WO2021120370A1 - 纳米泡浮选柱 - Google Patents

纳米泡浮选柱 Download PDF

Info

Publication number
WO2021120370A1
WO2021120370A1 PCT/CN2020/073445 CN2020073445W WO2021120370A1 WO 2021120370 A1 WO2021120370 A1 WO 2021120370A1 CN 2020073445 W CN2020073445 W CN 2020073445W WO 2021120370 A1 WO2021120370 A1 WO 2021120370A1
Authority
WO
WIPO (PCT)
Prior art keywords
slurry
pipe
flotation
flotation column
column
Prior art date
Application number
PCT/CN2020/073445
Other languages
English (en)
French (fr)
Inventor
李宾
Original Assignee
李宾
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李宾 filed Critical 李宾
Publication of WO2021120370A1 publication Critical patent/WO2021120370A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/14Flotation machines

Definitions

  • the invention belongs to the field of mineral flotation or petroleum, sewage, papermaking and other industries, and relates to a slurry flotation device, in particular to a nano-bubble flotation column.
  • fine-grained minerals are small mass, large specific surface area, and high surface energy.
  • the small mass makes the collision probability between the hydrophobic mineral particles and the bubbles small, and it is difficult to overcome the energy barrier between the mineral particles and the bubbles and adhere to the surface of the bubbles, so as to realize the effective mineralization of the mineral particles and the bubbles.
  • Large specific surface area and high surface energy make non-selective agglomeration between gangue ore particles and useful ore particles prone to occur, causing "foam inclusion" phenomenon and lowering the grade of concentrate.
  • the flotation column has a completely new structure, feeding method and separation mechanism.
  • the breakthrough has solved a series of problems caused by the column height. Growing maturity. Focusing on the flotation column, the research on the flotation of fine-grained minerals has been carried out. The research on the bubble gas production method, the structure of the flotation column and the flotation system equipped with various detection and control devices has become the research of the flotation equipment in the future. Direction of development.
  • Packing medium flotation column The packing flotation column developed by Michigan Technological University in the United States is equipped with packing medium in the conventional flotation column.
  • the packing plates are arranged at an angle of 90°.
  • the small tortuous pores make the mineral particles and bubbles closely contact and strengthen Sorting effect.
  • the feed is fed in from the middle of the main body, compressed air is fed into the bottom, the concentrate is discharged from the top by overflow, the tailings are discharged from the bottom, and a water spray device is set on the top.
  • the flotation column also overcomes the flow problems of traditional flotation columns, such as easy merging of bubbles, strong turbulence, and turbulence, and eliminates the bubble generator that is easy to foul and block.
  • the column is filled with multiple layers of corrugated media to form many regular tortuous channels.
  • the compressed air entering from the lower part forms uniform bubbles when passing through the channels and carries hydrophobic mineral particles to float up.
  • the packed flotation column effectively implements the basic process of column flotation of foam formation, mineralization, and separation, but the defects of easy blockage and high cost of packing materials not only affect the effect of packing, but also affect the packed flotation column Industrial applications.
  • Jet flotation column, jet flotation column is a new type of flotation equipment researched and developed by Dr. Jiang Zhiwei based on the principle of free jet flotation.
  • Lu Shijie proposed a new type of downward downstream jet flotation column-KYZ flotation column based on jet theory.
  • NFMeseheriakov of Moscow State University, Russia, and others have developed a flotation column with jet aerator.
  • This type of flotation column has a good flotation effect on larger particles of minerals and has been promoted to be used in 3mm-0.8mm particle size.
  • the flotation of sylvite and 2mm-0.5mm size diamonds has achieved good technical indicators that have a unit production efficiency several times higher than that of any other flotation machine.
  • the new K ⁇ M series flotation column developed by the Ural Mineral Processing Research and Design Institute is composed of a jet aerator, a microbubble generator, a central flotation tube, a discharge device and a foam collection tank.
  • This kind of flotation column eliminates the phenomenon of convective movement of ore particles and bubbles in the conventional flotation column, and can realize rough separation, beneficiation and sweeping operations in one flotation device.
  • Cyclone-static microbubble flotation column Cyclone-static microbubble flotation column includes three parts: column separation section, cyclone separation section, and tube flotation device.
  • the whole equipment is a column body, the column separation section is located on the upper part of the whole column body, and a spray water pipe and a foam concentrate collection tank are set on the top of the column, and the final concentrate is discharged from this; the feed point is located in the middle and upper part of the column separation section, with swirling flow
  • the separation section adopts a sorting cyclone structure, and is directly connected with the column separation section in an upper and lower structure, and finally the tailings are discharged from the bottom outflow port of the cyclone separation section.
  • the tube flotation device is arranged outside the equipment cylinder, and its outflow tube is connected to the cylinder of the cyclone separation section along the tangential direction, which is equivalent to the tangential feeding tube of the sorting cyclone.
  • the tube flotation device includes two parts: a bubble generator and a flotation tube section.
  • the bubble generator relies on jets to introduce gas and pulverize the gas into bubbles.
  • the pressurized circulating slurry enters the bubble generator to form a three-phase system containing a large number of bubbles and achieve turbulent mineralization, and then enter the cyclone separation section at high speed along the tangential direction. .
  • the tube flotation device not only completes flotation aeration and turbulent mineralization, but also forms a swirling force field at the bottom of the flotation column in a tangential manner, realizing a continuous separation process.
  • Stabilizing plate flotation column To solve the problems of axial mixing and foam merger, Michigan Technological University has developed a flotation column with a horizontal smooth flow plate, which is composed of some simple plates with holes. In addition, Meloy et al. of West Virginia University in the United States proposed a two-dimensional flotation column. The inside of the column is divided into several small grooves by the filling material, so a group of products with continuously changing grades can be produced, similar to a shaker.
  • LM flotation cell The equipment includes a flotation tank, a column, a buffer tank before the pump, and a pump.
  • the slurry enters the buffer tank in front of the pump, and then the pump is used to hit the column vertically downwards, and compressed air is introduced at the same time to complete the mixing of the slurry and bubbles in the column and provide feed for the flotation tank.
  • This kind of high-intensity mixing enables the slurry to complete particle collection in a very short time and has a high recovery rate.
  • the foam is discharged from the bottom of the column into the flotation tank, and a thicker foam layer is formed on the upper part of the flotation tank.
  • LM flotation cell is a new type of flotation equipment. It can be used to process non-magnetic, magnetic and non-metallic minerals.
  • Microbubble flotation column The equipment adopts the mineralization separation mode of the traditional flotation column, which highlights the "microbubble effect" of flotation.
  • the "revolutionary" contribution of the flotation column lies in the change in the way of foam formation-fluids are mixed to form bubbles (specifically, static stirring blades are added).
  • the idea of using fluid mixing to form bubbles and the "microbubble effect" to improve column separation efficiency has been widely adopted in the design of flotation columns.
  • the bubble generator of the flotation column can be divided into internal foamer and external foamer according to different foaming methods and foaming devices.
  • Foaming methods In recent years, the commonly used bubble generation methods mainly include the following:
  • Shear contact foaming The high-speed flowing ore slurry contacts the gas in an appropriate way, such as generating bubbles through a metal mesh or filling medium. Shear contact foaming is the use of gas-liquid mixing process to pulverize gas into bubbles. The bubble size mainly depends on the turbulence of the liquid, the continuous mixing time, and finally reaches the critical size of the bubble that matches the energy state of the system.
  • Microcellular foaming The gas is foamed through the microporous plastic, rubber, canvas, nylon, microporous ceramic tube or pebble layer. Because the microcellular foaming is easy to be blocked, the microporous material cannot fully function, and the increase in the amount of inflation (pressure) will directly cause the bubble size to increase, therefore, this method is currently used less.
  • Jet foaming Both the pressurized air stream sprayed into the slurry or the slurry sprayed into the air stream can produce bubbles suitable for flotation. This method first changes the liquid into a dispersed phase, and then gradually becomes a continuous phase as the pressure increases, and then gradually disperses the initial continuous phase into microbubbles. Jet bubble formation technology is a major change in bubble generation technology.
  • the electrolyzed water produces bubbles.
  • electrolysis is used to decompose water to produce hydrogen and oxygen.
  • the diameter of hydrogen and oxygen produced by electrolysis is small, and the amount of bubbles can be controlled by current adjustment.
  • electrolysis water technology for microbubble flotation is air bubbles. An innovation in technology occurred.
  • Filter disc foamer A layer of filter cloth is covered on the filter plate of the disc filter and placed flat on the bottom of the flotation column, which is the foamer. The bubbles produced by the foamer are more uniform, but easy to wear.
  • Standpipe foamer A plurality of standpipes with a diameter of 40mm-75mm and a height of 300mm-500mm are evenly distributed at the bottom of the flotation column and connected with the pressure controller pipe network.
  • the interface between the upper and lower sections of each riser is equipped with porous media materials. Since the sludge is easy to settle on the surface of the porous medium, the internal foamer is easy to be blocked.
  • Gravel bed foamer Place gravel with a diameter of 8mm-20mm between the upper and lower screens to form a gravel bed with a thickness of 300mm-600mm. This foamer is lighter in clogging, but produces bubbles with a large diameter.
  • Water/air jet inflator This inflator is divided into 3 types: TurboAir type, FloTair type and CESL type.
  • the TurboAir model was developed by the U.S. Bureau of Mines.
  • the inflator with an inner diameter of 50mm is filled with glass balls or quartz particles, and small bubbles with a diameter of 0.1mm-0.3mm are generated under high pressure.
  • the FloTair foamer produced by DeisTerConCenTraTor in the United States disperses pressurized air from an external disperser through an inflatable plate in the machine into the tank. It works under the conditions of a pressure of 300 Ka to 480 Ka and a flow rate of air to water of about 30. Produces tiny bubbles with a diameter of about 0.1mm.
  • the CESL type inflator was produced by CominCoEngieeringServiCeLTd (CESL) in Canada in 1988.
  • the gas disperser outside the flotation column produces an air-water mixture, which is dispersed into the flotation jet through a metal tube.
  • the pressure is operated at 300Ka-600Ka.
  • the bubble diameter is 0.3mm-0.4mm, which can ensure that the gas content reaches 50%.
  • the porous metal tube can be replaced during operation, and the operation rate is high.
  • CESL type inflators have been widely used in North America, South America and South Africa.
  • Air jet inflator Canadian MinovEXTeChnologies company developed a mechanism that does not use water but only blows in air (air jet) to generate bubbles.
  • the inflator is a simple structure composed of a needle valve and a bubble spray hole. It has a large pore size. Because the surface is covered by ceramics, it will not be blocked. The life span is up to 2a.
  • the bubble diameter is 0.5mm-3.0mm, which is easy to use.
  • MinnoveX static mixer uses high-speed flow of ore pulp and gas to form bubbles under the action of the shearing parts, and has the characteristics of easy replacement and online adjustment of the bubble size, but the processing accuracy is relatively high.
  • Porous venturi When water flows through the porous pipe at high speed, the pressure in the pipe is lower than the atmospheric pressure, and the air spontaneously enters and mixes with the water, and bubbles are generated under the high-speed shear of the porous medium. When the pressure is released, a large number of microbubbles are precipitated, and then enter the swirling section along the tangent line.
  • Cyclone type aerator In the cyclone flotation machine, the centrifugal force makes the pulp and bubbles fully mix, and the air can be fed in by itself or pressed in. The centrifugal force causes the mineral particles to move to the wall of the tank, and because the bubbles rise to the inside, the collection speed is fast, so the flotation effect of fine-grained minerals is good, but it is not good for the separation of coarse-grained and high-density minerals.
  • Countercurrent mineralization flotation column countercurrent collision mineralization flotation column such as CPT flotation column, FXZ full static flotation column, etc.
  • CPT flotation column The flotation column is developed by the Canadian Process Technology Company, and its core is its air dispersion system. There are four types in total, the latest of which is the SlamJeT disperser and the SParJeT disperser.
  • the ore pulp treated with flotation reagent is fed in from about 1m-2.0m below the top of the column, and a gas disperser that can be disassembled and repaired from the outside of the column is installed near the bottom of the column.
  • the microbubbles generated by the gas disperser rise freely under the action of buoyancy, while the mineral particles in the slurry fall freely under the action of gravity.
  • the rising bubbles and falling mineral particles contact and collide in the collection area, and the hydrophobic mineral particles are captured. Attaches to the bubbles, thereby mineralizing the bubbles.
  • the mineralized bubbles loaded with useful mineral particles continue to float and enter the beneficiation area, and gather on the top of the column to form a mineralized foam layer with a thickness of up to 1m.
  • the foam layer is cleaned by the flushing water flow, so that it is entrained and enters the veins of the foam layer.
  • the stone particles fall off from the foam layer to obtain a higher grade concentrate.
  • the tailings slurry is discharged from the bottom of the column, and the entire flotation column is kept working under the condition of "positive bias current". FXZ fully static flotation column.
  • FXZ static flotation column was developed by the Beijing campus of China University of Mining and Technology, including static flotation column and its supporting drop box. There is no swirling flow in the flotation column. The slurry floats from top to bottom, and the flowing bubbles float from bottom to top. After the target ore particles collide with the bubbles, they adhere to the bubbles, and the concentrate bubbles float up to the top to overflow and discharge, and the tailings follow the water flow. Drain to the bottom. There are no moving parts in the drop box. The flotation reagent is sprayed into the drop box in the form of emulsion droplets by high-pressure wind, and mixed with the flotation feed material. Due to the effect of gravity, the slurry flows from top to bottom. The reagent and mineral particles are flowing during the flow. Full contact improves the flotability of the target mineral. After entering the flotation column, the flotation speed and the processing capacity of the flotation column can be increased.
  • the flotation column uses the principle of jet flow to introduce air. Its conical shrinking tube is connected with the horn tube in the empty chamber. When the high-speed water flow flows from the conical shrinking tube to the horn tube, the cross section of the water is gradually reduced. Small, a large flow rate is formed at the outlet of the conical shrinking tube, causing the pressure at that place to drop below the atmospheric pressure, forming a negative pressure in the suction chamber, and allowing air to enter the empty chamber from the outside.
  • a reflective false bottom is installed at the bottom of the sorting tank, whose function is to pulverize the air carried by the high-speed water flow into bubbles, which are then dispersed throughout the sorting tank.
  • the device has small bubble diameter, high air holding capacity, relatively uniform air dispersion, simple structure, convenient operation, no moving parts, and good selection indicators.
  • Tube flow mineralization flotation column, tube flow mineralization flotation column includes jet flotation column, jet flotation column, Jameson flotation column, etc., among which Jameson flotation column is the most typical.
  • the Jameson flotation column was developed in Australia. Its working principle is to pump the medicament slurry into the mixing head of the downcomer through the feed pipe, and form a jet through the nozzle to generate a negative pressure zone, thereby inhaling air to produce bubbles , The mineral particles collide with the bubbles in the downcomer to mineralize, and the downward flow is discharged from the bottom of the tube into the separation column. The mineralized bubbles rise to the foam layer on the upper part of the column. After being selected by the washing water, they flow into the concentrate chute.
  • the air-filled stirring device is a key component of the Jame-son flotation column. It uses the jet pump principle to convert the pressure energy of the slurry from the nozzle into kinetic energy, and at the same time form a negative pressure in the sealed casing, and the air is sucked in by the air duct. Through the sealed casing, the jet wraps the gas into the mixing casing. Under the action of the highly turbulent fluid, the gas is divided into bubbles and continuously collides and adheres to the mineral particles to obtain mineralization.
  • the disperser is equivalent to a static impeller, which evenly disperses the vertical downward ore slurry in the radial direction.
  • the swirl mineralization flotation column has a swirling gas-filled flotation column.
  • the flotation column was developed by the University of Utah.
  • the ore pulp is fed in the tangential direction at a certain pressure, the air enters from the porous column wall, the foam product moves upward through the inner spiral and is discharged, and the sediment is discharged from the bottom.
  • the equipment has high efficiency, but the wall wear is serious. It proposes a high-efficiency aeration mineralization method, which corresponds to countercurrent mineralization, and its bubble formation and mineralization process highlights the "vertical" characteristics.
  • this "vertical" mineralization method not only improves the mineralization efficiency of flotation, but also reduces the lower limit of flotation particle size. Coupled with the gravity separation in the centrifugal force field, a comprehensive force field advantage for the sorting of fine materials is formed.
  • the downstream-countercurrent multi-stage mineralization flotation column is a downstream-countercurrent multi-stage flotation column developed by the Russian IOTT Research Institute.
  • the flotation column has a tank volume of 1580m 3 and a height of 4.6m. Since each column has a different fluid dynamics and aeration state, and the slurry flow rate and residence time can be adjusted by changing the cross section of the column, different floatable particles can be recovered.
  • the bubble mineralization methods of flotation columns also show diversified characteristics. Multiple combinations of mineralization methods have become an important direction of flotation column research.
  • the purpose of the present invention is to provide a nanobubble flotation column.
  • the present invention provides a nanobubble flotation column. It is composed of cavitation bubble nozzle, slurry distributor, multiple swirl jet nozzles, flotation column and multiple conveying pipelines;
  • the swirl jet nano-cavitation bubble nozzle is composed of an outer sleeve, a slurry input pipe, a throat pipe, and a negative pressure suction pipe.
  • the slurry input pipe and the throat pipe are inserted from both ends of the outer sleeve, and the wall of the slurry input pipe faces A mixing chamber is formed between the inner convergent outlet and the inlet of the throat pipe.
  • the negative pressure suction pipe is arranged perpendicular to the outer sleeve at the junction of the slurry input pipe and the mixing chamber.
  • a spiral guide vane ;
  • the upper part of the slurry distributor is a cylindrical cylinder, and the lower part shrinks in a conical shape to form a cone part.
  • the bottom end of the cone part is provided with a pulp inlet, and the side wall of the cylinder is provided with one or more circles of pulp outlets along the circumferential direction. There are multiple pulp outlets;
  • the swirl jet nozzle is composed of an outer casing, a slurry input pipe, a throat pipe, and a negative pressure suction pipe.
  • the slurry input pipe and the throat pipe are inserted from both ends of the outer casing.
  • the inwardly convergent outlet of the slurry input pipe A mixing chamber is formed between the entrances of the throat pipes.
  • two L-shaped negative pressure suction pipes are arranged on the outer sleeve 180°, and the long sides of the two negative pressure suction pipes are in the same direction. Parallel, and merge into a confluence pipe at the upper part, and a suction pipe valve is provided on the confluence pipe to control the suction volume;
  • the inner wall of the slurry input pipe is provided with multiple spiral guide vanes;
  • the column of the flotation unit is composed of a plurality of pulp flotation columns, and each pulp flotation column includes a hollow cylinder, the upper part of which is a polygonal column-shaped cylinder, and the lower part is a polygonal cone that shrinks to form a cone.
  • the bottom end of the cone part is provided with a coarse particle tailings discharge pipe; a high steady flow distributor is arranged at the center of the cone part close to the cylinder part, and a porous steady flow is arranged at the third part of the cone part from the top.
  • the upper edge of the cylinder is provided with a concentrate discharge pipe.
  • the outer edge of the cylinder is provided with a tailings box.
  • the lower part of the tailings box is provided with a self-circulating regulating pipe and a tailings discharge pipe.
  • the position is lower than the tailings discharge pipe;
  • the top of the tailings tank is equipped with a liquid level control gate, the lower end of the gate moving plate is connected to the fixed plate, and the lower end of the fixed plate is connected between the self-circulating regulating pipe and the tailings discharge pipe, and the tailings
  • the tank is divided into two parts: self-circulation side and tailings discharge side;
  • the self-circulating regulating pipe can input the tailings to the slurry mixing process (such as the slurry mixing barrel) mixing barrel before the slurry pump, and the slurry pump re-enters the flotation process.
  • the slurry mixing process such as the slurry mixing barrel
  • the slurry pump re-enters the flotation process.
  • This is to avoid production shutdown when the raw material supply is insufficient. Production shutdown will bring a series of reactions and bring significant economic losses to the enterprise, and the setting of the slurry self-circulation regulating pipe can continue to operate the entire system when the raw material supply is insufficient.
  • the tailings discharge pipe is closed and self-circulation regulation The pipe is opened, and the tailings are sent to the slurry mixing process before the slurry pump by the conveying pipeline, and the slurry pump enters the flotation process again.
  • the self-circulation regulating pipe is closed, the tailings discharge pipe is opened, and the tailings slurry is discharged into the next production process.
  • the liquid level control gate controls the liquid level height and tailing slurry by raising or lowering it.
  • the tailing slurry overflows through the upper end of the gate and enters the tailings discharge side of the tailing box, so that the tailings slurry is discharged from the tailings discharge pipe at the bottom. .
  • open the control valve on the self-circulation regulating pipe Because the position of the self-circulating pipe is lower than that of the tailings discharge pipe, the tailings slurry will be discharged from the self-circulating regulating pipe first to meet the requirements of self-circulating slurry. If there is excess slurry flow, it will overflow through the upper end of the gate and enter the tailings discharge side of the tailings box.
  • the tailings discharge pipe is discharged from the tailings discharge pipe.
  • the tailings discharge pipe does not have a control valve.
  • the gate control liquid level is very stable.
  • the tailings discharge pipe discharge of the tailings box is conducive to the energy consumption of the slurry mixing tank in the next production process.
  • the tailings slurry discharged from the tailings box can flow into the next process by itself, without the need for power to transport the slurry. .
  • the number of swirl jet nozzles corresponds to the number of slurry outlets of the slurry distributor and the number of slurry flotation columns;
  • the slurry input pipe of the swirl jet nano-cavitation bubble nozzle is connected with the slurry pump, and the throat pipe is connected with the slurry inlet of the slurry distributor through a conveying pipe; each slurry outlet is connected to the slurry of a swirl jet nozzle through the conveying pipe
  • the input pipe is connected.
  • the throat pipe of the swirl jet nozzle is connected with the conveying pipe, and the conveying pipe passes through the side wall of the middle part of a slurry flotation column to the center of the slurry flotation column and bends vertically downward and inserts into the slurry stable In the flow distributor; a plurality of stator mixing impellers are arranged in the part of the conveying pipeline inserted into the slurry steady flow distributor.
  • the slurry steady flow distributor is composed of a circular bottom plate and a hollow cylinder, the diameter of the circular bottom plate is smaller than the bottom of the cylinder of the slurry flotation column, and the diameter of the cylinder is smaller than the circular bottom plate;
  • the side wall of the body is uniformly provided with a plurality of rows of obliquely arranged oblong holes, and the center of the top of the cylinder is provided with a circular hole for the conveying pipeline to pass through.
  • the long round hole is a balanced hole, which is used for the gas to be easily pulverized into discrete bubbles under the action of the orifice.
  • the porous stabilizing plate is composed of a hexagonal central plate and six peripheral plates surrounding the central plate. Both the central plate and the peripheral plate are evenly provided with small holes.
  • the ore slurry pressure of the slurry pump is 3MPa-10MPa; the optimal nanobubble ore slurry pressure is controlled at 4MPa-6MPa.
  • the angle between the wall of the slurry input pipe of the swirl jet nano-cavitation bubble nozzle and the outer sleeve pipe wall is 13°, and the outlet diameter of the slurry input pipe is 0.25 times the length of the slurry input pipe; the swirl jet The angle between the pipe wall of the nozzle slurry input pipe and the outer casing pipe wall is 13°, and the outlet diameter of the slurry input pipe is 0.25 times the length of the slurry input pipe.
  • the number of spiral guide vanes provided on the inner wall of the slurry input pipe of the swirl jet nano-cavitation bubble nozzle is two to four, preferably 3; the inner wall of the slurry input pipe of the swirl jet nozzle is provided The number of some spiral guide vanes is two to four, preferably three.
  • the ratio m of the cross-sectional area of the mixing chamber of the swirl jet nano-cavitation bubble nozzle to the outlet cross-sectional area of the slurry input pipe is between 6-10; the cross-sectional area of the mixing chamber of the swirl jet nozzle is equal to that of the slurry.
  • the ratio m of the outlet cross-sectional area of the input pipe is between 6-10.
  • the mixing chamber In the mixing chamber, the interaction between the fast-moving pulp and the entrained air intensifies, the air and the pulp are fully mixed, and the air is dispersed and broken into bubbles. Therefore, the mixing chamber has an important influence on the foaming quality of the bubble generator, and the structure, shape and size of the mixing chamber are also very important. In order to cut the gas into nano-sized bubbles, the slurry flow and the air flow must be violently turbulently mixed in the mixing chamber. The more fully mixed, the higher the bubble formation rate. The length and size of the mixing chamber (usually expressed by the ratio m (between 6-10) between the section of the mixing chamber and the exit section of the slurry input pipe), which plays an important role in the size and dispersion of the generated bubbles.
  • the mixing chamber When the diameter is small, the turbulent mixing is intense, and the bubble size is small and the dispersion is better. On the other hand, when the diameter of the mixing chamber is large, it is beneficial to inhale more gas and increase the gas content. For swirling flow, the diameter of the mixing chamber should not be too large, so that the high-speed jet will not have a turbulent mixing effect in the mixing chamber, and the length of the mixing chamber should not be too small, otherwise the jet will directly penetrate the mixing chamber. It does not play the role of mixing or blending.
  • the length L 1.N is 1.5d n -2.5d n ;
  • the outlet diameter of the slurry inlet pipe of the swirl jet nozzle is d n
  • the mixing chamber length L 1.N between 1.5d n to 2.5d n.
  • the invention adopts swirl jet nano-cavitation bubble nozzles and swirl jet nozzles with spiral guide vanes to control the movement trajectory of the slurry particles, reduce the erosion and wear of the particles to the nozzle, and prolong the service life of the nozzle.
  • the spiral The guide vane changes the flow form of the existing jet into a rotary type, and is beneficial to the improvement of the foaming performance of the swirl jet bubble generator.
  • the invention adopts the swirl jet nano-cavitation bubble nozzle and the swirl jet nozzle to jet twice to form nano-level bubbles (nano bubbles), the nano-bubbles are in the range of ⁇ 1nm- ⁇ 1 ⁇ m; the nanobubbles of this level have a large specific surface area (contact angle ⁇ 175°), with stronger surface activity, because the surface free energy is extremely large, and the selectivity is higher than that of ordinary bubbles; it has a highly dispersed and relatively stable gas substance that can adjust and promote the interaction between particles-particles and particle-bubbles Its promoting effect is derived from the "nanobubble bridging capillary force" generated in the process of nanobubble aggregation, which can be more attached to the surface of the particle, with a slow rising speed, agglomerating fine particles, increasing its size, and increasing the probability of capture; The role of the secondary collector can improve the hydrophobicity of the particle surface; by
  • the bubble volume of the nano bubble can be directly controlled by adjusting the negative pressure suction volume, which is convenient for operation and good dispersion.
  • the invention changes from an internal inflation type to an external inflation type, replacing the original one-point type inflation with multi-layer, multi-point inflation, etc., and improves the flotation efficiency of the column of the flotation unit.
  • the formed nanobubbles can stably exist in the sodium oleate solution for more than 1 hour, and have strong stability; the size of nanobubbles decreases with the increase of sodium oleate concentration, and increases with the increase of pH; surface electricity Negativity increases with the increase of pH; after a certain time range, prolonging the cavitation time has no significant effect on the size of the nanobubbles, which is caused by the dissolved gas in the solution reaching dynamic equilibrium in the water phase and the gas phase.
  • Unique nano bubble effect energy saving, low cost, quality and efficiency improvement.
  • the slurry flotation column provided by the present invention is a short column.
  • a central pump of this equipment can realize different numbers of tanks with six, one with twelve, one with sixteen, and even one with twenty-four through the slurry distributor. Match. And according to the needs of different mines, different ores and different processing capabilities, flexible switching of different scales can be carried out at any time, which solves the big problem of traditional flotation equipment that is difficult to replace or deploy processes.
  • Nanobubble flotation column can produce a large number of nanobubbles in an instant and can quickly capture fine particles below -19 microns to form hydrophobic ore clusters.
  • the beneficiation recovery rate of this new flotation column is on average twice that of the traditional flotation machine, and the recovery rate of fine particles is increased by more than 30% than that of the conventional flotation column;
  • Nanobubbles form bubbles of a size suitable for mineralization during the rapid ascent, and gradually form a stable and thick foam layer.
  • useful minerals can be instantly enriched, making the enrichment ratio significantly higher than that of traditional flotation columns.
  • the nanobubble flotation column can replace three or even four operations of the traditional flotation machine in one process, thereby greatly simplifying the production process.
  • a central pump of this equipment can be matched with different numbers of tanks, such as one with six, one with sixteen, or even one with twenty-four. And according to the needs of different mines, different ores and different processing capabilities, flexible switching of different scales can be carried out at any time, which solves the big problem of traditional flotation equipment that is difficult to replace or deploy processes.
  • the slurry flotation column is equipped with a flow stabilizing plate with sequential drilling to improve the slurry flow in the flotation column, overcome the problems of "turning” and “draining” that often occur in industrial flotation columns, and form an ideal “ “Slug flow” flow pattern can improve the stability of the slurry flow pattern in the column and the uniformity of bubble dispersion.
  • the multiple swirl jet nanobubble nozzle device is an external type, feeding the ore from the bottom, saving energy consumption; the microbubbles and the slurry generated by the solid, liquid and gas are fed symmetrically at the bottom of the main column, and a high turbulence distributor device is installed at the bottom of the main column
  • the bubbles and the slurry are in a small space.
  • the slurry steady flow distributor at the bottom of the main column is suspected to be a baffle.
  • nanobubbles reduce the bubble size and increase the collision probability between mineral particles and bubbles, on the other hand. Nano-strain bubbles have a large specific surface area, high surface energy, and higher selectivity than ordinary bubbles.
  • the invention provides a nano-bubble flotation column, which can form nano-scale bubbles and improves the flotation efficiency of mineral particles, especially for very fine and coarse particles.
  • the equipment replaces the pressure-dissolving, jet and other bubble generation methods of traditional flotation columns with "series, plural, swirl jet nanobubble flotation columns". It has the characteristics of small bubble diameter, good stability, and easy control of bubble volume.
  • the size of the bubbles produced has nothing to do with the apparent inflation rate and the feeding rate.
  • the size of the bubbles can be directly controlled by adjusting the size of the negative pressure suction. Therefore, the problem that the nanobubble level cannot be obtained under the condition of high apparent aeration rate and high throughput, which is common in many flotation columns at present, is well solved.
  • Figure 1A is a side view of the first preferred embodiment of the nanobubble flotation column provided by the present invention.
  • Fig. 1B is a top view of the first preferred embodiment of the nanobubble flotation column provided by the present invention.
  • FIG. 2A is a schematic cross-sectional view of the swirl jet nano-cavitation bubble nozzle of the first preferred embodiment of the nanobubble flotation column provided by the present invention.
  • 2B is a schematic diagram of the slurry input pipe end of the swirl jet nano-cavitation bubble nozzle of the first preferred embodiment of the nanobubble flotation column provided by the present invention.
  • Fig. 3 is a side view of the slurry distributor of the first preferred embodiment of the nanobubble flotation column provided by the present invention.
  • FIG. 4A is a cross-sectional view of the swirl jet nozzle of the first preferred embodiment of the nanobubble flotation column provided by the present invention.
  • 4B is a schematic diagram of the slurry input pipe end of the swirl jet nozzle of the first preferred embodiment of the nanobubble flotation column provided by the present invention.
  • Fig. 5A is a side view of the slurry flotation column of the first preferred embodiment of the nanobubble flotation column provided by the present invention.
  • Fig. 5B is a perspective view of the slurry flotation column of the first preferred embodiment of the nanobubble flotation column provided by the present invention.
  • 5C is a cross-sectional view of the slurry flotation column of the first preferred embodiment of the nanobubble flotation column provided by the present invention.
  • Fig. 6A is a side view of the slurry steady flow distributor of the first preferred embodiment of the nanobubble flotation column provided by the present invention.
  • Fig. 6B is a top view of the slurry steady flow distributor of the first preferred embodiment of the nanobubble flotation column provided by the present invention.
  • Fig. 7A is a side view of the porous stabilizing plate of the first preferred embodiment of the nanobubble flotation column provided by the present invention.
  • Fig. 7B is a top view of the porous stabilizing plate of the first preferred embodiment of the nanobubble flotation column provided by the present invention.
  • Fig. 8 is a perspective view of the slurry distributor of the second preferred embodiment of the nanobubble flotation column provided by the present invention.
  • Fig. 9 is a perspective view of the slurry distributor of the third preferred embodiment of the nanobubble flotation column provided by the present invention.
  • the first preferred embodiment of the nanobubble flotation column provided by the present invention, as shown in Figure 1A and Figure 1B, consists of a slurry pump 1, a cyclone jetting nano-cavitation bubble nozzle 2, a slurry distributor 3, and a plurality of cyclones. It is composed of jet nozzle 4, flotation column and multiple conveying pipes 9;
  • the swirl jet nano-cavitation bubble nozzle 2 is composed of an outer sleeve 21, a slurry input pipe 22, a throat pipe 23, and a negative pressure suction pipe 24, wherein the slurry input pipe 22 and the throat pipe 23 are inserted from both ends of the outer casing 21.
  • the mixing chamber 25 is formed between the inwardly convergent outlet 221 of the slurry inlet pipe 22 and the inlet 231 of the throat pipe 23.
  • the junction of the slurry inlet pipe 22 and the mixing chamber 25 is perpendicular to the
  • the outer sleeve 21 is provided with the negative pressure suction pipe 24, and the inner wall of the slurry input pipe 22 is provided with a plurality of spiral guide vanes 26; in this embodiment, the spiral guide vanes 26 of the swirl jet nano-cavitation bubble nozzle are separated from each other. Three at 120°.
  • the upper part of the slurry distributor 3 is a cylindrical barrel 31, and the lower part shrinks in a conical shape to form a cone portion 32.
  • the bottom end of the cone portion 32 is provided with a slurry inlet 33, and the side wall of the barrel is provided with one or more circles along the circumferential direction.
  • the slurry outlet 34 is provided with a plurality of slurry outlets 34 in each circle; in this embodiment, a circle of slurry outlets 34 is provided along the circumferential direction on the side wall of the cylinder, and the number of slurry outlets is six, as shown in FIG. 3.
  • the swirl jet nozzle is composed of an outer sleeve 41, a slurry input pipe 42, a throat pipe 43, and a negative pressure suction pipe 44.
  • the slurry input pipe 42 and the throat pipe 43 are separated from the outer sleeve 41.
  • the outlet 421 of the slurry inlet pipe 42 converging inwardly and the inlet 431 of the throat pipe 43 form a mixing chamber 45.
  • two outer casings are arranged at 180° relative to each other.
  • the column of the flotation unit is composed of a plurality of slurry flotation columns 5.
  • Each slurry flotation column includes a hollow cylinder 51, the upper part of which is a polygonal column-shaped cylinder part 511, and the lower part Constricts in a polygonal pyramid shape to form a cone portion 512.
  • the bottom end of the cone portion 512 is provided with a tailings discharge port 52; a high steady flow distributor 53 is provided at the center of the cone portion 512 near the body portion.
  • a porous stabilizing plate 54 is provided at one third of the cylinder body from the top, a concentrate discharge pipe 55 is provided on the upper edge of the cylinder body, a tailings box 56 is provided on the outer edge of the cylinder body, and the lower part of the tailings box is provided There is a self-circulating regulating pipe 561 and a tailings discharge pipe 562.
  • the position of the self-circulating regulating pipe 561 is lower than the tailings discharge pipe 562; the top of the tailings tank is provided with a liquid level control gate 563, and the lower end of the gate is connected with a moving plate 564 , The lower end of the movable plate is provided with a fixed plate 565, the lower end of the fixed plate 565 is connected between the self-circulating regulating pipe 561 and the tailings discharge pipe 562, and the tailings box 56 is divided into two parts, the self-circulating side and the tailings discharge side;
  • the number of swirl jet nozzles 4 corresponds to the number of slurry outlets 34 of the slurry distributor 3 and the number of slurry flotation columns 5;
  • the slurry input pipe 21 of the swirl jet nano-cavitation bubble nozzle 2 is connected to the slurry pump 1, and the throat pipe 22 is connected to the slurry inlet 34 of the slurry distributor 3 through the conveying pipe 9; each slurry outlet 34 passes through the conveying pipe 9 is connected with the slurry input pipe 41 of a swirl jet nozzle 4, the throat 42 of the swirl jet nozzle 4 is connected with the conveying pipe 9, and the conveying pipe 9 passes through the side wall of the middle part of the cylinder of a slurry flotation column 5 Go to the center of the slurry flotation column 5 and bend vertically downward and insert it into the slurry steady flow distributor 53.
  • a plurality of stator mixing impellers 91 are provided in this part of the conveying pipeline 9.
  • the slurry steady flow distributor 53 is composed of a circular bottom plate 531 and a hollow cylinder 532.
  • the diameter of the circular bottom plate 531 is smaller than the diameter of the cylinder of the slurry flotation column 5.
  • the hollow cylinder 532 has a diameter smaller than the circular bottom plate 531; the side wall of the cylinder 532 is evenly provided with a plurality of rows of obliquely arranged oblong holes 533, and the top center of the hollow cylinder 532 is provided with a circle for the conveying pipe 9 to pass through. Hole 534.
  • the porous flow stabilizing plate 54 is composed of a hexagonal central plate 541 and six peripheral plates 542 surrounding the central plate. Both the central plate and the peripheral plate are evenly provided with small holes. .
  • the number of swirl jet nozzles 4 corresponds to the number of slurry outlets 24 of the slurry distributor 3 and the number of slurry flotation columns 5.
  • the number of slurry outlets 24 of the slurry distributor 3 is 6, so the rotary
  • the number of jet nozzles 4 and the number of slurry flotation columns 5 are also six.
  • the height of the pulp flotation column 5 is 5.9 meters (the height of the barrel is 4.7 meters, and the height of the bottom cone is 1.2 meters), and the diameter is 6 meters.
  • the slurry outlet 34' of the slurry distributor 3' is provided with two circles along the side wall of the cylinder in the circumferential direction, and each circle is provided with six slurry outlets 34', a total of 12 . Therefore, in the second preferred embodiment, the number of swirl jet nozzles 4 and the number of slurry flotation columns 5 are also twelve.
  • the slurry outlet 34" of the slurry distributor 3" is provided with three circles along the cylinder side wall in the circumferential direction, and each circle is provided with 8 slurry outlets 34", a total of 24. Therefore, in the third preferred embodiment, the number of swirl jet nozzles 4 and the number of slurry flotation columns 5 are also 24.
  • the slurry pressure of the slurry pump is controlled at 4MPa-6MPa.
  • the angle between the wall of the slurry input pipe of the swirl jet nano-cavitation bubble nozzle and the outer sleeve pipe wall is 13°, and the outlet diameter of the slurry input pipe is 0.25 times the length of the slurry input pipe; the swirl jet The angle between the pipe wall of the nozzle slurry input pipe and the outer casing pipe wall is 13°, and the outlet diameter of the slurry input pipe is 0.25 times the length of the slurry input pipe.
  • the ratio of the cross-sectional area of the mixing chamber of the swirl jet nano-cavitation bubble nozzle to the cross-sectional area of the outlet of the slurry input pipe is 8.
  • the nanobubble flotation column of the first preferred embodiment provided in Example 1 was used for the flotation test of Panzhihua fine-grained ilmenite titanium.
  • the nanobubble flotation column is suitable for the flotation tailings of the titanium dressing plant. After 72 hours of industrial testing, it has been obtained that when the ore grade is 6.55%, the concentrate grade is 47.75%, the tailings grade is 4.83%, the yield rate is 4.01%, the recovery rate is 29.21%, and the flotation reagent cost is 108.03 yuan/ton of concentrate. Good indicator.
  • the nanobubble flotation column provided by the invention has the remarkable characteristics of maintaining a high recovery rate while achieving a high enrichment ratio, fast sorting speed and the like.
  • the flotation tailings with a TiO 2 grade of about 6.5% lower can be separated to more than 47% with only one roughing, one sweeping and three finishing processes.
  • the nanobubble flotation column provided by the invention has strong adaptability to the fluctuation of the raw ore grade. As long as the TiO 2 grade of the flotation raw ore is controlled to be above 4.5%, the nanobubble flotation column provided by the present invention can stably and better select qualified titanium concentrate products.
  • the nano-bubble flotation column provided by the present invention solves the problem of re-recycling the flotation tailings with low-level valuable minerals that cannot be effectively recovered in the current titanium dressing plant, and can maximize the resource utilization rate.
  • the second preferred embodiment of the nanobubble flotation column provided in Example 1 is used for industrial production of the strong magnetic coarse concentrate magnetic roasting-weak magnetic separation tailings and the strong magnetic medium ore floating rare earth tailings of Baotou Iron and Steel Concentrator:
  • the mixed flotation concentrate obtained by pre-decarburization and mixed flotation of the magnetic tailings is subjected to the whole-process flotation test of one roughing, three beneficiation and one sweeping.
  • the yield rate is 3.24% and the REO grade is 63.41. %, the recovery rate is 25.13% of high-grade rare earth concentrate products.
  • the use of cyclone jet nano-mineralization flotation column is used to separate the flotation tailings slurry from the Changba lead-zinc mine of Gansu Baiyin Company.
  • the test has achieved good indicators: the quality of lead-zinc concentrate is 30.04%, the metal recovery rate is 44.25%, and the annual production profit is 13.12 million yuan.
  • the nano-bubble flotation column equipment runs smoothly and reliably, and is easy to operate (the main operation is only to adjust the slurry level through the flotation gate); the negative pressure suction is large, and it can generate sufficient air to increase the chance of combining minerals and foam. , Is conducive to the flotation of minerals; the thickness and area of the foam layer are much larger than ordinary flotation machines, ensuring a high enrichment ratio. Ensure a high recovery rate.
  • the operating recovery rate can be increased by about 35 percentage points.
  • the nanobubble flotation column provided by the present invention has excellent performance in the recycling of low-grade coarse particles and fine-grained minerals and the reduction of concentrate magnesium oxide content.
  • the first preferred embodiment of the nanobubble flotation column provided in Example 1 was used for the industrial test of the re-concentration of copper-nickel tailings in Jinchuan, Gansu, with a scale of 2000 tons/day, using one coarse, one sweeping and two refining processes.
  • the ore grade is 0.274% nickel and 0.30 copper grade
  • the nickel concentrate grade is 3.153%, copper 2.48%
  • the recovery rate to ore feed is 14.86%, copper 6%
  • the recovery rate to raw ore is increased by 2.06% , Achieved good indicators.
  • tailings can not only improve the ecological and environmental problems caused by tailings stacking, but also expand the scope of resource utilization.
  • the recovery of metals in the tailings can bring huge economic benefits.
  • the annual production is 330 days.
  • the annual production of nickel can be more than 3,800 tons, which can only be recovered from the tailings.
  • Nickel can increase the annual output value by about 570 million yuan and make more than 260 million yuan in profit.
  • the nanobubble flotation column provided by the present invention through the generation of nanobubbles, the design of the slurry flotation column, etc., can effectively improve the flotation efficiency, increase the tailings recovery rate, and bring benefits to enterprises Production efficiency.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)
  • Disintegrating Or Milling (AREA)

Abstract

一种纳米泡浮选柱,由渣浆泵(1)、旋流喷射纳米空化气泡喷嘴(2)、矿浆分配器(3)、复数个旋流喷射喷嘴(4)、浮选组柱及复数条输送管道(9)组成。通过渣浆泵(1)、旋流喷射纳米空化气泡喷嘴(2)和旋流喷射喷嘴(4)产生纳米气泡或流动矿浆中的局部扰动来产生纳米气泡从而激活浮选;在矿物浮选中应用不仅能提高矿物的回收率并能降低药剂用量和降低能耗,提质增效,达到浮选设备大型化、智能化工业生产目的。

Description

纳米泡浮选柱 技术领域
本发明属于矿物浮选领域或石油、污水、造纸等行业,涉及一种矿浆浮选装置,具体涉及一种纳米泡浮选柱。
背景技术
随着人类对地球上矿物资源的不断开发和消耗,富矿和易处理的矿石资源日趋减少,而金属材料的需求量却日益增加,所以不得不开采和分选贫、细、杂矿石。这类矿石必须要磨的很细才能使得有用矿物充分的单体解离,在某些情况下,达到单体解离意味着需要将物料磨细到小于20微米的粒度。然而,随着矿石粒度的减小,矿物颗粒的浮选行为会发生根本变化,常规浮选工艺只能处理那些可浮、易浮,对浮选药剂和浮选技术及浮选设备等没有特殊要求的矿物,却很难满足充分回收这些有用的微细粒级矿物的要求。
因此,粗颗粒、微细粒矿物分选一直是选矿界面临的重大难题,细粒矿物的主要特点是质量小、比表面积大、表面能高。质量小使疏水性矿粒与气泡碰撞几率小,难以克服矿粒与气泡之间的能垒而粘附在气泡表面,实现矿粒与气泡的有效矿化。比表面积大、表面能高使脉石矿粒与有用矿粒之间容易发生非选择性团聚,引起“泡沫夹杂”现象,使精矿品位降低。为解决质量效应和表面效应所造成微细粒矿物难浮选问题,国内外研究者对浮选柱技术与装备进行了大量研究,在此背景下,出现了许多浮选柱新技术和新装备,为粗颗粒、细粒矿物柱式分选展示了良好的前景。
浮选柱的发展历史,浮选柱设计思想始于1915年。1961年加拿大工程师BouTTin研制出具有现代意义的带泡沫冲洗水装置的浮选柱,随后在前苏联和中国迅速掀起了浮选柱研究与开发应用的热潮。20世纪80年代以后,在一些新的设计思路指导下,浮选柱在气泡发生器、充气性能和运行稳定性上均有了较大的进展,涌出许多高效的浮选柱,如FloTaire浮选柱、MTU型充填介质浮选柱、旋流充气式浮选柱等。而在众多类型的浮选柱中,最有代表性的是1987年詹姆森教授发明设计的詹姆森浮选柱,该浮选柱在结构、给矿方式和分选机理上有了全新的突破,解决了因柱高所带来的一系列问题。日趋成熟。以浮选柱为中心,开展细粒级矿物浮选研究,从气泡产气方式、浮选柱结构以及配备多种检测、控制装置的浮选系统等方面的研究已成为今后浮选设备的研究发展方向。
浮选柱研究现状及进展,几种类型的浮选柱:
1詹姆森(Jameson)浮选柱,Jameson浮选柱,矿浆经过喷嘴形成射流进入导管,射流形成的真空将空气吸入,并在矿浆池剪切成气泡,下导管相当于“反应器”,精矿泡沫产品则从浮选槽排出。该柱优点:⑴、实现了矿化与分离的分体浮选策略;⑵、柱体矮,工业浮选柱高度仅2.0米;⑶、矿粒滞留时间短,矿浆含气率高,浮选效率高;⑷、矿浆通过射流形成负压吸气,动力设备为一台给料泵。该柱缺点:⑴、矿浆停留时间短,往往需要设置多段扫选;⑵、给矿波动大,分选不稳定;⑶、在柱体内形成“气弹”,影响分选效果。
充填介质浮选柱,美国密歇根工业大学开发的充填浮选柱是在常规浮选柱内装有充填介质,充填板层层排列成90°角,细小曲折的孔道使矿粒和气泡紧密接触,强化分选作用。入料从主体中部给入,底部通入压缩空气,精矿从顶部溢流排出,尾矿从底部排出,顶部设置喷水装置。该浮选柱除具有传统浮选柱的优点外,还克服了传统浮选柱气泡易兼并,易产生强烈紊流形成翻花等流态问题,并取消了易结垢堵塞的气泡发生器。在柱内装填了多层波形介质以构成许多有规则的迂回曲折通道,从下部进入的压缩空气经过通道时形成均匀气泡并携带疏水性矿物颗粒上浮。充填式浮选柱有效地实施了成泡、矿化、分离的柱浮选基本过程,但填充材料易堵塞、造价高的缺陷不仅影响了填充的实施效果,而且已影响到该填充浮选柱的工业应用。
射流式浮选柱,射流浮选柱是姜志伟博士根据自由射流浮选原理研究开发的一种新型浮选设备。卢世杰根据射流理论提出了一种新型的向下顺流喷射型浮选柱-KYZ型浮选柱。俄罗斯莫斯科国立大学的NFMeseheriakov等研究出了一种带喷射充气器的浮选柱,该型号浮选柱对较大颗粒的矿物有较好的浮选效果,已推广应用于3mm-0.8毫米粒级钾盐和2mm-0.5mm粒级金刚石的浮选,并取得了单位生产效率比其它任何型号浮选机都高出数倍的较好技术指标。乌拉尔选矿研究设计院研制的新型KФM系列浮选柱,由喷射充气器、微泡发生器、中央浮选管、排料装置和泡沫收集槽组成。这种浮选柱消除了常规浮选柱中的矿粒与气泡对流运动现象,在一台浮选设备中可以实现粗选、精选和扫选作业。
旋流-静态微泡浮选柱,旋流-静态微泡浮选柱包括柱分离段、旋流分离段、管浮选装置三部分。整个设备为柱体、柱分离段位于整个柱体上部,在其顶部设置了喷淋水管和泡沫精矿收集槽,最终精矿由此排出;给矿点位于柱分离段中、上部,旋流分离段采用分选旋流器结构,并与柱分离段呈上、 下结构直通连接,最终尾矿由旋流分离段底流口排出。管浮选装置布置在设备柱体体外,其出流管沿切线方向与旋流分离段柱体相连,相当于分选旋流器的切线给料管。管浮选装置包括气泡发生器与浮选管段两部分。气泡发生器依靠射流引入气体并把气体粉碎成气泡,经过加压的循环矿浆进入气泡发生器,形成含有大量气泡的三相体系并实现紊流矿化,然后沿切向高速进入旋流分离段。这样,管浮选装置在完成浮选充气与紊流矿化的同时,又以切向方式在浮选柱底部形成了旋流力场,实现连续分选过程。
其它几种新型浮选柱
1.机械搅拌浮选柱。普通浮选柱浮选粗粒矿物的能力较低,为改善粗粒浮选效果,在浮选柱中加入了机械搅拌机构,如WemCo/Leeds浮选柱。该浮选柱具有机械冲气搅拌装置,搅拌均匀粗粒不易沉淀;柱内装有几层隔栅介质辊,可通过自动调节辊间间隙来控制精矿品位;在柱顶加冲洗水,排除泡沫中脉石夹杂。
2.稳流板浮选柱。密西根技术大学针对轴向混合和泡沫兼并问题,研制了带有水平稳流板的浮选柱,水平稳流板由一些简单带孔的板组成。此外,美国西弗吉尼亚大学的Meloy等提出了二维浮选柱,其柱体内部由充填物分成若干个小槽,因此可以产出一组品位连续变化的产品,类似于摇床。
3.LM浮选槽。该设备包括浮选槽、柱、泵前缓冲槽、泵。矿浆进入泵前缓冲槽,再用泵垂直向下打人柱体,同时引入压缩空气,在该柱体内完成矿浆与气泡的混合,并为浮选槽提供入料。这种高强度混合可以使矿浆在非常短时间内完成颗粒捕收,并具有较高的回收率。泡沫从柱体底部排入浮选槽,并在浮选槽上部形成较厚的泡沫层。LM浮选槽是一种新型的浮选设备。它可用于处理非磁性、磁性和非金属矿物。
4.微泡浮选柱。该设备采用传统浮选柱的矿化分离模式,突出了浮选的“微泡效应”。该浮选柱的“革命性”贡献在于成泡方式的变革-流体混合成泡(具体实施方式为加静态搅拌叶片)。利用流体混合成泡以及“微泡效应”提高柱分选效率的思路已在浮选柱设计当中普遍采用。
气泡发生器研究进展,根据发泡方式和发泡装置不同,浮选柱的气泡发生器可分为内部发泡器和外部发泡器。发泡方式,近年来常用的气泡发生方式主要有以下几种:
1.剪切接触发泡。高速流动的矿浆和气体以适当方式接触,如通过金属网或充填介质产生气泡。剪切接触发泡是利用气、液混合过程把气体粉碎成气泡,其气泡大小主要取决于液体紊流度、持续混合时间,并最终达到与体系 能量状态相匹配的气泡临界尺寸。
2.微孔发泡。气体通过微孔塑料、橡胶、帆布、尼龙、微孔陶瓷管或卵石层发泡。由于微孔发泡易堵塞,使得微孔材料不能充分发挥作用,而且充气量(压力)增大会直接造成气泡尺寸增大,因此,目前该法采用较少。
3.降压或升温发泡。空气在水中的溶解度大约为2%,当降低压力或升高温度时,溶解的气体析出产生气泡。
4.射流发泡。受压气流喷入矿浆或矿浆喷入气流均可产生适合浮选的气泡。该法是先将液体变成分散相,然后随压力增大逐步成连续相气体则由开始的连续相逐步分散成为微泡。射流成泡技术是气泡发生技术的一大变革。
5.电解水产生气泡。利用电解水原理,在通电条件下,采用电解方式使水分解生成氢气和氧气,电解产生的氢气和氧气直径微小,气泡量可通过电流调节来控制,利用电解水技术进行微泡浮选是气泡发生技术的一个创新。
内部发泡器
1.过滤盘式发泡器。在盘式过滤机的过滤盘上蒙一层滤布,平放于浮选柱底部,即为发泡器。该发泡器产生的气泡较均匀,但易磨损。
2.立管发泡器。将多个直径40mm-75mm、高300mm-500mm的立管均匀分布于浮选柱底部,并与控压器管网相连接。每个立管上下段界面装有多孔介质材料。由于矿泥容易在多孔介质表面沉淀,因此,这种内部发泡器易于堵塞。
3.砾石床层发泡器。将直径8mm-20mm的砾石置于上下两层筛子之间,组成厚300mm-600mm的砾石床层。这种发泡器堵塞较轻,但产生的气泡直径大。
外部发泡器
1.水/空气喷射式充气器。这种充气器分为3种类型:TurboAir型,FloTair型和CESL型。TurboAir型由美国矿业局开发。在内径50mm的充气器内充填玻璃球或者石英粒子,在高压下产生直径0.1mm-0.3mm的细小气泡。由美国DeisTerConCenTraTor公司生产的FloTair型发泡器是把加压空气从外部分散器通过机内的充气板分散到槽内,在压力300Ka至480Ka、空气与水的流量比约30的条件下工作,产生直径0.1mm左右的细小气泡。CESL型充气器由加拿大的CominCoEngieeringServiCeLTd(CESL)公司于1988年开始生产,浮选柱外的气体分散器产生空气-水混合物,通过金属管分散到浮选注中,压力在300Ka-600Ka下运转,气泡直径0.3mm-0.4mm,可确保含气率达到50%,多孔金属管在作业中可以更换,运转率较高。CESL型充气器先后在北 美、南美和南非等地得到广泛应用。
2.空气喷射式充气器。加拿大MinovEXTeChnologies公司研制了不用水、仅吹入空气(空气喷射)产生气泡的机构。该充气器是由针阀与气泡喷雾孔组成的简单结构,孔径大,因表面被陶瓷覆盖,所以不会堵塞,寿命长达2a,产生的气泡直径为0.5mm-3.0mm,易于使用。
3.MinnoveX静态混合器。该混合器利用高速流动的矿浆和气体在剪切件作用下形成气泡,具有易于更换和在线调控气泡大小的特点,但加工精度要求较高。
4.多孔文氏管。当水高速流过多孔管时,管内压力低于大气压,空气自发进入与水混合,在多孔介质的高速剪切作用下产生气泡。压力释放时析出大量微泡,然后沿切线进入旋流段。
5.旋流器式充气器。在旋流浮选机中离心力使矿浆和气泡充分混合,空气既可自流给入,也可压入。离心力使矿粒向槽壁移动,由于气泡向内侧上升,捕收速度快,因此对细粒矿物浮选效果好,但对粗粒和高密度矿物的分离不利。
气泡矿化方式研究进展,早期的浮选柱矿化方式大多采用逆流矿化方式,后来随着浮选柱技术研究的不断进步,出现了逆流矿化、顺流矿化、管流或离心矿化以及多种矿化组合的矿化方式等。
逆流矿化浮选柱,逆流碰撞矿化型浮选柱如CPT浮选柱、FXZ全静态浮选柱等。CPT浮选柱。该浮选柱是由加拿大工艺技术公司研制,其核心是它的空气分散系统,共有四种类型,其中最新的是SlamJeT分散器和SParJeT分散器。经浮选药剂处理后的矿浆,从距柱顶部以下约1m-2.0m处给入,在柱底部附近安装有可从柱体外部拆装检修的气体分散器。气体分散器产生的微泡,在浮力作用下自由上升,而矿浆中的矿物颗粒在重力作用下自由下降,上升的气泡与下降的矿粒在捕收区接触碰撞,疏水性矿粒被捕获,附着在气泡上,从而使气泡矿化。负载有用矿物颗粒的矿化气泡继续浮升而进入精选区,并在柱体顶部聚集形成厚度可达1m的矿化泡沫层,泡沫层被冲洗水流清洗,使被夹带而进入泡沫层的脉石颗粒从泡沫层中脱落,从而获得更高品位的精矿。尾矿矿浆从柱底部排出,整个浮选柱保持在“正偏流”条件下工作。FXZ全静态浮选柱。FXZ静态浮选柱由中国矿业大学北京校区研制,包括静态浮选柱和与其配套的跌落箱。浮选柱中没有旋流,矿浆由上向下、流动气泡由下向上浮起,目的矿粒与气泡碰撞后,黏附在气泡上,精矿泡沫上浮到顶部溢流排出,尾矿随着水流到底部排出。跌落箱中没有运动部件,通过高 压风将浮选药剂以乳滴状喷入跌落箱,与浮选入料混合,由于重力的作用使矿浆由上向下流动,在流动过程中药剂和矿粒充分接触,提高了目的矿物的可浮性,进入浮选柱后,可以提高浮选速度和浮选柱的处理量。
顺流矿化浮选柱,该浮选柱利用射流原理引入空气,其圆锥形收缩管与喇叭管在空室中相连,当高速水流由圆锥形收缩管流向喇叭管时,因水流断面逐渐减小,在圆锥形收缩管出口处形成较大流速,致使该处压强降低至大气压强之下,在吸气室中形成负压,使空气从外部进入到空室中。在分选槽底部安装了一个反射假底,其作用在于将高速水流所携带的空气粉碎成气泡,进而弥散到整个分选槽。该设备气泡直径较小,空气保有量较高,空气分散比较均匀,且结构简单、操作方便、无运动部件,选别指标较好。
管流矿化浮选柱,管流矿化浮选柱有射流浮选柱、喷射式浮选柱、Jameson浮选柱等,其中Jameson浮选柱最为典型。Jameson浮选柱由澳大利亚研制,其工作原理是将调好药剂的矿浆用泵经入料管打入下导管的混合头内,通过喷嘴形成喷射流而产生一负压区,从而吸入空气产生气泡,矿粒在下导管与气泡碰撞矿化,下行流从导管底口排人分离柱内,矿化气泡上升到柱体上部的泡沫层,经冲洗水精选后流入精矿溜槽,尾矿则经柱体底部锥口排出。充气搅伴装置是Jame-son浮选柱的关键部件,它采用了射流泵原理,在把矿浆压能由喷嘴转换成动能的同时,在密封套管内形成负压,并由空气导管吸入空气。经密封套管,射流卷裹气体进入混合套管,在高度紊动流体作用下,气体被分割成气泡并不断与矿粒碰撞粘附,得到矿化。分散器相当于静态叶轮,将垂直向下的矿浆沿径向均匀分散。
旋流矿化浮选柱,旋流矿化浮选柱有旋流充气式浮选柱。该浮选柱由美国犹他大学研制。矿浆以一定压力沿切线方向给入,空气从多孔柱壁进入,泡沫产品通过内螺旋向上运动排出,沉砂从底部排出。该设备效率高,但器壁磨损较严重。它提出了一种高效充气矿化方式,与逆流矿化相对应,其成泡与矿化过程突出了“垂直”的特点。在较高强度的离心力场背景下,这种“垂直”矿化方式不仅提高了浮选的矿化效率,而且降低了浮选粒度下限。再加上离心力场中的重力分离作用,形成了微细物料分选的综合力场优势。
顺流-逆流多段矿化浮选柱,俄罗斯IOTT研究所研制的顺流-逆流多段浮选柱,该浮选柱槽体体积为1580m 3,高4.6m。由于每一柱体具有不同的流体力学和充气状态,而且可以通过改变柱体截面调整矿浆流速和停留时间,可使不同可浮性颗粒得到回收。随着浮选柱研究的深入,根据所研制的浮选柱特点,浮选柱气泡矿化方式也呈现多样化特点,多种组合的矿化方式已成为 浮选柱研究的一个重要方向。
近年来选矿处理的原矿镍品位逐年下降、氧化镁含量日益升高、矿石嵌布粒度越来越细,寻求高效的浮选设备是今后选矿发展的重要方向之一。
发明内容
为了解决上述问题,本发明的目的在于提供一种纳米泡浮选柱,该纳米泡浮选柱为了实现上述目的,本发明提供一种纳米泡浮选柱,由渣浆泵、旋流喷射纳米空化气泡喷嘴、矿浆分配器、复数个旋流喷射喷嘴、浮选组柱及复数条输送管道组成;
其中,旋流喷射纳米空化气泡喷嘴由外套管、矿浆输入管、喉管和负压吸气管组成,其中矿浆输入管和喉管分别从外套管两端插入,矿浆输入管的管壁向内收敛的出口与喉管的入口之间形成混合室,在矿浆输入管与混合室交界处垂直于外套管设置该负压吸气管,该矿浆输入管壁该矿浆输入管的内壁设有多条螺旋导流片;
该矿浆分配器的上部为圆柱形的筒体,下部呈锥形收缩形成一个锥筒部,该锥筒部的底端开设有一矿浆入口,筒体侧壁沿周向设有一至多圈矿浆出口,每圈设有复数个矿浆出口;
该旋流喷射喷嘴由外套管、矿浆输入管、喉管和负压吸气管组成,其中矿浆输入管和喉管分别从外套管两端插入,矿浆输入管的管壁向内收敛的出口与喉管的入口之间形成混合室,在矿浆输入管壁和混合室交界处外套管相对180°设置有两条L型负压吸气管,该两个负压吸气管的长边同向平行,并在上部汇合成汇合管,在汇合管上设有吸气管阀门,用于控制吸气量大小;该矿浆输入管的内壁设有多条螺旋导流片;
该浮选组柱由复数个矿浆浮选柱组成,每个矿浆浮选柱包括一空心筒体,其上部为多棱柱形的筒体部,下部呈多棱锥形收缩形成一个锥筒部,该锥筒部的底端开设有一粗颗粒尾矿排放管;在该锥筒部接近筒体部的中心设有一高稳流分配器,该筒体部距顶部三分之一处设有一多孔稳流板,在该筒体上部边缘设有精矿排出管,该筒体外部边缘设有尾矿箱,该尾矿箱下部设有一自循环调节管和一尾矿排放管,该自循环调节管的位置低于尾矿排放管;该尾矿箱顶部设有一液面控制闸门,闸门动板下端连接定板,定板下端连接于该自循环调节管和该尾矿排放管之间,将尾矿箱分为自循环侧和尾矿排放侧两部分;
自循环调节管可将尾矿输入到渣浆泵之前的矿浆搅拌流程(如矿浆搅拌桶)搅拌桶,由渣浆泵重新进入浮选过程,这是为在原料供给不充足时避免 生产停机。生产停机会带来一系列反应,给企业带来重大经济损失,而矿浆自循环调节管的设置可以在原料供给不充足时整个系统仍然可持续运行,此时尾矿排放管关闭,自循环调节管开启,尾矿由输送管道送入渣浆泵之前的矿浆搅拌流程,由渣浆泵重新进入浮选过程。当原料供给充足时,自循环调节管关闭,尾矿排放管开启,排出尾矿矿浆进入下一生产流程。
液面控制闸门通过提升或降低来对液面高度进行控制及尾矿矿浆,尾矿矿浆从经闸门上端翻越溢流进入尾矿箱尾矿排放侧,使尾矿矿浆由底部尾矿排放管排出。当需要进行自循环时,将自循环调节管上带的控制阀门打开,因为自循环管的位置比尾矿排放管低,会优先使得尾矿矿浆由自循环调节管中排出,满足自循环矿浆的需要,如有多余的矿浆流量才会经闸门上端翻越溢流进入尾矿箱尾矿排放侧由尾矿排放管排出,尾矿排放管不带控制阀门。
闸门控制液面非常稳定,尾矿箱的尾矿排放管排放有利于下一生产过程中矿浆搅拌槽的能耗,尾矿箱排放尾矿矿浆可以自流进入下一道工序流程,不需要动力输送矿浆。
该旋流喷射喷嘴的数量与矿浆分配器的矿浆出口数量及矿浆浮选柱的数量相对应;
该旋流喷射纳米空化气泡喷嘴的矿浆输入管与渣浆泵连接,该喉管通过输送管道与矿浆分配器的矿浆入口连接;每个矿浆出口均通过输送管道与一个旋流喷射喷嘴的矿浆输入管连接,该旋流喷射喷嘴的喉管与输送管道连接,并且该输送管道穿过一个矿浆浮选柱的筒体中部侧壁至矿浆浮选柱中心并垂直向下弯折插入到矿浆稳流分配器中;该输送管道插入到矿浆稳流分配器中的部分内部设有复数个定子混合搅拌叶轮。
其中,所述矿浆稳流分配器由一圆形底板和一空心圆柱体组成,该圆形底板直径小于该矿浆浮选柱的筒体的底部,该圆柱体直径小于该圆形底板;该圆柱体侧壁均匀开设有复数列倾斜排列的长圆孔,该圆柱体顶部中心开设有供输送管道穿设的圆孔。
该长圆孔为均衡孔,用于气体在孔板的作用下容易被粉碎成离散的气泡,当高速将气流旋流喷射向孔板时,一方面大部分旋流喷射入的气流穿过孔板的孔,使空气束得到离散,产生气泡;另一方面旋流喷射入的将气流部分撞击孔板后,改变运动方面,向周围旋转折回,回流增加紊动,将裹夹更多空气,同时破碎气体形成气泡。
其中,所述多孔稳流板由六边形的中心板和围绕中心板的六块外周板组成,该中心板和该外周板上均均匀开设有小孔。
其中,所述渣浆泵的给矿的矿浆压力为3MPa-10MPa;最佳纳米泡矿浆压力控制在4MPa-6MPa。
其中,所述旋流喷射纳米空化气泡喷嘴的矿浆输入管的管壁与外套管管壁夹角为13°,矿浆输入管的出口直径为矿浆输入管长度的0.25倍;所述旋流喷射喷嘴矿浆输入管的管壁与外套管管壁夹角为13°,矿浆输入管的出口直径为矿浆输入管长度的0.25倍。
其中,所述旋流喷射纳米空化气泡喷嘴的矿浆输入管的内壁设有的螺旋导流片的数量为二至四条,优选为3条;所述旋流喷射喷嘴的矿浆输入管的内壁设有的螺旋导流片的数量为二至四条,优选为3条。
其中,所述旋流喷射纳米空化气泡喷嘴的混合室的截面积与矿浆输入管的出口截面积之比m在6-10之间;所述旋流喷射喷嘴的混合室的截面积与矿浆输入管的出口截面积之比m在6-10之间。
在混合室部位,快速流动的矿浆和周围被卷入的空气相互作用加剧,空气和矿浆得到充分混合,空气被分散破碎成气泡。因此,混合室对于气泡发生器的起泡质量有重要影响,混合室的结构、形状、尺寸也很重要。为使气体被切割成纳米级的气泡,就须使矿浆流与空气流在混合室进行剧烈的紊动混合,混合越充分,成泡率就越高。混合室的长度及大小(一般用混合室截面与矿浆输入管的出口截面之比m(在6—10之间)来表示,对生成的气泡的尺寸及其弥散度具有重要的作用,混合室直径较小时,紊动混合剧烈,生成的气泡尺寸就较小、弥散度就较好。但另一方面,混合室直径较大时,有利于吸入更多气体,增加含气率。对于旋流喷射吸气式纳米株气泡发生器来说,混合室直径不宜过大,以免高速射流在混合室部分不起紊动混合作用,同时混合室的长度不宜过小,否则射流会直接穿透混合室而不起混合、掺混作用。
其中,所述旋流喷射纳米空化气泡喷嘴的矿浆输入管出口直径为d n,喉管的入口内径d 1=d nm 1/2,喉管长L 1=7.77+2.42m,混合室长度L 1.N为1.5d n—2.5d n;所述旋流喷射喷嘴的矿浆输入管出口直径为d n,喉管的入口内径d 1=d nm 1/2,喉管长L 1=7.77+2.42m,混合室长度L 1.N为1.5d n至2.5d n之间。
本发明采用带有螺旋导流片的旋流喷射纳米空化气泡喷嘴和旋流喷射喷嘴,控制矿浆颗粒的运动轨迹,减轻颗粒对喷嘴的冲蚀、磨损,延长喷嘴的使用寿命,同时,螺旋导流片将现有射流的流动形式改为旋转式,而且有利于旋流喷射气泡发生器的发泡性能的改善。在矿浆输入管出口部位,当旋流喷射达到亚音速时,负压出现在离喷嘴口距离为0.2d处(d为矿浆输入管出口内径),负压随流体速度的增加而增加,在0.2d—4d区域为最大负压区, 负压区与旋流喷射流场中心轴线为中心,进气管的中心线与喷嘴中心线相交时的充气速度(吸气量)最大。
本发明的特点在于:
1.在浮选柱浮选中,气泡尺寸是影响其浮选效果的最大因素,气泡越小、充其量越大,与矿粒的碰撞几率就越大,越有利于细粒矿物的分选。根据浮选柱中气泡与颗粒作用的相关理论,若想实现浮选柱的高效浮选,则要求在较大的表观充气速率下,尽可能地产生微小气泡。由于气泡大小、表观充气速率和给料速率三者互有关联,若要产生小气泡时,必须采用低的表观充气速率和比较小的处理量,这个矛盾一直制约着高效浮选柱的研究,成为现行大多数浮选柱研究需要解决的重要问题。本发明采用旋流喷射纳米空化气泡喷嘴和旋流喷射喷嘴两次喷射形成纳米级气泡(纳米气泡),该纳米气泡处于≧1nm-≦1μm;这个级别的纳米气泡比表面积大(接触角≧175°),具有更强的表面活性,因为表面自由能极大,选择性比一般气泡更高;具有能够调整促进颗粒-颗粒以及颗粒-气泡之间相互作用的高度分散、相对稳定的气体物质,它的促进作用源自于纳米气泡聚集过程中产生的“纳米气泡桥毛细作用力”,更能附着在颗粒表面,上升速度慢,凝聚细粒级,增大其尺寸,增加捕获概率;起到副捕收剂的作用,提高颗粒表面疏水性;通过促进较大气泡与颗粒的附着强化浮选过程,能有效降低设备对矿物的分选下限,特别是对于非常细小和粗糙的颗粒。该纳米气泡的气泡量可直接通过调节负压吸气量来控制,操作方便,弥散好。本发明从内部充气型改为外部充气型,以多层、多点充气等方式代替原来一点式充气,提高浮选组柱的浮选效率。
2.形成的纳米气泡能够在油酸钠溶液稳定存在1小时以上,具有很强的稳定性;纳米气泡尺寸随着油酸钠浓度增高而减小,随着pH增大而增大;表面电负性则随着pH的增大不断增强;超过一定时间范围后,延长空化时间对纳米气泡的尺寸并无显著影响,这是溶液中溶解气体在水相和气相中达到动态平衡所致,独特纳米气泡功效,节能、成本低、提质增效。
3.本发明所提供的矿浆浮选柱为矮柱,此设备的一台中心泵通过矿浆分配器可实现一带六、一带十二、一带十六、甚至一带二十四等不同数量的槽体搭配。并可根据不同矿山、不同矿石和不同处理能力的需要,随时进行不同规模的灵活切换,解决了传统浮选设备难以更换或调配流程的大难题。
A.高效回收微细粒矿石
纳米泡浮选柱能在瞬间产生大量纳米泡并可快速捕获-19微米以下微细粒,从而形成疏水性矿团。此新型浮选柱的选矿回收率比传统浮选机平均提 高一倍,比常规浮选柱对细粒级的回收率提高30%以上;
B.富集比高
纳米泡在快速上升过程中形成适合与矿化的大小气泡,并逐渐形成稳定而厚实的泡沫层。在泡沫层中,有用矿物能顿时富集,使富集比比传统浮选柱显著提升。
C.流程简化
由于富集比高,纳米泡浮选柱可以一道流程替代传统浮选机三道、甚至四道作业,从而大幅简化生产流程。
D.运行更平稳
高智能化控制使设备运行更加平稳;智能化控制、电动控制和手动控制可自由切换;矿化喷嘴在运行期间也可在不停机情况下快速更换,从而大幅减少维修工作量。
E.运营成本低,占地面积小,配置灵活
此设备的一台中心泵可实现一带六、一带十六,甚或一带二十四等不同数量的槽体搭配。并可根据不同矿山、不同矿石和不同处理能力的需要,随时进行不同规模的灵活切换,解决了传统浮选设备难以更换或调配流程的大难题。(注单槽70立方米/槽:“一带二十四”的有效容积为1680立方米/槽组,“一带六”(70立方米/槽乘以6槽等于420立方米/槽组),一条流水线相当于15000吨/日处理量,其他浮选机及浮选柱都无法做到;纳米泡浮选柱“一带二十四”即可达到一条流水线6万吨/日的智能化、大型化的规模。
4.矿浆浮选柱内设置带有序钻孔稳流板,改善浮选柱内矿浆流态,克服工业浮选柱常出现的“翻花”、“沟流”等问题,形成理想的“塞流”流态,改善柱内矿浆流态的稳定性以及气泡分散的均匀性等。
5.复数旋流喷射纳米泡喷嘴装置为外置式,从底部给矿,节约能耗;固液气产生的微泡与矿浆在主柱底部对称给入,主柱底部安装高紊流分配器装置,气泡与矿浆在狭小的空间里,在主柱底部中心矿浆稳流分配器疑似挡板,一方面纳米气泡减小了气泡尺寸,增大了矿物颗粒-气泡之间的碰撞概率,另一方面纳米株气泡的比表面积大、表面能高,选择性比一般气泡更高。
本发明的有益效果在于:
本发明提供一种纳米泡浮选柱,该纳米泡浮选柱可以形成纳米级气泡,提高了矿物颗粒的浮选效率,特别是对于非常细小和粗糙的颗粒的浮选效率。该装备以“串联、复数、旋流喷射纳米泡浮选柱”代替传统浮选柱的压溶、射流等气泡发生方式,具有气泡直径微小、稳定性好、气泡量易控制等特点。 在特定机型的浮选中,产生的气泡大小与表观充气速率和给料速率无关,气泡量的大小可通过调节负压吸气量大小来直接控制。从而很好地解决了目前众多浮选柱中普遍存在的在高表观充气速率和高处理量情况下不能获得纳米气泡级的问题。
附图说明
图1A为本发明所提供的纳米泡浮选柱第一优选实施例的侧视图。
图1B为本发明所提供的纳米泡浮选柱第一优选实施例的俯视图。
图2A为本发明所提供的纳米泡浮选柱的第一优选实施例的旋流喷射纳米空化气泡喷嘴的剖面示意图。
图2B为本发明所提供的纳米泡浮选柱的第一优选实施例的旋流喷射纳米空化气泡喷嘴的矿浆输入管端示意图。
图3为本发明所提供的纳米泡浮选柱的第一优选实施例的矿浆分配器的侧面图。
图4A为本发明所提供的纳米泡浮选柱的第一优选实施例的旋流喷射喷嘴的剖面图。
图4B为本发明所提供的纳米泡浮选柱的第一优选实施例的旋流喷射喷嘴的矿浆输入管端示意图。
图5A为本发明所提供的纳米泡浮选柱的第一优选实施例的矿浆浮选柱的侧视图。
图5B为本发明所提供的纳米泡浮选柱的第一优选实施例的矿浆浮选柱的立体图。
图5C为本发明所提供的纳米泡浮选柱的第一优选实施例的矿浆浮选柱的剖视图。
图6A为本发明所提供的纳米泡浮选柱的第一优选实施例的矿浆稳流分配器的侧视图。
图6B为本发明所提供的纳米泡浮选柱的第一优选实施例的矿浆稳流分配器的俯视图。
图7A为本发明所提供的纳米泡浮选柱的第一优选实施例的多孔稳流板的侧视图。
图7B为本发明所提供的纳米泡浮选柱的第一优选实施例的多孔稳流板的俯视图。
图8为本发明所提供的纳米泡浮选柱的第二优选实施例的矿浆分配器的立体图。
图9为本发明所提供的纳米泡浮选柱的第三优选实施例的矿浆分配器的立体图。
具体实施方式
下面将对本发明的实施例进行详细、完善的描述,以使本发明的优点和特征能更易于被本领域技术人员理解,从而对本发明的保护范围做出更为清楚明确的界定。
实施例1
本发明提供的纳米泡浮选柱的第一优选实施例,如图1A和图1B所示,由渣浆泵1、旋流喷射纳米空化气泡喷嘴2、矿浆分配器3、复数个旋流喷射喷嘴4、浮选组柱及复数条输送管道9组成;
其中,如图2A和图2B所示,旋流喷射纳米空化气泡喷嘴2由外套管21、矿浆输入管22、喉管23和负压吸气管24组成,其中矿浆输入管22和喉管23分别从外套管21两端插入,矿浆输入管22的管壁向内收敛的出口221与喉管23的入口231之间形成混合室25,在矿浆输入管22与混合室25交界处垂直于外套管21设置该负压吸气管24,该矿浆输入管22的内壁设有多条螺旋导流片26;本实施例中该旋流喷射纳米空化气泡喷嘴的螺旋导流片26为相隔120°的三条。
该矿浆分配器3的上部为圆柱形的筒体31,下部呈锥形收缩形成一个锥筒部32,该锥筒部32的底端开设有一矿浆入口33,筒体侧壁沿周向设有一至多圈矿浆出口34,每圈设有复数个矿浆出口34;在本实施例中,筒体侧壁沿周向设有一圈矿浆出口34,并且矿浆出口数量为6个,如图3所示。
如图4A和图4B所示,该旋流喷射喷嘴由外套管41、矿浆输入管42、喉管43和负压吸气管44组成,其中矿浆输入管42和喉管43分别从外套管41两端插入,矿浆输入管42的管壁向内收敛的出口421与喉管43的入口431之间形成混合室45,在矿浆输入管42和混合室45交界处外套管相对180°设置有两条L型负压吸气管44,该两个负压吸气管44的长边同向平行,并在上部汇合;该矿浆输入管的内壁设有多条螺旋导流片46;本实施例中该旋流喷射喷嘴的螺旋导流片46为相隔120°的三条。
如图5A至图5C所示,该浮选组柱由复数个矿浆浮选柱5组成,每个矿浆浮选柱包括一空心筒体51,其上部为多棱柱形的筒体部511,下部呈多棱锥形收缩形成一个锥筒部512,该锥筒部512的底端开设有一尾矿排放口52;在该锥筒512部接近筒体部的中心设有一高稳流分配器53,该筒体部距顶部三分之一处设有一多孔稳流板54,在该筒体上部边缘设有精矿排出管55,该 筒体外部边缘设有尾矿箱56,该尾矿箱下部设有一自循环调节管561和一尾矿排放管562,该自循环调节管561的位置低于尾矿排放管562;该尾矿箱顶部设有一液面控制闸门563,闸门下端连接有动板564,动板下端设有定板565,定板565下端连接于该自循环调节管561和该尾矿排放管562之间,将尾矿箱56分为自循环侧和尾矿排放侧两部分;
该旋流喷射喷嘴4的数量与矿浆分配器3的矿浆出口34数量及矿浆浮选柱5的数量相对应;
该旋流喷射纳米空化气泡喷嘴2的矿浆输入管21与渣浆泵1连接,该喉管22通过输送管道9与矿浆分配器3的矿浆入口34连接;每个矿浆出口34均通过输送管道9与一个旋流喷射喷嘴4的矿浆输入管41连接,该旋流喷射喷嘴4的喉管42与输送管道9连接,并且该输送管道9穿过一个矿浆浮选柱5的筒体中部侧壁至矿浆浮选柱5中心并垂直向下弯折插入到矿浆稳流分配器53中,该部分输送管道9中设有复数个定子混合搅拌叶轮91。
其中,如图6A和图6B所示,所述矿浆稳流分配器53由一圆形底板531和一空心圆柱体532组成,该圆形底板531直径小于该矿浆浮选柱5的筒体的底部,该空心圆柱体532直径小于该圆形底板531;该圆柱体532侧壁均匀开设有复数列倾斜排列的长圆孔533,该空心圆柱体532顶部中心开设有供输送管道9穿设的圆孔534。
如图7A和图7B所示,所述多孔稳流板54由六边形的中心板541和围绕中心板的六块外周板542组成,该中心板和该外周板上均均匀开设有小孔。
该旋流喷射喷嘴4的数量与矿浆分配器3的矿浆出口24数量及矿浆浮选柱5的数量相对应,在本实施例中矿浆分配器3的矿浆出口24数量为6个,因此该旋流喷射喷嘴4的数量和矿浆浮选柱5的数量也为6个。
在本实施例中,矿浆浮选柱5的高度为5.9米(其中桶体高度4.7米,底部锥体高1.2米),直径6米。
如图8所示,在第二优选实施例中,矿浆分配器3’的矿浆出口34’沿筒体侧壁沿周向设有两圈,每圈设有矿浆出口34’为6个,共计12个。因此,在第二优选实施例中,该旋流喷射喷嘴4的数量和矿浆浮选柱5的数量也为12个。
如图9所示,在第三优选实施例中,矿浆分配器3”的矿浆出口34”沿筒体侧壁沿周向设有三圈,每圈设有矿浆出口34”为8个,共计24个。因此,在第三优选实施例中,该旋流喷射喷嘴4的数量和矿浆浮选柱5的数量也为24个。
本实施例中渣浆泵的给矿的矿浆压力控制在4MPa—6MPa。
其中,所述旋流喷射纳米空化气泡喷嘴的矿浆输入管的管壁与外套管管壁夹角为13°,矿浆输入管的出口直径为矿浆输入管长度的0.25倍;所述旋流喷射喷嘴矿浆输入管的管壁与外套管管壁夹角为13°,矿浆输入管的出口直径为矿浆输入管长度的0.25倍。
其中,所述旋流喷射纳米空化气泡喷嘴的混合室的截面积与矿浆输入管的出口截面积之比8。
实施例2
采用实施例1所提供第一优选实施例的纳米泡浮选柱对攀枝花细粒级钛铁矿钛浮选试验,纳米泡浮选柱适合于选钛厂的浮选尾矿。经过72小时工业试验取得了在给矿品位为6.55%时,精矿品位47.75%,尾矿品位4.83%,产率4.01%,回收率29.21%,浮选药剂成本为108.03元/吨精矿的良好指标。
本发明所提供的纳米泡浮选柱具有保持高回收率而又能达到高的富集比、选别速度快等显著特点。在原矿矿物组成贫、杂、分布宽情况下,仅用一粗一扫三精流程就可将TiO 2品位低约6.5%的浮选尾矿选别到47%以上。
本发明所提供的纳米泡浮选柱对原矿品位波动适应性较强。只要浮选原矿TiO 2品位控制在4.5%以上时,本发明所提供的纳米泡浮选柱均能稳定较好的选别出合格的钛精矿产品。
本发明所提供的纳米泡浮选柱解决了目前选钛厂无法有效回收的有价矿物品位低的浮选尾矿再次回收的问题,可以最大限度提高资源利用率。
实施例3
采用实施例1所提供纳米泡浮选柱的第二优选实施例对包钢选矿厂强磁粗精矿磁化焙烧一弱磁选尾矿和强磁中矿浮稀土尾矿进行工业生产:对弱磁选尾矿经预先脱碳和混合浮选所得的混合浮选精矿进行一次粗选、三次精选及一次扫选的全流程浮选试验,可得到产率为3.24%,REO品位为63.41%,回收率为25.13%的高品位稀土精矿产品。
对浮稀土尾矿槽内产品进行一次粗选、四次精选的全流程浮选试验回收铌矿物,最终可得到产率为20.59%、Nb 20 5品位为0.45%、回收率为46.12%的铌精矿产品。
实施例4
采用实施例1所提供纳米泡浮选柱的第三优选实施例对北京宾隆矿业公司厂坝分公司铅锌选尾厂的工业生产结果证明:
通过采用一粗一扫一精,二次精扫,常规药剂的工艺流程及药剂制度, 运用旋流喷射纳米矿化浮选柱选别甘肃白银公司厂坝铅锌矿浮选尾矿矿浆,工业试验取得了良好指标:铅锌精矿质量30.04%,金属回收率达44.25%,年可获得生产利润1312万元。
该纳米泡浮选柱设备运转平稳可靠,操作简便(主要操作仅为通过浮选闸板调整矿浆液面);负压吸气量大,能产生充足的空气量使矿物与泡沫结合机会增大,有利于矿物的浮选;泡沫层的厚度和面积都比普通的浮选机大得多,保证了高的富集比。保证了高回收率。
运用纳米泡浮选柱单槽选别厂坝矿锌原矿,与普通射流浮选机相比,作业回收率能提高35个百分点左右。
产品分析结果及原矿粒级分析表明,纳米泡浮选柱使入选尾矿中的粗大颗粒及微细粒矿物得到了有效回收。
从上述实施例可以看出,本发明提供的纳米泡浮选柱,通过将在低品位粗颗粒、细粒嵌布矿物的回收利用方面、降低精矿氧化镁含量方面具有优异的表现。
实施例5
采用实施例1所提供纳米泡浮选柱的第一优选实施例对甘肃金川铜镍尾矿再选工业试验,规模2000吨/日,采用一粗一扫二精,常规药剂的工艺流程及药剂制度,在给矿品位镍0.274%、铜品位0.30时,得到的镍精矿品位为3.153%、铜2.48%,对给矿的回收率为14.86%、铜6%,对原矿回收率提高2.06%,取得了良好指标。
尾矿的回收利用,不仅可改善尾矿堆存带来的生态环境问题,而且可扩大资源利用范围。此外,尾矿中金属的回收可带来巨大的经济效益,按日处理31000吨尾矿,年生产330天计算,按照项目的考核指标,年可生产镍3800吨以上,仅从尾矿中回收镍一项,即可年增产值约5.7亿元,营利2.6亿元以上。
从上述实施例可以看出,本发明提供的纳米泡浮选柱,通过纳米气泡的产生,矿浆浮选柱等的设计,可有效提高浮选效率,提高尾矿回收率,给企业带来良好的生产效益。

Claims (8)

  1. 一种纳米泡浮选柱,其特征在于,由渣浆泵、旋流喷射纳米空化气泡喷嘴、矿浆分配器、复数个旋流喷射喷嘴、浮选组柱及复数条输送管道组成;
    其中,旋流喷射纳米空化气泡喷嘴由外套管、矿浆输入管、喉管和负压吸气管组成,其中矿浆输入管和喉管分别从外套管两端插入,矿浆输入管的管壁向内收敛的出口与喉管的入口之间形成混合室,在矿浆输入管与混合室交界处垂直于外套管设置该负压吸气管,该矿浆输入管的内壁设有多条螺旋导流片;
    该矿浆分配器的上部为圆柱形的筒体,下部呈锥形收缩形成一个锥筒部,该锥筒部的底端开设有一矿浆入口,筒体侧壁沿周向设有一至多圈矿浆出口,每圈设有复数个矿浆出口;
    该旋流喷射喷嘴由外套管、矿浆输入管、喉管和负压吸气管组成,其中矿浆输入管和喉管分别从外套管两端插入,矿浆输入管的管壁向内收敛的出口与喉管的入口之间形成混合室,在矿浆输入管壁和混合室交界处外套管相对180°设置有两条L型负压吸气管,该两个负压吸气管的长边同向平行,并在上部汇合成汇合管,在汇合管上设有吸气管阀门,用于控制吸气量大小;该矿浆输入管的内壁设有多条螺旋导流片;
    该浮选组柱由复数个矿浆浮选柱组成,每个矿浆浮选柱包括一空心筒体,其上部为多棱柱形的筒体部,下部呈多棱锥形收缩形成一个锥筒部,该锥筒部的底端开设有一粗颗粒尾矿排放管;在该锥筒部接近筒体部的中心设有一高稳流分配器,该筒体部距顶部三分之一处设有一多孔稳流板,在该筒体上部边缘设有精矿排出管,该筒体外部边缘设有尾矿箱,该尾矿箱下部设有一自循环调节管和一尾矿排放管,该自循环调节管的位置低于尾矿排放管;该尾矿箱顶部设有一液面控制闸门,闸门下端连接有动板,动板下端设有定板,定板下端连接于该自循环调节管和该尾矿排放管之间,将尾矿箱分为自循环侧和尾矿排放侧两部分;
    该旋流喷射喷嘴的数量与矿浆分配器的矿浆出口数量及矿浆浮选柱的数量相对应;
    该旋流喷射纳米空化气泡喷嘴的矿浆输入管与渣浆泵连接,该喉管通 过输送管道与矿浆分配器的矿浆入口连接;每个矿浆出口均通过输送管道与一个旋流喷射喷嘴的矿浆输入管连接,该旋流喷射喷嘴的喉管与输送管道连接,并且该输送管道穿过一个矿浆浮选柱的筒体中部侧壁至矿浆浮选柱中心并垂直向下弯折插入到矿浆稳流分配器中;该输送管道插入到矿浆稳流分配器中的部分内部设有复数个定子混合搅拌叶轮。
  2. 如权利要求1所述的纳米泡浮选柱,其特征在于,所述矿浆稳流分配器由一圆形底板和一空心圆柱体组成,该圆形底板直径小于该矿浆浮选柱的筒体的底部,该圆柱体直径小于该圆形底板;该圆柱体侧壁均匀开设有复数列倾斜排列的长圆孔,该圆柱体顶部中心开设有供输送管道穿设的圆孔。
  3. 如权利要求1所述的纳米泡浮选柱,其特征在于,所述多孔稳流板由六边形的中心板和围绕中心板的六块外周板组成,该中心板和该外周板上均均匀开设有小孔。
  4. 如权利要求1所述的纳米泡浮选柱,其特征在于,所述渣浆泵的给矿的矿浆压力为3MPa—10MPa;最佳矿浆压力控制在4MPa—6MPa。
  5. 如权利要求1所述的纳米泡浮选柱,其特征在于,所述旋流喷射纳米空化气泡喷嘴的矿浆输入管的管壁与外套管管壁夹角为13°,矿浆输入管的出口直径为矿浆输入管长度的0.25倍;所述旋流喷射喷嘴矿浆输入管的管壁与外套管管壁夹角为13°,矿浆输入管的出口直径为矿浆输入管长度的0.25倍。
  6. 如权利要求1所述的纳米泡浮选柱,其特征在于,所述旋流喷射纳米空化气泡喷嘴的矿浆输入管的内壁设有的螺旋导流片的数量为二至四条,优选为3条;所述旋流喷射喷嘴的矿浆输入管的内壁设有的螺旋导流片的数量为二至四条,优选为3条。
  7. 如权利要求1所述的纳米泡浮选柱,其特征在于,所述旋流喷射纳米空化气泡喷嘴的混合室的截面积与矿浆输入管的出口截面积之比m在6-10之间;所述旋流喷射喷嘴的混合室的截面积与矿浆输入管的出口截面积之比m在6-10之间。
  8. 如权利要求7所述的纳米泡浮选柱,其特征在于,所述旋流喷射纳米空化气泡喷嘴的矿浆输入管出口直径为d n,喉管的入口内径d 1=d nm 1/2,喉管长L 1=7.77+2.42m,混合室长度L 1.N为1.5d n—2.5d n;所述旋流喷射喷 嘴的矿浆输入管出口直径为d n,喉管的入口内径d 1=d nm 1/2,喉管长L 1=7.77+2.42m,混合室长度L 1.N为1.5d n至2.5d n之间。
PCT/CN2020/073445 2019-12-16 2020-01-21 纳米泡浮选柱 WO2021120370A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911290924.9 2019-12-16
CN201911290924.9A CN110947525B (zh) 2019-12-16 2019-12-16 纳米泡浮选柱

Publications (1)

Publication Number Publication Date
WO2021120370A1 true WO2021120370A1 (zh) 2021-06-24

Family

ID=69981747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/073445 WO2021120370A1 (zh) 2019-12-16 2020-01-21 纳米泡浮选柱

Country Status (2)

Country Link
CN (1) CN110947525B (zh)
WO (1) WO2021120370A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111841868B (zh) * 2020-07-17 2022-04-12 郑州大学 一种水力浮选设备及其疏通方法
CN111974564A (zh) * 2020-07-17 2020-11-24 中国神华能源股份有限公司国华电力分公司 喷射器
CN112090594A (zh) * 2020-10-15 2020-12-18 西南科技大学 纳米气泡浮选机
CN114308400B (zh) * 2022-01-20 2023-12-29 李宾 旋流喷射微纳米气泡浮选柱

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4911826A (en) * 1989-02-08 1990-03-27 Cominco Ltd. Sparging system for column flotation
US20050242000A1 (en) * 2004-04-30 2005-11-03 Latif Khan Flotation device and method of froth flotation
CN101195111A (zh) * 2006-12-08 2008-06-11 李宾 一种矿浆旋流浮选方法及其所用的旋流浮选柱和浮选装置
CN101293227A (zh) * 2008-06-18 2008-10-29 昆明理工大学 一种环形充气浮选机
CN201214072Y (zh) * 2006-12-11 2009-04-01 李宾 一种矿浆旋流浮选所用的旋流喷射浮选柱和浮选装置
CN107377235A (zh) * 2017-08-11 2017-11-24 石磊 喷射循环式浮选柱
WO2019215380A1 (en) * 2018-05-11 2019-11-14 Outotec (Finland) Oy Flotation cell

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2905226Y (zh) * 2005-11-29 2007-05-30 胡满营 矿化器和含有矿化器的水压式自吸空气浮选柱
CN202238330U (zh) * 2011-09-30 2012-05-30 湖南长高矿山机电设备有限公司 用于浮选柱的进料装置及其浮选柱
US10441926B2 (en) * 2013-10-17 2019-10-15 Ashok Adrian Singh Fluid treatment apparatus and process
CN110064314A (zh) * 2018-01-24 2019-07-30 傅开彬 一种新型可控纳米气泡发生装置
CN108906340A (zh) * 2018-07-26 2018-11-30 太原理工大学 一种复合阶段调浆煤泥高效浮选工艺系统与实现方法
CN109046792B (zh) * 2018-10-24 2020-09-08 中南大学 一种混流式微泡发生器及气泡分布器
CN209772415U (zh) * 2019-03-14 2019-12-13 西安煤科动力科技有限公司 一种充气式纳米气泡选矿设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4911826A (en) * 1989-02-08 1990-03-27 Cominco Ltd. Sparging system for column flotation
US20050242000A1 (en) * 2004-04-30 2005-11-03 Latif Khan Flotation device and method of froth flotation
CN101195111A (zh) * 2006-12-08 2008-06-11 李宾 一种矿浆旋流浮选方法及其所用的旋流浮选柱和浮选装置
CN201214072Y (zh) * 2006-12-11 2009-04-01 李宾 一种矿浆旋流浮选所用的旋流喷射浮选柱和浮选装置
CN101293227A (zh) * 2008-06-18 2008-10-29 昆明理工大学 一种环形充气浮选机
CN107377235A (zh) * 2017-08-11 2017-11-24 石磊 喷射循环式浮选柱
WO2019215380A1 (en) * 2018-05-11 2019-11-14 Outotec (Finland) Oy Flotation cell

Also Published As

Publication number Publication date
CN110947525B (zh) 2020-10-16
CN110947525A (zh) 2020-04-03

Similar Documents

Publication Publication Date Title
WO2021120370A1 (zh) 纳米泡浮选柱
CN109046792B (zh) 一种混流式微泡发生器及气泡分布器
CN112264198A (zh) 微纳米泡浮选机
CN103480501B (zh) 一种磷矿浮选方法及系统
CN100562370C (zh) 用于矿物分选的浮选柱
CN110586340B (zh) 一种基于孔板水力空化成泡的粗颗粒矿物水力浮选设备及浮选方法
CN210207231U (zh) 一种流体协同强化浮选分离装置
WO2017219923A1 (zh) 一种难浮煤泥的分选方法
CN110882850B (zh) 一种保护石墨鳞片的选矿系统及选矿方法
CN113058752B (zh) 一种高气泡表面通量浮选机及颗粒气泡矿化器
CN113499861A (zh) 一种湍流与稳流协同流化的粗颗粒浮选设备及方法
WO2018205572A1 (zh) 一种紊流度均匀的湍流调控外加颗粒流化床矿化浮选设备
WO2000015343A1 (en) Internal recycle apparatus and process for flotation column cells
CN110882852B (zh) 一种粗颗粒矿物浮选强化回收系统及回收方法
CN110882851B (zh) 一种硫化矿的选矿系统及选矿方法
AU2019100828A4 (en) Flotation line
AU2019100827A4 (en) Flotation cell
CN112588454B (zh) 一种用于矿物粗颗粒分选的二次水力浮选机及浮选方法
CN105834011A (zh) 具有填料结构的浮选柱强化分选装置及分选方法
CN110369158B (zh) 一种浮选柱装置
CN210965531U (zh) 浮选池和浮选线
CN109939837B (zh) 一种复合流强化浮选分离装置及方法
CN116213105A (zh) 一种金矿浮选工艺及设备
CN114308400B (zh) 旋流喷射微纳米气泡浮选柱
CN105537007B (zh) 一种矿物浮选系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20903799

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20903799

Country of ref document: EP

Kind code of ref document: A1