WO2021120650A1 - 空调、电子膨胀阀及其电磁线圈结构 - Google Patents

空调、电子膨胀阀及其电磁线圈结构 Download PDF

Info

Publication number
WO2021120650A1
WO2021120650A1 PCT/CN2020/109690 CN2020109690W WO2021120650A1 WO 2021120650 A1 WO2021120650 A1 WO 2021120650A1 CN 2020109690 W CN2020109690 W CN 2020109690W WO 2021120650 A1 WO2021120650 A1 WO 2021120650A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating protective
electromagnetic coil
circuit board
waterproof
protective shell
Prior art date
Application number
PCT/CN2020/109690
Other languages
English (en)
French (fr)
Inventor
曾庆军
郑利峰
Original Assignee
浙江盾安人工环境股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江盾安人工环境股份有限公司 filed Critical 浙江盾安人工环境股份有限公司
Priority to KR1020227022900A priority Critical patent/KR20220104260A/ko
Priority to JP2022526025A priority patent/JP7495493B2/ja
Publication of WO2021120650A1 publication Critical patent/WO2021120650A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • This application relates to the technical field of air conditioning equipment manufacturing, in particular to an air conditioner, an electronic expansion valve and an electromagnetic coil structure thereof.
  • the electronic expansion valve also known as throttle valve or regulating valve, is the main component of the air conditioning system, which mainly plays the role of throttling, reducing pressure and regulating flow.
  • the electronic expansion valve generally includes an electromagnetic coil structure and a valve body structure connected to the electromagnetic coil structure.
  • the electromagnetic coil structure usually includes an insulating protective shell, a circuit board arranged in the insulating protective shell, and a sealing compound accommodated and cured in the insulating protective shell.
  • the expansion coefficients of the two are also different.
  • the traditional electronic expansion valve affected by temperature changes, it is easy to separate and produce fine gaps between the insulating protective shell and the sealing compound. At this time, the external water vapor can easily penetrate into the circuit board through the subtle analysis. This leads to poor insulation performance of the product and affects the reliability of the electromagnetic coil structure.
  • An electromagnetic coil structure including:
  • the coil assembly includes a plastic casing having a hollow structure and a coil accommodated and fixed in the plastic casing; an insulating protective casing is arranged on the side wall of the plastic casing and is connected to the plastic casing A accommodating cavity with an opening at one end is formed between the side walls of the insulating housing, an outer convex or concave waterproof structure is formed on the inner wall of the insulating protective shell, and the waterproof structure extends along the circumference of the accommodating cavity opening;
  • the lead assembly includes a circuit board electrically connected to the coil, and the circuit board is accommodated and fixed in the accommodating cavity.
  • the waterproof structure is a waterproof rib protruding from the inner wall of the insulating protective shell.
  • the cross-sectional shape of the waterproof ribs along the longitudinal direction is zigzag.
  • the cross-sectional shape of the waterproof ribs along the longitudinal direction is rectangular.
  • the waterproof structure is a waterproof tooth groove opened on the inner surface of the insulating protective shell.
  • a sealed welded joint is formed between the insulating protective shell and the side wall of the encapsulated shell, so that the insulating protective shell and the side wall of the encapsulated shell are hermetically connected.
  • the coil assembly further includes a pin electrically connected to the coil, and one end of the pin that is away from the coil extends into the receiving cavity and is electrically connected to the circuit board .
  • the lead assembly further includes a lead wire, one end of the lead wire is prefabricated in the sealing compound and electrically connected to the circuit board, and the other end protrudes from the opening of the receiving cavity.
  • An electronic expansion valve including:
  • Electromagnetic coil structure
  • the valve body structure includes a housing in a hollow structure, a rotor contained in the housing, and a valve needle drivingly connected to the rotor.
  • the sealed plastic housing is sleeved on one end of the housing, and the rotor is connected to The coils are arranged coaxially.
  • An air conditioner includes an electronic expansion valve.
  • the above air conditioner, electronic expansion valve and its solenoid coil structure contain and solidify the sealant in the containing cavity.
  • the sealant is formed by pouring the liquid glue material into the containing cavity and solidifying after cooling, so the sealant faces the inner wall of the insulating protective shell
  • the shape of the surface matches the shape of the inner wall of the insulating protective shell. Therefore, the installation of the waterproof structure can increase the bonding force between the insulating protective shell and the sealing compound. Even if the external temperature changes, it is not easy to produce fine gaps between the insulating protective shell and the sealing compound.
  • the waterproof structure extends along the circumferential direction of the opening of the receiving cavity, so the waterproof structure can block the path of external water vapor entering the circuit board through the opening of the receiving cavity. Therefore, the installation of the waterproof structure can reduce the probability of external water vapor entering the circuit board, reducing the probability of poor insulation performance due to water vapor entering the circuit board, and greatly improving the reliability of the electromagnetic coil structure.
  • FIG. 1 is a schematic diagram of the structure of an electromagnetic coil structure in a preferred embodiment of the application.
  • Fig. 2 is a partial enlarged view of the electromagnetic coil structure shown in Fig. 1.
  • Fig. 3 is a schematic structural diagram of an insulating protective shell in an embodiment of the application.
  • FIG. 4 is a schematic structural diagram of an insulating protective shell in another embodiment of the application.
  • FIG. 5 is a schematic structural diagram of an insulating protective shell in another embodiment of the application.
  • this application provides an air conditioner (not shown in the figure), an electronic expansion valve (not shown in the figure) and an electromagnetic coil structure 100 thereof.
  • the air conditioner includes an electronic expansion valve.
  • the electronic expansion valve includes an electromagnetic coil structure 100 and a valve body structure.
  • the electromagnetic coil structure 100 is mainly used to provide a rotating magnetic field for the electronic expansion valve to drive the movement of the mechanism in the electronic expansion valve, so as to realize the function of the electronic expansion valve to adjust the flow rate.
  • the valve body structure includes a casing in a hollow structure, a rotor contained in the casing, and a valve needle drivingly connected with the rotor.
  • the electromagnetic coil structure 100 is sleeved on one end of the housing.
  • the valve body structure realizes the opening and closing of the valve port through the reciprocating movement of the valve needle along the length of the housing. Therefore, the electronic expansion valve realizes its flow adjustment by adjusting the opening size of the valve port.
  • the electromagnetic coil structure 100 in the preferred embodiment of the present application includes a coil assembly 110, an insulating protective shell 120, a sealing compound 130, and a lead assembly 140.
  • the coil assembly 110 includes a plastic casing 111 and a coil 112 housed and fixed in the plastic casing 111.
  • the molded case 111 is a hollow structure with an opening.
  • the encapsulated shell 111 mainly plays a role of support and electrical insulation.
  • the encapsulated shell 111 is made of insulating and strong materials such as plastic, mica, etc., so that the encapsulated shell 111 has a larger bearing capacity under the premise of electrical insulation.
  • the plastic-encapsulated shell 111 is sleeved on one end of the shell to complete the installation of the electromagnetic coil 112 structure 100 and the valve body structure.
  • the coil 112 is prefabricated in the plastic casing 111. In this way, the coil 112 is prefabricated in the encapsulated housing 111, which can reduce the probability of a short circuit of the coil 112 during operation. Therefore, after the coil 112 is energized, a rotating magnetic field is generated inside the plastic casing 111 to drive the valve body structure to work.
  • the coil 112 is arranged coaxially with the rotor. Therefore, the rotating magnetic field generated by the coil 112 can drive the rotor to rotate, and the rotating rotor can drive the valve needle to move, so that the electronic expansion valve realizes its function of regulating flow.
  • the insulating protective shell 120 is disposed on the side wall of the plastic casing 111, and forms a receiving cavity 150 with an opening at one end between the insulating protective casing 120 and the side wall of the plastic casing 111.
  • the inner wall of the insulating protective shell 120 is formed with a convex or concave waterproof structure 121.
  • the waterproof structure 121 extends along the circumference of the opening of the receiving cavity 150.
  • the insulating protective shell 120 is usually made of materials with good electrical insulation properties such as plastic, ceramics, and asbestos.
  • the insulating protective shell 120 may be fixed to the side wall by welding, bonding, screwing, or the like. Specifically, in this embodiment, the insulating protective shell 120 is fixed to the side wall by means of ultrasonic welding.
  • the waterproof structure 121 may be a groove, a stripe, a convex strip, and the like.
  • the sealing compound 130 is poured and cured in the receiving cavity 150.
  • the sealant 130 mainly plays a role of sealing, fixing and electrical insulation. Therefore, the sealant 130 is generally made of colloidal materials with good electrical insulation properties such as polyester, epoxy, polyurethane, polybutadiene acid, silicone, polyesterimide, and polyimide.
  • the sealant 130 is a solid structure formed by pouring a liquid glue material into the receiving cavity 150 and solidifying after cooling. Therefore, the shape of the surface of the sealing compound 130 facing the inner wall of the insulating protective shell 120 matches the shape of the inner wall of the insulating protective shell 120.
  • the sealant 130 is an epoxy colloid.
  • Epoxy adhesive has strong adhesion, good electrical properties, mechanical properties, high chemical stability and dimensional stability, so that the sealant 130 also has good electrical properties, good mechanical properties, high chemical stability and viscosity. Strong attachment and other advantages. Therefore, while the sealing compound 130 maintains a good connection stability with the receiving cavity 150, it also has the advantages of good electrical insulation performance and not easily deformed by external forces.
  • the lead assembly 140 includes a circuit board 141 electrically connected to the coil 112.
  • the circuit board 141 is received and fixed in the receiving cavity 150.
  • the circuit board 141 is electrically connected to an external power source. Therefore, the circuit board 141 is mainly used to connect the coil 112 with an external power source, so that the external power source provides power to the coil 112.
  • the lead assembly 140 further includes a lead 142.
  • One end of the lead wire 142 is prefabricated in the sealing compound 130 and is electrically connected to the circuit board 141, and the other end extends out of the opening of the receiving cavity 150.
  • the lead wire 142 mainly functions to connect the coil 112 with an external power source.
  • the length of the lead wire 142 can be selected according to the distance between the electronic expansion valve and the external power source when in use, so the arrangement of the lead wire 142 makes the use of the electronic expansion valve more free and convenient.
  • the provision of a convex or concave waterproof structure 121 can increase insulation protection The bonding force between the shell 120 and the sealant body 130, even if the external temperature changes, the insulating protective shell 120 and the sealant body 130 are unlikely to produce fine gaps.
  • the waterproof structure 121 extends along the circumference of the opening of the receiving cavity 150, so the waterproof structure 121 can block the path of external water vapor entering the circuit board 141 through the opening of the receiving cavity 150. Therefore, the provision of the waterproof structure 121 can reduce the probability of external water vapor entering the circuit board 141, reducing the probability of poor insulation performance due to water vapor entering the circuit board 141, and greatly improving the reliability of the electromagnetic coil structure 100.
  • waterproof structures 121 there are multiple waterproof structures 121.
  • the arrangement of multiple waterproof structures 121 makes the bonding force between the sealing compound 130 and the inner wall of the insulating protective shell 120 stronger, and further improves the reliability of the electromagnetic coil structure 100 in use.
  • the waterproof structure 121 is a waterproof rib protruding from the inner wall of the insulating protective shell 120.
  • the waterproof ribs extend along the circumference of the opening of the receiving cavity 150.
  • the waterproof ribs and the insulating protective shell 120 are integrally formed.
  • the waterproof ribs can also be connected to the inner wall of the insulating protective shell 120 by means of bonding or the like.
  • the cross-sectional shape of the waterproof ribs along the longitudinal direction can be triangle, rectangle, trapezoid, arc, polygon, etc. Setting the waterproof structure 121 as a waterproof rib makes the processing of the waterproof structure 121 easier.
  • the cross-sectional shape of the waterproof ribs along the longitudinal direction is zigzag. Therefore, a sharp corner structure is formed on the side of the waterproof rib away from the inner wall of the insulating protective shell 120, which can further improve the bonding force between the sealing compound 130 and the inner wall of the insulating protective shell 120, and further reduce the gap between the sealing compound 130 and the insulating protective shell.
  • the probability of forming a fine gap between the inner walls of 120 further reduces the probability of external water vapor entering the circuit board 141 through the opening of the receiving cavity 150, making the electromagnetic coil structure 100 more reliable in use.
  • the cross-sectional shape of the waterproof ribs along the longitudinal direction is rectangular. Setting the cross-sectional shape of the waterproof ribs to a rectangular shape can form two sharp corner structures on the side of the waterproof ribs away from the inner wall of the insulating protective shell 120, which not only improves the bonding force between the sealant 130 and the inner wall of the insulating protective shell 120, but also It also makes the processing of the waterproof structure 121 easier.
  • the waterproof structure 121 is a waterproof tooth groove opened in the inner surface of the insulating protective shell 120.
  • the surface of the sealant 130 is formed with protrusions that match the waterproof tooth grooves, and the protrusions cooperate with the waterproof tooth grooves to improve the bonding force between the sealant 130 and the insulating protective shell 120, and reduce the sealant 130 and the insulating protective shell 120.
  • the probability of forming a small gap between them reduces the probability of external water vapor entering the circuit board, and improves the reliability of the electromagnetic coil structure 100.
  • a sealed welded joint 160 is formed between the insulating protective shell 120 and the side wall of the plastic shell 111 to seal the insulating protective shell 120 and the side wall of the plastic shell 111 connection.
  • the sealed welding joint 160 is a connection joint formed after the molten material is cooled and solidified, and is used to realize the welding between the insulating protective shell 120 and the side wall of the sealed plastic shell 111.
  • the sealed welded joint 160 since the sealed welded joint 160 is formed by solidification after the material is melted, the sealed welded joint 160 enables the insulating protective shell 120 to be fixedly connected to the side wall of the plastic shell 111, which can also improve the insulating protective shell 120 and the plastic shell
  • the airtightness between the side walls of the body 111 reduces the probability that external water vapor enters the circuit board 141 through the connection between the insulating protective shell 120 and the side wall of the encapsulated shell 111, and further improves the reliability of the electromagnetic coil structure 100. .
  • the insulating protective shell 120 is provided with welding ribs 122 protruding toward the outer surface of the plastic shell 111.
  • the welding rib 122 can be one or more, and when it is necessary to install the insulating protective shell 120 on the side wall of the plastic casing 111, first place the insulating protective casing 120 on the side of the plastic casing 111 The wall is then ultrasonically welded, so that the welding rib 122 is melted and then combined with the side wall of the plastic casing 111 to achieve a fixed connection between the insulating protective casing 120 and the plastic casing 111.
  • the arrangement of the welding rib 122 can not only make the fixing effect of the insulating protective shell 120 and the sealed plastic shell 111 better, but also play a waterproof role to prevent external water from passing through the insulating protective shell 120 and the sealed plastic shell 111. It enters into the circuit board 141 to ensure the insulation performance of the circuit board 141.
  • the coil assembly 110 further includes a pin 113 electrically connected to the coil 112.
  • the end of the pin 113 away from the coil 112 extends into the receiving cavity 150 and is electrically connected to the circuit board 141.
  • the pin 113 is a rod-shaped metal rod.
  • the circuit board 141 is installed on the side wall of the plastic casing 111. Therefore, when the circuit board 141 is installed, the circuit board 141 is first installed on the side wall of the plastic casing 111 and placed in the receiving cavity 150, and then cured into the receiving cavity 150 to form the sealing compound 130, namely The fixed installation of the circuit board 141 can be realized. Therefore, the circuit board 141 is mounted on the side wall of the plastic casing 111 to facilitate the subsequent formation of the plastic body 130, which makes the processing of the electromagnetic coil 112 structure 100 more convenient.
  • the above air conditioner, electronic expansion valve and its electromagnetic coil 112 structure 100 contain and solidify the sealant 130 in the containing cavity 150, which is formed by pouring a liquid glue material into the containing cavity 150 and solidifying after cooling.
  • the inner wall of the insulating protective shell 120 is formed with a convex or concave waterproof structure 121, so the surface shape of the sealing compound 130 facing the inner wall of the insulating protective shell 120 matches the shape of the inner wall of the insulating protective shell 120. Therefore, the provision of the waterproof structure 121 can increase the bonding force between the insulating protective shell 120 and the sealing compound 130. Even if the external temperature changes, the insulating protective shell 120 and the sealing compound 130 are not prone to fine gaps.
  • the waterproof structure 121 extends along the circumference of the opening of the receiving cavity 150, so the waterproof structure 121 can block the path of external water vapor entering the circuit board 141 through the opening of the receiving cavity 150. Therefore, the provision of the waterproof structure 121 can reduce the probability of external water vapor entering the circuit board 141, reducing the probability of poor insulation performance due to water vapor entering the circuit board 141, and greatly improving the reliability of the electromagnetic coil structure 100.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electromagnets (AREA)
  • Magnetically Actuated Valves (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

本申请涉及一种空调、电子膨胀阀及其电磁线圈结构。电磁线圈结构包括线圈组件、绝缘防护壳、封胶体及引线组件。线圈组件包括呈中空结构的封塑壳体及收容并固定于封塑壳体内的线圈。绝缘防护壳设置于封塑壳体的侧壁,并与封塑壳体的侧壁之间形成一端具有开口的收容腔。绝缘防护壳的内壁形成有外凸或内凹的防水结构。防水结构沿收容腔开口的周向延伸。封胶体收容并固化于收容腔内。引线组件包括与线圈电连接的线路板。线路板收容并固定于收容腔内。因此,防水结构的设置,可降低外界的水汽进入线路板的概率,降低了由于水汽进入线路板而导致绝缘性能不良的概率,大大提高了电磁线圈结构的使用可靠性。

Description

空调、电子膨胀阀及其电磁线圈结构
相关申请
本申请要求2019年12月16日申请的,申请号为201922259422.1,发明创造名称为“空调、电子膨胀阀及其电磁线圈结构”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及空调设备制造技术领域,特别是涉及一种空调、电子膨胀阀及其电磁线圈结构。
背景技术
电子膨胀阀,又称节流阀或调节阀,是空调系统中的主要元件,其主要起节流降压及调节流量的作用。而电子膨胀阀一般包括电磁线圈结构及与电磁线圈结构连接的阀体结构。而电磁线圈结构通常包括绝缘防护壳、设置于绝缘防护壳内的线路板及收容并固化于绝缘防护壳内的封胶体。
由于绝缘防护壳的材质与封胶体的材质不同,所以两者的膨胀系数也不相同。传统的电子膨胀阀使用时,受温度变化的影响,绝缘防护壳与封胶体之间很容易发生分离并产生细微缝隙的情况,此时外界的水汽很容易经该细微分析渗透至线路板处,导致产品绝缘性能不良,影响电磁线圈结构的使用可靠性。
发明内容
基于此,有必要针对传统的电磁线圈结构可靠性不高的问题,提供一种可靠性较高的空调、电子膨胀阀及其电磁线圈结构。
一种电磁线圈结构,包括:
线圈组件,包括呈中空结构的封塑壳体及收容并固定于所述封塑壳体内的线圈;绝缘防护壳,设置于所述封塑壳体的侧壁,并与所述封塑壳体的侧壁之间形成一端具有开口的收容腔,所述绝缘防护壳的内壁形成有外凸或内凹的防水结构,且所述防水结构沿所述收容腔开口的周向延伸;
封胶体,灌注并固化于所述收容腔内;及
引线组件,包括与所述线圈电连接的线路板,且所述线路板收容并固定于所述收容腔内。
在其中一个实施例中,所述防水结构为凸设于所述绝缘防护壳内壁的防水筋条。
在其中一个实施例中,所述防水筋条沿垂直于纵长方向的截面形状为锯齿形。
在其中一个实施例中,所述防水筋条沿垂直于纵长方向的截面形状为矩形。
在其中一个实施例中,所述防水结构为开设于所述绝缘防护壳内表面的防水齿槽。
在其中一个实施例中,所述绝缘防护壳与所述封塑壳体的侧壁之间形成有密封焊接接头,以使所述绝缘防护壳与所述封塑壳体的侧壁密封连接。
在其中一个实施例中,所述线圈组件还包括与所述线圈电连接的插针,所述插针远离所述线圈的一端伸入至所述收容腔内,并与所述线路板电连接。
在其中一个实施例中,所述引线组件还包括引线,所述引线的一端预制于所述封胶体内,并与所述线路板电连接,另一端伸出于所述收容腔的开口。
一种电子膨胀阀,包括:
电磁线圈结构;及
阀体结构,包括呈中空结构的外壳、收容于所述外壳内的转子及与所述转子传动连接的阀针,所述封塑壳体套设于所述外壳的一端,且所述转子与所述线圈同轴设置。
一种空调,包括电子膨胀阀。
上述空调、电子膨胀阀及其电磁线圈结构,收容并固化于收容腔内的封胶体,通过将液体胶材料灌注于收容腔内,并待待冷却后固化形成,故封胶体朝向绝缘防护壳内壁的表面形状与绝缘防护壳内壁的形状相匹配。所以防水结构的设置,可增加绝缘防护壳与封胶体之间的结合力,即使外界温度发生变化,绝缘防护壳与封胶体之间也不容易产生细微缝隙。进一步的,防水结构沿收容腔开口的周向延伸,故防水结构可阻隔外界的水汽经收容腔的开口进入线路板的路径。因此,防水结构的设置,可降低外界的水汽进入线路板的概率,降低了由于水汽进入线路板而导致绝缘性能不良的概率,大大提高了电磁线圈结构的使用可靠性。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为本申请较佳实施例中电磁线圈结构的结构示意图。
图2为图1所示电磁线圈结构的局部放大图。
图3为本申请一个实施例中的绝缘防护壳的结构示意图。
图4为本申请另一实施例中的绝缘防护壳的结构示意图。
图5为本申请再一实施例中的绝缘防护壳的结构示意图。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳的实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
在描述位置关系时,除非另有规定,否则当一元件被指为在另一元件“上”时,其能直接在其他元件上或亦可存在中间元件。亦可以理解的是,当元件被指为在两个元件“之间”时,其可为两个元件之间的唯一一个,或亦可存在一或多个中间元件。
在使用本文中描述的“包括”、“具有”、和“包含”的情况下,除非使用了明确的限定用语,例如“仅”、“由……组成”等,否则还可以添加另一部件。除非相反地提及,否则单数形式的术语可以包括复数形式,并不能理解为其数量为一个。
此外,附图并不是1:1的比例绘制,并且各元件的相对尺寸在附图中仅以示例地绘制,而不一定按照真实比例绘制。
请参阅图1,本申请提供了一种空调(图未示)、电子膨胀阀(图未示) 及其电磁线圈结构100。其中,空调包括电子膨胀阀。电子膨胀阀包括电磁线圈结构100及阀体结构。
电磁线圈结构100主要用于为电子膨胀阀提供一旋转磁场,以驱动电子膨胀阀内的机构运动,以实现电子膨胀阀调节流量的功能。
阀体结构包括呈中空结构的外壳、收容于外壳内的转子及与转子传动连接的阀针。电磁线圈结构100套设于外壳的一端。阀体结构作为电子膨胀阀的主要构件,通过阀针沿外壳的长度方向往复运动来实现阀口的开启及关闭,因此,电子膨胀阀主要通过调节阀口开启的大小来实现其流量的调节。
本申请较佳实施例中的电磁线圈结构100包括线圈组件110、绝缘防护壳120、封胶体130及引线组件140。
线圈组件110包括封塑壳体111及收容并固定于封塑壳体111内的线圈112。具体在本实施例中,封塑壳体111为具有开口的中空结构。封塑壳体111主要起支撑及电绝缘作用。一般情况下,封塑壳体111由塑胶、云母等具有绝缘性及强度较高的材料制成,以使封塑壳体111在具有电绝缘性的前提下具有较大的承载力。在电子膨胀阀中,封塑壳体111套设于外壳的一端,以完成电磁线圈112结构100与阀体结构的安装。
在本实施例中,线圈112预制于封塑壳体111内。由此,将线圈112预制于封塑壳体111内,可降低线圈112在工作过程中发生短路的情况的概率。因此,线圈112通电后会在封塑壳体111的内部产生旋转的磁场,以驱动阀体结构工作。在电子膨胀阀中,线圈112与转子同轴设置。因此,线圈112产生的旋转磁场可带动转子转动,转动的转子可驱动阀针运动,以使电子膨胀阀实现其调节流量的功能。
请一并参阅图2至5,绝缘防护壳120设置于封塑壳体111的侧壁,并与 封塑壳体111的侧壁之间形成一端具有开口的收容腔150。绝缘防护壳120的内壁形成有外凸或内凹的防水结构121。防水结构121沿收容腔150开口的周向延伸。绝缘防护壳120通常为由塑胶、陶瓷、石棉等电绝缘性较好的材料制成。绝缘防护壳120可以通过焊接、粘接、螺接等方式固定于侧壁。具体在本实施例中,绝缘防护壳120通过超声波焊接的方式固定于侧壁。防水结构121可以为凹槽、条纹、凸条等。
封胶体130灌注并固化于收容腔150内。封胶体130主要起密封、固定及电绝缘的作用。因此,封胶体130一般由聚酯、环氧、聚氨酯、聚丁二烯酸、有机硅、聚酯亚胺、聚酰亚胺等电绝缘性能较好的胶体材料制成。具体的,封胶体130是通过将液体胶材料灌注于收容腔150内,待冷却后固化形成的固态结构。因此,封胶体130朝向绝缘防护壳120内壁的表面形状与绝缘防护壳120内壁的形状相匹配。
在本实施例中,封胶体130为环氧胶体。环氧胶具有较强的粘附力、良好的电学性能、力学性能、较高的化学稳定性及尺寸稳定性,使得封胶体130也具有电学性能良好、力学性能好、化学稳定性高及粘附力强等优势。因此,封胶体130在保持与收容腔150有很好的连接稳固性的同时,还具有较好的电绝缘性能及受外力不容易变形等优点。
请再次参阅图1,引线组件140包括与线圈112电连接的线路板141。线路板141收容并固定于收容腔150内。在实际使用过程中,线路板141与外部电源电连接。由此,线路板141主要用于连接线圈112与外部电源,以使外部电源为线圈112提供电能。
在本实施例中,引线组件140还包括引线142。引线142的一端预制于封胶体130内,并与线路板141电连接,另一端伸出于收容腔150的开口外。在 实际使用过程中,引线142远离线路板141的一端与外部电源电连接。因此,引线142主要起连接线圈112与外部电源的作用。而且,引线142的长度可根据电子膨胀阀使用时与外部电源之间的距离选择,所以引线142的设置,使得电子膨胀阀的使用更为自由、方便。
请再次参阅图1及图2,由于封胶体130朝向绝缘防护壳120内壁的表面形状与绝缘防护壳120内壁的形状相匹配,故外凸或内凹的防水结构121的设置,可增加绝缘防护壳120与封胶体130之间的结合力,即使外界的温度发生变化,绝缘防护壳120与封胶体130之间也不容易产生细微缝隙。进一步的,防水结构121沿收容腔150开口的周向延伸,故防水结构121可阻隔外界的水汽经收容腔150的开口进入线路板141的路径。因此,防水结构121的设置,可降低外界的水汽进入线路板141的概率,降低了由于水汽进入线路板141而导致绝缘性能不良的概率,大大提高了电磁线圈结构100的使用可靠性。
在本实施例中,防水结构121为多个。多个防水结构121的设置,使得封胶体130与绝缘防护壳120的内壁之间的结合力更强,进一步提高了电磁线圈结构100的使用可靠性。
在一些实施例中,防水结构121为凸设于绝缘防护壳120内壁的防水筋条。防水筋条沿收容腔150开口的周向延伸。具体的,防水筋条与绝缘防护壳120一体成型。当然,在另外一些实施例中,防水筋条也可通过粘接等方式与绝缘防护壳120的内壁连接。防水筋条沿垂直于纵长方向的截面形状可以为三角形、矩形、梯形、圆弧形、多边形等。将防水结构121设置为防水筋条,使得防水结构121的加工更为简便。
请再次参阅图3,具体在一个实施例中,防水筋条沿垂直于纵长方向的截面形状为锯齿形。由此,在防水筋条远离绝缘防护壳120内壁的一侧形成有尖 角结构,可进一步提高封胶体130与绝缘防护壳120内壁之间的结合力,进一步降低在封胶体130与绝缘防护壳120内壁之间形成细微缝隙的概率,进一步降低了外界水汽经收容腔150的开口进入线路板141的概率,使得电磁线圈结构100的使用可靠性更好。
请再次参阅图4,具体在另一实施例中,防水筋条沿垂直于纵长方向的截面形状为矩形。将防水筋条的截面形状设置为矩形,可在防水筋条远离绝缘防护壳120内壁的一侧形成两个尖角结构,不但可提高封胶体130与绝缘防护壳120内壁之间的结合力,而且还使得防水结构121的加工更为简单。
请再次参阅图5,在另一些实施例中,防水结构121为开设于绝缘防护壳120的内表面内的防水齿槽。封胶体130的表面形成与防水齿槽相匹配的凸起,凸起与防水齿槽相配合,以提高封胶体130与绝缘防护壳120之间的结合力,降低封胶体130与绝缘防护壳120之间形成细微缝隙的概率,降低了外界水汽进入线路板的概率,提高了电磁线圈结构100的使用可靠性。
请再次参阅图1,在本实施例中,绝缘防护壳120与封塑壳体111的侧壁之间形成有密封焊接接头160,以使绝缘防护壳120与封塑壳体111的侧壁密封连接。其中,密封焊接接头160为熔融后的材料冷却固化后形成的连接接头,用于实现绝缘防护壳120与封塑壳体111侧壁之间的焊接。而且,由于密封焊接接头160是材料熔融后固化形成的,所以通过密封焊接接头160使绝缘防护壳120与封塑壳体111的侧壁实现固定连接,还可提高绝缘防护壳120与封塑壳体111的侧壁之间的密封性,降低外界的水汽经绝缘防护壳120与封塑壳体111侧壁的连接处进入线路板141的概率,更进一步提高了电磁线圈结构100的使用可靠性。
请再次参阅图3及图5,具体的,在焊接之前,绝缘防护壳120朝向封塑 壳体111的外表面凸设有焊接筋122。焊接筋122可以为一条,也可以为多条,且,当需要将绝缘防护壳120安装于封塑壳体111的侧壁上时,先将绝缘防护壳120放置于封塑壳体111的侧壁,之后通过超声波焊接的方式,使得焊接筋122熔融之后与封塑壳体111的侧壁结合,以实现绝缘防护壳120与封塑壳体111之间的固定连接。因此,焊接筋122的设置,不但可使得绝缘防护壳120与封塑壳体111的固定效果更好,而且还可起到防水作用,避免外界的水经绝缘防护壳120与封塑壳体111之间进入线路板141内,保证了线路板141的绝缘性能。
请再次参阅图1,在本实施例中,线圈组件110还包括与线圈112电连接的插针113。插针113远离线圈112的一端伸入至收容腔150内,并与线路板141电连接。插针113为杆状金属杆。当需要将线圈112与线路板141电连接时,只需要将与导线电连接的插针113插入线路板141并与线路板141电连接即可。因此,插针113的设置,使得线路板141的安装更为方便快捷。
在本实施例中,线路板141安装于封塑壳体111的侧壁。由此,在线路板141安装时,先将将线路板141安装于封塑壳体111的侧壁,并使其位于收容腔150内,然后再向收容腔150内固化形成封胶体130,即可实现线路板141的固定安装。因此,将线路板141安装于封塑壳体111的侧壁上,方便后续封胶体130的形成,使得电磁线圈112结构100的加工更为便捷。
上述空调、电子膨胀阀及其电磁线圈112结构100,收容并固化于收容腔150内的封胶体130,通过将液体胶材料浇灌于收容腔150内,并待待冷却后固化形成。而绝缘防护壳120的内壁形成有外凸或内凹的防水结构121,故封胶体130朝向绝缘防护壳120内壁的表面形状与绝缘防护壳120内壁的形状相匹配。故防水结构121的设置,可增加绝缘防护壳120与封胶体130之间的结合力, 即使外界温度发生变化,绝缘防护壳120与封胶体130之间也不容易产生细微缝隙。进一步的,防水结构121沿收容腔150开口的周向延伸,故防水结构121可阻隔外界的水汽经收容腔150的开口进入线路板141的路径。因此,防水结构121的设置,可降低外界的水汽进入线路板141的概率,降低了由于水汽进入线路板141而导致绝缘性能不良的概率,大大提高了电磁线圈结构100的使用可靠性。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种电磁线圈结构,其特征在于,包括:
    线圈组件,包括呈中空设置的封塑壳体,以及收容固定于所述封塑壳体内的线圈;
    绝缘防护壳,设置于所述封塑壳体的侧壁,并与所述封塑壳体的侧壁之间形成一端具有开口的收容腔,所述绝缘防护壳的内壁形成有外凸或内凹的防水结构,且所述防水结构沿所述收容腔开口的周向延伸;
    封胶体,收容并固化于所述收容腔内;及
    引线组件,包括与所述线圈电连接的线路板,且所述线路板收容并固定于所述收容腔内。
  2. 根据权利要求1所述的电磁线圈结构,其特征在于,所述防水结构为凸设于所述绝缘防护壳内壁的防水筋条。
  3. 根据权利要求2所述的电磁线圈结构,其特征在于,所述防水筋条沿垂直于纵长方向的截面形状为锯齿形。
  4. 根据权利要求2所述的电磁线圈结构,其特征在于,所述防水筋条沿垂直于纵长方向的截面形状为矩形。
  5. 根据权利要求1所述的电磁线圈结构,其特征在于,所述防水结构为开设于所述绝缘防护壳内表面的防水齿槽。
  6. 根据权利要求1所述的电磁线圈结构,其特征在于,所述绝缘防护壳与所述封塑壳体的侧壁之间形成有密封焊接接头,以使所述绝缘防护壳与所述封塑壳体的侧壁密封连接。
  7. 根据权利要求1所述的电磁线圈结构,其特征在于,所述线圈组件还包括与所述线圈电连接的插针,所述插针远离所述线圈的一端伸入至所述收容腔 内,并与所述线路板电连接。
  8. 根据权利要求1所述的电磁线圈结构,其特征在于,所述引线组件还包括引线,所述引线的一端预制于所述封胶体内,并与所述线路板电连接,另一端伸出于所述收容腔的开口。
  9. 一种电子膨胀阀,其特征在于,包括:
    如权利要求1至8任一项所述的电磁线圈结构;及
    阀体结构,包括呈中空结构的外壳、收容于所述外壳内的转子及与所述转子传动连接的阀针,所述封塑壳体套设于所述外壳的一端,且所述转子与所述线圈同轴设置。
  10. 一种空调,其特征在于,包括如权利要求9所述的电子膨胀阀。
PCT/CN2020/109690 2019-12-16 2020-08-18 空调、电子膨胀阀及其电磁线圈结构 WO2021120650A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020227022900A KR20220104260A (ko) 2019-12-16 2020-08-18 에어컨, 전자 팽창 밸브 및 이의 전자 코일 구조
JP2022526025A JP7495493B2 (ja) 2019-12-16 2020-08-18 空調、電子膨張弁及びその電磁コイル構造

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201922259422.1U CN211854542U (zh) 2019-12-16 2019-12-16 空调、电子膨胀阀及其电磁线圈结构
CN201922259422.1 2019-12-16

Publications (1)

Publication Number Publication Date
WO2021120650A1 true WO2021120650A1 (zh) 2021-06-24

Family

ID=73215123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109690 WO2021120650A1 (zh) 2019-12-16 2020-08-18 空调、电子膨胀阀及其电磁线圈结构

Country Status (4)

Country Link
JP (1) JP7495493B2 (zh)
KR (1) KR20220104260A (zh)
CN (1) CN211854542U (zh)
WO (1) WO2021120650A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022528828A (ja) * 2019-04-15 2022-06-16 浙江盾安人工環境股▲ふん▼有限公司 膨張弁コイルアセンブリ

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2490789Y (zh) * 2001-06-26 2002-05-08 郑清吉 电路装置的防水壳体
CN201964040U (zh) * 2011-03-16 2011-09-07 深圳茂硕电源科技股份有限公司 一种新型防水护线环及采用该护线环的防水结构
CN204857361U (zh) * 2015-08-06 2015-12-09 中山市港利制冷配件有限公司 电磁线圈结构
JP2016123218A (ja) * 2014-12-25 2016-07-07 株式会社不二工機 コイル装置及びそれを用いた電気的駆動弁
CN106151646A (zh) * 2015-04-13 2016-11-23 浙江三花股份有限公司 防爆线圈、电子膨胀阀以及防爆线圈的加工方法
CN106369202A (zh) * 2015-07-20 2017-02-01 浙江盾安禾田金属有限公司 电子膨胀阀
CN207651517U (zh) * 2017-11-17 2018-07-24 广东信达光电科技有限公司 一种封装稳固的贴片式led灯
CN208935520U (zh) * 2018-07-28 2019-06-04 天津华信机械有限公司 空调、电子膨胀阀及其电磁线圈结构

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0325361Y2 (zh) * 1984-11-01 1991-06-03
JP2019135888A (ja) 2018-02-05 2019-08-15 日本電産株式会社 モータの製造方法、およびモータ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2490789Y (zh) * 2001-06-26 2002-05-08 郑清吉 电路装置的防水壳体
CN201964040U (zh) * 2011-03-16 2011-09-07 深圳茂硕电源科技股份有限公司 一种新型防水护线环及采用该护线环的防水结构
JP2016123218A (ja) * 2014-12-25 2016-07-07 株式会社不二工機 コイル装置及びそれを用いた電気的駆動弁
CN106151646A (zh) * 2015-04-13 2016-11-23 浙江三花股份有限公司 防爆线圈、电子膨胀阀以及防爆线圈的加工方法
CN106369202A (zh) * 2015-07-20 2017-02-01 浙江盾安禾田金属有限公司 电子膨胀阀
CN204857361U (zh) * 2015-08-06 2015-12-09 中山市港利制冷配件有限公司 电磁线圈结构
CN207651517U (zh) * 2017-11-17 2018-07-24 广东信达光电科技有限公司 一种封装稳固的贴片式led灯
CN208935520U (zh) * 2018-07-28 2019-06-04 天津华信机械有限公司 空调、电子膨胀阀及其电磁线圈结构

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022528828A (ja) * 2019-04-15 2022-06-16 浙江盾安人工環境股▲ふん▼有限公司 膨張弁コイルアセンブリ

Also Published As

Publication number Publication date
JP2023505017A (ja) 2023-02-08
KR20220104260A (ko) 2022-07-26
JP7495493B2 (ja) 2024-06-04
CN211854542U (zh) 2020-11-03

Similar Documents

Publication Publication Date Title
WO2020024877A1 (zh) 空调系统、电子膨胀阀及其电磁线圈结构
US9831747B2 (en) Motor-driven compressor
JP6418454B2 (ja) リアクトル
WO2021120650A1 (zh) 空调、电子膨胀阀及其电磁线圈结构
CN106663987B (zh) 电子设备的隔热构造、具有该隔热构造的电动机以及电子设备的隔热构件的形成方法
JP2010003838A (ja) リアクトル装置
WO2012101976A1 (ja) モールド構造体およびモータ
US20150070120A1 (en) Coil component, method for manufacturing the same, and coil electronic component
JPH11195550A (ja) コイル部品
JP2017126679A (ja) リアクトル
JP2016119398A (ja) リアクトル構造
JP2015222804A (ja) リアクトル
US11824415B2 (en) Coil and electrically excited synchronous machine
CN109768637B (zh) 外置矩形散热水管和机壳注导热胶的低温升永磁驱动电机
KR100763805B1 (ko) 몰드 전자 코일 및 몰드 전자 코일 제조 방법
JP2020092117A (ja) リアクトル
CN213717208U (zh) 定子组件、电子膨胀阀及制冷设备
US11776733B2 (en) Reactor including a magnetic core
JP2003114080A (ja) 熱電変換装置およびその製造方法
CN114078622A (zh) 一种线圈装置及具有该线圈装置的电子膨胀阀
JP7022342B2 (ja) リアクトル
JP2002093629A (ja) 表面搭載用コイル装置及びその製造方法
JP7089671B2 (ja) リアクトル
CN209659050U (zh) 一种新型完全防水有机硅防护轴流风机的密封结构
CN209980958U (zh) 一种电抗器及其应用装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022526025

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227022900

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20902969

Country of ref document: EP

Kind code of ref document: A1