WO2021123689A1 - Dispositif de traitement thermique par laser d'un revêtement déposé sur un substrat; substrat correspondant - Google Patents

Dispositif de traitement thermique par laser d'un revêtement déposé sur un substrat; substrat correspondant Download PDF

Info

Publication number
WO2021123689A1
WO2021123689A1 PCT/FR2020/052566 FR2020052566W WO2021123689A1 WO 2021123689 A1 WO2021123689 A1 WO 2021123689A1 FR 2020052566 W FR2020052566 W FR 2020052566W WO 2021123689 A1 WO2021123689 A1 WO 2021123689A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
travel
speed
coating
scanning
Prior art date
Application number
PCT/FR2020/052566
Other languages
English (en)
Inventor
Jean-Baptiste LAUDEREAU
Daniele Costantini
Original Assignee
Saint-Gobain Glass France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Glass France filed Critical Saint-Gobain Glass France
Priority to US17/787,112 priority Critical patent/US20230045341A1/en
Priority to EP20848861.9A priority patent/EP4076825A1/fr
Publication of WO2021123689A1 publication Critical patent/WO2021123689A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • B23K26/0676Dividing the beam into multiple beams, e.g. multifocusing into dependently operating sub-beams, e.g. an array of spots with fixed spatial relationship or for performing simultaneously identical operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • B23K26/0821Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head using multifaceted mirrors, e.g. polygonal mirror
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0838Devices involving movement of the workpiece in at least one axial direction by using an endless conveyor belt
    • B23K26/0846Devices involving movement of the workpiece in at least one axial direction by using an endless conveyor belt for moving elongated workpieces longitudinally, e.g. wire or strip material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/355Texturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • B23K26/402Removing material taking account of the properties of the material involved involving non-metallic material, e.g. isolators
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/06Surface treatment of glass, not in the form of fibres or filaments, by coating with metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/40Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal all coatings being metal coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/34Coated articles, e.g. plated or painted; Surface treated articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/30Organic material
    • B23K2103/42Plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/54Glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • C03C2218/328Partly or completely removing a coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • C03C2218/328Partly or completely removing a coating
    • C03C2218/33Partly or completely removing a coating by etching

Definitions

  • the present invention relates to the field of substrate processing devices.
  • lasers in the context of glass processes in order to carry out the heat treatment of the coating.
  • one or more laser beams are used to form a line making it possible to heat treat a substrate.
  • a laser for etching the substrate in particular for marking.
  • a laser beam is focused on the substrate to etch it. This engraving can be used for identification.
  • one solution consists in reducing the shielding effect of the metallic coatings. This reduction is obtained by laser engraving. This laser engraving consists of locally engraving the coating to reduce the shield effect.
  • the present invention therefore proposes to resolve these drawbacks by providing a heat treatment device making it possible to treat a large substrate surface for industrial use.
  • the invention relates to a device for thermal treatment of a coating deposited on a substrate comprising: at least one processing module opposite which the substrate can run, said processing module comprising at least one laser source generating a beam energy laser E, a splitter module making it possible to divide the beam into a multitude of secondary beams having an energy
  • scanning means allowing each secondary beam to move according to the direction of travel according to an amplitude and a speed and / or according to a direction orthogonal to the direction of travel according to an amplitude and a speed; displacement means capable of creating in operation a relative displacement movement between the substrate and the or each processing module; Characterized in that the heat treatment device is arranged for, with a speed of the displacement means of at least 3 m / min and a speed of the scanning means according to the direction of travel and / or the direction orthogonal to the direction of travel of at least 30m / min, treat the coating in the form of a number of lines equal to the
  • the heat treatment device comprises at least one engraving module for engraving in the direction of travel and at least one engraving module for engraving in the direction orthogonal to the direction of travel.
  • At least one divider module comprises at least one diffractive optic.
  • the divider module comprises at least one prism.
  • the scanning means comprise at least one scanning element comprising at least optical unit.
  • the optical unit comprises at least one rotating mirror or at least one polygonal wheel. According to one example, each optical unit is used for the displacement of a secondary beam.
  • each optical unit is used for the displacement of at least two secondary beams.
  • the scanning means comprise a plurality of scanning elements.
  • the scanning means allow each secondary beam to move on the surface of the substrate, in the direction of travel and / or the direction orthogonal to the direction of travel, at a speed greater than 1.5 m / s, preferably greater than 10 m / s, more preferably greater than
  • the scanning means allow each secondary beam to move on the surface of the substrate, in the direction of travel and / or the direction orthogonal to the direction of travel, at a speed less than 6000 m / s
  • the speed ratio between the speed of displacement of the substrate and the speed according to the direction of travel and / or the direction orthogonal to the direction of travel is greater than 10, preferably greater than 50.
  • the etching perimeter of each scanning element has an amplitude a1 greater than 100 mm, preferably greater than 150 mm.
  • the etching perimeter of each scanning element has an amplitude a2 greater than 100 mm, preferably greater than 150 mm.
  • the device is capable of treating an area with a width greater than 1 m, preferably 1.5 m and even more preferably 3 m.
  • the invention further relates to a substrate on which a coating is deposited, characterized in that said coating is treated by the device according to the invention.
  • said substrate is glass.
  • said substrate is a polymer
  • the coating is metallic.
  • -the fig. 1a and 1b are schematic representations of a processing device according to a first embodiment of the invention
  • -the fig. 2 is a schematic representation of a processing device according to a second embodiment of the invention.
  • -the fig. 3 is a schematic representation of a variant of the processing device
  • -the fig. 4 is a schematic representation of a processing device according to a third embodiment of the invention.
  • -the fig. 5 to 7 are diagrams relating to the number of achievable lines.
  • a laser processing device 1 comprises displacement means 2 allowing the conveying of a substrate S as visible in FIG. 1a.
  • This substrate S is a substrate of the glass type or of the polymer type, transparent or not, on which a coating is deposited.
  • This coating is metallic or not.
  • This substrate is preferably a large substrate at least 1.5m wide I and 2m long L, preferably 3m wide and 6m long.
  • This coating comprises at least one layer of a metallic material.
  • the displacement speed V3 is at least 3 m / min, preferably at least 5 m / min or even 10 m / min.
  • the laser treatment device further comprises a treatment unit 20 for treating the surface of the coating.
  • a treatment unit 20 for treating the surface of the coating By surface treatment, it is understood processes of modification of the material affecting depths less than 10% of the thickness of the treated product.
  • the surface treatment can comprise, for example, ablation, annealing, marking, texturing, a chemical reaction.
  • This processing unit is used to locally etch the coating over a zone Z of width 11 and length L1.
  • the width 11 is equal to the width of the substrate and the length L1 is equal to the length of the substrate.
  • the processing unit is able to treat zone Z all at once.
  • the processing unit 20 comprises a laser source 22 providing a primary laser beam F of energy E.
  • the beam F has the shape of a point, that is to say say that its surface is less than 31000 ⁇ m 2 and / or that its shape is cylindrical symmetry.
  • This primary laser beam is directed towards a divider module 23.
  • This divider module 23 is used to split this primary beam F into a multitude of secondary beams f.
  • This divider module 23 comprises at least one optical divider 24 provided with at least one beam splitter element (for example, without limitation, a prism or semi-reflecting mirror or a diffractive element) for separating the primary beam F into at least one. minus two parts.
  • the secondary beams f are then sent to scanning means 25, the scanning means 25 comprise at least one scanning element 26.
  • Each secondary beam f is directed towards a scanning element 26.
  • This scanning element 26 is used in order to control the displacement of the secondary beam.
  • the scanning element 26 is the element which makes it possible to direct the laser beam f to carry out the engraving.
  • This beam f used for engraving has the shape of a point. By shape of a point, it is understood that the beam F has cylindrical symmetry.
  • the scanning element 26 comprises, for example and without limitation, at least one optical unit 27 into which a secondary beam f can enter.
  • the optical unit 27 used comprises at least one mobile optical part (for example, without limitation, a rotating mirror or a polygonal wheel or a translation stage) making it possible to spatially scan the laser point of the secondary beam on the surface of the moving substrate.
  • a mobile optical part for example, without limitation, a rotating mirror or a polygonal wheel or a translation stage
  • a polygonal wheel allows a sweep speed of around 6000m / s.
  • the optical unit 27 used also comprises at least one lens used to focus the beam at the output of the optical unit 27.
  • the optical unit 27 comprises, alternatively, several lenses or other optical parts (for example without limitation mirrors or elements of beam shaping).
  • the optical unit 27 allows the output beam from the optical unit to move along a certain perimeter. This limitation comes, for example, from the scanning amplitude of the moving parts or from the opening of the lens.
  • the focal point of the secondary beam f at the output of said optical unit 27 is able to move by an amplitude a1 in the direction of travel at a speed V1.
  • This amplitude a1 has a value greater than 100 mm, preferably greater than 150 mm.
  • the focal point of the secondary beam f at the output of said optical unit 27 is able to move in a perimeter of amplitude a2 in the direction perpendicular to the direction of travel and with a speed V2.
  • This amplitude a2 has a value greater than 100 mm, preferably greater than 150 mm.
  • the scanning element 26 can also scan along two axes: an axis parallel to the direction of travel and an axis orthogonal to the direction of travel.
  • the secondary beam can move in a perimeter of amplitude a1 in the direction of travel of the substrate with a speed V1 and in a perimeter of amplitude a2 in the direction perpendicular to the direction of travel of the substrate with a speed V2.
  • This third embodiment advantageously makes it possible to have a secondary beam f at the output of the optical unit 27 used to etch several parallel lines.
  • the speeds V1 and V2 may or may not be identical.
  • the scanning element 26 makes it possible to etch an M pattern comprising an N number of beams.
  • the divider module 23 comprises a plurality of identical or standard optical dividers 24 mounted in cascade.
  • an optical splitter 24 allowing the creation of nine secondary beams f from a primary beam by a two-stage system comprising on the first stage a standard divider 24 allowing to create three so-called intermediate beams from a primary beam F, each intermediate beam entering a standard splitter 24 making it possible to create three secondary beams from an intermediate beam, ie a total of nine secondary beams.
  • This alternative advantageously makes it possible to use standard parts which can be replaced if necessary.
  • the divider module 23 generates a plurality of secondary beams f, these secondary beams f are grouped together in groups of at least two to enter a scanning element 26.
  • this third embodiment is characterized by the use of scanning elements 26 capable of handling at least two incoming beams.
  • said scanning element 26 comprises at least two optical units 27, each optical unit 27 being able to move the secondary beams f, at least in the direction of travel in a perimeter of amplitude a1.
  • each optical unit 27 is able to further move the secondary beams f in a direction orthogonal to the direction of travel in a perimeter of amplitude a2.
  • This preference makes it possible to create a pattern M comprising a number n of lines and therefore to increase the number of engraved lines.
  • each secondary beam f coming from the divider module 23 enters a scanning element 26 and more particularly an optical unit 27 of said scanning element 26.
  • This third embodiment advantageously makes it possible to reduce the number of scanning elements 26.
  • the plurality of secondary beams can enter a scanning element 26, said scanning element 26 having only one optical block 27 capable of scanning a plurality of secondary beams f simultaneously.
  • this optical unit 27 could have mobile optical elements sufficiently wide to capture all the secondary beams f entering said optical unit 27 in order to move them at the same time.
  • said optical unit 27 could benefit from shutter means making it possible to select the secondary beam to be moved.
  • said optical unit 27 is able to further move the secondary beams f in a direction orthogonal to the direction of travel in a perimeter of amplitude a2. This preference makes it possible to create a pattern M comprising a number n of lines and therefore to increase the number of engraved lines.
  • This alternative embodiment advantageously makes it possible to reduce the number of optical units 27.
  • the processing device 1 according to the invention therefore makes it possible to etch a plurality of parallel lines n on the coating of a substrate S.
  • a second device treatment 1 according to the invention can be used.
  • This second processing device 1 according to the invention is arranged to engrave parallel lines but in a direction different from the direction of travel.
  • the lines engraved by the second processing device 1 according to the invention are orthogonal to the direction of travel. This arrangement makes it possible to produce a grid pattern.
  • each processing device 1 comprises several processing units 20 arranged in parallel to process the substrate in one direction: the direction of travel and / or a direction orthogonal to the direction of travel.
  • the architecture used for the processing unit 20 makes it possible to define the number of lines that can be engraved, there are other parameters on which to play in order to increase the number of lines that can be engraved.
  • the number N of secondary beams to be supplied by the divider depends on the width 11 of the zone to be treated, on the spacing e between the desired engravings and the energy required in for each engraving.
  • each secondary beam f exiting from an optical unit 27 of the scanning element 26 must have sufficient power to succeed in etching.
  • the number of beams N that can be produced depends firstly on the theoretical number Nt of possible beams, that is to say on the energy E supplied by the source, taking into account the different blocks of the device, divided by the energy required En for etching for an outgoing f secondary beam.
  • the number of secondary beams f that can be produced also depends on the practical number Np of possible beams which depends on the width 11 of the area to be treated and on the spacing e, namely that the number of beams is the result of the width ratio 11 by the distance e between two lines.
  • each scanning element 26 makes it possible to engrave several lines, other parameters come into play.
  • the engraving of the zone Z consists in that each scanning element 26 is able to engrave a pattern M, containing a number N of preferentially parallel lines, each line has a length t1 and is spaced apart. of a another line with a distance t2.
  • the pattern M is repeated, along the length L1 of the zone Z, to form parallel lines, preferably continuous.
  • the length t1 of the line, the distance t2 between two lines, the scrolling speed V3, the amplitude a1, a2 of the scanning element 26, the scanning speed V1, V2 as well as the energy E of the source are parameters to be taken into account.
  • each of these parameters is useful for determining the maximum number of lines that can be engraved in a pattern M and these parameters are interrelated.
  • the distance t2 between two lines, the amplitude a1, a2 of the scanning element 26 as well as the energy E of the source are fixed parameters (amplitude, energy of the source) or fixed (distance t2 ).
  • the parameters of scrolling speed, of length t1 of the line or of scanning speed V1, V2 are the parameters on which it is necessary to act. More precisely, the length t1 of the line and the ratio between the scanning speed V1, V2 and the scrolling speed V3 are the parameters to be adjusted.
  • the production of the pattern M composed of a number N of lines, preferably parallel, requires the production of said number N of lines in a period of time such that the production of the following pattern M makes it possible to have continuous M patterns.
  • the time available for making the pattern M depends on the running speed V3 and the length of the line t1, the substrate S running by a length equal to the length of the line t1 in a period of time equal to the length line t1 divided by the scrolling speed.
  • the production of the pattern M consists in alternating the engraving of a line with a displacement of the secondary beam f to reach the starting position of the engraving of the following line. These displacements, in addition to the lines t1 to be engraved, increase the distance to be traveled by the laser beam to produce said pattern.
  • FIG. 7 shows a curve of the number of lines as a function of the length of the line with a curve 1 for a glass substrate 3m wide and a running speed of 10m / min and one curve 2 for a plastic substrate 1.5m wide and a running speed of 20m / min. If the length of the line increases then the distance to be traveled by the beam to engrave a line and move to the starting position of the engraving of the next line is also likely to increase. If the scanning speed (s) V1, V2 are greater than that of travel V3 of the substrate S, the scanning can then potentially take enough advance on the substrate to etch more lines, within the limit of the amplitude a1 of the perimeter.
  • an increase in the scanning speed (s) V1, V2 results in an increase in the number N of lines per pattern M. if the scanning speed (s) V1, V2 increase, then the device 1 is able to engrave a line faster and move to the starting position of the engraving of the next line more quickly. A larger number N of lines is possible.
  • an increase in the scrolling speed V3 results in a decrease in the number N of lines per pattern M.
  • the scrolling speed increases, then the allotted time lapse for the realization of the pattern M decreases.
  • the scanning speed (s) V1, V2 are fixed, then the number N of achievable lines decreases.
  • the idea is thus to have the possibility, with a processing module configuration 20, of generating the maximum number of lines in order to contain the number of processing modules 20 of the same configuration to be used.
  • the optical unit 27 serves to artificially create more secondary beams f since the secondary beams f entering said optical unit 27 is used to create a multitude of parallel lines.
  • the greater the speed of the scanning element 26 compared to the running speed the more the scanning element 26 will be able to carry out lines in the allotted time.
  • FIGS. 5 and 6 Two diagrams, visible in FIGS. 5 and 6, are produced on the number of possible lines according to the ratio between the scanning speed (noted V) and the scrolling speed (noted v) (FIG. 5) or according to of the length of the engraved line for different values of this ratio (figure 6). These diagrams are produced for a spacing between two lines of 3mm and an amplitude a1, a2 of 150mm. These diagrams show that the more the ratio between the scanning speed and the scrolling speed increases, the more the number N of lines per pattern M increases. Moreover, it has been observed that with the variation of the length t1 of the line, there is a limit beyond which there is saturation, i.e. it is no longer possible to increase the number of lines.
  • the scanning means are such that the scanning speed is between 1.5 and 30m / s, that the length of the line varies between 10 and 50mm and that the ratio between the scanning speed and the running speed is at least 10, preferably 20 and even more preferably 50. This makes it possible to have a treatment device which processes between 3 and 10 m 2 per minute.
  • a laser developing an energy of 600 ⁇ J on a coating comprise a stack provided with two silver-based layers on a glass substrate with a width of 3 m running at 10 m / min, the coating requiring an energy of 4 ⁇ J to be engraved, it is possible to obtain, for a speed of movement of the optical unit of 20m / s on an amplitude a1, a2 of 150mm a grid of 3mm on the side, each optical unit in which a laser beam enters being suitable to generate 8 parallel lines.
  • 7 processing modules 20 should be used.
  • each optical unit into which a laser beam enters being able to generate 4 parallel lines.
  • 4 processing modules 20 should be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Laser Beam Processing (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

La présente invention concerne un dispositif de traitement thermique (1) d'un revêtement déposé sur un substrat (S) comprenant au moins un module de traitement (20) en regard duquel le substrat (S) peut défiler, ledit module de traitement (20) comprenant au moins une source laser générant un faisceau laser (F) d'énergie donnée, un module diviseur permettant de diviser le faisceau (F) en une multitude de faisceaux secondaires ayant une énergie permettant de traiter le revêtement ayant la forme d'un point, des moyens de balayage permettant à chaque faisceau secondaire de se déplacer selon la direction de défilement selon une amplitude et une vitesse et/ou selon une direction orthogonale à la direction de défilement selon une amplitude et une vitesse, des moyens de déplacement (2) aptes à créer en fonctionnement un mouvement de déplacement relatif entre le substrat (S) et le ou chaque module de traitement (20), où le dispositif de traitement thermique (1) est agencé pour, avec une vitesse des moyens de déplacement (2) et une vitesse des moyens de balayage selon la direction de défilement et/ou la direction orthogonale à la direction de défilement, traiter le revêtement sous la forme d'un 1 nombre de trait égal au rapport entre l'énergie du faisceau (F) et l'énergie permettant de traiter le revêtement par un faisceau secondaires, selon au moins la direction de défilement ou une direction orthogonale à la direction de défilement.

Description

DISPOSITIF DE TRAITEMENT THERMIQUE PAR LASER D'UN REVÊTEMENT DÉPOSÉ SUR UN SUBSTRAT ; SUBSTRAT CORRESPONDANT
La présente invention est relative au domaine des dispositifs de traitement de substrat.
ART ANTÉRIEUR
Actuellement, il est connu d'utiliser des lasers dans le cadre de procédés verriers afin de faire du traitement thermique de revêtement. Dans ce cas, un ou des faisceaux lasers sont utilisés pour former une ligne permettant de traiter thermiquement un substrat. Il est également connu d'utiliser un laser pour faire de la gravure de substrat notamment pour faire du marquage. Dans ce cas, un faisceau laser est focalisé sur le substrat pour le graver. Cette gravure peut être utilisée dans le cadre d'une identification.
Il existe aussi une autre application pour la gravure laser dans le domaine des substrats verriers. Cette application concerne la gravure de revêtements métalliques pour des applications de transmissions de signaux électromagnétiques, par exemple ceux utilisés dans les télécommunications. En effet, les revêtements comprenant une superposition de couche notamment métallique agissent comment des boucliers empêchant la bonne circulation des signaux radioélectriques. Or, ces signaux radioélectriques sont devenus très populaires car ils permettent de transporter une quantité élevée d'informations comme du divertissement mais aussi des contenus utiles comme la navigation ou les télécommunications.
Il devient donc nécessaire de faire en sorte que les substrats verriers ne fassent pas obstacle à la transmission de données via des signaux radioélectriques. Pour cela, une solution consiste à diminuer l'effet bouclier des revêtements métalliques. Cette diminution est obtenue par gravure laser. Cette gravure laser consiste à graver localement le revêtement pour diminuer l'effet bouclier.
Or, aujourd'hui, il est nécessaire de trouver un procédé permettant de traiter un substrat revêtu avec une cadence industrielle.
RÉSUMÉ DE L'INVENTION La présente invention se propose donc de résoudre ces inconvénients en fournissant un dispositif de traitement thermique permettant de traiter une surface de substrat importante pour une utilisation industrielle.
A cet effet, l'invention concerne un dispositif de traitement thermique d'un revêtement déposé sur un substrat comprenant : au moins un module de traitement en regard duquel le substrat peut défiler, ledit module de traitement comprenant au moins une source laser générant un faisceau laser d'énergie E, un module diviseur permettant de diviser le faisceau en une multitude de faisceaux secondaires ayant une énergie En permettant de traiter le revêtement ayant la forme d'un point, des moyens de balayage permettant à chaque faisceau secondaire de se déplacer selon la direction de défilement selon une amplitude et une vitesse et/ou selon une direction orthogonale à la direction de défilement selon une amplitude et une vitesse ; des moyens de déplacement aptes à créer en fonctionnement un mouvement de déplacement relatif entre le substrat et le ou chaque module de traitement; Caractérisé en ce que le dispositif de traitement thermique est agencé pour, avec une vitesse des moyens de déplacement d'au moins 3m/min et une vitesse des moyens de balayage selon la direction de défilement et/ou la direction orthogonale à la direction de défilement d'au moins 30m/min, traiter le revêtement sous la forme d'un nombre de trait égal au rapport entre l'énergie E du faisceau et l'énergie En permettant de traiter le revêtement par un faisceau secondaires, selon au moins la direction de défilement ou une direction orthogonale à la direction de défilement, et sur une surface d'au moins 10m2/min.
Selon un exemple, le dispositif de traitement thermique comprend au moins un module de gravure pour graver selon la direction de défilement et au moins un module de gravure pour graver selon la direction orthogonale à la direction de défilement.
Selon un exemple, au moins un module diviseur comprend un au moins une optique diffractive.
Selon un exemple, le module diviseur comprend un au moins un prisme.
Selon un exemple, les moyens de balayages comprennent au moins un élément de balayage comprenant au moins bloc optique.
Selon un exemple, le bloc optique comprend au moins un miroir rotatif ou au moins une roue polygonale. Selon un exemple, chaque bloc optique est utilisé pour le déplacement d'un faisceau secondaire.
Selon un exemple, chaque bloc optique est utilisé pour le déplacement d'au moins deux faisceaux secondaires.
Selon un exemple, les moyens de balayage comprennent une pluralité d'éléments de balayage.
Selon un exemple, les moyens de balayage permettent à chaque faisceau secondaire de se déplacer à la surface du substrat, selon la direction de défilement et/ou la direction orthogonale à la direction de défilement, à une vitesse supérieure à 1.5 m/s, préférentiellement supérieure à 10 m/s, plus préférentiellement supérieure à
20 m/s.
Selon un exemple, les moyens de balayage permettent à chaque faisceau secondaire de se déplacer à la surface du substrat, selon la direction de défilement et/ou la direction orthogonale à la direction de défilement, à une vitesse inférieure à 6000 m/s
Selon un exemple, le rapport des vitesses entre la vitesse de déplacement du substrat et la vitesse selon la direction de défilement et/ou la direction orthogonale à la direction de défilement est supérieur à 10, préférentiellement supérieur à 50.
Selon un exemple, le périmètre de gravure de chaque élément de balayage a une amplitude a1 supérieure à 100 mm, préférentiellement supérieure à 150 mm.
Selon un exemple, le périmètre de gravure de chaque élément de balayage a une amplitude a2 supérieur à 100 mm, préférentiellement supérieure à 150 mm.
Selon un exemple, le dispositif est capable de traiter une zone de largeur supérieure à 1 m, de préférence 1.5m et encore plus de préférence 3m.
L'invention concerne en outre un substrat sur lequel un revêtement est déposé, caractérisé en ce que ledit revêtement est traité parie le dispositif selon l'invention. Selon un exemple, ledit substrat est du verre.
Selon un exemple, ledit substrat est un polymère.
Selon un exemple, le revêtement est métallique.
DESCRIPTION DES FIGURES D'autres particularités et avantages ressortiront clairement de la description qui en est faite ci-après, à titre indicatif et nullement limitatif, en référence aux dessins annexés, dans lesquels :
-les fig. 1a et 1b sont des représentations schématiques d'un dispositif de traitement selon un premier mode de réalisation de l'invention;
-la fig. 2 est une représentation schématique d'un dispositif de traitement selon un second mode de réalisation de l'invention;
-la fig. 3 est une représentation schématique d'une variante du dispositif de traitement;
-la fig. 4 est une représentation schématique d'un dispositif de traitement selon un troisième mode de réalisation de l'invention;
-les fig. 5 à 7 sont des diagrammes portant sur le nombre de traits réalisables.
DESCRIPTION DÉTAILLÉE DE L'INVENTION
Un dispositif de traitement laser 1 comprend des moyens de déplacement 2 permettant le convoyage d'un substrat S comme visible à la figure 1a. Ce substrat S est un substrat du type verrier ou du type polymère, transparent ou non, sur lequel un revêtement est déposé. Ce revêtement est métallique ou non. Ce substrat est, de façon préférée, un substrat de grande taille d'au moins 1 .5m de large I et 2m de long L, de préférence 3m de large et 6m de long. Ce revêtement comprend au moins une couche d'un matériau métallique.
La vitesse de déplacement V3 est d'au moins 3m/min, préférentiellement au moins 5 m/min voire 10 m/min.
Le dispositif de traitement laser comprend en outre une unité de traitement 20 pour le traitement de la surface du revêtement. Par traitement de surface, il est entendu des procédés de modification de la matière affectant des profondeurs inférieures à 10% de l'épaisseur du produit traité. De manière non exhaustive, le traitement de surface peut comprendre par exemple de l'ablation, du recuit, du marquage, de la texturation, une réaction chimique.
Cette unité de traitement est utilisée pour graver localement le revêtement sur une zone Z de largeur 11 et de longueur L1. Idéalement, la largeur 11 est égale à la largeur du substrat et la longueur L1 est égale à la longueur du substrat. Astucieusement selon l'invention, l'unité de traitement est apte à traiter la zone Z en une seule fois.
Dans un premier mode de réalisation visible à la figure 1b, l'unité de traitement 20 comprend une source laser 22 fournissant un faisceau laser primaire F d'énergie E. Le faisceau F à la forme d'un point c'est-à-dire que sa surface est inférieure à 31000μm2 et/ou que sa forme est à symétrie cylindrique. Ce faisceau laser primaire est dirigé vers un module diviseur 23. Ce module diviseur 23 est utilisé pour éclater ce faisceau primaire F en une multitude de faisceaux secondaires f. Ce module diviseur 23 comprend au moins un diviseur optique 24 muni d'au moins un élément séparateur de faisceau (par exemple, de façon non limitative, un prisme ou miroir semi- réfléchissant ou un élément diffractif) pour séparer le faisceau primaire F en au moins deux parties. Les faisceaux secondaires f sont ensuite envoyés dans des moyens de balayage 25, les moyens de balayage 25 comprennent au moins un élément de balayage 26.
Chaque faisceau secondaire f est dirigé vers un élément de balayage 26. Cet élément de balayage 26 est utilisé afin de contrôler le déplacement du faisceau secondaire. En effet, l'élément de balayage 26 est l'élément qui permet de diriger le faisceau f laser pour opérer la gravure. Ce faisceau f utilisé pour la gravure a une forme de point. Par forme d'un point, il est entendu que le faisceau F est à symétrie cylindrique. L'élément de balayage 26 comprend, par exemple et de façon non limitative, au moins un bloc optique 27 dans lequel un faisceau secondaire f peut entrer.
Le bloc optique 27 utilisé comprend au moins une partie optique mobile (par exemple de façon non limitative un miroir en rotation ou une roue polygonale ou une platine de translation) permettant de balayer spatialement le point laser du faisceau secondaire sur la surface du substrat en défilement. Par exemple, une roue polygonale permet une vitesse de balayage d'environ 6000m/s.
Le bloc optique 27 utilisé comprend aussi au moins une lentille utilisée pour focaliser le faisceau en sortie du bloc optique 27. Le bloc optique 27 comprend, alternativement, plusieurs lentilles ou autres pièces optiques (par exemple de façon non limitative des miroirs ou des éléments de mise en forme de faisceau).
Selon l'invention, le bloc optique 27 permet au faisceau de sortie du bloc optique de se déplacer selon un certain périmètre. Cette limitation vient par exemple de l'amplitude de balayage des parties mobiles ou de l'ouverture de la lentille. Dans un premier mode de réalisation de l'invention, le point de focalisation du faisceau secondaire f en sortie dudit bloc optique 27 est apte à se déplacer d'une amplitude a1 selon la direction de défilement a une vitesse V1 . Cette amplitude a1 a une valeur supérieure à 100 mm, préférentiellement supérieure à 150 mm.
Dans un second mode de réalisation de l'invention, le point de focalisation du faisceau secondaire f en sortie dudit bloc optique 27 est apte à se déplacer dans un périmètre d'amplitude a2 selon la direction perpendiculaire à la direction de défilement et avec une vitesse V2. Cette amplitude a2 a une valeur supérieure à 100 mm, préférentiellement supérieure à 150 mm.
Dans un troisième mode de réalisation visible à la figure 2, l'élément de balayage 26 peut, en outre, de balayer selon deux axes : un axe parallèle à la direction de défilement et un axe orthogonal à la direction de défilement. Dans ce cas, le faisceau secondaire peut se déplacer dans un périmètre d'amplitude a1 dans la direction de défilement du substrat avec une vitesse V1 et dans un périmètre d'amplitude a2 dans la direction perpendiculaire à la direction de défilement du substrat avec une vitesse V2. Ce troisième mode de réalisation permet avantageusement d'avoir un faisceau secondaire f en sortie du bloc optique 27 utilisé pour graver plusieurs traits parallèles. Les vitesses V1 et V2 peuvent être identiques ou non.
Par conséquent, l'élément de balayage 26 permet de graver un motif M comprenant un nombre N de faisceaux. Le nombre N de faisceau dépend, entre autres, de l'amplitude a2 de balayage et de l'écartement e entre deux gravures parallèles souhaités soit N= a2/e.
Dans une alternative de ces trois modes de réalisation visible à la figure 3, le module diviseur 23 comprend une pluralité de diviseurs optiques 24 identiques ou standards montés en cascade. Par exemple, pour extraire neuf faisceaux secondaires f, il peut être utile de remplacer un diviseur optique 24 permettant la création de neuf faisceaux secondaires f à partir d'un faisceau primaire par un système à deux étages comprenant au premier étage un diviseur 24 standard permettant de créer trois faisceaux dits intermédiaires à partir d'un faisceau primaire F, chaque faisceau intermédiaire entrant dans un diviseur 24 standard permettant de créer trois faisceaux secondaires à partir d'un faisceau intermédiaire soit au total neuf faisceaux secondaires. Cette alternative permet avantageusement d'utiliser des pièces standard remplaçables au besoin. Dans un troisième mode de réalisation visible à la figure 4, le module diviseur 23 génère une pluralité de faisceaux secondaires f, ces faisceaux secondaires f sont regroupés par groupe d'au moins deux pour entrer dans un élément de balayage 26. En effet, ce troisième mode de réalisation se caractérise par l'utilisation d'éléments de balayage 26 capable de gérer au moins deux faisceaux entrants. Pour cela, ledit élément de balayage 26 comprend au moins deux blocs optiques 27, chaque bloc optique 27 étant apte à déplacer les faisceaux secondaires f, au moins selon la direction de défilement dans un périmètre d'amplitude a1.
Préférentiellement, chaque bloc optique 27 est apte à déplacer en outre les faisceaux secondaires f selon une direction orthogonale à la direction de défilement dans un périmètre d'amplitude a2. Cette préférence permet de créer un motif M comprenant un nombre n de traits et donc d'augmenter le nombre de traits gravés.
Ainsi, chaque faisceau secondaire f issu du module diviseur 23 entre dans un élément de balayage 26 et plus particulièrement dans un bloc optique 27 dudit élément de balayage 26.
Ce troisième mode de réalisation permet avantageusement de diminuer le nombre d'éléments de balayage 26.
Dans un autre mode de réalisation, la pluralité de faisceaux secondaires peut entrer dans un élément de balayage 26, ledit élément de balayage 26 ne possédant qu'un seul bloc optique 27 capable de balayer une pluralité de faisceaux secondaires f simultanément. Par exemple de manière non limitative, ce bloc optique 27 pourrait avoir des éléments optiques mobiles suffisamment larges pour capter tous les faisceaux secondaires f entrant dans ledit bloc optique 27 afin de les déplacer en même temps. Toujours par exemple de manière non limitative, ledit bloc optique 27 pourrait bénéficier de moyens d'obturation permettant de sélectionner le faisceau secondaire à déplacer. Préférentiellement, ledit bloc optique 27 est apte à déplacer en outre les faisceaux secondaires f selon une direction orthogonale à la direction de défilement dans un périmètre d'amplitude a2. Cette préférence permet de créer un motif M comprenant un nombre n de traits et donc d'augmenter le nombre de traits gravés.
Ce mode de réalisation alternative permet avantageusement de réduire le nombre de blocs optiques 27.
Le dispositif de traitement 1 selon l'invention permet donc de graver une pluralité de traits n parallèles sur le revêtement d'un substrat S. Or, un second dispositif de traitement 1 selon l'invention peut être utilisé. Ce second dispositif de traitement 1 selon l'invention est agencé pour graver des traits parallèles mais dans une direction différente de la direction de défilement. Préférentiellement, les traits gravés par le second dispositif de traitement 1 selon l'invention sont orthogonaux à la direction de défilement. Cette agencement permet de réaliser un motif quadrillé.
Il est aussi envisageable que chaque dispositif de traitement 1 comprennent plusieurs unités de traitement 20 agencées en parallèle pour traiter le substrat selon une direction : la direction de défilement et/ou une direction orthogonale à la direction de défilement.
Si l'architecture utilisée pour l'unité de traitement 20 permet de définir le nombre de traits pouvant être gravé, il existe d'autres paramètres sur lequel jouer pour augmenter le nombre de traits pouvant être gravés.
En effet, pour les modes de réalisations dans lequel chaque élément de balayage permet de graver un seul trait, le nombre N de faisceaux secondaires à fournir par le diviseur dépend de la largeur 11 de la zone à traiter, de l'écartement e entre les gravures souhaitées et de l'énergie nécessaire En pour chaque gravure. En effet, chaque faisceau secondaire f sortant d'un bloc optique 27 de l'élément de balayage 26doit avoir une puissance suffisante pour réussir une gravure. Ainsi, le nombre de faisceau N pouvant être produit dépend premièrement du nombre théorique Nt de faisceaux possibles c'est-à-dire de l'énergie E fournie par la source, en tenant compte des différents blocs du dispositif, divisée par l'énergie nécessaire En pour la gravure pour un faisceau secondaire f sortant. Le nombre de faisceaux secondaires f pouvant être produits dépend également du nombre pratique Np de faisceaux possibles qui dépend de la largeur 11 de la zone à traiter et de l'écartement e à savoir que le nombre de faisceau est le résultat du ratio largeur 11 par l'écartement e entre deux traits.
Ainsi, on obtient la formule suivante :
- Si Np supérieur à Nt donc N égal Nt
- Si Nt supérieur à Np donc N égal Np
Pour les modes de réalisations dans lesquels chaque élément de balayage 26 permet de graver plusieurs trait, d'autres paramètres entrent en jeu.
En effet, dans ce cas-là, la gravure de la zone Z consiste en ce que chaque élément de balayage 26 est apte à graver un motif M, contenant un nombre N de trait préférentiellement parallèles, chaque trait présente une longueur t1 et est espacé d'un autre trait d'une distance t2. Le motif M est répété, suivant la longueur L1 de la zone Z, pour former des traits parallèles, préférentiellement continus.
Or, dans ce cas, la longueur t1 du trait, la distance t2 entre deux traits, la vitesse de défilement V3, l'amplitude a1, a2 de l'élément de balayage 26, la vitesse de balayage V1 , V2 ainsi que l'énergie E de la source sont des paramètres à prendre en compte.
En effet, chacun de ces paramètres est utile pour déterminer le nombre maximum de traits pouvant être gravés dans un motif M et ces paramètres sont liés entre eux
Parmi ces paramètres, la distance t2 entre deux traits, l'amplitude a1 , a2 de l'élément de balayage 26 ainsi que l'énergie E de la source sont des paramètres fixes (amplitude, énergie de la source) ou fixés (distance t2).
Par conséquent, les paramètres de vitesse de défilement, de longueur t1 du trait ou de vitesse de balayage V1 , V2 sont les paramètres sur lesquels il faut agir. Plus précisément, la longueur t1 du trait et le rapport entre la vitesse de balayage V1, V2 et la vitesse de défilement V3 sont les paramètres à régler.
En effet, la réalisation du motif M composé d'un nombre N de trait préférentiellement parallèles, nécessite la réalisation dudit nombre N de traits dans un laps de temps tel que la réalisation du motif M suivant permette d'avoir des motifs M continu.
Or, la durée disponible pour la réalisation du motif M dépend de la vitesse de défilement V3 et de la longueur du trait t1, le substrat S défilant d'une longueur égale à la longueur du trait t1 en un laps de temps égal à la longueur du trait t1 divisé par la vitesse de défilement.
La réalisation du motif M consiste à alterner la gravure d'un trait avec un déplacement du faisceau secondaire f pour atteindre la position de départ de la gravure du trait suivant. Ces déplacements, en plus des traits t1 à graver, augmentent la distance à parcourir par le faisceau laser pour réaliser ledit motif.
Ainsi, à vitesse de défilement V3 et vitesse(s) de balayage V1, V2 fixes, une augmentation de la longueur du trait entraîne une augmentation du nombre N de traits par motif M dans la mesure où la ou les vitesses de balayage sont plus importantes que la vitesse de défilement V3 comme visible à la figure 7. Cette figure 7 montre une courbe du nombre de trait en fonction de la longueur du trait avec une courbe 1 pour un substrat verre de 3m de large et une vitesse de défilement de 10m/min et une courbe 2 pour un substrat plastique de 1.5m de large et une vitesse de défilement de 20m/min. Si la longueur du trait augmente alors la distance à parcourir par le faisceau pour graver un trait et se déplacer vers la position de départ de la gravure du trait suivant est aussi susceptible d'augmenter. Si la ou les vitesses de balayage V1 , V2 sont plus grandes que celle de défilement V3 du substrat S, le balayage peut alors potentiellement prendre suffisamment d'avance sur le substrat pour graver plus de traits, dans la limite de l'amplitude a1 du périmètre.
Pour une vitesse de défilement V3 et une longueur de trait fixes, une augmentation de la ou des vitesses de balayage V1 , V2 entraîne une augmentation du nombre N de traits par motif M. si la ou les vitesses de balayage V1 , V2 augmentent, alors le dispositif 1 est capable de graver un trait plus rapidement et de se déplacer à la position de départ de la gravure du trait suivant plus rapidement. Un nombre N de trait plus grand est envisageable.
Pour une ou des vitesses de balayage V1 , V2 et une longueur de trait fixes, une augmentation de la vitesse de défilement V3 entraîne une diminution du nombre N de traits par motif M. comme la vitesse de défilement augmente, alors le laps de temps alloué pour la réalisation du motif M diminue. Comme la ou les vitesses de balayage V1 , V2 sont fixes, alors le nombre N de trait réalisable diminue.
L'idée est ainsi d'avoir la possibilité avec une configuration de module de traitement 20 de générer le maximum de trait afin de contenir le nombre de module de traitement 20 de même configuration à utiliser. En effet, dans le cas d'un élément de balayage 26 qui se déplace dans deux directions, le bloc optique 27 sert à créer artificiellement plus de faisceaux secondaires f puisque le faisceaux secondaire f entrant dans ledit bloc optique 27 est utilisé pour créer une multitude de traits parallèles. Ainsi, plus la vitesse de l'élément de balayage 26 est importante par rapport à la vitesse de défilement et plus l'élément de balayage 26 pourra réaliser de trait dans le temps imparti.
Après analyse, deux diagrammes, visibles aux figures 5 et 6, sont réalisés sur le nombre de lignes possibles en fonction du rapport entre la vitesse de balayage (notée V) et la vitesse de défilement (notée v) (figure 5) ou en fonction de la longueur du trait gravé pour différentes valeurs de ce rapport (figure 6). Ces diagrammes sont réalisés pour un écartement entre deux traits de 3mm et une amplitude a1 , a2 de 150mm. Ces diagrammes montrent que plus le rapport entre la vitesse de balayage et la vitesse de défilement augmente et plus le nombre N de traits par motif M augmente. Par ailleurs, il est a constaté qu'avec la variation de la longueur t1 du trait, il existe une limite au-delà de laquelle il y a saturation c'est à dire qu'il n'est plus possible d'augmenter le nombre de lignes.
Dans un exemple de réalisation de l'invention, les moyens de balayage sont tels que la vitesse de balayage est comprise entre 1.5 et 30m/s, que la longueur du trait varie entre 10 et 50mm et que le ratio entre la vitesse de balayage et la vitesse de défilement est comprise d'au moins 10, de préférence 20 et encore plus de préférence 50. Cela permet d'avoir un dispositif de traitement qui traite entre 3 et 10m2 par minutes.
Dans un exemple particulier, avec un laser développant une énergie de 600μJ sur un revêtement comprennent un empilement muni de deux couches à base d'argent sur un substrat verre d'une largeur de 3m défilant à 10m/min, le revêtement nécessitant une énergie de 4μJ pour être gravé, il est possible d'obtenir, pour une vitesse de déplacement du bloc optique de 20m/s sur une amplitude a1, a2 de 150mm une grille de 3mm de côté, chaque bloc optique dans lequel un faisceau laser entre étant apte à générer 8 lignes parallèles. Dans ce cas précis, 7 module de traitement 20 devront être utilisés.
Pour un même revêtement sur un substrat plastique ayant une largeur de 1 .5m et défilant à 20m/min, l'énergie nécessaire au traitement nécessite 3 μJ , chaque bloc optique dans lequel un faisceau laser entre étant apte à générer 4 lignes parallèles. Dans ce cas précis, 4 module de traitement 20 devront être utilisés.
Bien entendu, la présente invention ne se limite pas à l'exemple illustré mais est susceptible de diverses variantes et modifications qui apparaîtront à l'homme de l'art.

Claims

REVENDICATIONS
1. Dispositif de traitement thermique (1) d'un revêtement déposé sur un substrat (S) comprenant : au moins un module de traitement (20) en regard duquel le substrat peut défiler, ledit module de traitement comprenant au moins une source laser générant un faisceau laser (F) d'énergie E, un module diviseur (23) permettant de diviser le faisceau (F) en une multitude de faisceaux secondaires (f) ayant une énergie En permettant de traiter le revêtement ayant la forme d'un point, des moyens de balayage (25) permettant à chaque faisceau secondaire de se déplacer selon la direction de défilement selon une amplitude (a1) et une vitesse (V1) et/ou selon une direction orthogonale à la direction de défilement selon une amplitude (a2) et une vitesse (V2); des moyens de déplacement (2) aptes à créer en fonctionnement un mouvement de déplacement relatif entre le substrat et le ou chaque module de traitement;
Caractérisé en ce que le dispositif de traitement thermique est agencé pour, avec une vitesse (V3) des moyens de déplacement d'au moins 3m/min et une vitesse des moyens de balayage selon la direction de défilement et/ou la direction orthogonale à la direction de défilement d'au moins 30m/min, traiter le revêtement sous la forme d'un nombre de trait égal au rapport entre l'énergie (E) du faisceau (F) et l'énergie (En) permettant de traiter le revêtement par un faisceau secondaires (f), selon au moins la direction de défilement ou une direction orthogonale à la direction de défilement, et sur une surface d'au moins 10m2/min.
2. Dispositif selon la revendication précédente, selon lequel il comprend au moins un module de gravure (20) pour graver selon la direction de défilement et au moins un module de gravure (20) pour graver selon la direction orthogonale à la direction de défilement.
3. Dispositif selon l'une des revendications précédentes, dans lequel au moins un module diviseur (23) comprend au moins une optique diffractive.
4. Dispositif selon l'une quelconque des revendications 1 à 3, dans lequel le module diviseur (23) comprend au moins un prisme.
5. Dispositif selon l'une des revendications précédentes, dans lequel les moyens de balayages (25) comprennent au moins un élément de balayage (26) comprenant au moins bloc optique (27).
6. Dispositif selon la revendication 5, dans lequel le bloc optique (27) comprend au moins un miroir rotatif ou au moins une roue polygonale.
7. Dispositif selon l'une des revendications 5 ou 6, dans lequel chaque bloc optique est utilisé pour le déplacement d'un faisceau secondaire (f).
8. Dispositif selon l'une des revendications 5 ou 6, dans lequel chaque bloc optique est utilisé pour le déplacement d'au moins deux faisceaux secondaires (f).
9. Dispositif selon l'une quelconque des revendications 5 à 8, dans lequel les moyens de balayage (25) comprennent une pluralité d'éléments de balayage (26).
10. Dispositif selon l'une des revendications précédentes, dans lequel les moyens de balayage (25) permettent à chaque faisceau secondaire (f) de se déplacer à la surface du substrat, selon la direction de défilement et/ou la direction orthogonale à la direction de défilement, à une vitesse supérieure à 1 .5 m/s, préférentiellement supérieure à 10 m/s, plus préférentiellement supérieure à 20 m/s.
11 . Dispositif selon l'une des revendications précédentes, dans lequel les moyens de balayage permettent à chaque faisceau secondaire (f) de se déplacer à la surface du substrat, selon la direction de défilement et/ou la direction orthogonale à la direction de défilement, à une vitesse inférieure à 6000 m/s.
12. Dispositif selon l'une quelconque des revendications précédentes dans lequel le rapport des vitesses entre la vitesse de déplacement (V3) du substrat et la vitesse (V1 , V2) selon la direction de défilement et/ou la direction orthogonale à la direction de défilement est supérieur à 10, préférentiellement supérieur à 50.
13. Dispositif selon l'une quelconque des revendications précédentes dans lequel le périmètre de gravure de chaque élément de balayage (26) a une amplitude (a1) supérieure à 100 mm, préférentiellement supérieure à 150 mm.
14. Dispositif selon l'une quelconque des revendications 1 à 13 dans lequel le périmètre de gravure de chaque élément de balayage (26) a une amplitude (a2) supérieur à 100 mm, préférentiellement supérieure à 150 mm.
15. Dispositif selon l'une quelconque des revendications précédentes dans lequel le dispositif est capable de traiter une zone de largeur supérieure à 1 m, de préférence 1.5m et encore plus de préférence 3m.
16. Substrat sur lequel un revêtement est déposé, caractérisé en ce que ledit revêtement est traité par le dispositif selon l'une quelconque des revendications précédentes.
17. Substrat selon la revendication 16 dans lequel ledit substrat est du verre.
18. Substrat selon la revendication 16 dans lequel ledit substrat est un polymère.
19. Substrat selon l'une quelconque des revendications 16 à 18 dans lequel le revêtement est métallique.
PCT/FR2020/052566 2019-12-20 2020-12-18 Dispositif de traitement thermique par laser d'un revêtement déposé sur un substrat; substrat correspondant WO2021123689A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/787,112 US20230045341A1 (en) 2019-12-20 2020-12-18 Device for laser-based heat treatment of a coating deposited on a substrate, and corresponding substrate
EP20848861.9A EP4076825A1 (fr) 2019-12-20 2020-12-18 Dispositif de traitement thermique par laser d'un revêtement déposé sur un substrat; substrat correspondant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1915196A FR3105044B1 (fr) 2019-12-20 2019-12-20 Dispositif de traitement d’un substrat
FRFR1915196 2019-12-20

Publications (1)

Publication Number Publication Date
WO2021123689A1 true WO2021123689A1 (fr) 2021-06-24

Family

ID=71784105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2020/052566 WO2021123689A1 (fr) 2019-12-20 2020-12-18 Dispositif de traitement thermique par laser d'un revêtement déposé sur un substrat; substrat correspondant

Country Status (4)

Country Link
US (1) US20230045341A1 (fr)
EP (1) EP4076825A1 (fr)
FR (1) FR3105044B1 (fr)
WO (1) WO2021123689A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030209527A1 (en) * 2001-08-10 2003-11-13 First Solar, Llc, A Delaware Corporation Method and apparatus for laser scribing glass sheet substrate coatings
US20090166812A1 (en) * 2006-02-23 2009-07-02 Picodeon Ltd Oy Semiconductor and an arrangement and a method for producing a semiconductor
US20090266804A1 (en) * 2008-04-24 2009-10-29 Costin Darryl J Combination extrusion and laser-marking system, and related method
US20140232027A1 (en) * 2011-08-23 2014-08-21 Evonik Roehm Gmbh Continuous method for the production of light guide plates
WO2015055932A1 (fr) * 2013-10-18 2015-04-23 Saint-Gobain Glass France Appareil laser modulaire
US20150290740A1 (en) * 2012-07-04 2015-10-15 Saint-Gobain Glass France Device and method for laser processing of large-area substrates using at least two bridges

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030209527A1 (en) * 2001-08-10 2003-11-13 First Solar, Llc, A Delaware Corporation Method and apparatus for laser scribing glass sheet substrate coatings
US20090166812A1 (en) * 2006-02-23 2009-07-02 Picodeon Ltd Oy Semiconductor and an arrangement and a method for producing a semiconductor
US20090266804A1 (en) * 2008-04-24 2009-10-29 Costin Darryl J Combination extrusion and laser-marking system, and related method
US20140232027A1 (en) * 2011-08-23 2014-08-21 Evonik Roehm Gmbh Continuous method for the production of light guide plates
US20150290740A1 (en) * 2012-07-04 2015-10-15 Saint-Gobain Glass France Device and method for laser processing of large-area substrates using at least two bridges
WO2015055932A1 (fr) * 2013-10-18 2015-04-23 Saint-Gobain Glass France Appareil laser modulaire

Also Published As

Publication number Publication date
US20230045341A1 (en) 2023-02-09
FR3105044B1 (fr) 2022-08-12
EP4076825A1 (fr) 2022-10-26
FR3105044A1 (fr) 2021-06-25

Similar Documents

Publication Publication Date Title
EP3487656B1 (fr) Procédé et appareil pour la découpe de matériaux par multi-faisceaux laser femtoseconde
EP3060957B1 (fr) Appareil laser modulaire
WO2017174710A1 (fr) Systeme optique de focalisation d'un appareil de decoupe d'un tissu humain ou animal
EP3784492A1 (fr) Appareil et procédé pour fabriquer un objet tridimensionnel
CH687464A5 (fr) Dépôt de différents matériaux sur un substrat.
JP2002075816A (ja) ビーム列検出方法および検出用位相フィルター
WO2021123689A1 (fr) Dispositif de traitement thermique par laser d'un revêtement déposé sur un substrat; substrat correspondant
KR100900685B1 (ko) 다중 빔 레이저 장치 및 빔 스플리터
WO2021123690A1 (fr) Procédé de gravure d'un motif sur un revêtement déposé sur un substrat; substrat correspondant
FR2625816A1 (fr) Procede et dispositif de compensation de l'erreur de positionnement d'un phototraceur optique
FR2800968A1 (fr) Machine d'exposition d'un panneau a un rayonnement laser
WO2020212728A1 (fr) Procédé de réalisation d'un effet d'irisation sur la surface d'un matériau, et dispositifs pour sa mise en oeuvre
JP2009248181A (ja) レーザー加工装置、レーザービームのピッチ可変法、及びレーザー加工方法
CA3133730A1 (fr) Procede de realisation d'un effet visuel d'irisation sur la surface d'un materiau, dispositifs pour sa mise en oeuvre et piece ainsi obtenue
WO2004057390A1 (fr) Element de couplage en optique integree comportant un reseau realise dans une gaine et son procede de realisation
JP3179721U (ja) レーザー加工装置
CH712016B1 (fr) Procédé de fabrication d'un élément optique pour pièce d'horlogerie.
EP4046741B1 (fr) Procede d'usinage laser d'un composant horloger
CN215658494U (zh) 一种细棒物体多排打孔装置
FR3073839B1 (fr) Systeme d’alignement d’un dispositif de traitement thermique et son fonctionnement
EP1770426B1 (fr) Ensemble modifiable de trous microscopiques
CN112453729A (zh) 一种细棒物体多排打孔装置
FR3142882A1 (fr) Systeme de decoupe d’un tissu oculaire en portions elementaires
EP1596157A1 (fr) Dispositif de mesure par interférométrie de l' épaisseur de couches transparentes minces sur un substrat en défilement
LU83540A7 (fr) Procede de cristallisation de films et films ainsi obtenus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20848861

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020848861

Country of ref document: EP

Effective date: 20220720