WO2021120062A1 - 超声成像方法及超声成像系统 - Google Patents

超声成像方法及超声成像系统 Download PDF

Info

Publication number
WO2021120062A1
WO2021120062A1 PCT/CN2019/126374 CN2019126374W WO2021120062A1 WO 2021120062 A1 WO2021120062 A1 WO 2021120062A1 CN 2019126374 W CN2019126374 W CN 2019126374W WO 2021120062 A1 WO2021120062 A1 WO 2021120062A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
ultrasound
detected
array elements
time
Prior art date
Application number
PCT/CN2019/126374
Other languages
English (en)
French (fr)
Inventor
史志伟
王彦
董永强
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to PCT/CN2019/126374 priority Critical patent/WO2021120062A1/zh
Priority to CN201980099928.0A priority patent/CN114340505A/zh
Publication of WO2021120062A1 publication Critical patent/WO2021120062A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves

Definitions

  • the embodiments of the present application relate to the field of ultrasound, and more specifically, to an ultrasound imaging method and an ultrasound imaging system.
  • the ultrasound echo data will be modulated.
  • one way is to perform coherent synthesis of the echo data before taking the modulus. For example, two ultrasonic waves are emitted at the same position and the echo data obtained twice are added together to improve the image quality. However, different times of transmission are carried out independently, which causes the frame rate to be doubled and the efficiency is very low.
  • Another way is to average the echo data after taking the modulus. For example, adding the echo data of different frequencies at the same location can improve the contrast resolution of the image. If two echo data with different frequencies are from the same transmission, the two echoes corresponding to the two echo data are required to select different subbands. The effective bandwidth of the probe limits this application; if two echo data with different frequencies are The echo data comes from different transmissions, which will cause the frame rate to double.
  • the embodiments of the present application provide an ultrasound imaging method and an ultrasound imaging system.
  • an ultrasound imaging method includes:
  • an ultrasound imaging method includes:
  • N is an integer greater than 1, and M is an integer not less than N;
  • N polarity vectors corresponding to the N to-be-detected positions, where the matrix formed by the N polarity vectors is a matrix with M rows and N columns, and any two polarity vectors in the N polarity vectors are mutually exclusive.
  • control the ultrasonic probe to transmit N ultrasonic waves to the N positions to be detected at the first time, and transmit M times;
  • the ultrasonic probe is controlled to receive the ultrasonic echo based on the N ultrasonic waves for a second time, and receive M times to obtain M sets of ultrasonic echo data, where the first time corresponding to the N ultrasonic waves and the corresponding second time are The period of time overlaps partially or completely;
  • the M groups of ultrasound echo data are processed to obtain an ultrasound image of the target object.
  • an ultrasound imaging method includes:
  • N is an integer greater than 1, and M is an integer not less than N;
  • N polarity vectors corresponding to the N to-be-detected positions, where the matrix formed by the N polarity vectors is a matrix with M rows and N columns, and at least two of the N polarity vectors are linear independent;
  • control the ultrasonic probe to transmit N ultrasonic waves to the N positions to be detected at the first time, and transmit M times;
  • the ultrasonic probe is controlled to receive the ultrasonic echo based on the N ultrasonic waves for a second time, and receive M times to obtain M sets of ultrasonic echo data, where the first time corresponding to the N ultrasonic waves and the corresponding second time are The period of time overlaps partially or completely;
  • the M groups of ultrasound echo data are processed to obtain an ultrasound image of the target object.
  • an ultrasound imaging method includes:
  • N is an integer greater than 1, and M is an integer not less than N;
  • the ultrasonic probe is controlled to receive the ultrasonic echo based on the N ultrasonic waves for a second time, and receive M times to obtain M sets of ultrasonic echo data, where the first time corresponding to the N ultrasonic waves and the corresponding second time are The period of time overlaps partially or completely;
  • the M groups of ultrasound echo data are processed to obtain an ultrasound image of the target object.
  • an ultrasound imaging system including:
  • a transmitting/receiving selection switch for controlling the ultrasonic probe to transmit ultrasonic waves to the target object via the transmitting circuit, and to receive ultrasonic echoes based on the ultrasonic waves;
  • the memory is used to store the program executed by the processor
  • the processor is configured to execute the steps of the method described in any one of the first aspect to the fourth aspect.
  • a computer storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of the method described in any one of the first to fourth aspects are realized.
  • the enhanced fundamental signal at each position to be detected can be obtained, and the signal-to-noise ratio and penetration can be improved.
  • the increase in power can improve the image quality.
  • Figure 1 is a block diagram of an ultrasound imaging system
  • FIG. 2 is a schematic flowchart of the ultrasound imaging method according to an embodiment of the present application.
  • Fig. 3 is a schematic diagram showing that ultrasonic waves emitted to different positions to be detected overlap in time
  • Fig. 6 is a schematic diagram of a conventional continuous focusing method of emission
  • FIG. 7 is a schematic diagram of continuous focusing of emission using the method of the embodiment of the present application.
  • Fig. 8 is a schematic diagram of two-angle emission of traditional spatial composite imaging
  • FIG. 9 is a schematic diagram of two-angle emission of spatial composite imaging using the method of the embodiment of the present application.
  • FIG. 10 is a schematic diagram of the emission of two different waveforms of traditional frequency composite imaging
  • FIG. 11 is a schematic diagram of the emission of two different waveforms of frequency composite imaging using the method of the embodiment of the present application.
  • FIG. 12 is another schematic flowchart of the ultrasound imaging method according to an embodiment of the present application.
  • FIG. 14 is another schematic flowchart of the ultrasound imaging method according to an embodiment of the present application.
  • FIG. 15 is another schematic flowchart of the ultrasound imaging method according to an embodiment of the present application.
  • the embodiment of the present application provides an ultrasound imaging system, as shown in FIG. 1 is a structural block diagram of an ultrasound imaging system.
  • the ultrasound imaging system 10 includes an ultrasound probe 110, a transmission/reception selection switch 120, a memory 130, a processor 140, and a display 150.
  • the transmitting/receiving selection switch 120 may include a transmitting switch and a receiving switch, wherein the transmitting switch includes a transmitting circuit, the receiving switch includes a receiving circuit, the transmitting switch is used to excite the ultrasonic probe 110 to transmit ultrasonic waves to the target object via the transmitting circuit, and the receiving switch is used to transmit ultrasonic waves to the target object via the transmitting circuit.
  • the receiving circuit makes the ultrasonic probe 110 receive the ultrasonic echo returned from the target object.
  • the processor 140 may obtain an ultrasonic echo signal based on the ultrasonic echo, and process the ultrasonic echo signal.
  • the processor 140 may determine N to-be-detected positions of the target object and the number of transmissions M corresponding to the N-to-be-detected positions; obtain N polarity vectors corresponding to the N to-be-detected positions. According to the N polarity vectors, the ultrasonic probe 110 is controlled to transmit N ultrasonic waves to N positions to be detected at the first time, and transmits M times; the ultrasonic probe 110 is controlled to receive ultrasonic echoes based on N ultrasonic waves at the second time, and receive M times to Obtain the ultrasound echo data of M groups. The processor 140 may process M groups of ultrasound echo data to obtain an ultrasound image of the target object.
  • the matrix formed by N polarity vectors is a matrix with M rows and N columns, and any two polarity vectors among the N polarity vectors are orthogonal to each other.
  • the time periods between the first time corresponding to the N ultrasonic waves and the corresponding second time partially overlap or all overlap.
  • the processor 140 may perform processing such as beam synthesis, quadrature demodulation, and wall filtering on the M groups of ultrasound echo data to obtain an ultrasound image of the target object.
  • the ultrasound image obtained by the processor 140 may be stored in the memory 130. And, the ultrasound image may be displayed on the display 150.
  • the display 150 in the ultrasound imaging system 10 can be a touch screen, a liquid crystal display, etc.; or the display 150 can be an independent display device such as a liquid crystal display, a TV, etc., independent of the ultrasound imaging system 10; or the display 150 It can be the display screen of an electronic device such as a smart phone, a tablet computer, and so on. Wherein, the number of displays 150 may be one or more.
  • the memory 130 in the ultrasound imaging system 10 may be a flash memory card, a solid-state memory, a hard disk, or the like. It can be a volatile memory and/or a non-volatile memory, a removable memory and/or a non-removable memory, etc.
  • the processor 140 in the ultrasound imaging system 10 may be implemented by software, hardware, firmware, or any combination thereof, and may use circuits, single or multiple application specific integrated circuits (ASICs), single or multiple applications.
  • ASICs application specific integrated circuits
  • the components included in the ultrasound imaging system 10 shown in FIG. 1 are only schematic, and it may include more or fewer components.
  • the ultrasound imaging system 10 may also include input devices such as a keyboard, a mouse, a scroll wheel, a trackball, etc., and/or include an output device such as a printer other than the display 150.
  • the corresponding external input/output port can be a wireless communication module, a wired communication module, or a combination of the two.
  • the external input/output ports can also be implemented based on USB, bus protocols such as CAN, and/or wired network protocols. This application is not limited to this.
  • FIG. 2 is a schematic flowchart of the ultrasound imaging method of the embodiment of the present application.
  • the method shown in Figure 2 includes:
  • S110 Determine N to-be-detected positions of the target object and the number of transmissions M corresponding to the N to-be-detected positions, where N is an integer greater than 1, and M is an integer not less than N;
  • N polarity vectors corresponding to N to-be-detected positions, where the matrix formed by the N polarity vectors is a matrix with M rows and N columns, and any two polarity vectors in the N polarity vectors are mutually positive. cross;
  • S130 Control the ultrasonic probe to transmit N ultrasonic waves to N to-be-detected positions at the first time according to the N polarity vectors, and transmit M times;
  • S140 Control the ultrasound probe to receive ultrasound echoes based on N ultrasound waves for a second time, and receive M times to obtain M groups of ultrasound echo data, where the time between the first time corresponding to the N ultrasound waves and the corresponding second time The time period overlaps partially or completely;
  • S150 Process the ultrasound echo data of the M groups to obtain an ultrasound image of the target object.
  • the transmission position sequence may be preset by the system, or the system may receive a user-defined setting to determine the transmission position sequence.
  • a polarity vector may be set for the ultrasound transmission to be performed.
  • N to-be-detected positions may correspond to N polarity vectors
  • one polarity vector may contain M elements, and one of the elements may represent the voltage amplitude of the probe corresponding to the ultrasonic beam emitted at a to-be-detected position.
  • the N polarity vectors can be pairwise orthogonal, that is, any two of the N polarity vectors are orthogonal.
  • orthogonal means that the inner product (dot multiplication) of two vectors is equal to zero.
  • N polarity vectors can be constructed as a matrix, and if one column of the matrix represents a polarity vector, then the matrix can be a matrix with M rows and N columns.
  • the elements of the matrix may be the voltage amplitudes of the emission voltages or the normalized voltage amplitudes of the N to-be-detected positions at each emission.
  • any two column vectors are linearly independent, and the rank of the matrix is equal to N.
  • the matrix after normalization can be:
  • the matrix after normalization can be: Or it can be
  • the matrix can be normalized as:
  • the waveforms of ultrasonic waves corresponding to a certain position to be detected during different transmissions are the same or opposite.
  • the waveforms of the ultrasonic waves emitted twice are opposite
  • the waveforms of the ultrasonic waves corresponding to different positions to be detected during a certain transmission are the same or opposite.
  • the waveforms of the ultrasonic waves corresponding to the two positions to be detected are the same; in the second transmission, the waveforms of the ultrasonic waves corresponding to the two positions to be detected are opposite.
  • the ultrasonic waves corresponding to the N positions to be detected can be determined according to the N polarity vectors; and the N groups of array elements in the ultrasonic probe are controlled to transmit N ultrasonic waves to the N positions to be detected at the first time, and transmit M times, among which,
  • Each group of array elements corresponds to a launch position, and each group of array elements includes at least one array element.
  • the transmission voltage of the ultrasonic wave corresponding to each position to be detected during each transmission may be determined according to the N polarity vectors, and then the ultrasonic waves are transmitted M times in sequence.
  • the ultrasonic waves emitted to different positions to be detected may partially or completely overlap in time.
  • the first time may refer to the overlapping part in time of the ultrasonic waves emitted by different positions to be detected.
  • the double-headed arrows indicate the start and end times of the emitted ultrasonic waves.
  • the ultrasonic wave emitted by the n1th position to be detected includes the first time in time
  • the ultrasonic wave emitted by the n2th position to be detected includes the first time in time
  • the ultrasonic wave emitted by the n3th position to be detected also includes the first time in time.
  • the ultrasonic waves emitted from the n1th position to be detected, the n2th position to be detected, and the n3th position to be detected partially overlap in time.
  • the ultrasonic waves emitted from different positions to be detected can start to be emitted at the same time, that is, the start time of the emitted ultrasonic waves is the same.
  • the ultrasonic waves emitted from the n1th position to be detected and the n2th position to be detected have the same The starting moment.
  • the ultrasonic waves emitted by different positions to be detected may not start at the same time, that is, the start time of the transmitted ultrasonic waves is different, as shown in Fig. 3 for the n1th position to be detected and the n3th position to be detected.
  • the ultrasonic waves have different starting moments. Specifically, the ultrasonic waves emitted from the n1th position to be detected are earlier than the ultrasonic waves emitted from the n3th position to be detected.
  • the total time length of the ultrasonic waves emitted by different positions to be detected can be the same length, as shown in Figure 3, the length of the ultrasonic waves emitted from the n1th position to be detected and the n3th position to be detected is the same, that is, the n1th position in Fig. 3
  • the length of the two-way arrow corresponding to each position to be detected is equal to the length of the two-way arrow corresponding to the n3 th position to be detected.
  • the total duration of the ultrasonic waves emitted by different positions to be detected may be of unequal length.
  • the duration of the ultrasonic waves emitted by the n1th position to be detected and the n2th position to be detected is not equal, as shown in the figure
  • the length of the double arrow corresponding to the n1th position to be detected in 3 is greater than the length of the double arrow corresponding to the n2th position to be detected.
  • controlling the N groups of array elements in the ultrasound probe to transmit N ultrasonic waves to N positions to be detected at the first time may include: controlling each group of array elements in the N groups of array elements to simultaneously send N ultrasonic waves to the N positions to be detected.
  • the transmitting position emits one ultrasonic wave to form N ultrasonic waves.
  • "simultaneous" transmission may mean that the starting time of transmitting ultrasonic waves is the same.
  • the ultrasonic waves emitted from different positions to be detected can be emitted at the same time, that is, the start time of the emitted ultrasonic waves is the same.
  • the ultrasonic waves of the N to-be-detected positions are performed at the same time.
  • the first transmission in M transmissions is: at t1
  • the N groups of array elements in the ultrasound probe are controlled to simultaneously start transmitting ultrasonic waves to N positions to be detected
  • the second transmission in M transmissions is: at t2
  • control the N groups of array elements in the ultrasound probe to simultaneously start transmitting ultrasound to N positions to be detected; ... etc. That is to say, for any position to be detected: the starting time of the first transmission in M transmissions is t1, and the starting time of the second transmission in M transmissions is t2,....
  • the first group of N groups of array elements emits an ultrasonic wave to the first emission position among the N positions to be detected; the second group of array elements among the N groups of array elements transmits an ultrasonic wave to the second of the N positions to be detected
  • the transmitting position emits an ultrasonic wave; ...; the Nth group of array elements among the N groups of array elements transmits an ultrasonic wave to the Nth transmitting position among the N positions to be detected.
  • the array elements that emit ultrasonic waves to different positions to be detected can be independent of each other.
  • controlling each of the N groups of array elements to simultaneously emit an ultrasonic wave to the emission positions corresponding to the N positions to be detected may include: controlling each of the array elements in each group of array elements to simultaneously emit to the corresponding position to be detected Ultrasound is superimposed to form an ultrasonic wave.
  • the i-th group of array elements emits the first ultrasonic wave to the i-th to-be-detected position, which can mean that all the elements in the i-th group of array elements simultaneously send the i-th to-be-detected position
  • the ultrasonic waves emitted from the position are superimposed to form the first ultrasonic waves. That is to say, the first ultrasonic wave emitted to the i-th position to be detected is the superposition of the ultrasonic waves emitted by all the array elements in the i-th group of array elements at the same time.
  • the array elements in the i-th group of array elements start to emit ultrasonic waves to the i-th position to be detected at the same starting moment.
  • the duration of the ultrasonic waves emitted by different array elements in the i-th group of array elements may be the same or different.
  • controlling each of the N groups of array elements to simultaneously emit an ultrasonic wave to the emission positions corresponding to the N to-be-detected positions may include: controlling each of the first group of array elements to non-simultaneously transmit an ultrasonic wave to the corresponding to-be-detected position.
  • the detection position emits ultrasonic waves to superimpose to form an ultrasonic wave
  • the first group of array elements is any group of N groups of array elements
  • each element in the second group of array elements is controlled to non-simultaneously to the corresponding to-be-detected Transmit ultrasonic waves from a position to superimpose to form an ultrasonic wave
  • the second group of array elements is any group of array elements other than the first group of array elements in the N group of array elements, and the cumulative emission time of all the array elements in the first group of array elements It is the same time as the cumulative launch time of all the elements in the second group of elements.
  • the i-th and j-th elements of the N groups of array elements start to emit ultrasonic waves at the same time.
  • the i-th element starts to emit the first ultrasonic waves to the i-th position to be detected at time t0
  • the j-th The array element also starts to emit the first ultrasonic wave to the j-th position to be detected at time t0.
  • the i-th group of array elements can include several array elements, and the start time of the several array elements can be different.
  • the first array element of the i-th group of array elements starts to emit ultrasonic waves at time t0
  • the second The array element emits ultrasound again at t0+a.
  • the j-th group of array elements can include several array elements, and the start time of the several array elements can be different.
  • the first array element of the j-th group of array elements starts to emit ultrasonic waves at time t0, and the second Each array element emits ultrasound again at t0+b.
  • different array elements in the i-th group of array elements can start to emit ultrasonic waves to the i-th position to be detected at different starting moments.
  • the union of the emission times of all the elements in the i-th group of array elements can be taken as the emission time of the i-th group of elements, and the emission time of the i-th group of elements is that of the ultrasonic wave emitted to the i-th position to be detected.
  • the duration can be called the first duration.
  • the starting time of the first or several transmissions of the ultrasonic wave in the i-th group of array elements can be called the first time.
  • different array elements in the j-th group of array elements can start transmitting ultrasonic waves to the j-th position to be detected at different starting moments.
  • the union of the emission times of all the elements in the j-th group of array elements can be taken as the emission time of the j-th group of elements, and the emission time of the j-th group of elements is that of the ultrasonic waves emitted to the j-th position to be detected.
  • the duration can be called the second duration.
  • the start time of one or more of the elements of the j-th group that emits the ultrasonic wave first can be called the second time.
  • the first time and the second time are the same time, that is, the i-th group of array elements and the j-th group of array elements start to emit ultrasonic waves at the same time.
  • the first duration and the second duration overlap partially or completely.
  • the first duration and the second duration all overlap, that is, the cumulative emission time of all elements in the i-th group of elements and the cumulative emission time of all elements in the j-th group of elements are the same time segment.
  • the matrix determined in S120 can be satisfied by adjusting the positive, negative and magnitude of the emission voltage of each array element.
  • the voltage is the matrix described above multiplied by 10 volts (V).
  • the received M groups of ultrasound echo data may be AD data, such as IQ data or RF data.
  • the received M groups of ultrasound echo data may be beam synthesis data, such as IQ data or RF data.
  • the second time may refer to the overlapping part in time of receiving ultrasonic echoes of ultrasonic waves emitted from different positions to be detected.
  • the overlapped second time reference may be made to the overlapped first time in FIG. 3 similarly.
  • the start time of receiving ultrasonic echo may be the same or different.
  • the total duration of receiving ultrasound echoes can be the same or different.
  • the third group of array elements in the ultrasound probe can be controlled to receive ultrasound echoes based on N ultrasound waves, where the third group of array elements is any group in the ultrasound probe Array element.
  • each of the third group of array elements can be controlled to receive ultrasonic echoes based on N ultrasonic waves at the same time.
  • the third group of array elements may also receive ultrasonic echoes based on the N ultrasonic waves. That is to say, only one set of array elements (that is, the third set of array elements) can receive the ultrasonic echoes transmitted M times, for example, it can receive M times (receive once after each transmission is completed), thereby obtaining M sets of ultrasonic echoes. Wave data.
  • the third group of array elements may start to receive the ultrasonic echoes of N ultrasonic waves at a certain moment.
  • all the array elements in the third group of array elements may start to receive the ultrasonic echoes of N ultrasonic waves at the same time.
  • one or some of the elements in the third group may start to receive N ultrasonic echoes at a certain moment, and the remaining elements in the third group of array elements may start receiving ultrasonic echoes of N ultrasonic waves after the certain moment. At a time, start to receive the ultrasonic echoes of N ultrasonic waves.
  • M groups of ultrasound echo data may be filtered to obtain M groups of fundamental wave signals; and an ultrasound image of the target object can be obtained according to the M groups of fundamental wave signals.
  • the harmonics in the ultrasonic echo data can be filtered out through filtering processing, so as to obtain the fundamental wave signal.
  • N groups of enhanced fundamental wave signals corresponding to M groups of fundamental wave signals may be acquired; and the ultrasound image of the target object can be determined according to the N sets of enhanced fundamental wave signals.
  • M groups of fundamental wave signals can be superimposed and/or cancelled to obtain N groups of enhanced fundamental wave signals.
  • the fundamental wave signal of the first position among the N positions to be detected can be determined, where the fundamental wave signal of the first position is any group of fundamental wave signals in the N positions to be detected;
  • the fundamental wave signals other than the first position in the signal are cancelled according to the rule of the polarity vector, and the fundamental wave signal at the first position is superimposed to obtain the enhanced fundamental wave signal at the first position.
  • N sets of enhanced ultrasound echo data corresponding to the M sets of ultrasound echo data can be acquired; the ultrasound image of the target object is obtained according to the N sets of enhanced ultrasound echo data.
  • the M groups of ultrasonic echo data can be superimposed and/or cancelled to obtain N groups of enhanced fundamental signals.
  • N sets of enhanced ultrasound echo data may be filtered to obtain N sets of enhanced fundamental wave signals; the ultrasound image of the target object is determined according to the N sets of enhanced fundamental wave signals.
  • the harmonics in the N groups of enhanced ultrasound echo data can be filtered out through filtering processing, so as to obtain N groups of enhanced fundamental signals.
  • the ultrasonic echo data of the second position among the N to-be-detected positions can be determined, where the ultrasonic echo data of the second position is any set of ultrasonic echo data in the N-to-be-detected positions;
  • the ultrasound echo data other than the second position in the group of ultrasound echo data is cancelled according to the rule of the polarity vector, and the ultrasound echo data at the second position is superimposed to obtain the enhanced ultrasound echo data at the second position.
  • the ultrasonic wave is continuously transmitted after a delay of a period of time, which can improve the signal-to-noise ratio.
  • the ultrasound is continuously transmitted after a period of delay, which can improve the signal-to-noise ratio.
  • S130 includes two transmissions.
  • S140 receives the ultrasonic echoes of the ultrasonic waves transmitted twice, as described in (1) and (2) below.
  • the ultrasonic wave emitted to the first position to be detected is denoted as Tx
  • the ultrasonic wave emitted to the second position to be detected is denoted as Ty.
  • Tx the ultrasonic wave emitted to the first position to be detected
  • Ty the ultrasonic wave emitted to the second position to be detected
  • ultrasonic waves may be transmitted to the first position to be detected and the second position to be detected, and the transmissions of the two positions of Tx and Ty overlap in time.
  • the transmission waveforms of Tx and Ty may be the same or different.
  • Tx(t_i) refers to transmitting ultrasonic waves to the first position to be detected at time t_i
  • Ty(t_j) refers to transmitting ultrasonic waves to the second position to be detected at time t_j.
  • t_i and t_j may be the same or different, but it needs to satisfy that the emission of the first to-be-detected position and the second to-be-detected position partially or completely overlap in time, for example, the overlapped part is the first time.
  • the ultrasonic echo of the ultrasonic wave transmitted for the first time can be received, and the reception of the first position to be detected and the second position to be detected overlaps partially or completely in time.
  • the array element k can simultaneously receive the ultrasonic echoes of the ultrasonic waves at the first position to be detected and the second position to be detected.
  • a and B located on the receiving arc are the sound beam positions of the ultrasonic waves emitted from two different positions to be detected.
  • the ultrasonic echo transmitted for the first time is obtained, and then the corresponding first set of ultrasonic echo data is obtained.
  • the waveform of the ultrasonic wave at the first position to be detected is inverted, and the waveform of the ultrasonic wave at the second position to be detected remains unchanged.
  • the ultrasonic wave transmitted to the first position to be detected is denoted as -Tx
  • the ultrasonic wave transmitted to the second position to be detected is denoted as Ty.
  • Ty the ultrasonic wave transmitted to the second position to be detected.
  • the ultrasonic echo of the second transmitted ultrasonic wave is received, and the reception of the first position to be detected and the second position to be detected overlaps in time.
  • the difference between -Tx and Tx is only in the waveform flip, and the rest of the physical parameters are the same, such as the transmission timing, the transmission voltage, and the reception parameters.
  • the ultrasonic echo of the first transmitted ultrasonic wave and the ultrasonic echo of the second transmitted ultrasonic wave can be received by the same array element.
  • the first transmitted ultrasonic wave can be received by the array element k.
  • the ultrasonic echo of the second transmitted ultrasonic wave is received by the array element k.
  • different array elements may receive the ultrasonic echo of the first transmitted ultrasonic wave and the ultrasonic echo of the second transmitted ultrasonic wave.
  • the first transmitted ultrasonic wave may be received by the array element k.
  • another array element other than the array element k receives the ultrasonic echo of the ultrasonic wave transmitted for the second time.
  • the ultrasonic echo of the second emission is obtained, and then the corresponding second set of ultrasonic echo data is obtained.
  • two sets of fundamental signals can be obtained by filtering, and then the enhanced fundamental signal at the second position to be detected is obtained by addition, and the first position to be detected is obtained by subtraction. Enhance the fundamental signal at the location.
  • Tx(1_i) and Ty(1_j) are transmitted at position 1 and position 2, respectively.
  • ⁇ Tx(2_i) and Ty(2_j) are respectively transmitted at position 1 and position 2, where ⁇ Tx(2_i) indicates the inverse of Tx(1_i).
  • Tx(1_i) and Ty(1_j) overlap in transmission time
  • ⁇ Tx(2_i) and Ty(2_j) overlap in transmission time.
  • the fundamental wave data corresponding to the ultrasonic echo data obtained by the two transmissions can be added to obtain the enhanced signal of position 2, and the enhanced signal of position 1 can be obtained by subtraction.
  • Fig. 6 is a schematic diagram of the traditional continuous focusing method of emission.
  • the emission sequence forms a sequence with partial spatial overlap at different positions.
  • the first emission Tx( at position 1 and position 3) 1) and Tx(2) transmitted for the second time the sound beams of the two have a part of spatial overlap.
  • Tx(1) and Tx(2) can represent transmissions performed at time 1 and time 2, respectively.
  • the transmission sequences of the other two positions (position 2 and position 4) also have spatial overlap, as shown in Fig. 6 for the third transmission Tx(6) and the fourth transmission Tx( 7)
  • the sound beams of the two have a partial spatial overlap.
  • Tx(6) and Tx(7) can represent transmissions performed at time 6 and time 7, respectively.
  • the traditional emission continuous focus scene if you need to increase the signal-to-noise ratio, you can re-transmit the ultrasound at the same position and add the echo signals, but this will cause the efficiency and frame rate to be greatly reduced.
  • ⁇ Tx(2_i) means Tx (1_i) is reversed
  • Ty(2_j) Ty(1_j).
  • ⁇ Tx(4_i) means the inversion of Tx(3_i)
  • Ty(4_j) Ty(3_j).
  • an enhanced fundamental wave signal can be obtained, and then while the continuous focus imaging is achieved, an additional enhancement process of coherent averaging is obtained, which further improves the image quality.
  • FIG 8 shows the two-angle launch of traditional space composite imaging. To complete the two-angle launch, two complete launches are required. In Figure 8, T(t) and T(t) are launched at time t and t+1 respectively. T(t+1).
  • the first transmission can respectively transmit Tx(1_i) and Ty(1_j) at two angles; the second transmission can respectively transmit ⁇ Tx(2_i) at these two angles.
  • Figure 10 shows the transmission of two different waveforms of traditional frequency composite imaging.
  • a square waveform is used for transmission at time t
  • another square waveform is used for transmission at time t+1, denoted as T (t) and T(t+1).
  • FIG. 12 is another schematic flowchart of the ultrasound imaging method in the present application.
  • the method shown in Figure 12 includes:
  • the first time is any one of the M transmission times
  • the second time is any one or more times other than the first time among the M transmission times.
  • the first position to be detected is N waiting times. Any one to-be-detected position among the detected positions, and the second to-be-detected position is any one or more positions to be detected out of the first to-be-detected position among the N to-be-detected positions.
  • the at least two different positions to be detected can be obtained.
  • the enhanced ultrasonic echo data of at least one position to be detected can increase the signal-to-noise ratio and penetration, thereby improving image quality.
  • the first position to be detected is represented as position 1, and the second position to be detected as position 2, then S101 may be schematically shown as the first transmission in FIG. 5.
  • the first ultrasonic wave is expressed as Tx(1_i)
  • the second ultrasonic wave is expressed as Ty(1_j).
  • S103 may be schematically shown in the second transmission in FIG. 5.
  • the third ultrasonic wave is expressed as ⁇ Tx(2_i)
  • the fourth ultrasonic wave is expressed as Ty(2_j).
  • FIG. 5 shows only one example.
  • the third ultrasonic wave may be Tx(2_i)
  • the fourth ultrasonic wave may be ⁇ Ty(2_j).
  • ⁇ Tx(2_i) represents the inversion of Tx(1_i)
  • ⁇ Ty(2_i) represents the inversion of Ty(1_i).
  • the enhancement of the first position to be detected (position 1) can be obtained by subtracting or adding the fundamental wave data corresponding to the first ultrasonic echo data and the fundamental wave data corresponding to the third ultrasonic echo data.
  • Ultrasonic echo data by adding or subtracting the fundamental wave data corresponding to the second ultrasonic echo data and the fundamental wave data corresponding to the fourth ultrasonic echo data to obtain the enhanced ultrasonic echo of the second to-be-detected position (position 2) Wave data.
  • N can take a larger value
  • the matrix composed of 4 polar vectors is normalized to:
  • ⁇ Ta means the inversion of Ta
  • ⁇ Tb means the inversion of Tb
  • ⁇ Tc means the inversion of Tc
  • ⁇ Td means the inversion of Td.
  • the echo data corresponding to Ta, Tb, Tc, and Td are Ea, Eb, Ec, and Ed.
  • Ta, Tb, Tc, and Td may have the same or different waveforms.
  • the first launch is to launch Ta(1_i), ⁇ Tb(1_j), Tc(1_p) and ⁇ Td(1_q) in 4 different positions.
  • 1_i, 1_j, 1_p, and 1_q respectively represent the transmission time of the ultrasonic waves at these four positions. It should be understood that the transmission time of the four positions should overlap partially or completely. And it should be noted that when receiving the ultrasonic echoes of the ultrasonic waves at these four positions, the receiving time should also overlap partially or completely. Exemplarily, by receiving the ultrasonic echoes of the ultrasonic waves at these four locations for the first transmission, the first group of ultrasonic echo data corresponding to the first transmission can be obtained.
  • the second launch is to launch ⁇ Ta(2_i), Tb(2_j), Tc(2_p) and ⁇ Td(2_q) at these 4 positions respectively.
  • 2_i, 2_j, 2_p, and 2_q respectively represent the transmission time of the ultrasonic waves at these four positions. It should be understood that the transmission time of the four positions should overlap partially or completely. And it should be noted that when receiving the ultrasonic echoes of the ultrasonic waves at these four positions, the receiving time should also overlap partially or completely. Exemplarily, by receiving the ultrasonic echoes of the ultrasonic waves at the four positions of the second transmission, the second group of ultrasonic echo data corresponding to the second transmission can be obtained.
  • the third launch is to launch ⁇ Ta(3_i), ⁇ Tb(3_j), ⁇ Tc(3_p) and ⁇ Td(3_q) at these 4 positions, respectively.
  • 3_i, 3_j, 3_p, and 3_q respectively represent the transmission time of the ultrasonic waves at these four positions. It should be understood that the transmission time of the four positions should overlap partially or completely. And it should be noted that when receiving the ultrasonic echoes of the ultrasonic waves at these four positions, the receiving time should also overlap partially or completely. Exemplarily, by receiving the ultrasonic echoes of the ultrasonic waves at the four positions of the third transmission, the third group of ultrasonic echo data corresponding to the third transmission can be obtained.
  • the fourth launch is to launch Ta(4_i), Tb(4_j), ⁇ Tc(4_p) and ⁇ Td(4_q) at these 4 positions respectively.
  • 4_i, 4_j, 4_p, and 4_q respectively represent the transmission time of the ultrasonic waves at these four positions. It should be understood that the transmission time of the four positions should overlap partially or completely. And it should be noted that when receiving the ultrasonic echoes of the ultrasonic waves at these four positions, the receiving time should also overlap partially or completely. Exemplarily, by receiving the ultrasonic echoes of the ultrasonic waves at the four positions of the fourth transmission, the fourth group of ultrasonic echo data corresponding to the fourth transmission can be obtained.
  • the enhanced fundamental signal at each position to be detected can be obtained, and the signal-to-noise ratio and penetration can be improved.
  • the increase in power can improve the image quality.
  • FIG. 14 is another schematic flowchart of the ultrasound imaging method according to an embodiment of the present application.
  • the method shown in Figure 14 includes:
  • S110 Determine N to-be-detected positions of the target object and the number of transmissions M corresponding to the N to-be-detected positions, where N is an integer greater than 1, and M is an integer not less than N;
  • N polarity vectors corresponding to the N to-be-detected positions, where the matrix formed by the N polarity vectors is a matrix with M rows and N columns, and at least two of the N polarity vectors are linearly independent ;
  • S130 Control the ultrasonic probe to transmit N ultrasonic waves to N to-be-detected positions at the first time according to the N polarity vectors, and transmit M times;
  • S140 Control the ultrasound probe to receive ultrasound echoes based on N ultrasound waves for a second time, and receive M times to obtain M groups of ultrasound echo data, where the time between the first time corresponding to the N ultrasound waves and the corresponding second time The time period overlaps partially or completely;
  • S150 Process the ultrasound echo data of the M groups to obtain an ultrasound image of the target object.
  • any two of the N polar vectors in S220 can be orthogonal, that is, any two polar vectors are not only linearly independent but also orthogonal.
  • any two polar vectors are not only linearly independent but also orthogonal.
  • any two of the N polarity vectors in S220 are linearly independent, but not orthogonal.
  • part of the ultrasonic echo data of the M sets of ultrasonic echo data can be used to achieve signal enhancement, or the M sets of ultrasonic echo data can be used to achieve signal enhancement of one or part of the N positions to be detected. The following will be explained in conjunction with examples.
  • the column vectors of the matrix are linearly independent but do not trade.
  • the echo data corresponding to the three positions are Ea, Eb, and Ec
  • the three sets of fundamental signals corresponding to three transmissions can be represented as E1, E2, and E3, respectively. Then, understandably, they satisfy:
  • the enhanced signal of Ea can be obtained by the combination of E2 and E3
  • the enhanced signal of Eb can be obtained by the combination of E1 and E3
  • the enhanced signal of Ec can be obtained by the combination of E1 and E2. It can be seen that, in this example, each signal enhancement is achieved through partial sets of ultrasound echo data.
  • the column vectors of the matrix are linearly independent but do not trade.
  • the echo data corresponding to the two positions are Ea and Eb, and the two sets of fundamental signals corresponding to the two transmissions can be represented as E1 and E2, respectively. Then, understandably, they satisfy:
  • FIG. 15 is another schematic flowchart of the ultrasound imaging method according to an embodiment of the present application.
  • the method shown in Figure 15 includes:
  • S310 Determine N to-be-detected positions of the target object and the number of transmissions M corresponding to the N to-be-detected positions, where N is an integer greater than 1, and M is an integer not less than N;
  • S320 Control the ultrasonic probe to transmit N ultrasonic waves to N to-be-detected positions at the first time, and transmit M times;
  • S340 Process the ultrasound echo data of the M groups to obtain an ultrasound image of the target object.
  • S310 may refer to the foregoing description in conjunction with S110 of FIG. 2.
  • the waveforms of ultrasonic waves corresponding to a certain position to be detected during different transmissions are the same or opposite.
  • the waveforms of the ultrasonic waves emitted twice are opposite
  • the waveforms of the ultrasonic waves corresponding to different positions to be detected during a certain transmission are the same or opposite.
  • the waveforms of the ultrasonic waves corresponding to the two positions to be detected are the same; in the second transmission, the waveforms of the ultrasonic waves corresponding to the two positions to be detected are opposite.
  • the N groups of array elements in the ultrasound probe can be controlled to transmit N ultrasonic waves to N positions to be detected at the first time, where each group of array elements corresponds to one emission position, and each group of array elements includes at least one array element.
  • the ultrasonic waves emitted by different positions to be detected may overlap partially or completely in time.
  • the first time may refer to the overlapping part in time of the ultrasonic waves emitted by different positions to be detected.
  • the double-headed arrows indicate the start and end times of the emitted ultrasonic waves.
  • the ultrasonic wave emitted by the n1th position to be detected includes the first time in time
  • the ultrasonic wave emitted by the n2th position to be detected includes the first time in time
  • the ultrasonic wave emitted by the n3th position to be detected also includes the first time in time.
  • the ultrasonic waves emitted from the n1th position to be detected, the n2th position to be detected, and the n3th position to be detected partially overlap in time.
  • the ultrasonic waves emitted from different positions to be detected can start to be emitted at the same time, that is, the start time of the emitted ultrasonic waves is the same.
  • the ultrasonic waves emitted from the n1th position to be detected and the n2th position to be detected have the same The starting moment.
  • the ultrasonic waves emitted by different positions to be detected may not start at the same time, that is, the start time of the transmitted ultrasonic waves is different, as shown in Fig. 3 for the n1th position to be detected and the n3th position to be detected.
  • the ultrasonic waves have different starting moments. Specifically, the ultrasonic waves emitted from the n1th position to be detected are earlier than the ultrasonic waves emitted from the n3th position to be detected.
  • the total time length of the ultrasonic waves emitted by different positions to be detected can be the same length, as shown in Figure 3, the length of the ultrasonic waves emitted from the n1th position to be detected and the n3th position to be detected is the same, that is, the n1th position in Fig. 3
  • the length of the two-way arrow corresponding to each position to be detected is equal to the length of the two-way arrow corresponding to the n3 th position to be detected.
  • the total duration of the ultrasonic waves emitted by different positions to be detected may be of unequal length.
  • the duration of the ultrasonic waves emitted by the n1th position to be detected and the n2th position to be detected is not equal, as shown in the figure
  • the length of the double arrow corresponding to the n1th position to be detected in 3 is greater than the length of the double arrow corresponding to the n2th position to be detected.
  • controlling the N groups of array elements in the ultrasound probe to transmit N ultrasonic waves to N positions to be detected at the first time may include: controlling each group of array elements in the N groups of array elements to simultaneously send N ultrasonic waves to the N positions to be detected.
  • the transmitting position emits one ultrasonic wave to form N ultrasonic waves.
  • "simultaneous" transmission may mean that the starting time of transmitting ultrasonic waves is the same.
  • the ultrasonic waves emitted from different positions to be detected can be emitted at the same time, that is, the start time of the emitted ultrasonic waves is the same.
  • the ultrasonic waves of the N to-be-detected positions are performed at the same time.
  • the first transmission in M transmissions is: at t1
  • the N groups of array elements in the ultrasound probe are controlled to simultaneously start transmitting ultrasonic waves to N positions to be detected
  • the second transmission in M transmissions is: at t2
  • control the N groups of array elements in the ultrasound probe to simultaneously start transmitting ultrasound to N positions to be detected; ... etc. That is to say, for any position to be detected: the starting time of the first transmission in M transmissions is t1, and the starting time of the second transmission in M transmissions is t2,....
  • the first group of N groups of array elements emits an ultrasonic wave to the first emission position among the N positions to be detected; the second group of array elements among the N groups of array elements transmits an ultrasonic wave to the second of the N positions to be detected
  • the transmitting position emits an ultrasonic wave; ...; the Nth group of array elements among the N groups of array elements transmits an ultrasonic wave to the Nth transmitting position among the N positions to be detected.
  • the array elements that emit ultrasonic waves to different positions to be detected can be independent of each other.
  • controlling each of the N groups of array elements to simultaneously emit an ultrasonic wave to the emission positions corresponding to the N positions to be detected may include: controlling each of the array elements in each group of array elements to simultaneously emit to the corresponding position to be detected Ultrasound is superimposed to form an ultrasonic wave.
  • the i-th group of array elements emits the first ultrasonic wave to the i-th to-be-detected position, which can mean that all the elements in the i-th group of array elements simultaneously send the i-th to-be-detected position
  • the ultrasonic waves emitted from the position are superimposed to form the first ultrasonic waves. That is to say, the first ultrasonic wave emitted to the i-th position to be detected is the superposition of the ultrasonic waves emitted by all the array elements in the i-th group of array elements at the same time.
  • the array elements in the i-th group of array elements start to emit ultrasonic waves to the i-th position to be detected at the same starting moment.
  • the duration of the ultrasonic waves emitted by different array elements in the i-th group of array elements may be the same or different.
  • controlling each of the N groups of array elements to simultaneously emit an ultrasonic wave to the emission positions corresponding to the N to-be-detected positions may include: controlling each of the first group of array elements to non-simultaneously transmit an ultrasonic wave to the corresponding to-be-detected position.
  • the detection position emits ultrasonic waves to superimpose to form an ultrasonic wave
  • the first group of array elements is any group of N groups of array elements
  • each element in the second group of array elements is controlled to non-simultaneously to the corresponding to-be-detected Transmit ultrasonic waves from a position to superimpose to form an ultrasonic wave
  • the second group of array elements is any group of array elements other than the first group of array elements in the N group of array elements, and the cumulative emission time of all the array elements in the first group of array elements It is the same time as the cumulative launch time of all the elements in the second group of elements.
  • the i-th and j-th elements of the N groups of array elements start to emit ultrasonic waves at the same time.
  • the i-th element starts to emit the first ultrasonic waves to the i-th position to be detected at time t0
  • the j-th The array element also starts to emit the first ultrasonic wave to the j-th position to be detected at time t0.
  • the i-th group of array elements can include several array elements, and the start time of the several array elements can be different.
  • the first array element of the i-th group of array elements starts to emit ultrasonic waves at time t0
  • the second The array element emits ultrasound again at t0+a.
  • the j-th group of array elements can include several array elements, and the start time of the several array elements can be different.
  • the first array element of the j-th group of array elements starts to emit ultrasonic waves at time t0, and the second Each array element emits ultrasound again at t0+b.
  • different array elements in the i-th group of array elements can start to emit ultrasonic waves to the i-th position to be detected at different starting moments.
  • the union of the emission times of all the elements in the i-th group of array elements can be taken as the emission time of the i-th group of elements, and the emission time of the i-th group of elements is that of the ultrasonic wave emitted to the i-th position to be detected.
  • the duration can be called the first duration.
  • the starting time of the first or several transmissions of the ultrasonic wave in the i-th group of array elements can be called the first time.
  • different array elements in the j-th group of array elements can start to emit ultrasonic waves to the j-th position to be detected at different starting moments.
  • the union of the emission times of all the elements in the j-th group of array elements can be taken as the emission time of the j-th group of elements, and the emission time of the j-th group of elements is that of the ultrasonic waves emitted to the j-th position to be detected.
  • the duration can be called the second duration.
  • the start time of one or more of the elements of the j-th group that emits the ultrasonic wave first can be called the second time.
  • the first time and the second time are the same time, that is, the i-th group of array elements and the j-th group of array elements start to emit ultrasonic waves at the same time.
  • the first duration and the second duration overlap partially or completely.
  • the first duration and the second duration all overlap, that is, the cumulative emission time of all elements in the i-th group of elements and the cumulative emission time of all elements in the j-th group of elements are the same time segment.
  • the received M groups of ultrasound echo data may be AD data, such as IQ data or RF data.
  • the received M groups of ultrasound echo data may be beam synthesis data, such as IQ data or RF data.
  • the receiving process of the ultrasonic echoes of the ultrasonic waves emitted from different positions to be detected can be partially overlapped or completely overlapped in time.
  • the second time may refer to the overlapping part in time of receiving ultrasonic echoes of ultrasonic waves emitted from different positions to be detected.
  • the overlapped second time reference may be made to the overlapped first time in FIG. 3 similarly.
  • the start time of receiving ultrasonic echo may be the same or different.
  • the total duration of receiving ultrasound echoes can be the same or different.
  • the third group of array elements in the ultrasound probe can be controlled to receive ultrasound echoes based on N ultrasound waves, where the third group of array elements is any group in the ultrasound probe Array element.
  • each of the third group of array elements can be controlled to receive ultrasonic echoes based on N ultrasonic waves at the same time.
  • the third group of array elements may also receive ultrasonic echoes based on the N ultrasonic waves. That is to say, only one set of array elements (that is, the third set of array elements) can receive the ultrasonic echoes transmitted M times, for example, it can receive M times (receive once after each transmission is completed), thereby obtaining M sets of ultrasonic echoes. Wave data.
  • the third group of array elements may start to receive the ultrasonic echoes of N ultrasonic waves at a certain moment.
  • all the array elements in the third group of array elements may start to receive the ultrasonic echoes of N ultrasonic waves at the same time.
  • one or some of the elements in the third group may start to receive N ultrasonic echoes at a certain moment, and the remaining elements in the third group of array elements may start receiving ultrasonic echoes of N ultrasonic waves after the certain moment. At a time, start to receive the ultrasonic echoes of N ultrasonic waves.
  • the M groups of ultrasound echo data may be filtered to obtain M groups of fundamental wave signals; the ultrasound image of the target object can be obtained according to the M groups of fundamental wave signals.
  • the harmonics in the ultrasonic echo data can be filtered out through filtering processing to obtain the fundamental signal.
  • N groups of enhanced fundamental wave signals corresponding to M groups of fundamental wave signals may be acquired; and the ultrasound image of the target object can be determined according to the N sets of enhanced fundamental wave signals.
  • M groups of fundamental wave signals can be superimposed and/or cancelled to obtain N groups of enhanced fundamental wave signals.
  • the fundamental wave signal of the first position among the N positions to be detected can be determined, where the fundamental wave signal of the first position is any group of fundamental wave signals in the N positions to be detected;
  • the fundamental wave signals other than the first position in the signal are cancelled according to the rule of the polarity vector, and the fundamental wave signal at the first position is superimposed to obtain the enhanced fundamental wave signal at the first position.
  • N sets of enhanced ultrasound echo data corresponding to the M sets of ultrasound echo data may be acquired; the ultrasound image of the target object is obtained according to the N sets of enhanced ultrasound echo data.
  • the M groups of ultrasonic echo data can be superimposed and/or cancelled to obtain N groups of enhanced fundamental signals.
  • N sets of enhanced ultrasound echo data may be filtered to obtain N sets of enhanced fundamental wave signals; the ultrasound image of the target object is determined according to the N sets of enhanced fundamental wave signals.
  • the harmonics in the N groups of enhanced ultrasound echo data can be filtered out through filtering processing, so as to obtain N groups of enhanced fundamental signals.
  • the ultrasonic echo data of the second position among the N to-be-detected positions can be determined, where the ultrasonic echo data of the second position is any set of ultrasonic echo data in the N-to-be-detected positions;
  • the ultrasound echo data other than the second position in the group of ultrasound echo data is cancelled according to the rule of the polarity vector, and the ultrasound echo data at the second position is superimposed to obtain the enhanced ultrasound echo data at the second position.
  • the ultrasonic wave is continuously transmitted after a period of delay, which can improve the signal-to-noise ratio.
  • the ultrasound is continuously transmitted after a delay of a period of time, which can improve the signal-to-noise ratio.
  • any two polarity vectors in the N polarity vectors are orthogonal to each other or linearly independent; the ultrasonic waves corresponding to the N positions to be detected are determined according to the N polarity vectors.
  • any two polar vectors in the N polar vectors are orthogonal to each other.
  • any two of the N polarity vectors are linearly independent.
  • the processor 140 may determine the N to-be-detected positions of the target object and the number of transmissions M corresponding to the N-to-be-detected positions; obtain N polarity vectors corresponding to the N to-be-detected positions.
  • N is an integer greater than 1
  • M is an integer not less than N
  • the matrix composed of N polarity vectors is a matrix with M rows and N columns, and any two polarity vectors in the N polarity vectors are mutually positive. cross.
  • the transmit/receive selection switch 120 controls the ultrasonic probe 110 to transmit N ultrasonic waves to N positions to be detected at the first time according to the N polarity vectors, and transmits M times; controls the ultrasonic probe 110 to receive ultrasonic echoes based on N ultrasonic waves at the second time , Receive M times.
  • the processor 140 obtains M groups of ultrasound echo data according to the ultrasound echoes, where the time periods between the first time corresponding to the N ultrasound waves and the corresponding second time partially overlap or all overlap; and the M groups of ultrasound echo data are performed Processing to obtain an ultrasound image of the target object.
  • the display 150 may be used to display ultrasound images.
  • the processor 140 may determine N to-be-detected positions of the target object and the number of transmissions M corresponding to the N to-be-detected positions, where N is an integer greater than 1, and M is an integer not less than N; N polarity vectors corresponding to the N positions to be detected, wherein the matrix formed by the N polarity vectors is a matrix with M rows and N columns, and at least two of the N polarity vectors are linearly independent.
  • the transmit/receive selection switch 120 controls the ultrasonic probe 110 to transmit N ultrasonic waves to N positions to be detected at the first time according to the N polarity vectors, and transmits M times; controls the ultrasonic probe 110 to receive ultrasonic echoes based on N ultrasonic waves at the second time , Receive M times.
  • the processor 140 obtains M groups of ultrasound echo data according to the ultrasound echoes, where the time periods between the first time corresponding to the N ultrasound waves and the corresponding second time partially overlap or all overlap; and the M groups of ultrasound echo data are performed Processing to obtain an ultrasound image of the target object.
  • the display 150 may be used to display ultrasound images.
  • the processor 140 may determine N to-be-detected positions of the target object and the number of transmissions M corresponding to the N-to-be-detected positions, where N is an integer greater than 1, and M is an integer not less than N.
  • the transmit/receive selection switch 120 controls the ultrasonic probe 110 to transmit N ultrasonic waves to the N to-be-detected locations at the first time, and transmits M times; controls the ultrasonic probe 110 to receive the ultrasonic echo based on the N ultrasonic waves at the second time, and receives M times.
  • the processor 140 obtains M groups of ultrasound echo data according to the ultrasound echoes, where the time periods between the first time corresponding to the N ultrasound waves and the corresponding second time partially overlap or all overlap; and the M groups of ultrasound echo data are performed Processing to obtain an ultrasound image of the target object.
  • the display 150 may be used to display ultrasound images.
  • the embodiment of the present application also provides a computer storage medium on which a computer program is stored.
  • the computer program is executed by a computer or a processor, the steps of the ultrasound imaging method shown in any one of FIG. 2 or FIG. 12 or FIG. 14 or FIG. 15 can be realized.
  • the computer storage medium is a computer-readable storage medium.
  • the computer program instructions when run by the computer or processor, cause the computer or processor to perform the following steps: determine the N to-be-detected positions of the target object and the number of transmissions M corresponding to the N-to-be-detected positions; obtain N N polarity vectors corresponding to the positions to be detected.
  • N is an integer greater than 1
  • M is an integer not less than N
  • the matrix composed of N polarity vectors is a matrix of M rows and N columns, and any two polarity vectors of the N polarity vectors are mutually positive. cross.
  • the ultrasonic probe is controlled to transmit N ultrasonic waves to N to-be-detected positions at the first time, transmitting M times; the ultrasonic probe is controlled to receive ultrasonic echoes based on N ultrasonic waves at the second time, receiving M times to obtain M A group of ultrasound echo data, where the time periods between the first time corresponding to the N ultrasound waves and the corresponding second time partially overlap or all overlap.
  • the ultrasound echo data of the M groups are processed to obtain the ultrasound image of the target object.
  • the computer program instructions when run by the computer or processor, cause the computer or processor to perform the following steps: determine the N to-be-detected positions of the target object and the number of transmissions M corresponding to the N-to-be-detected positions, where , N is an integer greater than 1, and M is an integer not less than N; obtain N polarity vectors corresponding to N positions to be detected, where the matrix composed of N polarity vectors is a matrix with M rows and N columns, and N At least two of the polar vectors are linearly independent.
  • the ultrasonic probe is controlled to transmit N ultrasonic waves to the N positions to be detected at the first time, transmitting M times; the ultrasonic probe is controlled to receive the ultrasonic echo based on N ultrasonic waves at the second time, receiving M times to obtain M A group of ultrasound echo data, where the time periods between the first time corresponding to the N ultrasound waves and the corresponding second time partially overlap or all overlap; the M groups of ultrasound echo data are processed to obtain an ultrasound image of the target object.
  • the computer program instructions when run by the computer or processor, cause the computer or processor to perform the following steps: determine the N to-be-detected positions of the target object and the number of transmissions M corresponding to the N-to-be-detected positions, where , N is an integer greater than 1, and M is an integer not less than N; control the ultrasonic probe to transmit N ultrasonic waves to N positions to be detected at the first time, and transmit M times; control the ultrasonic probe to receive ultrasound based on N ultrasonic waves at the second time The echo is received M times to obtain M sets of ultrasound echo data, where the time periods between the first time and the corresponding second time corresponding to the N ultrasounds partially overlap or all overlap; for the M sets of ultrasound echo data Perform processing to obtain an ultrasound image of the target object.
  • the computer storage medium may include, for example, a memory card of a smart phone, a storage component of a tablet computer, a hard disk of a personal computer, a read-only memory (ROM), an erasable programmable read-only memory (EPROM), a portable compact disk read-only memory ( CD-ROM), USB memory, or any combination of the above storage media.
  • the computer-readable storage medium may be any combination of one or more computer-readable storage media.
  • embodiments of the present application also provide a computer program product, which contains instructions, when the instructions are executed by a computer, the computer executes any of the methods shown in FIG. 3 or FIG. 12 or FIG. 14 or FIG. step.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种超声成像方法及超声成像系统。该方法包括:第一次向两个待检测位置分别发射第一超声波和发射第二超声波(S101);接收回波得到第一超声回波数据和第二超声回波数据(S102);第二次向两个待检测位置分别发射第三超声波和发射第四超声波,第一和第三超声波波形相同,第二和第四超声波波形相反,或第一和第三超声波波形相反,第二和第四超声波波形相同(S103);接收回波得到第三超声回波数据和第四超声回波数据(S104);得到两个待检测位置中至少一个待检测位置的增强超声回波数据(S105)。可见,通过不同待检测位置的不同次发射的波形取反,能够得到各个待检测位置处增强的基波信号,可使信噪比和穿透力增加,进而能提高图像质量。

Description

超声成像方法及超声成像系统 技术领域
本申请实施例涉及超声领域,并且更具体地,涉及一种超声成像方法及超声成像系统。
背景技术
在基于超声回波数据得到超声图像的过程中,会将超声回波数据取模。为了提高图像质量,一种方式是对取模前的回波数据进行相干合成,比如在同一位置发射两次超声波,将两次得到的回波数据相加,可以提高图像质量。但是不同次的发射是独立进行的,这样导致帧率下降一倍,效率很低。另一种方式是对取模之后的回波数据进行平均,比如将同一位置的不同频率的回波数据相加,可以提高图像的对比度分辨率。如果两个不同频率的回波数据来自同一次发射,则要求两个回波数据对应的两个回波分别选取不同的子带,探头的有效带宽限制了这一应用;如果两个不同频率的回波数据来自不同次发射,这样又会导致帧率下降一倍。
发明内容
本申请实施例提供了一种超声成像方法及超声成像系统。
第一方面,提供了一种超声成像方法,该超声成像方法包括:
控制超声探头第一次向目标对象的第一待检测位置发射第一超声波,以及控制超声探头在该第一次向目标对象的第二待检测位置发射第二超声波;
控制超声探头接收从目标对象返回的基于第一超声波的超声回波以得到第一超声回波数据,以及控制超声探头接收从目标对象返回的基于第二超声波的超声回波以得到第二超声回波数据,其中,第一待检测位置对应的第一超声波的发射和基于该第一超声波的超声回波的接收之间的时间段,与第二待检测位置对应的第二超声波的发射和基于该第二超声波的超声回波的接收之间的时间段部分重叠或者全部重叠;
控制超声探头第二次向目标对象的第一待检测位置发射第三超声波,以及控制超声探头在该第二次向目标对象的第二待检测位置发射第四超声波,其中,第一超声波和第三超声波波形相同,第二超声波和第四超声波波形相反,或者,第一超声波和第三超声波波形相反,第二超声波和第四超声波波形相同;
控制超声探头接收从目标对象返回的基于第三超声波的超声回波以得到第三超声回波数据,以及控制超声探头接收从目标对象返回的基于第四超声波的超声回波以得到第四超声回波数据;
根据第一超声回波数据和第三超声回波数据得到第一待检测位置的增强超声回波数据,和/或,根据第二超声回波数据和第四超声回波数据得到第二待检测位置的增强超声回波数据。
第二方面,提供了一种超声成像方法,该超声成像方法包括:
确定目标对象的N个待检测位置以及该N个待检测位置对应的发射次数M,其中,N为大于1的整数,M为不小于N的整数;
获取该N个待检测位置所对应的N个极性向量,其中,该N个极性向量构成的矩阵为M行N列的矩阵,该N个极性向量中的任意两个极性向量互相正交;
根据该N个极性向量控制超声探头第一时间向该N个待检测位置发射N个超声波,发射M次;
控制该超声探头第二时间接收基于该N个超声波的超声回波,接收M次,以得到M组超声回波数据,其中,该N个超声波对应的第一时间和对应的第二时间之间的时间段部分重叠或者全部重叠;
对该M组超声回波数据进行处理,得到该目标对象的超声图像。
第三方面,提供了一种超声成像方法,该超声成像方法包括:
确定目标对象的N个待检测位置以及该N个待检测位置对应的发射次数M,其中,N为大于1的整数,M为不小于N的整数;
获取该N个待检测位置所对应的N个极性向量,其中,该N个极性向量构成的矩阵为M行N列的矩阵,该N个极性向量中的至少两个极性向量线性独立;
根据该N个极性向量控制超声探头第一时间向该N个待检测位置发射N 个超声波,发射M次;
控制该超声探头第二时间接收基于该N个超声波的超声回波,接收M次,以得到M组超声回波数据,其中,该N个超声波对应的第一时间和对应的第二时间之间的时间段部分重叠或者全部重叠;
对该M组超声回波数据进行处理,得到该目标对象的超声图像。
第四方面,提供了一种超声成像方法,该超声成像方法包括:
确定目标对象的N个待检测位置以及该N个待检测位置对应的发射次数M,其中,N为大于1的整数,M为不小于N的整数;
控制超声探头第一时间向该N个待检测位置发射N个超声波,发射M次;
控制该超声探头第二时间接收基于该N个超声波的超声回波,接收M次,以得到M组超声回波数据,其中,该N个超声波对应的第一时间和对应的第二时间之间的时间段部分重叠或者全部重叠;
对该M组超声回波数据进行处理,得到该目标对象的超声图像。
第五方面,提供了一种超声成像系统,包括:
超声探头;
发射/接收选择开关,用于控制该超声探头经由发射电路向目标对象的发射超声波,并接收基于该超声波的超声回波;
存储器,用于存储该处理器执行的程序;
处理器,用于执行上述第一方面至第四方面中任一方面所述方法的步骤。
第六方面,提供了一种计算机存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现前述第一方面至第四方面中任一所述方法的步骤。
由此可见,本申请实施例中通过使得多个待检测位置的多个极性向量两两之间相互正交,能够得到各个待检测位置处增强的基波信号,可使信噪比和穿透力增加,进而能够提高图像质量。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例或现有技 术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是超声成像系统的一个结构框图;
图2是本申请实施例的超声成像方法的一个示意性流程图;
图3是向不同的待检测位置所发射的超声波在时间上有重叠的示意图;
图4是针对N=M=2的发射的超声波的一个示意图;
图5是针对N=M=2的两次发射的超声波的一个示意图;
图6是传统的发射连续聚焦方法的示意图;
图7是使用本申请实施例的方法的发射连续聚焦的示意图;
图8是传统空间复合成像的两个角度的发射的示意图;
图9是使用本申请实施例的方法的空间复合成像的两个角度的发射的示意图;
图10是传统频率复合成像的两个不同的波形的发射的示意图;
图11是使用本申请实施例的方法的频率复合成像的两个不同的波形的发射的示意图;
图12是本申请实施例的超声成像方法的另一个示意性流程图;
图13是针对N=M=4的四次发射的超声波的一个示意图;
图14是本申请实施例的超声成像方法的另一个示意性流程图;
图15是本申请实施例的超声成像方法的再一个示意性流程图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供了一种超声成像系统,如图1所示为一种超声成像系统的结构框图。其中,超声成像系统10包括超声探头110、发射/接收选择开关120、存储器130、处理器140以及显示器150。发射/接收选择开关120可以包括发射开关和接收开关,其中,发射开关包括发射电路,接收开关包括接收电路,发射开关用于经由发射电路激励超声探头110向目标对象发射超声波,接收开关用于经由接收电路使得超声探头110接收从目标对象返回的超声回波。处理器140可以基于超声回波得到超声回波信号,并对超声回波信号进行处理。
示例性地,处理器140可以确定目标对象的N个待检测位置以及N个待检测位置对应的发射次数M;获取N个待检测位置所对应的N个极性向量。根据N个极性向量控制超声探头110第一时间向N个待检测位置发射N个超声波,发射M次;控制超声探头110第二时间接收基于N个超声波的超声回波,接收M次,以得到M组超声回波数据。处理器140可以对M组超声回波数据进行处理,得到目标对象的超声图像。其中,N个极性向量构成的矩阵为M行N列的矩阵,N个极性向量中的任意两个极性向量互相正交。其中,N个超声波对应的第一时间和对应的第二时间之间的时间段部分重叠或者全部重叠。更详细的描述可以参见本说明书的后续实施例。
可选地,处理器140可以对M组超声回波数据进行波束合成、正交解调、壁滤波等处理,得到目标对象的超声图像。处理器140得到的超声图像可以存储于存储器130中。并且,超声图像可以在显示器150上显示。
可选地,超声成像系统10中的显示器150可以为触摸显示屏、液晶显示屏等;或者显示器150可以为独立于超声成像系统10之外的液晶显示器、电视机等独立显示设备;或者显示器150可以是智能手机、平板电脑等电子设备的显示屏,等等。其中,显示器150的数量可以为一个或多个。
可选地,超声成像系统10中的存储器130可以为闪存卡、固态存储器、硬盘等。其可以为易失性存储器和/或非易失性存储器,为可移除存储器和/或不可移除存储器等。
可选地,超声成像系统10中的处理器140可以通过软件、硬件、固件或其任意组合来实现,可以使用电路、单个或多个专用集成电路(Application  Specific Integrated Circuit,ASIC)、单个或多个通用集成电路、单个或多个微处理器、单个或多个可编程逻辑器件、或者前述电路和/或器件的任意组合、或者其他适合的电路或器件,从而使得处理器140可以执行本说明书中的各个实施例中的方法的相应步骤。
应理解,图1所示的超声成像系统10所包括的部件只是示意性的,其可以包括更多或更少的部件。例如,超声成像系统10还可以包括诸如键盘、鼠标、滚轮、轨迹球、等输入设备,和/或包括显示器150之外的诸如打印机之类的输出设备。相应的外部输入/输出端口可以是无线通信模块,也可以是有线通信模块,或者两者的组合。外部输入/输出端口也可基于USB、如CAN等总线协议、和/或有线网络协议等来实现。本申请对此不限定。
基于上述实施例的超声成像系统,图2是本申请实施例的超声成像方法的一个示意性流程图。图2所示的方法包括:
S110,确定目标对象的N个待检测位置以及N个待检测位置对应的发射次数M,其中,N为大于1的整数,M为不小于N的整数;
S120,获取N个待检测位置所对应的N个极性向量,其中,N个极性向量构成的矩阵为M行N列的矩阵,N个极性向量中的任意两个极性向量互相正交;
S130,根据N个极性向量控制超声探头第一时间向N个待检测位置发射N个超声波,发射M次;
S140,控制超声探头第二时间接收基于N个超声波的超声回波,接收M次,以得到M组超声回波数据,其中,N个超声波对应的第一时间和对应的第二时间之间的时间段部分重叠或者全部重叠;
S150,对M组超声回波数据进行处理,得到目标对象的超声图像。
示例性地,S110中可以是系统预设好发射位置序列,也可以是系统接收用户自定义的设置确定发射位置序列,另外,S110中可以根据待扫描的目标对象的感兴趣区域来确定。例如,从感兴趣区域中确定若干个位置作为N个待检测位置。可选地,可以确定M=N、N+1、N+2、…等等。
示例性地,S120中可以为将要进行的超声波发射设定极性向量。其中, N个待检测位置可以对应N个极性向量,一个极性向量可以包含M个元素,其中的一个元素可以表示在一个待检测位置所发射的超声波束对应的探头的电压幅值。N个极性向量可以是两两正交的,即N个极性向量中的任意两个都是正交的。其中,正交是指两个向量的内积(点乘)等于零。
示例性地,可以将N个极性向量构建为一个矩阵,如果矩阵的一列代表一个极性向量,那么该矩阵可以为M行N列的矩阵。可选地,该矩阵的元素可以是N个待检测位置的每次发射时的发射电压的电压幅值或者归一化后的电压幅值。
本申请实施例中,该M行N列的矩阵中,任意两个列向量都是线性无关的,并且该矩阵的秩等于N。
举例来说,N=M=2时,矩阵归一化之后可以为:
Figure PCTCN2019126374-appb-000001
举例来说,N=M=4,该矩阵归一化之后可以为:
Figure PCTCN2019126374-appb-000002
或者可以为
Figure PCTCN2019126374-appb-000003
举例来说,N=3,M=4,该矩阵归一化之后可以为:
Figure PCTCN2019126374-appb-000004
举例来说,N=M=3,该矩阵归一化之后可以为:
Figure PCTCN2019126374-appb-000005
S130中,某个待检测位置在不同次发射时对应的超声波的波形相同或者相反。例如,N=M=2时,针对于第1个待检测位置,两次发射的超声波的波形是相反的;针对于第2个待检测位置,两次发射的超声波的波形是相同的。或者,在某次发射时不同待检测位置对应的超声波的波形相同或者相反。在第一次发射时,两个待检测位置对应的超声波的波形相同;在第二次发射时,两个待检测位置对应的超声波的波形相反。
S130中,N个待检测位置中的不同待检测位置对应的超声波的波形相同或者不相同。例如,N=M=2时,第1个待检测位置对应的超声波的波形与第2个待检测位置对应的超声波的波形是相同的或者是不相同的。
S130中,可以根据N个极性向量确定N个待检测位置对应的超声波;并控制超声探头中的N组阵元第一时间向N个待检测位置发射N个超声波,发射M次,其中,每组阵元对应一个发射位置,每组阵元包括至少一个阵元。
示例性地,可以根据N个极性向量来确定每一次发射时的各个待检测位置对应的超声波的发射电压,然后再依次发射M次超声波。
针对于M次中的任一次:向不同的待检测位置所发射的超声波在时间上可以部分重叠或者全部重叠。其中,第一时间可以是指不同的待检测位置所发射的超声波在时间上的重叠部分。参照图3,其中双向箭头表示出发射的超声波的起止时刻。第n1个待检测位置发射的超声波在时间上包括第一时间,第n2个待检测位置发射的超声波在时间上包括第一时间,且第n3个待检测位置发射的超声波在时间上也包括第一时间。即,第n1个待检测位置、第n2个待检测位置、第n3个待检测位置发射的超声波在时间上部分重叠。
不同的待检测位置所发射的超声波可以是同时开始发射的,即发射的超声波的起始时刻是相同的,如图3中第n1个待检测位置和第n2个待检测位置发射的超声波具有相同的起始时刻。或者,不同的待检测位置所发射的超声波可以是不同时开始发射的,即发射的超声波的起始时刻是不相同的,如图3中第n1个待检测位置和第n3个待检测位置发射的超声波具有不同的起始时刻,具体地,第n1个待检测位置发射的超声波先于第n3个待检测位置 发射的超声波。
不同的待检测位置所发射的超声波的总时长可以是等长的,如图3中第n1个待检测位置和第n3个待检测位置发射的超声波的时长是相等的,即图3中第n1个待检测位置对应的双向箭头的长度等于第n3个待检测位置对应的双向箭头的长度。或者,不同的待检测位置所发射的超声波的总时长可以是不等长的,如图3中第n1个待检测位置和第n2个待检测位置发射的超声波的时长是不相等的,即图3中第n1个待检测位置对应的双向箭头的长度大于第n2个待检测位置对应的双向箭头的长度。
作为一个实施例,控制超声探头中的N组阵元第一时间向N个待检测位置发射N个超声波可以包括:控制N组阵元中的每组阵元同时向N个待检测位置对应的发射位置发射一个超声波,以形成N个超声波。本申请实施例中,“同时”发射可以是指,发射超声波的起始时刻是一样的。
针对于M次中的任一次:不同的待检测位置所发射的超声波可以是同时开始发射的,即发射的超声波的起始时刻是相同的。
示例性地,在M次发射中的每一次发射,N个待检测位置的超声波是同时进行的。例如,M次发射中的第一次发射是:在t1时刻,控制超声探头中的N组阵元同时开始向N个待检测位置发射超声波;M次发射中的第二次发射是:在t2时刻,控制超声探头中的N组阵元同时开始向N个待检测位置发射超声波;……等。也就是说,对于任一个待检测位置:M次发射中的第一次发射的起始时刻为t1,M次发射中的第二次发射的起始时刻为t2,…。
N组阵元中的第一组阵元向N个待检测位置中的第一个发射位置发射一个超声波;N组阵元中的第二组阵元向N个待检测位置中的第二个发射位置发射一个超声波;…;N组阵元中的第N组阵元向N个待检测位置中的第N发射位置发射一个超声波。也就是说,向不同的待检测位置发射超声波的阵元可以是彼此独立的。
作为一例,控制N组阵元中的每组阵元同时向N个待检测位置对应的发射位置发射一个超声波可以包括:控制每组阵元中的每个阵元同时向对应的待检测位置发射超声波,以叠加形成一个超声波。
针对N组阵元中的第i组阵元,该第i组阵元向第i个待检测位置发射第一超声波可以是该第i组阵元中的所有阵元同时向第i个待检测位置发射的超声波,这些超声波叠加形成第一超声波。也就是说,向第i个待检测位置发射的第一超声波是第i组阵元中的所有阵元同时发射的超声波的叠加。
也就是说,针对第i个待检测位置,第i组阵元中的所有阵元在同一个起始时刻开始都向第i个待检测位置发射超声波。并且可理解,第i组阵元中的不同的阵元发射的超声波的时长可以是相同或不相同的。
作为另一例,控制N组阵元中的每组阵元同时向N个待检测位置对应的发射位置发射一个超声波可以包括:控制第一组阵元中的每个阵元非同时向对应的待检测位置发射超声波,以叠加形成一个超声波,其中,第一组阵元为N组阵元中的任意一组阵元;控制第二组阵元中的每个阵元非同时向对应的待检测位置发射超声波,以叠加形成一个超声波,其中,第二组阵元为N组阵元中第一组阵元以外的任意一组阵元,第一组阵元中的全部阵元的累计发射时间和第二组阵元中的全部阵元的累计发射时间为同一时间。
针对N组阵元中的第i组阵元和第j组阵元,在同一时刻开始发射超声波,例如第i组阵元在t0时刻开始向第i个待检测位置发射第一超声波,第j组阵元也在t0时刻开始向第j个待检测位置发射第一超声波。其中,第i组阵元可以包括若干个阵元,且若干个阵元发射超声波的起始时间可以不同,如第i组阵元的第1个阵元在t0时刻开始发射超声波,第2个阵元在t0+a时刻再发射超声波。类似地,第j组阵元可以包括若干个阵元,且若干个阵元发射超声波的起始时间可以不同,如第j组阵元的第1个阵元在t0时刻开始发射超声波,第2个阵元在t0+b时刻再发射超声波。
也就是说,针对第i个待检测位置,第i组阵元中的不同阵元可以在不同的起始时刻开始向第i个待检测位置发射超声波。并且可以将第i组阵元中的所有阵元的发射时间的并集作为第i组阵元的发射时间,且第i组阵元的发射时间为向第i个待检测位置发射的超声波的时长,可以称为第一时长。其中,第i组阵元中最先发射超声波的那一个或几个发射的起始时刻可以称为第一时刻。
类似地,针对第j个待检测位置,第j组阵元中的不同阵元可以在不同 的起始时刻开始向第j个待检测位置发射超声波。并且可以将第j组阵元中的所有阵元的发射时间的并集作为第j组阵元的发射时间,且第j组阵元的发射时间为向第j个待检测位置发射的超声波的时长,可以称为第二时长。其中,第j组阵元中最先发射超声波的那一个或几个发射的起始时刻可以称为第二时刻。
可选地,第一时刻与第二时刻为同一时刻,即第i组阵元和第j组阵元在同一时刻开始发射超声波。
其中,第一时长与第二时长部分重叠或者全部重叠。可选地,第一时长与第二时长全部重叠,也就是说,第i组阵元中的全部阵元的累计发射时间和第j组阵元中的全部阵元的累计发射时间为同一时间段。
示例性地,S130中,可以通过调节各个阵元的发射电压的正负和大小,来满足S120中所确定的矩阵。例如,电压为上述的矩阵乘以10伏特(V)。
S140中,接收到的M组超声回波数据可以是AD数据,如IQ数据或者RF数据。或者,接收到的M组超声回波数据可以是波束合成数据,如IQ数据或者RF数据。
针对于M次中的任一次:针对不同的待检测位置所发射的超声波的超声回波的接收过程中,在时间上可以部分重叠或者全部重叠。其中,第二时间可以是指接收不同的待检测位置所发射的超声波的超声回波在时间上的重叠部分。关于重叠的第二时间可以类似地参照图3中重叠的第一时间。
针对于不同的待检测位置,接收超声回波的起始时刻可以相同或不相同。针对于不同的待检测位置,接收超声回波的总时长可以相同或不相同。
针对一次发射的N个超声波:作为一例,S140中,可以控制超声探头中的第三组阵元接收基于N个超声波的超声回波,其中,第三组阵元为超声探头中的任意一组阵元。
其中,可以控制第三组阵元中的每个阵元同时接收基于N个超声波的超声回波。
示例性地,针对M次中另一次发射的N个超声波,也可以由第三组阵元来接收基于N个超声波的超声回波。也就是说,可以仅由一组阵元(即第 三组阵元)来接收M次发射的超声回波,例如可以接收M次(每完成一次发射便接收一次),从而得到M组超声回波数据。
举例来说,可以由第三组阵元在某个时刻开始接收N个超声波的超声回波。例如,可以由第三组阵元中的所有阵元在同一个时刻都开始接收N个超声波的超声回波。再例如,可以由第三组阵元中的一个或部分阵元在某个时刻开始接收N个超声波的超声回波,而第三组阵元中的其余阵元在该某个时刻之后的下一个时刻再开始接收N个超声波的超声回波。
作为一例,S150中,可以对M组超声回波数据进行滤波处理得到M组基波信号;根据M组基波信号得到目标对象的超声图像。
其中,可以通过滤波处理将超声回波数据中的谐波进行滤除,从而得到基波信号。
示例性地,可以获取M组基波信号对应的N组增强基波信号;并根据N组增强基波信号确定目标对象的超声图像。
其中,可以将M组基波信号进行叠加和/或抵消,从而得到N组增强基波信号。
示例性地,可以确定N个待检测位置中的第一位置的基波信号,其中,第一位置的基波信号为N个待检测位置中的任意一组基波信号;将M组基波信号中第一位置以外的其他基波信号按照极性向量的规则进行抵消处理,将第一位置的基波信号进行叠加处理,得到第一位置的增强基波信号。
作为另一例,S150中,可以获取M组超声回波数据对应的N组增强超声回波数据;根据N组增强超声回波数据得到目标对象的超声图像。
其中,可以将M组超声回波数据进行叠加和/或抵消,从而得到N组增强基波信号。
示例性地,可以对N组增强超声回波数据进行滤波处理得到N组增强基波信号;根据N组增强基波信号确定目标对象的超声图像。
其中,可以通过滤波处理将N组增强超声回波数据中的谐波进行滤除,从而得到N组增强基波信号。
示例性地,可以确定N个待检测位置中的第二位置的超声回波数据,其中,第二位置的超声回波数据为N个待检测位置中的任意一组超声回波数据;将M组超声回波数据中第二位置以外的其他超声回波数据按照极性向量的规则进行抵消处理,将第二位置的超声回波数据进行叠加处理,得到第二位置的增强超声回波数据。
另外,可选地,本申请实施例在S130完成M次发射之后,延时一段时间之后再继续发射超声波,这样能够提高信噪比。或者,可选地,本申请实施例在S150基于M次发射得到超声图像之后,延时一段时间之后再继续发射超声波,这样能够提高信噪比。
为了更清楚地描述本申请实施例,下面以N=2为例进行详细阐述。可以在S110先确定2个待检测位置,以及确定M=N=2,进一步在S120确定2个极性向量组成的矩阵归一化后为
Figure PCTCN2019126374-appb-000006
S130中包括两次发射,相应地,S140中接收两次发射的超声波的超声回波,如下(1)和(2)所述。
(1)针对第一次发射:
假设向第1个待检测位置发射的超声波表示为Tx,向第2个待检测位置发射的超声波表示为Ty。在S130可以向第1个待检测位置和第2个待检测位置发射超声波,并且Tx和Ty这两个位置的发射在时间上有重叠。其中,Tx和Ty的发射波形可以相同也可以不相同。
并且Tx和Ty这两个位置的发射在时间上可以部分重叠或者全部,可理解,时间重叠越多,则时间效率会越高。参照图4,Tx(t_i)是指在t_i时刻向第1个待检测位置发射超声波,Ty(t_j)是指在t_j时刻向第2个待检测位置发射超声波。其中,t_i和t_j可以相同也可以不同,但是需要满足第1个待检测位置和第2个待检测位置的发射在时间上部分重叠或者全部重叠,例如重叠的部分为第一时间。
类似地,S140中可以接收该第一次发射的超声波的超声回波,并且针对第1个待检测位置和第2个待检测位置的接收在时间上部分重叠或者全部 重叠。参照图4,可以由阵元k同时接收第1个待检测位置和第2个待检测位置的超声波的超声回波。其中,位于接收弧线上的A和B分别是两个不同待检测位置发射的超声波的声束位置。
这样,得到了第一次发射的超声回波,进而得到了对应的第一组超声回波数据。
(2)针对第二次发射:
将第1个待检测位置的超声波的波形翻转,第2个待检测位置的超声波的波形不变。向第1个待检测位置发射的超声波表示为-Tx,向第2个待检测位置发射的超声波表示为Ty。并且向第1个待检测位置发射-Tx和向第2个待检测位置发射Ty在时间上有重叠。随后接收该第二次发射的超声波的超声回波,并且针对第1个待检测位置和第2个待检测位置的接收在时间上有重叠。
可理解,-Tx与Tx的不同只在于波形翻转,其余的物理参数是一致的,如发射时序、发射电压、接收参数等。可理解,可以由相同的阵元接收第一次发射的超声波的超声回波以及第二次发射的超声波的超声回波,例如,参照图4,可以由阵元k接收第一次发射的超声波的超声回波,并且随后由阵元k接收第二次发射的超声波的超声回波。或者,可以由不同的阵元分别接收第一次发射的超声波的超声回波以及第二次发射的超声波的超声回波,例如,参照图4,可以由阵元k接收第一次发射的超声波的超声回波,并且随后由阵元k之外的另一个阵元接收第二次发射的超声波的超声回波。
这样,得到了第二次发射的超声回波,进而得到了对应的第二组超声回波数据。
随后,针对这两组超声回波数据,可以通过滤波得到两组基波信号,并随后通过相加得到第2个待检测位置处的增强基波信号,通过相减得到第1个待检测位置处的增强基波信号。
这样,通过这样的方式,能够在相同的频率下,额外地获取一次相干平均的增强过程,从而使得帧率提高一倍。
参照图5,第1次发射时,在位置1和位置2分别发射Tx(1_i)和Ty(1_j)。 在第2次发射时,在位置1和位置2分别发射~Tx(2_i)和Ty(2_j),其中,~Tx(2_i)表示将Tx(1_i)取反。其中,Tx(1_i)和Ty(1_j)在发射时间上有重叠,~Tx(2_i)和Ty(2_j)在发射时间上有重叠。随后可以将两次发射分别得到的超声回波数据对应的基波数据进行相加得到位置2的增强信号,进行相减得到位置1的增强信号。
上述实施例可以应用于各种场景,下面以几个场景作为示例进行阐述。
以发射连续聚焦场景为例:
如图6所示为传统的发射连续聚焦方法的示意图,其发射序列在不同的位置上形成一个具有部分空间重叠的序列,如图6中在位置1和位置3的第1次发射的Tx(1)和第2次发射的Tx(2),两者的声束具有一部分空间重叠。其中,Tx(1)和Tx(2)可以分别表示在时刻1和时刻2进行的发射。类似地,另外两个位置(位置2和位置4)的发射序列也具有空间重叠,如图6中在位置2和位置4的第3次发射的Tx(6)和第4次发射的Tx(7),两者的声束具有一部分空间重叠。其中,Tx(6)和Tx(7)可以分别表示在时刻6和时刻7进行的发射。在传统的发射连续聚焦场景下,如果需要增加信噪比,那么可以在相同的位置重新发射超声波,并将回波信号相加,但是这样会导致效率和帧率都大大下降。
通过本申请实施例的方法,参照图7,第一次发射可以在两个不同的位置(位置1和位置2)分别发射Tx(1_i)和Ty(1_j),分别对应于图6中的Tx(1)和Tx(6);第二次发射可以在这两个位置(位置1和位置2)继续分别发射~Tx(2_i)和Ty(2_j),其中,~Tx(2_i)表示将Tx(1_i)取反,Ty(2_j)=Ty(1_j)。这样能够实现对图6中的Tx(1)和Tx(6)的回波增强。
类似地,依然参照图7,第三次发射可以在另两个不同的位置(位置3和位置4)发射Tx(3_i)和Ty(3_j),分别对应于图6中的Tx(2)和Tx(7);第四次发射可以在这两个位置(位置3和位置4)继续发射~Tx(4_i)和Ty(4_j),其中,~Tx(4_i)表示将Tx(3_i)取反,Ty(4_j)=Ty(3_j)。这样能够实现对图6中的Tx(2)和Tx(7)的回波增强。
这样,通过采用本申请实施例的图7所示的方法,能够得到增强的基波信号,进而在实现发射连续聚焦成像的同时,额外获得一次相干平均的增强 过程,进一步提高了图像质量。
以空间复合成像场景为例:
如图8所示为传统空间复合成像的两个角度的发射,完成这两个角度的发射需要完整的两次发射,如图8中分别在t时刻和t+1时刻发射T(t)和T(t+1)。
通过本申请实施例的方法,参照图9,第一次发射可以在两个角度分别发射Tx(1_i)和Ty(1_j);第二次发射可以在这两个角度分别发射~Tx(2_i)和Ty(2_j),其中,~Tx(2_i)表示将Tx(1_i)取反,Ty(2_j)=Ty(1_j)。这样,通过结合两次发射的回波数据,能够得到增强的偏转回波信号。
以频率复合成像场景为例:
如图10所示为传统频率复合成像的两个不同的波形的发射,如图10中在t时刻采用一个方形波形进行发射,在t+1时刻采用另一方形波形进行发射,分别表示为T(t)和T(t+1)。
通过本申请实施例的方法,参照图11,第一次发射可以使用两个不同的波形进行发射,分别表示为Tx(1_i)和Ty(1_j);第二次发射可以将第一个波形取反后在发射,即分别发射~Tx(2_i)和Ty(2_j),其中,~Tx(2_i)表示将Tx(1_i)取反,Ty(2_j)=Ty(1_j)。这样,相比于图10,能够在维持相同帧率的条件下,额外获得一次相干平均的增强过程,改善了图像质量。
示例性地,图12是本申请中的超声成像方法的另一示意性流程图。图12所示的方法包括:
S101,控制超声探头第一次向目标对象的第一待检测位置发射第一超声波,以及控制超声探头在该第一次向目标对象的第二待检测位置发射第二超声波;
S102,控制超声探头接收从目标对象返回的基于第一超声波的超声回波以得到第一超声回波数据,以及控制超声探头接收从目标对象返回的基于第二超声波的超声回波以得到第二超声回波数据,其中,第一待检测位置对应的第一超声波的发射和基于该第一超声波的超声回波的接收之间的时间段,与第二待检测位置对应的第二超声波的发射和基于该第二超声波的超声回波的接收之间的时间段部分重叠或者全部重叠;
S103,控制超声探头第二次向目标对象的第一待检测位置发射第三超声波,以及控制超声探头在该第二次向目标对象的第二待检测位置发射第四超声波,其中,第一超声波和第三超声波波形相同,第二超声波和第四超声波波形相反,或者,第一超声波和第三超声波波形相反,第二超声波和第四超声波波形相同;
S104,控制超声探头接收从目标对象返回的基于第三超声波的超声回波以得到第三超声回波数据,以及控制超声探头接收从目标对象返回的基于第四超声波的超声回波以得到第四超声回波数据;
S105,根据第一超声回波数据和第三超声回波数据得到第一待检测位置的增强超声回波数据,和/或,根据第二超声回波数据和第四超声回波数据得到第二待检测位置的增强超声回波数据。
需要说明的是,该第一次是M次发射次数中的任意一次,第二次是M次发射次数中出第一次外的任意一次或者多次,该第一待检测位置是N个待检测位置中的任意一个待检测位置,该第二待检测位置是该N个待检测位置中该第一待检测位置外的任意一个或者多个待检测位置。
这样,本实施例中,通过在至少两个不同的待检测位置分别发射超声波,通过至少两次发射,且其中一个待检测位置的波形取反,能够得到该至少两个不同的待检测位置中至少一个待检测位置的增强超声回波数据,可使信噪比和穿透力增加,进而能提高图像质量。
作为一例,图12所示的方法可以N=M=2为例进行说明。
示例性地,将第一待检测位置表示为位置1,将第二待检测位置表示为位置2,那么S101可以示意性如图5中的第1次发射所示。其中,第一超声波表示为Tx(1_i),第二超声波表示为Ty(1_j)。
示例性地,S103可以示意性如图5中的第2次发射所示。其中,第三超声波表示为~Tx(2_i),第四超声波表示为Ty(2_j)。应当注意的是,图5示出的仅是其中一例,在另一例中,第三超声波可以为Tx(2_i),第四超声波可以为~Ty(2_j)。其中,~Tx(2_i)表示将Tx(1_i)取反,~Ty(2_i)表示将Ty(1_i)取反。
具体地,S105中,可以通过将第一超声回波数据对应的基波数据和第三超声回波数据对应的基波数据进行相减或相加得到第一待检测位置(位置1)的增强超声回波数据,通过将第二超声回波数据对应的基波数据和第四超声回波数据对应的基波数据进行相加或相减得到第二待检测位置(位置2)的增强超声回波数据。
以上结合图4至图12描述了N=M=2的几种情形,本领域技术人员应当理解,本申请实施例对此不限定,例如N可以取更大的值,以N=M=4为例,如图13示出了其中一例,4个极性向量组成的矩阵归一化后为:
Figure PCTCN2019126374-appb-000007
图13中,假设发射波形为方形波。~Ta表示对Ta取反,~Tb表示对Tb取反,~Tc表示对Tc取反,~Td表示对Td取反。假设与Ta、Tb、Tc和Td对应的回波数据为Ea、Eb、Ec和Ed。其中,Ta、Tb、Tc、Td彼此间可以具有相同或不同的波形。图13中示出了M=4次发射:
第一次发射是在4个不同的位置分别发射Ta(1_i),~Tb(1_j),Tc(1_p)和~Td(1_q)。其中,1_i、1_j、1_p和1_q分别表示这四个位置的超声波的发射时间,应当理解,四个位置的发射时间应该部分重叠或者全部重叠。并且应当注意的是,接收这四个位置的超声波的超声回波时,接收时间也应该部分重叠或者全部重叠。示例性地,通过接收第一次发射的这四个位置的超声波的超声回波,能够得到与第一次发射对应的第1组超声回波数据。
第二次发射是在这4个位置分别发射~Ta(2_i),Tb(2_j),Tc(2_p)和~Td(2_q)。其中,2_i、2_j、2_p和2_q分别表示这四个位置的超声波的发射时间,应当理解,四个位置的发射时间应该部分重叠或者全部重叠。并且应当注意的是,接收这四个位置的超声波的超声回波时,接收时间也应该部分重叠或者全部重叠。示例性地,通过接收第二次发射的这四个位置的超声波的超声回波,能够得到与第二次发射对应的第2组超声回波数据。
第三次发射是在这4个位置分别发射~Ta(3_i),~Tb(3_j),~Tc(3_p)和~Td(3_q)。其中,3_i、3_j、3_p和3_q分别表示这四个位置的超声波的发射时间,应当理解,四个位置的发射时间应该部分重叠或者全部重叠。并且应当注意的是,接收这四个位置的超声波的超声回波时,接收时间也应该部分重叠或者全部重叠。示例性地,通过接收第三次发射的这四个位置的超声波的超声回波,能够得到与第三次发射对应的第3组超声回波数据。
第四次发射是在这4个位置分别发射Ta(4_i),Tb(4_j),~Tc(4_p)和~Td(4_q)。其中,4_i、4_j、4_p和4_q分别表示这四个位置的超声波的发射时间,应当理解,四个位置的发射时间应该部分重叠或者全部重叠。并且应当注意的是,接收这四个位置的超声波的超声回波时,接收时间也应该部分重叠或者全部重叠。示例性地,通过接收第四次发射的这四个位置的超声波的超声回波,能够得到与第四次发射对应的第4组超声回波数据。
示例性地,对第1组超声回波数据至第四组超声回波数据进行滤波,可以得到四组基波信号,假设可以分别表示为E1、E2、E3和E4,可理解,它们满足:
Ea-Eb+Ec-Ed=E1,
-Ea+Eb+Ec-Ed=E2,
-Ea-Eb-Ec-Ed=E3,
Ea+Eb-Ec-Ed=E4。
那么,可以通过上述得到4倍的相干信号:
4Ea=E1-E2-E3+E4,
4Eb=-E1+E2-E3+E4,
4Ec=E1+E2-E3-E4,
4Ed=-E1-E2-E3-E4。
这样,基于图13所示的N=M=4的示例,能够实现4倍信号增强。
类似地,以N=M=3为例,假设3个极性向量组成的矩阵归一化后为:
Figure PCTCN2019126374-appb-000008
假设三个位置对应的回波数据为Ea、Eb和Ec,并且三次发射对应的三组基波信号可以分别表示为E1、E2和E3。那么,可以理解,它们满足:
0.7071×Ea-0.4082×Eb+0.5774×Ec=E1,
0.7071×Ea+0.4082×Eb-0.5774×Ec=E2,
0×Ea+0.8165×Eb+0.5774×Ec=E3。
进而可以得到:
Ea=0.7071×E1+0.7071×E2,
Eb=-0.4082×E1+0.4082×E2+0.8165×E3,
Ec=0.5774×E1-0.5774×E2+0.5774×E3。
可见,N=M=3时,也可以实现信号增强,但不是整数倍的。另外,可以看出,Ea由E1和E2复合形成,Eb和Ec由E1、E2和E3复合而成,Eb和Ec的信噪比提升略大于Ea,这是因为第3次发射时,第一个位置的声束为空,因此在该例中只有Eb和Ec的信噪比提升达到了3次相干复合的效果(噪声方差下降最多)。
由此可见,本申请实施例中通过使得多个待检测位置的多个极性向量两两之间相互正交,能够得到各个待检测位置处增强的基波信号,可使信噪比和穿透力增加,进而能够提高图像质量。
基于图1所示的超声成像系统,图14是本申请实施例的超声成像方法的另一个示意性流程图。图14所示的方法包括:
S110,确定目标对象的N个待检测位置以及N个待检测位置对应的发射次数M,其中,N为大于1的整数,M为不小于N的整数;
S220,获取N个待检测位置所对应的N个极性向量,其中,N个极性向量构成的矩阵为M行N列的矩阵,N个极性向量中的至少两个极性向量线性独立;
S130,根据N个极性向量控制超声探头第一时间向N个待检测位置发射N个超声波,发射M次;
S140,控制超声探头第二时间接收基于N个超声波的超声回波,接收M次,以得到M组超声回波数据,其中,N个超声波对应的第一时间和对应的第二时间之间的时间段部分重叠或者全部重叠;
S150,对M组超声回波数据进行处理,得到目标对象的超声图像。
图14中的S110、S130至S150可以参见上述结合图2所描述的,为避免重复,这里不再赘述。
作为一例,S220中N个极性向量中的任意两个可以是正交的,也就是说,任意两个极性向量不仅线性独立而且正交,此实施例可以参见上述结合图2中S120所描述的。
作为另一例,S220中N个极性向量中的任意两个是线性独立的,但不正交。在该实施例中,可以使用M组超声回波数据中的部分组超声回波数据实现信号增强,或者使用M组超声回波数据实现N个待检测位置中的一个或部分位置的信号增强,下面将结合示例进行阐述。
以N=M=3为例,假设3个极性向量组成的矩阵归一化后为:
Figure PCTCN2019126374-appb-000009
该矩阵的列向量是线性独立的但是不成交。假设三个位置对应的回波数据为Ea、Eb和Ec,并且三次发射对应的三组基波信号可以分别表示为E1、E2和E3。那么,可以理解,它们满足:
Ea-Eb+Ec=E1,
-Ea+Eb+Ec=E2,
-Ea-Eb-Ec=E3。
根据上式,可以通过E2和E3的复合得到Ea的增强信号,通过E1和E3的复合得到Eb的增强信号,并且通过E1和E2的复合得到Ec的增强信号。可见,在该例中,通过部分组超声回波数据实现各个信号增强。
以N=M=2为例,假设2个极性向量组成的矩阵归一化后为:
Figure PCTCN2019126374-appb-000010
该矩阵的列向量是线性独立的但是不成交。假设两个位置对应的回波数据为Ea和Eb,并且两次发射对应的两组基波信号可以分别表示为E1和E2。那么,可以理解,它们满足:
Ea+Eb=E1,
Eb=E2。
根据上式,可以通过E1和E2的复合得到Ea的增强信号,即Ea=E1–E2。可见,在该例中,通过超声回波数据实现部分位置的信号增强。
由此可见,本申请实施例中通过使得多个待检测位置的多个极性向量彼此线性独立,能够得到部分或全部待检测位置处增强的基波信号,可使信噪比和穿透力增加,进而能够提高图像质量。
基于图1所示的超声成像系统,图15是本申请实施例的超声成像方法的另一个示意性流程图。图15所示的方法包括:
S310,确定目标对象的N个待检测位置以及N个待检测位置对应的发射次数M,其中,N为大于1的整数,M为不小于N的整数;
S320,控制超声探头第一时间向N个待检测位置发射N个超声波,发射M次;
S330,控制超声探头第二时间接收基于N个超声波的超声回波,接收M次,以得到M组超声回波数据,其中,N个超声波对应的第一时间和对应的第二时间之间的时间段部分重叠或者全部重叠;
S340,对M组超声回波数据进行处理,得到目标对象的超声图像。
示例性地,S310可以参见前述结合图2的S110所描述的。
S320中,某个待检测位置在不同次发射时对应的超声波的波形相同或者相反。例如,N=M=2时,针对于第1个待检测位置,两次发射的超声波的波形是相反的;针对于第2个待检测位置,两次发射的超声波的波形是相同的。或者,在某次发射时不同待检测位置对应的超声波的波形相同或者相 反。在第一次发射时,两个待检测位置对应的超声波的波形相同;在第二次发射时,两个待检测位置对应的超声波的波形相反。
S320中,N个待检测位置中的不同待检测位置对应的超声波的波形相同或者不相同。例如,N=M=2时,第1个待检测位置对应的超声波的波形与第2个待检测位置对应的超声波的波形是相同的或者是不相同的。
S320中,可以控制超声探头中的N组阵元第一时间向N个待检测位置发射N个超声波,其中,每组阵元对应一个发射位置,每组阵元包括至少一个阵元。
针对于M次中的任一次:不同的待检测位置所发射的超声波在时间上可以部分重叠或者全部重叠。其中,第一时间可以是指不同的待检测位置所发射的超声波在时间上的重叠部分。参照图3,其中双向箭头表示出发射的超声波的起止时刻。第n1个待检测位置发射的超声波在时间上包括第一时间,第n2个待检测位置发射的超声波在时间上包括第一时间,且第n3个待检测位置发射的超声波在时间上也包括第一时间。即,第n1个待检测位置、第n2个待检测位置、第n3个待检测位置发射的超声波在时间上部分重叠。
不同的待检测位置所发射的超声波可以是同时开始发射的,即发射的超声波的起始时刻是相同的,如图3中第n1个待检测位置和第n2个待检测位置发射的超声波具有相同的起始时刻。或者,不同的待检测位置所发射的超声波可以是不同时开始发射的,即发射的超声波的起始时刻是不相同的,如图3中第n1个待检测位置和第n3个待检测位置发射的超声波具有不同的起始时刻,具体地,第n1个待检测位置发射的超声波先于第n3个待检测位置发射的超声波。
不同的待检测位置所发射的超声波的总时长可以是等长的,如图3中第n1个待检测位置和第n3个待检测位置发射的超声波的时长是相等的,即图3中第n1个待检测位置对应的双向箭头的长度等于第n3个待检测位置对应的双向箭头的长度。或者,不同的待检测位置所发射的超声波的总时长可以是不等长的,如图3中第n1个待检测位置和第n2个待检测位置发射的超声波的时长是不相等的,即图3中第n1个待检测位置对应的双向箭头的长度大于第n2个待检测位置对应的双向箭头的长度。
作为一个实施例,控制超声探头中的N组阵元第一时间向N个待检测位置发射N个超声波可以包括:控制N组阵元中的每组阵元同时向N个待检测位置对应的发射位置发射一个超声波,以形成N个超声波。本申请实施例中,“同时”发射可以是指,发射超声波的起始时刻是一样的。
针对于M次中的任一次:不同的待检测位置所发射的超声波可以是同时开始发射的,即发射的超声波的起始时刻是相同的。
示例性地,在M次发射中的每一次发射,N个待检测位置的超声波是同时进行的。例如,M次发射中的第一次发射是:在t1时刻,控制超声探头中的N组阵元同时开始向N个待检测位置发射超声波;M次发射中的第二次发射是:在t2时刻,控制超声探头中的N组阵元同时开始向N个待检测位置发射超声波;……等。也就是说,对于任一个待检测位置:M次发射中的第一次发射的起始时刻为t1,M次发射中的第二次发射的起始时刻为t2,…。
N组阵元中的第一组阵元向N个待检测位置中的第一个发射位置发射一个超声波;N组阵元中的第二组阵元向N个待检测位置中的第二个发射位置发射一个超声波;…;N组阵元中的第N组阵元向N个待检测位置中的第N发射位置发射一个超声波。也就是说,向不同的待检测位置发射超声波的阵元可以是彼此独立的。
作为一例,控制N组阵元中的每组阵元同时向N个待检测位置对应的发射位置发射一个超声波可以包括:控制每组阵元中的每个阵元同时向对应的待检测位置发射超声波,以叠加形成一个超声波。
针对N组阵元中的第i组阵元,该第i组阵元向第i个待检测位置发射第一超声波可以是该第i组阵元中的所有阵元同时向第i个待检测位置发射的超声波,这些超声波叠加形成第一超声波。也就是说,向第i个待检测位置发射的第一超声波是第i组阵元中的所有阵元同时发射的超声波的叠加。
也就是说,针对第i个待检测位置,第i组阵元中的所有阵元在同一个起始时刻开始都向第i个待检测位置发射超声波。并且可理解,第i组阵元中的不同的阵元发射的超声波的时长可以是相同或不相同的。
作为另一例,控制N组阵元中的每组阵元同时向N个待检测位置对应 的发射位置发射一个超声波可以包括:控制第一组阵元中的每个阵元非同时向对应的待检测位置发射超声波,以叠加形成一个超声波,其中,第一组阵元为N组阵元中的任意一组阵元;控制第二组阵元中的每个阵元非同时向对应的待检测位置发射超声波,以叠加形成一个超声波,其中,第二组阵元为N组阵元中第一组阵元以外的任意一组阵元,第一组阵元中的全部阵元的累计发射时间和第二组阵元中的全部阵元的累计发射时间为同一时间。
针对N组阵元中的第i组阵元和第j组阵元,在同一时刻开始发射超声波,例如第i组阵元在t0时刻开始向第i个待检测位置发射第一超声波,第j组阵元也在t0时刻开始向第j个待检测位置发射第一超声波。其中,第i组阵元可以包括若干个阵元,且若干个阵元发射超声波的起始时间可以不同,如第i组阵元的第1个阵元在t0时刻开始发射超声波,第2个阵元在t0+a时刻再发射超声波。类似地,第j组阵元可以包括若干个阵元,且若干个阵元发射超声波的起始时间可以不同,如第j组阵元的第1个阵元在t0时刻开始发射超声波,第2个阵元在t0+b时刻再发射超声波。
也就是说,针对第i个待检测位置,第i组阵元中的不同阵元可以在不同的起始时刻开始向第i个待检测位置发射超声波。并且可以将第i组阵元中的所有阵元的发射时间的并集作为第i组阵元的发射时间,且第i组阵元的发射时间为向第i个待检测位置发射的超声波的时长,可以称为第一时长。其中,第i组阵元中最先发射超声波的那一个或几个发射的起始时刻可以称为第一时刻。
类似地,针对第j个待检测位置,第j组阵元中的不同阵元可以在不同的起始时刻开始向第j个待检测位置发射超声波。并且可以将第j组阵元中的所有阵元的发射时间的并集作为第j组阵元的发射时间,且第j组阵元的发射时间为向第j个待检测位置发射的超声波的时长,可以称为第二时长。其中,第j组阵元中最先发射超声波的那一个或几个发射的起始时刻可以称为第二时刻。
可选地,第一时刻与第二时刻为同一时刻,即第i组阵元和第j组阵元在同一时刻开始发射超声波。
其中,第一时长与第二时长部分重叠或者全部重叠。可选地,第一时长 与第二时长全部重叠,也就是说,第i组阵元中的全部阵元的累计发射时间和第j组阵元中的全部阵元的累计发射时间为同一时间段。
S330中,接收到的M组超声回波数据可以是AD数据,如IQ数据或者RF数据。或者,接收到的M组超声回波数据可以是波束合成数据,如IQ数据或者RF数据。
针对于M次中的任一次:诊断不同的待检测位置所发射的超声波的超声回波的接收过程中,在时间上可以部分重叠或者全部重叠。其中,第二时间可以是指接收不同的待检测位置所发射的超声波的超声回波在时间上的重叠部分。关于重叠的第二时间可以类似地参照图3中重叠的第一时间。
针对于不同的待检测位置,接收超声回波的起始时刻可以相同或不相同。针对于不同的待检测位置,接收超声回波的总时长可以相同或不相同。
针对一次发射的N个超声波:作为一例,S330中,可以控制超声探头中的第三组阵元接收基于N个超声波的超声回波,其中,第三组阵元为超声探头中的任意一组阵元。
其中,可以控制第三组阵元中的每个阵元同时接收基于N个超声波的超声回波。
示例性地,针对M次中另一次发射的N个超声波,也可以由第三组阵元来接收基于N个超声波的超声回波。也就是说,可以仅由一组阵元(即第三组阵元)来接收M次发射的超声回波,例如可以接收M次(每完成一次发射便接收一次),从而得到M组超声回波数据。
举例来说,可以由第三组阵元在某个时刻开始接收N个超声波的超声回波。例如,可以由第三组阵元中的所有阵元在同一个时刻都开始接收N个超声波的超声回波。再例如,可以由第三组阵元中的一个或部分阵元在某个时刻开始接收N个超声波的超声回波,而第三组阵元中的其余阵元在该某个时刻之后的下一个时刻再开始接收N个超声波的超声回波。
作为一例,S340中,可以对M组超声回波数据进行滤波处理得到M组基波信号;根据M组基波信号得到目标对象的超声图像。
其中,可以通过滤波处理将超声回波数据中的谐波进行滤除,从而得到 基波信号。
示例性地,可以获取M组基波信号对应的N组增强基波信号;并根据N组增强基波信号确定目标对象的超声图像。
其中,可以将M组基波信号进行叠加和/或抵消,从而得到N组增强基波信号。
示例性地,可以确定N个待检测位置中的第一位置的基波信号,其中,第一位置的基波信号为N个待检测位置中的任意一组基波信号;将M组基波信号中第一位置以外的其他基波信号按照极性向量的规则进行抵消处理,将第一位置的基波信号进行叠加处理,得到第一位置的增强基波信号。
作为另一例,S340中,可以获取M组超声回波数据对应的N组增强超声回波数据;根据N组增强超声回波数据得到目标对象的超声图像。
其中,可以将M组超声回波数据进行叠加和/或抵消,从而得到N组增强基波信号。
示例性地,可以对N组增强超声回波数据进行滤波处理得到N组增强基波信号;根据N组增强基波信号确定目标对象的超声图像。
其中,可以通过滤波处理将N组增强超声回波数据中的谐波进行滤除,从而得到N组增强基波信号。
示例性地,可以确定N个待检测位置中的第二位置的超声回波数据,其中,第二位置的超声回波数据为N个待检测位置中的任意一组超声回波数据;将M组超声回波数据中第二位置以外的其他超声回波数据按照极性向量的规则进行抵消处理,将第二位置的超声回波数据进行叠加处理,得到第二位置的增强超声回波数据。
另外,可选地,本申请实施例在S320完成M次发射之后,延时一段时间之后再继续发射超声波,这样能够提高信噪比。或者,可选地,本申请实施例在S340基于M次发射得到超声图像之后,延时一段时间之后再继续发射超声波,这样能够提高信噪比。
另外,可选地,在图15所示的S320之前,还可以包括:获取N个待检测位置所对应的N个极性向量,其中,N个极性向量构成的矩阵为M行N 列的矩阵,N个极性向量中的任意两个极性向量互相正交或者线性独立;根据N个极性向量确定N个待检测位置对应的超声波。
作为一例,N个极性向量中的任意两个极性向量互相正交,关于该实施例可以参见前述结合图2所描述的内容。作为另一例,N个极性向量中的任意两个极性向量线性独立,关于该实施例可以参见前述结合图14所描述的内容。
现在返回到图1所示的超声成像系统10。
在一个实施例中,处理器140可以确定目标对象的N个待检测位置以及N个待检测位置对应的发射次数M;获取N个待检测位置所对应的N个极性向量。其中,N为大于1的整数,M为不小于N的整数;其中,N个极性向量构成的矩阵为M行N列的矩阵,N个极性向量中的任意两个极性向量互相正交。发射/接收选择开关120根据N个极性向量控制超声探头110第一时间向N个待检测位置发射N个超声波,发射M次;控制超声探头110第二时间接收基于N个超声波的超声回波,接收M次。处理器140根据超声回波得到M组超声回波数据,其中,N个超声波对应的第一时间和对应的第二时间之间的时间段部分重叠或者全部重叠;对M组超声回波数据进行处理,得到目标对象的超声图像。显示器150可以用于显示超声图像。
在另一个实施例中,处理器140可以确定目标对象的N个待检测位置以及N个待检测位置对应的发射次数M,其中,N为大于1的整数,M为不小于N的整数;获取N个待检测位置所对应的N个极性向量,其中,N个极性向量构成的矩阵为M行N列的矩阵,N个极性向量中的至少两个极性向量线性独立。发射/接收选择开关120根据N个极性向量控制超声探头110第一时间向N个待检测位置发射N个超声波,发射M次;控制超声探头110第二时间接收基于N个超声波的超声回波,接收M次。处理器140根据超声回波得到M组超声回波数据,其中,N个超声波对应的第一时间和对应的第二时间之间的时间段部分重叠或者全部重叠;对M组超声回波数据进行处理,得到目标对象的超声图像。显示器150可以用于显示超声图像。
在另一个实施例中,处理器140可以确定目标对象的N个待检测位置以及N个待检测位置对应的发射次数M,其中,N为大于1的整数,M为不 小于N的整数。发射/接收选择开关120控制超声探头110第一时间向N个待检测位置发射N个超声波,发射M次;控制超声探头110第二时间接收基于N个超声波的超声回波,接收M次。处理器140根据超声回波得到M组超声回波数据,其中,N个超声波对应的第一时间和对应的第二时间之间的时间段部分重叠或者全部重叠;对M组超声回波数据进行处理,得到目标对象的超声图像。显示器150可以用于显示超声图像。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
另外,本申请实施例还提供了一种计算机存储介质,其上存储有计算机程序。当该计算机程序被计算机或者处理器执行时,可以实现前述图2或图12或图14或图15任一个所示的超声成像方法的步骤。例如,该计算机存储介质为计算机可读存储介质。
在一个实施例中,该计算机程序指令在被计算机或处理器运行时使计算机或处理器执行以下步骤:确定目标对象的N个待检测位置以及N个待检测位置对应的发射次数M;获取N个待检测位置所对应的N个极性向量。其中,N为大于1的整数,M为不小于N的整数;其中,N个极性向量构成的矩阵为M行N列的矩阵,N个极性向量中的任意两个极性向量互相正交。根据N个极性向量控制超声探头第一时间向N个待检测位置发射N个超声波,发射M次;控制超声探头第二时间接收基于N个超声波的超声回波,接收M次,以得到M组超声回波数据,其中,N个超声波对应的第一时间和对应的第二时间之间的时间段部分重叠或者全部重叠。对M组超声回波数据进行处理,得到目标对象的超声图像。
在另一个实施例中,该计算机程序指令在被计算机或处理器运行时使计算机或处理器执行以下步骤:确定目标对象的N个待检测位置以及N个待检测位置对应的发射次数M,其中,N为大于1的整数,M为不小于N的整数;获取N个待检测位置所对应的N个极性向量,其中,N个极性向量 构成的矩阵为M行N列的矩阵,N个极性向量中的至少两个极性向量线性独立。根据N个极性向量控制超声探头第一时间向N个待检测位置发射N个超声波,发射M次;控制超声探头第二时间接收基于N个超声波的超声回波,接收M次,以得到M组超声回波数据,其中,N个超声波对应的第一时间和对应的第二时间之间的时间段部分重叠或者全部重叠;对M组超声回波数据进行处理,得到目标对象的超声图像。
在另一个实施例中,该计算机程序指令在被计算机或处理器运行时使计算机或处理器执行以下步骤:确定目标对象的N个待检测位置以及N个待检测位置对应的发射次数M,其中,N为大于1的整数,M为不小于N的整数;控制超声探头第一时间向N个待检测位置发射N个超声波,发射M次;控制超声探头第二时间接收基于N个超声波的超声回波,接收M次,以得到M组超声回波数据,其中,N个超声波对应的第一时间和对应的第二时间之间的时间段部分重叠或者全部重叠;对M组超声回波数据进行处理,得到目标对象的超声图像。
计算机存储介质例如可以包括智能电话的存储卡、平板电脑的存储部件、个人计算机的硬盘、只读存储器(ROM)、可擦除可编程只读存储器(EPROM)、便携式紧致盘只读存储器(CD-ROM)、USB存储器、或者上述存储介质的任意组合。计算机可读存储介质可以是一个或多个计算机可读存储介质的任意组合。
另外,本申请实施例还提供了一种计算机程序产品,其包含指令,当该指令被计算机所执行时,使得计算机执行上述图3或图12或图14或图15任一个所示的方法的步骤。
由此可见,本申请实施例中通过使得多个待检测位置的多个极性向量两两之间相互正交彼此线性独立,能够得到部分或全部待检测位置处增强的基波信号,可使信噪比和穿透力增加,进而能够提高图像质量。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方 法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易 想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (30)

  1. 一种超声成像方法,其特征在于,所述超声成像方法包括:
    控制超声探头第一次向目标对象的第一待检测位置发射第一超声波,以及控制所述超声探头在所述第一次向所述目标对象的第二待检测位置发射第二超声波;
    控制所述超声探头接收从所述目标对象返回的基于所述第一超声波的超声回波以得到第一超声回波数据,以及控制所述超声探头接收从所述目标对象返回的基于所述第二超声波的超声回波以得到第二超声回波数据,其中,所述第一待检测位置对应的第一超声波的发射和基于所述第一超声波的超声回波的接收之间的时间段,与所述第二待检测位置对应的第二超声波的发射和基于所述第二超声波的超声回波的接收之间的时间段部分重叠或者全部重叠;
    控制所述超声探头第二次向所述目标对象的所述第一待检测位置发射第三超声波,以及控制所述超声探头在所述第二次向所述目标对象的所述第二待检测位置发射第四超声波,其中,所述第一超声波和所述第三超声波波形相同,所述第二超声波和所述第四超声波波形相反,或者,所述第一超声波和所述第三超声波波形相反,所述第二超声波和所述第四超声波波形相同;
    控制所述超声探头接收从所述目标对象返回的基于所述第三超声波的超声回波以得到第三超声回波数据,以及控制所述超声探头接收从所述目标对象返回的基于所述第四超声波的超声回波以得到第四超声回波数据;
    根据所述第一超声回波数据和所述第三超声回波数据得到所述第一待检测位置的增强超声回波数据,和/或,根据所述第二超声回波数据和所述第四超声回波数据得到所述第二待检测位置的增强超声回波数据。
  2. 一种超声成像方法,其特征在于,所述超声成像方法包括:
    确定目标对象的N个待检测位置以及所述N个待检测位置对应的发射次数M,其中,N为大于1的整数,M为不小于N的整数;
    获取所述N个待检测位置所对应的N个极性向量,其中,所述N个极性向量构成的矩阵为M行N列的矩阵,所述N个极性向量中的任意两个极性向量互相正交;
    根据所述N个极性向量控制超声探头第一时间向所述N个待检测位置 发射N个超声波,发射M次;
    控制所述超声探头第二时间接收基于所述N个超声波的超声回波,接收M次,以得到M组超声回波数据,其中,所述N个超声波对应的第一时间和对应的第二时间之间的时间段部分重叠或者全部重叠;
    对所述M组超声回波数据进行处理,得到所述目标对象的超声图像。
  3. 根据权利要求2所述的超声成像方法,其特征在于,所述根据所述N个极性向量控制超声探头第一时间向所述N个待检测位置发射N个超声波,发射M次,包括:
    根据所述N个极性向量确定所述N个待检测位置对应的超声波;
    控制所述超声探头中的N组阵元第一时间向所述N个待检测位置发射N个超声波,发射M次,其中,每组阵元对应一个发射位置,每组阵元包括至少一个阵元。
  4. 根据权利要求3所述的超声成像方法,其特征在于,所述控制所述超声探头中的N组阵元第一时间向所述N个待检测位置发射N个超声波,包括:
    控制所述N组阵元中的每组阵元同时向所述N个待检测位置对应的发射位置发射一个超声波,以形成N个超声波。
  5. 根据权利要求4所述的超声成像方法,其特征在于,所述控制所述N组阵元中的每组阵元同时向所述N个待检测位置对应的发射位置发射一个超声波,包括:
    控制所述每组阵元中的每个阵元同时向对应的待检测位置发射超声波,以叠加形成一个超声波。
  6. 根据权利要求4所述的超声成像方法,其特征在于,所述控制所述N组阵元中的每组阵元同时向所述N个待检测位置对应的发射位置发射一个超声波,包括:
    控制第一组阵元中的每个阵元非同时向对应的待检测位置发射超声波,以叠加形成一个超声波,其中,所述第一组阵元为所述N组阵元中的任意一组阵元;
    控制第二组阵元中的每个阵元非同时向对应的待检测位置发射超声波,以叠加形成一个超声波,其中,所述第二组阵元为所述N组阵元中所述第一 组阵元以外的任意一组阵元,所述第一组阵元中的全部阵元的累计发射时间和所述第二组阵元中的全部阵元的累计发射时间为同一时间。
  7. 根据权利要求2所述的超声成像方法,其特征在于,所述控制所述超声探头接收基于所述N个超声波的超声回波,包括:
    控制所述超声探头中的第三组阵元接收基于所述N个超声波的超声回波,其中,所述第三组阵元为所述超声探头中的任意一组阵元。
  8. 根据权利要求7所述的超声成像方法,其特征在于,所述控制所述超声探头中的第三组阵元接收基于所述N个超声波的超声回波,包括:
    控制所述第三组阵元中的每个阵元同时接收基于所述N个超声波的超声回波。
  9. 根据权利要求2至8任一项所述的超声成像方法,其特征在于,所述对所述M组超声回波数据进行处理,得到所述目标对象的超声图像,包括:
    对所述M组超声回波数据进行滤波处理得到M组基波信号;
    根据所述M组基波信号得到所述目标对象的超声图像。
  10. 根据权利要求9所述的超声成像方法,其特征在于,所述根据所述M组基波信号得到所述目标对象的超声图像,包括:
    获取所述M组基波信号对应的N组增强基波信号;
    根据所述N组增强基波信号确定所述目标对象的超声图像。
  11. 根据权利要求10所述的超声成像方法,其特征在于,所述获取所述M组基波信号对应的N组增强基波信号,包括:
    确定所述N个待检测位置中的第一位置的基波信号,其中,所述第一位置的基波信号为所述N个待检测位置中的任意一组基波信号;
    将所述M组基波信号中所述第一位置以外的其他基波信号按照极性向量的规则进行抵消处理,将所述第一位置的基波信号进行叠加处理,得到所述第一位置的增强基波信号。
  12. 根据权利要求2至8任一项所述的超声成像方法,其特征在于,所述对所述M组超声回波数据进行处理,得到所述目标对象的超声图像,包括:
    获取所述M组超声回波数据对应的N组增强超声回波数据;
    根据所述N组增强超声回波数据得到所述目标对象的超声图像。
  13. 根据权利要求12所述的超声成像方法,其特征在于,所述根据所述N组增强超声回波数据得到所述目标对象的超声图像,包括:
    对所述N组增强超声回波数据进行滤波处理得到N组增强基波信号;
    根据所述N组增强基波信号确定所述目标对象的超声图像。
  14. 根据权利要求12所述的超声成像方法,其特征在于,所述获取所述M组超声回波数据对应的N组增强超声回波数据,包括:
    确定所述N个待检测位置中的第二位置的超声回波数据,其中,所述第二位置的超声回波数据为所述N个待检测位置中的任意一组超声回波数据;
    将所述M组超声回波数据中所述第二位置以外的其他超声回波数据按照极性向量的规则进行抵消处理,将所述第二位置的超声回波数据进行叠加处理,得到所述第二位置的增强超声回波数据。
  15. 根据权利要求2至14任一项所述的超声成像方法,其特征在于,所述N个待检测位置中的不同待检测位置对应的超声波的波形相同或者不相同。
  16. 根据权利要求2至15任一项所述的超声成像方法,其特征在于,所述M组超声回波数据包括AD数据或波束合成数据,所述AD数据为IQ数据或RF数据,所述波束合成数据为IQ数据或RF数据。
  17. 一种超声成像方法,其特征在于,所述超声成像方法包括:
    确定目标对象的N个待检测位置以及所述N个待检测位置对应的发射次数M,其中,N为大于1的整数,M为不小于N的整数;
    获取所述N个待检测位置所对应的N个极性向量,其中,所述N个极性向量构成的矩阵为M行N列的矩阵,所述N个极性向量中的至少两个极性向量线性独立;
    根据所述N个极性向量控制超声探头第一时间向所述N个待检测位置发射N个超声波,发射M次;
    控制所述超声探头第二时间接收基于所述N个超声波的超声回波,接收M次,以得到M组超声回波数据,其中,所述N个超声波对应的第一时间和对应的第二时间之间的时间段部分重叠或者全部重叠;
    对所述M组超声回波数据进行处理,得到所述目标对象的超声图像。
  18. 一种超声成像方法,其特征在于,所述超声成像方法包括:
    确定目标对象的N个待检测位置以及所述N个待检测位置对应的发射次数M,其中,N为大于1的整数,M为不小于N的整数;
    控制超声探头第一时间向所述N个待检测位置发射N个超声波,发射M次;
    控制所述超声探头第二时间接收基于所述N个超声波的超声回波,接收M次,以得到M组超声回波数据,其中,所述N个超声波对应的第一时间和对应的第二时间之间的时间段部分重叠或者全部重叠;
    对所述M组超声回波数据进行处理,得到所述目标对象的超声图像。
  19. 根据权利要求18所述的超声成像方法,其特征在于,所述控制超声探头第一时间向所述N个待检测位置发射N个超声波,包括:
    控制所述超声探头中的N组阵元第一时间向所述N个待检测位置发射N个超声波,其中,每组阵元对应一个发射位置,每组阵元包括至少一个阵元。
  20. 根据权利要求19所述的超声成像方法,其特征在于,所述控制所述超声探头中的N组阵元第一时间向所述N个待检测位置发射N个超声波,包括:
    控制所述N组阵元中的每组阵元同时向所述N个待检测位置对应的发射位置发射一个超声波,以形成N个超声波。
  21. 根据权利要求20所述的超声成像方法,其特征在于,所述控制所述N组阵元中的每组阵元同时向所述N个待检测位置对应的发射位置发射一个超声波,包括:
    控制所述每组阵元中的每个阵元同时向对应的待检测位置发射超声波,以叠加形成一个超声波。
  22. 根据权利要求20所述的超声成像方法,其特征在于,所述控制所述N组阵元中的每组阵元同时向所述N个待检测位置对应的发射位置发射一个超声波,包括:
    控制第一组阵元中的每个阵元非同时向对应的待检测位置发射超声波,以叠加形成一个超声波,其中,所述第一组阵元为所述N组阵元中的任意一组阵元;
    控制第二组阵元中的每个阵元非同时向对应的待检测位置发射超声波, 以叠加形成一个超声波,其中,所述第二组阵元为所述N组阵元中所述第一组阵元以外的任意一组阵元,所述第一组阵元中的全部阵元的累计发射时间和所述第二组阵元中的全部阵元的累计发射时间为同一时间。
  23. 根据权利要求18至22任一项所述的超声成像方法,其特征在于,所述控制所述超声探头第二时间接收基于所述N个超声波的超声回波,包括:
    控制所述超声探头中的第三组阵元接收基于所述N个超声波的超声回波,其中,所述第三组阵元为所述超声探头中的任意一组阵元。
  24. 根据权利要求23所述的超声成像方法,其特征在于,所述控制所述超声探头中的第三组阵元接收基于所述N个超声波的超声回波,包括:
    控制所述第三组阵元中的每个阵元同时接收基于所述N个超声波的超声回波。
  25. 根据权利要求18至24任一项所述的超声成像方法,其特征在于,所述对所述M组超声回波数据进行处理,得到所述目标对象的超声图像,包括:
    对所述M组超声回波数据进行滤波处理得到M组基波信号;
    根据所述M个基波信号得到所述目标对象的超声图像。
  26. 根据权利要求18至24任一项所述的超声成像方法,其特征在于,所述对所述M组超声回波数据进行处理,得到所述目标对象的超声图像,包括:
    获取所述M组超声回波数据对应的N组增强超声回波数据;
    对所述N组增强超声回波数据进行滤波处理得到所述目标对象的超声图像。
  27. 根据权利要求18至26任一项所述的超声成像方法,其特征在于,所述控制超声探头第一时间向所述N个待检测位置发射N个超声波,发射M次之前,所述方法还包括:
    获取所述N个待检测位置所对应的N个极性向量,其中,所述N个极性向量构成的矩阵为M行N列的矩阵,所述N个极性向量中的任意两个极性向量互相正交或者线性独立;
    根据所述N个极性向量确定所述N个待检测位置对应的超声波。
  28. 根据权利要求18至27任一项所述的超声成像方法,其特征在于, 所述M组超声回波数据包括AD数据或波束合成数据,所述AD数据为IQ数据或RF数据,所述波束合成数据为IQ数据或RF数据。
  29. 一种超声成像系统,其特征在于,包括:
    超声探头;
    发射/接收选择开关,用于控制所述超声探头经由发射电路向目标对象发射超声波,并接收基于所述超声波的超声回波;
    存储器,用于存储所述处理器执行的程序;
    处理器,用于执行权利要求1至28中任一项所述方法的步骤。
  30. 一种计算机存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被计算机或处理器执行时实现权利要求1至28中任一项所述方法的步骤。
PCT/CN2019/126374 2019-12-18 2019-12-18 超声成像方法及超声成像系统 WO2021120062A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/126374 WO2021120062A1 (zh) 2019-12-18 2019-12-18 超声成像方法及超声成像系统
CN201980099928.0A CN114340505A (zh) 2019-12-18 2019-12-18 超声成像方法及超声成像系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/126374 WO2021120062A1 (zh) 2019-12-18 2019-12-18 超声成像方法及超声成像系统

Publications (1)

Publication Number Publication Date
WO2021120062A1 true WO2021120062A1 (zh) 2021-06-24

Family

ID=76477014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126374 WO2021120062A1 (zh) 2019-12-18 2019-12-18 超声成像方法及超声成像系统

Country Status (2)

Country Link
CN (1) CN114340505A (zh)
WO (1) WO2021120062A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040225220A1 (en) * 2003-05-06 2004-11-11 Rich Collin A. Ultrasound system including a handheld probe
CN1915176A (zh) * 2005-08-19 2007-02-21 深圳迈瑞生物医疗电子股份有限公司 多发射焦点拼接中提高图像帧率的方法
CN103300888A (zh) * 2013-05-07 2013-09-18 中国医学科学院生物医学工程研究所 可以降低随机噪声的高频超声浅表器官成像方法
CN103974664A (zh) * 2011-12-08 2014-08-06 皇家飞利浦有限公司 具有多个超声换能器的检查系统
CN104188685A (zh) * 2014-09-28 2014-12-10 飞依诺科技(苏州)有限公司 基于发射脉冲内幅度调制的超声造影成像方法及系统
CN108324323A (zh) * 2018-03-29 2018-07-27 青岛市中心医院 一种超声成像方法及超声成像设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107205722A (zh) * 2015-01-29 2017-09-26 皇家飞利浦有限公司 宽带混合的基波和谐波频率超声诊断成像

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040225220A1 (en) * 2003-05-06 2004-11-11 Rich Collin A. Ultrasound system including a handheld probe
CN1915176A (zh) * 2005-08-19 2007-02-21 深圳迈瑞生物医疗电子股份有限公司 多发射焦点拼接中提高图像帧率的方法
CN103974664A (zh) * 2011-12-08 2014-08-06 皇家飞利浦有限公司 具有多个超声换能器的检查系统
CN103300888A (zh) * 2013-05-07 2013-09-18 中国医学科学院生物医学工程研究所 可以降低随机噪声的高频超声浅表器官成像方法
CN104188685A (zh) * 2014-09-28 2014-12-10 飞依诺科技(苏州)有限公司 基于发射脉冲内幅度调制的超声造影成像方法及系统
CN108324323A (zh) * 2018-03-29 2018-07-27 青岛市中心医院 一种超声成像方法及超声成像设备

Also Published As

Publication number Publication date
CN114340505A (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
EP2325672B1 (en) Spatial compound imaging in an ultrasound system
US20220175343A1 (en) Ultrasonic diagnostic device and ultrasonic image generation method
US11278262B2 (en) Ultrasonic diagnostic device and ultrasonic image generation method
JP2013138868A (ja) 決定データに基づいてベクトルドップラー映像を提供する超音波システムおよび方法
EP2339368A2 (en) Providing multiple 3-dimensional ultrasound images in an ultrasound image
JP2014512243A (ja) 合成開口逐次ビーム形成による高調波超音波画像処理
JP2016158679A (ja) 超音波診断装置及びその制御プログラム
CN103190931A (zh) 使用矢量多普勒产生超声图像的超声装置和方法
JP5405803B2 (ja) Bcモード映像を形成する超音波システム及び方法
WO2021120062A1 (zh) 超声成像方法及超声成像系统
CN111528901B (zh) 四维的超声成像方法、超声成像方法及相关系统
US20090171214A1 (en) Ultrasound system and method of forming ultrasound image signals with multiprocessing
JP6420574B2 (ja) 超音波診断装置及びプログラム
CN111855824B (zh) 超声装置及其控制方法
US11896435B2 (en) Ultrasound diagnostic apparatus and examination method
JP6488771B2 (ja) 超音波診断装置
JP2009119274A (ja) Bcモード映像を形成する超音波システム及び方法
WO2021253230A1 (zh) 超声成像方法、超声成像系统及计算机存储介质
JP2016127875A (ja) 超音波診断装置
WO2020041986A1 (zh) 一种超声向量血流成像方法及装置、存储介质
CN103181781B (zh) 超声波成像系统及其图像处理方法
CN114072063B (zh) 超声三维成像方法和装置
JP7202905B2 (ja) 超音波診断装置及び超音波プローブ
WO2022082627A1 (zh) 超声成像方法和系统以及光声成像方法和系统
US20220361851A1 (en) Device and control program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19956269

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19956269

Country of ref document: EP

Kind code of ref document: A1