WO2021121318A1 - 一种光学扩束镜和灯具 - Google Patents

一种光学扩束镜和灯具 Download PDF

Info

Publication number
WO2021121318A1
WO2021121318A1 PCT/CN2020/137192 CN2020137192W WO2021121318A1 WO 2021121318 A1 WO2021121318 A1 WO 2021121318A1 CN 2020137192 W CN2020137192 W CN 2020137192W WO 2021121318 A1 WO2021121318 A1 WO 2021121318A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
lens
beam expander
condenser lens
optical beam
Prior art date
Application number
PCT/CN2020/137192
Other languages
English (en)
French (fr)
Inventor
卜晨曦
李书超
肖一胜
Original Assignee
苏州欧普照明有限公司
欧普照明股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州欧普照明有限公司, 欧普照明股份有限公司 filed Critical 苏州欧普照明有限公司
Publication of WO2021121318A1 publication Critical patent/WO2021121318A1/zh
Priority to US17/561,640 priority Critical patent/US11835220B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/008Combination of two or more successive refractors along an optical axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • F21V5/045Refractors for light sources of lens shape the lens having discontinuous faces, e.g. Fresnel lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0091Reflectors for light sources using total internal reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • F21V13/04Combinations of only two kinds of elements the elements being reflectors and refractors

Definitions

  • the invention relates to the field of optics, in particular to an optical beam expander and a lamp.
  • the optical beam expander can also be called an optical beam expander, which is an optical device used to adjust the angle of light. For example, in shopping malls, hotels, museums, homes and other scenes, most of them need to set up lighting. In order to optimize the lighting effect for different illuminated surfaces and illuminated objects, optical beam expanders with different beam angles can be used to illuminate the light source. The light emitted is optimized.
  • the purpose of the embodiments of the present application is to provide an optical beam expander and a lamp to solve at least one of the above-mentioned problems.
  • an optical beam expander including:
  • the collimating lens adjusts the light emitted by the light source to parallel light
  • the condensing lens includes a plurality of inclined light control surfaces, any one of the light control surfaces is not parallel to the plane where the condensing lens is located, and the condensing lens is used to emit the collimating lens The parallel light is refracted in the direction of the center line of the condenser lens;
  • the fixing component is used to fix the collimating lens and the condenser lens so that the optical axes of the collimating lens and the condenser lens coincide.
  • a lamp which includes a light-emitting source and the optical beam expander as described in the first aspect.
  • the optical beam expander provided by the embodiment of this solution includes a collimator lens and a condenser lens, and the condenser lens is used to refract the parallel light emitted by the collimator lens in the direction of the center line of the condenser lens.
  • the optical beam expander can refract the parallel light obtained by the adjustment of the collimator lens into the light that converges and crosses toward the center, and the light does not need to be reflected by the reflector, which effectively improves the optical efficiency.
  • the amount of light absorbed by the side wall can be reduced, which is beneficial to improve the optical efficiency of the lamp.
  • FIG. 1b is the second structural diagram of the optical beam expander provided by this embodiment.
  • Figure 1c is one of the partial cross-sectional schematic diagrams of the condenser lens in the optical beam expander provided by this embodiment
  • Fig. 3a is the fourth structural diagram of the optical beam expander provided by this embodiment.
  • FIG. 4 is the third schematic diagram of a partial cross-sectional view of the condenser lens in the optical beam expander provided by this embodiment
  • FIG. 5 is the fourth part of the schematic cross-sectional view of the condenser lens in the optical beam expander provided by this embodiment
  • FIG. 6 is the fifth partial cross-sectional schematic view of the condenser lens in the optical beam expander provided by this embodiment.
  • Fig. 9b is the second schematic diagram of the structure of the lamp provided in this embodiment.
  • the collimating lens 11 adjusts the light emitted by the light source A into parallel light
  • the condenser lens 12, the condenser lens 12 includes a plurality of inclined light control surfaces 12a, any one of the light control surfaces 12a is not parallel to the plane where the condenser lens 12 is located, and the condenser lens 12 is used to The parallel light emitted by the collimator lens 11 is refracted in the direction of the center line of the condenser lens 12;
  • the fixing component 13 is used to fix the collimator lens 11 and the condenser lens 12 so that the optical axes of the collimator lens 11 and the condenser lens 12 coincide.
  • the collimating lens refers to a lens or lens group that can transform the light from each point in the aperture column into a parallel collimating beam.
  • the collimating lens may include one or more lenses, and the collimating lens may include multiple different types of lenses for refracting light to adjust the propagation direction.
  • the collimating lens is a total internal reflection TIR collimating lens.
  • the condenser lens 12 includes a light incident surface 121 close to the collimating lens 11 and a light exit surface 122 far from the collimating lens, and the light control surface is disposed on the condenser lens.
  • the condenser lens in this embodiment may be a lens with a light control surface provided on the light incident surface.
  • the optical beam expander provided in this embodiment includes a light source A, a collimating lens 11, a condenser lens 12, and a fixing member 13.
  • the condensing lens is in a convoluted form, wherein the condensing lens 12 may include a plurality of ring-shaped light control surfaces.
  • the lens may also be a stretched lens, and the light control surface is a plane extending in the same direction as the stretching direction of the lens.
  • the center point of the projection of the ring-shaped light control surface on the plane where the condenser lens is located coincides with the center point of the condenser lens.
  • the shape of the annular light control surface corresponds to the shape of the condenser lens.
  • the annular light control surface is not parallel to the plane where the condenser lens is located, and the parallel light emitted by the collimator lens 11 is deflected toward the center line after passing through the light control surface, and the deflection angle is related to the inclination angle of the light control surface.
  • the light path is shown by a dashed line in Fig. 1a, and the light propagation direction is shown by an arrow.
  • the condenser lens shown in Fig. 1a is a flat mirror with multiple light control surfaces.
  • the condensing lens can also be a convex lens.
  • the convex lens has a structural feature that the central area is thick and the edge area is thin, and can converge the parallel light emitted by the collimating lens in the direction of the center line.
  • the focal length of the convex lens can be determined according to actual requirements.
  • the incident light When the incident light reaches the light-controlling surface M of the light-incident surface, it enters the light-dense medium from the light-thinning medium, and the light is deflected in the normal direction after entering the condenser lens. Subsequently, the light propagates in the condenser lens to the light-emitting surface, enters the light-sparse medium from the dense medium, and then deflects in the direction opposite to the normal after exiting the condenser lens. It can be seen that the condenser lens with a light control surface provided in this embodiment can refract the parallel rays emitted by the collimator lens toward the center line direction of the collimator lens.
  • the shape of the condensing lens is not limited to a circle, and may also be an ellipse, triangle, square or other shapes. Among them, the shape and size of the condenser lens and the collimator lens may be the same or different.
  • the condenser lens and the collimator lens are stacked so that the light passing through the collimator lens can reach the condenser lens. The interval between the collimator lens and the condenser lens can be adjusted according to actual needs.
  • the fixing member 13 in this embodiment may be a hollow cylindrical shape.
  • the fixing member can be made of an opaque material, and the inner wall of the fixing member can be provided with a reflective film to reduce the light absorbed by the fixing member.
  • the shape of the fixing part may be consistent with the shapes of the condenser lens and the collimating lens. For example, if the condenser lens and the collimating lens are both circular, the fixing part may be cylindrical.
  • the fixing component is used to fix the collimating lens and the condenser lens so that the collimating lens and the condenser lens are parallel to each other.
  • the center line of the collimating lens coincides with the center line of the condenser lens.
  • the fixed part is used to keep the relative position of the collimating lens and the condenser lens unchanged.
  • the optical beam expander provided in this embodiment can refract the parallel light adjusted by the collimator lens into the light that converges and crosses toward the center, and the light does not need to be reflected by the reflector, which effectively improves the optical efficiency.
  • the amount of light absorbed by the side wall can be reduced, which is beneficial to improve the optical efficiency of the lamp.
  • the light incident surface of the condenser lens is provided with a first light control surface, and the intersection of the surface where the first light control surface is located and the center line of the condenser lens is located The center line is on a semi-axis with the center point of the condenser lens as the origin pointing to the center point of the collimating lens.
  • the light incident surface of the condenser lens 12 is provided with a first light control surface M 1 , and the intersection O 1 between the surface where the first light control surface M 1 is located and the center line of the condenser lens 12 is located
  • the center line of the lens 12 points on the semi-axis of the center point of the collimating lens 11 with the center point O of the condenser lens 12 as the origin.
  • a second light control surface is provided on the light exit surface of the condenser lens, and the intersection of the surface where the second light control surface is located and the center line of the condenser lens is located at the center line of the condenser lens.
  • the center line points on a semi-axis away from the center point of the collimating lens with the center point of the condenser lens as the origin.
  • the light-emitting surface of the condenser lens 12 is provided with a second light-controlling surface M 2 , and the intersection point O 2 of the surface where the second light-controlling surface M 2 is located and the center line of the condenser lens 12 is located at the center of the center line.
  • the center point O of the condenser lens 12 is taken as the origin and points on a semi-axis away from the center point of the collimating lens 11.
  • the light propagation direction in the figure is indicated by the arrow, and the figure shows the condenser lens structure on the left side of the center line.
  • the normal of the surface where the light is deflected is shown in dashed lines, and the figure includes 4 light control surfaces.
  • the parallel rays emitted from the collimating lens propagate from bottom to top, and the rays first pass through the plane light-incident surface. Since the light-incident surface is perpendicular to the parallel incident light, the light does not deflect.
  • the first light control surface is an arc surface recessed toward the light exit surface.
  • FIG. 4 shows a partial cross-sectional schematic diagram of the condenser lens with the first light control surface 41 provided on the entrance surface 42 along the center line, and the schematic diagram of the structure on the left side of the center line is shown in the figure.
  • the parallel incident light passes through the first light control surface 41.
  • the light path of a light control surface 41 is shown by the dotted line in the figure. Since the first light control surface 41 is a curved surface, the multiple light rays are deflected toward the center line at different angles after passing through the first light control surface 41.
  • the second light control surface is a curved surface recessed toward the light incident surface.
  • FIG. 5 shows a partial cross-sectional schematic diagram of the condenser lens with the second light control surface 51 provided on the light surface 52 cut along the center line, and the diagram shows the structure on the right side of the center line.
  • the optical path of the parallel incident light passing through the second light control surface 51 is shown by the dotted line in the figure. Since the second light control surface 51 is a curved surface, the multiple light rays are deflected toward the center line at different angles after passing through the second light control surface 51.
  • the light distribution shape can be further optimized, the amount of light absorbed by the side wall can be reduced, and the optical efficiency of the lamp can be improved.
  • light control surfaces can be provided on both the light incident surface and the light exit surface according to requirements, and the first light control surface provided on the light incident surface and the second light control surface provided on the light exit surface can both be arcuate surfaces.
  • the degree of depression of the above-mentioned light control surface can be set according to actual requirements, and the degree of depression of the light control surface located in different regions of the condenser lens can be the same or different.
  • the condenser lens further includes a connecting surface 61 connecting adjacent light control surfaces, where the connecting surface and the condenser lens are located.
  • the plane is perpendicular.
  • the connecting surface 61 is shown as a dashed line in FIG. 6, and the connecting surface is perpendicular to the plane where the condenser lens is located.
  • the inclination angle of the multiple light control surfaces of the condenser lens is positively correlated with the distance from the light control surface to the center line.
  • the center line is shown by a dotted line, the inclination angle of the light control surface close to the center line in the condenser lens is small, and the inclination angle of the light control surface far away from the center line is large.
  • the parallel light rays reaching the area close to the centerline have a small deflection angle after passing through the condenser lens, and the parallel light rays reaching the area far away from the centerline have a large deflection angle after passing the condenser lens, which can optimize the convergence of the light rays toward the centerline.
  • the effect of this is to further reduce the amount of light absorbed by the side wall, and prevent the light near the center line from deflecting to the side wall.
  • the area close to the center line can be a plane without a light control surface, so that the light rays that are emitted to the vicinity of the center line are emitted in a straight line, and the light path is not changed.
  • the light control surface is disposed on the light incident surface and the light output surface of the condenser lens, and the light control surface disposed on the light incident surface is The light control surface on the light emitting surface is symmetrical.
  • FIG. 8 shows a partial cross-sectional schematic diagram of the condenser lens cut along the center line.
  • the light incident surface and the light exit surface of the condenser lens are both provided with light control surfaces, and the light control surfaces are arc surfaces.
  • the light incident surface 84 is provided with a first light control surface 83
  • the light exit surface 82 is provided with a second light control surface 81.
  • this embodiment provides a lamp, as shown in FIG. 9a, which includes a light-emitting source 92 and the optical beam expander 91 described in any of the above embodiments.
  • the lamp can also include a power supply, a switch, and a control circuit, etc.
  • the lamp can be set on the movable part to adjust the light angle of the lamp according to requirements.
  • the light control surface is arranged on the light entrance surface of the condenser lens. In fact, the light control surface can also be arranged on the light exit surface, or both the light control surface and the light exit surface. on.
  • the above-mentioned lamp is a spotlight, as shown in FIG. 9b, and further includes an optical reflector 93 disposed at an end of the optical beam expander 91 away from the light-emitting source 92 for emitting the optical beam expander Part of the light is reflected to the illuminated area of the target.
  • the beam expander 91 described in the present application the light emitted by the light source 92 can be reflected by the reflector 93 to adjust the angle of the light, so as to be directed toward the target direction.
  • the light will lose a certain amount of energy during the reflection process, resulting in low optical efficiency.
  • the solution provided by this embodiment adopts the above-mentioned optical beam expander 91, which can converge the light emitted by the light source and deflect the light toward the center line, so that most of the light can be directed to the target without being reflected by the optical reflector 93 Direction, effectively improving optical efficiency.
  • the optical reflector 93 in the lamp provided in this embodiment can also adjust the optical path of a small part of the light emitted by the optical beam expander 91 to ensure that the optical path of the light emitted by the lamp is directed toward the target direction.
  • the luminaire has higher optical efficiency while further optimizing the light distribution shape.
  • the lamp provided in this embodiment can converge the light emitted by the light-emitting source and can be used for lighting. Since the spotlight can illuminate the target area in a targeted manner, it can be used as an ambient light. The lamp provided in this embodiment can reduce the amount of light absorbed by the side wall and has high optical efficiency.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

一种光学扩束镜(91)和灯具,用以提高灯具的光学效率。光学扩束镜(91)包括:准直透镜(11),将光源(A,92)发出的光线调整为平行光;聚光透镜(12),聚光透镜(12)包括多个倾斜的控光面(12a,M),任一个控光面(12a,M)与聚光透镜(12)所在平面不平行,聚光透镜(12)用于将准直透镜(11)发出的平行光折射向聚光透镜(12)的中心线方向;固定部件(13),用于固定准直透镜(11)和聚光透镜(12),使准直透镜(11)和聚光透镜(12)的光轴重合。光学扩束镜(91)能将经过准直透镜(11)调整得到的平行光折射为向中心汇聚交叉的光线,光线无需经过反射镜反射,有效提高光学效率。另外,由于光线向扩束镜(91)中心线汇聚,能减少侧壁吸收的光线量,有利于提高灯具的光学效率。

Description

一种光学扩束镜和灯具 技术领域
本发明涉及光学领域,尤其涉及一种光学扩束镜和灯具。
背景技术
光学扩束镜也可称为光学扩束片,是一种用于调整光线角度的光学器件。举例来说,在商场,宾馆,博物馆,家庭等各种场景中大多需要设置照明灯,为了优化对于不同的被照面和照射对象的照明效果,可以利用不同光束角的光学扩束片对发光源发出的光线进行优化。
现有的照明设备中往往采用设置有珠面凸起结构的珠面扩束片,用以扩散光线,随后采用反射器对光线进行反射以调整出射角度。由于光线经过反射器的反射会损失一定能量,因此光学效率较低。
如何提高灯具的光学效率,是本申请所要解决的技术问题。
发明内容
本申请实施例的目的是提供一种光学扩束镜和灯具,用以至少解决上述问题之一。
第一方面,提供了一种光学扩束镜,包括:
准直透镜,将光源发出的光线调整为平行光;
聚光透镜,所述聚光透镜包括多个倾斜的控光面,任一个所述控光面与所述聚光透镜所在平面不平行,所述聚光透镜用于将所述准直透镜发出的平行光折射向所述聚光透镜的中心线方向;
固定部件,用于固定所述准直透镜和所述聚光透镜,使所述准直透镜和所述聚光透镜的光轴重合。
第二方面,提供了一种灯具,包括发光源和如第一方面所述的光学扩束 镜。
本方案实施例提供的光学扩束镜包括准直透镜和聚光透镜,聚光透镜用于将准直透镜发出的平行光折射向聚光透镜的中心线方向。该光学扩束镜能将经过准直透镜调整得到的平行光折射为向中心汇聚交叉的光线,光线无需经过反射镜反射,有效提高光学效率。另外,由于光线向扩束镜中心线汇聚,能减少侧壁吸收的光线量,有利于提高灯具的光学效率。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1a是本实施例提供的光学扩束镜的结构示意图之一;
图1b是本实施例提供的光学扩束镜的结构示意图之二;
图1c是本实施例提供的光学扩束镜中的聚光透镜部分剖面示意图之一;
图2是本实施例提供的光学扩束镜的结构示意图之三;
图3a是本实施例提供的光学扩束镜的结构示意图之四;
图3b是本实施例提供的光学扩束镜中的聚光透镜部分剖面示意图之二;
图4是本实施例提供的光学扩束镜中的聚光透镜部分剖面示意图之三;
图5是本实施例提供的光学扩束镜中的聚光透镜部分剖面示意图之四;
图6是本实施例提供的光学扩束镜中的聚光透镜部分剖面示意图之五;
图7是本实施例提供的光学扩束镜中的聚光透镜部分剖面示意图之六;
图8是本实施例提供的光学扩束镜中的聚光透镜部分剖面示意图之七;
图9a是本实施例提供的灯具结构示意图之一;
[根据细则91更正 20.02.2021] 
图9b是本实施例提供的灯具结构示意图之二。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。本申请中附图编号仅用于区分方案中的各个步骤,不用于限定各个步骤的执行顺序,具体执行顺序以说明书中描述为准。
为了解决现有技术中存在的问题,本实施例提供一种光学扩束镜,该光学扩束镜可以应用于照明设备中,用以改善照明效果,提高光学效率。如图1a所示,光学扩束镜包括:
准直透镜11,将光源A发出的光线调整为平行光;
聚光透镜12,所述聚光透镜12包括多个倾斜的控光面12a,任一个所述控光面12a与所述聚光透镜12所在平面不平行,所述聚光透镜12用于将所述准直透镜11发出的平行光折射向所述聚光透镜12的中心线方向;
固定部件13,用于固定所述准直透镜11和所述聚光透镜12,使所述准直透镜11和所述聚光透镜12的光轴重合。
其中,准直透镜是指能将来自孔径栏中每一点的光线变成一束平行的准直光柱的透镜或透镜组。准直透镜可以包括一个或多个透镜,准直透镜中可以包括多种不同类型的透镜,用以折射光线以调整传播方向。较优的,所述准直透镜为全内反射TIR准直透镜。
较优的,参见图1b,所述聚光透镜12包括靠近所述准直透镜11的入光面121和远离所述准直透镜的出光面122,所述控光面设置在所述聚光透镜12的入光面121和/或出光面122上。参见图1a,本实施例中的聚光透镜可以是入光面设置有控光面的透镜。本实施例提供的光学扩束镜中包括光源A、准直透镜11、聚光透镜12以及固定件13。在本实施例中聚光透镜为回旋形式,其中,聚光透镜12中可以包括多个环形控光面。在其他较佳实施例中, 透镜还可以是拉伸型透镜,则控光面为延伸和透镜拉伸方向相同的平面。环形控光面在聚光透镜所在平面上的投影的中心点与聚光透镜的中心点相重合。较优的,环形控光面的形状与聚光透镜的形状相对应。环形控光面与聚光透镜所在平面不平行,准直透镜11发出的平行光通过该控光面后向中心线方向偏折,偏折角度与控光面的倾斜角度有关。光路在图1a中以虚线示出,光线传播方向以箭头示出。
在图1a中示出的聚光透镜是具有多个控光面的平面镜。另外,该聚光透镜也可以是凸透镜,凸透镜具有中心区域厚边缘区域薄的结构特点,能将准直透镜发出的平行光向中心线方向汇聚。实际应用中,可以根据实际需求确定凸透镜的焦距。光线通过聚光透镜时,不仅在控光面的作用下向中心线方向汇聚,还在凸透镜的作用下进一步向中心线方向汇聚。
图1c示出了沿中心线剖切入光面设置有控光面的聚光透镜12的部分剖面示意图,图中示出的是位于中心线左侧的聚光透镜结构,图中光线传播方向如箭头所示,光线发生偏折的表面的法线以虚线示出,图中包括4个控光面。如图可知,从准直透镜射出的平行光线从下向上传播,聚光透镜的控光面M与入射光线的夹角为锐角,即控光面与入射光线不平行且不垂直。入射光线到达入光面的控光面M时,从光疏介质进入光密介质,光线进入聚光透镜后向法线方向偏折。随后,光线在聚光透镜中传播到达出光面,从光密介质进入光疏介质,光线射出聚光透镜后向法线相反方向偏折。由此可见,本实施例提供的具有控光面的聚光透镜能将准直透镜射出的平行光线折射向准直透镜的中心线方向。
需要说明的是,聚光透镜的形状不限于圆形,也可以是椭圆形、三角形、方形或其他形状。其中,聚光透镜与准直透镜的形状和尺寸可以相同也可以不同,聚光透镜与准直透镜层叠设置,使通过准直透镜的光线能射至聚光透镜。准直透镜与聚光透镜之间的间隔可以根据实际需求调整。
本实施例中的固定部件13可以为空心筒状,较优地,固定部件可以选用 不透光的材质,固定部件内壁可以设置反光薄膜以降低固定部件吸收的光线。固定部件的形状可以与聚光透镜、准直透镜的形状相契合,例如,聚光透镜和准直透镜均为圆形,则固定部件可以为圆筒状。
该固定部件用于固定所述准直透镜和所述聚光透镜,使所述准直透镜和所述聚光透镜相互平行。较优的,准直透镜的中心线和聚光透镜的中心线相重合。固定部件用于保持准直透镜和聚光透镜相对位置不变。
通过本实施例提供的光学扩束镜能将经过准直透镜调整得到的平行光折射为向中心汇聚交叉的光线,光线无需经过反射镜反射,有效提高光学效率。另外,由于光线向扩束镜中心线汇聚,能减少侧壁吸收的光线量,有利于提高灯具的光学效率。
基于上述实施例提供的光学扩束镜,所述聚光透镜的入光面上设置有第一控光面,所述第一控光面所在面与所述聚光透镜的中心线的交点位于所述中心线的以所述聚光透镜中心点为原点指向所述准直透镜中心点的半轴上。
如图2所示,聚光透镜12的入光面上设置有第一控光面M 1,该第一控光面M 1所在面与聚光透镜12的中心线的交点O 1位于聚光透镜12中心线的以聚光透镜12中心点O为原点指向准直透镜11中心点的半轴上。通过本实施例提供的方案,入射光通过聚光透镜的入光面时,能在第一控光面的作用下向中心线方向偏折。
基于上述实施例提供的光学扩束镜,所述聚光透镜的出光面上设置有第二控光面,所述第二控光面所在面与所述聚光透镜的中心线的交点位于所述中心线的以所述聚光透镜中心点为原点指向远离所述准直透镜中心点的半轴上。
如图3a所示,聚光透镜12的出光面上设置有第二控光面M 2,该第二控光面M 2所在面与聚光透镜12的中心线的交点O 2位于中心线的以所述聚光透镜12中心点O为原点指向远离所述准直透镜11中心点的半轴上。通过本实施例提供的方案,入射光通过聚光透镜的出光面时,能在第二控光面的作用 下向中心线方向偏折。
参见图3b,图中光线传播方向如箭头所示,图中示出的是中心线左侧的聚光透镜结构。光线发生偏折的表面的法线以虚线示出,图中包括4个控光面。如图可知,从准直透镜射出的平行光线从下向上传播,光线首先通过平面入光面,由于入光面与平行入射光相垂直,因此光线不发生偏折。聚光透镜出光面的控光面N与入射光线的夹角为锐角,即控光面与入射光线不平行且不垂直。入射光线到达出光面的控光面N时,从光密介质进入光疏介质,光线射出聚光透镜后向法线反方向偏折。由此可见,本实施例提供的具有控光面的聚光透镜能将准直透镜射出的平行光线折射向准直透镜的中心线方向。
基于上述实施例提供的光学扩束镜,较优的,如图4所示,所述第一控光面为向所述出光面凹陷的弧面。
图4中示出了沿中心线剖切入光面42设置有第一控光面41的聚光透镜的部分剖面示意图,图中示出的是中心线左侧的结构示意图,平行入射光通过第一控光面41的光路如图中虚线所示。由于第一控光面41为弧面,所以多条光线通过第一控光面41后向中心线偏折的角度不同。通过本实施例提供的方案,能进一步优化配光形状,减少侧壁吸收的光线量,有利于提高灯具的光学效率。
基于上述实施例提供的光学扩束镜,较优的,如图5所示,所述第二控光面为向所述入光面凹陷的弧面。
图5中示出了沿中心线剖切出光面52设置有第二控光面51的聚光透镜的部分剖面示意图,图中示出的是中心线右侧的结构示意图。平行入射光通过第二控光面51的光路如图中虚线所示。由于第二控光面51为弧面,所以多条光线通过第二控光面51后向中心线偏折的角度不同。通过本实施例提供的方案,能进一步优化配光形状,减少侧壁吸收的光线量,有利于提高灯具的光学效率。
较优的,在实际应用中可以根据需求在入光面和出光面均设置控光面,入光面设置的第一控光面和出光面设置的第二控光面均可以为弧面。上述控光面的凹陷程度可以根据实际需求设定,位于聚光透镜不同区域的控光面的凹陷程度可以相同或不同。
基于上述实施例提供的光学扩束镜,较优的,如图6所示,所述聚光透镜还包括连接相邻控光面的连接面61,所述连接面与所述聚光透镜所在平面相垂直。连接面61在图6中以虚线示出,连接面与聚光透镜所在平面相垂直,当平行光到达控光面所在一面时,平行光与连接面相平行,光路不会受到连接面的影响,进而使得通过控光面所在一面的光线均能在控光面的作用下向中心方向偏折,减少侧壁吸收的光线量,提高灯具的光学效率。
基于上述实施例提供的光学扩束镜,较优的,如图7所示,所述聚光透镜多个控光面的倾斜角度与所述控光面到中心线的距离正相关。图7中,中心线以虚线示出,聚光透镜中靠近中心线的控光面的倾斜角度小,远离中心线的控光面的倾斜角度大。基于这种结构,射至靠近中心线区域的平行光线通过聚光透镜后偏折角度小,射至远离中心线区域的平行光线通过聚光透镜后偏折角度大,能优化光线向中心线汇聚的效果,进一步减少侧壁吸收的光线量,避免靠近中心线区域的光线偏折后射向侧壁。另外,距离中心线较近的区域可以为不设置控光面的平面,使射至中心线附近的光线直线射出,光路不改变。
基于上述实施例提供的光学扩束镜,较优的,所述控光面设置在所述聚光透镜的入光面和出光面上,设置在所述入光面上的控光面与设置在所述出光面上的控光面对称。
图8示出了沿中心线剖切聚光透镜的部分剖面示意图,聚光透镜的入光面和出光面均设置有控光面,且控光面为弧面。其中,入光面84设置有第一控光面83,出光面82设置有第二控光面81。基于这种结构,平行入射光通过聚光透镜的过程中,先通过第一控光面83向中心线方向汇聚,然后通过第 二控光面81进一步向中心线方向汇聚。通过本实施例提供的结构,能在光线通过聚光透镜的过程中,多次汇聚光线,优化汇聚效果。
为了解决现有技术中存在的问题,本实施例提供一种灯具,如图9a所示,包括发光源92和上述任一种实施例所述的光学扩束镜91。另外,灯具中还可以包括电源、开关和控制电路等,灯具可以设置在活动件上,以便根据需求调整灯具光线角度。需要说明的是,图9a中示出的结构中,控光面设置在聚光透镜的入光面,实际上控光面也可以设置在出光面上,或者同时设置在控光面和出光面上。
较优的,上述灯具为射灯,如图9b所示,还包括设置在所述光学扩束镜91远离所述发光源92一端的光学反射器93,用于将所述光学扩束镜射出的部分光线反射至目标被照区域。在不采用本申请所述扩束镜91的情况下,发光源92发出的光线可以经过反射器93反射调整光线角度,以射向目标方向。但光线在反射过程中会损失一定能量,导致光学效率低。本实施例提供的方案采用上述光学扩束镜91,能对发光源发出的光线进行汇聚,使光线偏折向中心线方向,从而使大部分光线无需经过光学反射器93反射即可射向目标方向,有效提高光学效率。
另外,本实施例提供的灯具中的光学反射器93还能对光学扩束镜91出射的少部分光线进行光路调整,保证灯具射出的光线光路射向目标方向。使灯具具有较高的光学效率的同时进一步优化配光形状。
本实施例提供的灯具能汇聚发光源发出的光线,可以用于照明。由于射灯可以有针对性地照射目标区域,因此可以用作氛围灯。本实施例提供的灯具能降低侧壁吸收的光线量,具有较高的光学效率。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的 情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本发明的保护之内。

Claims (12)

  1. 一种光学扩束镜,其中,包括:
    准直透镜,将光源发出的光线调整为平行光;
    聚光透镜,所述聚光透镜包括多个倾斜的控光面,任一个所述控光面与所述聚光透镜所在平面不平行,所述聚光透镜用于将所述准直透镜发出的平行光折射向所述聚光透镜的中心线方向;
    固定部件,用于固定所述准直透镜和所述聚光透镜,使所述准直透镜和所述聚光透镜的光轴重合。
  2. 如权利要去1所述的光学扩束镜,其中,所述聚光透镜包括靠近所述准直透镜的入光面和远离所述准直透镜的出光面,所述控光面设置在所述聚光透镜的入光面和/或出光面上。
  3. 如权利要求2所述的光学扩束镜,其中,所述聚光透镜的入光面上设置有第一控光面,所述第一控光面所在面与所述聚光透镜的中心线的交点位于所述中心线的以所述聚光透镜中心点为原点指向所述准直透镜中心点的半轴上。
  4. 如权利要求2所述的光学扩束镜,其中,所述聚光透镜的出光面上设置有第二控光面,所述第二控光面所在面与所述聚光透镜的中心线的交点位于所述中心线的以所述聚光透镜中心点为原点指向远离所述准直透镜中心点的半轴上。
  5. 如权利要求3所述的光学扩束镜,其中,所述第一控光面为向所述出光面凹陷的弧面。
  6. 如权利要求4所述的光学扩束镜,其中,所述第二控光面为向所述入光面凹陷的弧面。
  7. 如权利要求1所述的光学扩束镜,其中,所述聚光透镜还包括连接相邻控光面的连接面,所述连接面与所述聚光透镜所在平面相垂直。
  8. 如权利要求1~7任一项所述的光学扩束镜,其中,所述聚光透镜多个控光面的倾斜角度与所述控光面到中心线的距离正相关。
  9. 如权利要求2~7任一项所述的光学扩束镜,其中,所述控光面设置在所述聚光透镜的入光面和出光面上,设置在所述入光面上的控光面与设置在所述出光面上的控光面对称。
  10. 如权利要求1~7任一项所述的光学扩束镜,其中,所述准直透镜为全内反射TIR准直透镜。
  11. 一种灯具,其中,包括发光源和如权利要求1~10任一项所述的光学扩束镜。
  12. 如权利要求11所述的灯具,其中,所述灯具为射灯,还包括:
    设置在所述光学扩束镜远离所述发光源一端的光学反射器,用于将所述光学扩束镜射出的部分光线反射至目标被照区域。
PCT/CN2020/137192 2019-12-19 2020-12-17 一种光学扩束镜和灯具 WO2021121318A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/561,640 US11835220B2 (en) 2019-12-19 2021-12-23 Optical beam expander and luminaire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201922307424.3U CN211043831U (zh) 2019-12-19 2019-12-19 一种光学扩束镜和灯具
CN201922307424.3 2019-12-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/561,640 Continuation US11835220B2 (en) 2019-12-19 2021-12-23 Optical beam expander and luminaire

Publications (1)

Publication Number Publication Date
WO2021121318A1 true WO2021121318A1 (zh) 2021-06-24

Family

ID=71569207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137192 WO2021121318A1 (zh) 2019-12-19 2020-12-17 一种光学扩束镜和灯具

Country Status (3)

Country Link
US (1) US11835220B2 (zh)
CN (1) CN211043831U (zh)
WO (1) WO2021121318A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN211043831U (zh) 2019-12-19 2020-07-17 欧普照明股份有限公司 一种光学扩束镜和灯具
CN112156201A (zh) * 2020-09-21 2021-01-01 宁波方太厨具有限公司 一种用于消毒柜的筷子容器及应用有该筷子容器的消毒柜
CN114738710B (zh) * 2022-03-23 2024-05-17 深圳市百康光电有限公司 变焦透镜及光照设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4755921A (en) * 1986-04-02 1988-07-05 Minnesota Mining And Manufacturing Company Lens
CN101238735A (zh) * 2005-06-14 2008-08-06 索尼德国有限责任公司 图像产生单元和使用图像产生单元的方法
CN203771293U (zh) * 2014-03-27 2014-08-13 欧普照明股份有限公司 一种透镜总成及包括该透镜总成的照明设备
CN106813154A (zh) * 2015-12-02 2017-06-09 欧普照明股份有限公司 光源模组
CN107246590A (zh) * 2017-06-08 2017-10-13 欧普照明股份有限公司 配光元件、光源模组以及光源组件
CN206904879U (zh) * 2016-12-28 2018-01-19 苏州欧普照明有限公司 一种光学元件以及具有该光学元件的照明装置
CN211043831U (zh) * 2019-12-19 2020-07-17 欧普照明股份有限公司 一种光学扩束镜和灯具

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002532893A (ja) * 1998-12-17 2002-10-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 光エンジン
JP4293857B2 (ja) * 2003-07-29 2009-07-08 シチズン電子株式会社 フレネルレンズを用いた照明装置
JP4471685B2 (ja) * 2004-03-10 2010-06-02 シチズン電子株式会社 照明装置
JP4149978B2 (ja) * 2004-09-16 2008-09-17 株式会社東芝 フレネルレンズおよび照明装置
JP5649047B2 (ja) * 2010-09-29 2015-01-07 シチズン電子株式会社 レンズ部材及び光学ユニット
JP2015529849A (ja) * 2012-08-02 2015-10-08 フレーン・コーポレーシヨン 低プロファイル複数レンズのtir
JP6652495B2 (ja) * 2014-10-23 2020-02-26 株式会社ダイセル フレネルレンズ、及びそれを備えた光学装置
CN108375043B (zh) * 2016-11-24 2021-02-23 法雷奥照明湖北技术中心有限公司 光束调整装置、光学组件与照明和/或信号指示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4755921A (en) * 1986-04-02 1988-07-05 Minnesota Mining And Manufacturing Company Lens
CN101238735A (zh) * 2005-06-14 2008-08-06 索尼德国有限责任公司 图像产生单元和使用图像产生单元的方法
CN203771293U (zh) * 2014-03-27 2014-08-13 欧普照明股份有限公司 一种透镜总成及包括该透镜总成的照明设备
CN106813154A (zh) * 2015-12-02 2017-06-09 欧普照明股份有限公司 光源模组
CN206904879U (zh) * 2016-12-28 2018-01-19 苏州欧普照明有限公司 一种光学元件以及具有该光学元件的照明装置
CN107246590A (zh) * 2017-06-08 2017-10-13 欧普照明股份有限公司 配光元件、光源模组以及光源组件
CN211043831U (zh) * 2019-12-19 2020-07-17 欧普照明股份有限公司 一种光学扩束镜和灯具

Also Published As

Publication number Publication date
US20220136677A1 (en) 2022-05-05
CN211043831U (zh) 2020-07-17
US11835220B2 (en) 2023-12-05

Similar Documents

Publication Publication Date Title
WO2021121318A1 (zh) 一种光学扩束镜和灯具
US7530712B2 (en) Reflective illumination device
JP4792486B2 (ja) フレネルレンズライト用、特にスポットライトあるいはフラッドライト用光学系
US7929216B2 (en) Collimate lens assembly
US8608339B2 (en) Lighting device
US20120039077A1 (en) Area lighting devices and methods
US8075162B2 (en) Zoom luminaire with compact non-imaging lens-mirror optics
US9341337B2 (en) Vehicle headlight device
JP6401340B2 (ja) 照明システム
KR20080043303A (ko) 최적화된 배율을 갖는 이중 포물면 반사기 및 이중 타원면반사기 시스템
US20120106190A1 (en) Light guide focussing device and method
TW201541672A (zh) 光源模組
US10738969B2 (en) Light-emitting structure and light-emitting system with the same
US20200011511A1 (en) Zoom lamp lens group
JP2011049001A (ja) 照明装置
JP2015118818A (ja) 灯具
KR20190016164A (ko) Led탐조등
US6161935A (en) Lighting devices for controlled distribution and for panel radiation
CN217482671U (zh) 光学透镜及照明装置
TWI783088B (zh) 光學元件以及光學系統裝置
CN214119802U (zh) 一种全反射无泛光透镜及包括该透镜的灯具
US20200063944A1 (en) Optical device and optical system apparatus
KR101874067B1 (ko) 집광 장치
US9291340B2 (en) Lighting assembly having n-fold rotational symmetry
TWI471500B (zh) 光學組件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20903255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20903255

Country of ref document: EP

Kind code of ref document: A1