WO2021121059A1 - 媒体接入控制协议数据单元处理方法、终端及介质 - Google Patents

媒体接入控制协议数据单元处理方法、终端及介质 Download PDF

Info

Publication number
WO2021121059A1
WO2021121059A1 PCT/CN2020/134193 CN2020134193W WO2021121059A1 WO 2021121059 A1 WO2021121059 A1 WO 2021121059A1 CN 2020134193 W CN2020134193 W CN 2020134193W WO 2021121059 A1 WO2021121059 A1 WO 2021121059A1
Authority
WO
WIPO (PCT)
Prior art keywords
mac
bsr
latest
original
phr
Prior art date
Application number
PCT/CN2020/134193
Other languages
English (en)
French (fr)
Inventor
谌丽
苗金华
伯特兰皮埃尔
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to US17/786,451 priority Critical patent/US20230027256A1/en
Priority to EP20902477.7A priority patent/EP4080960A4/en
Publication of WO2021121059A1 publication Critical patent/WO2021121059A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0278Traffic management, e.g. flow control or congestion control using buffer status reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management

Definitions

  • the present disclosure relates to the field of wireless communication technology, and in particular to a method, terminal and medium for processing media access control protocol data units.
  • the uplink shared resource method is adopted.
  • the base station allocates specific time-frequency resources and transmission formats to the terminal, and the terminal is allocated Data transmission on the uplink resources.
  • the allocation and transmission of uplink resources includes a dynamic scheduling resource (Dynamic Grant) dynamically scheduled by a Physical Downlink Control Channel (PDCCH) and a configuration resource (Configured Grant) pre-allocated by the base station.
  • Dynamic Grant dynamic scheduling resource
  • PDCCH Physical Downlink Control Channel
  • Configured Grant Configuration Grant
  • the terminal After obtaining the uplink resource allocation, the terminal organizes the data in the buffer and the terminal-side control information that needs to be reported into a Media Access Control Protocol Data Unit (MAC PDU), which is mapped to the uplink resource for transmission.
  • the terminal-side control information is organized into a media access control control element (MAC Control Element, MAC CE).
  • the disadvantage of the related technology is that when an uplink resource conflict causes the organized MAC PDU to be transmitted on subsequent uplink resources, the terminal cannot report the latest uplink control information.
  • the present disclosure provides a MAC PDU processing method, terminal, and medium to solve the problem that the terminal cannot report the latest uplink control information when the organized MAC PDU is transmitted on subsequent uplink resources due to an uplink resource conflict.
  • the embodiment of the present disclosure provides a MAC PDU processing method, including:
  • the terminal determines the pre-organized MAC PDU to be sent on subsequent resources
  • the content of the MAC CE in the MAC subPDU corresponding to the MAC CE is updated with the latest uplink control information.
  • updating the content of the MAC CE in the MAC subPDU corresponding to the MAC CE to the latest uplink control information includes one or a combination of the following methods:
  • the number of logical channel groups of the latest cache status information is less than the number of logical channel groups reported by the original BSR MAC CE, fill the latest cache amount to the BSR MAC CE and then fill the remaining part of the BSR MAC CE; or,
  • the latest buffered amount will be filled to the BSR MAC CE according to the priority of the logical channel in the logical channel group from high to low, until the last byte is filled , The remaining amount of the buffer of the logical channel group that is not filled in the BSR MAC CE is no longer included in the BSR MAC CE.
  • all the reported logical channel groups are set to specific values. Or, set all buffered logical channel groups to a specific value.
  • the number of the latest cached logical channel groups is greater than the number of logical channel groups reported by the original BSR MAC CE, it further includes:
  • the LCID in the corresponding MAC subheader is set to the LCID value indicating the long BSR MAC CE, or the LCID value indicating the long truncated BSR MAC CE;
  • the LCID in the corresponding MAC subheader is set to the LCID value indicating the short BSR MAC CE, or the LCID value indicating the short BSR MAC CE that is truncated.
  • the MAC subPDU corresponding to the long BSR MAC CE is organized into the MAC subPDU corresponding to the short BSR MAC CE and the MAC subPDU corresponding to the short PHR MAC CE.
  • the content of the MAC CE in the MAC subPDU corresponding to the MAC CE is updated to the latest uplink control information, it further includes:
  • the MAC subPDU corresponding to the MAC SDU remains unchanged.
  • An embodiment of the present disclosure provides a terminal, including:
  • the processor is used to read the program in the memory and execute the following process:
  • the content of the MAC CE in the MAC subPDU corresponding to the MAC CE is updated to the latest uplink control information
  • Transceiver used to receive and send data under the control of the processor.
  • updating the content of the MAC CE in the MAC subPDU corresponding to the MAC CE to the latest uplink control information includes one or a combination of the following methods:
  • the number of logical channel groups of the latest cache status information is less than the number of logical channel groups reported by the original BSR MAC CE, fill the latest cache amount to the BSR MAC CE and then fill the remaining part of the BSR MAC CE; or,
  • the latest cache amount is filled to BSR MAC CE according to the priority of the logical channel in the logical channel group from high to low, until the last word is filled Section, in the bitmap used to indicate logical channel groups in BSR MAC CE, set all reported logical channel groups to specific values, or set all cached logical channel groups to specific values.
  • the number of the latest cached logical channel groups is greater than the number of logical channel groups reported by the original BSR MAC CE, it further includes:
  • the LCID in the corresponding MAC subheader is set to the LCID value indicating the long BSR MAC CE, or the LCID value indicating the long truncated BSR MAC CE;
  • the LCID in the corresponding MAC subheader is set to the LCID value indicating the short BSR MAC CE, or the LCID value indicating the short BSR MAC CE that is truncated.
  • the MAC subPDU corresponding to the long BSR MAC CE is organized into the MAC subPDU corresponding to the short BSR MAC CE and the MAC subPDU corresponding to the short PHR MAC CE.
  • a MAC subPDU corresponding to a short BSR MAC CE and a MAC subPDU corresponding to a short PHR MAC CE can be organized into a MAC subPDU corresponding to a long BSR MAC CE;
  • the MAC subPDU corresponding to a long BSR MAC CE is organized into a MAC subPDU corresponding to a short BSR MAC CE and a MAC subPDU corresponding to a short PHR MAC CE.
  • the content of the MAC CE in the MAC subPDU corresponding to the MAC CE is updated to the latest uplink control information, it further includes:
  • the MAC subPDU corresponding to the MAC SDU remains unchanged.
  • the embodiment of the present disclosure provides a MAC PDU processing device, including:
  • the determining module is used to determine the pre-organized MAC PDU to be sent on subsequent resources
  • the update module is used to update the content of the MAC CE in the MAC subPDU corresponding to the MAC CE to the latest uplink control information in the MAC PDU.
  • the update module is used to perform one or a combination of the following processes:
  • the update module is used to update the BSR MAC CE in the original MAC PDU with the latest buffer status information in one of the following ways or a combination of them:
  • the number of logical channel groups of the latest cache status information is less than the number of logical channel groups reported by the original BSR MAC CE, fill the latest cache amount to the BSR MAC CE and then fill the remaining part of the BSR MAC CE; or,
  • the latest cache amount is filled to BSR MAC CE according to the priority of the logical channel in the logical channel group from high to low, until the last word is filled Section, in the bitmap bitmap used to indicate logical channel groups in BSR MAC CE, set all reported logical channel groups to specific values, or set all buffered logical channel groups to specific values.
  • the update module is further configured to:
  • the logical channel identifier LCID in the corresponding MAC subheader is set to the LCID value indicating the long BSR MAC CE, or the LCID value indicating the long truncated BSR MAC CE;
  • the update module is configured to update the PHR MAC CE in the original MAC PDU with the latest power headroom information in one of the following ways or a combination thereof:
  • the update module when reorganizing the byte space occupied by the MAC subPDUs corresponding to all MAC CEs to construct a MAC CE reflecting the latest uplink control information, the update module is used to:
  • the MAC subPDU corresponding to the long BSR MAC CE is organized into the MAC subPDU corresponding to the short BSR MAC CE and the MAC subPDU corresponding to the short PHR MAC CE.
  • the update module is further configured to keep the MAC subPDU corresponding to the MAC SDU of the media access control service data unit unchanged.
  • An embodiment of the present disclosure provides a computer-readable storage medium, and the computer-readable storage medium stores a computer program that executes the above-mentioned MAC PDU processing method.
  • the terminal when the terminal sends a pre-organized MAC PDU on subsequent resources, the MAC control unit in the MAC PDU will be updated to the latest content. Therefore, the terminal can basically not affect In the case of data organization, quickly update the MAC CE in the organized MAC PDU to the latest state, so that the base station can obtain the latest BSR MAC CE and/or PHR MAC CE information in time;
  • the base station also enables the base station to perform timely and effective scheduling of uplink data, and the terminal data can be transmitted in time.
  • Figure 1 is a schematic diagram of a short BSR MAC CE structure in an embodiment of the disclosure
  • Figure 2 is a schematic diagram of a long BSR MAC CE structure in an embodiment of the disclosure
  • FIG. 3 is a schematic diagram of the structure of a single entry PHR MAC CE (Single Entry PHR MAC CE) in an embodiment of the disclosure
  • Figure 4 shows the multiple entry PHR MAC CE (Multiple Entry PHR MAC CE with the highest ServCell Index of Serving Cell with configured uplink is less than 8) structure of the highest serving cell index of the uplink configured serving cell in the embodiment of the present disclosure.
  • Figure 5 is a multi-entry PHR MAC CE (Multiple Entry PHR MAC CE with the highest ServCell Index of Serving Cell with configured uplink is equal to or higher) of the highest serving cell index of the uplink configuration serving cell greater than or equal to 8 in the embodiment of the disclosure. than 8) Schematic diagram of the structure;
  • Figure 6 is a schematic diagram of an uplink MAC PDU format in an embodiment of the disclosure.
  • FIG. 7 is a schematic diagram of the conflict between dynamically scheduled resources and configured resources in an uplink resource conflict in an embodiment of the disclosure
  • FIG. 8 is a schematic diagram of a dynamic scheduling resource conflict in an uplink resource conflict in an embodiment of the disclosure.
  • FIG. 9 is a schematic diagram of the transmission of the organized MAC PDU that failed to be transmitted in the embodiment of the disclosure on subsequent uplink resources;
  • FIG. 10 is a schematic diagram of an implementation process of a MAC PDU processing method in an embodiment of the disclosure.
  • FIG. 11 is a schematic diagram of the structure change of the BSR MAC CE when the number of newly cached logical channel groups under the Long BSR MAC CE is the same as the original BSR MAC CE in the embodiment of the disclosure;
  • FIG. 12 is a schematic diagram of the structure change of the BSR MAC CE when the number of newly cached logical channel groups under the Short BSR MAC CE is the same as the original BSR MAC CE in the embodiment of the disclosure;
  • FIG. 13 is a schematic diagram of the structural change of the BSR MAC CE when the number of newly cached logical channel groups is smaller than the original BSR MAC CE in an embodiment of the disclosure
  • FIG. 14 is a schematic diagram 1 of the structure change of the BSR MAC CE when the number of newly cached logical channel groups is greater than the original BSR MAC CE in an embodiment of the disclosure;
  • 16 is the third schematic diagram of the structure change of the BSR MAC CE when the number of newly cached logical channel groups in the embodiment of the present disclosure is larger than the original BSR MAC CE in the embodiment of the disclosure;
  • FIG. 17 is a fourth schematic diagram of the structure change of the BSR MAC CE when the number of newly cached logical channel groups is greater than the original BSR MAC CE in an embodiment of the disclosure;
  • FIG. 18 is a schematic diagram of the structure change of the PHR MAC CE when the number of new PHs under the single PHR MAC CE is equal to the number of PHs reported by the original PHR MAC CE in the embodiment of the disclosure;
  • FIG. 19 is a schematic diagram of the structure change of the PHR MAC CE when the number of new PHs under the multiple input PHR MAC CE is equal to the number of PHs reported by the original PHR MAC CE in the embodiment of the disclosure;
  • FIG. 20 is a schematic diagram of the structure change of the PHR MAC CE when the number of new PHs is less than the number of PHs reported by the original PHR MAC CE in an embodiment of the disclosure;
  • FIG. 21 is a schematic diagram of the structure change of the PHR MAC CE when the number of new PHs is greater than the number of PHs reported by the original PHR MAC CE in an embodiment of the disclosure;
  • FIG. 22 is a schematic diagram of the MAC CE structure change when the MAC subPDU corresponding to the MAC CE is reorganized in an embodiment of the disclosure
  • FIG. 23 is a schematic diagram of a terminal structure in an embodiment of the disclosure.
  • the terminal After obtaining the uplink resource allocation, the terminal organizes the data in the buffer and the terminal-side control information that needs to be reported into a MAC PDU, which is mapped to the uplink resource for transmission.
  • the terminal-side control information is organized into the MAC CE.
  • the priority order relationship between the MAC CE and the uplink data when organizing the MAC PDU is:
  • C-RNTI Cell-Radio Network Temporary Identifier
  • UL-CCCH Uplink Common Control Channel
  • MAC CE used for buffer status report buffer Status report, BSR
  • BSR buffer Status report
  • padding BSR MAC CE for BSR, with exception of BSR included for padding
  • MAC-CE (MAC CE for Recommended bit rate query) used for recommended bit rate request
  • MAC CE (MAC CE for BSR included for padding) used for padding BSR.
  • the data organization follows the priority between different logical channels and the data mapping rules configured by the base station.
  • the more representative MAC CE are BSR MAC CE and PHR MAC CE.
  • FIG. 1 is a schematic diagram of the short BSR MAC CE structure
  • Figure 2 is a schematic diagram of the long BSR MAC CE structure.
  • BSR MAC CE Buffer Status Report MAC CE
  • Figure 3 is a schematic diagram of the structure of a single entry PHR MAC CE (Single Entry PHR MAC CE), and Figure 4 is a multi-entry PHR MAC CE (Multiple Entry PHR MAC CE) with the highest serving cell index of the uplink configuration serving cell less than 8 ServCellIndex of Serving Cell with configured uplink is less than 8).
  • Figure 5 shows the multi-entry PHR MAC CE (Multiple Entry PHR MAC CE with the highest ServCell Index of the highest serving cell index of the uplink configuration serving cell greater than or equal to 8).
  • Serving Cell with configured uplink is equal to or higher than 8) structure diagram, in which PHR MAC CE (Power Headroom Reporting MAC CE) is used to report the uplink power headroom of the terminal.
  • PHR MAC CE Power Headroom Reporting MAC CE
  • the Single Entry PHR MAC CE shown in Figure 3 is used to report the UL-SCH uplink power headroom of a single cell, and the length is 2 bytes.
  • the Multiple Entry PHR MAC CE with less than 8 cells except PCell is used to report the uplink power headroom of multiple cells that need to be reported under CA or Dual Connectivity (DC).
  • the Multiple Entry PHR MAC CE with no less than 8 cells except PCell is used to report the uplink power headroom of multiple cells that need to be reported under CA or DC.
  • FIG. 6 is a schematic diagram of the uplink MAC PDU format. As shown in the figure, in the organized uplink MAC PDU format, MAC CE and MAC Service Data Unit (SDU) are organized into MAC PDU in order of priority.
  • SDU Service Data Unit
  • the length of the Physical Uplink Shared Channel is not fixed. It can have different PUSCH lengths according to different data transmission requirements; the time interval between the scheduling command and the PUSCH is also configurable. Therefore, there is a problem of conflict between the two scheduled uplink resources.
  • Figure 7 is a schematic diagram of the conflict between dynamic scheduling resources and configured resources in an uplink resource conflict
  • Figure 8 is a schematic diagram of a dynamic scheduling resource conflict in an uplink resource conflict
  • Figure 9 is a schematic diagram of the transmission of an organized MAC PDU that cannot be transmitted on subsequent uplink resources.
  • the terminal selects one of the uplink resources for transmission according to certain rules.
  • PUSCH2 is abandoned.
  • the terminal may have already organized the MAC PDU to be transmitted on the PUSCH2 because the PUSCH2 resource has been determined.
  • the processing method at this time is that the already organized MAC PDU can be transmitted on the next uplink resource. For example, after the transmission on the configured resource is conflicted, if a MAC PDU to be transmitted on the conflicted resource has been organized, the The MAC PDU can be transmitted on subsequent configuration resources of the same length (as shown in Figure 9).
  • the MAC PDU since the MAC PDU organized earlier is transmitted on the subsequent resources, the MAC PDU cannot contain the latest terminal-side uplink control information. Specifically, the terminal cannot report the latest BSR and PHR. If the latest BSR cannot be reported, the base station cannot allocate uplink resources for the terminal in time, resulting in data transmission delay; if the latest PHR cannot be reported, the base station cannot adjust the power for the terminal in time, resulting in a decrease in the success rate of data transmission.
  • the terminal when an uplink resource conflict causes the organized MAC PDU to be transmitted on subsequent uplink resources, the terminal cannot report the latest uplink control information. Specifically, the terminal cannot report the latest BSR and PHR. If the latest BSR cannot be reported, the base station cannot allocate uplink resources for the terminal in time, resulting in data transmission delay; if the latest PHR cannot be reported, the base station cannot adjust the power for the terminal in time, resulting in a decrease in the success rate of data transmission.
  • the embodiment of the present disclosure provides a MAC PDU processing solution to solve the problem of uplink transmission resource conflicts, which results in delayed transmission of organized data packets, and the control information on the terminal side cannot be reported in time.
  • Figure 10 is a schematic diagram of the implementation process of the MAC PDU processing method. As shown in the figure, it can include:
  • Step 1001 The terminal determines the pre-organized MAC PDU to be sent on subsequent resources
  • Step 1002 in the MAC PDU, update the content of the MAC CE in the MAC subPDU corresponding to the MAC CE to the latest uplink control information.
  • the content of the MAC CE in the MAC subPDU corresponding to the MAC CE is updated to the latest uplink control information, it further includes:
  • the MAC subPDU corresponding to the MAC SDU remains unchanged.
  • the terminal sends a pre-organized MAC PDU on subsequent resources
  • the MAC subPDU (subPDU) corresponding to the MAC SDU remains unchanged, and the content of the MAC CE in the MAC subPDU corresponding to the MAC CE is updated to the latest uplink control information.
  • the number of logical channel groups of the latest cache status information is less than the number of logical channel groups reported by the original BSR MAC CE, fill the latest cache amount to the BSR MAC CE and then fill the remaining part of the BSR MAC CE; or,
  • the latest cache amount is filled to BSR MAC CE according to the priority of the logical channel in the logical channel group from high to low, until the last word is filled Section, in the bitmap used to indicate logical channel groups in BSR MAC CE, set all reported logical channel groups to specific values, or set all cached logical channel groups to specific values. For example, you can set all reported logical channel groups to specific values. Set the channel group to 1, or, set all buffered logical channel groups to 1.
  • the remaining buffer of the logical channel group that is not filled in the BSR MAC CE is no longer included in the BSR MAC CE.
  • the number of logical channel groups in the new cache and the old cache are the same.
  • the latest cache and the original BSR MAC CE occupy the same number of bytes, and the BSR MAC CE generated by the latest cache status information is used to replace the original BSR MAC CE. .
  • the number of logical channel groups in the latest uplink buffer is the same as the number of logical channel groups in the original BSR MAC CE, and the original buffer status is updated with the new buffer status.
  • BSR MAC CE The content and format of the MAC subheader of the BSR MAC CE remain unchanged.
  • FIG 11 is a schematic diagram of the changes in the BSR MAC CE structure when the number of newly cached logical channel groups under Long BSR MAC CE is the same as the original BSR MAC CE.
  • the original BSR MAC CE has a logical channel group (Logical Channel Group, LCG). ) 4 and LCG5 buffer report, when the latest PUSCH resource sends uplink transmission, the terminal buffer has the buffer data of the logical channel groups LCG3 and LCG5, so the new BSR MAC CE is updated to report the buffer size of LCG3 and LCG5.
  • LCG Logical Channel Group
  • Figure 12 is a schematic diagram of the structure change of BSR MAC CE when the number of newly cached logical channel groups under Short BSR MAC CE is the same as the original BSR MAC CE.
  • the original BSR MAC CE has the cache report of the logical channel group LCG5.
  • the terminal buffer contains the buffered data of the logical channel group LCG3, so the new BSR MAC CE is updated to the buffer size of the reported LCG3.
  • the number of logical channel groups in the new cache is less than the number of logical channel groups in the old cache.
  • the number of the latest cached logical channels is less than the number of logical channels reported by the original BSR MAC CE, and the latest cache amount is filled into the BSR MAC After CE, fill the remaining part of BSR MAC CE, for example, fill the remaining part of BSR MAC CE as 0.
  • the terminal transmits the pre-organized MAC PDU on the new uplink resource
  • the LCG position that needs to be reported is 1
  • fill in the buffer size of the LCG in the corresponding Buffer size position and fill the remaining bytes with 0.
  • the content and format of the MAC subheader of the BSR MAC CE remain unchanged.
  • Figure 13 is a schematic diagram of the structure change of BSR MAC CE when the number of logical channel groups newly cached is smaller than that of the original BSR MAC CE.
  • the original BSR MAC CE has the cache of the logical channel groups LCG4 and LCG5, which are reported in the latest PUSCH
  • the new BSR MAC CE is updated to the latest buffer size of the reported LCG3, and the remaining bytes are filled with 0.
  • the number of logical channel groups in the new cache is greater than the number of logical channel groups in the old cache.
  • the number of the latest cached logical channels is greater than the number of logical channels reported by the original BSR MAC CE, and the latest cache amount is prioritized by logical channels
  • the level is filled to BSR MAC CE from high to low, until the last byte is filled, and the remaining logical channel group buffers that are not filled in BSR MAC CE are no longer included in BSR MAC CE, and BSR MAC CE is used to indicate logic
  • all the reported logical channel groups can be indicated, or all the logical channel groups with buffers can be indicated.
  • the terminal transmits the pre-organized MAC PDU on the new uplink resource, if the number of logical channel groups in the latest uplink buffer is greater than the number of logical channel groups in the original BSR MAC CE, the logical channel group corresponds to the logical channel group.
  • Channel priority from high to low, or according to the LCG number from small to large, fill the buffer of the logical channel group into the BSR MAC CE until the number of bytes occupied by the original BSR MAC CE is filled.
  • Figure 14 shows the number of newly cached logical channel groups larger than that of the original BSR MAC CE when the BSR MAC CE structure changes.
  • the MAC subheader remains unchanged, and the original short BSR MAC CE becomes a short truncated BSR MAC CE (Short Truncated BSR MAC CE), indicating the buffer report of the logical channel group containing the highest priority logical channel.
  • the original BSR MAC CE has the LCG5 cache, and the new BSR MAC CE includes the LCG3 cache report.
  • Figure 15 is the second schematic diagram of the structure change of BSR MAC CE when the number of newly cached logical channel groups is greater than the original BSR MAC CE.
  • the logical channel ID (LCID) in the MAC subheader is updated to indicate short
  • the LCID of the BSR MAC CE is truncated, and the original short BSR MAC CE becomes Short Truncated BSR MAC CE.
  • the original BSR MAC CE has the LCG5 cache
  • the new BSR MAC CE includes the LCG3 cache report.
  • Figure 16 shows the number of newly cached logical channel groups larger than the original BSR MAC CE when the BSR MAC CE structure changes.
  • the MAC subheader remains unchanged, and the original long BSR MAC CE becomes a long truncated BSR MAC CE (Long Truncated BSR MAC CE), according to the logical channel group corresponding to the logical channel priority from high to low, or according to the LCG number from small to large, the buffer of the logical channel group is filled into BSR MAC CE, Until the number of bytes occupied by the original BSR MAC CE is filled.
  • the LCG bitmap For the location of the LCG bitmap, set the bit of the buffered LCG to 1, or set the bit of the reported LCG to 1.
  • the logical channel groups LCG4 and LCG5 in the original BSR MAC CE have buffers for reporting, and the logical channel groups LCG3, LCG4, and LCG5 in the new buffer have data buffers. Due to the limitation of the number of bytes occupied by the original BSR MAC CE, only logical channel groups can be reported. LCG3, LCG4 data.
  • the positions of the logical channel groups LCG3, LCG4, and LCG5 are set to 1, or the positions of the logical channel groups LCG3, LCG4 are set to 1.
  • Figure 16 is an example of setting the corresponding bit of the logical channel group with data in the buffer to 1.
  • Figure 17 is the fourth schematic diagram of the structure change of BSR MAC CE when the number of newly cached logical channel groups is greater than the original BSR MAC CE.
  • the LCID in the MAC subheader is updated to indicate the LCID of the long truncated BSR MAC CE.
  • Long BSR MAC CE becomes Long Truncated BSR MAC CE.
  • the bit of the buffered LCG For the location of the LCG bitmap, set the bit of the buffered LCG to 1, or set the bit of the reported LCG to 1.
  • the logical channel groups LCG4 and LCG5 in the original BSR MAC CE have buffers for reporting, and the logical channel groups LCG3, LCG4, and LCG5 in the new buffer have data buffers. Due to the limitation of the number of bytes occupied by the original BSR MAC CE, only logical channel groups can be reported. LCG3, LCG4 data.
  • the positions of the logical channel groups LCG3, LCG4, and LCG5 are set to 1, or the positions of the logical channel groups LCG3, LCG4 are set to 1.
  • Figure 17 is an example of setting the bit corresponding to the logical channel group with data in the buffer to 1.
  • the number of newly reported Power Headroom (PH) is equal to the number of PH reported by the original PHR MAC CE.
  • the number of bytes required for the latest power headroom report is the same as the original PHR MAC CE occupancy If the number of bytes is the same, replace the original BSR MAC CE with the BSR MAC CE generated by the latest cache status information.
  • the PHR MAC CE type remains unchanged, the MAC subheader of the MAC subPDU remains unchanged, the content of the PH field is updated to the latest PH, and the value of PCMAC, c is updated to the latest value.
  • Figure 18 is a schematic diagram of the PHR MAC CE structure change when the number of new PHs under a single PHR MAC CE is equal to the number of PHs reported by the original PHR MAC CE.
  • Figure 19 shows the number of new PHs under the multiple input PHR MAC CE equal to the original PHR MAC CE
  • the schematic diagram of PHR MAC CE structure changes when reporting the number of PHs, as shown in the figure, Figure 18 takes single PHR MAC CE as an example to illustrate this process;
  • Figure 19 shows an example of multi-input PHR MAC CE, and in Figure 19, the terminal is configured as a carrier Carrier Aggregation (CA), the old PHR MAC CE reports the power headroom of the primary cell (Primary Cell, PCell) and secondary cell 1, and the new PHR MAC CE is replaced with PHR MAC CE to report the power headroom of the primary cell PCell and secondary cell 2 the amount.
  • CA carrier Carrier Aggregation
  • the number of newly reported PHs is less than the number of PHs reported by the original PHR MAC CE.
  • the latest After the PH is filled in the PHR MAC CE the remaining part of the PHR MAC CE is filled, for example, the remaining part of the PHR MAC CE is filled with 0.
  • the PHR MAC CE type remains unchanged, the MAC subheader of the MAC subPDU remains unchanged, the new power headroom value is filled in the PHR MAC CE, and the remaining position is filled with 0.
  • Figure 20 is a schematic diagram of the PHR MAC CE structure change when the number of new PHs is less than the number of PHs reported by the original PHR MAC CE.
  • the terminal is configured as CA
  • the old PHR MAC CE reports the power of the primary cell PCell and secondary cell 1
  • the serving cell indicator position is 0, and the bytes other than the PCell power headroom are set to 0.
  • the number of newly reported PHs is greater than the number of PHs reported by the original PHR MAC CE.
  • the number of bytes required for the latest power headroom report is greater than the number of bytes occupied by the original PHR MAC CE.
  • the cells in the PHR MAC CE format are filled with PHR MAC CE until the last byte, and the PH of the remaining cells is no longer reported.
  • the PHR MAC CE type remains unchanged, and the MAC subheader of the MAC subPDU remains unchanged.
  • the new power headroom value is filled in the PHR MAC CE in the order of serving cell number.
  • the power headroom of the serving cell that cannot be filled in is not reported.
  • the bitmap indicator bit of the serving cell that does not report but has a power headroom value can be set to 1.
  • Figure 21 is a schematic diagram of the PHR MAC CE structure change when the number of new PHs is greater than the number of PHs reported by the original PHR MAC CE.
  • the terminal is configured as CA
  • the old PHR MAC CE reports the power of the primary cell PCell and secondary cell 1 Headroom
  • the new PHR MAC CE has the power headroom of the primary cell PCell and secondary cells 1 and 2 that need to be reported. Due to resource constraints, only the power headroom of the primary cell PCell and secondary cell 1 are reported.
  • the MAC subPDU corresponding to the long BSR MAC CE is organized into the MAC subPDU corresponding to the short BSR MAC CE and the MAC subPDU corresponding to the short PHR MAC CE.
  • a MAC subPDU (2byte: 1byte MAC subheader + 1 byte BSR MAC CE) corresponding to a short BSR MAC CE and a MAC subPDU (3byte: 1byte MAC subheader + 2byte BSR MAC CE) corresponding to a short PHR MAC CE) are organized into A MAC subPDU corresponding to a long BSR MAC CE (5byte: 2byte MAC subheader + 3byte BSR MAC CE).
  • MAC CE is reorganized.
  • Figure 22 is a schematic diagram of the MAC CE structure change when the MAC subPDU corresponding to the MAC CE is reorganized. As shown in the figure, the MAC subPDU corresponding to the MAC SDU remains unchanged. The MAC subPDU corresponding to the MAC CE is reorganized and the required MAC CE is added. , The length of each MAC CE subPDU remains unchanged, or all the bytes occupied by the MAC CE are reorganized into a new MAC CE.
  • a MAC subPDU corresponding to a short BSR MAC CE (2byte: 1byte MAC subheader + 1 byte BSR MAC CE) and a MAC subPDU corresponding to a short PHR MAC CE (3byte: 1 byte MAC subheader + 2byte BSR MAC CE) are organized into one
  • the MAC subPDU corresponding to the long BSR MAC CE (5byte: 2byte MAC subheader + 3byte BSR MAC CE).
  • the embodiments of the present disclosure also provide a terminal, a MAC PDU processing device, and a computer-readable storage medium. Since the principles of these devices to solve the problem are similar to the MAC PDU processing method, the implementation of these devices can be referred to the method The implementation of the repetition will not be repeated.
  • Figure 23 is a schematic diagram of the terminal structure. As shown in the figure, the user equipment includes:
  • the processor 2300 is configured to read a program in the memory 2320 and execute the following process:
  • the content of the MAC CE in the MAC subPDU corresponding to the MAC CE is updated to the latest uplink control information
  • the transceiver 2310 is used to receive and send data under the control of the processor 2300.
  • the content of the MAC CE in the MAC subPDU corresponding to the MAC CE is updated to the latest uplink control information, it further includes:
  • the MAC subPDU corresponding to the MAC SDU remains unchanged.
  • updating the content of the MAC CE in the MAC subPDU corresponding to the MAC CE to the latest uplink control information includes one or a combination of the following methods:
  • the number of logical channel groups of the latest cache status information is less than the number of logical channel groups reported by the original BSR MAC CE, fill the latest cache amount to the BSR MAC CE and then fill the remaining part of the BSR MAC CE; or,
  • the latest cache amount is filled to BSR MAC CE according to the priority of the logical channel in the logical channel group from high to low, until the last word is filled Section, in the bitmap used to indicate logical channel groups in BSR MAC CE, set all reported logical channel groups to specific values, or set all cached logical channel groups to specific values.
  • the number of the latest cached logical channel groups is greater than the number of logical channel groups reported by the original BSR MAC CE, it further includes:
  • the LCID in the corresponding MAC subheader is set to the LCID value indicating the long BSR MAC CE, or the LCID value indicating the long truncated BSR MAC CE;
  • the LCID in the corresponding MAC subheader is set to the LCID value indicating the short BSR MAC CE, or the LCID value indicating the short BSR MAC CE that is truncated.
  • the MAC subPDU corresponding to the long BSR MAC CE is organized into the MAC subPDU corresponding to the short BSR MAC CE and the MAC subPDU corresponding to the short PHR MAC CE.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 2300 and various circuits of the memory represented by the memory 2320 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, will not be further described herein.
  • the bus interface provides the interface.
  • the transceiver 2310 may be a plurality of elements, including a transmitter and a receiver, and provide a unit for communicating with various other devices on the transmission medium.
  • the user interface 2330 may also be an interface capable of connecting externally and internally with the required equipment.
  • the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, etc.
  • the processor 2300 is responsible for managing the bus architecture and general processing, and the memory 2320 can store data used by the processor 2300 when performing operations.
  • the embodiment of the present disclosure provides a MAC PDU processing device, including:
  • the determining module is used to determine the pre-organized MAC PDU to be sent on subsequent resources
  • the update module is used to update the content of the MAC CE in the MAC subPDU corresponding to the MAC CE to the latest uplink control information in the MAC PDU.
  • An embodiment of the present disclosure provides a computer-readable storage medium, and the computer-readable storage medium stores a computer program that executes the above-mentioned MAC PDU processing method.
  • each part of the above-mentioned device is divided into various modules or units by function and described separately.
  • the functions of each module or unit can be implemented in the same one or more software or hardware.
  • the terminal when the terminal sends a pre-organized MAC PDU on subsequent resources, the MAC subPDU corresponding to the MAC SDU remains unchanged, and the MAC control unit in the MAC PDU is updated to the latest Content.
  • it also provides the processing of updating the BSR MAC CE to the latest value and corresponding different situations; updating the PHR MAC CE to the latest value and corresponding different situations; processing all MAC subPDUs corresponding to the MAC CE Reorganization, updated to the latest MAC CE processing.
  • the terminal when an uplink resource conflict causes the organized MAC PDU to be transmitted on subsequent uplink resources, the terminal cannot report the latest uplink control information.
  • the terminal can quickly update the MAC CE in the organized MAC PDU to the latest state without basically affecting the data organization, so that the base station can obtain the latest BSR MAC CE in time And/or PHR MAC CE, etc., so that the base station can schedule the uplink data in time and effectively, and the terminal data can be transmitted in time.
  • the embodiments of the present disclosure can be provided as a method, a system, or a computer program product. Therefore, the present disclosure may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, the present disclosure may take the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including but not limited to disk storage, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present disclosure can be embodied in the form of a software product in essence or a part that contributes to the related technology.
  • the computer software product is stored in a storage medium and includes a number of instructions to make a A computer device (which may be a personal computer, a server, or a network device, etc.) executes all or part of the steps of the methods described in the various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.
  • the program can be stored in a computer readable storage medium, and the program can be stored in a computer readable storage medium. When executed, it may include the procedures of the above-mentioned method embodiments.
  • the storage medium may be a magnetic disk, an optical disc, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random Access Memory, RAM), etc.
  • modules, units, and sub-units can be implemented in one or more Application Specific Integrated Circuits (ASIC), Digital Signal Processor (DSP), Digital Signal Processing Device (DSP Device, DSPD) ), programmable logic devices (Programmable Logic Device, PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, used to execute the present disclosure Other electronic units or a combination of the functions described above.
  • ASIC Application Specific Integrated Circuits
  • DSP Digital Signal Processor
  • DSP Device Digital Signal Processing Device
  • DSPD Digital Signal Processing Device
  • PLD programmable logic devices
  • Field-Programmable Gate Array Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • the technology described in the embodiments of the present disclosure can be implemented by modules (for example, procedures, functions, etc.) that perform the functions described in the embodiments of the present disclosure.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供了一种媒体接入控制协议数据单元处理方法、终端及介质,包括:终端确定在后续资源上需发送的预先组织好的媒体接入控制协议数据单元;该媒体接入控制协议数据单元中,将媒体接入控制控制单元对应的媒体接入控制子协议数据单元中媒体接入控制控制单元的内容更新为最新的上行控制信息。

Description

媒体接入控制协议数据单元处理方法、终端及介质
相关申请的交叉引用
本申请主张在2019年12月20日在中国提交的中国专利申请号No.201911327685.X的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及无线通信技术领域,特别涉及一种媒体接入控制协议数据单元处理方法、终端及介质。
背景技术
在第四代(4 th generation,4G)和第五代(5 th generation,5G)系统中,都采用上行共享资源的方式,由基站为终端分配具体的时频资源和传输格式,终端在分配的上行资源上发送数据传输。上行资源的分配发送包括由物理下行控制信道(Physical Downlink Control Channel,PDCCH)动态调度的动态调度资源(Dynamic Grant)和基站预分配的配置资源(Configured Grant)。
终端在获得上行资源分配后,将缓存中的数据和需要上报的终端侧控制信息组织成媒体接入控制协议数据单元(Media Access Control Protocol Data Unit,MAC PDU),映射到上行资源上进行传输。终端侧控制信息组织到媒体接入控制控制单元(MAC Control Element,MAC CE)中。
相关技术的不足在于,当上行资源冲突导致组织好的MAC PDU在后续上行资源上传输时,终端不能上报最新的上行控制信息。
发明内容
本公开提供了一种MAC PDU处理方法、终端及介质,用以解决当上行资源冲突导致组织好的MAC PDU在后续上行资源上传输时,终端不能上报最新的上行控制信息的问题。
本公开实施例中提供了一种MAC PDU处理方法,包括:
终端确定在后续资源上需发送的预先组织好的MAC PDU;
该MAC PDU中,将MAC CE对应的MAC subPDU中MAC CE的内容更新为最新的上行控制信息。
实施中,将MAC CE对应的MAC subPDU中MAC CE的内容更新为最新的上行控制信息,包括以下方式之一或者其组合:
用最新的缓存状态信息更新原MAC PDU中的BSR MAC CE,BSR MAC CE对应的MAC subPDU长度保持不变;或,
用最新的功率余量信息更新原MAC PDU中的PHR MAC CE,PHR MAC CE对应的MAC subPDU长度保持不变,Single Entry PHR MAC CE和Multiple Entry PHR MAC CE的类型不变;或,
对所有MAC CE对应的MAC subPDU占用的字节空间重新组织,构造反映最新上行控制信息的MAC CE,其中,每个MAC subPDU的长度不变,或,对全部MAC CE对应的MAC subPDU占用的字节空间重新组织成新的MAC CE。
实施中,在用最新的缓存状态信息更新原MAC PDU中的BSR MAC CE时,包括以下方式之一或者其组合:
如果最新缓存状态信息生成的BSR MAC CE与原BSR MAC CE占用的字节数相同,用最新缓存状态信息生成的BSR MAC CE替换原BSR MAC CE;或,
如果最新缓存状态信息逻辑信道组个数小于原BSR MAC CE上报的逻辑信道组个数,将最新缓存量填充到BSR MAC CE后,填充BSR MAC CE剩余部分;或,
如果最新缓存逻辑信道组个数大于原BSR MAC CE上报的逻辑信道组个数,将最新缓存量按逻辑信道组中逻辑信道优先级从高到低填充到BSR MAC CE,直至填到最后字节,剩余没有填充到BSR MAC CE的逻辑信道组的缓存量不再包含在BSR MAC CE中,BSR MAC CE中用于指示逻辑信道组的bitmap中,将全部上报的逻辑信道组置为特定值,或,将所有有缓存的逻辑信道组置为特定值。
实施中,如果最新缓存逻辑信道组个数大于原BSR MAC CE上报的逻辑信道组个数时,进一步包括:
如果原BSR MAC CE为长BSR MAC CE,更新后,对应MAC子头中LCID设置为指示长BSR MAC CE的LCID值,或设置为指示长截短BSR MAC CE的LCID值;
如果原BSR MAC CE为短BSR MAC CE,更新后,对应MAC子头中LCID设置为指示短BSR MAC CE的LCID值,或设置为指示截短的短BSR MAC CE的LCID值。
实施中,在用最新的功率余量信息更新原MAC PDU中的PHR MAC CE时,包括以下方式之一或者其组合:
如果最新功率余量上报生成的PHR MAC CE所需的字节数与原PHR MAC CE占用的字节数相同,用最新缓存状态信息生成的BSR MAC CE替换原BSR MAC CE;或,
如果最新功率余量上报所需的字节数小于原PHR MAC CE占用的字节数,将最新PH填充到PHR MAC CE后,填充PHR MAC CE剩余部分;或,
如果最新功率余量上报所需的字节数大于原PHR MAC CE占用的字节数,将PH按PHR MAC CE格式中的小区填入PHR MAC CE直至最后一个字节,剩余小区的PH不再上报。
实施中,在对所有MAC CE对应的MAC subPDU占用的字节空间重新组织,构造反映最新上行控制信息的MAC CE时,包括:
将短BSR MAC CE对应的MAC subPDU和短PHR MAC CE对应的MAC subPDU组织成长BSR MAC CE对应的MAC subPDU;或,
将长BSR MAC CE对应的MAC subPDU组织成短BSR MAC CE对应的MAC subPDU和短PHR MAC CE对应的MAC subPDU。
实施中,在将MAC CE对应的MAC subPDU中MAC CE的内容更新为最新的上行控制信息时,进一步包括:
MAC SDU对应的MAC subPDU保持不变。
本公开实施例中提供了一种终端,包括:
处理器,用于读取存储器中的程序,执行下列过程:
确定在后续资源上需发送的预先组织好的MAC PDU;
该MAC PDU中,将MAC CE对应的MAC subPDU中MAC CE的内容 更新为最新的上行控制信息;
收发机,用于在处理器的控制下接收和发送数据。
实施中,将MAC CE对应的MAC subPDU中MAC CE的内容更新为最新的上行控制信息,包括以下方式之一或者其组合:
用最新的缓存状态信息更新原MAC PDU中的BSR MAC CE,BSR MAC CE对应的MAC subPDU长度保持不变;或,
用最新的功率余量信息更新原MAC PDU中的PHR MAC CE,PHR MAC CE对应的MAC subPDU长度保持不变,Single Entry PHR MAC CE和Multiple Entry PHR MAC CE的类型不变;或,
对所有MAC CE对应的MAC subPDU占用的字节空间重新组织,构造反映最新上行控制信息的MAC CE,其中,每个MAC subPDU的长度不变,或,对全部MAC CE对应的MAC subPDU占用的字节空间重新组织成新的MAC CE。
实施中,在用最新的缓存状态信息更新原MAC PDU中的BSR MAC CE时,包括以下方式之一或者其组合:
如果最新缓存状态信息生成的BSR MAC CE与原BSR MAC CE占用的字节数相同,用最新缓存状态信息生成的BSR MAC CE替换原BSR MAC CE;或,
如果最新缓存状态信息逻辑信道组个数小于原BSR MAC CE上报的逻辑信道组个数,将最新缓存量填充到BSR MAC CE后,填充BSR MAC CE剩余部分;或,
如果最新缓存逻辑信道组个数大于原BSR MAC CE上报的逻辑信道组个数,将最新缓存量按逻辑信道组中逻辑信道优先级从高到低填充到BSR MAC CE,直至填到最后一个字节,BSR MAC CE中用于指示逻辑信道组的bitmap中,将全部上报的逻辑信道组置为特定值,或,将所有有缓存的逻辑信道组置为特定值。
实施中,如果最新缓存逻辑信道组个数大于原BSR MAC CE上报的逻辑信道组个数时,进一步包括:
如果原BSR MAC CE为长BSR MAC CE,更新后,对应MAC子头中 LCID设置为指示长BSR MAC CE的LCID值,或设置为指示长截短BSR MAC CE的LCID值;
如果原BSR MAC CE为短BSR MAC CE,更新后,对应MAC子头中LCID设置为指示短BSR MAC CE的LCID值,或设置为指示截短的短BSR MAC CE的LCID值。
实施中,在用最新的功率余量信息更新原MAC PDU中的PHR MAC CE时,包括以下方式之一或者其组合:
如果最新功率余量上报生成的PHR MAC CE所需的字节数与原PHR MAC CE占用的字节数相同,用最新缓存状态信息生成的BSR MAC CE替换原BSR MAC CE;或,
如果最新功率余量上报所需的字节数小于原PHR MAC CE占用的字节数,将最新PH填充到PHR MAC CE后,填充PHR MAC CE剩余部分;或,
如果最新功率余量上报所需的字节数大于原PHR MAC CE占用的字节数,将PH按PHR MAC CE格式中的小区填入PHR MAC CE直至最后一个字节,剩余小区的PH不再上报。
实施中,在对所有MAC CE对应的MAC subPDU占用的字节空间重新组织,构造反映最新上行控制信息的MAC CE时,包括:
将短BSR MAC CE对应的MAC subPDU和短PHR MAC CE对应的MAC subPDU组织成长BSR MAC CE对应的MAC subPDU;或,
将长BSR MAC CE对应的MAC subPDU组织成短BSR MAC CE对应的MAC subPDU和短PHR MAC CE对应的MAC subPDU。
具体实施中,例如可以将一个短BSR MAC CE对应的MAC subPDU和一个短PHR MAC CE对应的MAC subPDU组织成一个长BSR MAC CE对应的MAC subPDU;或,
将一个长BSR MAC CE对应的MAC subPDU组织成一个短BSR MAC CE对应的MAC subPDU和一个短PHR MAC CE对应的MAC subPDU。
实施中,在将MAC CE对应的MAC subPDU中MAC CE的内容更新为最新的上行控制信息时,进一步包括:
MAC SDU对应的MAC subPDU保持不变。
本公开实施例中提供了一种MAC PDU处理装置,包括:
确定模块,用于确定在后续资源上需发送的预先组织好的MAC PDU;
更新模块,用于在该MAC PDU中,将MAC CE对应的MAC subPDU中MAC CE的内容更新为最新的上行控制信息。
实施中,所述更新模块用于执行下列过程之一或者其组合:
用最新的缓存状态信息更新原MAC PDU中的缓存状态报告BSR MAC CE,BSR MAC CE对应的MAC subPDU长度保持不变;或,
用最新的功率余量信息更新原MAC PDU中的功率余量报告PHR MAC CE,PHR MAC CE对应的MAC subPDU长度保持不变,单条目Single Entry PHR MAC CE和多条目Multiple Entry PHR MAC CE的类型不变;或,
对所有MAC CE对应的MAC subPDU占用的字节空间重新组织,构造反映最新上行控制信息的MAC CE,其中,每个MAC subPDU的长度不变,或,对全部MAC CE对应的MAC subPDU占用的字节空间重新组织成新的MAC CE。
实施中,所述更新模块用于以以下方式之一或者其组合用最新的缓存状态信息更新原MAC PDU中的BSR MAC CE:
如果最新缓存状态信息生成的BSR MAC CE与原BSR MAC CE占用的字节数相同,用最新缓存状态信息生成的BSR MAC CE替换原BSR MAC CE;或,
如果最新缓存状态信息逻辑信道组个数小于原BSR MAC CE上报的逻辑信道组个数,将最新缓存量填充到BSR MAC CE后,填充BSR MAC CE剩余部分;或,
如果最新缓存逻辑信道组个数大于原BSR MAC CE上报的逻辑信道组个数,将最新缓存量按逻辑信道组中逻辑信道优先级从高到低填充到BSR MAC CE,直至填到最后一个字节,BSR MAC CE中用于指示逻辑信道组的比特位图bitmap中,将全部上报的逻辑信道组置为特定值,或,将所有有缓存的逻辑信道组置为特定值。
实施中,如果最新缓存逻辑信道组个数大于原BSR MAC CE上报的逻辑信道组个数时,所述更新模块进一步用于:
如果原BSR MAC CE为长BSR MAC CE,更新后,对应MAC子头中逻辑信道标识LCID设置为指示长BSR MAC CE的LCID值,或设置为指示长截短BSR MAC CE的LCID值;
如果原BSR MAC CE为短BSR MAC CE,更新后,对应MAC子头中LCID设置为指示短BSR MAC CE的LCID值,或设置为指示截短的短BSR MAC CE的LCID值。19.如权利要求16所述的MAC PDU处理装置,其中,所述更新模块用于以以下方式之一或者其组合用最新的功率余量信息更新原MAC PDU中的PHR MAC CE:
如果最新功率余量上报生成的PHR MAC CE所需的字节数与原PHR MAC CE占用的字节数相同,用最新缓存状态信息生成的BSR MAC CE替换原BSR MAC CE;或,
如果最新功率余量上报所需的字节数小于原PHR MAC CE占用的字节数,将最新功率余量PH填充到PHR MAC CE后,填充PHR MAC CE剩余部分;或,
如果最新功率余量上报所需的字节数大于原PHR MAC CE占用的字节数,将PH按PHR MAC CE格式中的小区填入PHR MAC CE直至最后一个字节,剩余小区的PH不再上报。
实施中,在对所有MAC CE对应的MAC subPDU占用的字节空间重新组织,构造反映最新上行控制信息的MAC CE时,所述更新模块用于:
将短BSR MAC CE对应的MAC subPDU和短PHR MAC CE对应的MAC subPDU组织成长BSR MAC CE对应的MAC subPDU;或,
将长BSR MAC CE对应的MAC subPDU组织成短BSR MAC CE对应的MAC subPDU和短PHR MAC CE对应的MAC subPDU。
实施中,所述更新模块进一步用于:使媒体接入控制服务数据单元MAC SDU对应的MAC subPDU保持不变。
本公开实施例中提供了一种计算机可读存储介质,所述计算机可读存储介质存储有执行上述MAC PDU处理方法的计算机程序。
本公开有益效果如下:
在本公开实施例提供的技术方案中,由于终端在后续资源上发送预先组 织好的MAC PDU时,会将该MAC PDU中的MAC控制单元更新为最新的内容,因此,终端可以在基本不影响数据组织的情况下,快速将已组织的MAC PDU中的MAC CE更新为最新状态,从而使得基站能及时获取最新的BSR MAC CE和/或PHR MAC CE等信息;
进一步的,也使得基站能对上行数据进行及时有效调度,终端数据能进行及时传输。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为本公开实施例中短BSR MAC CE结构示意图;
图2为本公开实施例中长BSR MAC CE结构示意图;
图3为本公开实施例中单条目PHR MAC CE(Single Entry PHR MAC CE)结构示意图;
图4为本公开实施例中小于8的上行链路配置服务小区的最高服务小区索引的多条目PHR MAC CE(Multiple Entry PHR MAC CE with the highest ServCellIndex of Serving Cell with configured uplink is less than 8)结构示意图;
图5为本公开实施例中大于等于8的上行链路配置服务小区的最高服务小区索引的多条目PHR MAC CE(Multiple Entry PHR MAC CE with the highest ServCellIndex of Serving Cell with configured uplink is equal to or higher than 8)结构示意图;
图6为本公开实施例中上行MAC PDU格式示意图;
图7为本公开实施例中上行资源冲突中动态调度资源与配置资源的冲突示意图;
图8为本公开实施例中上行资源冲突中动态调度资源冲突示意图;
图9为本公开实施例中未能传输的组织好的MAC PDU在后续上行资源上传输示意图;
图10为本公开实施例中MAC PDU处理方法实施流程示意图;
图11为本公开实施例中Long BSR MAC CE下新缓存的逻辑信道组个数与原BSR MAC CE相同时BSR MAC CE结构变化示意图;
图12为本公开实施例中Short BSR MAC CE下新缓存的逻辑信道组个数与原BSR MAC CE相同时BSR MAC CE结构变化示意图;
图13为本公开实施例中新缓存的逻辑信道组个数小于原BSR MAC CE相同时BSR MAC CE结构变化示意图;
图14为本公开实施例中新缓存的逻辑信道组个数大于原BSR MAC CE相同时BSR MAC CE结构变化示意图一;
图15为本公开实施例中新缓存的逻辑信道组个数大于原BSR MAC CE相同时BSR MAC CE结构变化示意图二;
图16为本公开实施例中本公开实施例中新缓存的逻辑信道组个数大于原BSR MAC CE相同时BSR MAC CE结构变化示意图三;
图17为本公开实施例中新缓存的逻辑信道组个数大于原BSR MAC CE相同时BSR MAC CE结构变化示意图四;
图18为本公开实施例中single PHR MAC CE下新的PH个数等于原PHR MAC CE上报的PH个数时PHR MAC CE结构变化示意图;
图19为本公开实施例中多输入PHR MAC CE下新的PH个数等于原PHR MAC CE上报的PH个数时PHR MAC CE结构变化示意图;
图20为本公开实施例中新的PH个数小于原PHR MAC CE上报的PH个数时PHR MAC CE结构变化示意图;
图21为本公开实施例中新的PH个数大于原PHR MAC CE上报的PH个数时PHR MAC CE结构变化示意图;
图22为本公开实施例中MAC CE对应的MAC subPDU重新组织时MAC CE结构变化示意图;
图23为本公开实施例中终端结构示意图。
具体实施方式
申请人在研究过程中注意到:
终端在获得上行资源分配后,将缓存中的数据和需要上报的终端侧控制 信息组织成MAC PDU,映射到上行资源上进行传输。终端侧控制信息组织到MAC CE中,Rel-15版本中,组织MAC PDU时MAC CE与上行数据优先级顺序关系为:
小区无线网络临时标识(Cell-Radio Network Temporary Identifier,C-RNTI)MAC CE或上行公共控制信道(Uplink Common Control Channel,UL-CCCH)数据;
配置授权确认MAC-CE(Configured Grant Confirmation MAC CE);
用于缓存状态报告(buffer Status report,BSR)的MAC CE,但padding BSR除外(MAC CE for BSR,with exception of BSR included for padding);
单条目功率余量报告(Power Headroom Report,PHR)MAC CE或多条目PHR MAC CE(Single Entry PHR MAC CE or Multiple Entry PHR MAC CE);
来自任何逻辑信道的数据,UL-CCCH的数据除外(data from any Logical Channel,except data from UL-CCCH);
用于推荐比特率请求的MAC-CE(MAC CE for Recommended bit rate query);
用于padding BSR的MAC CE(MAC CE for BSR included for padding).
数据组织则遵循不同逻辑信道间的优先级和基站配置的数据映射规则。
其中,比较有代表性的MAC CE为BSR MAC CE和PHR MAC CE。
图1为短BSR MAC CE结构示意图,图2为长BSR MAC CE结构示意图,其中,BSR MAC CE(Buffer Status Report MAC CE)是用于上报终端需要上传的数据缓存量的。有两种格式,一种为占1byte的短BSR MAC CE,如图1所示;一种为变长,长度等于(需要上报缓存的逻辑信道组个数+1)bytes,如图2所示。
图3为单条目PHR MAC CE(Single Entry PHR MAC CE)结构示意图,图4为小于8的上行链路配置服务小区的最高服务小区索引的多条目PHR MAC CE(Multiple Entry PHR MAC CE with the highest ServCellIndex of Serving Cell with configured uplink is less than 8)结构示意图,图5为大于等于8的上行链路配置服务小区的最高服务小区索引的多条目PHR MAC CE (Multiple Entry PHR MAC CE with the highest ServCellIndex of Serving Cell with configured uplink is equal to or higher than 8)结构示意图,其中,PHR MAC CE(Power Headroom Reporting MAC CE)是用于上报终端的上行功率余量的。包括:
如图3所示的Single Entry PHR MAC CE,用于单个小区的UL-SCH上行功率余量上报,长度为2bytes。
如图4所示的除PCell外的小区个数少于8的Multiple Entry PHR MAC CE,用于上报CA或双连接(Dual Connectivity,DC)下多个需要上报的小区的上行功率余量。
如图5所示的除PCell外的小区个数不小于8的Multiple Entry PHR MAC CE,用于上报CA或DC下多个需要上报的小区的上行功率余量。
图6为上行MAC PDU格式示意图,如图所示,组织好的上行MAC PDU格式中,MAC CE和MAC服务数据单元(Service Data Unit,SDU)按优先级高低顺序组织到MAC PDU中。
在5G系统中,物理上行共享信道(Physical Uplink Shared Channel,PUSCH)长度不是固定的,可以根据不同的数据传输需求,具有不同的PUSCH长度;调度命令和PUSCH之间的时间间隔也是可以配置的,因此存在调度的两个上行资源冲突的问题。
图7为上行资源冲突中动态调度资源与配置资源的冲突示意图,图8为上行资源冲突中动态调度资源冲突示意图,图9为未能传输的组织好的MAC PDU在后续上行资源上传输示意图,如图所示,当发生上行资源冲突的时候,终端根据一定规则选择其中一个上行资源进行传输。如图7、图8所示,PUSCH2被放弃。然而,终端在收到PDCCH1之前,因为确定了PUSCH2资源,可能已经进行了要在PUSCH2传输的MAC PDU的组织。此时的处理方式是已经组织好的MAC PDU可以在下一个上行资源上传输,如在配置资源上的传输被冲突掉之后,如果已经组织好一个准备在冲突掉的资源上传输的MAC PDU,该MAC PDU可以在后面相同长度的配置资源上传输(如图9所示)。
由此带来的问题是,由于后续资源上传输的是较早前组织好的MAC PDU, 该MAC PDU不能包含最新的终端侧上行控制信息。具体来说,终端不能上报最新的BSR、PHR。不能上报最新的BSR,则基站不能及时为终端分配上行资源,导致数据传输延迟;不能上报最新的PHR,基站不能及时为终端进行功率调整,导致数据传输成功率下降。
也即,相关技术当上行资源冲突导致组织好的MAC PDU在后续上行资源上传输时,终端不能上报最新的上行控制信息。具体来说,终端不能上报最新的BSR、PHR。不能上报最新的BSR,则基站不能及时为终端分配上行资源,导致数据传输延迟;不能上报最新的PHR,基站不能及时为终端进行功率调整,导致数据传输成功率下降。
基于此,本公开实施例中提供了一种MAC PDU处理方案,用以解决上行传输资源冲突,导致组织好的数据包延后传输时,终端侧的控制信息不能及时上报的问题。下面结合附图对本公开的具体实施方式进行说明。
图10为MAC PDU处理方法实施流程示意图,如图所示,可以包括:
步骤1001、终端确定在后续资源上需发送的预先组织好的MAC PDU;
步骤1002、该MAC PDU中,将MAC CE对应的MAC subPDU中MAC CE的内容更新为最新的上行控制信息。
实施中,在将MAC CE对应的MAC subPDU中MAC CE的内容更新为最新的上行控制信息时,进一步包括:
MAC SDU对应的MAC subPDU保持不变。
具体的,终端在后续资源上发送预先组织好的MAC PDU时,MAC SDU对应的MAC子PDU(subPDU)不变,将MAC CE对应的MAC subPDU中MAC CE的内容更新为最新的上行控制信息。
实施中,在将MAC CE对应的MAC subPDU中MAC CE的内容更新为最新的上行控制信息时,包括以下方式之一或者其组合:
用最新的缓存状态信息更新原MAC PDU中的BSR MAC CE,此时BSR MAC CE对应的MAC subPDU长度保持不变,即MAC子头和BSR MAC CE长度保持不变;或,
用最新的功率余量信息更新原MAC PDU中的PHR MAC CE,此时PHR MAC CE对应的MAC subPDU长度保持不变,即MAC子头和PHR MAC CE 长度保持不变,Single Entry PHR MAC CE和Multiple Entry PHR MAC CE的类型不变;或,
对所有MAC CE对应的MAC subPDU占用的字节空间重新组织,构造反映最新上行控制信息的MAC CE,其中,每个MAC subPDU的长度不变,但可以更改为其他类型的MAC CE;或,对全部MAC CE对应的MAC subPDU占用的字节空间重新组织成新的MAC CE。
下面对上述三种方式的具体实施分别进行说明。
方式1:
用最新的缓存状态信息更新原MAC PDU中的BSR MAC CE,此时BSR MAC CE对应的MAC subPDU长度保持不变,即MAC子头和BSR MAC CE长度保持不变。
也即:在将MAC CE对应的MAC subPDU中MAC CE的内容更新为最新的上行控制信息时,包括以下方式之一或者其组合:
如果最新缓存状态信息生成的BSR MAC CE与原BSR MAC CE占用的字节数相同,用最新缓存状态信息生成的BSR MAC CE替换原BSR MAC CE;或,
如果最新缓存状态信息逻辑信道组个数小于原BSR MAC CE上报的逻辑信道组个数,将最新缓存量填充到BSR MAC CE后,填充BSR MAC CE剩余部分;或,
如果最新缓存逻辑信道组个数大于原BSR MAC CE上报的逻辑信道组个数,将最新缓存量按逻辑信道组中逻辑信道优先级从高到低填充到BSR MAC CE,直至填到最后一个字节,BSR MAC CE中用于指示逻辑信道组的bitmap中,将全部上报的逻辑信道组置为特定值,或,将所有有缓存的逻辑信道组置为特定值,例如可以将全部上报的逻辑信道组置为1,或,将所有有缓存的逻辑信道组置为1。
在填到最后一个字节时,剩余没有填充到BSR MAC CE的逻辑信道组的缓存量不再包含在BSR MAC CE中。
下面以实例进行说明。
实施例1:
本例中,新缓存和旧缓存的逻辑信道组个数相同,对待该情形,最新缓存与原BSR MAC CE占用的字节数相同,用最新缓存状态信息生成的BSR MAC CE替换原BSR MAC CE。
终端在新的上行资源上传输预先组织好而没传出去的MAC PDU时,最新的上行缓存中逻辑信道组个数与原BSR MAC CE中逻辑信道组个数相同,用新的缓存状态更新原BSR MAC CE。BSR MAC CE的MAC子头内容和格式不变。
以下为两个示例:
图11为Long BSR MAC CE下新缓存的逻辑信道组个数与原BSR MAC CE相同时BSR MAC CE结构变化示意图,如图所示,原BSR MAC CE中有逻辑信道组(Logical Channel Group,LCG)4和LCG5的缓存上报,在最新的PUSCH资源发送上行传输时,终端缓存中有逻辑信道组LCG3和LCG5的缓存数据,因此新的BSR MAC CE更新为上报LCG3和LCG5的buffer size。
图12为Short BSR MAC CE下新缓存的逻辑信道组个数与原BSR MAC CE相同时BSR MAC CE结构变化示意图,如图所示,原BSR MAC CE中有逻辑信道组LCG5的缓存上报,在最新的PUSCH资源发送上行传输时,终端缓存中有逻辑信道组LCG3的缓存数据,因此新的BSR MAC CE更新为上报LCG3的缓冲区长度(buffer size)。
实施例2:
本例中,新缓存的逻辑信道组个数小于旧缓存的逻辑信道组个数,对于该情形,最新缓存逻辑信道数小于原BSR MAC CE上报的逻辑信道数,将最新缓存量填充到BSR MAC CE后,填充BSR MAC CE剩余部分,例如将BSR MAC CE剩余部分填为0。
终端在新的上行资源上传输预先组织好而没传出去的MAC PDU时,如果最新的上行缓存中逻辑信道组个数小于原BSR MAC CE中逻辑信道组个数,将需要上报的LCG位置1,并在对应Buffer size位置填入该LCG的缓存量,剩余字节填充0。BSR MAC CE的MAC子头内容和格式不变。
图13为新缓存的逻辑信道组个数小于原BSR MAC CE相同时BSR MAC CE结构变化示意图,如图所示,原BSR MAC CE中有逻辑信道组LCG4和 LCG5的缓存上报,在最新的PUSCH资源发送上行传输时,终端缓存中只有逻辑信道组LCG3有数据,因此新的BSR MAC CE更新为上报LCG3的最新buffer size,剩余字节填0。
实施例3:
本例中,新缓存的逻辑信道组个数大于旧缓存的逻辑信道组个数,对于该情形,最新缓存逻辑信道数大于原BSR MAC CE上报的逻辑信道数,将最新缓存量按逻辑信道优先级从高到低填充到BSR MAC CE,直至填到最后一个字节,剩余没有填充到BSR MAC CE的逻辑信道组的缓存量不再包含在BSR MAC CE中,BSR MAC CE中用于指示逻辑信道组的bitmap(比特位图)中,可以指示全部上报的逻辑信道组,或,指示所有有缓存的逻辑信道组。
终端在新的上行资源上传输预先组织好而没传出去的MAC PDU时,如果最新的上行缓存中逻辑信道组个数大于原BSR MAC CE中逻辑信道组个数,按逻辑信道组对应的逻辑信道优先级从高到低的顺序,或按LCG的编号从小到大的顺序,将逻辑信道组的缓存填充到BSR MAC CE中,直到填满原BSR MAC CE占用的字节数。
具体至少可以为以下几种组合中的一种:
图14为新缓存的逻辑信道组个数大于原BSR MAC CE相同时BSR MAC CE结构变化示意图一,如图所示,MAC子头不变,原短BSR MAC CE变为短截短BSR MAC CE(Short Truncated BSR MAC CE),指示包含最高优先级逻辑信道的逻辑信道组的缓存上报。例中,原BSR MAC CE中有LCG5的缓存,新BSR MAC CE包含LCG3的缓存上报。
图15为新缓存的逻辑信道组个数大于原BSR MAC CE相同时BSR MAC CE结构变化示意图二,如图所示,MAC子头中的逻辑信道标识(Logical Channel ID,LCID)更新为指示短截短BSR MAC CE的LCID,原短BSR MAC CE变为Short Truncated BSR MAC CE。例中,原BSR MAC CE中有LCG5的缓存,新BSR MAC CE包含LCG3的缓存上报。
图16为新缓存的逻辑信道组个数大于原BSR MAC CE相同时BSR MAC CE结构变化示意图三,如图所示,MAC子头不变,原长BSR MAC CE变为长的截短BSR MAC CE(Long Truncated BSR MAC CE),按逻辑信道组对应 的逻辑信道优先级从高到低的顺序,或按LCG的编号从小到大的顺序,将逻辑信道组的缓存填充到BSR MAC CE中,直到填满原BSR MAC CE占用的字节数。
LCG bitmap对应位置,将有缓存的LCG的bit位设置为1,或将上报的LCG的bit位设置为1。如,原BSR MAC CE中逻辑信道组LCG4、LCG5有缓存上报,新缓存中逻辑信道组LCG3、LCG4、LCG5有数据缓存,由于原BSR MAC CE占用的字节数限制,只能上报逻辑信道组LCG3、LCG4的数据。对应bitmap中,逻辑信道组LCG3、LCG4、LCG5的位置设为1,或逻辑信道组LCG3、LCG4的位置设为1。图16中是将缓存中有数据的逻辑信道组对应bit位设为1的示例。
图17为新缓存的逻辑信道组个数大于原BSR MAC CE相同时BSR MAC CE结构变化示意图四,如图所示,MAC子头中的LCID更新为指示长截短BSR MAC CE的LCID,原长BSR MAC CE变为Long Truncated BSR MAC CE。按逻辑信道组对应的逻辑信道优先级从高到低的顺序,或按LCG的编号从小到大的顺序,将逻辑信道组的缓存填充到BSR MAC CE中,直到填满原BSR MAC CE占用的字节数。LCG bitmap对应位置,将有缓存的LCG的bit位设置为1,或将上报的LCG的bit位设置为1。如,原BSR MAC CE中逻辑信道组LCG4、LCG5有缓存上报,新缓存中逻辑信道组LCG3、LCG4、LCG5有数据缓存,由于原BSR MAC CE占用的字节数限制,只能上报逻辑信道组LCG3、LCG4的数据。对应bitmap中,逻辑信道组LCG3、LCG4、LCG5的位置设为1,或逻辑信道组LCG3、LCG4的位置设为1。图17中是将缓存中有数据的逻辑信道组对应bit位设为1的示例。
方式2:
用最新的功率余量信息更新原MAC PDU中的PHR MAC CE,此时PHR MAC CE对应的MAC subPDU长度保持不变,即MAC子头和PHR MAC CE长度保持不变,Single Entry PHR MAC CE和Multiple Entry PHR MAC CE的类型不变。
也即:在用最新的功率余量信息更新原MAC PDU中的PHR MAC CE时,包括以下方式之一或者其组合:
如果最新功率余量上报生成的PHR MAC CE所需的字节数与原PHR MAC CE占用的字节数相同,用最新缓存状态信息生成的BSR MAC CE替换原BSR MAC CE;或,
如果最新功率余量上报所需的字节数小于原PHR MAC CE占用的字节数,将最新PH填充到PHR MAC CE后,填充PHR MAC CE剩余部分;或,
如果最新功率余量上报所需的字节数大于原PHR MAC CE占用的字节数,将PH按PHR MAC CE格式中的小区填入PHR MAC CE直至最后一个字节,剩余小区的PH不再上报。
实施例4:
本例中,新上报的功率余量(Power Headroom,PH)个数等于原PHR MAC CE上报的PH个数,对于该情形,最新功率余量上报所需的字节数与原PHR MAC CE占用的字节数相同,用最新缓存状态信息生成的BSR MAC CE替换原BSR MAC CE。
PHR MAC CE类型不变,MAC subPDU的MAC子头不变,将PH域的内容更新为最新的PH,将PCMAC,c的值更新为最新值。
图18为single PHR MAC CE下新的PH个数等于原PHR MAC CE上报的PH个数时PHR MAC CE结构变化示意图,图19为多输入PHR MAC CE下新的PH个数等于原PHR MAC CE上报的PH个数时PHR MAC CE结构变化示意图,如图所示,图18以single PHR MAC CE为例说明这个过程;图19为多输入PHR MAC CE的示例,图19中,终端配置为载波聚合(Carrier Aggregation,CA),旧PHR MAC CE上报主小区(Primary Cell,PCell)和辅小区1的功率余量,新PHR MAC CE替换为PHR MAC CE上报主小区PCell和辅小区2的功率余量。
实施例5:
本例中,新上报的PH个数小于原PHR MAC CE上报的PH个数,对于该情形,如果最新功率余量上报所需的字节数小于原PHR MAC CE占用的字节数,将最新PH填充到PHR MAC CE后,填充PHR MAC CE剩余部分,例如,将PHR MAC CE剩余部分填为0。
PHR MAC CE类型不变,MAC subPDU的MAC子头不变,将新的功率 余量值填入PHR MAC CE中,剩余位置填0。
图20为新的PH个数小于原PHR MAC CE上报的PH个数时PHR MAC CE结构变化示意图,如图所示,终端配置为CA,旧PHR MAC CE上报主小区PCell和辅小区1的功率余量,新PHR MAC CE中只有主小区PCell的功率余量上报,因此服务小区(serving cell)指示位置为0,除PCell功率余量外的字节设置为0。
实施例6:
本例中,新上报的PH个数大于原PHR MAC CE上报的PH个数,对于该情形,最新功率余量上报所需的字节数大于原PHR MAC CE占用的字节数,将PH按PHR MAC CE格式中的小区填入PHR MAC CE直至最后一个字节,剩余小区的PH不再上报。
PHR MAC CE类型不变,MAC subPDU的MAC子头不变,将新的功率余量值按照serving cell编号顺序填入PHR MAC CE中,不能填入的serving cell的功率余量则不上报,可选的,不上报但有功率余量值的serving cell的bitmap指示位可以置为1。
图21为新的PH个数大于原PHR MAC CE上报的PH个数时PHR MAC CE结构变化示意图,如图所示,终端配置为CA,旧PHR MAC CE上报主小区PCell和辅小区1的功率余量,新PHR MAC CE中有主小区PCell和辅小区1、2的功率余量需上报,由于资源限制,只上报主小区PCell和辅小区1的功率余量。
方式3:
对所有MAC CE对应的MAC subPDU占用的字节空间重新组织,构造反映最新上行控制信息的MAC CE,其中,每个MAC subPDU的长度不变,或,对全部MAC CE对应的MAC subPDU占用的字节空间重新组织成新的MAC CE。
在对所有MAC CE对应的MAC subPDU占用的字节空间重新组织,构造反映最新上行控制信息的MAC CE时,包括:
将短BSR MAC CE对应的MAC subPDU和短PHR MAC CE对应的MAC subPDU组织成长BSR MAC CE对应的MAC subPDU;或,
将长BSR MAC CE对应的MAC subPDU组织成短BSR MAC CE对应的MAC subPDU和短PHR MAC CE对应的MAC subPDU。
如,将一个短BSR MAC CE对应的MAC subPDU(2byte:1byte MAC子头+1byte BSR MAC CE)和一个短PHR MAC CE对应的MAC subPDU(3byte:1byte MAC子头+2byte BSR MAC CE)组织成一个长BSR MAC CE对应的MAC subPDU(5byte:2byte MAC子头+3byte BSR MAC CE)。
实施例7:
本例中,对MAC CE进行重组。
图22为MAC CE对应的MAC subPDU重新组织时MAC CE结构变化示意图,如图所示,MAC SDU对应的MAC subPDU不变,对MAC CE对应的MAC subPDU重新组织,放入需要的MAC CE,其中,每个MAC CE subPDU的长度不变,或对所有MAC CE占用的字节重新组织成新的MAC CE。
如,一个短BSR MAC CE对应的MAC subPDU(2byte:1byte MAC子头+1byte BSR MAC CE)和一个短PHR MAC CE对应的MAC subPDU(3byte:1byte MAC子头+2byte BSR MAC CE)组织成一个长BSR MAC CE对应的MAC subPDU(5byte:2byte MAC子头+3byte BSR MAC CE)。
基于同一公开构思,本公开实施例中还提供了一种终端、MAC PDU处理装置、计算机可读存储介质,由于这些设备解决问题的原理与MAC PDU处理方法相似,因此这些设备的实施可以参见方法的实施,重复之处不再赘述。
在实施本公开实施例提供的技术方案时,可以按如下方式实施。
图23为终端结构示意图,如图所示,用户设备包括:
处理器2300,用于读取存储器2320中的程序,执行下列过程:
确定在后续资源上需发送的预先组织好的MAC PDU;
该MAC PDU中,将MAC CE对应的MAC subPDU中MAC CE的内容更新为最新的上行控制信息;
收发机2310,用于在处理器2300的控制下接收和发送数据。
实施中,在将MAC CE对应的MAC subPDU中MAC CE的内容更新为最新的上行控制信息时,进一步包括:
MAC SDU对应的MAC subPDU保持不变。
实施中,将MAC CE对应的MAC subPDU中MAC CE的内容更新为最新的上行控制信息,包括以下方式之一或者其组合:
用最新的缓存状态信息更新原MAC PDU中的BSR MAC CE,BSR MAC CE对应的MAC subPDU长度保持不变;或,
用最新的功率余量信息更新原MAC PDU中的PHR MAC CE,PHR MAC CE对应的MAC subPDU长度保持不变,Single Entry PHR MAC CE和Multiple Entry PHR MAC CE的类型不变;或,
对所有MAC CE对应的MAC subPDU占用的字节空间重新组织,构造反映最新上行控制信息的MAC CE,其中,每个MAC subPDU的长度不变,或,对全部MAC CE对应的MAC subPDU占用的字节空间重新组织成新的MAC CE。
实施中,在用最新的缓存状态信息更新原MAC PDU中的BSR MAC CE时,包括以下方式之一或者其组合:
如果最新缓存状态信息生成的BSR MAC CE与原BSR MAC CE占用的字节数相同,用最新缓存状态信息生成的BSR MAC CE替换原BSR MAC CE;或,
如果最新缓存状态信息逻辑信道组个数小于原BSR MAC CE上报的逻辑信道组个数,将最新缓存量填充到BSR MAC CE后,填充BSR MAC CE剩余部分;或,
如果最新缓存逻辑信道组个数大于原BSR MAC CE上报的逻辑信道组个数,将最新缓存量按逻辑信道组中逻辑信道优先级从高到低填充到BSR MAC CE,直至填到最后一个字节,BSR MAC CE中用于指示逻辑信道组的bitmap中,将全部上报的逻辑信道组置为特定值,或,将所有有缓存的逻辑信道组置为特定值。
实施中,如果最新缓存逻辑信道组个数大于原BSR MAC CE上报的逻辑信道组个数时,进一步包括:
如果原BSR MAC CE为长BSR MAC CE,更新后,对应MAC子头中LCID设置为指示长BSR MAC CE的LCID值,或设置为指示长截短BSR  MAC CE的LCID值;
如果原BSR MAC CE为短BSR MAC CE,更新后,对应MAC子头中LCID设置为指示短BSR MAC CE的LCID值,或设置为指示截短的短BSR MAC CE的LCID值。
实施中,在用最新的功率余量信息更新原MAC PDU中的PHR MAC CE时,包括以下方式之一或者其组合:
如果最新功率余量上报生成的PHR MAC CE所需的字节数与原PHR MAC CE占用的字节数相同,用最新缓存状态信息生成的BSR MAC CE替换原BSR MAC CE;或,
如果最新功率余量上报所需的字节数小于原PHR MAC CE占用的字节数,将最新PH填充到PHR MAC CE后,填充PHR MAC CE剩余部分;或,
如果最新功率余量上报所需的字节数大于原PHR MAC CE占用的字节数,将PH按PHR MAC CE格式中的小区填入PHR MAC CE直至最后一个字节,剩余小区的PH不再上报。
实施中,在对所有MAC CE对应的MAC subPDU占用的字节空间重新组织,构造反映最新上行控制信息的MAC CE时,包括:
将短BSR MAC CE对应的MAC subPDU和短PHR MAC CE对应的MAC subPDU组织成长BSR MAC CE对应的MAC subPDU;或,
将长BSR MAC CE对应的MAC subPDU组织成短BSR MAC CE对应的MAC subPDU和短PHR MAC CE对应的MAC subPDU。
其中,在图23中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器2300代表的一个或多个处理器和存储器2320代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机2310可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口2330还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器2300负责管理总线架构和通常的处理,存储器2320可以存储处 理器2300在执行操作时所使用的数据。
本公开实施例中提供了一种MAC PDU处理装置,包括:
确定模块,用于确定在后续资源上需发送的预先组织好的MAC PDU;
更新模块,用于在该MAC PDU中,将MAC CE对应的MAC subPDU中MAC CE的内容更新为最新的上行控制信息。
具体实施可以参见MAC PDU处理方法的实施。
本公开实施例中提供了一种计算机可读存储介质,所述计算机可读存储介质存储有执行上述MAC PDU处理方法的计算机程序。
具体实施可以参见MAC PDU处理方法的实施。
为了描述的方便,以上所述装置的各部分以功能分为各种模块或单元分别描述。当然,在实施本公开时可以把各模块或单元的功能在同一个或多个软件或硬件中实现。
综上所述,本公开实施例提供的技术方案中,终端在后续资源上发送预先组织好的MAC PDU时,MAC SDU对应的MAC subPDU不变,将该MAC PDU中的MAC控制单元更新为最新的内容。
进一步的还提供了对BSR MAC CE更新为最新值,及其对应的不同情况的处理;对PHR MAC CE更新为最新值,及其对应的不同情况的处理;对全部MAC CE对应的MAC subPDU进行重组,更新为最新的MAC CE的处理。
相关技术中,当上行资源冲突导致组织好的MAC PDU在后续上行资源上传输时,终端不能上报最新的上行控制信息。本公开实施例提供的技术方案中,由于终端可以在基本不影响数据组织的情况下,快速将已组织的MAC PDU中的MAC CE更新为最新状态,从而使得基站能及时获取最新的BSR MAC CE和/或PHR MAC CE等,使得基站能对上行数据进行及时有效调度,终端数据能进行及时传输。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘 存储器和光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一 些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来控制相关的硬件来完成,所述的程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储器(Read-Only Memory,ROM)或随机存取存储器(Random Access Memory,RAM)等。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,模块、单元、子单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processor,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其 组合中。
对于软件实现,可通过执行本公开实施例所述功能的模块(例如过程、函数等)来实现本公开实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (22)

  1. 一种媒体接入控制协议数据单元MAC PDU处理方法,包括:
    终端确定在后续资源上需发送的预先组织好的MAC PDU;
    该MAC PDU中,将媒体接入控制控制单元MAC CE对应的媒体接入控制子协议数据单元MAC subPDU中MAC CE的内容更新为最新的上行控制信息。
  2. 如权利要求1所述的方法,其中,将MAC CE对应的MAC subPDU中MAC CE的内容更新为最新的上行控制信息,包括以下方式之一或者其组合:
    用最新的缓存状态信息更新原MAC PDU中的缓存状态报告BSR MAC CE,BSR MAC CE对应的MAC subPDU长度保持不变;或,
    用最新的功率余量信息更新原MAC PDU中的功率余量报告PHR MAC CE,PHR MAC CE对应的MAC subPDU长度保持不变,单条目Single Entry PHR MAC CE和多条目Multiple Entry PHR MAC CE的类型不变;或,
    对所有MAC CE对应的MAC subPDU占用的字节空间重新组织,构造反映最新上行控制信息的MAC CE,其中,每个MAC subPDU的长度不变,或,对全部MAC CE对应的MAC subPDU占用的字节空间重新组织成新的MAC CE。
  3. 如权利要求2所述的方法,其中,在用最新的缓存状态信息更新原MAC PDU中的BSR MAC CE时,包括以下方式之一或者其组合:
    如果最新缓存状态信息生成的BSR MAC CE与原BSR MAC CE占用的字节数相同,用最新缓存状态信息生成的BSR MAC CE替换原BSR MAC CE;或,
    如果最新缓存状态信息逻辑信道组个数小于原BSR MAC CE上报的逻辑信道组个数,将最新缓存量填充到BSR MAC CE后,填充BSR MAC CE剩余部分;或,
    如果最新缓存逻辑信道组个数大于原BSR MAC CE上报的逻辑信道组个数,将最新缓存量按逻辑信道组中逻辑信道优先级从高到低填充到BSR MAC  CE,直至填到最后一个字节,BSR MAC CE中用于指示逻辑信道组的比特位图bitmap中,将全部上报的逻辑信道组置为特定值,或,将所有有缓存的逻辑信道组置为特定值。
  4. 如权利要求3所述的方法,其中,如果最新缓存逻辑信道组个数大于原BSR MAC CE上报的逻辑信道组个数时,进一步包括:
    如果原BSR MAC CE为长BSR MAC CE,更新后,对应MAC子头中逻辑信道标识LCID设置为指示长BSR MAC CE的LCID值,或设置为指示长截短BSR MAC CE的LCID值;
    如果原BSR MAC CE为短BSR MAC CE,更新后,对应MAC子头中LCID设置为指示短BSR MAC CE的LCID值,或设置为指示截短的短BSR MAC CE的LCID值。
  5. 如权利要求2所述的方法,其中,在用最新的功率余量信息更新原MAC PDU中的PHR MAC CE时,包括以下方式之一或者其组合:
    如果最新功率余量上报生成的PHR MAC CE所需的字节数与原PHR MAC CE占用的字节数相同,用最新缓存状态信息生成的BSR MAC CE替换原BSR MAC CE;或,
    如果最新功率余量上报所需的字节数小于原PHR MAC CE占用的字节数,将最新功率余量PH填充到PHR MAC CE后,填充PHR MAC CE剩余部分;或,
    如果最新功率余量上报所需的字节数大于原PHR MAC CE占用的字节数,将PH按PHR MAC CE格式中的小区填入PHR MAC CE直至最后一个字节,剩余小区的PH不再上报。
  6. 如权利要求2所述的方法,其中,在对所有MAC CE对应的MAC subPDU占用的字节空间重新组织,构造反映最新上行控制信息的MAC CE时,包括:
    将短BSR MAC CE对应的MAC subPDU和短PHR MAC CE对应的MAC subPDU组织成长BSR MAC CE对应的MAC subPDU;或,
    将长BSR MAC CE对应的MAC subPDU组织成短BSR MAC CE对应的MAC subPDU和短PHR MAC CE对应的MAC subPDU。
  7. 如权利要求1至6中任一项所述的方法,其中,在将媒体接入控制控制单元MAC CE对应的MAC subPDU中MAC CE的内容更新为最新的上行控制信息时,进一步包括:
    媒体接入控制服务数据单元MAC SDU对应的MAC subPDU保持不变。
  8. 一种终端,包括:
    处理器,用于读取存储器中的程序,执行下列过程:
    确定在后续资源上需发送的预先组织好的MAC PDU;
    该MAC PDU中,将MAC CE对应的MAC subPDU中MAC CE的内容更新为最新的上行控制信息;
    收发机,用于在处理器的控制下接收和发送数据。
  9. 如权利要求8所述的终端,其中,将MAC CE对应的MAC subPDU中MAC CE的内容更新为最新的上行控制信息,包括以下方式之一或者其组合:
    用最新的缓存状态信息更新原MAC PDU中的BSR MAC CE,BSR MAC CE对应的MAC subPDU长度保持不变;或,
    用最新的功率余量信息更新原MAC PDU中的PHR MAC CE,PHR MAC CE对应的MAC subPDU长度保持不变,Single Entry PHR MAC CE和Multiple Entry PHR MAC CE的类型不变;或,
    对所有MAC CE对应的MAC subPDU占用的字节空间重新组织,构造反映最新上行控制信息的MAC CE,其中,每个MAC subPDU的长度不变,或,对全部MAC CE对应的MAC subPDU占用的字节空间重新组织成新的MAC CE。
  10. 如权利要求9所述的终端,其中,在用最新的缓存状态信息更新原MAC PDU中的BSR MAC CE时,包括以下方式之一或者其组合:
    如果最新缓存状态信息生成的BSR MAC CE与原BSR MAC CE占用的字节数相同,用最新缓存状态信息生成的BSR MAC CE替换原BSR MAC CE;或,
    如果最新缓存状态信息逻辑信道组个数小于原BSR MAC CE上报的逻辑信道组个数,将最新缓存量填充到BSR MAC CE后,填充BSR MAC CE剩 余部分;或,
    如果最新缓存逻辑信道组个数大于原BSR MAC CE上报的逻辑信道组个数,将最新缓存量按逻辑信道组中逻辑信道优先级从高到低填充到BSR MAC CE,直至填到最后一个字节,BSR MAC CE中用于指示逻辑信道组的bitmap中,将全部上报的逻辑信道组置为特定值,或,将所有有缓存的逻辑信道组置为特定值。
  11. 如权利要求10所述的终端,其中,如果最新缓存逻辑信道组个数大于原BSR MAC CE上报的逻辑信道组个数时,进一步包括:
    如果原BSR MAC CE为长BSR MAC CE,更新后,对应MAC子头中LCID设置为指示长BSR MAC CE的LCID值,或设置为指示长截短BSR MAC CE的LCID值;
    如果原BSR MAC CE为短BSR MAC CE,更新后,对应MAC子头中LCID设置为指示短BSR MAC CE的LCID值,或设置为指示截短的短BSR MAC CE的LCID值。
  12. 如权利要求9所述的终端,其中,在用最新的功率余量信息更新原MAC PDU中的PHR MAC CE时,包括以下方式之一或者其组合:
    如果最新功率余量上报生成的PHR MAC CE所需的字节数与原PHR MAC CE占用的字节数相同,用最新缓存状态信息生成的BSR MAC CE替换原BSR MAC CE;或,
    如果最新功率余量上报所需的字节数小于原PHR MAC CE占用的字节数,将最新PH填充到PHR MAC CE后,填充PHR MAC CE剩余部分;或,
    如果最新功率余量上报所需的字节数大于原PHR MAC CE占用的字节数,将PH按PHR MAC CE格式中的小区填入PHR MAC CE直至最后一个字节,剩余小区的PH不再上报。
  13. 如权利要求9所述的终端,其中,在对所有MAC CE对应的MAC subPDU占用的字节空间重新组织,构造反映最新上行控制信息的MAC CE时,包括:
    将短BSR MAC CE对应的MAC subPDU和短PHR MAC CE对应的MAC subPDU组织成长BSR MAC CE对应的MAC subPDU;或,
    将长BSR MAC CE对应的MAC subPDU组织成短BSR MAC CE对应的MAC subPDU和短PHR MAC CE对应的MAC subPDU。
  14. 如权利要求8至13中任一项所述的终端,其中,在将MAC CE对应的MAC subPDU中MAC CE的内容更新为最新的上行控制信息时,进一步包括:
    MAC SDU对应的MAC subPDU保持不变。
  15. 一种MAC PDU处理装置,包括:
    确定模块,用于确定在后续资源上需发送的预先组织好的MAC PDU;
    更新模块,用于在该MAC PDU中,将MAC CE对应的MAC subPDU中MAC CE的内容更新为最新的上行控制信息。
  16. 如权利要求15所述的MAC PDU处理装置,其中,所述更新模块用于执行下列过程之一或者其组合:
    用最新的缓存状态信息更新原MAC PDU中的缓存状态报告BSR MAC CE,BSR MAC CE对应的MAC subPDU长度保持不变;或,
    用最新的功率余量信息更新原MAC PDU中的功率余量报告PHR MAC CE,PHR MAC CE对应的MAC subPDU长度保持不变,单条目Single Entry PHR MAC CE和多条目Multiple Entry PHR MAC CE的类型不变;或,
    对所有MAC CE对应的MAC subPDU占用的字节空间重新组织,构造反映最新上行控制信息的MAC CE,其中,每个MAC subPDU的长度不变,或,对全部MAC CE对应的MAC subPDU占用的字节空间重新组织成新的MAC CE。
  17. 如权利要求16所述的MAC PDU处理装置,其中,所述更新模块用于以以下方式之一或者其组合用最新的缓存状态信息更新原MAC PDU中的BSR MAC CE:
    如果最新缓存状态信息生成的BSR MAC CE与原BSR MAC CE占用的字节数相同,用最新缓存状态信息生成的BSR MAC CE替换原BSR MAC CE;或,
    如果最新缓存状态信息逻辑信道组个数小于原BSR MAC CE上报的逻辑信道组个数,将最新缓存量填充到BSR MAC CE后,填充BSR MAC CE剩 余部分;或,
    如果最新缓存逻辑信道组个数大于原BSR MAC CE上报的逻辑信道组个数,将最新缓存量按逻辑信道组中逻辑信道优先级从高到低填充到BSR MAC CE,直至填到最后一个字节,BSR MAC CE中用于指示逻辑信道组的比特位图bitmap中,将全部上报的逻辑信道组置为特定值,或,将所有有缓存的逻辑信道组置为特定值。
  18. 如权利要求17所述的MAC PDU处理装置,其中,如果最新缓存逻辑信道组个数大于原BSR MAC CE上报的逻辑信道组个数时,所述更新模块进一步用于:
    如果原BSR MAC CE为长BSR MAC CE,更新后,对应MAC子头中逻辑信道标识LCID设置为指示长BSR MAC CE的LCID值,或设置为指示长截短BSR MAC CE的LCID值;
    如果原BSR MAC CE为短BSR MAC CE,更新后,对应MAC子头中LCID设置为指示短BSR MAC CE的LCID值,或设置为指示截短的短BSR MAC CE的LCID值。
  19. 如权利要求16所述的MAC PDU处理装置,其中,所述更新模块用于以以下方式之一或者其组合用最新的功率余量信息更新原MAC PDU中的PHR MAC CE:
    如果最新功率余量上报生成的PHR MAC CE所需的字节数与原PHR MAC CE占用的字节数相同,用最新缓存状态信息生成的BSR MAC CE替换原BSR MAC CE;或,
    如果最新功率余量上报所需的字节数小于原PHR MAC CE占用的字节数,将最新功率余量PH填充到PHR MAC CE后,填充PHR MAC CE剩余部分;或,
    如果最新功率余量上报所需的字节数大于原PHR MAC CE占用的字节数,将PH按PHR MAC CE格式中的小区填入PHR MAC CE直至最后一个字节,剩余小区的PH不再上报。
  20. 如权利要求16所述的MAC PDU处理装置,其中,在对所有MAC CE对应的MAC subPDU占用的字节空间重新组织,构造反映最新上行控制信息 的MAC CE时,所述更新模块用于:
    将短BSR MAC CE对应的MAC subPDU和短PHR MAC CE对应的MAC subPDU组织成长BSR MAC CE对应的MAC subPDU;或,
    将长BSR MAC CE对应的MAC subPDU组织成短BSR MAC CE对应的MAC subPDU和短PHR MAC CE对应的MAC subPDU。
  21. 如权利要求15至20中任一项所述的MAC PDU处理装置,其中,所述更新模块进一步用于:
    使媒体接入控制服务数据单元MAC SDU对应的MAC subPDU保持不变。
  22. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序在由处理器执行时实现如权利要求1至7中任一项所述的方法。
PCT/CN2020/134193 2019-12-20 2020-12-07 媒体接入控制协议数据单元处理方法、终端及介质 WO2021121059A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/786,451 US20230027256A1 (en) 2019-12-20 2020-12-07 Media access control protocol data unit processing method, terminal and medium
EP20902477.7A EP4080960A4 (en) 2019-12-20 2020-12-07 MEDIA, TERMINAL AND MEDIA ACCESS CONTROL PROTOCOL DATA UNIT PROCESSING METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911327685.X 2019-12-20
CN201911327685.XA CN113015247B (zh) 2019-12-20 2019-12-20 媒体接入控制协议数据单元处理方法、终端及介质

Publications (1)

Publication Number Publication Date
WO2021121059A1 true WO2021121059A1 (zh) 2021-06-24

Family

ID=76381800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134193 WO2021121059A1 (zh) 2019-12-20 2020-12-07 媒体接入控制协议数据单元处理方法、终端及介质

Country Status (4)

Country Link
US (1) US20230027256A1 (zh)
EP (1) EP4080960A4 (zh)
CN (1) CN113015247B (zh)
WO (1) WO2021121059A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019028876A1 (zh) * 2017-08-11 2019-02-14 Oppo广东移动通信有限公司 数据传输方法及相关产品
CN110121192A (zh) * 2019-03-22 2019-08-13 西安电子科技大学 Mac ce、harq进程模式切换方法、切换mac ce的发送和接收方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2094039B1 (en) * 2008-02-20 2016-11-09 Amazon Technologies, Inc. Method and apparatus for processing padding buffer status reports
HUE063148T2 (hu) * 2015-05-14 2023-12-28 Ntt Docomo Inc Felhasználói terminál és eljárás
WO2017119733A1 (en) * 2016-01-06 2017-07-13 Lg Electronics Inc. Method for transmitting a mac pdu in wireless communication system and a device therefor
CN107613524B (zh) * 2016-07-12 2022-08-19 中兴通讯股份有限公司 数据更新方法和装置及系统、基站
CN107889147A (zh) * 2016-09-30 2018-04-06 中兴通讯股份有限公司 一种缓存状态上报及上行资源调度方法和终端、网络侧设备
CN110149712B (zh) * 2018-02-13 2021-09-03 华为技术有限公司 一种用于上行授权的方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019028876A1 (zh) * 2017-08-11 2019-02-14 Oppo广东移动通信有限公司 数据传输方法及相关产品
CN109644373A (zh) * 2017-08-11 2019-04-16 Oppo广东移动通信有限公司 数据传输方法及相关产品
CN110121192A (zh) * 2019-03-22 2019-08-13 西安电子科技大学 Mac ce、harq进程模式切换方法、切换mac ce的发送和接收方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4080960A4 *
VIVO: "Discussion on the SR cancellation and collision with MAC CE", 3GPP TSG-RAN WG2 MEETING #106 R2-1905768, 17 May 2019 (2019-05-17), XP051710121 *

Also Published As

Publication number Publication date
EP4080960A4 (en) 2023-01-25
CN113015247A (zh) 2021-06-22
EP4080960A1 (en) 2022-10-26
US20230027256A1 (en) 2023-01-26
CN113015247B (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
TWI681654B (zh) 一種上報緩存狀態報告的方法和設備
TWI387380B (zh) 處理排程資訊回報的方法及通訊裝置
WO2017162008A1 (zh) 一种ack/nack反馈方法及相关设备
CN102291772B (zh) Ue上报bsr及基站确定ue上报的缓存数据量的方法
US11166190B2 (en) Buffer state reporting method, user equipment, method of processing buffer state report and network side device
EP2445166B1 (en) Method and device for controlling information channel flow
CN107889144B (zh) 一种缓冲状态报告的处理方法及装置
US10932154B2 (en) Buffer status reporting method, terminal, and computer storage medium
CN107277856A (zh) 一种配置、触发缓冲区状态上报的方法及装置
CN109561464B (zh) 一种上报缓存状态和分配资源的方法及设备
CN102291200A (zh) 一种缓存状态报告的上报及数据量的确定方法、设备
CN102918881A (zh) 用于传递bsr信息以辅助高效调度的方法和设备
WO2021238545A1 (zh) 信息传输方法及装置
WO2020211752A1 (zh) 上行传输方法和通信装置
CN104509047A (zh) 报文传输系统中分配报文缓冲区的方法
WO2019095978A1 (zh) 信息上报方法、资源分配方法、用户设备及基站
KR102201914B1 (ko) 스케줄링 방법, 단말기 및 기지국
CN113316255B (zh) 一种数据处理方法、装置、设备及存储介质
WO2021121059A1 (zh) 媒体接入控制协议数据单元处理方法、终端及介质
JP2023536758A (ja) 制御シグナリング伝送方法、制御シグナリング取得方法、機器および記憶媒体
US20160227570A1 (en) Base station and uplink control information scheduling method for carrier aggregation communication system
WO2022257790A1 (zh) 一种通信方法及装置
WO2021036763A1 (zh) 监测周期的调整方法及装置
WO2019157697A1 (zh) 传输块大小列表构建和选择方法、随机接入方法和通信设备
WO2020244334A1 (zh) 缓冲区状态报告的传输方法及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20902477

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020902477

Country of ref document: EP

Effective date: 20220720