ装置13の動作量は、第3動作量T3となる。そして、ステップS14の処理において、第3動作量T3がかご側記憶部32に格納される。 As shown in FIG. 4, when the car 2A moves from the bottom floor to the top floor, the length of the rope 3 up to the upper pulley and the lower pulley 5 changes as the car 2A moves up. Therefore, the amount of elongation of the rope changes, and in the processes of steps S12 and S13, the floor alignment device 13 operates according to the change in the amount of elongation of the rope 3. The operating amount of the floor alignment device 13 at this time is the third operating amount T3. Then, in the process of step S14, the third operation amount T3 is stored in the car side storage unit 32.
 また、最上階で人や荷物が乗り降りすることで、乗りかご2の積載重量が変化し、かご室12の床面12aの高さが変化する。そして、ステップS16及びステップS17の処理が行われ、図4に示すように、床面12aの高さへの変化に応じて、床合わせ装置13は、第4動作量T4で動作する。また、ステップS18の処理において、第4動作量T4がかご側記憶部32に格納される。 Also, when people and luggage get on and off on the top floor, the load weight of the car 2 changes, and the height of the floor surface 12a of the car room 12 changes. Then, the processes of steps S16 and S17 are performed, and as shown in FIG. 4, the floor alignment device 13 operates with the fourth operating amount T4 in response to the change to the height of the floor surface 12a. Further, in the process of step S18, the fourth operation amount T4 is stored in the car side storage unit 32.
 さらに、最上階から第2反転路100Dに乗りかご2Aが移動することで、ロープ3の伸び量が変化し、この伸び量に応じて床合わせ装置13は、第5動作量T5で動作する。そして、この第5動作量T5もかご側記憶部32に格納される。また、第1動作量T1、第2動作量T2、第3動作量T3、第4動作量T4及び第5動作量T5は、いずれも初期位置T0からの動作量を示している。 Further, when the car 2A moves from the top floor to the second reversing road 100D, the amount of elongation of the rope 3 changes, and the floor alignment device 13 operates with the fifth amount of operation T5 according to the amount of extension. Then, the fifth operation amount T5 is also stored in the car side storage unit 32. Further, the first operation amount T1, the second operation amount T2, the third operation amount T3, the fourth operation amount T4, and the fifth operation amount T5 all indicate the operation amount from the initial position T0.
 また、ステップS19の処理において、かご側制御部14又は塔内側制御部6は、乗りかご2Aが第2反転路100Dに到着したと判断した場合(ステップS19のYES判定)、ステップS20の処理を行う。かご位置検出装置15がかご位置検出体7A、7Bから外れた際に、乗りかご2A、2Bが第1反転路100C又は第2反転路100Dに到着したと判断することができる。 Further, in the process of step S19, when the car side control unit 14 or the tower inner control unit 6 determines that the car 2A has arrived at the second reversing path 100D (YES determination in step S19), the process of step S20 is performed. Do. When the car position detecting device 15 is separated from the car position detecting bodies 7A and 7B, it can be determined that the cars 2A and 2B have arrived at the first reversing path 100C or the second reversing path 100D.
 また、第1反転路100C及び第2反転路100Dの乗りかご2A、2Bを検出する検出センサを設けてもよい。この検出センサの検出情報に基づいて、乗りかご2A、2Bが第1反転路100C又は第2反転路100Dに到着したか否かを判断してもよい。 Further, a detection sensor for detecting the cars 2A and 2B of the first reversing path 100C and the second reversing path 100D may be provided. Based on the detection information of the detection sensor, it may be determined whether or not the cars 2A and 2B have arrived at the first reversing path 100C or the second reversing path 100D.
 ステップS20の処理では、乗りかご2Aが第2反転路100Dに到着すると、かご側判定部31は、床合わせ装置への動作指令回数が所定の値以下か否かを判断する。ステップS20の処理において、動作指令回数が所定の値以下であるとかご側判定部31が判断した場合(ステップS20のYES判定)、かご側判定部31は、床合わせ補正動作を実施する(ステップS21)。 In the process of step S20, when the car 2A arrives at the second reversing path 100D, the car side determination unit 31 determines whether or not the number of operation commands to the floor alignment device is equal to or less than a predetermined value. In the process of step S20, when the car side determination unit 31 determines that the number of operation commands is equal to or less than a predetermined value (YES determination in step S20), the car side determination unit 31 executes the floor alignment correction operation (step). S21).
 これに対して、ステップS20の処理において、動作指令回数が所定の値を超えたとかご側判定部31が判断した場合(ステップS20のNO判定)、かご側判定部31は、初期位置補正動作を実施する(ステップS22)。次は、乗りかご2Aが第1反転路100Cに到着するまで、ステップS12からステップS18の処理が行われる。そして、乗りかご2Aが第1反転路100Cに到着すると、ステップS21又はステップS22の処理が行われる。 On the other hand, in the process of step S20, when the car side determination unit 31 determines that the number of operation commands exceeds a predetermined value (NO determination in step S20), the car side determination unit 31 performs an initial position correction operation. (Step S22). Next, the processes of steps S12 to S18 are performed until the car 2A arrives at the first reversal path 100C. Then, when the car 2A arrives at the first reversing road 100C, the process of step S21 or step S22 is performed.
2-2.床合わせ補正動作
 次に、上述したステップS21の処理に示す床合わせ補正動作について図5及び図6を参照して説明する。
 図5は、床合わせ補正動作を示すフローチャート、図6は、床合わせ補正動作を示す概要図である。
2-2. Floor alignment correction operation Next, the floor alignment correction operation shown in the process of step S21 described above will be described with reference to FIGS. 5 and 6.
FIG. 5 is a flowchart showing the floor alignment correction operation, and FIG. 6 is a schematic diagram showing the floor alignment correction operation.
 ここで、図4及び図6に示すように、第1乗りかご2Aが第2反転路100Dに到着した際に、床合わせ装置13の位置が初期位置T0に戻っておらず、床合わせ装置13が初期位置T0から誤差ΔTの位置に配置される場合がある。この状態で、床合わせ装置13を動作させた場合、床合わせ装置13が上部可動限界TMAX又は下部可動限界TMINに達するおそれがあり、床面12aの高さを正確に合わせることができなくなる。 Here, as shown in FIGS. 4 and 6, when the first car 2A arrives at the second reversing path 100D, the position of the floor alignment device 13 does not return to the initial position T0, and the floor alignment device 13 does not return to the initial position T0. May be placed at a position with an error ΔT from the initial position T0. If the floor alignment device 13 is operated in this state, the floor alignment device 13 may reach the upper movable limit TMAX or the lower movable limit TMIN , and the height of the floor surface 12a cannot be adjusted accurately. ..
 この誤差ΔTは、他方の乗りかごである第2乗りかご2Bの積載重量や、ロープ3の伸びの経年変化により生じる。床合わせ補正動作では、床合わせ装置13の位置を初期位置T0に戻す動作である。 This error ΔT is caused by the load weight of the second car 2B, which is the other car, and the secular change of the elongation of the rope 3. The floor alignment correction operation is an operation of returning the position of the floor alignment device 13 to the initial position T0.
 図5に示すように、かご側判定部31は、かご側記憶部32に格納した床合わせ装置13の動作指令量の合計が所定の範囲外であるか否かを判断する(ステップS31)。動作指令量の合計は、第1動作量T1、第2動作量T2、第3動作量T3、第4動作量T4及び第5動作量T5の合計値である。そして、この合計量が、誤差ΔTとなる。 As shown in FIG. 5, the car side determination unit 31 determines whether or not the total operation command amount of the floor alignment device 13 stored in the car side storage unit 32 is out of the predetermined range (step S31). The total of the operation command amounts is the total value of the first operation amount T1, the second operation amount T2, the third operation amount T3, the fourth operation amount T4, and the fifth operation amount T5. Then, this total amount becomes the error ΔT.
 ステップS31の処理において、動作指令量の合計が所定の範囲内であるとかご側判定部31が判断した場合(ステップS31のNO判定)、床合わせ補正動作が完了する。 In the process of step S31, when the car side determination unit 31 determines that the total operation command amount is within the predetermined range (NO determination in step S31), the floor alignment correction operation is completed.
 これに対して、ステップS31の処理において、動作指令量の合計が所定の範囲外である、すなわち誤差ΔTが予め設定した許容値を超えたとかご側判定部31が判断した場合(ステップS31のYES判定)、かご側判定部31は、ステップS32の処理を行う。 On the other hand, in the process of step S31, when the car side determination unit 31 determines that the total operation command amount is out of the predetermined range, that is, the error ΔT exceeds the preset allowable value (step S31). YES determination), the car side determination unit 31 performs the process of step S32.
 ステップS32の処理では、図6に示すように、かご側判定部31は、算出した動作指令量の合計(誤差ΔT)分、床合わせ装置13を逆方向に動作させる。ここで、逆方向とは、移動量の合計分の方向とは逆の方向であり、移動量の合計が正の値の場合、負の方向に床合わせ装置13を動作させ、移動量の合計が負の値の場合、正の方向に床合わせ装置13を動作させる。正の方向は、例えば、上方向であり、負の方向は、例えば、下方向である。 In the process of step S32, as shown in FIG. 6, the car side determination unit 31 operates the floor alignment device 13 in the opposite direction by the total of the calculated operation command amounts (error ΔT). Here, the reverse direction is the direction opposite to the direction of the total movement amount, and when the total movement amount is a positive value, the floor alignment device 13 is operated in the negative direction and the total movement amount is totaled. When is a negative value, the floor alignment device 13 is operated in the positive direction. The positive direction is, for example, the upward direction, and the negative direction is, for example, the downward direction.
 そのため、床合わせ装置13及びかご室12の床面12aは、予め設定した初期位置T0に戻る。また、かご側判定部31は、ステップS32の処理を実施すると、かご側記憶部32に格納した動作量をリセットする。 Therefore, the floor surface 12a of the floor alignment device 13 and the cab 12 returns to the preset initial position T0. Further, when the process of step S32 is executed, the car side determination unit 31 resets the operation amount stored in the car side storage unit 32.
 これにより、床合わせ補正動作が完了する。その結果、第1反転路100C又は第2反転路100Dから乗りかご2Aが出発する際は、常に床合わせ装置13を初期位置T0から動作させることができる。そして、乗りかご2の床面12aの高さを正確に目的階の床面の高さと一致させることができる This completes the floor alignment correction operation. As a result, when the car 2A departs from the first reversing path 100C or the second reversing path 100D, the floor alignment device 13 can always be operated from the initial position T0. Then, the height of the floor surface 12a of the car 2 can be accurately matched with the height of the floor surface of the target floor.
2-3.初期位置補正動作
 次に、上述したステップS22の処理に示す初期位置補正動作について図7及び図8を参照して説明する。
 図7は、初期位置補正動作を示すフローチャート、図8は、初期位置補正動作を示す概要図である。
2-3. Initial Position Correction Operation Next, the initial position correction operation shown in the process of step S22 described above will be described with reference to FIGS. 7 and 8.
FIG. 7 is a flowchart showing the initial position correction operation, and FIG. 8 is a schematic view showing the initial position correction operation.
 移動量検出部42の計測誤差や、ロープ3の経年変化等により、床合わせ補正動作を実施しても、床合わせ装置13の初期位置T0がずれる場合がある。初期位置補正動作は、初期位置T0のズレを予め設定した初期位置T0に補正する動作である。 The initial position T0 of the floor alignment device 13 may shift even if the floor alignment correction operation is performed due to a measurement error of the movement amount detection unit 42, a secular change of the rope 3, or the like. The initial position correction operation is an operation of correcting the deviation of the initial position T0 to the preset initial position T0.
 図7に示すように、かご側判定部31は、床合わせ装置13の駆動部41を制御し、床合わせ装置13を上方向又は下方向のうちいずれか一方向に動作させる(ステップS41)。次に、かご側判定部31は、可動限界検出部43の検出情報に基づいて、床合わせ装置13が可動限界に到達したか否かを判断する(ステップS42)。そして、かご側判定部31は、床合わせ装置13が可動限界である上部可動限界TMAX又は下部可動限界TMINに到達するまで床合わせ装置13を一方向に動作させる。 As shown in FIG. 7, the car side determination unit 31 controls the drive unit 41 of the floor alignment device 13 to operate the floor alignment device 13 in either the upward direction or the downward direction (step S41). Next, the car side determination unit 31 determines whether or not the floor alignment device 13 has reached the movable limit based on the detection information of the movable limit detection unit 43 (step S42). Then, the car side determination unit 31 operates the floor alignment device 13 in one direction until the floor alignment device 13 reaches the upper movable limit T MAX or the lower movable limit T MIN, which is the movable limit.
 ステップS42の処理において、床合わせ装置13が可動限界である上部可動限界TMAX又は下部可動限界TMINに到達すると(ステップS42のYES判定)、かご側判定部31は、床合わせ装置13の動作を停止させる。次に、かご側判定部31は、床合わせ装置13を可動限界への移動方向とは逆方向に所定の量動作させる(ステップS43)。所定の量は、上部可動限界TMAX又は下部可動限界TMINから予め設定した初期位置T0までの動作量である。この動作量は、かご側記憶部32に格納されている。 In the process of step S42, when the floor alignment device 13 reaches the upper movable limit TMAX or the lower movable limit TMIN which is the movable limit (YES determination in step S42), the car side determination unit 31 operates the floor alignment device 13. To stop. Next, the car side determination unit 31 operates the floor alignment device 13 by a predetermined amount in the direction opposite to the moving direction to the movable limit (step S43). The predetermined amount is the amount of movement from the upper movable limit TMAX or the lower movable limit TMIN to the preset initial position T0. This amount of operation is stored in the car side storage unit 32.
 図8に示す例では、床合わせ装置13を上方向に動作させて上部可動限界TMAXまで移動させているため、ステップS43の処理において下方向に所定の量、動作させる。これにより、床合わせ装置13の位置を予め設定した初期位置T0に戻すことができ、初期位置補正動作が終了する。 In the example shown in FIG. 8, since the floor aligning device 13 is operated in the upward direction it is moved to the upper movable limit T MAX, the predetermined amount downward in the processing of step S43, to operate. As a result, the position of the floor alignment device 13 can be returned to the preset initial position T0, and the initial position correction operation is completed.
 また、ステップS42の処理において、床合わせ装置13が可動限界に到達したか否かの判断を、エンコーダーである移動量検出部42の検出情報ではなく、移動量検出部42とは別の可動限界検出部43の検出情報を用いている。これにより、移動量検出部42による検出誤差の影響を受けることなく、床合わせ装置13が可動限界に到達したことを正確に判断することができる。さらに、可動限界検出部43として機械式のセンサを用いることで、検出精度を向上させることができる。 Further, in the process of step S42, the determination of whether or not the floor alignment device 13 has reached the movable limit is determined not by the detection information of the moving amount detecting unit 42, which is an encoder, but by a movable limit different from that of the moving amount detecting unit 42. The detection information of the detection unit 43 is used. As a result, it is possible to accurately determine that the floor alignment device 13 has reached the movable limit without being affected by the detection error by the movement amount detecting unit 42. Further, by using a mechanical sensor as the movable limit detection unit 43, the detection accuracy can be improved.
 上述したように、本例のエレベーター1は、所定のタイミングで、床合わせ装置13を初期位置T0に戻す床合わせ補正動作と、床合わせ装置13の初期位置T0を予め設定した位置に補正する初期位置補正動作を行っている。これにより、通常運転時に床合わせ装置13が上部可動限界TMAX又は下部可動限界TMINに達し、床合わせ装置13による床合わせ動作が行えなくなることを防止することができる。その結果、床合わせ装置13を正常に動作させることができ、乗りかご2A、2Bが任意の階に停止した際に、乗りかご2A、2Bの床面12aの高さを乗降場120の床面の高さと正確に一致させることができる。 As described above, the elevator 1 of this example has a floor alignment correction operation for returning the floor alignment device 13 to the initial position T0 at a predetermined timing, and an initial correction for the initial position T0 of the floor alignment device 13 to a preset position. The position correction operation is performed. As a result, it is possible to prevent the floor alignment device 13 from reaching the upper movable limit TMAX or the lower movable limit TMIN during normal operation, and the floor alignment device 13 cannot perform the floor alignment operation. As a result, the floor alignment device 13 can be operated normally, and when the car 2A and 2B stop on an arbitrary floor, the height of the floor surface 12a of the car 2A and 2B is set to the floor surface of the boarding / alighting area 120. Can be matched exactly with the height of.
 さらに、床合わせ補正動作及び初期位置補正動作を行う所定のタイミングの一例として、乗りかご2A、2Bが反転路100C、100Dに到着したときを適用している。上述したように、反転路100C、100Dを乗りかご2A、2Bを移動する際、乗りかご2A、2Bには、乗客を載せていない。これにより、床合わせ補正動作及び初期位置補正動作により床面12aが上下方向に移動時に生じる不快感を乗客に与えることがない。 Further, as an example of the predetermined timing for performing the floor alignment correction operation and the initial position correction operation, the case where the cars 2A and 2B arrive at the reversal paths 100C and 100D is applied. As described above, when moving the cars 2A and 2B on the reversing roads 100C and 100D, no passengers are placed on the cars 2A and 2B. As a result, the passenger does not feel uncomfortable when the floor surface 12a moves in the vertical direction due to the floor alignment correction operation and the initial position correction operation.
 また、床合わせ補正動作及び初期位置補正動作を行う所定のタイミングとしては、乗りかご2A、2Bが反転路100C、100Dに到着したときに限定されるものではない。所定のタイミングとしては、例えば、夜間や休日等エレベーター1を利用する乗客がいない時間帯を適用してもよい。あるいは、乗りかご2A、2Bのかご室12に乗客の有無を検出する人検出センサを設け、この人検出センサの乗客有無情報に基づいて、乗客が乗りかご2A、2Bにいないとかご側制御部14が判断した際に、実施してもよい。 Further, the predetermined timing for performing the floor alignment correction operation and the initial position correction operation is not limited to the time when the cars 2A and 2B arrive at the reversal paths 100C and 100D. As the predetermined timing, for example, a time zone in which there are no passengers using the elevator 1 such as at night or on holidays may be applied. Alternatively, a person detection sensor for detecting the presence or absence of a passenger is provided in the car room 12 of the cars 2A and 2B, and based on the passenger presence / absence information of the person detection sensor, the car side control unit indicates that the passenger is not in the cars 2A and 2B. It may be carried out when 14 judges.
 また、床合わせ補正動作及び初期位置補正動作を制御する制御部としてかご側制御部14を適用する例を説明したが、これに限定されるものではなく、制御部としては、塔内側制御部6を適用してもよい。 Further, an example of applying the car side control unit 14 as a control unit for controlling the floor alignment correction operation and the initial position correction operation has been described, but the present invention is not limited to this, and the control unit is the tower inner control unit 6. May be applied.
 本発明は上述しかつ図面に示した実施の形態に限定されるものではなく、請求の範囲に記載した発明の要旨を逸脱しない範囲内で種々の変形実施が可能である。 The present invention is not limited to the embodiments described above and shown in the drawings, and various modifications can be made without departing from the gist of the invention described in the claims.
 上述した実施の形態例では、第1乗りかご2Aと第2乗りかご2Bの2つの乗りかごを有するマルチカーエレベーターを適用したが、乗りかごの数は、2つに限定されるものではなく、乗りかごを3つ以上設けてもよい。 In the above-described embodiment, a multicar elevator having two cars, a first car 2A and a second car 2B, is applied, but the number of cars is not limited to two. Three or more cars may be provided.
 また、マルチカーエレベーターとして、第1移動路100Aでは乗りかご2A、2Bが上昇移動し、第2移動路100Bでは乗りかご2A、2Bが下降移動する循環式のエレベーターとしてもよい。あるいは、乗りかご2A、2Bが第1移動路100A及び第2移動路100Bを上昇と下降の両方向に移動させてもよい。さらに、第1乗りかご2Aが第1移動路100Aのみを昇降移動し、第1乗りかご2Aとロープ3を介して連結された第2乗りかご2Bが第2移動路100Bのみを昇降移動するエレベーターにも適用できるものである。 Further, as a multi-car elevator, a circulation type elevator in which the cars 2A and 2B move up on the first movement path 100A and the cars 2A and 2B move down on the second movement path 100B may be used. Alternatively, the cars 2A and 2B may move the first moving path 100A and the second moving path 100B in both the ascending and descending directions. Further, an elevator in which the first car 2A moves up and down only on the first movement path 100A, and the second car 2B connected to the first car 2A via a rope 3 moves up and down only on the second movement path 100B. It can also be applied to.
 また、エレベーターとしては、一つのかご枠の内部に2つのかご室が上下方向の上部と下部に設置されたエレベーター、いわゆるダブルデッキエレベーターにも適用できるものである。 Also, as an elevator, it can be applied to an elevator in which two car rooms are installed in the upper and lower parts in the vertical direction inside one car frame, so-called double deck elevator.
 なお、本明細書において、「平行」及び「直交」等の単語を使用したが、これらは厳密な「平行」及び「直交」のみを意味するものではなく、「平行」及び「直交」を含み、さらにその機能を発揮し得る範囲にある、「略平行」や「略直交」の状態であってもよい。 Although words such as "parallel" and "orthogonal" have been used in the present specification, these do not mean only strict "parallel" and "orthogonal", but include "parallel" and "orthogonal". Further, it may be in a "substantially parallel" or "substantially orthogonal" state within a range in which the function can be exhibited.
 1…エレベーター、 2A、2B…乗りかご、 3…ロープ、 4…上部プーリ、 5…下部プーリ、 6…塔内側制御部(制御部)、 7A、7B…かご位置検出体、 8A、8B…ドアゾーン検出体、 11…かご枠、 12…かご室、 12a…床面、 13…床合わせ装置、 14…かご側制御部(制御部)、 15…かご位置検出装置、 16…かご内スイッチ、 17…ドアゾーン検出装置、 21…塔内側判定部、 22…塔内側記憶部、 23…駆動制御部、 24…塔内側通信部、 31…かご側判定部、 32…かご側記憶部、 34…かご側通信部、 41…駆動部、 42…移動量検出部、 43…可動限界検出部、 100A、100B…移動路、 100C、100D…反転路、 120…乗降場、 T0…初期位置、 TMAX…上部可動限界(可動限界)、 TMIN…下部可動限界(可動限界) 1 ... Elevator, 2A, 2B ... Car, 3 ... Rope, 4 ... Upper pulley, 5 ... Lower pulley, 6 ... Tower inside control unit (control unit), 7A, 7B ... Car position detector, 8A, 8B ... Door zone Detector, 11 ... Cage frame, 12 ... Cage chamber, 12a ... Floor surface, 13 ... Floor alignment device, 14 ... Cage side control unit (control unit), 15 ... Cage position detection device, 16 ... Cage switch, 17 ... Door zone detection device, 21 ... Tower inside determination unit, 22 ... Tower inside storage unit, 23 ... Drive control unit, 24 ... Tower inside communication unit, 31 ... Car side determination unit, 32 ... Car side storage unit, 34 ... Car side communication Unit, 41 ... Drive unit, 42 ... Movement amount detection unit, 43 ... Movable limit detection unit, 100A, 100B ... Movement path, 100C, 100D ... Reverse path, 120 ... Boarding / alighting area, T0 ... Initial position, TMAX ... Upper movable Limit (movable limit), T MIN ... Lower movable limit (movable limit)

Claims (10)

  1.  ロープに接続されるかご枠と、
     前記かご枠に配置されるかご室と、
     前記かご室を上下方向に移動可能に支持し、前記かご室の床面の高さを調整する床合わせ装置と、
     前記床合わせ装置の駆動を制御する制御部と、を備え、
     前記制御部は、所定のタイミングにおいて、前記床合わせ装置の位置を初期位置に戻す床合わせ補正動作を実施する
     エレベーター。
    The basket frame connected to the rope and
    The car room placed in the car frame and
    A floor alignment device that supports the car chamber so as to be movable in the vertical direction and adjusts the height of the floor surface of the car chamber.
    A control unit that controls the drive of the floor alignment device is provided.
    The control unit is an elevator that performs a floor alignment correction operation that returns the position of the floor alignment device to the initial position at a predetermined timing.
  2.  前記制御部は、
     前記床合わせ補正動作を実施するまでの前記床合わせ装置の移動量を格納する記憶部を有し、
     前記床合わせ補正動作では、前記記憶部に格納された前記移動量に基づいて、前記床合わせ装置の位置を前記初期位置に戻す
     請求項1に記載のエレベーター。
    The control unit
    It has a storage unit that stores the amount of movement of the floor alignment device until the floor alignment correction operation is performed.
    The elevator according to claim 1, wherein in the floor alignment correction operation, the position of the floor alignment device is returned to the initial position based on the movement amount stored in the storage unit.
  3.  前記記憶部に格納された前記移動量は、前記初期位置に対する移動量であり、
     前記制御部は、前記床合わせ補正動作において、前記移動量の合計を算出し、算出した合計分、前記床合わせ装置を前記移動量の合計の方向とは逆方向に移動させる
     請求項2に記載のエレベーター。
    The movement amount stored in the storage unit is a movement amount with respect to the initial position.
    The second aspect of claim 2, wherein the control unit calculates the total of the movement amounts in the floor alignment correction operation, and moves the floor alignment device in the direction opposite to the direction of the total movement amount by the calculated total. Elevator.
  4.  前記制御部は、所定のタイミングにおいて前記床合わせ装置の初期位置を予め設定された初期位置に補正する初期位置補正動作を実施する
     請求項1に記載のエレベーター。
    The elevator according to claim 1, wherein the control unit performs an initial position correction operation for correcting the initial position of the floor alignment device to a preset initial position at a predetermined timing.
  5.  前記制御部は、前記初期位置補正動作では、前記床合わせ装置を可動限界まで動作させ、前記床合わせ装置における前記可動限界までの移動方向とは逆方向に前記床合わせ装置を所定の量動作させる
     請求項4に記載のエレベーター。
    In the initial position correction operation, the control unit operates the floor alignment device to the movable limit, and operates the floor alignment device by a predetermined amount in a direction opposite to the moving direction of the floor alignment device to the movable limit. The elevator according to claim 4.
  6.  前記床合わせ装置は、
     前記床合わせ装置の移動量を検出する移動量検出部と、
     前記床合わせ装置が可動限界に到達したことを検出する可動限界検出部と、を有し、
     前記制御部は、前記初期位置補正動作において、前記可動限界検出部の検出情報に基づいて前記床合わせ装置が可動限界に到達したことを判断する
     請求項5に記載のエレベーター。
    The floor alignment device is
    A movement amount detection unit that detects the movement amount of the floor alignment device, and
    It has a movable limit detection unit that detects that the floor alignment device has reached the movable limit.
    The elevator according to claim 5, wherein the control unit determines that the floor alignment device has reached the movable limit based on the detection information of the movable limit detection unit in the initial position correction operation.
  7.  前記制御部は、前記床合わせ装置への動作指令回数が所定の値以下の場合、前記床合わせ補正動作を実施し、前記床合わせ装置への動作指令回数が所定の値を超えた場合、前記初期位置補正動作を実施する
     請求項4から6のいずれか1項に記載のエレベーター。
    The control unit executes the floor alignment correction operation when the number of operation commands to the floor alignment device is equal to or less than a predetermined value, and when the number of operation commands to the floor alignment device exceeds a predetermined value, the control unit performs the floor alignment correction operation. The elevator according to any one of claims 4 to 6, which performs an initial position correction operation.
  8.  前記所定のタイミングは、前記かご室に乗客が乗っていないときである
     請求項1から7のいずれか1項に記載のエレベーター。
    The elevator according to any one of claims 1 to 7, wherein the predetermined timing is when a passenger is not in the car room.
  9.  建築構造物に設けた移動路を昇降移動し、前記ロープを介して連結される複数の乗りかごを備え、
     前記乗りかごは、前記かご枠、前記かご室及び前記床合わせ装置を有する
     請求項1から8のいずれか1項に記載のエレベーター。
    It is equipped with a plurality of cars that move up and down the movement path provided in the building structure and are connected via the rope.
    The elevator according to any one of claims 1 to 8, wherein the car has the car frame, the car room, and the floor alignment device.
  10.  前記建築構造物には、前記乗りかごの昇降移動が上昇から下降、又は下降から上昇に反転する反転路が設けられ、
     前記所定のタイミングは、前記乗りかごが前記反転路を移動するときである
     請求項9に記載のエレベーター。
    The building structure is provided with a reversing path in which the ascending / descending movement of the car is reversed from ascending to descending or descending to ascending.
    The elevator according to claim 9, wherein the predetermined timing is when the car moves on the reversing road.
PCT/JP2019/049118 2019-12-16 2019-12-16 Elevator WO2021124381A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/049118 WO2021124381A1 (en) 2019-12-16 2019-12-16 Elevator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/049118 WO2021124381A1 (en) 2019-12-16 2019-12-16 Elevator

Publications (1)

Publication Number Publication Date
WO2021124381A1 true WO2021124381A1 (en) 2021-06-24

Family

ID=76478635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049118 WO2021124381A1 (en) 2019-12-16 2019-12-16 Elevator

Country Status (1)

Country Link
WO (1) WO2021124381A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008094597A (en) * 2006-10-16 2008-04-24 Hitachi Ltd Multi-car elevator
JP2012166947A (en) * 2011-02-17 2012-09-06 Hitachi Ltd Elevator with floor level adjustment mechanism
JP2012188184A (en) * 2011-03-09 2012-10-04 Hitachi Ltd Double-deck elevator and method of adjusting car interval for the same
JP2013043714A (en) * 2011-08-22 2013-03-04 Mitsubishi Electric Building Techno Service Co Ltd Elevator
WO2014184926A1 (en) * 2013-05-16 2014-11-20 三菱電機株式会社 Elevator device
JP2015147645A (en) * 2014-02-06 2015-08-20 三菱電機株式会社 Door control device of elevator and door control method of the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008094597A (en) * 2006-10-16 2008-04-24 Hitachi Ltd Multi-car elevator
JP2012166947A (en) * 2011-02-17 2012-09-06 Hitachi Ltd Elevator with floor level adjustment mechanism
JP2012188184A (en) * 2011-03-09 2012-10-04 Hitachi Ltd Double-deck elevator and method of adjusting car interval for the same
JP2013043714A (en) * 2011-08-22 2013-03-04 Mitsubishi Electric Building Techno Service Co Ltd Elevator
WO2014184926A1 (en) * 2013-05-16 2014-11-20 三菱電機株式会社 Elevator device
JP2015147645A (en) * 2014-02-06 2015-08-20 三菱電機株式会社 Door control device of elevator and door control method of the same

Similar Documents

Publication Publication Date Title
KR101487641B1 (en) Double deck elevator
US6161652A (en) Method and apparatus for controlling elevator cars in a common sling
JP5268480B2 (en) Elevator parking system
JP6702575B1 (en) Elevator operating method and operating system
US9963321B2 (en) Elevator device
JP5673368B2 (en) Double deck elevator
WO2021124381A1 (en) Elevator
CN112551282B (en) Controlling movement of an elevator car of an elevator system
JP6419638B2 (en) Car elevator
JP2010208781A (en) Elevator
JP5550313B2 (en) Double deck elevator system
JP2012162342A (en) Elevator safety apparatus, elevator, and method for controlling the elevator
KR20190050451A (en) Parking system with intelligent vehicle transfer robot and parking system with intelligent vehicle transfer robot
JP2001019287A (en) Control device of movable double deck elevator
JP6332750B2 (en) Elevator control device
JP6702574B1 (en) Elevator adjustment method and adjustment system
US20190389695A1 (en) Elevator system
JP4194864B2 (en) Double deck elevator
JP7249529B1 (en) movement system
JP2004168530A (en) Automatic landing learning device and automatic landing learning method of movable type double-deck elevator
JP7215549B1 (en) elevator maintenance system
JP4255722B2 (en) Control device for double deck elevator
KR102610191B1 (en) vertical transport system for robot
KR20180053047A (en) Circulation type elevator system
WO2023144985A1 (en) Elevator control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19957015

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19957015

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP