WO2021120833A1 - 基于自然电位法的采空区滞后突水预警系统及其使用方法 - Google Patents

基于自然电位法的采空区滞后突水预警系统及其使用方法 Download PDF

Info

Publication number
WO2021120833A1
WO2021120833A1 PCT/CN2020/122704 CN2020122704W WO2021120833A1 WO 2021120833 A1 WO2021120833 A1 WO 2021120833A1 CN 2020122704 W CN2020122704 W CN 2020122704W WO 2021120833 A1 WO2021120833 A1 WO 2021120833A1
Authority
WO
WIPO (PCT)
Prior art keywords
potential
data acquisition
data
electrode
acquisition card
Prior art date
Application number
PCT/CN2020/122704
Other languages
English (en)
French (fr)
Inventor
徐洪涛
于师建
贺润山
王龙龙
张晓颖
刘震
Original Assignee
山西石泉煤业有限责任公司
山东科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山西石泉煤业有限责任公司, 山东科技大学 filed Critical 山西石泉煤业有限责任公司
Publication of WO2021120833A1 publication Critical patent/WO2021120833A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • G01V3/082Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices operating with fields produced by spontaneous potentials, e.g. electrochemical or produced by telluric currents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Definitions

  • the invention belongs to the field of coal mine safety technology and engineering, and in particular relates to a lagging water inrush warning system in a goaf based on the natural potential method and a method of using the system.
  • the main methods of mine geophysical prospecting for detecting underground hydrogeological conditions are radio perspective method, transient electromagnetic method, and direct current method.
  • the radio perspective method mainly explores the development of the internal geological structure of the working face, the change of the coal structure and the thickness.
  • the transient electromagnetic method is mainly used to detect the water content of the roof and bottom of the working face and the front of the tunnel. It is sensitive to low-resistance bodies and has high detection accuracy, but it is easily interfered by the surrounding environment.
  • the downhole direct current method has high construction efficiency and is less affected by the surrounding environment, but the downhole direct current method mainly detects the hydrogeological conditions of the roof and floor of the roadway, and is powerless to detect in the working face.
  • the problem with the above-mentioned geophysical prospecting methods is that they only detect the hydrogeological conditions of the working face before mining, while the dynamic changes of the hydrogeological conditions during or after the mining of the working face cannot be monitored in real time.
  • the main function of water blocking is the effective water barrier. If the depth of rock pressure on the floor is large, the thickness of the water barrier is relatively reduced, so the thickness of the water barrier is constantly changing during the mining process. Pre-mining detection cannot guarantee the safety of the goaf floor after the mining, and cannot realize real-time monitoring of the condition of the coal seam floor, let alone real-time detection of water level changes at water inrush points.
  • the purpose of the present invention is to provide a lagging water inrush warning system based on the natural potential method and its use method, which can realize real-time monitoring of coal seam floor conditions, real-time detection of the water level changes of water inrush points, and can be used for mining Provide effective early warning for lagging water inrush in the goaf, and effectively reduce or prevent the safety hazards of lagging water inrush in the goaf.
  • One of the tasks of the present invention is to provide a lagging water inrush warning system in the goaf based on the natural potential method, which adopts the following technical solutions:
  • a lagging water inrush warning system based on the spontaneous potential method includes a data acquisition device, a data processing device, an early warning device, and a spontaneous potential monitoring device.
  • the spontaneous potential monitoring device includes a reference electrode and a reference electrode. At least one measuring electrode connected to the reference electrode, the reference electrode and all the measuring electrodes are arranged in the tunnels on both sides of the goaf, each measuring electrode is connected to a data acquisition card corresponding to the data acquisition card It is used to temporarily store the potential signal collected by the measuring electrode, and a protection device is also arranged above each data acquisition card;
  • Each data acquisition card is connected to the data acquisition device in a serial manner, and the data acquisition device sends instructions to each data acquisition card at the same time to extract the potential signals of the positions of the measurement electrodes at the same time, or at intervals Collect data at a fixed time;
  • the data processing device is used to process the collected data according to time, measurement electrode number, potential size, and the relationship between the natural potential signal and the groundwater flowing potential;
  • the early warning device sets an alarm threshold according to the dynamic change of the flowing potential, and if the potential signal exceeds the threshold, an alarm signal is immediately issued.
  • each data acquisition card includes a front low-pass filter, which is used to acquire a natural potential signal of 0-5 Hz; each data acquisition card is connected to its corresponding measurement electrode by welding.
  • the adjacent measuring electrodes are arranged at equal intervals, and the interval is 10 m.
  • the reference electrode and the measuring electrode are both non-polarized electrodes.
  • the data acquisition device, the data processing device, and the early warning device are all connected to a power source through a line, and the data acquisition card is connected to the power source through a power cord.
  • the protection device is a cover, which is buckled on the top of the corresponding data acquisition card, and holes are made on the left and right sides and the bottom of the cover.
  • the upper cover of the cover can be open close.
  • cover body is made of polyurethane material.
  • the power line and the data line are laid in the same pipeline, and the PVC pipeline is outside the PVC pipeline to prevent the line from being corroded.
  • Another task of the present invention is to provide a method of using the above-mentioned natural potential method-based goaf delay water inrush early warning system, which sequentially includes the following steps:
  • each device If the connection of each device is intact, turn on the data acquisition device, and issue an instruction to each measurement electrode through the data acquisition device.
  • Each measurement electrode detects the natural potential at its location and temporarily stores the potential data in the corresponding In the data acquisition card, the data acquisition device issued an instruction again to extract the data in the data acquisition card at the same time;
  • the potential data extracted by the data acquisition device is transmitted to the data processing device, and the data is processed by the data processing device according to time, measurement electrode number, potential size, and the relationship between natural potential signal and groundwater flowing potential;
  • the monitoring principle of the natural potential monitoring device of the present invention is the monitoring principle of the natural potential monitoring device of the present invention.
  • the lagging water inrush warning system in the goaf of the present invention based on the spontaneous potential method includes a spontaneous potential monitoring device, a data acquisition device, a data processing device and an early warning device, wherein the spontaneous potential monitoring device is used to monitor the spontaneous potential in the goaf in real time,
  • the data acquisition device controls and measures the natural potential signal at the position of each electrode at the same time, which can eliminate the interference potential generated by the industrial floating current and accurately determine the change of the potential signal; the data processing device processes the potential signal to obtain the corresponding natural potential signal If the dynamic change of the groundwater streaming potential signal exceeds the alarm threshold, the system can immediately issue an early warning.
  • the invention can realize real-time monitoring of the natural potential of the goaf. Through data collection and processing, it can monitor the groundwater flowing potential signal of the goaf in real time, can effectively warn the lagging water inrush in the goaf, and effectively reduce or prevent the goaf The safety hazards of delayed water inrush.
  • Fig. 1 is a schematic diagram of the structure of the lagging water inrush warning system in the mined-out area based on the natural potential method of the present invention
  • Figure 2 is a schematic diagram of the electrode arrangement of the natural potential monitoring device of the present invention in the goaf tunnel;
  • Figure 3 is a cross-sectional view along the A-A direction of Figure 2;
  • Figure 4 is a cross-sectional view along the B-B direction of Figure 2;
  • Figure 5 is an enlarged view of the borehole of Figure 4.
  • the present invention proposes a lagging water inrush warning system based on the natural potential method and its use method.
  • the present invention will be described in detail below with reference to specific embodiments.
  • the present invention is an early warning system for lagging water inrush in the goaf based on the spontaneous potential method, which includes a data acquisition device 1, a data processing device, an early warning device, and a spontaneous potential monitoring device.
  • Each data acquisition card issues instructions to extract the potential signals at the location of each measurement electrode at the same time, or it can collect data at fixed intervals;
  • the data processing device will collect the data according to time, measurement electrode number, and potential size , And the relationship between the natural potential signal and the groundwater flowing potential;
  • the early warning device sets the alarm threshold according to the dynamic change of the flowing potential, and if the potential signal exceeds the threshold, an alarm signal will be issued immediately.
  • the spontaneous potential monitoring device includes a reference electrode 2 and at least one measuring electrode 3 connected to the reference electrode.
  • the reference electrode and the measuring electrode are both arranged in the tunnel on both sides of the goaf 4, each The measurement electrode is connected to a data acquisition card 5, preferably the data acquisition card is welded to the measurement electrode.
  • the data acquisition card 5 can temporarily store the potential signal collected by the measurement electrode, and finally transmit it to the data acquisition device; in each data acquisition card There is also a protection device 7 on the top. Multiple data acquisition cards 5 are connected together in a serial manner, and finally connected to the data measuring device 1.
  • the spontaneous potential monitoring device can monitor the spontaneous potential in the goaf in real time, and the data acquisition device controls and measures each electrode at the same time
  • the natural potential signal at the location can eliminate the interference potential generated by the industrial floating current and accurately determine the change of the potential signal.
  • the data processing device is used to process the collected data according to time, measurement electrode number, potential size, and the relationship between the spontaneous potential signal and the groundwater flowing potential, and obtain the groundwater flowing potential signal corresponding to the spontaneous potential signal. If the flowing potential changes dynamically If the size exceeds the alarm threshold, an early warning can be issued immediately through the early warning device.
  • the specific number of the above-mentioned measuring electrodes 3 can be selected by those skilled in the art according to the actual situation. Each measuring electrode is evenly distributed, the distance between adjacent measuring and controlling electrode monitoring points is 10m, and the electrode material is not polarized.
  • the polarized magnetic rod electrode has a small potential difference and relatively stable electrical characteristics, ensuring the accuracy and stability of the monitoring data.
  • the invention applies the natural potential monitoring device to the lagging water inrush warning system for the goaf for the first time, and can realize real-time monitoring of the groundwater flowing potential in the goaf.
  • the above-mentioned data acquisition card includes a front low-pass filter (0 ⁇ 5Hz), which only collects the natural potential signal of 0 ⁇ 5Hz and eliminates the interference potential signal generated by the industrial floating current.
  • Each data acquisition card is connected to the data acquisition device through a data line in a serial manner.
  • Each data acquisition card is also connected to a power line.
  • the other end of the power line is connected to the power supply.
  • the power line and the data line are laid in the same pipeline, outsourcing the PVC pipeline. , Prevent line corrosion.
  • the above-mentioned protection device has a shape of a cover, and a part of the corresponding data acquisition card and measurement electrode can be buckled inside.
  • the left and right sides and the bottom of the cover are opened to facilitate line connection.
  • the upper cover of the cover can be Turn on/off to facilitate the inspection and maintenance of the data acquisition card.
  • the cover is made of polyurethane material, which has high mechanical strength, good wear resistance, weather resistance and long service life.
  • the use method of the above-mentioned lagging water inrush warning system based on the natural potential method in the goaf includes the following steps:
  • Buried cables outsourcing PVC pipes for power and data lines, and laying ground wires at infinity to ground the data acquisition device;
  • each measurement electrode detects the natural potential at its location and temporarily stores the potential data in the corresponding data.
  • the data acquisition device issues an instruction again to extract the data in the data acquisition card at the same time;
  • the potential data extracted by the data acquisition device is transmitted to the data processing device, and the data is processed by the data processing device according to the time, the number of the measuring electrode, the size of the potential, and the relationship between the natural potential signal and the groundwater flowing potential;
  • the processed data is transmitted to the early warning device, and if the potential signal exceeds the set alarm threshold, an alarm signal will be sent out immediately.
  • Step 1 Dig a cable trench with a depth of 0.3m on both sides of the goaf, and dig an electrode trench with a diameter of 0.2m and a depth of 0.5m in the cable trench every 10m;
  • Step two bury the cable, wrap the power cord and the data line out of the PVC pipe, lay it in the same pipe, and lay the ground wire at infinity to ground the data acquisition device;
  • Step 3 Weld the data acquisition card and the measurement electrode. After welding, insert the measurement electrode into the rock formation in the electrode tank, and place a protection device on the data acquisition card;
  • Step 4 Turn on the data acquisition device.
  • the data acquisition device sends instructions to each measuring electrode.
  • Each electrode detects the natural potential at its position and temporarily stores the potential data in the data acquisition card.
  • the data acquisition device sends instructions again to save the data. Simultaneous extraction;
  • Step 5 Transmit the extracted potential data to a data processing device, and the data acquisition device processes the data according to time, measurement electrode number, potential size, and the relationship between natural potential signal and groundwater flowing potential;
  • Step 6 Transmit the processed data to the early warning device. If the potential signal exceeds the set alarm threshold, an alarm signal will be sent out immediately.

Abstract

一种基于自然电位法的采空区(4)滞后突水预警系统及其使用方法,属于煤矿安全技术与工程领域。系统包括数据采集装置(1)、数据处理装置、预警装置及自然电位监测装置,自然电位监测装置包括一个参考电极(2)和至少一个测量电极(3),每个测量电极(3)对应连接一个数据采集卡(5),数据采集卡(5)用于将测量电极(3)采集得到的电位信号暂时存储,在每个数据采集卡(5)的上方设置一个保护装置(7);通过自然电位监测装置对采空区(4)内自然电位进行实时监测。系统可以实现对采空区(4)自然电位的实时监测,通过数据采集和处理,可以实时监测采空区(4)地下水流动电位信号,能够对采空区(4)滞后突水有效预警,有效减轻或防止采空区(4)滞后突水的安全隐患。

Description

基于自然电位法的采空区滞后突水预警系统及其使用方法 技术领域
本发明属于煤矿安全技术与工程领域,尤其涉及一种基于自然电位法的采空区滞后突水预警系统及其该系统的使用方法。
背景技术
我国煤矿水文地质条件复杂,工作面内突水时有发生,尤其是采空区滞后突水。采矿中的矿山压力,对工作面底板具有严重的破坏作用,产生新裂隙,并活化原有断裂构造,一旦满足突水条件,则会导致底板突水。
目前探测井下水文地质条件的矿井物探的主要方法有无线电透视法、瞬变电磁法、直流电法。无线电透视法主要是探查工作面内部地质构造发育、煤体结构与厚度变化。瞬变电磁法主要用于探测工作面内顶底板及掘进前方的含水性,对低阻体敏感,探测准确率高,但是很容易受到周围环境的干扰。井下直流电法施工效率高受周围环境的影响较小,但是井下直流电法主要是对巷道顶、底板水文地质条件进行探测,对工作面内探测无能为力。
上述几种物探方法存在的问题是只探查工作面开采前的水文地质条件,而对工作面开采过程中或开采后的水文地质条件动态变化无法做到实时监测。
起阻水作用的主要是有效隔水层,如果矿压对底板破坏深度大,则隔水层厚度相对减小,所以回采过程中隔水层厚度是不断变化的。采前的探测并不能保证回采后采空区底板的安全,不能实现对煤层底板状况进行实时监控,更不可能实时探查突水点的水位变化情况。
技术解决方案
本发明的目的在于提供一种基于自然电位法的采空区滞后突水预警系统及其使用方法,其可以实现对煤层底板状况的实时监控,实时探查突水点的水位变化情况,能够对采空区滞后突水进行有效预警,并有效减轻或防止采空区滞后突水的安全隐患。
本发明的任务之一在于提供一种基于自然电位法的采空区滞后突水预警系统,其采用了以下技术方案:
一种基于自然电位法的采空区滞后突水预警系统,其包括数据采集装置、数据处理装置、预警装置,还包括自然电位监测装置,所述的自然电位监测装置包括一个参考电极和与所述的参考电极连接的至少一个测量电极,所述的参考电极和所有的测量电极均设置在采空区两侧的巷道内,每个测量电极对应连接一个数据采集卡,所述的数据采集卡用于将所述的测量电极采集得到的电位信号暂时存储,在所述的每个数据采集卡的上方还设置一个保护装置;
各个数据采集卡采用串行方式连接到所述的数据采集装置,所述的数据采集装置同时向各个数据采集卡发出指令,在同一时间将各个测量电极所处位置的电位信号同时提取,或间隔固定的时间对数据进行采集;
所述的数据处理装置用于将采集的数据按照时间、测量电极编号、电位大小、以及自然电位信号与地下水流动电位的关系进行处理;
所述的预警装置根据流动电位动态变化大小设置报警阈值,若电位信号超出阈值,立即发出报警信号。
作为本发明的一个优选方案,每个数据采集卡包含一个前置低通滤波器,其用于采集0~5Hz的自然电位信号;每个数据采集卡通过焊接的方式与其对应的测量电极连接。
作为本发明的另一个优选方案,相邻的测量电极为等间距排布,间距为10m。
进一步优选,所述的参考电极、测量电极均为不极化电极。
进一步优选,所述的数据采集装置、数据处理装置、预警装置均通过线路连接有电源,所述的数据采集卡通过电源线连接所述电源。
进一步的,所述的保护装置为一罩体,其扣合在相对应的数据采集卡的上方,在所述的罩体的左右两侧及底部开孔,所述的罩体的上盖可开启/关闭。
进一步的,所述的罩体选用聚氨酯材料制作而成。
进一步的,所述的电源线和数据线采用同一管道铺设,外包防止线路腐蚀的PVC管道。
本发明的另一任务在于提供上述一种基于自然电位法的采空区滞后突水预警系统的使用方法,依次包括以下步骤:
a、在采空区两侧巷道分别挖设具有一定深度的电缆沟,并在电缆沟内每隔一段距离挖设电极槽;
b、埋设电缆,将电源线和数据线外包PVC管道,并在无穷远处铺设地线,将数据采集装置进行接地;
c、将数据采集卡和与其对应的测量电极进行焊接,焊接后后将测量电极插入所述的电极槽内的岩层中,并在数据采集卡上方布置保护装置;
d、若各个装置连接情况完好,则开启数据采集装置,通过所述的数据采集装置向各个测量电极发出指令,各个测量电极对所处位置的自然电位进行检测,并将电位数据暂存于对应的数据采集卡中,数据采集装置再次发出指令将数据采集卡中的数据同时提取;
e、将数据采集装置提取的电位数据传输至数据处理装置,通过所述的数据处理装置对这些数据按照时间、测量电极编号、电位大小以及自然电位信号与地下水流动电位的关系进行处理;
f、将处理好的数据传输至预警装置,若电位信号超出所设置的报警阈值,立即发出报警信号。
本发明自然电位监测装置的监测原理:
当地下水通过裂隙带向上涌时,由于过滤作用,在地下水出露处呈现过剩正电荷,而在地下深处留下许多负电荷,电场分布形态在裂隙水上涌处电位达到最大值,自然电位法就是基于以上原理,可以实现采空区地下水流动电位实时监控。
有益效果
与现有技术相比,本发明带来了以下有益技术效果:
本发明基于自然电位法的采空区滞后突水预警系统包括自然电位监测装置、数据采集装置、数据处理装置和预警装置,其中,通过自然电位监测装置对采空区内自然电位进行实时监测,数据采集装置同时控制测量各个电极所处位置自然电位信号,可以消除工业游散电流产生的干扰电位,准确地确定电位信号的变化;数据处理装置将电位信号进行处理,得出自然电位信号所对应的地下水流动电位信号,若流动电位动态变化大小超出报警阈值,该系统能够立即发出预警。
本发明可以实现对采空区自然电位的实时监测,通过数据采集和处理,可以实时监测采空区地下水流动电位信号,能够对采空区滞后突水的有效预警,有效减轻或防止采空区滞后突水的安全隐患。
附图说明
下面结合附图对本发明做进一步说明:
图1为本发明基于自然电位法的采空区滞后突水预警系统的结构示意图;
图2为本发明自然电位监测装置在采空区巷道内电极布置示意图;
图3是图2 的A-A方向剖面图;
图4是图2的B-B方向剖面图;
图5是图4的钻孔放大图;
图中,1、数据采集装置,2、参考电极,3、测量电极,4、采空区,5、数据采集卡,7、保护装置,8、岩层,9、工作面。
本发明的实施方式
本发明提出了一种基于自然电位法的采空区滞后突水预警系统及其使用方法,为了使本发明的优点、技术方案更加清楚、明确,下面结合具体实施例对本发明做详细说明。
如图1所示,本发明一种基于自然电位法的采空区滞后突水预警系统,其包括数据采集装置1、数据处理装置、预警装置和自然电位监测装置,其中,数据采集装置同时向各个数据采集卡发出指令,在同一时间将各个测量电极所处位置的电位信号同时提取,也可以间隔固定的时间对数据进行采集;数据处理装置将采集的数据按照时间、测量电极编号、电位大小、以及自然电位信号与地下水流动电位的关系进行处理;预警装置根据流动电位动态变化大小设置报警阈值,若电位信号超出阈值,立即发出报警信号。
上述数据采集装置、数据处理装置、预警装置的细节性结构借鉴现有技术即可实现,本文不做详细冗述,下面将本发明的主要改进点部分,自然电位监测装置的结构及其布置方法做详细说明。
结合图3至图5所示,自然电位监测装置包括一个参考电极2和与参考电极连接的至少一个测量电极3,参考电极和测量电极均设置在采空区4两侧的巷道内,每个测量电极对应连接一个数据采集卡5,优选将数据采集卡焊接在测量电极上,数据采集卡5可将测量电极采集得到的电位信号暂时存储,最后传输给数据采集装置;在每个数据采集卡的上方还设置有一个保护装置7。多个数据采集卡5通过串行方式连接在一起,并最终与数据测量装置1连接,如此设计,自然电位监测装置可以对采空区内自然电位进行实时监测,数据采集装置同时控制测量各个电极所处位置自然电位信号,可以消除工业游散电流产生的干扰电位,准确地确定电位信号的变化。数据处理装置用于将采集的数据按照时间、测量电极编号、电位大小、以及自然电位信号与地下水流动电位的关系进行处理,得出自然电位信号所对应的地下水流动电位信号,若流动电位动态变化大小超出报警阈值,通过预警装置能够立即发出预警。
上述的测量电极3的具体数量本领域技术人员可根据实际情况来选取,各个测量电极均匀分布,相邻的测控电极监测点的间距为10m,电极材料不极化电极,采用磁棒电极,不极化的磁棒电极电极电位差差小,电性特征比较稳定,保证监测数据的准确性和稳定性。
本发明将自然电位监测装置首次运用于采空区滞后突水预警系统中,可以实现对采空区地下水流动电位实时监控。
本发明优选上述的数据采集卡包含前置低通滤波器(0~5Hz),只采集0~5Hz的自然电位信号,消除工业游散电流产生的干扰电位信号。
各个数据采集卡采用串行的方式通过数据线与数据采集装置连接,各个数据采集卡还连接电源线,电源线的另一端连接在电源上,电源线和数据线采用同一管道铺设,外包PVC管道,防止线路腐蚀。
上述的保护装置,其形状为一罩体,可以将对应的数据采集卡及测量电极的一部分扣在里面,在罩体的左右两侧及底部开孔,方便线路连接,罩体的上盖可开启/关闭,便于数据采集卡的检查和维护。罩体选用聚氨酯材料制作而成,该材料机械强度大,耐磨性能、耐候性能好,使用寿命高。
上述的基于自然电位法的采空区滞后突水预警系统的使用方法,包括以下步骤:
步骤一、安装:
在采空区两侧巷道分别挖设具有一定深度的电缆沟,并在电缆沟内每隔一段距离挖设电极槽;
埋设电缆,将电源线和数据线外包PVC管道,并在无穷远处铺设地线,将数据采集装置进行接地;
将数据采集卡和与其对应的测量电极进行焊接,焊接后后将测量电极插入所述的电极槽内的岩层中,并在数据采集卡上方布置保护装置;
步骤二、监测:
若各个装置连接情况完好,则开启数据采集装置,通过所述的数据采集装置向各个测量电极发出指令,各个测量电极对所处位置的自然电位进行检测,并将电位数据暂存于对应的数据采集卡中,数据采集装置再次发出指令将数据采集卡中的数据同时提取;
将数据采集装置提取的电位数据传输至数据处理装置,通过所述的数据处理装置对这些数据按照时间、测量电极编号、电位大小以及自然电位信号与地下水流动电位的关系进行处理;
将处理好的数据传输至预警装置,若电位信号超出所设置的报警阈值,立即发出报警信号。
下面结合具体实施例对本发明做详细说明:
实施例1:
如图2所示,具体包括以下步骤:
步骤一、在采空区两侧巷道分别挖设一道深度为0.3m的电缆沟,并在电缆沟内每隔10m挖设一个直径为0.2m,深度为0.5m的电极槽;
步骤二、埋设电缆,将电源线和数据线外包PVC管道,采取同一根管内敷设,并在无穷远处铺设地线,将数据采集装置进行接地;
步骤三、将数据采集卡和测量电极进行焊接,焊接后后将测量电极插入电极槽内的岩层中,并在数据采集卡上方置放一个保护装置;
确定电缆以及电极埋设好以后,将各个装置进行连接,检查各装置连接情况完好后,方可进行测量;
步骤四、开启数据采集装置,数据采集装置向各个测量电极发出指令,各电极对所处位置的自然电位进行检测,并将电位数据暂存于数据采集卡中,数据采集装置再次发出指令将数据同时提取;
步骤五、将提取的电位数据传输至数据处理装置,数据采集装置中对这些数据按照时间、测量电极编号、电位大小以及自然电位信号与地下水流动电位的关系进行处理;
步骤六、将处理好的数据传输至预警装置,若电位信号超出所设置的报警阈值,立即发出报警信号。
本发明未述及的部分借鉴现有技术即可实现。
需要说明的是:在本说明的教导下本领域技术人员所做出的任何等同方式,或明显变型方式均应在本发明的保护范围内。

Claims (9)

  1. 一种基于自然电位法的采空区滞后突水预警系统,其包括数据采集装置、数据处理装置、预警装置,其特征在于:
    还包括自然电位监测装置,所述的自然电位监测装置包括一个参考电极和与所述的参考电极连接的至少一个测量电极,所述的参考电极和所有的测量电极均设置在采空区两侧的巷道内,每个测量电极对应连接一个数据采集卡,所述的数据采集卡用于将所述的测量电极采集得到的电位信号暂时存储,在所述的每个数据采集卡的上方还设置一个保护装置;
    各个数据采集卡采用串行方式连接到所述的数据采集装置,所述的数据采集装置同时向各个数据采集卡发出指令,在同一时间将各个测量电极所处位置的电位信号同时提取,或间隔固定的时间对数据进行采集;
    所述的数据处理装置用于将采集的数据按照时间、测量电极编号、电位大小、以及自然电位信号与地下水流动电位的关系进行处理;
    所述的预警装置根据流动电位动态变化大小设置报警阈值,若电位信号超出阈值,立即发出报警信号。
  2. 根据权利要求1所述的一种基于自然电位法的采空区滞后突水预警系统,其特征在于:每个数据采集卡包含一个前置低通滤波器,其用于采集0~5Hz的自然电位信号;每个数据采集卡通过焊接的方式与其对应的测量电极连接。
  3. 根据权利要求2所述的一种基于自然电位法的采空区滞后突水预警系统,其特征在于:相邻的测量电极为等间距排布,间距为10m。
  4. 根据权利要求3所述的一种基于自然电位法的采空区滞后突水预警系统,其特征在于:所述的参考电极、测量电极均为不极化电极。
  5. 根据权利要求4所述的一种基于自然电位法的采空区滞后突水预警系统,其特征在于:所述的数据采集装置、数据处理装置、预警装置均通过线路连接有电源,所述的数据采集卡通过电源线连接所述电源。
  6. 根据权利要求5所述的一种基于自然电位法的采空区滞后突水预警系统,其特征在于:所述的保护装置为一罩体,其扣合在相对应的数据采集卡的上方,在所述的罩体的左右两侧及底部开孔,所述的罩体的上盖可开启/关闭。
  7. 根据权利要求6所述的一种基于自然电位法的采空区滞后突水预警系统,其特征在于:所述的罩体选用聚氨酯材料制作而成。
  8. 根据权利要求7所述的一种基于自然电位法的采空区滞后突水预警系统,其特征在于:所述的电源线和数据线采用同一管道铺设,外包防止线路腐蚀的PVC管道。
  9. 根据权利要求1~8任一项所述的一种基于自然电位法的采空区滞后突水预警系统的使用方法,其特征在于,依次包括以下步骤:
    a、在采空区两侧巷道分别挖设具有一定深度的电缆沟,并在电缆沟内每隔一段距离挖设电极槽;
    b、埋设电缆,将电源线和数据线外包PVC管道,并在无穷远处铺设地线,将数据采集装置进行接地;
    c、将数据采集卡和与其对应的测量电极进行焊接,焊接后后将测量电极插入所述的电极槽内的岩层中,并在数据采集卡上方布置保护装置;
    d、若各个装置连接情况完好,则开启数据采集装置,通过所述的数据采集装置向各个测量电极发出指令,各个测量电极对所处位置的自然电位进行检测,并将电位数据暂存于对应的数据采集卡中,数据采集装置再次发出指令将数据采集卡中的数据同时提取;
    e、将数据采集装置提取的电位数据传输至数据处理装置,通过所述的数据处理装置对这些数据按照时间、测量电极编号、电位大小以及自然电位信号与地下水流动电位的关系进行处理;
    f、将处理好的数据传输至预警装置,若电位信号超出所设置的报警阈值,立即发出报警信号。
PCT/CN2020/122704 2019-12-17 2020-10-22 基于自然电位法的采空区滞后突水预警系统及其使用方法 WO2021120833A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911297310.3 2019-12-17
CN201911297310.3A CN111123365B (zh) 2019-12-17 2019-12-17 基于自然电位法的采空区滞后突水预警系统及其使用方法

Publications (1)

Publication Number Publication Date
WO2021120833A1 true WO2021120833A1 (zh) 2021-06-24

Family

ID=70499268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122704 WO2021120833A1 (zh) 2019-12-17 2020-10-22 基于自然电位法的采空区滞后突水预警系统及其使用方法

Country Status (2)

Country Link
CN (1) CN111123365B (zh)
WO (1) WO2021120833A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111123365B (zh) * 2019-12-17 2021-04-16 山西石泉煤业有限责任公司 基于自然电位法的采空区滞后突水预警系统及其使用方法
CN111856588B (zh) * 2020-06-17 2022-09-27 南方科技大学 一种地陷预警方法、系统、终端设备及存储介质
CN112412334A (zh) * 2020-11-03 2021-02-26 山西晋城无烟煤矿业集团有限责任公司 一种基于电位法的煤层气径向井施工轨迹监测方法
CN114088782B (zh) * 2021-10-18 2022-05-17 中国矿业大学 一种应力与渗流作用下煤岩体突水危险区域电位判识方法
CN117351634A (zh) * 2023-10-13 2024-01-05 山东科技大学 基于自然电位法的采空区火源地面探测方法及探测系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2099588B (en) * 1981-05-28 1985-10-30 Nat Res Dev Fluid component measuring and alarm device
CN101526010A (zh) * 2009-03-25 2009-09-09 华北科技学院 矿井突水灾害监测预警系统及其控制方法
CN202001063U (zh) * 2010-07-15 2011-10-05 北京华安奥特科技有限公司 矿井底板水害预警系统
CN104730585A (zh) * 2015-03-26 2015-06-24 山东科技大学 一种采动工作面底板破坏深度实时监测方法
CN105258765A (zh) * 2015-09-08 2016-01-20 安徽理工大学 一种坝体静水位原位自动监测系统及方法
CN110513149A (zh) * 2019-07-19 2019-11-29 武强 一种突水监测装置及突水监测方法
CN111123365A (zh) * 2019-12-17 2020-05-08 山西石泉煤业有限责任公司 基于自然电位法的采空区滞后突水预警系统及其使用方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2262581C (en) * 1996-08-05 2006-01-03 Tetra Corporation Electrohydraulic pressure wave projectors
KR100926318B1 (ko) * 2008-01-11 2009-11-12 한국지질자원연구원 전기 비저항 측정 홀더 및 전기 비저항 측정기
CN103064120B (zh) * 2012-12-29 2015-09-30 福州华虹智能科技开发有限公司 煤矿井下磁电综合探测方法
CN104018882B (zh) * 2014-05-20 2016-01-27 中国矿业大学 一种分布式煤岩动力灾害电位实时监测方法及系统
CN105021662B (zh) * 2015-08-24 2016-04-13 山东科技大学 采动工作面水情实时动态监测试验装置及试验方法
CN105277992B (zh) * 2015-12-02 2016-06-22 山东科技大学 利用赤道偶极装置对采场底板水情动态监测方法
CN105840239B (zh) * 2016-04-05 2018-06-12 中国矿业大学 矿山隐蔽灾害实时主动探测与被动监测一体化系统及方法
CN106199730B (zh) * 2016-06-30 2019-08-20 山东大学 地下工程激发极化超前地质预报无线快速采集系统及方法
CN109521476B (zh) * 2018-11-29 2020-05-26 长江勘测规划设计研究有限责任公司 堤坝电阻率层析成像观测系统
CN110501746A (zh) * 2019-08-19 2019-11-26 孙启隆 滚动式三维可控源电法监测评价钻井压裂方法
CN110552741B (zh) * 2019-09-09 2021-01-19 中煤科工集团西安研究院有限公司 一种采煤工作面底板突水综合监测与预警系统及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2099588B (en) * 1981-05-28 1985-10-30 Nat Res Dev Fluid component measuring and alarm device
CN101526010A (zh) * 2009-03-25 2009-09-09 华北科技学院 矿井突水灾害监测预警系统及其控制方法
CN202001063U (zh) * 2010-07-15 2011-10-05 北京华安奥特科技有限公司 矿井底板水害预警系统
CN104730585A (zh) * 2015-03-26 2015-06-24 山东科技大学 一种采动工作面底板破坏深度实时监测方法
CN105258765A (zh) * 2015-09-08 2016-01-20 安徽理工大学 一种坝体静水位原位自动监测系统及方法
CN110513149A (zh) * 2019-07-19 2019-11-29 武强 一种突水监测装置及突水监测方法
CN111123365A (zh) * 2019-12-17 2020-05-08 山西石泉煤业有限责任公司 基于自然电位法的采空区滞后突水预警系统及其使用方法

Also Published As

Publication number Publication date
CN111123365A (zh) 2020-05-08
CN111123365B (zh) 2021-04-16

Similar Documents

Publication Publication Date Title
WO2021120833A1 (zh) 基于自然电位法的采空区滞后突水预警系统及其使用方法
CN105350965B (zh) 开采煤矿巷道冲击地压防治方法
CN104018882B (zh) 一种分布式煤岩动力灾害电位实时监测方法及系统
CN103726844B (zh) 基于采煤工作面的自动采煤方法
CN104314610A (zh) 一种煤巷条带区域消突方法
WO2022047846A1 (zh) 一种矿井顶板的异常监测方法及异常监测系统
CN108776354A (zh) 一种tbm搭载的聚焦测深型三维激发极化超前探测系统及方法
CN104459808A (zh) 采煤工作面顶、底板突水灾害的监测预报方法及其装置
CN105652311A (zh) 一种监测底板突水的微震监测方法
CN110609335A (zh) 一种基于多手段的残采区复杂条件探测方法
CN110645039A (zh) 一种厚硬顶板冲击地压与瓦斯复合灾害综合防治方法
SE2350728A1 (en) Mine water hazard monitoring apparatus and method
CN204256186U (zh) 采煤工作面顶、底板突水灾害的监测预报装置
CN110989018A (zh) 基于自然电位法的采空区火源位置探测系统及探测方法
WO2021134929A1 (zh) 构造活化双参数监测系统及监测方法
CN108757043A (zh) 一种针对采掘工作面防治水方法
CN106494460B (zh) 强矿震区域的高铁路基稳定性预警方法
CN106246162B (zh) 工作面底板跨孔成像装置及注浆效果监测方法
AU2017410433A1 (en) Water disaster prevention and treatment design method for mine taking coal bed as main aquifer
CN110410149B (zh) 一种实时自动监测煤矿老空水水情的装置及方法
CN110361783B (zh) 顶板变形监测方法
CN107907166A (zh) 一种地下管廊安全监控系统
CN207048819U (zh) 一种深坑斜坡区域综合管线布置系统
CN112901272A (zh) 一种物探和钻探协同超前探放水施工方法
CN110206533B (zh) 单巷、跨斜孔电阻率ct成像装置及工作面底板水动态监测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20903656

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20903656

Country of ref document: EP

Kind code of ref document: A1