WO2021120568A1 - 具有三维特性的负泊松比结构及其组合方法 - Google Patents

具有三维特性的负泊松比结构及其组合方法 Download PDF

Info

Publication number
WO2021120568A1
WO2021120568A1 PCT/CN2020/097448 CN2020097448W WO2021120568A1 WO 2021120568 A1 WO2021120568 A1 WO 2021120568A1 CN 2020097448 W CN2020097448 W CN 2020097448W WO 2021120568 A1 WO2021120568 A1 WO 2021120568A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional
negative poisson
ratio structure
basic unit
ratio
Prior art date
Application number
PCT/CN2020/097448
Other languages
English (en)
French (fr)
Inventor
郜殿伟
张春巍
Original Assignee
青岛理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛理工大学 filed Critical 青岛理工大学
Publication of WO2021120568A1 publication Critical patent/WO2021120568A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/98Protection against other undesired influences or dangers against vibrations or shocks; against mechanical destruction, e.g. by air-raids
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • E04B2001/8423Tray or frame type panels or blocks, with or without acoustical filling
    • E04B2001/8452Tray or frame type panels or blocks, with or without acoustical filling with peripheral frame members

Definitions

  • the invention relates to a negative Poisson's ratio structure with three-dimensional characteristics and a combination method thereof, and belongs to the technical field of negative Poisson's ratio structures.
  • a structure (or material) with a negative Poisson's ratio can expand in the transverse direction when subjected to a tensile force in the longitudinal direction, or contract in the transverse direction when subjected to a pressure in the longitudinal direction.
  • This special deformation mode provides negative Poisson's ratio materials with "better" mechanical properties than traditional materials, such as higher shear strength, fracture toughness, impact resistance and impact energy dissipation.
  • the negative Poisson's ratio structure can be obtained directly from nature or artificially synthesized.
  • the types of common negative Poisson's ratio structures are still very limited (especially three-dimensional negative Poisson's ratio structures), and the application of negative Poisson's ratio structures in actual engineering is not very good. widely. Therefore, the proposal of a new three-dimensional negative Poisson's ratio structure based on the existing negative Poisson's ratio structure is of great significance.
  • the present invention proposes a negative Poisson's ratio structure with three-dimensional characteristics and a combination method thereof, which is easy to realize a negative Poisson's ratio structure with three-dimensional characteristics.
  • the negative Poisson's ratio structure with three-dimensional characteristics of the present invention includes a three-dimensional basic unit.
  • the three-dimensional basic unit includes two basic units of a two-dimensional negative Poisson's ratio structure. Each two-dimensional basic unit is composed of four adjacent links. It is composed of points and five interrelated ribs.
  • Two basic units of a two-dimensional negative Poisson's ratio structure are superimposed.
  • One of the basic units of a two-dimensional negative Poisson's ratio structure is linearly rotated 90° along the minor axis to form an orthogonal three-dimensional basic unit.
  • the two basic units of two-dimensional negative Poisson's ratio structure intersect and are fixed at the bisecting point of the inner rib.
  • the ring nodes of the basic unit of the two-dimensional negative Poisson's ratio structure are circular ring nodes or regular hexagonal nodes.
  • the ring nodes are often replaced by regular hexagon nodes.
  • the parameters of the basic unit of the two-dimensional negative Poisson's ratio structure are divided into: topological parameter L/R, ring radius r or side length D of a regular hexagonal node, and the number of basic units of the two-dimensional negative Poisson's ratio structure .
  • the value of the topological parameter L/R is variable between 0 and 1
  • L is the length of the rib
  • R is the distance between the centers of two adjacent ring nodes.
  • the basic unit of the two-dimensional negative Poisson's ratio structure is compressed along the short axis direction, causing the structure to contract along the long axis direction perpendicular to the force compression.
  • the negative Poisson's ratio material composed of the basic unit of the two-dimensional negative Poisson's ratio structure has higher shear strength, fracture toughness, impact resistance ability and impact energy dissipation capacity; in addition, it has a good sound absorption effect and can be used as a sound insulation material.
  • the three-dimensional characteristic of the negative Poisson's ratio structure of the present invention mainly refers to compression in a certain direction (longitudinal), which will cause the structure to shrink in the transverse direction perpendicular to the compression direction.
  • the long shaft ring node is connected to two side ribs, and the long shaft ring node is connected to two different short shaft ring nodes through the side ribs.
  • the short collar node is connected to three ribs, including two side ribs and an inner rib.
  • the short collar nodes are connected to two different long collar nodes through the side ribs, and the short collar nodes are connected through the inner ribs. Connect the opposite short collar node.
  • each rib The two ends of each rib are respectively connected with the tangential direction of the opposite long shaft ring node or the short shaft ring node.
  • the rib When subjected to an external force, the rib gradually produces a certain angle change from the tangent direction of the ring node, thereby deforming, and the deformation angle is less than 90°.
  • the projection shapes of the orthogonal three-dimensional basic unit in the horizontal direction and the vertical direction are consistent, and the projection in the vertical direction is an orthogonal square grid, which is the same as the material geometry of the two-dimensional negative Poisson's ratio foam; When it is under pressure, it has the effect of inward contraction, and when it is under tension, it has the property of expansion.
  • the material of the ring nodes and ribs is rubber, aluminum or copper that is uniformly processed and has ductility. Both the ring nodes and ribs meet the bending and torsion conditions.
  • the combination method of the negative Poisson's ratio structure with three-dimensional characteristics of the present invention includes the following steps:
  • the negative Poisson's ratio structure with three-dimensional characteristics of the present invention provides a porous material structure, which has the characteristics of applying pressure in one certain direction and shrinking in the other two directions;
  • the combined method of the negative Poisson's ratio structure with three-dimensional characteristics of the invention is simple to process and easy to realize.
  • Fig. 1 is a perspective view of the whole of the present invention.
  • Figure 2 is the geometric principle diagram of the basic unit of the two-dimensional negative Poisson's ratio structure.
  • Figure 3(a) is a three-dimensional view of the basic unit of a two-dimensional negative Poisson's ratio structure.
  • Figure 3(b) is a front view of the basic unit of a two-dimensional negative Poisson's ratio structure.
  • Figure 3(c) is the left view of the basic unit of the two-dimensional negative Poisson's ratio structure.
  • Figure 3(d) is a bottom view of the basic unit of a two-dimensional negative Poisson's ratio structure.
  • Fig. 4(a) is a perspective view of a three-dimensional basic unit.
  • Figure 4(b) is a front view of the three-dimensional basic unit.
  • Figure 4(c) is a left view of the three-dimensional basic unit.
  • Figure 4(d) is a bottom view of the three-dimensional basic unit.
  • Figure 5(a) is a perspective view of a three-dimensional negative Poisson's ratio structure.
  • Figure 5(b) is a front view of a three-dimensional negative Poisson's ratio structure.
  • the negative Poisson's ratio structure with three-dimensional characteristics of the present invention improves the traditional two-dimensional planar chiral negative Poisson's ratio material in a simple way to apply a pressure load in one direction.
  • the phenomenon of contraction occurs in the other two directions, that is, to realize the spatial and three-dimensional negative Poisson's ratio effect, thereby expanding and optimizing the application of the chiral negative Poisson's ratio structure in practical engineering;
  • the structure of the present invention is composed of thin rods as a whole (Beam) Assembled structure, easy to manufacture, and cost reduction.
  • the three-dimensional negative Poisson's ratio structure of the present invention includes a three-dimensional basic unit, and the three-dimensional basic unit includes two two-dimensional negative Poisson's ratio structure basic units
  • Each two-dimensional basic unit is composed of four adjacent ring nodes and five ribs that are related to each other.
  • Two basic units of two-dimensional negative Poisson's ratio structure are superimposed, one of which is a basic unit of two-dimensional negative Poisson's ratio structure.
  • Two two-dimensional negative Poisson's ratio structural basic units intersect and are fixed at the bisecting point of the inner rib.
  • the four ring nodes of the basic unit of the two-dimensional negative Poisson's ratio structure are divided into two long shaft ring nodes and two short shaft ring nodes.
  • the center lines of the two long shaft ring nodes form the long axis, and the center of the two short shaft ring nodes The line forms a short axis, and the long axis and the short axis are perpendicular to each other;
  • the ring nodes of the basic unit of the two-dimensional negative Poisson's ratio structure are circular ring nodes or regular hexagon nodes. In fact, for the convenience of processing and manufacturing, the ring nodes are often replaced by regular hexagon nodes.
  • the parameters of the basic unit of the two-dimensional negative Poisson's ratio structure are divided into: topological parameter L/R, ring radius r or side length D of the positive hexagonal node, and the basic two-dimensional negative Poisson's ratio structure The number of units.
  • the value of the topological parameter L/R is variable between 0 and 1
  • L is the length of the rib
  • R is the distance between the centers of two adjacent ring nodes.
  • the basic unit of the two-dimensional negative Poisson's ratio structure is compressed along the short axis direction, causing the structure to contract along the long axis direction perpendicular to the force compression.
  • the negative Poisson's ratio material composed of the basic unit of the two-dimensional negative Poisson's ratio structure has higher shear strength, fracture toughness, impact resistance ability and impact energy dissipation capacity; in addition, it has a good sound absorption effect and can be used as a sound insulation material.
  • the three-dimensional characteristic of the negative Poisson's ratio structure of the present invention mainly refers to the compression in a certain direction (longitudinal), which will cause the structure to shrink in the transverse direction perpendicular to the compression direction.
  • the long shaft ring node is connected to two side ribs, and the long shaft ring node is respectively connected to two different short shaft ring nodes through the side ribs.
  • the short collar node is connected to three ribs, including two side ribs and an inner rib.
  • the short collar node is connected to two different long collar nodes through the side ribs, and the short collar node is connected to the opposite side through the inner rib. Short collar node.
  • each rib The two ends of each rib are respectively connected with the tangential direction of the opposite long shaft ring node or the short shaft ring node.
  • the rib When subjected to an external force, the rib gradually produces a certain angle change from the tangent direction of the ring node, thereby deforming, and the deformation angle is less than 90°.
  • the projection shapes of the orthogonal three-dimensional basic unit in the horizontal and vertical directions are the same, and the projection in the vertical direction is an orthogonal square grid, which is different from the two-dimensional Negative Poisson's ratio foam has the same material geometric characteristics; when it is under pressure, it produces an inward shrinkage effect, and when it is under tension, it produces an expansion property.
  • the material of the ring nodes and ribs is rubber, aluminum or copper that is uniformly processed and has ductility.
  • the combination method of the negative Poisson's ratio structure with three-dimensional characteristics of the present invention includes the following steps:
  • Both the ring nodes and ribs meet the bending and torsion conditions.
  • the ring nodes and ribs of the structure of the present invention are assembled by thin rods as a whole, which is convenient to manufacture and reduces costs.
  • the combined method of the negative Poisson's ratio structure with three-dimensional characteristics of the present invention is simple to process and easy to realize.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Vibration Dampers (AREA)

Abstract

本发明涉及一种具有三维特性的负泊松比结构及其组合方法,属于负泊松比结构技术领域。本发明由基本单元通过以下步骤形成:首先,将两个二维手性负泊松比结构的基本单元重合放置,进一步其中一个二维负泊松比结构基本单元沿短轴方向直线旋转90°形成正交的三维基本单元,两个二维负泊松比结构基本单元相交且固接于内肋的二分点处,每个二维负泊松比结构基本单元由相邻的四个环节点以及彼此关联的五根肋组成。本发明具有在一个确定方向上施加压力而另外两个方向产生收缩的特性;加工简单、易于实现。

Description

具有三维特性的负泊松比结构及其组合方法 技术领域
本发明涉及一种具有三维特性的负泊松比结构及其组合方法,属于负泊松比结构技术领域。
背景技术
负泊松比结构(或材料)在受到沿纵向的拉力时可以产生横向的膨胀,或者在受到沿纵向的压力时将产生横向的收缩。这种特殊的变形模式为负泊松比材料提供了“优于”传统材料的力学性能,比如更高的剪切强度、断裂韧性、碰撞凹陷抵御能力以及冲击耗能能力。
目前,负泊松比结构可以从自然界中直接获取或者通过人工合成得到。但是,由于受到制造、合成技术的制约,目前常见的负泊松比结构种类还很有限(特别是三维负泊松比结构),对于负泊松比结构在实际工程中的应用也还不是很广泛。因此,构造形式简单、易于加工制作且基于已有负泊松比结构的新型三维负泊松比结构的提出具有重要意义。
发明内容
针对现有技术存在的上述缺陷,本发明提出了一种具有三维特性的负泊松比结构及其组合方法,易于实现的具有三维特性的负泊松比结构形式。
本发明所述的具有三维特性的负泊松比结构,包括三维基本单元,三维基本单元包括两个二维负泊松比结构基本单元组成,每个二维基本单元由相邻的四个环节点以及彼此关联的五根肋组成,两个二维负泊松比结构基本单元重合放置,其中一个二维负泊松比结构基本单元沿短轴方向直线旋转90°形成正交的三维基本单元,两个二维负泊松比结构基本单元相交且固接于内 肋的二分点处。
优选地,所述二维负泊松比结构基本单元的环节点为圆环节点或者正六边形节点。实际上为了加工制造上的方便,往往圆环节点用正六边形节点来代替。
优选地,所述二维负泊松比结构基本单元的参数分为:拓扑参数L/R,圆环半径r或者正六边形节点的边长D,二维负泊松比结构基本单元的数量。拓扑参数L/R取值在0和1之间可变,L为肋长度,R为相邻两个环节点圆心之间距离。
所述二维负泊松比结构基本单元沿短轴方向受力压缩,导致结构沿垂直于受力压缩的长轴方向收缩。二维负泊松比结构基本单元构成的负泊松比材料具有更高的剪切强度、断裂韧性、碰撞凹陷抵御能力以及冲击耗能能力;另外还具有良好的吸音效果,可用于隔音材料。
优选地,本发明负泊松比结构的三维特性主要是指在一个确定的方向压缩(纵向),将导致结构沿垂直于压缩方向的横向收缩。
优选地,所述长轴环节点与两根边肋相连,且长轴环节点通过边肋分别连接两个不同的短轴环节点。
优选地,所述短轴环节点与三根肋相连,包括两根边肋和一根内肋,短轴环节点通过边肋分别连接两个不同的长轴环节点,短轴环节点通过内肋连接对面的短轴环节点。
每根肋的两端分别与正对的长轴环节点或者短轴环节点的切线方向相连。当受到外力时,肋自环节点的切线方向开始逐渐产生一定角度变化,从而发生形变,形变角度小于90°。
优选地,所述正交的三维基本单元在水平方向和垂直方向的投影形状一致,竖直方向的投影是正交的方形网格,与二维负泊松比泡沫的材料几何特征相同;在受到压力时,产生向内收缩的效果,受到拉力时,产生膨胀的性质。
优选地,所述环节点和肋的材料为加工均匀且具备延展性的橡胶、铝或者铜。环节点和肋均满足弯曲扭转等条件。
本发明所述的具有三维特性的负泊松比结构的组合方法,包括如下步骤:
S1:将任意两个二维负泊松比结构基本单元重叠,要求四个环节点和五根肋均重合放置;
S2:将其中一个二维负泊松比结构基本单元相对于另外一个二维负泊松比结构基本单元直线旋转90°,形成正交的三维基本单元;
S3:在三维基本单元的基础上,通过空间拓展进一步重复排列形成三维负泊松比结构体。
本发明的有益效果是:本发明所述的具有三维特性的负泊松比结构,提供了一种多孔材料结构形式,具有在一个确定方向上施加压力而另外两个方向产生收缩的特性;本发明所述的具有三维特性的负泊松比结构的组合方法,加工简单、易于实现。
附图说明
图1是本发明整体的立体图。
图2是二维负泊松比结构基本单元的几何原理图。
图3(a)是二维负泊松比结构基本单元的立体图。
图3(b)是二维负泊松比结构基本单元的主视图。
图3(c)是二维负泊松比结构基本单元的左视图。
图3(d)是二维负泊松比结构基本单元的仰视图。
图4(a)是三维基本单元的立体图。
图4(b)是三维基本单元的主视图。
图4(c)是三维基本单元的左视图。
图4(d)是三维基本单元的仰视图。
图5(a)是三维负泊松比结构体的立体图。
图5(b)是三维负泊松比结构体的主视图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
如图1所示,本发明所述的具有三维特性的负泊松比结构,以一种简易的方式改进传统的二维平面手性负泊松比材料,使其在一个方向加压力载荷,在另外两个方向都出现收缩的现象,即实现空间的、三维的负泊松比效应,从而拓展并优化手性负泊松比结构在实际工程中的应用;本发明的结构整体由细杆(梁)装配构成,制造方便,降低成本。
如图3(a)至图3(d)所示,本发明所述的具有三维特性的负泊松比结构,包括三维基本单元,三维基本单元包括两个二维负泊松比结构基本单元组成,每个二维基本单元由相邻的四个环节点以及彼此关联的五根肋组成,两个二维负泊松比结构基本单元重合放置,其中一个二维负泊松比结构基本单元沿短轴方向直线旋转90°形成正交的三维基本单元,两个二维负泊松比结构基本单元相交且固接于内肋的二分点处。
二维负泊松比结构基本单元的四个环节点分为两个长轴环节点和两个短轴环节点,两个长轴环节点的中心线形成长轴,两个短轴环节点的中心线形成短轴,长轴与短轴相互垂直;所述二维负泊松比结构基本单元的环节点为圆环节点或者正六边形节点。实际上为了加工制造上的方便,往往圆环节点用正六边形节点来代替。
如图2所示,所述二维负泊松比结构基本单元的参数分为:拓扑参数L/R,圆环半径r或者正六边形节点的边长D,二维负泊松比结构基本单元的数量。拓扑参数L/R取值在0和1之间可变,L为肋长度,R为相邻两个环节点圆心之间距离。
所述二维负泊松比结构基本单元沿短轴方向受力压缩,导致结构沿垂直于受力压缩的长轴方向收缩。二维负泊松比结构基本单元构成的负泊松比材料具有更高的剪切强度、断裂韧性、碰撞凹陷抵御能力以及冲击耗能能力;另外还具有良好的吸音效果,可用于隔音材料。
本发明负泊松比结构的三维特性主要是指在一个确定的方向压缩(纵向),将导致结构沿垂直于压缩方向的横向收缩。
所述长轴环节点与两根边肋相连,且长轴环节点通过边肋分别连接两个不同的短轴环节点。
所述短轴环节点与三根肋相连,包括两根边肋和一根内肋,短轴环节点通过边肋分别连接两个不同的长轴环节点,短轴环节点通过内肋连接对面的短轴环节点。
每根肋的两端分别与正对的长轴环节点或者短轴环节点的切线方向相连。当受到外力时,肋自环节点的切线方向开始逐渐产生一定角度变化,从而发生形变,形变角度小于90°。
如图4(a)至图4(d)所示,所述正交的三维基本单元在水平方向和垂直方向的投影形状一致,竖直方向的投影是正交的方形网格,与二维负泊松比泡沫的材料几何特征相同;在受到压力时,产生向内收缩的效果,受到拉力时,产生膨胀的性质。
所述环节点和肋的材料为加工均匀且具备延展性的橡胶、铝或者铜。
实施例2:
本发明所述的具有三维特性的负泊松比结构的组合方法,包括如下步骤:
S1:将任意两个二维负泊松比结构基本单元重叠,要求四个环节点和五根肋均重合放置;
S2:将其中一个二维负泊松比结构基本单元相对于另外一个二维负泊松比结构基本单元直线旋转90°,形成正交的三维基本单元;
S3:在三维基本单元的基础上,通过空间拓展进一步重复排列形成三维负泊松比结构体,如图5(a)和图5(b)所示。
环节点和肋均满足弯曲扭转等条件。本发明的结构的环节点和肋整体由细杆装配构成,制造方便,降低成本。本发明所述的具有三维特性的负泊松比结构的组合方法,加工简单、易于实现。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (6)

  1. 一种具有三维特性的负泊松比结构,包括三维基本单元,三维基本单元包括两个二维负泊松比结构基本单元组成,每个二维基本单元由相邻的四个环节点以及彼此关联的五根肋组成,其特征在于,两个二维负泊松比结构基本单元重合放置,其中一个二维负泊松比结构基本单元沿短轴方向直线旋转90°形成正交的三维基本单元,两个二维负泊松比结构基本单元相交且固接于内肋的二分点处。
  2. 根据权利要求1所述的具有三维特性的负泊松比结构,其特征在于,所述二维负泊松比结构基本单元的环节点为圆环节点或者正六边形节点。
  3. 根据权利要求2所述的具有三维特性的负泊松比结构,其特征在于,所述二维负泊松比结构基本单元的参数分为:拓扑参数L/R,圆环半径r或者正六边形节点的边长D,二维负泊松比结构基本单元的数量。
  4. 根据权利要求1或3所述的具有三维特性的负泊松比结构,其特征在于,所述正交的三维基本单元在水平方向和垂直方向的投影形状一致,竖直方向的投影是正交的方形网格;在受到压力时,产生向内收缩的效果,受到拉力时,产生膨胀的性质。
  5. 根据权利要求1所述的具有三维特性的负泊松比结构,其特征在于,所述环节点和肋的材料为加工均匀且具备延展性的橡胶、铝或者铜。
  6. 一种基于权利要求1~5任意一项所述的具有三维特性的负泊松比结构的组合方法,其特征在于,包括如下步骤:
    S1:将任意两个二维负泊松比结构基本单元重叠,要求四个环节点和五根肋均重合放置;
    S2:将其中一个二维负泊松比结构基本单元相对于另外一个二维负泊松比结构基本单元直线旋转90°,形成正交的三维基本单元;
    S3:在三维基本单元的基础上,通过空间拓展进一步重复排列形成三维负泊松比结构体。
PCT/CN2020/097448 2019-12-18 2020-06-22 具有三维特性的负泊松比结构及其组合方法 WO2021120568A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911308237.5 2019-12-18
CN201911308237.5A CN110984416B (zh) 2019-12-18 2019-12-18 具有三维特性的负泊松比结构及其组合方法

Publications (1)

Publication Number Publication Date
WO2021120568A1 true WO2021120568A1 (zh) 2021-06-24

Family

ID=70095406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/097448 WO2021120568A1 (zh) 2019-12-18 2020-06-22 具有三维特性的负泊松比结构及其组合方法

Country Status (2)

Country Link
CN (1) CN110984416B (zh)
WO (1) WO2021120568A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114535666A (zh) * 2022-02-28 2022-05-27 广州大学 一种仿生负泊松比钻头及其设计方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110984416B (zh) * 2019-12-18 2021-06-11 青岛理工大学 具有三维特性的负泊松比结构及其组合方法
CN111703146B (zh) * 2020-06-23 2022-07-29 华侨大学 一种梯度手性材料的夹芯板及其在客车车身结构上的应用
CN112917894B (zh) * 2021-01-21 2022-07-22 复旦大学 一种手性压扭超结构材料
CN113468665B (zh) * 2021-07-02 2024-06-07 南京英田光学工程股份有限公司 一种具有负泊松比特性的三维抗冲击体及其设计方法
CN113719567A (zh) * 2021-07-22 2021-11-30 广州大学 一种具有负泊松比特性的三维爪形结构及其组合方法
CN113669401B (zh) * 2021-07-26 2023-04-07 广州大学 一种具有回转特性的负泊松比单胞结构和蜂窝结构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107326454A (zh) * 2017-06-09 2017-11-07 东华大学 一种静电纺丝制备拉胀纳米纤维纱线的方法
CN108394135A (zh) * 2018-02-09 2018-08-14 中山大学 一种具有三维负泊松比的多孔材料结构
CN109017164A (zh) * 2018-09-26 2018-12-18 南京工业大学 一种免充气轮胎结构
CN109289322A (zh) * 2018-10-30 2019-02-01 江苏臻中滤料科技有限公司 一种易清灰滤袋
JP2019023489A (ja) * 2017-07-24 2019-02-14 国立大学法人 東京大学 曲面連結構造および立体連結構造
CN109538596A (zh) * 2018-11-22 2019-03-29 北京理工大学 一种具有负泊松比特性的钉子
CN110984416A (zh) * 2019-12-18 2020-04-10 青岛理工大学 具有三维特性的负泊松比结构及其组合方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2746478T3 (es) * 2015-08-27 2020-03-06 Airbus Operations Sl Estructura deformable para la absorción de energía procedente de impactos mecánicos y/o acústicos
CN106541568B (zh) * 2016-10-31 2018-07-10 常州工学院 一种三维负泊松比周期性多孔材料及其制作方法
CN109869431A (zh) * 2019-03-25 2019-06-11 长沙理工大学 一种具有负泊松比特性的三维抗冲击材料
CN210715682U (zh) * 2019-10-16 2020-06-09 湖北汽车工业学院 一种三维负泊松比吸能填充物结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107326454A (zh) * 2017-06-09 2017-11-07 东华大学 一种静电纺丝制备拉胀纳米纤维纱线的方法
JP2019023489A (ja) * 2017-07-24 2019-02-14 国立大学法人 東京大学 曲面連結構造および立体連結構造
CN108394135A (zh) * 2018-02-09 2018-08-14 中山大学 一种具有三维负泊松比的多孔材料结构
CN109017164A (zh) * 2018-09-26 2018-12-18 南京工业大学 一种免充气轮胎结构
CN109289322A (zh) * 2018-10-30 2019-02-01 江苏臻中滤料科技有限公司 一种易清灰滤袋
CN109538596A (zh) * 2018-11-22 2019-03-29 北京理工大学 一种具有负泊松比特性的钉子
CN110984416A (zh) * 2019-12-18 2020-04-10 青岛理工大学 具有三维特性的负泊松比结构及其组合方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114535666A (zh) * 2022-02-28 2022-05-27 广州大学 一种仿生负泊松比钻头及其设计方法

Also Published As

Publication number Publication date
CN110984416B (zh) 2021-06-11
CN110984416A (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
WO2021120568A1 (zh) 具有三维特性的负泊松比结构及其组合方法
CN109094139B (zh) 一种新构型蜂窝夹层板
CN110516317B (zh) 一种嵌套式类蜂窝夹层结构
CN111746443A (zh) 一种新型三维手性负泊松比多胞吸能结构
US2260779A (en) Method of making ferroconcrete reinforcing elements
CN114741811A (zh) 一种变刚度三维内凹负泊松比胞元及其设计方法
WO2008078883A9 (en) A light weight sandwich panel with a core constructed of wires and the manufacturing method of the same
CN110837690A (zh) 蜂窝结构非线性本构关系的建立方法、介质和设备
CN113833794A (zh) 一种具有正负泊松比蜂窝型结构的隔振基座
CN113525273B (zh) 一种具有负泊松比特性的三维结构及其组合方法
CN113153946A (zh) 一种单胞交叉堆叠形成的缓冲吸能减振负泊松比结构
CN112701488A (zh) 一种基于菱形结构可调节泊松比和热膨胀系数的超材料
CN210034261U (zh) 一种具有负泊松比特性的三维抗冲击材料
CN117703978A (zh) 一种多曲边负泊松比胞元及其蜂窝吸能结构
CN209959779U (zh) 一种具有负泊松比特性的二维周期性材料
CN116733880A (zh) 三角形增强的负泊松比胞元及其蜂窝结构
KR100866698B1 (ko) 3차원 트러스형 규칙 다공질 금속 제조용 금속망의 절곡장치 및 절곡 방법
CN214838069U (zh) 一种单胞交叉堆叠形成的缓冲吸能减振负泊松比结构
CN104636544A (zh) 一种六边形网格单层网壳的几何建模方法
CN113982128B (zh) 一种外框圆管网格节点及椭圆截面喇叭仿形管制作方法
CN110758298B (zh) 一种折纸三重吸能结构的实现方法及结构
CN113719567A (zh) 一种具有负泊松比特性的三维爪形结构及其组合方法
CN207003998U (zh) 建筑用复合模板
CN107642229B (zh) 一种铝合金型材及其制备的加强型铝模板
CN205712646U (zh) 一种分形网架结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20901385

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 04.11.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20901385

Country of ref document: EP

Kind code of ref document: A1