WO2021120706A1 - 一种被动式冷热双效材料 - Google Patents

一种被动式冷热双效材料 Download PDF

Info

Publication number
WO2021120706A1
WO2021120706A1 PCT/CN2020/113710 CN2020113710W WO2021120706A1 WO 2021120706 A1 WO2021120706 A1 WO 2021120706A1 CN 2020113710 W CN2020113710 W CN 2020113710W WO 2021120706 A1 WO2021120706 A1 WO 2021120706A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
selective emission
cooling
emission layer
heating
Prior art date
Application number
PCT/CN2020/113710
Other languages
English (en)
French (fr)
Inventor
张恺
陈露芳
宋歌
牛晓峰
李斐
Original Assignee
南京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京工业大学 filed Critical 南京工业大学
Publication of WO2021120706A1 publication Critical patent/WO2021120706A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/283Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D15/00Other domestic- or space-heating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/20Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
    • F24S70/225Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption for spectrally selective absorption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B23/00Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect
    • F25B23/003Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect using selective radiation effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • B32B2264/1021Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • B32B2264/1022Titania
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • B32B2264/1023Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • B32B2264/1024Zirconia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • B32B2264/1025Zinc oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/104Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/12Mixture of at least two particles made of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/30Particles characterised by physical dimension
    • B32B2264/303Average diameter greater than 1µm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/40Pretreated particles
    • B32B2264/403Pretreated particles coated or encapsulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/204Di-electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/402Coloured
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/416Reflective
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/86Arrangements for concentrating solar-rays for solar heat collectors with reflectors in the form of reflective coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the invention belongs to the field of passive energy utilization and materials, and specifically relates to a passive cooling and heating dual-effect material.
  • the outer space of the earth’s atmosphere has a temperature close to absolute zero, which can be used as a large-capacity cold source.
  • the atmosphere around the earth is transparent to visible light and opaque to most of the infrared radiation in the band.
  • this band has high transparency and is called " Atmospheric window”.
  • Objects on the surface of the earth can use infrared radiation to radiate heat to the outer space close to zero through this "atmospheric window” to achieve the purpose of cooling.
  • This passive cooling technology does not require additional power input, and can achieve cooling, so it can effectively reduce building energy consumption.
  • Chinese Patent Application No. 201810952183.5 provides a radiant refrigerating coating with self-cleaning function and a preparation method thereof.
  • the radiant refrigerating coating includes a bottom adhesive and a radiator covered on the bottom adhesive And hydrophobic nanoparticles.
  • the invention utilizes the high hydrophobicity of the nano hydrophobic particles to make the radiation refrigeration coating have a self-cleaning effect, and avoids the phenomenon of reducing the cooling effect due to dust accumulation.
  • the radiant cooling coating has high emissivity in the 8-13 ⁇ m waveband, high transmittance in the visible light waveband, good lighting performance, and can reduce the absorption of energy in other wavebands to ensure the cooling effect.
  • the patent only takes into account the cooling season.
  • the coating, film, or structure provided can only be used for cooling, and cannot function in the heating season, and will increase the heat load, which will cause the deviation of cooling and heating during operation throughout the year. .
  • the technical problem to be solved by the present invention is to provide a passive cooling and heating double-effect material, which can realize the dual purpose of cooling and heat collection.
  • the embodiment of the present invention provides a passive cooling and heating dual-effect material.
  • the passive cooling and heating dual-effect material includes a selective emission layer and a reflective layer connected to each other; the selective emission layer realizes cooling and cooling through reversible color changes.
  • the dual purpose of heat collection; the reflective layer is used to reflect incident solar radiation.
  • the emissivity of the selective emission layer in the 8-13 ⁇ m band is 0.4-1.0 in the cooling season and 0-0.3 in the heating season.
  • the thickness of the selective emission layer is 5 ⁇ m to 5 mm.
  • the selective emission layer is photochromic or thermochromic.
  • the selective emission layer includes a polymer material layer, and dielectric particles located in the polymer material layer; or, the selective emission layer includes a polymer material layer, and the polymer material layer Color-changing dielectric particles; the outer shell of the color-changing dielectric particles is made of a color-changing material, and the inner core is a dielectric particle.
  • the polymer color-changing material layer comprises a mixture of a polymer material and a color-changing material
  • the polymer material includes polymethylpentene, polyethylene, polyvinyl fluoride, polyvinyl chloride, polydimethylsiloxane, It is made of one or any combination of polyethylene terephthalate, colored polyethylene foil, zinc sulfide, zinc selenide, and polycarbonate.
  • the diameter of the dielectric particles is 2-50 ⁇ m, and the volume percentage in the selective emission layer is 2-30%.
  • the dielectric particles are made of one or any combination of silicon dioxide, silicon carbide, silicon oxynitride, titanium dioxide, aluminum oxide, copper oxide, iron oxide, zinc oxide, and zirconium dioxide.
  • the polymer material layer includes polymethylpentene, polyethylene, polyvinyl fluoride, polyvinyl chloride, polydimethylsiloxane, polyethylene terephthalate, and colored polyethylene foil. , Zinc sulfide, zinc selenide, polycarbonate or any combination of materials.
  • the selective emission layer is electrochromic.
  • the passive cold-heat dual-effect material further includes an electrochromic material layer;
  • the selective emission layer includes a polymer material layer and dielectric particles located in the polymer material layer; and a selective emission layer Is located between the electrochromic material layer and the reflective layer; or, the selective emission layer includes an electrochromic material layer and dielectric particles located in the electrochromic material layer; or, it also includes an electrochromic material layer,
  • the selective emission layer includes dielectric particles, and the selective emission layer is located between the electrochromic material layer and the reflective layer.
  • the material of the polymer material layer includes polymethylpentene, polyethylene, polyvinyl fluoride, polyvinyl chloride, polydimethylsiloxane, polyethylene terephthalate, colored poly One or any combination of vinyl foil, zinc sulfide, zinc selenide, and polycarbonate.
  • the diameter of the dielectric particles is 2-50 ⁇ m, and the volume percentage in the selective emission layer is 2-30%.
  • the dielectric particles are made of one or any combination of silicon dioxide, silicon carbide, silicon oxynitride, titanium dioxide, aluminum oxide, copper oxide, iron oxide, zinc oxide, and zirconium dioxide.
  • the reflective layer is made of photonic crystal material or metal.
  • the reflectance of the reflective layer in the 0.25-3 ⁇ m band is 0.7-1.0 in the cooling season and 0-0.4 in the heating season.
  • the passive cooling and heating dual-effect material further includes a protective layer, and the selective emission layer is located between the protective layer and the reflective layer.
  • the transmittance of the protective layer is greater than 0.85.
  • the protective layer is made of one or any combination of polymethylpentene, polyethylene terephthalate, low-density polyethylene, and high-density polyethylene; the low-density polyethylene
  • the density of ethylene is 0.91 to 0.93 g/cm 3 ; the density of the high-density polyethylene is 0.941 to 0.960 g/cm 3 .
  • the passive cooling and heating dual-effect material of the embodiment of the present invention can achieve the dual purpose of cooling and collecting heat.
  • the material of this embodiment is a material that can switch the functions of refrigeration and heat collection, and includes a selective emission layer and a reflective layer.
  • the reflective layer can reflect incident solar radiation, and the selective emission layer obtains cold energy through radiant heat exchange with outer space to achieve the purpose of radiation cooling;
  • the reflectivity of the reflective layer is reduced by changing the color.
  • the emissivity of the selective emission layer is reduced to achieve the purpose of heating.
  • Fig. 1 is a schematic structural diagram of an embodiment of the present invention
  • Figure 2 is a schematic diagram of another structure of an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a third structure of an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a fourth structure of an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a fifth structure of an embodiment of the present invention.
  • Fig. 6 is a schematic diagram of a sixth structure of an embodiment of the present invention.
  • selective emission layer 1 dielectric particles 101, polymeric color-changing material layer 102, polymer material layer 103, color-changing dielectric particles 104, reflective layer 2, electrochromic material layer 3, and protective layer 4.
  • a passive cooling and heating dual-effect material includes a selective emission layer 1 and a reflective layer 2 connected to each other.
  • the selective emission layer 1 realizes the dual purpose of cooling and collecting heat through the reversible change of color.
  • the reflective layer 2 is used to reflect incident solar radiation.
  • the passive cooling and heating dual-effect material provided by the above embodiment includes a selective emission layer 1 and a reflective layer 2.
  • the reflective layer 2 can reflect most of the incident solar radiation, and the selective emission layer 1 obtains cold energy by radiating heat exchange with outer space to achieve the purpose of radiant cooling.
  • the heating season by changing the color, the emissivity of the selective emission layer 1 is reduced, and at the same time the reflectivity of the reflective layer 2 is reduced, so as to achieve the purpose of heating.
  • the passive cold-heat dual-effect material of this embodiment is made of a thin film and attached to the surface of the object to be temperature-controlled.
  • the film In the cooling season, when the outside temperature is higher than 26°C, the film is light brown. At this time, the film can reflect more than 96% of solar radiation, and the emissivity in the 8-13 ⁇ m band is greater than 0.92, which can produce a cooling effect, that is, through heat exchange with outer space, the temperature of the object to be temperature-controlled is reduced.
  • the film is dark gray.
  • the film can reflect less than 30% of the solar radiation, and the emissivity in the 8-13 ⁇ m band is less than 0.20, which can produce a heating effect, that is, by absorbing solar radiation heat, the temperature of the object to be temperature-controlled increases.
  • This embodiment is directed to thermochromic materials. If electrochromic materials are used, the temperature is not limited, and the color of the film can be adjusted as needed to change the roof cooling and heating functions.
  • the emissivity of the selective emission layer 1 in the 8-13 ⁇ m band is 0.4-1.0 in the cooling season and 0-0.3 in the heating season.
  • the 8-13 ⁇ m band refers to part of the wavelength in the infrared region of electromagnetic waves. Anything higher than absolute zero will emit electromagnetic waves.
  • Electromagnetic radiation is mainly divided into radio waves, microwaves, infrared rays, visible light, ultraviolet rays, X-rays and gamma rays from low frequency to high frequency.
  • the emissivity of the selective emission layer 1 is 0.4-1.0.
  • the emissivity of the selective emission layer 1 is 0-0.3. In the heating season, the emissivity of the selective emission layer 1 should be as small as possible to reduce the heat exchange with outer space in order to achieve the purpose of heating.
  • the thickness of the selective emission layer 1 is 5 ⁇ m to 5 mm, for example, 5 ⁇ m, 8 ⁇ m, 9 ⁇ m, 1 mm, 3 mm, 4 mm, or 5 mm.
  • the selective emission layer 1 is photochromic, thermochromic or electrochromic.
  • the structure of the selective emission layer 1 can be selected from the following:
  • the selective emission layer 1 includes a polymerized color-changing material layer 102 and dielectric particles 101 located in the polymerized color-changing material layer 102.
  • the polymer color-changing material layer 102 includes a mixture of a polymer material and a color-changing material.
  • Polymeric materials include polymethylpentene, polyethylene, polyvinyl fluoride, polyvinyl chloride, polydimethylsiloxane, polyethylene terephthalate, colored polyethylene foil, zinc sulfide, zinc selenide, Made of one or any combination of polycarbonate materials.
  • the color-changing material can be a thermochromic material or a photochromic material.
  • the thermochromic material is vanadium dioxide or perovskite manganese oxide, etc.; the photochromic material is spiropyrans and spirooxazines, azos, fulgides, diarylethylene compounds Wait.
  • the dielectric particles 101 include one or any combination of silicon dioxide, silicon carbide, silicon oxynitride, titanium dioxide, aluminum oxide, copper oxide, iron oxide, zinc oxide, and zirconium dioxide.
  • the diameter of the dielectric particles is 2-50 ⁇ m, and the volume percentage in the selective emission layer 1 is 2-30%.
  • the volume percentage of dielectric particles in the selective emission layer 1 is 2%, 10%, 18%, 25%, 28%, or 30%. A smaller volume percentage can make the material transmit light, so as to ensure that the reflective layer works.
  • the selective emission layer 1 includes a polymer material layer 103 and color-changing dielectric particles 104 in the polymer material layer 103.
  • the outer shell of the color-changing dielectric particle 104 is made of a color-changing material, and the inner core is a dielectric particle.
  • the polymer material layer 103 includes polymethylpentene, polyethylene, polyvinyl fluoride, polyvinyl chloride, polydimethylsiloxane, polyethylene terephthalate, Colored polyethylene foil, zinc sulfide, zinc selenide, polycarbonate or any combination of materials.
  • the color-changing dielectric particles 104 adopt a core-shell structure. Among them, the outer shell is made of a color-changing material, and the inner core is a dielectric particle.
  • the color-changing material can be a thermochromic material or a photochromic material.
  • the thermochromic material is vanadium dioxide or perovskite manganese oxide, etc.; the photochromic material is spiropyrans and spirooxazines, azos, fulgides, diarylethylenes Compound etc.
  • the dielectric particles 101 include one or any combination of silicon dioxide, silicon carbide, silicon oxynitride, titanium dioxide, aluminum oxide, copper oxide, iron oxide, zinc oxide, and zirconium dioxide.
  • the diameter of the dielectric particles is 2-50 ⁇ m, and the volume percentage in the selective emission layer 1 is 2-30%. A smaller volume percentage can make the material transmit light, so as to ensure that the reflective layer works.
  • the volume percentage of dielectric particles in the selective emission layer 1 is 2%, 10%, 18%, 25%, 28%, or 30%.
  • the pure polymer film has a low emissivity in the 8-13 ⁇ m band. After adding the color-changing dielectric particles 104 to the pure polymer film, the emissivity is significantly improved.
  • the selective emission layer 1 undergoes photochromism, under the action of light of a certain wavelength and intensity, the molecular structure will change, resulting in a significant change in its absorption spectrum, that is, a corresponding change in color.
  • thermochromism when the temperature reaches a certain range, through intermolecular chemical reactions, intermolecular tautomerism, etc., the color of the material will change, showing a new color, and the performance will also vary. The change.
  • the structure of the selective emission layer 1 is preferably the following:
  • the selective emission layer 1 includes a polymer material layer 103 and dielectric particles 101 located in the polymer material layer 103.
  • the cold-heat dual-effect material also includes an electrochromic material layer 3.
  • the selective emission layer 1 is located between the electrochromic material layer 3 and the reflective layer 2.
  • the material of the polymer material layer 103 includes polymethylpentene, polyethylene, polyvinyl fluoride, polyvinyl chloride, polydimethylsiloxane, and polyethylene terephthalate.
  • the dielectric particles 101 are made of one or any combination of silicon dioxide, silicon carbide, silicon oxynitride, titanium dioxide, aluminum oxide, copper oxide, iron oxide, zinc oxide, and zirconium dioxide.
  • the material of the electrochromic material layer 3 is WO 3 , polythiophenes and their derivatives, viologens, tetrathiafulvalene, metal phthalocyanine compounds and the like.
  • the selective emission layer 1 includes an electrochromic material layer 3 and dielectric particles 101 located in the electrochromic material layer 3.
  • the material of the electrochromic material layer 3 is WO 3 , polythiophenes and their derivatives, viologens, tetrathiafulvalene, metal phthalocyanine compounds, and the like.
  • the dielectric particles 101 are made of one or any combination of silicon dioxide, silicon carbide, silicon oxynitride, titanium dioxide, aluminum oxide, copper oxide, iron oxide, zinc oxide, and zirconium dioxide.
  • the selective emission layer 1 includes dielectric particles 101.
  • the cold-heat dual-effect material also includes an electrochromic material layer 3.
  • the selective emission layer 1 is located between the electrochromic material layer 3 and the reflective layer 2.
  • the dielectric particles 101 include one or any of silicon dioxide, silicon carbide, silicon oxynitride, titanium dioxide, aluminum oxide, copper oxide, iron oxide, zinc oxide, and zirconium dioxide. Made of combined materials.
  • the material of the electrochromic material layer 3 is WO 3 , polythiophenes and their derivatives, viologens, tetrathiafulvalene, metal phthalocyanine compounds and the like.
  • the third structure lacks the polymer material layer 103.
  • the dielectric particles 101 are directly located between the electrochromic material layer 3 and the reflective layer 2.
  • the diameter of the dielectric particles 101 is 2-50 ⁇ m, and the volume percentage in the selective emission layer 1 is 2-30%.
  • electrochromic When electrochromic is used, electrochromic mainly depends on the chemical composition and energy band structure of the material, as well as the redox characteristics. Through the injection and extraction of ions and electrons, the absorption characteristics of the material in the visible light region are modulated or the current carrying in the material is changed. The sub-concentration and plasma oscillation frequency realize the modulation of infrared reflection characteristics.
  • the reflective layer 2 is made of photonic crystal material or metal.
  • the reflectance of the reflective layer 2 in the 0.25-3 ⁇ m band is 0.7-1.0 in the cooling season and 0-0.4 in the heating season.
  • the reflectivity of the reflective layer 2 in the 0.25 to 3 ⁇ m band, is 0.7 to 1.0 in the cooling season.
  • the reflectivity of the reflective layer 2 is 0-0.4 during the heating season.
  • the reflectivity of the reflective layer 2 should be as high as possible to reflect sunlight as much as possible to reduce the cooling load.
  • the heating season on the contrary, it has a lower reflectivity and can absorb more solar radiant heat.
  • the passive cooling and heating dual-effect material further includes a protective layer 4, and the selective emission layer 1 is located on the protective layer 4. ⁇ reflective layer 2.
  • the electrochromic material layer 3 is contained, the electrochromic material layer 3 is located between the protective layer 4 and the selective emission layer 1.
  • the protective layer 4 the selective emission layer 1 and the reflective layer 2 are connected in sequence.
  • the protective layer 4 can protect the selective emission layer 1 and the reflective layer 2.
  • the protective layer 4 has good waterproof performance, can protect the selective emission layer 1 and the reflective layer 2 from corrosion caused by the penetration of water molecules, etc., and has strong weather resistance and high transmittance.
  • the transmittance of the protective layer 4 is greater than 0.85.
  • the protective layer 4 is made of one or any combination of materials among polymethylpentene, polyethylene terephthalate, low-density polyethylene, and high-density polyethylene; The density is 0.91 to 0.93 g/cm 3 ; the density of the high-density polyethylene is 0.941 to 0.960 g/cm 3 .
  • the present invention also provides a passive cooling and heating dual-effect product, which adopts the film, plate, paint or sheet made of the materials of the above-mentioned embodiments or preferred examples.
  • the cooling power of the passive cooling and heating double-effect product is 30W/m 2 to 160W/m 2 , and the heat collection efficiency is 20% to 50%.
  • the form includes but not limited to film, sheet, sheet, or coating.
  • the dielectric particles and the polymer are melted and mixed through an extruder, and then extruded and cast into a film to form the selective emission layer.
  • the protective layer and the selective emission layer are connected by a coating method.
  • the reflective layer can be connected to the selective emission layer by electron beam evaporation.

Abstract

本发明公开了一种被动式冷热双效材料,可实现致冷与集热的双重目的。所述被动式冷热双效材料包括相互连接的选择性发射层和反射层;所述选择性发射层通过颜色的可逆改变,实现致冷与集热的双重目的;所述反射层用于反射入射太阳辐射。

Description

一种被动式冷热双效材料 技术领域
本发明属于被动式能源利用和材料领域,具体来说,涉及一种被动式冷热双效材料。
背景技术
空调的广泛应用导致了能源消耗的大幅度增长。建筑物每年消耗大约40%的世界能源,其中,空调系统的能源消耗超过50%。如何降低空调系统的能耗已成为研究的热点,其中被动式冷却技术引起了广泛关注。
地球大气层外宇宙空间的温度接近绝对零度,可作为大容量冷源加以利用。地球周围的大气层对可见光是透明的,对绝大部分波段的红外辐射是不透明的,但在8~13μm波段内,大气层的吸收能力很弱,因而这个波段有很高的透明度,被称为“大气窗口”。地球表面的物体就可以通过红外辐射的方式,经过此“大气窗口”将热量散发到接近零度的外层空间,达到冷却的目的。这种被动式冷却技术不需要额外的电能输入,又可以实现冷却,因此可以有效地降低建筑能耗。
对辐射致冷的研究始于20世纪70年代。在开始的几十年中,夜间辐射冷却及其相关应用得到了很好地发展,主要采用近黑色辐射器和选择性辐射器进行有效的夜间辐射致冷。但这些材料只能在夜间实现冷却,由于太阳辐射能与冷却功率需求的不匹配,日间辐射致冷的发展受到了限制。近几年,随着材料和先进技术的发展,日间辐射冷却也有了突破,包括光子结构和超材料,在太阳辐射波段有很高的反射率,并且在大气窗口波段有很高的发射率,真正实现了日间辐射致冷。但是,所述辐射致冷材料只能够实现制冷,无法起到集热的作用,并且会增加供热季节的热负荷,在全年运行时会出现冷热抵消的问题。
现有文献中,中国专利申请号201810952183.5提供了一种具有自清洁功能的辐射致冷涂层及其制备方法,辐射致冷涂层包括底层粘结剂以及覆盖在底层粘结剂上的辐射体和疏水性纳米粒子。该发明利用纳米疏水粒子的高疏水性,使辐射致冷涂层具有自清洁效果,避免了因灰尘堆积降低致冷效果的现象。辐射致冷涂层在8~13μm波段具有高发射率,在可见光波段透过率大,采光性能良好, 还能减少对其余波段能量的吸收,保证致冷效果。该专利只考虑到了制冷季节,提供的涂层、膜、或者结构只能用于冷却,无法在供热季节起作用,而且会增加热负荷,在全年运行时会造成冷却和加热的偏移。
发明内容
本发明所要解决的技术问题是:提供一种被动式冷热双效材料,可实现致冷与集热的双重目的。
为解决上述问题,本发明实施例采用以下技术方案:
本发明实施例提供一种被动式冷热双效材料,所述被动式冷热双效材料包括相互连接的选择性发射层和反射层;所述选择性发射层通过颜色的可逆改变,实现致冷与集热的双重目的;所述反射层用于反射入射太阳辐射。
作为优选例,所述选择性发射层在8~13μm波段内的发射率,在制冷季节为0.4~1.0,在供热季节为0~0.3。
作为优选例,所述选择性发射层的厚度为5μm~5mm。
作为优选例,所述选择性发射层通过光致变色或热致变色。
作为优选例,所述选择性发射层包括聚合变色材料层,以及位于聚合变色材料层中的介电粒子;或者,所述选择性发射层包括聚合物材料层,以及位于聚合物材料层中的变色介电粒子;所述变色介电粒子的外壳为变色材料制成,内核为介电粒子。
作为优选例,所述聚合变色材料层包括聚合材料和变色材料混合而成,所述聚合材料包括聚甲基戊烯、聚乙烯、聚氟乙烯、聚氯乙烯、聚二甲基硅氧烷、聚对苯二甲酸乙二醇酯、着色聚乙烯箔、硫化锌、硒化锌、聚碳酸酯中的一种或任意组合材料制成。
作为优选例,所述介电粒子的粒径为2~50μm,在选择性发射层中的体积百分数为2~30%。
作为优选例,所述介电粒子包括二氧化硅、碳化硅、氧氮化硅、二氧化钛、氧化铝、氧化铜、氧化铁、氧化锌、二氧化锆中的一种或任意组合材料制成。
作为优选例,所述聚合物材料层包括聚甲基戊烯、聚乙烯、聚氟乙烯、聚氯 乙烯、聚二甲基硅氧烷、聚对苯二甲酸乙二醇酯、着色聚乙烯箔、硫化锌、硒化锌、聚碳酸酯中的一种或任意组合材料制成。
作为优选例,所述选择性发射层通过电致变色。
作为优选例,所述的被动式冷热双效材料,还包括电致变色材料层;所述选择性发射层包括聚合物材料层,以及位于聚合物材料层中的介电粒子;选择性发射层位于电致变色材料层和反射层之间;或者,所述选择性发射层包括电致变色材料层,以及位于电致变色材料层中的介电粒子;或者,还包括电致变色材料层,所述选择性发射层包括介电粒子,所述选择性发射层位于电致变色材料层和反射层之间。
作为优选例,所述聚合物材料层的材料包括聚甲基戊烯、聚乙烯、聚氟乙烯、聚氯乙烯、聚二甲基硅氧烷、聚对苯二甲酸乙二醇酯、着色聚乙烯箔、硫化锌、硒化锌、聚碳酸酯中的一种或任意组合。
作为优选例,所述介电粒子的粒径为2~50μm,在选择性发射层中的体积百分数为2~30%。
作为优选例,所述介电粒子包括二氧化硅、碳化硅、氧氮化硅、二氧化钛、氧化铝、氧化铜、氧化铁、氧化锌、二氧化锆中的一种或任意组合材料制成。
作为优选例,所述反射层为光子晶体材料或者金属制成。
作为优选例,所述反射层在0.25~3μm波段内的反射率,在制冷季节为0.7~1.0,在供热季节为0~0.4。
作为优选例,所述的被动式冷热双效材料,还包括保护层,选择性发射层位于保护层和反射层之间。
作为优选例,所述保护层的透过率大于0.85。
作为优选例,所述保护层为聚甲基戊烯、聚对苯二甲酸乙二醇酯、低密度聚乙烯、高密度聚乙烯中的一种或任意组合材料制成;所述低密度聚乙烯的密度为0.91~0.93g/cm 3;所述高密度聚乙烯的密度为0.941~0.960g/cm 3
与现有技术相比,本发明实施例的被动式冷热双效材料可实现致冷与集热的双重目的。
本实施例的材料是可转换致冷和集热功能的材料,包括选择性发射层和反射层。在制冷季节:反射层可反射入射太阳辐射,选择性发射层通过与外太空进行辐射 换热获取冷量,达到辐射冷却的目的;在供热季节:通过变色,使得反射层的反射率降低,同时选择性发射层的发射率降低,达到供热的目的。
附图说明
图1是本发明实施例的一种结构示意图;
图2是本发明实施例的另一种结构示意图;
图3是本发明实施例的第三种结构示意图;
图4是本发明实施例的第四种结构示意图;
图5是本发明实施例的第五种结构示意图;
图6是本发明实施例的第六种结构示意图。
图中有:选择性发射层1、介电粒子101、聚合变色材料层102、聚合物材料层103、变色介电粒子104、反射层2、电致变色材料层3、保护层4。
具体实施方式
下面结合附图,对本发明的技术方案进行详细的说明。
如图1所示,本发明实施例的一种被动式冷热双效材料,包括相互连接的选择性发射层1和反射层2。选择性发射层1通过颜色的可逆改变,实现致冷与集热的双重目的。反射层2用于反射入射太阳辐射。
现有辐射致冷技术和材料只能应用于制冷季节,无法在供热季节起作用,并且会增加供热季节热负荷。为解决全年运行时冷却和加热的偏移问题,上述实施例提供的被动式冷热双效材料,包括选择性发射层1和反射层2。在制冷季节:反射层2可反射大部分入射太阳辐射,选择性发射层1通过与外太空进行辐射换热获取冷量,达到辐射冷却的目的。在供热季节:通过变色,使得选择性发射层1的发射率降低,同时反射层2的反射率降低,达到供热的目的。
例如,本实施例的被动式冷热双效材料制成薄膜,贴附在待温控物体表面。在制冷季节时,当外界温度高于26℃,薄膜呈浅棕色。此时,薄膜可反射96%以上的太阳辐射,同时在8~13μm波段内的发射率大于0.92,可产生致冷效果,即通过与外太空进行换热,使得待温控物体温度降低。在供热季节时,当外界温度低于18℃,薄膜呈黑灰色。此时,薄膜可反射30%以下的太阳辐射,同时在8~ 13μm波段内的发射率小于0.20,可产生致热效果,即通过吸收太阳辐射热量,使得待温控物体温度升高。本实施例针对热致变色材料,如采用电致变色材料,则不受温度限制,可根据需要调整膜层颜色,进而改变屋面致冷与致热功能。
优选的,所述选择性发射层1在8~13μm波段内的发射率,在制冷季节为0.4~1.0,在供热季节为0~0.3。8~13μm波段是指电磁波红外区域的部分波长。凡是高于绝对零度的物体,都会释放出电磁波。电磁辐射由低频率到高频率主要分为:无线电波、微波、红外线、可见光、紫外线、X射线和γ射线。也就是说,在8~13μm波段内,在制冷季节,选择性发射层1的发射率为0.4~1.0。在8~13μm波段内,在供热季节,选择性发射层1的发射率为0~0.3。在供热季节,选择性发射层1的发射率要尽量小,减少与外太空的换热量,才能达到致热的目的。优选的,所述选择性发射层1的厚度为5μm~5mm,例如5μm、8μm、9μm、1mm、3mm、4mm或者5mm。
本实施例中,选择性发射层1通过光致变色、热致变色或者电致变色。
当采用光致变色或热致变色时,选择性发射层1的结构可以选择以下几种:
第一种结构:如图1所示,所述选择性发射层1包括聚合变色材料层102,以及位于聚合变色材料层102中的介电粒子101。
在第一种结构中,所述聚合变色材料层102包括聚合材料和变色材料混合而成。聚合材料包括聚甲基戊烯、聚乙烯、聚氟乙烯、聚氯乙烯、聚二甲基硅氧烷、聚对苯二甲酸乙二醇酯、着色聚乙烯箔、硫化锌、硒化锌、聚碳酸酯中的一种或任意组合材料制成。变色材料可以是热致变色材料,也可以是光致变色材料。优选的,热致变色材料为二氧化钒或者钙钛矿型锰氧化物等;光致变色材料为螺吡喃和螺噁嗪类、偶氮类、俘精酸酐类、二芳基乙烯类化合物等。介电粒子101包括二氧化硅、碳化硅、氧氮化硅、二氧化钛、氧化铝、氧化铜、氧化铁、氧化锌、二氧化锆中的一种或任意组合材料制成。优选的,所述介电粒子的粒径为2~50μm,在选择性发射层1中的体积百分数为2~30%。例如,介电粒子在选择性发射层1中的体积百分数为2%、10%、18%、25%、28%或者30%。较小的体积百分数可以使得材料能透过光,从而保证反射层起作用。
第二种结构:如图2所示,所述选择性发射层1包括聚合物材料层103,以及位于聚合物材料层103中的变色介电粒子104。所述变色介电粒子104的外壳为变色材料制成,内核为介电粒子。
在第二种结构中,所述聚合物材料层103包括聚甲基戊烯、聚乙烯、聚氟乙烯、聚氯乙烯、聚二甲基硅氧烷、聚对苯二甲酸乙二醇酯、着色聚乙烯箔、硫化锌、硒化锌、聚碳酸酯中的一种或任意组合材料制成。变色介电粒子104采用核壳结构。其中,外壳为变色材料制成,内核为介电粒子。变色材料可以是热致变色材料,也可以是光致变色材料。优选的,热致变色材料为二氧化钒或者是钙钛矿型锰氧化物等;光致变色材料为螺吡喃和螺噁嗪类、偶氮类、俘精酸酐类、二芳基乙烯类化合物等。所述介电粒子101包括二氧化硅、碳化硅、氧氮化硅、二氧化钛、氧化铝、氧化铜、氧化铁、氧化锌、二氧化锆中的一种或任意组合材料制成。优选的,所述介电粒子的粒径为2~50μm,在选择性发射层1中的体积百分数为2~30%。较小的体积百分数可以使得材料能透过光,从而保证反射层起作用。例如,介电粒子在选择性发射层1中的体积百分数为2%、10%、18%、25%、28%或者30%。
纯聚合物薄膜在8~13μm波段的发射率低。在纯聚合物薄膜中加入变色介电粒子104之后,发射率明显提高。
当选择性发射层1通过光致变色时,在一定的波长和强度的光作用下,分子结构会发生变化,从而导致其吸收光谱发生明显的变化,即颜色发生相应改变。
当选择性发射层1通过热致变色时,当温度到达某个范围,通过分子间化学反应,分子间互变异构等,材料颜色发生变化,呈现出一种新的颜色,性能也会随之改变。
当选择性发射层1通过电致变色时,选择性发射层1的结构优选以下几种:
第一种结构:如图3所示,选择性发射层1包括聚合物材料层103,以及位于聚合物材料层103中的介电粒子101。冷热双效材料还包括电致变色材料层3。选择性发射层1位于电致变色材料层3和反射层2之间。
在第一种结构中,优选的,聚合物材料层103的材料包括聚甲基戊烯、聚乙烯、聚氟乙烯、聚氯乙烯、聚二甲基硅氧烷、聚对苯二甲酸乙二醇酯、着色聚乙烯箔、硫化锌、硒化锌、聚碳酸酯中的一种或任意组合。优选的,介电粒子101 包括二氧化硅、碳化硅、氧氮化硅、二氧化钛、氧化铝、氧化铜、氧化铁、氧化锌、二氧化锆中的一种或任意组合材料制成。优选的,电致变色材料层3的材料为WO 3、聚噻吩类及其衍生物、紫罗精类、四硫富瓦烯、金属酞菁类化合物等。
第二种结构:如图4所示,选择性发射层1包括电致变色材料层3,以及位于电致变色材料层3中的介电粒子101。
在第二种结构中,优选的,电致变色材料层3的材料为WO 3、聚噻吩类及其衍生物、紫罗精类、四硫富瓦烯、金属酞菁类化合物等。优选的,介电粒子101包括二氧化硅、碳化硅、氧氮化硅、二氧化钛、氧化铝、氧化铜、氧化铁、氧化锌、二氧化锆中的一种或任意组合材料制成。
第三种结构:如图5所示,选择性发射层1包括介电粒子101。冷热双效材料还包括电致变色材料层3。选择性发射层1位于电致变色材料层3和反射层2之间。
在第三种结构中,优选的,介电粒子101包括二氧化硅、碳化硅、氧氮化硅、二氧化钛、氧化铝、氧化铜、氧化铁、氧化锌、二氧化锆中的一种或任意组合材料制成。优选的,电致变色材料层3的材料为WO 3、聚噻吩类及其衍生物、紫罗精类、四硫富瓦烯、金属酞菁类化合物等。
与第一种结构相比,第三种结构少了聚合物材料层103。介电粒子101直接位于电致变色材料层3和反射层2之间。
在上述三种结构中,优选的,介电粒子101的粒径为2~50μm,在选择性发射层1中的体积百分数为2~30%。
当采用电致变色时,电致变色主要取决于材料的化学组成和能带结构,以及氧化还原特性,通过离子、电子的注入和抽出,调制材料在可见光区的吸收特性或改变材料中载流子浓度和等离子振荡频率,实现对红外反射特性的调制作用。
优选的,所述反射层2为光子晶体材料或者金属制成。
优选的,所述反射层2在0.25~3μm波段内的反射率,在制冷季节为0.7~1.0,在供热季节为0~0.4。也就是说,在0.25~3μm波段内,在制冷季节,反射层2的反射率为0.7~1.0。在0.25~3μm波段内,在供热季节,反射层2的反射率为0~0.4。在制冷季节,反射层2的反射率尽量高,尽可能多反射太 阳光,以减少冷负荷。在供热季节,则相反,有较低的反射率,可多吸收太阳辐射热。
为保护选择性发射层1和反射层2不受外界破坏,优选的,如图6所示,所述的被动式冷热双效材料,还包括保护层4,选择性发射层1位于保护层4和反射层2之间。当含有电致变色材料层3时,电致变色材料层3位于保护层4和选择性发射层1之间。当不含有电致变色材料层3时,保护层4、选择性发射层1和反射层2之间依次连接。当含有电致变色材料层3时,保护层4、电致变色材料层3、选择性发射层1和反射层2之间依次连接。保护层4可以保护选择性发射层1和反射层2。保护层4有良好的防水性能,可保护选择性发射层1以及反射层2避免因水分子等渗透引起的腐蚀,且耐候性较强,透过率较高。
为不影响整个材料的工作,所述保护层4的透过率大于0.85。优选的,保护层4为聚甲基戊烯、聚对苯二甲酸乙二醇酯、低密度聚乙烯、高密度聚乙烯中的一种或任意组合材料制成;所述低密度聚乙烯的密度为0.91~0.93g/cm 3;所述高密度聚乙烯的密度为0.941~0.960g/cm 3
本发明还提供一种被动式冷热双效产品,采用上述实施例或优选例的材料制成的膜、板、涂料或片。
上述被动式冷热双效产品的冷却功率为30W/m 2~160W/m 2,集热效率为20%~50%,其形式包括但不限于薄膜、薄片、薄板、或涂层等。
上述实施例中,将介电粒子和聚合物通过挤出机熔融混合,之后挤出流延成膜即形成选择性发射层。通过涂覆法将保护层与选择性发射层连接起来。反射层则可通过电子束蒸发法实现与选择性发射层的连接。

Claims (19)

  1. 一种被动式冷热双效材料,其特征在于:所述被动式冷热双效材料包括相互连接的选择性发射层(1)和反射层(2);所述选择性发射层(1)通过颜色的可逆改变,实现致冷与集热的双重目的;所述反射层(2)用于反射入射太阳辐射。
  2. 按照权利要求1所述的被动式冷热双效材料,其特征在于:所述选择性发射层(1)在8~13μm波段内的发射率,在制冷季节为0.4~1.0,在供热季节为0~0.3。
  3. 按照权利要求1或2所述的被动式冷热双效材料,其特征在于:所述选择性发射层(1)的厚度为5μm~5mm。
  4. 按照权利要求1所述的被动式冷热双效材料,其特征在于:所述选择性发射层(1)通过光致变色或热致变色。
  5. 按照权利要求4所述的被动式冷热双效材料,其特征在于:所述选择性发射层(1)包括聚合变色材料层(102),以及位于聚合变色材料层(102)中的介电粒子(101);或者,
    所述选择性发射层(1)包括聚合物材料层(103),以及位于聚合物材料层(103)中的变色介电粒子(104);所述变色介电粒子(104)的外壳为变色材料制成,内核为介电粒子。
  6. 按照权利要求5所述的被动式冷热双效材料,其特征在于:所述聚合变色材料层(102)包括聚合材料和变色材料混合而成,所述聚合材料包括聚甲基戊烯、聚乙烯、聚氟乙烯、聚氯乙烯、聚二甲基硅氧烷、聚对苯二甲酸乙二醇酯、着色聚乙烯箔、硫化锌、硒化锌、聚碳酸酯中的一种或任意组合材料制成。
  7. 按照权利要求5所述的被动式冷热双效材料,其特征在于:所述介电粒子的粒径为2~50μm,在选择性发射层(1)中的体积百分数为2~30%。
  8. 按照权利要求5所述的被动式冷热双效材料,其特征在于:所述介电粒子(101)包括二氧化硅、碳化硅、氧氮化硅、二氧化钛、氧化铝、氧化铜、氧化铁、氧化锌、二氧化锆中的一种或任意组合材料制成。
  9. 按照权利要求5所述的被动式冷热双效材料,其特征在于:所述聚合物材料层(103)包括聚甲基戊烯、聚乙烯、聚氟乙烯、聚氯乙烯、聚二甲基硅氧烷、 聚对苯二甲酸乙二醇酯、着色聚乙烯箔、硫化锌、硒化锌、聚碳酸酯中的一种或任意组合材料制成。
  10. 按照权利要求1所述的被动式冷热双效材料,其特征在于:所述选择性发射层(1)通过电致变色。
  11. 按照权利要求10所述的被动式冷热双效材料,其特征在于:还包括电致变色材料层(3);所述选择性发射层(1)包括聚合物材料层(103),以及位于聚合物材料层(103)中的介电粒子(101);选择性发射层(1)位于电致变色材料层(3)和反射层(2)之间;或者,
    所述选择性发射层(1)包括电致变色材料层(3),以及位于电致变色材料层(3)中的介电粒子(101);或者,
    还包括电致变色材料层(3),所述选择性发射层(1)包括介电粒子(101),所述选择性发射层(1)位于电致变色材料层(3)和反射层(2)之间。
  12. 按照权利要求11所述的被动式冷热双效材料,其特征在于:所述聚合物材料层(103)的材料包括聚甲基戊烯、聚乙烯、聚氟乙烯、聚氯乙烯、聚二甲基硅氧烷、聚对苯二甲酸乙二醇酯、着色聚乙烯箔、硫化锌、硒化锌、聚碳酸酯中的一种或任意组合。
  13. 按照权利要求11所述的被动式冷热双效材料,其特征在于:所述介电粒子(101)的粒径为2~50μm,在选择性发射层(1)中的体积百分数为2~30%。
  14. 按照权利要求11所述的被动式冷热双效材料,其特征在于:所述介电粒子(101)包括二氧化硅、碳化硅、氧氮化硅、二氧化钛、氧化铝、氧化铜、氧化铁、氧化锌、二氧化锆中的一种或任意组合材料制成。
  15. 按照权利要求1所述的被动式冷热双效材料,其特征在于:所述反射层(2)为光子晶体材料或者金属制成。
  16. 按照权利要求1所述的被动式冷热双效材料,其特征在于:所述反射层(2)在0.25~3μm波段内的反射率,在制冷季节为0.7~1.0,在供热季节为0~0.4。
  17. 按照权利要求1所述的被动式冷热双效材料,其特征在于:还包括保护层(4),选择性发射层(1)位于保护层(4)和反射层(2)之间。
  18. 按照权利要求17所述的被动式冷热双效材料,其特征在于:所述保护 层(4)的透过率大于0.85。
  19. 按照权利要求17所述的被动式冷热双效材料,其特征在于:所述保护层(4)为聚甲基戊烯、聚对苯二甲酸乙二醇酯、低密度聚乙烯、高密度聚乙烯中的一种或任意组合材料制成;所述低密度聚乙烯的密度为0.91~0.93g/cm 3;所述高密度聚乙烯的密度为0.941~0.960g/cm 3
PCT/CN2020/113710 2019-12-17 2020-09-07 一种被动式冷热双效材料 WO2021120706A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911299799.8 2019-12-17
CN201911299799.8A CN112984836A (zh) 2019-12-17 2019-12-17 一种被动式冷热双效材料

Publications (1)

Publication Number Publication Date
WO2021120706A1 true WO2021120706A1 (zh) 2021-06-24

Family

ID=76341998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113710 WO2021120706A1 (zh) 2019-12-17 2020-09-07 一种被动式冷热双效材料

Country Status (3)

Country Link
CN (1) CN112984836A (zh)
LU (1) LU502295B1 (zh)
WO (1) WO2021120706A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114506136A (zh) * 2022-02-24 2022-05-17 哈尔滨工业大学(威海) 一种具有温度自适应性和隔热保温功能的智能辐射制冷复合膜及其制备方法与应用
CN114543373A (zh) * 2022-03-07 2022-05-27 中国科学技术大学 一种基于太阳热辐射和太空冷辐射的光谱调控器件

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113419580B (zh) * 2021-06-29 2022-06-24 武汉理工大学 基于被动辐射冷却和太阳加热的智能控温器件及制备方法
CN115651243B (zh) * 2022-08-30 2024-03-08 山东大学 一种热自调控的辐射冷却薄膜及其制造方法和应用
CN117572671A (zh) * 2024-01-10 2024-02-20 江西源东科技有限公司 一种可控辐射制冷柔性透明复合膜、辐射制冷玻璃及窗户

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103287014A (zh) * 2013-06-27 2013-09-11 裴刚 满足太阳能集热和辐射制冷的选择性吸收发射复合材料
CN108656682A (zh) * 2018-06-11 2018-10-16 宁波瑞凌节能环保创新与产业研究院 一种降温效果可调的辐射制冷薄膜
CN109070695A (zh) * 2016-02-29 2018-12-21 科罗拉多大学董事会 辐射冷却结构和系统
CN110030744A (zh) * 2019-04-09 2019-07-19 中国科学技术大学 一种光谱自适应的白天太阳能集热夜间辐射制冷涂层材料
CN110103559A (zh) * 2019-05-13 2019-08-09 宁波瑞凌新能源科技有限公司 一种辐射降温材料及其制备方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3946944A (en) * 1974-02-25 1976-03-30 International Solarthermics Corporation Method of heating a building structure with solar heat
KR20130074156A (ko) * 2011-12-26 2013-07-04 삼성코닝정밀소재 주식회사 반사유리 및 이의 제조방법
KR101940764B1 (ko) * 2016-06-24 2019-01-21 엘지디스플레이 주식회사 전기변색 물질, 이를 포함하는 투과도 가변 패널 및 디스플레이장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103287014A (zh) * 2013-06-27 2013-09-11 裴刚 满足太阳能集热和辐射制冷的选择性吸收发射复合材料
CN109070695A (zh) * 2016-02-29 2018-12-21 科罗拉多大学董事会 辐射冷却结构和系统
CN108656682A (zh) * 2018-06-11 2018-10-16 宁波瑞凌节能环保创新与产业研究院 一种降温效果可调的辐射制冷薄膜
CN110030744A (zh) * 2019-04-09 2019-07-19 中国科学技术大学 一种光谱自适应的白天太阳能集热夜间辐射制冷涂层材料
CN110103559A (zh) * 2019-05-13 2019-08-09 宁波瑞凌新能源科技有限公司 一种辐射降温材料及其制备方法和应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114506136A (zh) * 2022-02-24 2022-05-17 哈尔滨工业大学(威海) 一种具有温度自适应性和隔热保温功能的智能辐射制冷复合膜及其制备方法与应用
CN114506136B (zh) * 2022-02-24 2023-08-18 哈尔滨工业大学(威海) 一种具有温度自适应性和隔热保温功能的智能辐射制冷复合膜及其制备方法与应用
CN114543373A (zh) * 2022-03-07 2022-05-27 中国科学技术大学 一种基于太阳热辐射和太空冷辐射的光谱调控器件
CN114543373B (zh) * 2022-03-07 2022-10-28 中国科学技术大学 一种基于太阳热辐射和太空冷辐射的光谱调控器件

Also Published As

Publication number Publication date
LU502295A1 (en) 2022-07-19
LU502295B1 (en) 2022-10-17
CN112984836A (zh) 2021-06-18

Similar Documents

Publication Publication Date Title
WO2021120706A1 (zh) 一种被动式冷热双效材料
Mandal et al. Paints as a scalable and effective radiative cooling technology for buildings
Chen et al. Passive daytime radiative cooling: Fundamentals, material designs, and applications
Zhang et al. Cover shields for sub-ambient radiative cooling: A literature review
Ma et al. Flexible daytime radiative cooling enhanced by enabling three-phase composites with scattering interfaces between silica microspheres and hierarchical porous coatings
EP2562472B1 (en) Light convergence device, manufacturing method thereof and solar battery system
CN113072737B (zh) 具有日间辐射制冷的多孔聚二甲基硅氧烷及其制备方法
CN112175458A (zh) 一种自适应控温辐射致冷涂层及其应用
NL2007960C2 (nl) Energiewerende kunststoffolie.
Wang et al. Materials, structures, and devices for dynamic radiative cooling
Qi et al. Ordered-porous-array polymethyl methacrylate films for radiative cooling
CN207965438U (zh) 一种多功能复合玻璃
Lei et al. Active-passive dual-control smart window with thermochromic synergistic fluidic glass for building energy efficiency
Zhou et al. Colorful surfaces for radiative cooling
CN111550157A (zh) 一种新型可调发射率的热变色智能窗户
Chan et al. Potential passive cooling methods based on radiation controls in buildings
Liu et al. Non-tapered metamaterial emitters for radiative cooling to low temperature limit
Cui et al. Progress of passive daytime radiative cooling technologies towards commercial applications
Chai et al. Solar and Thermal Radiation‐Modulation Materials for Building Applications
CN109913071B (zh) 一种温控复合节能材料
Su et al. Review of daytime radiative cooling technologies and control methods
Hu et al. Effect of the spectrally selective features of the cover and emitter combination on radiative cooling performance
Woo et al. Colloidal inorganic nano-and microparticles for passive daytime radiative cooling
Li et al. Integration of daytime radiative cooling and solar heating
CN113306250B (zh) 一种被动式朝向无关的冷热双效材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20902647

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20902647

Country of ref document: EP

Kind code of ref document: A1