WO2021117752A1 - Rolling bearing state monitoring method and rolling bearing state monitoring device - Google Patents

Rolling bearing state monitoring method and rolling bearing state monitoring device Download PDF

Info

Publication number
WO2021117752A1
WO2021117752A1 PCT/JP2020/045772 JP2020045772W WO2021117752A1 WO 2021117752 A1 WO2021117752 A1 WO 2021117752A1 JP 2020045772 W JP2020045772 W JP 2020045772W WO 2021117752 A1 WO2021117752 A1 WO 2021117752A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling bearing
regression model
damage
rolling
generating
Prior art date
Application number
PCT/JP2020/045772
Other languages
French (fr)
Japanese (ja)
Inventor
正嗣 北井
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019223524A external-priority patent/JP2021092455A/en
Priority claimed from JP2019226287A external-priority patent/JP2021096102A/en
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2021117752A1 publication Critical patent/WO2021117752A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • G01M13/045Acoustic or vibration analysis

Definitions

  • the present invention relates to a rolling bearing condition monitoring method and a rolling bearing condition monitoring device.
  • Rolling bearings that are not easy to replace and are used under relatively low speed conditions, such as spindle bearings for wind power generators, are often used continuously even if initial damage occurs. On the other hand, if the size of the damaged portion increases and the displacement between the inner and outer rings of the bearing increases and the displacement exceeds the permissible range, the device itself including the rolling bearing may be destroyed.
  • Patent Document 1 determines the relationship between a state variable including output data of a sensor that detects the state of an industrial machine or an ambient environment and a failure occurrence, that is, a failure condition. learn. As a result, the machine learning device can output the presence / absence of failure or the degree of failure in response to the input state variable.
  • Patent Document 1 describes the remaining life of a rolling bearing from the time of damage diagnosis until the damaged part progresses to the allowable limit size based on the effective vibration value obtained by the vibration sensor. The theoretical formula to predict is described.
  • Patent Document 1 the degree of failure is exemplified as an index value, and a configuration for directly estimating the size of the damaged portion, which indicates the state of damage, is not shown.
  • Patent Document 2 since the remaining life of the actually damaged rolling bearing is not measured, the accuracy of the above theoretical formula has not been sufficiently confirmed. Therefore, there is no guarantee that the remaining life can be accurately estimated, especially when it is predicted that it is difficult to express by a simple theoretical formula such that the form of damage progress changes as the operation time increases. I am concerned.
  • a main object of the present invention is to provide a condition monitoring method and a condition monitoring device capable of accurately estimating the size of a damaged part of a rolling bearing or the remaining life of a rolling bearing.
  • the method of monitoring the state of a rolling bearing is a step of generating a regression model by machine learning based on the vibration data of the first rolling bearing and a step of generating a regression model by using the regression model of the second rolling bearing. It includes a step to monitor the condition.
  • Each of the first rolling bearing and the second rolling bearing is arranged between the rotating wheel, the stationary wheel, and the rotating wheel and the stationary wheel, and moves on the raceway surface of the stationary wheel as the rotating wheel rotates. It has a plurality of rolling elements.
  • the step of generating the regression model is the vibration data of the first rolling bearing and the damage of the first rolling bearing.
  • the step of monitoring the state of the second rolling bearing is a step of acquiring the vibration data of the second rolling bearing and a feature quantity vector of the second rolling bearing composed of the feature quantity of the vibration data of the second rolling bearing. It includes a step of generating and a step of estimating the damage size of the second rolling bearing from the feature vector of the second rolling bearing using a regression model.
  • the present invention it is possible to provide a rolling bearing condition monitoring method and a condition monitoring device capable of accurately estimating the size of a damaged portion of a rolling bearing or the remaining life of a rolling bearing.
  • FIG. 1 is a diagram showing a cross-sectional view of a rolling bearing monitored by the condition monitoring device according to the first embodiment of the present invention and a block diagram of the condition monitoring device.
  • a rolling bearing is formed by a roller bearing in which the outer ring is a rotating wheel is typically described, but the scope of application of the present invention is limited to such a bearing condition monitoring device.
  • the rolling bearing to be monitored may have an inner ring of a rotating wheel, a ball bearing, or the like.
  • the rolling bearing 10 includes an inner ring 12, an outer ring 16, and a plurality of rolling elements 18.
  • the inner ring 12 is fitted onto the non-rotating shaft body 14.
  • the outer ring 16 is provided on the outer peripheral side of the inner ring 12 and rotates integrally with a rotating body (not shown).
  • Each of the plurality of rolling elements 18 is a cylindrical "roller", and is interposed between the inner ring 12 and the outer ring 16 while being held at equal intervals with the adjacent rolling elements by a cage (not shown).
  • the inner ring 12 receives a radial load from a plurality of rolling elements 18 that are passing through the load range.
  • a load region is formed on the upper side in the vertical direction (on the paper surface) with respect to the center of rotation. Then, in the normal state in which the raceway surface (outer peripheral surface of the inner ring 12) 20 is not damaged, the inner ring 12 is located at the center of the load region located in the vertically upward direction of the inner ring central axis among the plurality of rolling elements 18. Receives maximum load from passing rolling elements.
  • Such rolling bearings 10 may continue to be used even after initial damage such as small-scale peeling if they are used under relatively low speed conditions and / or if they are not easy to replace. There are many. On the other hand, if the size of the damaged portion is increased and the displacement between the inner and outer rings of the bearing is increased and the displacement exceeds the allowable range, the device including the rolling bearing 10 may be destroyed.
  • the rolling bearing 10 in order to use the rolling bearing 10 to the limit of the safe range, it is necessary to grasp the size of the damaged part. However, it is difficult to measure the size of the damaged part during use. Therefore, it is desirable to estimate the size of the damaged portion by measuring measurement data that reflects the size of the damaged portion, which can be easily measured.
  • condition monitoring device 100 of the rolling bearing 10 accurately estimates the size of the damaged portion of the rolling bearing 10 from the measurement data that can be easily measured.
  • the condition monitoring device 100 is configured to accurately estimate the circumferential length of the damaged portion from the measurement data of the vibration acceleration of the rolling bearing 10 by using a regression model by machine learning. ..
  • condition monitoring device 100 for monitoring the state of the rolling bearing 10 includes an acceleration sensor 102 and a diagnostic unit 106.
  • the x direction corresponds to the circumferential direction of the rolling bearing 10
  • the y direction corresponds to the axial direction of the rolling bearing 10.
  • the X direction and the Y direction correspond to the measurement directions of the acceleration sensor 102.
  • the acceleration sensor 102 is fixedly installed in a place where the vibration acceleration of the bearing in the bearing box or the outer diameter surface of the equipment can be measured.
  • the Y direction corresponds to the vertical direction (or radial direction) of the outer peripheral surface (raceway surface 20) of the inner ring 12 of the rolling bearing 10.
  • the X direction corresponds to the horizontal direction (or horizontal direction) at the installation position of the acceleration sensor 102.
  • the acceleration sensor 102 is a sensor for detecting the acceleration of vibration of the rolling bearing 10 in the vertical direction (radial direction).
  • the acceleration of this vibration is also referred to as “vibration acceleration” or simply “acceleration”.
  • the acceleration sensor 102 may be configured to detect the vibration acceleration in the horizontal direction (horizontal direction).
  • the diagnosis unit 106 monitors and diagnoses the state of the rolling bearing 10 based on the detected value of the acceleration sensor 102. Specifically, the diagnostic unit 106 estimates the size of the damaged portion of the rolling bearing 10 based on the detected value of the acceleration sensor 102. Hereinafter, the size of the damaged portion of the rolling bearing 10 will be described.
  • (Explanation of damage size) 2 to 4 are views showing a stage in which the size of the damaged portion of the rolling bearing 10 progresses.
  • the load range of the rolling bearing 10 is enlarged and shown.
  • the y direction corresponds to the axial direction of the rolling bearing 10
  • the x direction corresponds to the circumferential direction of the rolling bearing 10.
  • FIG. 2 shows an example in which the initial damage D1 occurs on the raceway surface 20 of the inner ring 12.
  • stage 0 the state before the initial damage to the raceway surface 20
  • stage 1 the state in which the raceway surface 20 is initially damaged
  • the size of the damaged portion refers to the circumferential length of the damaged portion formed on the raceway surface of the inner ring 12 (stationary wheel).
  • the size of the damaged portion indicates the maximum value of the length of the damaged portion in the circumferential direction.
  • the size of such a damaged portion is also simply referred to as “damage size”. That is, the damage size of the initial damage D1 is sz1 in FIG.
  • FIG. 3 is a diagram showing a state in which the initial damage generated on the raceway surface 20 is progressing in the axial direction. Since the portion adjacent to the initial damage D1 as shown in FIG. 2 in the circumferential direction (x direction in FIG. 3) is the portion where the rolling element comes into contact with the rolling element before or after passing through the damaged portion. , The rolling element and the raceway surface 20 of the inner ring 12 come into contact with each other on the entire surface. Therefore, the stress distribution on the contact surface becomes uniform. On the other hand, the portion adjacent to the initial damage D1 in the axial direction (y direction in FIG. 3) is a portion that comes into contact with the rolling element while the rolling element is passing through the damaged portion.
  • the initial damage D1 basically progresses along the axial direction. Damage in which such initial damage spreads mainly in the axial direction is referred to as "damage D2".
  • the damage size of damage D2 is sz2 in FIG.
  • stage 2 a state in which the initial damage mainly progresses in the axial direction, that is, a state in which the damage D2 occurs (FIG. 3) is referred to as “stage 2”.
  • FIG. 4 is a diagram showing a state in which the damage is progressing in the circumferential direction.
  • the damage D2 shown in FIG. 3 expands over the entire axial direction, the damage then expands in the circumferential direction. After such damage spreads over the entire axial direction, the damage that spreads in the circumferential direction is referred to as "damage D3".
  • the damage size of damage D3 is sz3 in FIG.
  • stage 3 a state in which the damage spreads in the entire axial direction and then progresses in the circumferential direction.
  • FIG. 5 shows the experimental results of measuring the change in damage size after a slight initial damage D1 occurs on a part of the raceway surface 20 in the plurality of rolling bearings 10.
  • the damage size of each rolling bearing 10 is determined by, for example, periodically stopping the device including a plurality of rolling bearings 10, photographing the stationary wheels of each rolling bearing 10 with a camera, and performing image processing on the photographed image. Can be done.
  • FIG. 5 shows the operating time of the rolling bearing 10 after the initial damage occurs on the raceway surface 20, and the vertical axis shows the damage size.
  • the data before the initial damage occurred is omitted.
  • FIG. 5 shows the experimental results until the initial damage progresses and the rolling bearing 10 reaches the usage limit.
  • the reference point of the usage limit is, for example, the time when the amount of displacement between the inner and outer rings of the bearing due to damage reaches the upper limit of the allowable range of the clearance in the equipment.
  • FIG. 6 is a diagram for explaining the time course of damage size in FIG.
  • FIG. 6 illustrates one of the plurality of measurement data of FIG.
  • the times t1 and t2 in FIG. 6 indicate the times when the stage 2 and the stage 3 were entered, respectively.
  • the time t3 in FIG. 6 indicates the time when the rolling bearing 10 reaches the usage limit, that is, the time when the damage size reaches the upper limit of the allowable range.
  • the damage size sz2 indicating the circumferential length of the damage D2 does not change significantly from the damage size sz1 of the damage D1. Therefore, as shown in FIG. 6, the propagation speed of the damage size in the circumferential direction is slow and slow.
  • stage 3 when the damage spreads over the entire axial direction, the damage further spreads in the circumferential direction (stage 3).
  • the rolling element 18 passing through the damage is in a no-load state in which a load is hardly received from the raceway surface. Therefore, the vibration of the rolling element 18 becomes intense, and as shown in FIG. 6, the propagation speed of the damage size in the circumferential direction becomes faster than that of the stage 2.
  • the reference point for the usage limit of the rolling bearing 10 is, for example, the time when the amount of displacement between the inner and outer rings of the bearing due to damage becomes the upper limit of the allowable range of clearance in the equipment. Further, it may be a time point when the damage size becomes a constant multiple of the interval of the rolling elements 18. With this setting, for example, in a certain rolling bearing 10, when the damage size becomes 1.5 to 2 times the distance between the rolling elements, the two rolling elements 18 passing through the damaged part receive almost no load. As a result, it is possible to detect the time when the vibration of the rolling bearing 10 becomes too large.
  • the rolling bearing 10 (hereinafter, also referred to as “learning sample”) for generating a regression model by machine learning is determined.
  • the remaining one rolling bearing 10 was used as a "test sample” for estimating the damage size using the regression model.
  • the learning sample corresponds to one embodiment of the "first rolling bearing”.
  • the test sample corresponds to one embodiment of "second rolling bearing”.
  • the diagnostic unit 106 separates the vibration acceleration data of the learning sample by frequency filtering. Specifically, the vibration acceleration data is separated into data corresponding to 20 to 1000 Hz, 1000 to 5000 Hz, 5000 to 20000 Hz by a low-pass filter, a band-pass filter, and a high-pass filter.
  • the diagnostic unit 106 divides the vibration acceleration data separated for each frequency into a plurality of segments, and calculates a feature quantity vector composed of a combination of a plurality of feature quantities for each segment.
  • FIG. 7 is a diagram for explaining a segment and a feature amount vector.
  • the measurement data of the time length T1 is divided into segments of the time length T2 shorter than the time length T1.
  • T2 is set to a length that is a constant multiple of the time required for one rotation of the rotation axis.
  • T2 is set at 0.6 seconds, which corresponds to the time required for the rotation axis to rotate five times.
  • a feature vector is generated for each of the further divided data.
  • the feature quantity vector treats a plurality of feature quantities as a set of vectors.
  • the feature amount is, for example, the level and / or shape of the waveform such as effective value, maximum value, crest factor, kurtosis, and skewness for at least one parameter of time, frequency, and skewness. It can be a parameter representing the characteristics of.
  • the feature amount may be processed by various frequency filters. Further, the feature amount extracted from the image data obtained by the time frequency analysis from the vibration data may be used.
  • a feature vector for generating a regression model by machine learning is generated.
  • the vibration acceleration data of the test sample is also converted into a feature vector by the same preprocessing and then input to the regression model.
  • the diagnostic unit 106 obtains the damage size in each segment based on the damage size data measured in the training sample. Specifically, the damage size at the time corresponding to each segment is obtained. As a result, it is possible to obtain a combination of the feature amount vector and the damage size corresponding to each segment. That is, time-dependent data showing the relationship between the feature vector and the damage size at each stage in which the damage progresses can be obtained.
  • FIG. 8 is a diagram for explaining the generation of a regression model by machine learning and the estimation of the damage size using the regression model.
  • the diagnostic unit 106 inputs the feature vector of the learning sample for each segment, outputs the damage size, and generates a regression model (first regression model) by machine learning.
  • a regression model for example, regression methods such as support vector machine, random forest, kernel ridge regression, deep learning regression, and combinations thereof can be used.
  • the first regression model is performed from the initial stage of damage (that is, stage 2) in which the damage progress rate is slow, the final stage of damage (that is, stage 3) in which the damage progress rate is fast, and after the initial damage occurs. Generated for each of the whole (ie, stages 2 and 3) up to the operable limit.
  • the diagnostic unit 106 generates a first regression model in which the damage size can be automatically estimated by inputting the feature vector (see FIG. 8).
  • the diagnostic unit 106 holds the first regression model in a storage unit (not shown) so that it can be read out and used at any time.
  • the corresponding feature vector of the test sample is applied to the first regression models of the above three types, the initial stage of damage, the final stage of damage, and the whole. This gives an estimate of the damage size of the test sample as the output of the first regression model.
  • FIG. 9 is a diagram for explaining the evaluation of the estimation accuracy of the first regression model.
  • the root mean square error square root and the coefficient of determination of the damage size estimated by the first regression model according to the first embodiment and the actually measured damage size are shown.
  • the root mean square error and the coefficient of determination when a multiple regression model is used instead of the regression model by machine learning are also shown.
  • the root mean square error and the coefficient of determination are calculated for each of the three types of first regression models described above. That is, the statistical value is calculated when the first regression model is generated in each of the initial stage of damage (stage 2), the final stage of damage (stage 3), and all of them (stage 2 and stage 3). There is.
  • the "root mean square error square root” is the square root obtained by averaging the squares of the error between the measured value of the damage size and the estimated value. That is, the root mean square error square root indicates that the smaller the value, the higher the accuracy of estimating the damage size.
  • the value of the root mean square error square root is smaller in the embodiment than in the comparative example. That is, it is shown that the estimation accuracy of the embodiment is higher than that of the comparative example. In addition, it is considered that the estimation accuracy is improved because the value of the root mean square error is greatly reduced, especially at the end of the damage.
  • the "coefficient of determination” is an index showing how well the estimated value obtained by regression analysis matches the actual measured value. Specifically, the closer the coefficient of determination is to 1, the closer the estimated value and the measured value are.
  • the coefficient of determination value of the embodiment is closer to 1 than that of the comparative example. That is, it is shown that the estimation accuracy of the embodiment is higher than that of the comparative example. In addition, it is considered that the estimation accuracy is improved because the value of the coefficient of determination increases significantly, especially in the final stage of injury.
  • the damage size can be estimated with higher accuracy than the comparative example using the multiple regression analysis.
  • FIG. 10 is an example of a flowchart for explaining the process of generating a regression model by machine learning.
  • the flowchart shown in FIG. 10 is executed by the diagnostic unit 106.
  • the diagnostic unit 106 acquires the vibration acceleration data and the damage size in the training sample. Specifically, for example, the diagnostic unit 106 receives vibration acceleration data from the acceleration sensor 102 wirelessly or by wire. Further, for example, the diagnostic unit 106 receives the damage size data wirelessly or by wire from the device in which the damage size value at each measurement time measured by the user is input.
  • step S02 the diagnostic unit 106 divides the vibration data into a plurality of segments.
  • the segment is set to, for example, a length that is a constant multiple of the time required for one rotation of the rotation axis.
  • step S03 the diagnostic unit 106 generates a feature amount vector for each segment.
  • the feature amount vector treats a plurality of feature amounts of vibration data as a set of vectors.
  • step S04 the diagnostic unit 106 obtains the corresponding damage size for each segment.
  • step S05 the diagnostic unit 106 uses machine learning to generate a damage size regression model (first regression model) that inputs the feature vector and outputs the damage size, and ends the process.
  • the diagnostic unit 106 is configured to perform machine learning about the combination of the feature vector and the damage size in each segment of the whole (that is, stages 2 and 3) from the occurrence of the initial damage to the operable limit. Will be done.
  • FIG. 11 is an example of a flowchart for explaining the process of estimating the damage size using the generated regression model.
  • the flowchart shown in FIG. 11 is executed by the diagnostic unit 106.
  • step S21 the diagnostic unit 106 acquires vibration data in the test sample. Specifically, for example, the diagnostic unit 106 receives vibration acceleration data from the acceleration sensor 102 wirelessly or by wire.
  • step S22 the diagnostic unit 106 divides the vibration data into segments.
  • the segment is set to, for example, a length that is a constant multiple of the time required for one rotation of the rotation axis.
  • step S23 the diagnostic unit 106 generates a feature amount vector for each segment.
  • step S24 the diagnostic unit 106 inputs the feature quantity vector of the test sample into the regression model (first regression model) generated by using machine learning for the relationship between the vibration data of the training sample and the damage size, and the test sample. Get an estimate of the damage size of and finish the process.
  • This regression model is, for example, by performing machine learning about the combination of the feature vector and the damage size in each segment of the whole (that is, stages 2 and 3) from the occurrence of the above initial damage to the operable limit. It was generated.
  • the condition monitoring device 100 may be configured to notify the user of the rolling bearing 10 of the estimated damage size by using voice, visual display, or the like.
  • the damage size is used as an index of the damage status of the rolling bearing 10.
  • the rated operating torque, power consumption, the rate of wear debris mixed in grease, etc. can be used as an index of the damage status instead of the damage size. ..
  • the condition monitoring device 100 generates a damage size regression model based on machine learning based on the relationship between the vibration data of the rolling bearing 10 for learning and the damage size, and is used for evaluation. By inputting the vibration data of the rolling bearing 10 into the regression model, the damage size is estimated. With such a configuration, the condition monitoring device 100 can estimate the size of the damaged part of the rolling bearing more accurately than the estimation accuracy by the conventional multiple regression analysis based on the vibration data that can be easily measured. it can.
  • the rolling bearing condition monitoring device 100 described above can be applied to various mechanical devices, and is particularly suitable for condition monitoring of the spindle bearing of a wind power generator. That is, the spindle bearing of the wind power generator is not easy to replace, is used under relatively low speed conditions, and is often continuously used even if the bearing is damaged. For the spindle bearings of such wind power generation equipment, it is an issue to clarify the bearing replacement time due to damage.
  • FIG. 12 is a diagram schematically showing the configuration of a wind power generation device to which the rolling bearing condition monitoring device 100 according to the first embodiment is applied.
  • the wind power generator 210 includes a spindle 220, a blade 230, a speed increaser 240, a generator 250, a spindle bearing (hereinafter, simply referred to as “bearing”) 260, and an acceleration sensor. It includes 270 and a data processing device 280.
  • the speed increaser 240, the generator 250, the bearing 260, the acceleration sensor 270 and the data processing device 280 are housed in the nacelle 290, and the nacelle 290 is supported by the tower 300.
  • the spindle 220 enters the nacelle 290, is connected to the input shaft of the speed increaser 240, and is rotatably supported by the bearing 260. Then, the main shaft 220 transmits the rotational torque generated by the blade 230 that has received the wind power to the input shaft of the speed increaser 240.
  • the blade 230 is provided at the tip of the main shaft 220, converts wind power into rotational torque, and transmits the wind power to the main shaft 220.
  • the speed increaser 240 is provided between the spindle 220 and the generator 250, and increases the rotational speed of the spindle 220 to output to the generator 250.
  • the speed increaser 240 is configured by a gear speed increase mechanism including a planetary gear, an intermediate shaft, a high speed shaft, and the like.
  • a plurality of bearings for rotatably supporting a plurality of shafts are also provided in the speed increaser 240.
  • the generator 250 is connected to the output shaft of the speed increaser 240 and generates electricity by the rotational torque received from the speed increaser 240.
  • the generator 250 is composed of, for example, an induction generator, but the type of the generator 250 is not limited to this.
  • a bearing that rotatably supports the rotor is also provided in the generator 250.
  • the bearing 260 is fixed in the nacelle 290 and rotatably supports the spindle 220.
  • the bearing 260 is a rolling bearing, and is a bearing to be monitored by the condition monitoring device 100 according to this embodiment.
  • the bearing 260 is different from the rolling bearing 10 described below in FIG. 1 in that the inner ring is a rotating wheel and the outer ring is a stationary wheel.
  • the condition monitoring device 100 according to the above embodiment is described in this way. It is also applicable to bearing 260.
  • the outer ring is a stationary ring, the load region is formed on the outer ring below the central axis in the vertical direction, and the initial damage occurs on the raceway surface of the inner peripheral surface of the outer ring.
  • the acceleration sensor 270 is a sensor for detecting the acceleration in the vertical direction (or radial direction) of the bearing 260.
  • the acceleration sensor 270 is fixed at a place where the vibration acceleration of the bearing on the outer diameter surface of the equipment or the bearing box can be measured, for example. Further, the acceleration sensor 270 may be a sensor for detecting the vibration acceleration in the horizontal direction (or horizontal direction) of the bearing 260.
  • the data processing device 280 is provided in the nacelle 290 and receives the detected value of the acceleration sensor 270. Then, the data processing device 280 monitors the state of the bearing 260 according to a preset program. Specifically, the data processing device 280 detects the vibration acceleration of the bearing 260 based on the detection value of the acceleration sensor 270. The data processing device 280 generates a feature vector based on the vibration acceleration. The data processing device 280 is configured to be capable of generating a regression model by machine learning that inputs the feature amount vector and outputs the damage size based on the feature amount vector and the damage size. The data processing device 280 is configured so that the damage size can be estimated by inputting the feature amount vector based on the regression model.
  • the data processing device 280 realizes the function of the diagnostic unit 106 (FIG. 1) described above. Further, the data processing device 280 and the acceleration sensor 270 constitute the above-mentioned condition monitoring device 100 (FIG. 1).
  • condition monitoring device 100 can estimate the damage size of the rolling bearing 10 with high accuracy based on the vibration acceleration of the rolling bearing 10 by using the regression model by machine learning. .. Therefore, it is possible to provide a condition monitoring method and a condition monitoring device capable of accurately estimating the size of the damaged portion of the rolling bearing.
  • condition monitoring device 100 In the second embodiment, a method of estimating the remaining life of the rolling bearing 10 based on the vibration acceleration of the rolling bearing 10 will be described using a regression model by machine learning. Since the condition monitoring device 100 according to the second embodiment has the same basic configuration as the condition monitoring device 100 shown in FIG. 1, the description will not be repeated.
  • the remaining one rolling bearing 10 was used as a "test sample” for estimating the remaining life using the regression model.
  • the learning sample corresponds to one embodiment of the "first rolling bearing”.
  • the test sample corresponds to one embodiment of "second rolling bearing”.
  • the diagnostic unit 106 separates the vibration acceleration data of the learning sample by frequency filtering. Specifically, the vibration acceleration data is separated into data corresponding to 20 to 1000 Hz, 1000 to 5000 Hz, 5000 to 20000 Hz by a low-pass filter, a band-pass filter, and a high-pass filter.
  • the diagnostic unit 106 divides the vibration acceleration data separated for each frequency into a plurality of segments, and calculates a feature quantity vector composed of a combination of a plurality of feature quantities for each segment.
  • the measurement data of the time length T1 is divided into segments of the time length T2 shorter than the time length T1.
  • T2 is set to a length that is a constant multiple of the time required for one rotation of the rotation axis.
  • T2 is set at 0.6 seconds, which corresponds to the time required for the rotation axis to rotate five times.
  • the feature quantity vector treats a plurality of feature quantities as a set of vectors.
  • the feature amount is, for example, the level and / or shape of the waveform such as effective value, maximum value, crest factor, kurtosis, and skewness for at least one parameter of time, frequency, and skewness. It can be a parameter representing the characteristics of.
  • the feature amount may be processed by various frequency filters. Further, the feature amount extracted from the image data obtained by the time frequency analysis from the vibration data may be used.
  • a feature vector for generating a regression model by machine learning is generated.
  • the vibration acceleration data of the test sample is also converted into a feature vector by the same preprocessing and then input to the regression model.
  • the diagnostic unit 106 obtains the damage size in each segment based on the damage size data measured in the training sample. Specifically, the damage size at the time corresponding to each segment is obtained. This damage size value can be used as an index of the reference of the usable limit of the rolling bearing 10 described above.
  • the diagnostic unit 106 obtains the remaining life in each segment.
  • the remaining life is the time from the segment to reach the standard of the usable limit.
  • the time until the reference of the usable limit is reached is the time until the damage size exceeds a constant multiple of the interval of the rolling elements 18 in the rolling bearing 10 in this experiment.
  • the remaining life is calculated by subtracting the operating time from the start of use of the rolling bearing 10 to the corresponding segment from the total operating time from the start of use of the rolling bearing 10 to the reaching of the limit standard in which the rolling bearing 10 can be used. Is sought after.
  • FIG. 13 is a diagram for explaining the generation of a regression model by machine learning and the estimation of the remaining life using the regression model.
  • the diagnostic unit 106 inputs the feature vector of the learning sample for each segment, outputs the remaining life, and generates a regression model (second regression model) by machine learning.
  • machine learning for example, regression methods such as support vector machine, random forest, kernel ridge regression, deep learning regression, and combinations thereof can be used.
  • the second regression model is used from the initial stage of damage (that is, stage 2) in which the damage progress rate is slow, the final stage of damage (that is, stage 3) in which the damage progress rate is fast, and after the initial damage occurs. Generated for each of the whole (ie, stages 2 and 3) up to the operable limit.
  • the diagnostic unit 106 generates a second regression model in which the remaining life can be automatically estimated by inputting the feature vector (see FIG. 13).
  • the diagnostic unit 106 holds the second regression model in a storage unit (not shown) so that it can be read out and used at any time.
  • the vibration acceleration data of the test sample is converted into a feature vector by the same preprocessing as the vibration acceleration data of the training sample.
  • the corresponding feature vector of the test sample is applied to the above three types of second regression models: initial damage, final damage, and the whole.
  • initial damage initial damage
  • final damage final damage
  • whole the whole of second regression models
  • FIG. 14 is a diagram for explaining the evaluation of the estimation accuracy of the regression model.
  • the root mean square error square root and the coefficient of determination of the residual life estimated by the regression model (second regression model) according to the second embodiment and the measured residual life are shown.
  • the actually measured remaining life or the measured value of the remaining life indicates the remaining life calculated from the total operating time that has reached the standard of the limit that can be actually used.
  • the root mean square error and the coefficient of determination when a multiple regression model is used instead of the regression model by machine learning are also shown.
  • the root mean square error and the coefficient of determination are calculated for each of the three types of second regression models described above. That is, the statistical value is calculated when a second regression model is generated in each of the initial stage of damage (stage 2), the final stage of damage (stage 3), and all of them (stage 2 and stage 3). There is.
  • the "root mean square error square root” is the square root obtained by averaging the square of the error between the measured value and the estimated value of the remaining life. That is, the root mean square error square root indicates that the smaller the value, the higher the accuracy of estimating the remaining life.
  • the value of the root mean square error square root is smaller in the embodiment than in the comparative example. That is, it is shown that the estimation accuracy of the embodiment is higher than that of the comparative example. In addition, it is considered that the estimation accuracy is improved because the value of the root mean square error is greatly reduced, especially at the end of the damage.
  • the "coefficient of determination” is an index showing how well the estimated value obtained by regression analysis matches the actual measured value. Specifically, the closer the coefficient of determination is to 1, the closer the estimated value and the measured value are.
  • the coefficient of determination value of the embodiment is closer to 1 than that of the comparative example. That is, it is shown that the estimation accuracy of the embodiment is higher than that of the comparative example. In addition, it is considered that the estimation accuracy is improved because the value of the coefficient of determination increases significantly, especially at the end of injury.
  • the remaining life can be estimated with higher accuracy than the comparative example using the multiple regression analysis.
  • FIG. 15 is an example of a flowchart for explaining the process of generating a regression model by machine learning.
  • the flowchart shown in FIG. 15 is executed by the diagnostic unit 106.
  • the diagnostic unit 106 acquires the vibration acceleration data in the learning sample and the total operating time when the bearing 10 reaches the usable limit reference. Specifically, for example, the diagnostic unit 106 receives vibration acceleration data from the acceleration sensor 102 wirelessly or by wire. Further, for example, the diagnostic unit 106 receives the data of the total operating time wirelessly or by wire from the device in which the total operating time is input by the user.
  • step S32 the diagnostic unit 106 divides the vibration data into a plurality of segments.
  • the segment is set to, for example, a length that is a constant multiple of the time required for one rotation of the rotation axis.
  • step S33 the diagnostic unit 106 generates a feature amount vector for each segment.
  • the feature amount vector treats a plurality of feature amounts of vibration data as a set of vectors.
  • step S34 the diagnostic unit 106 obtains the remaining life corresponding to each segment. Specifically, the diagnostic unit 106 calculates the remaining life by subtracting the operation time corresponding to the segment from the total operation time.
  • step S35 the diagnostic unit 106 uses machine learning to generate a regression model of the remaining life (second regression model) that inputs the feature vector and outputs the remaining life, and ends the process.
  • the diagnostic unit 106 is configured to perform machine learning about the combination of the feature vector and the remaining life in each segment of the whole (that is, stages 2 and 3) from the occurrence of the initial damage to the operable limit. Will be done.
  • FIG. 16 is an example of a flowchart for explaining a process of estimating the remaining life using the generated regression model.
  • the flowchart shown in FIG. 16 is executed by the diagnostic unit 106.
  • step S41 the diagnostic unit 106 acquires vibration data in the test sample. Specifically, for example, the diagnostic unit 106 receives vibration acceleration data from the acceleration sensor 102 wirelessly or by wire.
  • step S42 the diagnostic unit 106 divides the vibration data into segments.
  • the segment is set to, for example, a length that is a constant multiple of the time required for one rotation of the rotation axis.
  • step S43 the diagnostic unit 106 generates a feature amount vector for each segment.
  • step S44 the diagnostic unit 106 inputs the feature quantity vector of the test sample into the regression model (second regression model) generated by using machine learning for the relationship between the vibration data of the training sample and the remaining life, and the test sample.
  • the estimated value of the remaining life of is obtained, and the process is terminated.
  • the second regression model is, for example, machine learning about the combination of the feature vector and the remaining life in each segment of the whole (that is, stages 2 and 3) from the occurrence of the above initial damage to the operable limit. It is generated by doing.
  • the condition monitoring device 100 may be configured to notify the user of the rolling bearing 10 of the estimated remaining life by using voice, visual display, or the like.
  • the condition monitoring device 100 generates a regression model of the remaining life based on machine learning based on the relationship between the vibration data of the rolling bearing 10 for learning and the remaining life, and is used for evaluation. By inputting the vibration data of the rolling bearing 10 into the regression model, the remaining life is estimated. With such a configuration, the condition monitoring device 100 can estimate the remaining life of the rolling bearing more accurately than the estimation accuracy by the conventional multiple regression analysis based on the vibration data that can be easily measured.
  • the rolling bearing condition monitoring device 100 described above can be applied to various mechanical devices, and is particularly suitable for condition monitoring of the spindle bearing of a wind power generator. That is, the spindle bearing of the wind power generator is not easy to replace, is used under relatively low speed conditions, and is often continuously used even if the bearing is damaged. For the spindle bearings of such wind power generation equipment, it is an issue to clarify the bearing replacement time due to damage.
  • FIG. 17 is a diagram schematically showing the configuration of a wind power generation device to which the rolling bearing condition monitoring device 100 according to the second embodiment is applied.
  • the wind power generation device 210 according to the second embodiment replaces the data processing device 280 in the wind power generation device 210 shown in FIG. 12 with the data processing device 280A.
  • the description of the common parts with the first embodiment will not be repeated.
  • the data processing device 280A is provided in the nacelle 290 and receives the detected value of the acceleration sensor 270. Then, the data processing device 280A monitors the state of the bearing 260 according to a preset program. Specifically, the data processing device 280A detects the vibration acceleration of the bearing 260 based on the detection value of the acceleration sensor 270. The data processing device 280A generates a feature vector based on the vibration acceleration.
  • the data processing device 280 is configured to be capable of generating a regression model by machine learning based on the feature amount vector and the remaining life, with the feature amount vector as an input and the remaining life as an output. The data processing device 280 is configured so that the remaining life can be estimated by inputting the feature amount vector based on the regression model.
  • the data processing device 280A realizes the function of the diagnostic unit 106 (FIG. 1). Further, the data processing device 280A and the acceleration sensor 270 constitute the condition monitoring device according to the second embodiment.
  • condition monitoring device 100 can estimate the remaining life of the rolling bearing 10 with high accuracy based on the vibration acceleration of the rolling bearing 10 by using the regression model by machine learning. .. Therefore, it is possible to provide a condition monitoring method and a condition monitoring device capable of accurately estimating the remaining life of the rolling bearing.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Mechanical Engineering (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

The present invention includes: a step for generating feature amount vectors of a first rolling bearing, which are formed of feature amounts of vibration data on the first rolling bearing; a step for performing machine-learning for the feature amount vectors of the first rolling bearing and damage sizes of the first rolling bearing to generate a first regression model for estimating the damage sizes from the feature amounts; a step for generating a feature amount vector of a second rolling bearing, which is formed of a feature amount of vibration data on the second rolling bearing; and a step for estimating, by using the first regression model, a damage size of the second rolling bearing from the feature amount vector of the second rolling bearing.

Description

転がり軸受の状態監視方法及び転がり軸受の状態監視装置Rolling bearing condition monitoring method and rolling bearing condition monitoring device
 この発明は、転がり軸受の状態監視方法及び転がり軸受の状態監視装置に関する。 The present invention relates to a rolling bearing condition monitoring method and a rolling bearing condition monitoring device.
 風力発電装置の主軸軸受のように、交換が容易ではなく、かつ、比較的低速条件で使用される軸受(転がり軸受)は、初期の損傷が発生しても継続使用されることが多い。一方で、損傷部のサイズが拡大し、軸受内外輪間の変位が増大することで当該変位が許容範囲を超えると、転がり軸受を含む装置自体が破壊するおそれがある。 Bearings (rolling bearings) that are not easy to replace and are used under relatively low speed conditions, such as spindle bearings for wind power generators, are often used continuously even if initial damage occurs. On the other hand, if the size of the damaged portion increases and the displacement between the inner and outer rings of the bearing increases and the displacement exceeds the permissible range, the device itself including the rolling bearing may be destroyed.
 よって、転がり軸受を安全な範囲の限界まで使用するには、当該損傷の状況を的確に把握することが必要とされる。また、好ましくは簡易に測定可能な測定データから、当該損傷の状況を推定できることが望まれる。特許第6148316号公報(特許文献1)に記載の機械学習装置は、産業機械または周囲環境の状態を検出するセンサの出力データ等を含む状態変数と、故障発生との関係性、すなわち故障条件を学習する。これにより、当該機械学習装置は、入力される状態変数に応答して故障の有無または故障の度合いを出力することができる。 Therefore, in order to use rolling bearings to the limit of the safe range, it is necessary to accurately grasp the damage situation. In addition, it is desirable that the damage situation can be estimated from the measurement data that can be easily measured. The machine learning device described in Japanese Patent No. 6148316 (Patent Document 1) determines the relationship between a state variable including output data of a sensor that detects the state of an industrial machine or an ambient environment and a failure occurrence, that is, a failure condition. learn. As a result, the machine learning device can output the presence / absence of failure or the degree of failure in response to the input state variable.
 さらに、転がり軸受を安全な範囲の限界まで使用するには、損傷発生後の残存運転時間(余寿命)を正確に推定する必要がある。特開2017-219469号公報(特許文献1)には、転がり軸受において、振動センサにより得られた振動実効値を基に、損傷診断時から損傷部が許容限界サイズまで進展するまでの残存寿命を予測する理論式が記載されている。 Furthermore, in order to use rolling bearings to the limit of the safe range, it is necessary to accurately estimate the remaining operating time (remaining life) after damage occurs. Japanese Patent Application Laid-Open No. 2017-219469 (Patent Document 1) describes the remaining life of a rolling bearing from the time of damage diagnosis until the damaged part progresses to the allowable limit size based on the effective vibration value obtained by the vibration sensor. The theoretical formula to predict is described.
特許第6148316号公報Japanese Patent No. 6148316 特開2017-219469号公報JP-A-2017-219469
 しかし、特許文献1では、故障の度合いは、指標値として例示されており、より損傷の状況を示す損傷部のサイズを直接推定するような構成は示されていない。 However, in Patent Document 1, the degree of failure is exemplified as an index value, and a configuration for directly estimating the size of the damaged portion, which indicates the state of damage, is not shown.
 また、特許文献2では、実際に損傷した転がり軸受について残存寿命を計測していないので、上記理論式の精度は十分に確かめられていない。よって、特に、運転時間の増加に伴い損傷の進展の形態が変化するような、単純な理論式で表すことが難しいと予測される場合においても、余寿命を正確に推定できる保証がないことが懸念される。 Further, in Patent Document 2, since the remaining life of the actually damaged rolling bearing is not measured, the accuracy of the above theoretical formula has not been sufficiently confirmed. Therefore, there is no guarantee that the remaining life can be accurately estimated, especially when it is predicted that it is difficult to express by a simple theoretical formula such that the form of damage progress changes as the operation time increases. I am concerned.
 それゆえに、この発明の主たる目的は、転がり軸受の損傷部のサイズまたは転がり軸受けの余寿命を正確に推定することが可能な状態監視方法および状態監視装置を提供することである。 Therefore, a main object of the present invention is to provide a condition monitoring method and a condition monitoring device capable of accurately estimating the size of a damaged part of a rolling bearing or the remaining life of a rolling bearing.
 この発明のある局面に従えば、転がり軸受の状態監視方法は、第1の転がり軸受の振動データに基づいて機械学習によって回帰モデルを生成するステップと、回帰モデルを用いて第2の転がり軸受の状態を監視するステップとを備える。第1の転がり軸受および第2の転がり軸受の各々は、回転輪と、静止輪と、回転輪と静止輪との間に配置され、回転輪の回転に伴って静止輪の軌道面を移動する複数の転動体とを備える。転がり軸受の静止輪の軌道面に形成された損傷部の周方向の長さを損傷サイズとすると、回帰モデルを生成するステップは、第1の転がり軸受の振動データおよび第1の転がり軸受の損傷サイズを取得するステップと、第1の転がり軸受の振動データの特徴量からなる第1の転がり軸受の特徴量ベクトルを生成するステップと、第1の転がり軸受の特徴量ベクトルと第1の転がり軸受の損傷サイズとの機械学習を行なうことで、特徴量ベクトルから損傷サイズを推定するための回帰モデルを生成するステップとを含む。第2の転がり軸受の状態を監視するステップは、第2の転がり軸受の振動データを取得するステップと、第2の転がり軸受の振動データの特徴量からなる第2の転がり軸受の特徴量ベクトルを生成するステップと、回帰モデルを用いて、第2の転がり軸受の特徴量ベクトルから、第2の転がり軸受の損傷サイズを推定するステップとを含む。 According to a certain aspect of the present invention, the method of monitoring the state of a rolling bearing is a step of generating a regression model by machine learning based on the vibration data of the first rolling bearing and a step of generating a regression model by using the regression model of the second rolling bearing. It includes a step to monitor the condition. Each of the first rolling bearing and the second rolling bearing is arranged between the rotating wheel, the stationary wheel, and the rotating wheel and the stationary wheel, and moves on the raceway surface of the stationary wheel as the rotating wheel rotates. It has a plurality of rolling elements. Assuming that the circumferential length of the damaged portion formed on the raceway surface of the stationary wheel of the rolling bearing is the damage size, the step of generating the regression model is the vibration data of the first rolling bearing and the damage of the first rolling bearing. The step of acquiring the size, the step of generating the feature amount vector of the first rolling bearing consisting of the feature amount of the vibration data of the first rolling bearing, the feature amount vector of the first rolling bearing, and the first rolling bearing. Including the step of generating a regression model for estimating the damage size from the feature vector by performing machine learning with the damage size of. The step of monitoring the state of the second rolling bearing is a step of acquiring the vibration data of the second rolling bearing and a feature quantity vector of the second rolling bearing composed of the feature quantity of the vibration data of the second rolling bearing. It includes a step of generating and a step of estimating the damage size of the second rolling bearing from the feature vector of the second rolling bearing using a regression model.
 この発明によれば、転がり軸受の損傷部のサイズまたは転がり軸受けの余寿命を正確に推定することが可能な転がり軸受の状態監視方法及び状態監視装置を提供することができる。 According to the present invention, it is possible to provide a rolling bearing condition monitoring method and a condition monitoring device capable of accurately estimating the size of a damaged portion of a rolling bearing or the remaining life of a rolling bearing.
実施の形態1による状態監視装置によって監視される転がり軸受の断面図と、状態監視装置のブロック図とを併せて示した図である。It is a figure which showed together the cross-sectional view of the rolling bearing monitored by the state monitoring device by Embodiment 1 and the block diagram of the state monitoring device. 軌道面で初期損傷が発生した直後の状態(ステージ1)を示した図である。It is a figure which showed the state (stage 1) immediately after the initial damage occurred on the raceway surface. 初期損傷が転動体とアキシアル方向に進展している状態(ステージ2)を示した図である。It is the figure which showed the state (stage 2) in which the initial damage progresses in the axial direction with a rolling element. 損傷が周方向に進展している状態(ステージ3)を示した図である。It is a figure which showed the state (stage 3) in which the damage progresses in the circumferential direction. 損傷サイズの経時変化の実験結果を示すグラフである。It is a graph which shows the experimental result of the time-dependent change of the damage size. 図5の損傷サイズの経時変化を説明するための図である。It is a figure for demonstrating the time-dependent change of the damage size of FIG. セグメントおよび特徴量ベクトルを説明するための図である。It is a figure for demonstrating a segment and a feature vector. 機械学習による回帰モデルの生成と、当該モデルを用いた損傷サイズの推定とを説明するための図である。It is a figure for demonstrating the generation of the regression model by machine learning, and the estimation of the damage size using the model. 回帰モデルの推定精度の評価を説明するための図である。It is a figure for demonstrating the evaluation of the estimation accuracy of a regression model. 機械学習による回帰モデル生成の処理を説明するためのフローチャートの例である。This is an example of a flowchart for explaining the process of generating a regression model by machine learning. 回帰モデルを用いて損傷サイズを推定する処理を説明するためのフローチャートの例である。This is an example of a flowchart for explaining the process of estimating the damage size using the regression model. 実施の形態1に係る状態監視装置が適用される風力発電装置の構成を概略的に示した図である。It is a figure which showed roughly the structure of the wind power generation apparatus to which the condition monitoring apparatus which concerns on Embodiment 1 is applied. 機械学習による回帰モデルの生成と、当該モデルを用いた余寿命の推定とを説明するための図である。It is a figure for demonstrating the generation of the regression model by machine learning, and the estimation of the remaining life using the model. 回帰モデルの推定精度の評価を説明するための図である。It is a figure for demonstrating the evaluation of the estimation accuracy of a regression model. 機械学習による回帰モデル生成の処理を説明するためのフローチャートの例である。This is an example of a flowchart for explaining the process of generating a regression model by machine learning. 回帰モデルを用いて余寿命を推定する処理を説明するためのフローチャートの例である。This is an example of a flowchart for explaining a process of estimating the remaining life using a regression model. 実施の形態2に係る状態監視装置が適用される風力発電装置の構成を概略的に示した図である。It is a figure which showed roughly the structure of the wind power generation apparatus to which the condition monitoring apparatus which concerns on Embodiment 2 is applied.
 以下、図面を参照しつつ、本発明の実施の形態について説明する。なお、以下の説明では、同一又は対応する要素には同一の符号を付して、それらについての詳細な説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same or corresponding elements are designated by the same reference numerals, and detailed description thereof will not be repeated.
 [実施の形態1]
 (転がり軸受及び状態監視装置の構成)
 図1は、この発明の実施の形態1による状態監視装置によって監視される転がり軸受の断面図と、状態監視装置のブロック図とを併せて示した図である。なお、この実施の形態1では、外輪が回転輪のころ軸受によって転がり軸受が構成される場合について代表的に説明されるが、この発明の適用範囲は、このような軸受の状態監視装置に限定されるものではなく、監視対象の転がり軸受は、内輪が回転輪のものであってもよいし、玉軸受等であってもよい。
[Embodiment 1]
(Structure of rolling bearing and condition monitoring device)
FIG. 1 is a diagram showing a cross-sectional view of a rolling bearing monitored by the condition monitoring device according to the first embodiment of the present invention and a block diagram of the condition monitoring device. In the first embodiment, a case where a rolling bearing is formed by a roller bearing in which the outer ring is a rotating wheel is typically described, but the scope of application of the present invention is limited to such a bearing condition monitoring device. The rolling bearing to be monitored may have an inner ring of a rotating wheel, a ball bearing, or the like.
 図1を参照して、転がり軸受10は、内輪12と、外輪16と、複数の転動体18とを含む。内輪12は、非回転の軸体14に外嵌される。外輪16は、内輪12の外周側に設けられ、図示しない回転体と一体的に回転する。複数の転動体18の各々は、円柱形の「ころ」であり、図示されない保持器によって隣接の転動体と等間隔に保持されつつ内輪12と外輪16との間に介在する。 With reference to FIG. 1, the rolling bearing 10 includes an inner ring 12, an outer ring 16, and a plurality of rolling elements 18. The inner ring 12 is fitted onto the non-rotating shaft body 14. The outer ring 16 is provided on the outer peripheral side of the inner ring 12 and rotates integrally with a rotating body (not shown). Each of the plurality of rolling elements 18 is a cylindrical "roller", and is interposed between the inner ring 12 and the outer ring 16 while being held at equal intervals with the adjacent rolling elements by a cage (not shown).
 内輪12は、複数の転動体18のうち負荷域を通過中のものからラジアル荷重を受ける。なお、この実施の形態では、静止輪である内輪12において、その回転中心よりも鉛直方向上側(紙面上方向)に負荷域が形成される。そして、内輪12は、軌道面(内輪12の外周面)20に損傷が発生していない正常状態においては、複数の転動体18のうち、内輪中心軸の鉛直上方向に位置する負荷域中央を通過している転動体から最大の荷重を受ける。 The inner ring 12 receives a radial load from a plurality of rolling elements 18 that are passing through the load range. In this embodiment, in the inner ring 12 which is a stationary wheel, a load region is formed on the upper side in the vertical direction (on the paper surface) with respect to the center of rotation. Then, in the normal state in which the raceway surface (outer peripheral surface of the inner ring 12) 20 is not damaged, the inner ring 12 is located at the center of the load region located in the vertically upward direction of the inner ring central axis among the plurality of rolling elements 18. Receives maximum load from passing rolling elements.
 このような転がり軸受10は比較的低速条件で使用される場合、および/または、交換が容易でない場合は、小規模の剥離等の初期の損傷が発生した後も継続して使用されることが多い。一方で、損傷部のサイズが拡大し、軸受内外輪間の変位が増大した結果、変位が許容範囲を超えると、転がり軸受10を含む装置が破壊されるおそれがある。 Such rolling bearings 10 may continue to be used even after initial damage such as small-scale peeling if they are used under relatively low speed conditions and / or if they are not easy to replace. There are many. On the other hand, if the size of the damaged portion is increased and the displacement between the inner and outer rings of the bearing is increased and the displacement exceeds the allowable range, the device including the rolling bearing 10 may be destroyed.
 よって、転がり軸受10を安全な範囲の限界まで使用するには、当該損傷部のサイズを把握する必要がある。しかし、使用中の損傷部のサイズを測定することは困難である。よって、好ましくは、簡易に測定可能な、損傷部のサイズを反映する測定データを測定することで、当該損傷部のサイズを推定することが望まれる。 Therefore, in order to use the rolling bearing 10 to the limit of the safe range, it is necessary to grasp the size of the damaged part. However, it is difficult to measure the size of the damaged part during use. Therefore, it is desirable to estimate the size of the damaged portion by measuring measurement data that reflects the size of the damaged portion, which can be easily measured.
 それゆえに、実施の形態1に従う転がり軸受10の状態監視装置100は、簡易に測定できる測定データから、転がり軸受10の損傷部のサイズを正確に推定する。具体的には、状態監視装置100は、転がり軸受10の振動の加速度の測定データから、機械学習による回帰モデルを用いて、損傷部の周方向の長さを正確に推定するように構成される。 Therefore, the condition monitoring device 100 of the rolling bearing 10 according to the first embodiment accurately estimates the size of the damaged portion of the rolling bearing 10 from the measurement data that can be easily measured. Specifically, the condition monitoring device 100 is configured to accurately estimate the circumferential length of the damaged portion from the measurement data of the vibration acceleration of the rolling bearing 10 by using a regression model by machine learning. ..
 再び図1を参照して、転がり軸受10の状態を監視する状態監視装置100は、加速度センサ102と、診断部106とを含む。 With reference to FIG. 1 again, the condition monitoring device 100 for monitoring the state of the rolling bearing 10 includes an acceleration sensor 102 and a diagnostic unit 106.
 図1において、x方向は転がり軸受10の周方向に対応し、y方向は転がり軸受10のアキシアル方向に対応する。また図1において、X方向およびY方向は、加速度センサ102の測定方向に対応する。 In FIG. 1, the x direction corresponds to the circumferential direction of the rolling bearing 10, and the y direction corresponds to the axial direction of the rolling bearing 10. Further, in FIG. 1, the X direction and the Y direction correspond to the measurement directions of the acceleration sensor 102.
 加速度センサ102は、軸受箱または設備外径面の軸受の振動加速度を測定可能な場所に固設される。Y方向は、転がり軸受10の内輪12の外周面(軌道面20)の鉛直方向(またはラジアル方向)に対応する。X方向は、加速度センサ102の設置位置における水平方向(またはホリゾンタル方向)に対応する。 The acceleration sensor 102 is fixedly installed in a place where the vibration acceleration of the bearing in the bearing box or the outer diameter surface of the equipment can be measured. The Y direction corresponds to the vertical direction (or radial direction) of the outer peripheral surface (raceway surface 20) of the inner ring 12 of the rolling bearing 10. The X direction corresponds to the horizontal direction (or horizontal direction) at the installation position of the acceleration sensor 102.
 加速度センサ102は、転がり軸受10の鉛直方向(ラジアル方向)の振動の加速度を検出するためのセンサである。本願明細書では、以下、この振動の加速度を「振動加速度」または単に「加速度」とも称する。加速度センサ102は、水平方向(ホリゾンタル方向)の振動加速度を検出するように構成してもよい。 The acceleration sensor 102 is a sensor for detecting the acceleration of vibration of the rolling bearing 10 in the vertical direction (radial direction). Hereinafter, in the present specification, the acceleration of this vibration is also referred to as "vibration acceleration" or simply "acceleration". The acceleration sensor 102 may be configured to detect the vibration acceleration in the horizontal direction (horizontal direction).
 診断部106は、加速度センサ102の検出値に基づいて、転がり軸受10の状態を監視し診断する。具体的には、診断部106は加速度センサ102の検出値に基づいて転がり軸受10の損傷部のサイズを推定する。以下、転がり軸受10の損傷部のサイズについて説明する。 The diagnosis unit 106 monitors and diagnoses the state of the rolling bearing 10 based on the detected value of the acceleration sensor 102. Specifically, the diagnostic unit 106 estimates the size of the damaged portion of the rolling bearing 10 based on the detected value of the acceleration sensor 102. Hereinafter, the size of the damaged portion of the rolling bearing 10 will be described.
 (損傷サイズの説明)
 図2から図4は、転がり軸受10における損傷部のサイズが進展していく段階を示す図である。なお、これらの図では、転がり軸受10の負荷域が拡大して示されている。また、これらの図では、図1と同じく、y方向が転がり軸受10のアキシアル方向に、x方向が転がり軸受10の周方向に対応する。
(Explanation of damage size)
2 to 4 are views showing a stage in which the size of the damaged portion of the rolling bearing 10 progresses. In these figures, the load range of the rolling bearing 10 is enlarged and shown. Further, in these figures, as in FIG. 1, the y direction corresponds to the axial direction of the rolling bearing 10, and the x direction corresponds to the circumferential direction of the rolling bearing 10.
 図2は、内輪12の軌道面20において、初期損傷D1が発生している例が示されている。以下では、軌道面20に初期損傷が発生する以前の状態を「ステージ0」と称し、軌道面20に初期損傷が発生した状態(図2)を「ステージ1」と称する。 FIG. 2 shows an example in which the initial damage D1 occurs on the raceway surface 20 of the inner ring 12. Hereinafter, the state before the initial damage to the raceway surface 20 is referred to as “stage 0”, and the state in which the raceway surface 20 is initially damaged (FIG. 2) is referred to as “stage 1”.
 本願明細書において、損傷部のサイズとは、内輪12(静止輪)の軌道面に形成された損傷部の周方向の長さを指す。なお、当該損傷部のサイズは、損傷部の周方向の長さの最大値を示す。以下、このような損傷部のサイズを単に「損傷サイズ」とも称する。すなわち、初期損傷D1の損傷サイズは図2のsz1である。 In the specification of the present application, the size of the damaged portion refers to the circumferential length of the damaged portion formed on the raceway surface of the inner ring 12 (stationary wheel). The size of the damaged portion indicates the maximum value of the length of the damaged portion in the circumferential direction. Hereinafter, the size of such a damaged portion is also simply referred to as “damage size”. That is, the damage size of the initial damage D1 is sz1 in FIG.
 図3は、軌道面20に発生した初期損傷がアキシアル方向に進展している状態を示した図である。図2で示したような初期損傷D1に対して周方向(図3のx方向)に隣接する部分は、転動体が損傷部を通過する前または通過した後に転動体と接触する部分であるため、転動体と内輪12の軌道面20とは全面で接触する。そのため、接触面における応力分布は一様となる。これに対して、初期損傷D1に対してアキシアル方向(図3のy方向)に隣接する部分は、転動体が損傷部を通過している最中に転動体と接触する部分であるため、当該隣接する部分に応力集中が発生してしまい、結果的に局所的に面圧が大きくなる。よって、初期損傷D1は、基本的には、アキシアル方向に沿って進展する。このような初期損傷が主にアキシアル方向に拡大した損傷を「損傷D2」と称する。損傷D2の損傷サイズは図3のsz2である。また、初期損傷が主にアキシアル方向に進展している状態、すなわち、損傷D2が発生している状態(図3)を「ステージ2」と称する。 FIG. 3 is a diagram showing a state in which the initial damage generated on the raceway surface 20 is progressing in the axial direction. Since the portion adjacent to the initial damage D1 as shown in FIG. 2 in the circumferential direction (x direction in FIG. 3) is the portion where the rolling element comes into contact with the rolling element before or after passing through the damaged portion. , The rolling element and the raceway surface 20 of the inner ring 12 come into contact with each other on the entire surface. Therefore, the stress distribution on the contact surface becomes uniform. On the other hand, the portion adjacent to the initial damage D1 in the axial direction (y direction in FIG. 3) is a portion that comes into contact with the rolling element while the rolling element is passing through the damaged portion. Stress concentration occurs in the adjacent portion, and as a result, the surface pressure increases locally. Therefore, the initial damage D1 basically progresses along the axial direction. Damage in which such initial damage spreads mainly in the axial direction is referred to as "damage D2". The damage size of damage D2 is sz2 in FIG. Further, a state in which the initial damage mainly progresses in the axial direction, that is, a state in which the damage D2 occurs (FIG. 3) is referred to as “stage 2”.
 図4は、損傷が周方向に進展している状態を示した図である。図3で示した損傷D2が、アキシアル方向全域に拡大すると、その後当該損傷は周方向に拡大する。このような損傷がアキシアル方向全域に拡大した後、周方向に拡大した損傷を「損傷D3」と称する。損傷D3の損傷サイズは図3のsz3である。また、損傷がアキシアル方向全域に拡大した後、周方向に進展している状態、すなわち、損傷D3が発生している状態(図4)を「ステージ3」と称する。 FIG. 4 is a diagram showing a state in which the damage is progressing in the circumferential direction. When the damage D2 shown in FIG. 3 expands over the entire axial direction, the damage then expands in the circumferential direction. After such damage spreads over the entire axial direction, the damage that spreads in the circumferential direction is referred to as "damage D3". The damage size of damage D3 is sz3 in FIG. Further, a state in which the damage spreads in the entire axial direction and then progresses in the circumferential direction, that is, a state in which the damage D3 occurs (FIG. 4) is referred to as “stage 3”.
 (損傷サイズの経時変化)
 次に、実際の実験結果における、損傷サイズの経時変化を説明する。
(Change in damage size over time)
Next, the time course of damage size in the actual experimental results will be described.
 図5は、複数の転がり軸受10において、軌道面20の一部分に微少な初期損傷D1が発生した後の損傷サイズの変化を測定した実験結果を示している。各転がり軸受10の損傷サイズは、例えば、定期的に複数の転がり軸受10を含む装置を停止し、各転がり軸受10の静止輪をカメラで撮影し、撮影した画像を画像処理することにより求めることができる。 FIG. 5 shows the experimental results of measuring the change in damage size after a slight initial damage D1 occurs on a part of the raceway surface 20 in the plurality of rolling bearings 10. The damage size of each rolling bearing 10 is determined by, for example, periodically stopping the device including a plurality of rolling bearings 10, photographing the stationary wheels of each rolling bearing 10 with a camera, and performing image processing on the photographed image. Can be done.
 なお、実験条件として、転がり軸受10には、内径120mm、外径240mm、幅40mの円筒ころ軸受33個を用いた。また、各転がり軸受10に対して、ラジアル荷重90kN、回転速度500回/分を付与した。これらの転がり軸受10に対し、上記のように所定の時刻で損傷サイズを測定すると共に、継続的に加速度センサ102により検出される振動加速度のデータを収集した。なお、上記のように当該損傷サイズは、損傷部の周方向の長さの最大値を示す。 As experimental conditions, 33 cylindrical roller bearings having an inner diameter of 120 mm, an outer diameter of 240 mm, and a width of 40 m were used for the rolling bearing 10. Further, a radial load of 90 kN and a rotation speed of 500 times / minute were applied to each rolling bearing 10. For these rolling bearings 10, the damage size was measured at a predetermined time as described above, and the vibration acceleration data continuously detected by the acceleration sensor 102 was collected. As described above, the damage size indicates the maximum value of the length of the damaged portion in the circumferential direction.
 図5の横軸は軌道面20に初期損傷が発生してからの転がり軸受10の運転時間を示しており、縦軸は損傷サイズを示している。図5において、初期損傷が発生する以前のデータは省略されている。図5においては、当該初期損傷が進展して、転がり軸受10が使用限界に達するまでの実験結果を示している。該使用限界の基準となる時点は、例えば損傷による軸受内外輪間の変位量が設備内クリアランスの許容範囲の上限値に達する時点である。 The horizontal axis of FIG. 5 shows the operating time of the rolling bearing 10 after the initial damage occurs on the raceway surface 20, and the vertical axis shows the damage size. In FIG. 5, the data before the initial damage occurred is omitted. FIG. 5 shows the experimental results until the initial damage progresses and the rolling bearing 10 reaches the usage limit. The reference point of the usage limit is, for example, the time when the amount of displacement between the inner and outer rings of the bearing due to damage reaches the upper limit of the allowable range of the clearance in the equipment.
 図5に示されるように、損傷サイズは、初期損傷が発生してからしばらくはほとんど変化せず、ある時点を超えると急速に拡大することが分かる。以下、この「運転時間に対して損傷サイズがほとんど変化しない状態」を「損傷初期」とも称する。また、「損傷サイズが急速に増加する状態」を「損傷末期」とも称する。発明者らは、この「損傷初期」および「損傷末期」が、それぞれ、上記の損傷のステージ2(図3)およびステージ3(図4)に対応することを確認した。次に図6を用いて、損傷サイズの2つの状態と、損傷のステージとの関連について説明する。 As shown in FIG. 5, it can be seen that the damage size hardly changes for a while after the initial damage occurs, and rapidly expands after a certain point in time. Hereinafter, this "state in which the damage size hardly changes with respect to the operating time" is also referred to as "initial damage". In addition, "a state in which the damage size increases rapidly" is also referred to as "end of damage". The inventors have confirmed that the "early stage of damage" and the "end stage of damage" correspond to the above-mentioned damage stages 2 (FIG. 3) and stage 3 (FIG. 4), respectively. Next, with reference to FIG. 6, the relationship between the two states of damage size and the stage of damage will be described.
 図6は、図5における損傷サイズの経時変化を説明するための図である。図6は、図5の複数の測定データの1つが例示されている。図6の時刻t1,t2はそれぞれステージ2、ステージ3に移行した時刻を示している。なお、図6の時刻t3は、転がり軸受10が使用限界に達した時刻、すなわち損傷サイズが許容範囲の上限値に達した時刻を示している。 FIG. 6 is a diagram for explaining the time course of damage size in FIG. FIG. 6 illustrates one of the plurality of measurement data of FIG. The times t1 and t2 in FIG. 6 indicate the times when the stage 2 and the stage 3 were entered, respectively. The time t3 in FIG. 6 indicates the time when the rolling bearing 10 reaches the usage limit, that is, the time when the damage size reaches the upper limit of the allowable range.
 時刻t1において、初期損傷D1が発生する(ステージ1)と、初期損傷D1に対してアキシアル方向に隣接する部分には、応力集中が起こる。よって、損傷は主にアキシアル方向に拡大する(ステージ2)。よって、損傷D2の周方向の長さを示す損傷サイズsz2は、損傷D1の損傷サイズsz1から大きく変化しない。よって、図6に示すように、損傷サイズの周方向における進展速度は緩やかである遅い。 When the initial damage D1 occurs at time t1 (stage 1), stress concentration occurs in the portion adjacent to the initial damage D1 in the axial direction. Therefore, the damage spreads mainly in the axial direction (stage 2). Therefore, the damage size sz2 indicating the circumferential length of the damage D2 does not change significantly from the damage size sz1 of the damage D1. Therefore, as shown in FIG. 6, the propagation speed of the damage size in the circumferential direction is slow and slow.
 続いて、時刻t2において、損傷がアキシアル方向全域に拡大すると、その後当該損傷は周方向にさらに拡大する(ステージ3)。ステージ3においては、損傷を通過中の転動体18は、軌道面から荷重をほとんど受けない無負荷状態となる。そのため、転動体18の振動が激しくなり、図6に示すように、損傷サイズの周方向における進展速度はステージ2に比べて速くなる。 Subsequently, at time t2, when the damage spreads over the entire axial direction, the damage further spreads in the circumferential direction (stage 3). In the stage 3, the rolling element 18 passing through the damage is in a no-load state in which a load is hardly received from the raceway surface. Therefore, the vibration of the rolling element 18 becomes intense, and as shown in FIG. 6, the propagation speed of the damage size in the circumferential direction becomes faster than that of the stage 2.
 その後、損傷がさらに周方向に拡大し、内輪12と外輪16との距離の変位量である軸受内外輪間の変位量が大きくなると、ある時点で転がり軸受10の損傷が転がり軸受10の使用限界の基準に達する状態となる(図6の時刻t3)。本明細書においては、このような状態を、転がり軸受10が使用限界に達するとも称する。転がり軸受10が使用限界を超えると、例えば転がり軸受10を含む装置自体が破壊する等の問題がある。よって、このような状態となった場合には、装置の運転が停止され、転がり軸受10の修理・交換が行なわれる。 After that, when the damage further expands in the circumferential direction and the amount of displacement between the inner and outer rings of the bearing, which is the amount of displacement of the distance between the inner ring 12 and the outer ring 16, becomes larger, the damage of the rolling bearing 10 becomes the limit of use of the rolling bearing 10 at a certain point. (Time t3 in FIG. 6). In the present specification, such a state is also referred to as the rolling bearing 10 reaching the usage limit. If the rolling bearing 10 exceeds the usage limit, there is a problem that, for example, the device itself including the rolling bearing 10 is destroyed. Therefore, in such a state, the operation of the device is stopped, and the rolling bearing 10 is repaired or replaced.
 転がり軸受10の使用限界の基準となる時点とは、例えば、損傷による軸受内外輪間の変位量が設備内クリアランスの許容範囲の上限値となる時点である。また、損傷サイズが転動体18の間隔の定数倍となる時点としてもよい。このように設定すれば、例えばある転がり軸受10において、損傷サイズが転動体の間隔の1.5~2倍になると、当該損傷部を通過中の2つの転動体18がほとんど荷重を受けない状態になり、その結果、転がり軸受10の振動が大きくなりすぎる時点を検出することができる。 The reference point for the usage limit of the rolling bearing 10 is, for example, the time when the amount of displacement between the inner and outer rings of the bearing due to damage becomes the upper limit of the allowable range of clearance in the equipment. Further, it may be a time point when the damage size becomes a constant multiple of the interval of the rolling elements 18. With this setting, for example, in a certain rolling bearing 10, when the damage size becomes 1.5 to 2 times the distance between the rolling elements, the two rolling elements 18 passing through the damaged part receive almost no load. As a result, it is possible to detect the time when the vibration of the rolling bearing 10 becomes too large.
 以上のように、転がり軸受10においては、一様な運転条件下においても、運転時間の増加に伴い損傷の進展の形態および速度が変化する。特に、損傷の進展速度が増加する損傷末期においては、振動加速度等の測定データの変動が大きくなる。このように、損傷の進展と測定データとの関係性が複雑であるため、当該関係性を単純な線形で表すことは困難である。従って、例えば重回帰分析等の単純な線形モデルでは、振動加速度等の測定データから、損傷部のサイズを精度良く推定することが難しいと考えられる。 As described above, in the rolling bearing 10, even under uniform operating conditions, the form and speed of damage progression change as the operating time increases. In particular, in the final stage of damage where the rate of damage progress increases, the fluctuation of measurement data such as vibration acceleration becomes large. As described above, the relationship between the damage progression and the measured data is complicated, and it is difficult to express the relationship with a simple linear shape. Therefore, in a simple linear model such as multiple regression analysis, it is considered difficult to accurately estimate the size of the damaged portion from measurement data such as vibration acceleration.
 発明者らはこのような条件においても、振動加速度の複数の特徴量と損傷サイズとを機械学習による回帰モデルで結びつけることで、損傷サイズを精度良く推定する方法を見いだした。以下に、この方法を段階を追って説明する。 Even under such conditions, the inventors have found a method for accurately estimating the damage size by connecting multiple features of vibration acceleration and the damage size with a regression model by machine learning. This method will be described step by step below.
 (学習サンプルの決定)
 実施の形態1に係る転がり軸受10の状態監視方法においては、まず機械学習による回帰モデルを生成するための転がり軸受10(以下、「学習サンプル」とも称する)が決定される。
(Determination of learning sample)
In the method for monitoring the state of the rolling bearing 10 according to the first embodiment, first, the rolling bearing 10 (hereinafter, also referred to as “learning sample”) for generating a regression model by machine learning is determined.
 実施の形態1では、具体的には、上記の実験に用いた33個の転がり軸受10から、32個の転がり軸受10が学習サンプルとして選択された。なお後述するように、残り1個の転がり軸受10は、当該回帰モデルを利用して損傷サイズを推定するための「テストサンプル」とされた。なお、学習サンプルは、「第1の転がり軸受」の一実施例に対応する。テストサンプルは、「第2の転がり軸受」の一実施例に対応する。 Specifically, in the first embodiment, 32 rolling bearings 10 were selected as learning samples from the 33 rolling bearings 10 used in the above experiment. As will be described later, the remaining one rolling bearing 10 was used as a "test sample" for estimating the damage size using the regression model. The learning sample corresponds to one embodiment of the "first rolling bearing". The test sample corresponds to one embodiment of "second rolling bearing".
 (測定データの前処理の説明)
 次に、診断部106は、学習サンプルの振動加速度データを周波数フィルタ処理により分離する。具体的には、振動加速度データは、ローパスフィルタ、バンドパスフィルタ、ハイパスフィルタにより、20~1000Hz、1000~5000Hz、5000~20000Hzのそれぞれに対応するデータに分離される。
(Explanation of preprocessing of measurement data)
Next, the diagnostic unit 106 separates the vibration acceleration data of the learning sample by frequency filtering. Specifically, the vibration acceleration data is separated into data corresponding to 20 to 1000 Hz, 1000 to 5000 Hz, 5000 to 20000 Hz by a low-pass filter, a band-pass filter, and a high-pass filter.
 次に、診断部106は、周波数毎に分離した振動加速度データを複数のセグメントに分割し、セグメント毎に複数の特徴量の組み合わせからなる特徴量ベクトルを算出する。 Next, the diagnostic unit 106 divides the vibration acceleration data separated for each frequency into a plurality of segments, and calculates a feature quantity vector composed of a combination of a plurality of feature quantities for each segment.
 図7は、セグメントおよび特徴量ベクトルを説明するための図である。図7を参照して、時間長T1の測定データが、時間長T1より短い時間長T2のセグメントに分割される。T2は、例えば回転軸の1回転に要する時間の定数倍の長さに設定される。例えば、T2は回転軸が5回転するのに要する時間に相当する0.6秒で設定される。測定データをセグメント毎に分割した後、さらに分割したデータ毎に特徴量ベクトルが生成される。 FIG. 7 is a diagram for explaining a segment and a feature amount vector. With reference to FIG. 7, the measurement data of the time length T1 is divided into segments of the time length T2 shorter than the time length T1. For example, T2 is set to a length that is a constant multiple of the time required for one rotation of the rotation axis. For example, T2 is set at 0.6 seconds, which corresponds to the time required for the rotation axis to rotate five times. After dividing the measurement data into segments, a feature vector is generated for each of the further divided data.
 特徴量ベクトルは、複数の特徴量を一組のベクトルとして扱うものである。特徴量は、測定データが振動加速度の場合には、例えば、時間、周波数、ケフレンシの少なくとも1つのパラメータに対する、実効値、最大値、波高率、尖度、歪度という波形のレベルおよび/または形状の特徴を表すパラメータとすることができる。当該特徴量は、各種周波数フィルタの処理がなされていても良い。また、振動データから時間周波数分析により得られる画像データから抽出した特徴量を用いても良い。 The feature quantity vector treats a plurality of feature quantities as a set of vectors. When the measured data is vibration acceleration, the feature amount is, for example, the level and / or shape of the waveform such as effective value, maximum value, crest factor, kurtosis, and skewness for at least one parameter of time, frequency, and skewness. It can be a parameter representing the characteristics of. The feature amount may be processed by various frequency filters. Further, the feature amount extracted from the image data obtained by the time frequency analysis from the vibration data may be used.
 以上のように、学習サンプルの振動加速度データに前処理を施すことで、後述する機械学習による回帰モデルを生成するための特徴量ベクトルが生成される。なお、テストサンプルの振動加速度データも同様の前処理により特徴量ベクトルに変換された後、該回帰モデルに入力される。 As described above, by preprocessing the vibration acceleration data of the training sample, a feature vector for generating a regression model by machine learning, which will be described later, is generated. The vibration acceleration data of the test sample is also converted into a feature vector by the same preprocessing and then input to the regression model.
 (損傷サイズの算出)
 次に、診断部106は、学習サンプルにおいて測定された損傷サイズのデータを基に、各セグメントにおける損傷サイズを求める。具体的には、各セグメントに対応する時刻における損傷サイズを求める。これにより、セグメント毎に対応する特徴量ベクトルと損傷サイズの組み合わせを得ることができる。すなわち、損傷が進展していく各段階における、特徴量ベクトルと損傷サイズとの関係を示す経時的なデータが得られる。
(Calculation of damage size)
Next, the diagnostic unit 106 obtains the damage size in each segment based on the damage size data measured in the training sample. Specifically, the damage size at the time corresponding to each segment is obtained. As a result, it is possible to obtain a combination of the feature amount vector and the damage size corresponding to each segment. That is, time-dependent data showing the relationship between the feature vector and the damage size at each stage in which the damage progresses can be obtained.
 (機械学習を用いた回帰モデルの生成)
 図8は、機械学習による回帰モデルの生成と、当該回帰モデルを用いた損傷サイズの推定とを説明するための図である。
(Generation of regression model using machine learning)
FIG. 8 is a diagram for explaining the generation of a regression model by machine learning and the estimation of the damage size using the regression model.
 診断部106は、セグメント毎の学習サンプルの特徴ベクトルを入力、損傷サイズを出力として、機械学習による回帰モデル(第1の回帰モデル)を生成する。以下、本願明細書中においては単に「回帰モデル」と称する場合、この機械学習による回帰モデルを示すこととする。機械学習としては、例えば、サポートベクターマシン、ランダムフォレスト、カーネルリッジ回帰、ディープラーニング回帰等の回帰手法およびそれらの組み合わせを用いることができる。なお、実施の形態1では、第1の回帰モデルは、損傷の進展速度が遅い損傷初期(すなわちステージ2)、損傷の進展速度が速い損傷末期(すなわちステージ3)、および、初期損傷発生後から運転可能限界までの全体(すなわちステージ2および3)の各々に対して生成される。 The diagnostic unit 106 inputs the feature vector of the learning sample for each segment, outputs the damage size, and generates a regression model (first regression model) by machine learning. Hereinafter, when simply referred to as a "regression model" in the specification of the present application, the regression model by machine learning will be shown. As machine learning, for example, regression methods such as support vector machine, random forest, kernel ridge regression, deep learning regression, and combinations thereof can be used. In the first embodiment, the first regression model is performed from the initial stage of damage (that is, stage 2) in which the damage progress rate is slow, the final stage of damage (that is, stage 3) in which the damage progress rate is fast, and after the initial damage occurs. Generated for each of the whole (ie, stages 2 and 3) up to the operable limit.
 以上のように、診断部106は、特徴量ベクトルを入力すると、損傷サイズを自動で推定することができる第1の回帰モデルを生成する(図8参照)。診断部106は第1の回帰モデルを図示しない記憶部に保持し、随時読み出して使用できる状態にする。 As described above, the diagnostic unit 106 generates a first regression model in which the damage size can be automatically estimated by inputting the feature vector (see FIG. 8). The diagnostic unit 106 holds the first regression model in a storage unit (not shown) so that it can be read out and used at any time.
 (機械学習による回帰モデルを用いた損傷サイズの推定)
 次に、第1の回帰モデルを用いて、テストサンプルの振動加速度データから、損傷サイズを推定する方法について説明する。まず、テストサンプルの振動加速度データは、学習サンプルの振動加速度データと同様の前処理により特徴量ベクトルに変換される。
(Estimation of damage size using regression model by machine learning)
Next, a method of estimating the damage size from the vibration acceleration data of the test sample using the first regression model will be described. First, the vibration acceleration data of the test sample is converted into a feature vector by the same preprocessing as the vibration acceleration data of the training sample.
 次に、上記損傷初期、損傷末期、全体の3種類の第1の回帰モデルにテストサンプルの対応する特徴量ベクトルを適力する。これにより、第1の回帰モデルの出力として、テストサンプルの損傷サイズの推定値が得られる。 Next, the corresponding feature vector of the test sample is applied to the first regression models of the above three types, the initial stage of damage, the final stage of damage, and the whole. This gives an estimate of the damage size of the test sample as the output of the first regression model.
 (回帰モデルの評価)
 実施の形態1で生成された第1の回帰モデルの精度を数学的・統計的手法を用いて評価した結果を次に示す。実施の形態1では、当該推定精度の評価として、二乗平均誤差平方根および決定係数を用いた結果を例示している。
(Evaluation of regression model)
The results of evaluating the accuracy of the first regression model generated in the first embodiment using mathematical and statistical methods are shown below. In the first embodiment, the result using the root mean square error square root and the coefficient of determination is illustrated as the evaluation of the estimation accuracy.
 図9は、第1の回帰モデルの推定精度の評価を説明するための図である。図9を参照して、テストサンプルにおいて、実施の形態1に係る第1の回帰モデルにより推定した損傷サイズと実測した損傷サイズとの、二乗平均誤差平方根および決定係数が示されている。また、比較例として、機械学習による回帰モデルの代わりに、重回帰モデルを用いた場合の二乗平均誤差平方根および決定係数も示されている。 FIG. 9 is a diagram for explaining the evaluation of the estimation accuracy of the first regression model. With reference to FIG. 9, in the test sample, the root mean square error square root and the coefficient of determination of the damage size estimated by the first regression model according to the first embodiment and the actually measured damage size are shown. In addition, as a comparative example, the root mean square error and the coefficient of determination when a multiple regression model is used instead of the regression model by machine learning are also shown.
 二乗平均誤差平方根および決定係数は、上述した3種類の第1の回帰モデルの各々について算出される。すなわち、当該統計値は、上記損傷初期(ステージ2)、損傷末期(ステージ3)、およびそれら全体(ステージ2およびステージ3)の各々で第1の回帰モデルを生成した場合の値が算出されている。 The root mean square error and the coefficient of determination are calculated for each of the three types of first regression models described above. That is, the statistical value is calculated when the first regression model is generated in each of the initial stage of damage (stage 2), the final stage of damage (stage 3), and all of them (stage 2 and stage 3). There is.
 「二乗平均誤差平方根」は、損傷サイズの測定値と推定値の誤差の二乗を平均して平方根をとったものである。すなわち、二乗平均誤差平方根は、値が小さいほど損傷サイズの推定精度が高いことを示す。図9を参照すると、上述した3種類の第1の回帰モデルの各々において、比較例より実施の形態の方が、二乗平均誤差平方根の値が小さくなっている。すなわち、比較例より実施の形態の方が推定精度が高いことが示されている。また、特に損傷末期において、二乗平均誤差平方根の値の減少が大きいので、推定精度が向上していると考えられる。 The "root mean square error square root" is the square root obtained by averaging the squares of the error between the measured value of the damage size and the estimated value. That is, the root mean square error square root indicates that the smaller the value, the higher the accuracy of estimating the damage size. Referring to FIG. 9, in each of the above-mentioned three types of first regression models, the value of the root mean square error square root is smaller in the embodiment than in the comparative example. That is, it is shown that the estimation accuracy of the embodiment is higher than that of the comparative example. In addition, it is considered that the estimation accuracy is improved because the value of the root mean square error is greatly reduced, especially at the end of the damage.
 「決定係数」は、回帰分析によって求められた推定値が、実際の測定値とどのくらい一致しているかを表す指標である。具体的には、決定係数は1に近いほど推定値と測定値が近いことを示す。図9を参照すると、上述した3種類の第1の回帰モデルの各々において、比較例より実施の形態の方が、決定係数の値が1に近くなっている。すなわち、比較例より実施の形態の方が推定精度が高いことが示されている。また、特に損傷末期において、決定係数の値の増大が大きいので、推定精度が向上していると考えられる。 The "coefficient of determination" is an index showing how well the estimated value obtained by regression analysis matches the actual measured value. Specifically, the closer the coefficient of determination is to 1, the closer the estimated value and the measured value are. Referring to FIG. 9, in each of the above-mentioned three types of first regression models, the coefficient of determination value of the embodiment is closer to 1 than that of the comparative example. That is, it is shown that the estimation accuracy of the embodiment is higher than that of the comparative example. In addition, it is considered that the estimation accuracy is improved because the value of the coefficient of determination increases significantly, especially in the final stage of injury.
 以上のように、機械学習による回帰モデルを用いた実施の形態1では、重回帰分析を用いた比較例より、高い精度で損傷サイズが推定できる。 As described above, in the first embodiment using the regression model by machine learning, the damage size can be estimated with higher accuracy than the comparative example using the multiple regression analysis.
 図10は、機械学習による回帰モデル生成の処理を説明するためのフローチャートの例である。図10に示すフローチャートは、診断部106により実行される。 FIG. 10 is an example of a flowchart for explaining the process of generating a regression model by machine learning. The flowchart shown in FIG. 10 is executed by the diagnostic unit 106.
 図10を参照して、ステップS01において、診断部106は、学習サンプルにおける振動加速度のデータおよび損傷サイズを取得する。具体的には、例えば、診断部106は、加速度センサ102から、無線または有線により、振動加速度のデータを受信する。また、例えば、診断部106は、ユーザにより測定された各測定時刻における損傷サイズの値が入力された機器から、無線または有線により当該損傷サイズのデータを受信する。 With reference to FIG. 10, in step S01, the diagnostic unit 106 acquires the vibration acceleration data and the damage size in the training sample. Specifically, for example, the diagnostic unit 106 receives vibration acceleration data from the acceleration sensor 102 wirelessly or by wire. Further, for example, the diagnostic unit 106 receives the damage size data wirelessly or by wire from the device in which the damage size value at each measurement time measured by the user is input.
 ステップS02において、診断部106は、振動データを複数のセグメントに分割する。セグメントは、例えば回転軸の1回転に要する時間の定数倍の長さに設定される。 In step S02, the diagnostic unit 106 divides the vibration data into a plurality of segments. The segment is set to, for example, a length that is a constant multiple of the time required for one rotation of the rotation axis.
 ステップS03において、診断部106は、セグメント毎に特徴量ベクトルを生成する。特徴量ベクトルは、振動データの複数の特徴量を一組のベクトルとして扱うものである。 In step S03, the diagnostic unit 106 generates a feature amount vector for each segment. The feature amount vector treats a plurality of feature amounts of vibration data as a set of vectors.
 ステップS04において、診断部106は、セグメント毎に対応する損傷サイズを求める。 In step S04, the diagnostic unit 106 obtains the corresponding damage size for each segment.
 ステップS05において、診断部106は、機械学習を用いて、特徴量ベクトルを入力とし、損傷サイズを出力とする、損傷サイズの回帰モデル(第1の回帰モデル)を生成し、処理を終了する。例えば、診断部106は、上記の初期損傷発生後から運転可能限界までの全体(すなわちステージ2および3)の各セグメントにおける、特徴量ベクトルと損傷サイズとの組み合わせについての機械学習を行なうように構成される。 In step S05, the diagnostic unit 106 uses machine learning to generate a damage size regression model (first regression model) that inputs the feature vector and outputs the damage size, and ends the process. For example, the diagnostic unit 106 is configured to perform machine learning about the combination of the feature vector and the damage size in each segment of the whole (that is, stages 2 and 3) from the occurrence of the initial damage to the operable limit. Will be done.
 図11は、生成された回帰モデルを用いて損傷サイズを推定する処理を説明するためのフローチャートの例である。図11に示すフローチャートは、診断部106により実行される。 FIG. 11 is an example of a flowchart for explaining the process of estimating the damage size using the generated regression model. The flowchart shown in FIG. 11 is executed by the diagnostic unit 106.
 図11を参照して、ステップS21において、診断部106は、テストサンプルにおける振動データを取得する。具体的には、例えば、診断部106は、加速度センサ102から、無線または有線により、振動加速度のデータを受信する。 With reference to FIG. 11, in step S21, the diagnostic unit 106 acquires vibration data in the test sample. Specifically, for example, the diagnostic unit 106 receives vibration acceleration data from the acceleration sensor 102 wirelessly or by wire.
 ステップS22において、診断部106は、振動データをセグメントに分割する。セグメントは、例えば回転軸の1回転に要する時間の定数倍の長さに設定される。 In step S22, the diagnostic unit 106 divides the vibration data into segments. The segment is set to, for example, a length that is a constant multiple of the time required for one rotation of the rotation axis.
 ステップS23において、診断部106は、セグメント毎に特徴量ベクトルを生成する。 In step S23, the diagnostic unit 106 generates a feature amount vector for each segment.
 ステップS24において、診断部106は、学習サンプルの振動データと損傷サイズの関係を機械学習を用いて生成した回帰モデル(第1の回帰モデル)に、テストサンプルの特徴量ベクトルを入力し、テストサンプルの損傷サイズの推定値を得て、処理を終了する。この回帰モデルとは、例えば、上記の初期損傷発生後から運転可能限界までの全体(すなわちステージ2および3)の各セグメントにおける、特徴量ベクトルと損傷サイズとの組み合わせについての機械学習を行なうことで生成されたものである。ここで、状態監視装置100は、転がり軸受10のユーザに、推定した損傷サイズを、音声または視覚的表示等を用いて報知するように構成しても良い。 In step S24, the diagnostic unit 106 inputs the feature quantity vector of the test sample into the regression model (first regression model) generated by using machine learning for the relationship between the vibration data of the training sample and the damage size, and the test sample. Get an estimate of the damage size of and finish the process. This regression model is, for example, by performing machine learning about the combination of the feature vector and the damage size in each segment of the whole (that is, stages 2 and 3) from the occurrence of the above initial damage to the operable limit. It was generated. Here, the condition monitoring device 100 may be configured to notify the user of the rolling bearing 10 of the estimated damage size by using voice, visual display, or the like.
 実施の形態1では、転がり軸受10の損傷状況の指標として、損傷サイズを用いている。しかし、劣化に伴って単調減少または単調増加する指標であれば、損傷サイズの代わりに、定格運転時トルク、消費電力、グリス内摩耗粉混入率等、を当該損傷状況の指標として用いることができる。 In the first embodiment, the damage size is used as an index of the damage status of the rolling bearing 10. However, if it is an index that monotonically decreases or monotonically increases with deterioration, the rated operating torque, power consumption, the rate of wear debris mixed in grease, etc. can be used as an index of the damage status instead of the damage size. ..
 以上のように、実施の形態1に従う状態監視装置100は、学習用の転がり軸受10の振動データと損傷サイズとの関係を基に、機械学習に基づく損傷サイズの回帰モデルを生成し、評価用の転がり軸受10の振動データを当該回帰モデルに入力することで、損傷サイズの推定を行なうように構成される。このような構成によって、状態監視装置100は、簡易に測定可能な振動データを基に、転がり軸受の損傷部のサイズを、従来の重回帰分析による推定精度に比べてより正確に推定することができる。 As described above, the condition monitoring device 100 according to the first embodiment generates a damage size regression model based on machine learning based on the relationship between the vibration data of the rolling bearing 10 for learning and the damage size, and is used for evaluation. By inputting the vibration data of the rolling bearing 10 into the regression model, the damage size is estimated. With such a configuration, the condition monitoring device 100 can estimate the size of the damaged part of the rolling bearing more accurately than the estimation accuracy by the conventional multiple regression analysis based on the vibration data that can be easily measured. it can.
 (転がり軸受の状態監視装置100の適用について)
 上述した転がり軸受の状態監視装置100は、様々な機械装置に適用可能であるが、特に、風力発電装置の主軸軸受の状態監視に好適である。すなわち、風力発電装置の主軸軸受は、交換が容易ではなく、かつ、比較的低速条件で使用され、さらに、軸受に損傷が発生しても継続使用されることが多い。このような風力発電装置の主軸軸受については、損傷による軸受交換時期の明確化が課題である。
(About application of rolling bearing condition monitoring device 100)
The rolling bearing condition monitoring device 100 described above can be applied to various mechanical devices, and is particularly suitable for condition monitoring of the spindle bearing of a wind power generator. That is, the spindle bearing of the wind power generator is not easy to replace, is used under relatively low speed conditions, and is often continuously used even if the bearing is damaged. For the spindle bearings of such wind power generation equipment, it is an issue to clarify the bearing replacement time due to damage.
 (風力発電装置の構成)
 図12は、実施の形態1に従う転がり軸受の状態監視装置100が適用される風力発電装置の構成を概略的に示した図である。図12を参照して、風力発電装置210は、主軸220と、ブレード230と、増速機240と、発電機250と、主軸軸受(以下、単に「軸受」と称する。)260と、加速度センサ270と、データ処理装置280とを備える。増速機240、発電機250、軸受260、加速度センサ270及びデータ処理装置280は、ナセル290に格納され、ナセル290は、タワー300によって支持される。
(Structure of wind power generator)
FIG. 12 is a diagram schematically showing the configuration of a wind power generation device to which the rolling bearing condition monitoring device 100 according to the first embodiment is applied. With reference to FIG. 12, the wind power generator 210 includes a spindle 220, a blade 230, a speed increaser 240, a generator 250, a spindle bearing (hereinafter, simply referred to as “bearing”) 260, and an acceleration sensor. It includes 270 and a data processing device 280. The speed increaser 240, the generator 250, the bearing 260, the acceleration sensor 270 and the data processing device 280 are housed in the nacelle 290, and the nacelle 290 is supported by the tower 300.
 主軸220は、ナセル290内に進入して増速機240の入力軸に接続され、軸受260によって回転自在に支持される。そして、主軸220は、風力を受けたブレード230により発生する回転トルクを増速機240の入力軸へ伝達する。ブレード230は、主軸220の先端に設けられ、風力を回転トルクに変換して主軸220に伝達する。 The spindle 220 enters the nacelle 290, is connected to the input shaft of the speed increaser 240, and is rotatably supported by the bearing 260. Then, the main shaft 220 transmits the rotational torque generated by the blade 230 that has received the wind power to the input shaft of the speed increaser 240. The blade 230 is provided at the tip of the main shaft 220, converts wind power into rotational torque, and transmits the wind power to the main shaft 220.
 増速機240は、主軸220と発電機250との間に設けられ、主軸220の回転速度を増速して発電機250へ出力する。一例として、増速機240は、遊星ギヤや中間軸、高速軸等を含む歯車増速機構によって構成される。なお、特に図示しないが、この増速機240内にも、複数の軸を回転自在に支持する複数の軸受が設けられている。発電機250は、増速機240の出力軸に接続され、増速機240から受ける回転トルクによって発電する。発電機250は、たとえば誘導発電機によって構成されるが、発電機250の種類はこれに限定されるものではない。なお、この発電機250内にも、ロータを回転自在に支持する軸受が設けられている。 The speed increaser 240 is provided between the spindle 220 and the generator 250, and increases the rotational speed of the spindle 220 to output to the generator 250. As an example, the speed increaser 240 is configured by a gear speed increase mechanism including a planetary gear, an intermediate shaft, a high speed shaft, and the like. Although not particularly shown, a plurality of bearings for rotatably supporting a plurality of shafts are also provided in the speed increaser 240. The generator 250 is connected to the output shaft of the speed increaser 240 and generates electricity by the rotational torque received from the speed increaser 240. The generator 250 is composed of, for example, an induction generator, but the type of the generator 250 is not limited to this. A bearing that rotatably supports the rotor is also provided in the generator 250.
 軸受260は、ナセル290内において固設され、主軸220を回転自在に支持する。軸受260は、転がり軸受であり、この実施の形態に従う状態監視装置100の監視対象となる軸受である。なお、この軸受260は、内輪が回転輪であり、外輪が静止輪である点で、図1以下に説明した転がり軸受10と異なるが、上記の実施の形態に従う状態監視装置100は、このような軸受260にも適用可能である。なお、外輪が静止輪の場合、負荷域は、外輪においてその中心軸よりも鉛直方向下側に形成され、初期損傷は、外輪内周面の軌道面に生じる。 The bearing 260 is fixed in the nacelle 290 and rotatably supports the spindle 220. The bearing 260 is a rolling bearing, and is a bearing to be monitored by the condition monitoring device 100 according to this embodiment. The bearing 260 is different from the rolling bearing 10 described below in FIG. 1 in that the inner ring is a rotating wheel and the outer ring is a stationary wheel. However, the condition monitoring device 100 according to the above embodiment is described in this way. It is also applicable to bearing 260. When the outer ring is a stationary ring, the load region is formed on the outer ring below the central axis in the vertical direction, and the initial damage occurs on the raceway surface of the inner peripheral surface of the outer ring.
 加速度センサ270は、軸受260の鉛直方向(またはラジアル方向)の加速度を検出するためのセンサである。加速度センサ270は、たとえば軸受箱または設備外径面の軸受の振動加速度を測定可能な場所に固設される。また、加速度センサ270は、軸受260の水平方向(またはホリゾンタル方向)の振動加速度を検出するためのセンサであってもよい。 The acceleration sensor 270 is a sensor for detecting the acceleration in the vertical direction (or radial direction) of the bearing 260. The acceleration sensor 270 is fixed at a place where the vibration acceleration of the bearing on the outer diameter surface of the equipment or the bearing box can be measured, for example. Further, the acceleration sensor 270 may be a sensor for detecting the vibration acceleration in the horizontal direction (or horizontal direction) of the bearing 260.
 データ処理装置280は、ナセル290内に設けられ、加速度センサ270の検出値を受ける。そして、データ処理装置280は、予め設定されたプログラムに従って、軸受260の状態を監視する。具体的には、データ処理装置280は、加速度センサ270の検出値に基づいて、軸受260の振動加速度を検出する。データ処理装置280は、当該振動加速度を基に、特徴量ベクトルを生成する。データ処理装置280は、特徴量ベクトルと損傷サイズを基に、特徴量ベクトルを入力とし、損傷サイズを出力とする機械学習による回帰モデルを生成することが可能に構成される。データ処理装置280は、当該回帰モデルを基に、特徴量ベクトルを入力すると、損傷サイズを推定可能なように構成される。 The data processing device 280 is provided in the nacelle 290 and receives the detected value of the acceleration sensor 270. Then, the data processing device 280 monitors the state of the bearing 260 according to a preset program. Specifically, the data processing device 280 detects the vibration acceleration of the bearing 260 based on the detection value of the acceleration sensor 270. The data processing device 280 generates a feature vector based on the vibration acceleration. The data processing device 280 is configured to be capable of generating a regression model by machine learning that inputs the feature amount vector and outputs the damage size based on the feature amount vector and the damage size. The data processing device 280 is configured so that the damage size can be estimated by inputting the feature amount vector based on the regression model.
 なお、このデータ処理装置280は、上述した診断部106(図1)の機能を実現するものである。また、データ処理装置280、加速度センサ270は、上述の状態監視装置100(図1)を構成するものである。 The data processing device 280 realizes the function of the diagnostic unit 106 (FIG. 1) described above. Further, the data processing device 280 and the acceleration sensor 270 constitute the above-mentioned condition monitoring device 100 (FIG. 1).
 以上のように、実施の形態1に従う状態監視装置100は、機械学習による回帰モデルを用いて、転がり軸受10の振動加速度を基に、転がり軸受10の損傷サイズを高い精度で推定することができる。よって、転がり軸受の損傷部のサイズを正確に推定することが可能な状態監視方法および状態監視装置を提供することができる。 As described above, the condition monitoring device 100 according to the first embodiment can estimate the damage size of the rolling bearing 10 with high accuracy based on the vibration acceleration of the rolling bearing 10 by using the regression model by machine learning. .. Therefore, it is possible to provide a condition monitoring method and a condition monitoring device capable of accurately estimating the size of the damaged portion of the rolling bearing.
 [実施の形態2]
 実施の形態1では、機械学習による回帰モデルを用いて、転がり軸受10の振動加速度に基づいて転がり軸受10の損傷サイズを推定する方法について説明した。
[Embodiment 2]
In the first embodiment, a method of estimating the damage size of the rolling bearing 10 based on the vibration acceleration of the rolling bearing 10 has been described by using a regression model by machine learning.
 実施の形態2では、機械学習による回帰モデルを用いて、転がり軸受10の振動加速度に基づいて転がり軸受10の余寿命を推定する方法について説明する。なお、実施の形態2に係る状態監視装置100は、図1に示した状態監視装置100と基本的構成が同じであるため、説明は繰り返さない。 In the second embodiment, a method of estimating the remaining life of the rolling bearing 10 based on the vibration acceleration of the rolling bearing 10 will be described using a regression model by machine learning. Since the condition monitoring device 100 according to the second embodiment has the same basic configuration as the condition monitoring device 100 shown in FIG. 1, the description will not be repeated.
 (学習サンプルの決定)
 実施の形態2に係る転がり軸受10の状態監視方法においても、実施の形態1に係る転がり軸受10の状態監視方法と同様に、まず機械学習による回帰モデルを生成するための転がり軸受10(学習サンプル)が決定される。
(Determination of learning sample)
In the state monitoring method of the rolling bearing 10 according to the second embodiment, as in the state monitoring method of the rolling bearing 10 according to the first embodiment, first, the rolling bearing 10 for generating a regression model by machine learning (learning sample). ) Is determined.
 実施の形態2では、具体的には、上記の実験に用いた33個の転がり軸受10から、32個の転がり軸受10が学習サンプルとして選択された。なお後述するように、残り1個の転がり軸受10は、当該回帰モデルを利用して余寿命を推定するための「テストサンプル」とされた。学習サンプルは、「第1の転がり軸受」の一実施例に対応する。テストサンプルは、「第2の転がり軸受」の一実施例に対応する。 In the second embodiment, specifically, 32 rolling bearings 10 were selected as learning samples from the 33 rolling bearings 10 used in the above experiment. As will be described later, the remaining one rolling bearing 10 was used as a "test sample" for estimating the remaining life using the regression model. The learning sample corresponds to one embodiment of the "first rolling bearing". The test sample corresponds to one embodiment of "second rolling bearing".
 (測定データの前処理の説明)
 次に、診断部106は、学習サンプルの振動加速度データを周波数フィルタ処理により分離する。具体的には、振動加速度データは、ローパスフィルタ、バンドパスフィルタ、ハイパスフィルタにより、20~1000Hz、1000~5000Hz、5000~20000Hzのそれぞれに対応するデータに分離される。
(Explanation of preprocessing of measurement data)
Next, the diagnostic unit 106 separates the vibration acceleration data of the learning sample by frequency filtering. Specifically, the vibration acceleration data is separated into data corresponding to 20 to 1000 Hz, 1000 to 5000 Hz, 5000 to 20000 Hz by a low-pass filter, a band-pass filter, and a high-pass filter.
 次に、診断部106は、周波数毎に分離した振動加速度データを複数のセグメントに分割し、セグメント毎に複数の特徴量の組み合わせからなる特徴量ベクトルを算出する。具体的には、図7に示したように、時間長T1の測定データが、時間長T1より短い時間長T2のセグメントに分割される。T2は、例えば回転軸の1回転に要する時間の定数倍の長さに設定される。例えば、T2は回転軸が5回転するのに要する時間に相当する0.6秒で設定される。測定データをセグメント毎に分割した後、さらに分割したデータ毎に特徴量ベクトルが生成される。 Next, the diagnostic unit 106 divides the vibration acceleration data separated for each frequency into a plurality of segments, and calculates a feature quantity vector composed of a combination of a plurality of feature quantities for each segment. Specifically, as shown in FIG. 7, the measurement data of the time length T1 is divided into segments of the time length T2 shorter than the time length T1. For example, T2 is set to a length that is a constant multiple of the time required for one rotation of the rotation axis. For example, T2 is set at 0.6 seconds, which corresponds to the time required for the rotation axis to rotate five times. After dividing the measurement data into segments, a feature vector is generated for each of the further divided data.
 特徴量ベクトルは、複数の特徴量を一組のベクトルとして扱うものである。特徴量は、測定データが振動加速度の場合には、例えば、時間、周波数、ケフレンシの少なくとも1つのパラメータに対する、実効値、最大値、波高率、尖度、歪度という波形のレベルおよび/または形状の特徴を表すパラメータとすることができる。当該特徴量は、各種周波数フィルタの処理がなされていても良い。また、振動データから時間周波数分析により得られる画像データから抽出した特徴量を用いても良い。 The feature quantity vector treats a plurality of feature quantities as a set of vectors. When the measured data is vibration acceleration, the feature amount is, for example, the level and / or shape of the waveform such as effective value, maximum value, crest factor, kurtosis, and skewness for at least one parameter of time, frequency, and skewness. It can be a parameter representing the characteristics of. The feature amount may be processed by various frequency filters. Further, the feature amount extracted from the image data obtained by the time frequency analysis from the vibration data may be used.
 以上のように、学習サンプルの振動加速度データに前処理を施すことで、後述する機械学習による回帰モデルを生成するための特徴量ベクトルが生成される。なお、テストサンプルの振動加速度データも同様の前処理により特徴量ベクトルに変換された後、該回帰モデルに入力される。 As described above, by preprocessing the vibration acceleration data of the training sample, a feature vector for generating a regression model by machine learning, which will be described later, is generated. The vibration acceleration data of the test sample is also converted into a feature vector by the same preprocessing and then input to the regression model.
 (損傷サイズの算出)
 合わせて、診断部106は、学習サンプルにおいて測定された損傷サイズのデータを基に、各セグメントにおける損傷サイズを求める。具体的には、各セグメントに対応する時刻における損傷サイズを求める。この損傷サイズの値は、前述した転がり軸受10の使用可能な限界の基準の指標として用いることができる。
(Calculation of damage size)
At the same time, the diagnostic unit 106 obtains the damage size in each segment based on the damage size data measured in the training sample. Specifically, the damage size at the time corresponding to each segment is obtained. This damage size value can be used as an index of the reference of the usable limit of the rolling bearing 10 described above.
 (余寿命の算出)
 診断部106は、各セグメントにおける余寿命を求める。ここで余寿命とは、当該セグメントから使用可能な限界の基準に達するまでの時間である。なお、使用可能な限界の基準に達するまでの時間とは、本実験においては、損傷サイズが転がり軸受10における転動体18の間隔の定数倍を超えるまでの時間である。当該余寿命は、転がり軸受10の使用開始から転がり軸受10が使用可能な限界の基準に達するまでの総運転時間から、転がり軸受10の使用開始から当該セグメントに対応するまでの運転時間を差し引くことで求められる。これにより、セグメント毎に対応する特徴量ベクトルと余寿命の組み合わせを得ることができる。すなわち、損傷が進展していく各段階における、特徴量ベクトルと余寿命との関係を示す経時的なデータが得られる。
(Calculation of remaining life)
The diagnostic unit 106 obtains the remaining life in each segment. Here, the remaining life is the time from the segment to reach the standard of the usable limit. The time until the reference of the usable limit is reached is the time until the damage size exceeds a constant multiple of the interval of the rolling elements 18 in the rolling bearing 10 in this experiment. The remaining life is calculated by subtracting the operating time from the start of use of the rolling bearing 10 to the corresponding segment from the total operating time from the start of use of the rolling bearing 10 to the reaching of the limit standard in which the rolling bearing 10 can be used. Is sought after. As a result, it is possible to obtain a combination of the feature quantity vector and the remaining life corresponding to each segment. That is, time-dependent data showing the relationship between the feature vector and the remaining life at each stage in which the damage progresses can be obtained.
 (機械学習を用いた回帰モデルの生成)
 図13は、機械学習による回帰モデルの生成と、当該回帰モデルを用いた余寿命の推定とを説明するための図である。診断部106は、セグメント毎の学習サンプルの特徴ベクトルを入力、余寿命を出力として、機械学習による回帰モデル(第2の回帰モデル)を生成する。機械学習としては、例えば、サポートベクターマシン、ランダムフォレスト、カーネルリッジ回帰、ディープラーニング回帰等の回帰手法およびそれらの組み合わせを用いることができる。なお、実施の形態2では、第2の回帰モデルは、損傷の進展速度が遅い損傷初期(すなわちステージ2)、損傷の進展速度が速い損傷末期(すなわちステージ3)、および、初期損傷発生後から運転可能限界までの全体(すなわちステージ2および3)の各々に対して生成される。
(Generation of regression model using machine learning)
FIG. 13 is a diagram for explaining the generation of a regression model by machine learning and the estimation of the remaining life using the regression model. The diagnostic unit 106 inputs the feature vector of the learning sample for each segment, outputs the remaining life, and generates a regression model (second regression model) by machine learning. As machine learning, for example, regression methods such as support vector machine, random forest, kernel ridge regression, deep learning regression, and combinations thereof can be used. In the second embodiment, the second regression model is used from the initial stage of damage (that is, stage 2) in which the damage progress rate is slow, the final stage of damage (that is, stage 3) in which the damage progress rate is fast, and after the initial damage occurs. Generated for each of the whole (ie, stages 2 and 3) up to the operable limit.
 以上のように、診断部106は、特徴量ベクトルを入力すると、余寿命を自動で推定することができる第2の回帰モデルを生成する(図13参照)。診断部106は第2の回帰モデルを図示しない記憶部に保持し、随時読み出して使用できる状態にする。 As described above, the diagnostic unit 106 generates a second regression model in which the remaining life can be automatically estimated by inputting the feature vector (see FIG. 13). The diagnostic unit 106 holds the second regression model in a storage unit (not shown) so that it can be read out and used at any time.
 (機械学習による回帰モデルを用いた余寿命の推定)
 次に、第2の回帰モデルを用いて、テストサンプルの振動加速度データから、余寿命を推定する方法について説明する。まず、テストサンプルの振動加速度データは、学習サンプルの振動加速度データと同様の前処理により特徴量ベクトルに変換される。
(Estimation of remaining life using a regression model by machine learning)
Next, a method of estimating the remaining life from the vibration acceleration data of the test sample using the second regression model will be described. First, the vibration acceleration data of the test sample is converted into a feature vector by the same preprocessing as the vibration acceleration data of the training sample.
 次に、上記損傷初期、損傷末期、全体の3種類の第2の回帰モデルにテストサンプルの対応する特徴量ベクトルを適力する。これにより、第2の回帰モデルの出力として、テストサンプルの余寿命の推定値が得られる。 Next, the corresponding feature vector of the test sample is applied to the above three types of second regression models: initial damage, final damage, and the whole. As a result, an estimated value of the remaining life of the test sample is obtained as the output of the second regression model.
 (回帰モデルの評価)
 実施の形態2で生成された第2の回帰モデルの精度を数学的・統計的手法を用いて評価した結果を次に示す。実施の形態2では、当該推定精度の評価として、二乗平均誤差平方根および決定係数を用いた結果を例示している。
(Evaluation of regression model)
The results of evaluating the accuracy of the second regression model generated in the second embodiment using mathematical and statistical methods are shown below. In the second embodiment, the result using the root mean square error square root and the coefficient of determination is illustrated as the evaluation of the estimation accuracy.
 図14は、回帰モデルの推定精度の評価を説明するための図である。図14を参照して、テストサンプルにおいて、実施の形態2に係る回帰モデル(第2の回帰モデル)により推定した余寿命と実測した余寿命との、二乗平均誤差平方根および決定係数が示されている。ここで、実測した余寿命、または、余寿命の実測値とは、実際に使用可能な限界の基準を迎えた総運転時間から算出した余寿命を示す。また、比較例として、機械学習による回帰モデルの代わりに、重回帰モデルを用いた場合の二乗平均誤差平方根および決定係数も示されている。 FIG. 14 is a diagram for explaining the evaluation of the estimation accuracy of the regression model. With reference to FIG. 14, in the test sample, the root mean square error square root and the coefficient of determination of the residual life estimated by the regression model (second regression model) according to the second embodiment and the measured residual life are shown. There is. Here, the actually measured remaining life or the measured value of the remaining life indicates the remaining life calculated from the total operating time that has reached the standard of the limit that can be actually used. In addition, as a comparative example, the root mean square error and the coefficient of determination when a multiple regression model is used instead of the regression model by machine learning are also shown.
 二乗平均誤差平方根および決定係数は、上述した3種類の第2の回帰モデルの各々について算出される。すなわち、当該統計値は、上記損傷初期(ステージ2)、損傷末期(ステージ3)、およびそれら全体(ステージ2およびステージ3)の各々で第2の回帰モデルを生成した場合の値が算出されている。 The root mean square error and the coefficient of determination are calculated for each of the three types of second regression models described above. That is, the statistical value is calculated when a second regression model is generated in each of the initial stage of damage (stage 2), the final stage of damage (stage 3), and all of them (stage 2 and stage 3). There is.
 「二乗平均誤差平方根」は、余寿命の実測値と推定値の誤差の二乗を平均して平方根をとったものである。すなわち、二乗平均誤差平方根は、値が小さいほど余寿命の推定精度が高いことを示す。図14を参照すると、上述した3種類の第2の回帰モデルの各々において、比較例より実施の形態の方が、二乗平均誤差平方根の値が小さくなっている。すなわち、比較例より実施の形態の方が推定精度が高いことが示されている。また、特に損傷末期において、二乗平均誤差平方根の値の減少が大きいので、推定精度が向上していると考えられる。 The "root mean square error square root" is the square root obtained by averaging the square of the error between the measured value and the estimated value of the remaining life. That is, the root mean square error square root indicates that the smaller the value, the higher the accuracy of estimating the remaining life. Referring to FIG. 14, in each of the above-mentioned three types of second regression models, the value of the root mean square error square root is smaller in the embodiment than in the comparative example. That is, it is shown that the estimation accuracy of the embodiment is higher than that of the comparative example. In addition, it is considered that the estimation accuracy is improved because the value of the root mean square error is greatly reduced, especially at the end of the damage.
 「決定係数」は、回帰分析によって求められた推定値が、実際の測定値とどのくらい一致しているかを表す指標である。具体的には、決定係数は1に近いほど推定値と測定値が近いことを示す。図14を参照すると、上述した3種類の第2の回帰モデルの各々において、比較例より実施の形態の方が、決定係数の値が1に近くなっている。すなわち、比較例より実施の形態の方が推定精度が高いことが示されている。また、特に損傷末期において、決定係数の値の増大が大きいので、推定精度が向上していると考えられる。 The "coefficient of determination" is an index showing how well the estimated value obtained by regression analysis matches the actual measured value. Specifically, the closer the coefficient of determination is to 1, the closer the estimated value and the measured value are. Referring to FIG. 14, in each of the above-mentioned three types of second regression models, the coefficient of determination value of the embodiment is closer to 1 than that of the comparative example. That is, it is shown that the estimation accuracy of the embodiment is higher than that of the comparative example. In addition, it is considered that the estimation accuracy is improved because the value of the coefficient of determination increases significantly, especially at the end of injury.
 以上のように、機械学習による回帰モデルを用いた実施の形態2では、重回帰分析を用いた比較例より、高い精度で余寿命が推定できる。 As described above, in the second embodiment using the regression model by machine learning, the remaining life can be estimated with higher accuracy than the comparative example using the multiple regression analysis.
 図15は機械学習による回帰モデル生成の処理を説明するためのフローチャートの例である。図15に示すフローチャートは、診断部106により実行される。 FIG. 15 is an example of a flowchart for explaining the process of generating a regression model by machine learning. The flowchart shown in FIG. 15 is executed by the diagnostic unit 106.
 図15を参照して、ステップS31において、診断部106は、学習サンプルにおける振動加速度のデータ、および、軸受10が使用可能な限界の基準に達した総運転時間を取得する。具体的には、例えば、診断部106は、加速度センサ102から、無線または有線により、振動加速度のデータを受信する。また、例えば、診断部106は、ユーザにより総運転時間が入力された機器から、無線または有線により当該総運転時間のデータを受信する。 With reference to FIG. 15, in step S31, the diagnostic unit 106 acquires the vibration acceleration data in the learning sample and the total operating time when the bearing 10 reaches the usable limit reference. Specifically, for example, the diagnostic unit 106 receives vibration acceleration data from the acceleration sensor 102 wirelessly or by wire. Further, for example, the diagnostic unit 106 receives the data of the total operating time wirelessly or by wire from the device in which the total operating time is input by the user.
 ステップS32において、診断部106は、振動データを複数のセグメントに分割する。セグメントは、例えば回転軸の1回転に要する時間の定数倍の長さに設定される。 In step S32, the diagnostic unit 106 divides the vibration data into a plurality of segments. The segment is set to, for example, a length that is a constant multiple of the time required for one rotation of the rotation axis.
 ステップS33において、診断部106は、セグメント毎に特徴量ベクトルを生成する。特徴量ベクトルは、振動データの複数の特徴量を一組のベクトルとして扱うものである。 In step S33, the diagnostic unit 106 generates a feature amount vector for each segment. The feature amount vector treats a plurality of feature amounts of vibration data as a set of vectors.
 ステップS34において、診断部106は、セグメント毎に対応する余寿命を求める。具体的には、診断部106は、総運転時間から、当該セグメントに対応する運転時間を差し引くことで余寿命を算出する。 In step S34, the diagnostic unit 106 obtains the remaining life corresponding to each segment. Specifically, the diagnostic unit 106 calculates the remaining life by subtracting the operation time corresponding to the segment from the total operation time.
 ステップS35において、診断部106は、機械学習を用いて、特徴量ベクトルを入力とし、余寿命を出力とする、余寿命の回帰モデル(第2の回帰モデル)を生成し、処理を終了する。例えば、診断部106は、上記の初期損傷発生後から運転可能限界までの全体(すなわちステージ2および3)の各セグメントにおける、特徴量ベクトルと余寿命との組み合わせについての機械学習を行なうように構成される。 In step S35, the diagnostic unit 106 uses machine learning to generate a regression model of the remaining life (second regression model) that inputs the feature vector and outputs the remaining life, and ends the process. For example, the diagnostic unit 106 is configured to perform machine learning about the combination of the feature vector and the remaining life in each segment of the whole (that is, stages 2 and 3) from the occurrence of the initial damage to the operable limit. Will be done.
 図16は、生成された回帰モデルを用いて余寿命を推定する処理を説明するためのフローチャートの例である。図16に示すフローチャートは、診断部106により実行される。 FIG. 16 is an example of a flowchart for explaining a process of estimating the remaining life using the generated regression model. The flowchart shown in FIG. 16 is executed by the diagnostic unit 106.
 図16を参照して、ステップS41において、診断部106は、テストサンプルにおける振動データを取得する。具体的には、例えば、診断部106は、加速度センサ102から、無線または有線により、振動加速度のデータを受信する。 With reference to FIG. 16, in step S41, the diagnostic unit 106 acquires vibration data in the test sample. Specifically, for example, the diagnostic unit 106 receives vibration acceleration data from the acceleration sensor 102 wirelessly or by wire.
 ステップS42において、診断部106は、振動データをセグメントに分割する。セグメントは、例えば回転軸の1回転に要する時間の定数倍の長さに設定される。 In step S42, the diagnostic unit 106 divides the vibration data into segments. The segment is set to, for example, a length that is a constant multiple of the time required for one rotation of the rotation axis.
 ステップS43において、診断部106は、セグメント毎に特徴量ベクトルを生成する。 In step S43, the diagnostic unit 106 generates a feature amount vector for each segment.
 ステップS44において、診断部106は、学習サンプルの振動データと余寿命の関係を機械学習を用いて生成した回帰モデル(第2の回帰モデル)に、テストサンプルの特徴量ベクトルを入力し、テストサンプルの余寿命の推定値を得て、処理を終了する。第2のの回帰モデルとは、例えば、上記の初期損傷発生後から運転可能限界までの全体(すなわちステージ2および3)の各セグメントにおける、特徴量ベクトルと余寿命との組み合わせについての機械学習を行なうことで生成されたものである。ここで、状態監視装置100は、転がり軸受10のユーザに、推定した余寿命を、音声または視覚的表示等を用いて報知するように構成しても良い。 In step S44, the diagnostic unit 106 inputs the feature quantity vector of the test sample into the regression model (second regression model) generated by using machine learning for the relationship between the vibration data of the training sample and the remaining life, and the test sample. The estimated value of the remaining life of is obtained, and the process is terminated. The second regression model is, for example, machine learning about the combination of the feature vector and the remaining life in each segment of the whole (that is, stages 2 and 3) from the occurrence of the above initial damage to the operable limit. It is generated by doing. Here, the condition monitoring device 100 may be configured to notify the user of the rolling bearing 10 of the estimated remaining life by using voice, visual display, or the like.
 以上のように、実施の形態2に従う状態監視装置100は、学習用の転がり軸受10の振動データと余寿命との関係を基に、機械学習に基づく余寿命の回帰モデルを生成し、評価用の転がり軸受10の振動データを当該回帰モデルに入力することで、余寿命の推定を行なうように構成される。このような構成によって、状態監視装置100は、簡易に測定可能な振動データを基に、転がり軸受の余寿命を、従来の重回帰分析による推定精度に比べてより正確に推定することができる。 As described above, the condition monitoring device 100 according to the second embodiment generates a regression model of the remaining life based on machine learning based on the relationship between the vibration data of the rolling bearing 10 for learning and the remaining life, and is used for evaluation. By inputting the vibration data of the rolling bearing 10 into the regression model, the remaining life is estimated. With such a configuration, the condition monitoring device 100 can estimate the remaining life of the rolling bearing more accurately than the estimation accuracy by the conventional multiple regression analysis based on the vibration data that can be easily measured.
 (転がり軸受の状態監視装置100の適用について)
 上述した転がり軸受の状態監視装置100は、様々な機械装置に適用可能であるが、特に、風力発電装置の主軸軸受の状態監視に好適である。すなわち、風力発電装置の主軸軸受は、交換が容易ではなく、かつ、比較的低速条件で使用され、さらに、軸受に損傷が発生しても継続使用されることが多い。このような風力発電装置の主軸軸受については、損傷による軸受交換時期の明確化が課題である。
(About application of rolling bearing condition monitoring device 100)
The rolling bearing condition monitoring device 100 described above can be applied to various mechanical devices, and is particularly suitable for condition monitoring of the spindle bearing of a wind power generator. That is, the spindle bearing of the wind power generator is not easy to replace, is used under relatively low speed conditions, and is often continuously used even if the bearing is damaged. For the spindle bearings of such wind power generation equipment, it is an issue to clarify the bearing replacement time due to damage.
 (風力発電装置の構成)
 図17は、実施の形態2に従う転がり軸受の状態監視装置100が適用される風力発電装置の構成を概略的に示した図である。実施の形態2に係る風力発電装置210は、図12に示す風力発電装置210におけるデータ処理装置280を、データ処理装置280Aに置き換えたものである。実施の形態1との共通部分については説明を繰り返さない。
(Structure of wind power generator)
FIG. 17 is a diagram schematically showing the configuration of a wind power generation device to which the rolling bearing condition monitoring device 100 according to the second embodiment is applied. The wind power generation device 210 according to the second embodiment replaces the data processing device 280 in the wind power generation device 210 shown in FIG. 12 with the data processing device 280A. The description of the common parts with the first embodiment will not be repeated.
 データ処理装置280Aは、ナセル290内に設けられ、加速度センサ270の検出値を受ける。そして、データ処理装置280Aは、予め設定されたプログラムに従って、軸受260の状態を監視する。具体的には、データ処理装置280Aは、加速度センサ270の検出値に基づいて、軸受260の振動加速度を検出する。データ処理装置280Aは、当該振動加速度を基に、特徴量ベクトルを生成する。データ処理装置280は、特徴量ベクトルと余寿命を基に、特徴量ベクトルを入力とし、余寿命を出力とする機械学習による回帰モデルを生成することが可能に構成される。データ処理装置280は、当該回帰モデルを基に、特徴量ベクトルを入力すると、余寿命を推定可能なように構成される。 The data processing device 280A is provided in the nacelle 290 and receives the detected value of the acceleration sensor 270. Then, the data processing device 280A monitors the state of the bearing 260 according to a preset program. Specifically, the data processing device 280A detects the vibration acceleration of the bearing 260 based on the detection value of the acceleration sensor 270. The data processing device 280A generates a feature vector based on the vibration acceleration. The data processing device 280 is configured to be capable of generating a regression model by machine learning based on the feature amount vector and the remaining life, with the feature amount vector as an input and the remaining life as an output. The data processing device 280 is configured so that the remaining life can be estimated by inputting the feature amount vector based on the regression model.
 なお、このデータ処理装置280Aは、診断部106(図1)の機能を実現するものである。また、データ処理装置280A、加速度センサ270は、実施の形態2に係る状態監視装置を構成するものである。 The data processing device 280A realizes the function of the diagnostic unit 106 (FIG. 1). Further, the data processing device 280A and the acceleration sensor 270 constitute the condition monitoring device according to the second embodiment.
 以上のように、実施の形態2に従う状態監視装置100は、機械学習による回帰モデルを用いて、転がり軸受10の振動加速度を基に、転がり軸受10の余寿命を高い精度で推定することができる。よって、転がり軸受の余寿命を正確に推定することが可能な状態監視方法および状態監視装置を提供することができる。 As described above, the condition monitoring device 100 according to the second embodiment can estimate the remaining life of the rolling bearing 10 with high accuracy based on the vibration acceleration of the rolling bearing 10 by using the regression model by machine learning. .. Therefore, it is possible to provide a condition monitoring method and a condition monitoring device capable of accurately estimating the remaining life of the rolling bearing.
 また、今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 In addition, the embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The scope of the present invention is shown by the claims rather than the description of the embodiments described above, and is intended to include all modifications within the meaning and scope equivalent to the claims.
 10,260 軸受、12 内輪、14 軸体、16 外輪、18 転動体、20 軌道面、100 状態監視装置、102,270 加速度センサ、106 診断部、210 風力発電装置、220 主軸、230 ブレード、240 増速機、250 発電機、280,280A データ処理装置、290 ナセル、300 タワー、D1,D2,D3 損傷。 10,260 bearing, 12 inner ring, 14 shaft body, 16 outer ring, 18 rolling element, 20 raceway surface, 100 condition monitoring device, 102,270 acceleration sensor, 106 diagnostic unit, 210 wind power generator, 220 spindle, 230 blade, 240 Accelerometer, 250 generator, 280, 280A data processor, 290 nacelle, 300 tower, D1, D2, D3 damaged.

Claims (9)

  1.  第1の転がり軸受の振動データに基づいて機械学習によって回帰モデルを生成するステップと、
     前記回帰モデルを用いて第2の転がり軸受の状態を監視するステップとを備え、
     前記第1の転がり軸受および前記第2の転がり軸受の各々は、
      回転輪と、
      静止輪と、
      前記回転輪と前記静止輪との間に配置され、前記回転輪の回転に伴って前記静止輪の軌道面を移動する複数の転動体とを備え、
     転がり軸受の前記静止輪の軌道面に形成された損傷部の周方向の長さを損傷サイズとすると、
     前記回帰モデルを生成するステップは、
      前記第1の転がり軸受の振動データおよび前記第1の転がり軸受の損傷サイズを取得するステップと、
      前記第1の転がり軸受の振動データの特徴量からなる前記第1の転がり軸受の特徴量ベクトルを生成するステップと、
      前記第1の転がり軸受の特徴量ベクトルと前記第1の転がり軸受の損傷サイズとの機械学習を行なうことで、特徴量ベクトルから損傷サイズを推定するための第1の回帰モデルを生成するステップとを含み、
     前記第2の転がり軸受の状態を監視するステップは、
      前記第2の転がり軸受の振動データを取得するステップと、
      前記第2の転がり軸受の振動データの特徴量からなる前記第2の転がり軸受の特徴量ベクトルを生成するステップと、
      前記第1の回帰モデルを用いて、前記第2の転がり軸受の特徴量ベクトルから、前記第2の転がり軸受の損傷サイズを推定するステップとを含む、転がり軸受の状態監視方法。
    The step of generating a regression model by machine learning based on the vibration data of the first rolling bearing,
    A step of monitoring the state of the second rolling bearing using the regression model is provided.
    Each of the first rolling bearing and the second rolling bearing
    Rotating wheel and
    With a stationary wheel
    A plurality of rolling elements arranged between the rotating wheel and the stationary wheel and moving on the raceway surface of the stationary wheel as the rotating wheel rotates are provided.
    Let the length in the circumferential direction of the damaged portion formed on the raceway surface of the stationary wheel of the rolling bearing be the damage size.
    The step of generating the regression model is
    The step of acquiring the vibration data of the first rolling bearing and the damage size of the first rolling bearing, and
    A step of generating a feature amount vector of the first rolling bearing composed of a feature amount of vibration data of the first rolling bearing, and a step of generating the feature amount vector of the first rolling bearing.
    A step of generating a first regression model for estimating the damage size from the feature vector by machine learning the feature vector of the first rolling bearing and the damage size of the first rolling bearing. Including
    The step of monitoring the condition of the second rolling bearing is
    The step of acquiring the vibration data of the second rolling bearing, and
    A step of generating a feature amount vector of the second rolling bearing composed of the feature amount of the vibration data of the second rolling bearing, and a step of generating the feature amount vector of the second rolling bearing.
    A method for monitoring the state of a rolling bearing, which comprises a step of estimating the damage size of the second rolling bearing from the feature quantity vector of the second rolling bearing using the first regression model.
  2.  前記回帰モデルを生成するステップは、前記第1の転がり軸受の振動データを、前記回転輪の1回転に要する時間の定数倍の長さでセグメントに分割するステップをさらに含み、
     前記第1の転がり軸受の特徴量ベクトルはセグメント毎に生成され、
     前記第1の回帰モデルは、セグメント毎に生成された前記第1の転がり軸受の特徴量ベクトルと前記第1の転がり軸受の損傷サイズとの機械学習を行なうことで生成される、請求項1に記載の転がり軸受の状態監視方法。
    The step of generating the regression model further includes a step of dividing the vibration data of the first rolling bearing into segments having a length constant times the time required for one rotation of the rotating wheel.
    The feature vector of the first rolling bearing is generated for each segment.
    The first regression model is generated by performing machine learning between the feature amount vector of the first rolling bearing generated for each segment and the damage size of the first rolling bearing, according to claim 1. The method for monitoring the condition of rolling bearings described.
  3.  前記第1および第2の転がり軸受の振動データの各々は、振動加速度のデータを含む、請求項2に記載の転がり軸受の状態監視方法。 The method for monitoring the state of a rolling bearing according to claim 2, wherein each of the vibration data of the first and second rolling bearings includes data of vibration acceleration.
  4.  前記第1の転がり軸受の振動データおよび前記第1の転がり軸受の損傷サイズは、前記第1の転がり軸受の損傷サイズが前記転動体間隔の定数倍になるまでの時間、または、前記第1の転がり軸受の損傷サイズを反映して変化する所定の特徴量の値が所定の許容範囲を逸脱するまでの時間にわたって取得される、請求項1~3のいずれか1項に記載の転がり軸受の状態監視方法。 The vibration data of the first rolling bearing and the damage size of the first rolling bearing are the time until the damage size of the first rolling bearing becomes a constant multiple of the rolling element spacing, or the first one. The state of a rolling bearing according to any one of claims 1 to 3, wherein a value of a predetermined feature amount that changes reflecting the damage size of the rolling bearing is acquired over a period of time until it deviates from a predetermined allowable range. Monitoring method.
  5.  振動データを取得してから、転がり軸受が使用限界に至るまでの時間を余寿命とすると、
     前記回帰モデルを生成するステップは、さらに、
      前記第1の転がり軸受の余寿命を算出するステップと、
      前記第1の転がり軸受の特徴量ベクトルと前記第1の転がり軸受の余寿命との機械学習を行なうことで、特徴量ベクトルから余寿命を推定するための第2の回帰モデルを生成するステップとを含み、
     前記第2の転がり軸受の状態を監視するステップは、
      前記第2の回帰モデルを用いて、前記第2の転がり軸受の特徴量ベクトルから、前記第2の転がり軸受の余寿命を推定するステップをさらに含む、請求項1に記載の転がり軸受の状態監視方法。
    Assuming that the time from the acquisition of vibration data until the rolling bearing reaches the usage limit is the remaining life.
    The step of generating the regression model further
    The step of calculating the remaining life of the first rolling bearing and
    A step of generating a second regression model for estimating the remaining life from the feature vector by machine learning the feature vector of the first rolling bearing and the remaining life of the first rolling bearing. Including
    The step of monitoring the condition of the second rolling bearing is
    The condition monitoring of the rolling bearing according to claim 1, further comprising a step of estimating the remaining life of the second rolling bearing from the feature quantity vector of the second rolling bearing using the second regression model. Method.
  6.  前記回帰モデルを生成するステップは、前記第1の転がり軸受の振動データを、前記回転輪の1回転に要する時間の定数倍の長さでセグメントに分割するステップをさらに含み、
     前記第1の転がり軸受の特徴量ベクトルはセグメント毎に生成され、
     前記第2の回帰モデルは、セグメント毎に生成された前記第1の転がり軸受の特徴量ベクトルと前記第1の転がり軸受の余寿命との機械学習を行なうことで生成される、請求項5に記載の転がり軸受の状態監視方法。
    The step of generating the regression model further includes a step of dividing the vibration data of the first rolling bearing into segments having a length constant times the time required for one rotation of the rotating wheel.
    The feature vector of the first rolling bearing is generated for each segment.
    The second regression model is generated by performing machine learning of the feature amount vector of the first rolling bearing generated for each segment and the remaining life of the first rolling bearing, according to claim 5. The method for monitoring the condition of rolling bearings described.
  7.  前記第1および第2の転がり軸受の振動データの各々は、振動加速度のデータを含む、請求項6に記載の転がり軸受の状態監視方法。 The method for monitoring the state of a rolling bearing according to claim 6, wherein each of the vibration data of the first and second rolling bearings includes data of vibration acceleration.
  8.  前記回帰モデルを生成するステップは、前記第1の転がり軸受の損傷サイズを取得するステップをさらに含み、
     前記転がり軸受が使用限界に至るまでの時間とは、前記第1の転がり軸受の損傷サイズが前記転動体間隔の定数倍になるまでの時間、または、前記第1の転がり軸受の損傷サイズを反映して変化する所定の特徴量の値が所定の許容範囲を逸脱するまでの時間である、請求項5~7のいずれか1項に記載の転がり軸受の状態監視方法。
    The step of generating the regression model further includes the step of acquiring the damage size of the first rolling bearing.
    The time until the rolling bearing reaches the usage limit reflects the time until the damage size of the first rolling bearing becomes a constant multiple of the rolling element spacing, or the damage size of the first rolling bearing. The method for monitoring the state of a rolling bearing according to any one of claims 5 to 7, which is the time required for the value of the predetermined feature amount to change to deviate from the predetermined allowable range.
  9.  請求項1~8のいずれか1項に記載の状態監視方法を用いて、転がり軸受の状態を監視する、状態監視装置。 A condition monitoring device that monitors the condition of rolling bearings by using the condition monitoring method according to any one of claims 1 to 8.
PCT/JP2020/045772 2019-12-11 2020-12-09 Rolling bearing state monitoring method and rolling bearing state monitoring device WO2021117752A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019223524A JP2021092455A (en) 2019-12-11 2019-12-11 State surveillance method of rolling bearing and state surveillance device of rolling bearing
JP2019-223524 2019-12-11
JP2019226287A JP2021096102A (en) 2019-12-16 2019-12-16 Method and device for monitoring state of rolling bearing
JP2019-226287 2019-12-16

Publications (1)

Publication Number Publication Date
WO2021117752A1 true WO2021117752A1 (en) 2021-06-17

Family

ID=76329932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045772 WO2021117752A1 (en) 2019-12-11 2020-12-09 Rolling bearing state monitoring method and rolling bearing state monitoring device

Country Status (1)

Country Link
WO (1) WO2021117752A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114674562A (en) * 2022-03-22 2022-06-28 中车大连机车研究所有限公司 Rail transit tapered roller bearing service life prediction method considering service life monitoring conditions
WO2024150672A1 (en) * 2023-01-11 2024-07-18 日本精工株式会社 Bearing raceway ring flaking development analysis method, flaking development analysis device, and program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140365411A1 (en) * 2013-06-05 2014-12-11 The Trustees Of Columbia University In The City Of New York Monitoring Health of Dynamic System Using Speaker Recognition Techniques
CN107144428A (en) * 2017-03-17 2017-09-08 北京交通大学 A kind of rail traffic vehicles bearing residual life Forecasting Methodology based on fault diagnosis
WO2017159784A1 (en) * 2016-03-17 2017-09-21 Ntn株式会社 Condition monitoring system and wind power generation device
WO2019026980A1 (en) * 2017-08-04 2019-02-07 新日鐵住金株式会社 Information processing device, information processing method, and program
JP2019045434A (en) * 2017-09-07 2019-03-22 理研計器株式会社 Gas analysis method and gas analyser
JP2019045241A (en) * 2017-08-31 2019-03-22 Ntn株式会社 State monitoring method and state monitoring device of rolling bearing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140365411A1 (en) * 2013-06-05 2014-12-11 The Trustees Of Columbia University In The City Of New York Monitoring Health of Dynamic System Using Speaker Recognition Techniques
WO2017159784A1 (en) * 2016-03-17 2017-09-21 Ntn株式会社 Condition monitoring system and wind power generation device
CN107144428A (en) * 2017-03-17 2017-09-08 北京交通大学 A kind of rail traffic vehicles bearing residual life Forecasting Methodology based on fault diagnosis
WO2019026980A1 (en) * 2017-08-04 2019-02-07 新日鐵住金株式会社 Information processing device, information processing method, and program
JP2019045241A (en) * 2017-08-31 2019-03-22 Ntn株式会社 State monitoring method and state monitoring device of rolling bearing
JP2019045434A (en) * 2017-09-07 2019-03-22 理研計器株式会社 Gas analysis method and gas analyser

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114674562A (en) * 2022-03-22 2022-06-28 中车大连机车研究所有限公司 Rail transit tapered roller bearing service life prediction method considering service life monitoring conditions
CN114674562B (en) * 2022-03-22 2022-10-25 中车大连机车研究所有限公司 Rail transit tapered roller bearing service life prediction method considering service life monitoring conditions
WO2024150672A1 (en) * 2023-01-11 2024-07-18 日本精工株式会社 Bearing raceway ring flaking development analysis method, flaking development analysis device, and program

Similar Documents

Publication Publication Date Title
JP6196093B2 (en) Vibration analysis method for bearing device, vibration analysis device for bearing device, and state monitoring device for rolling bearing
JP6553970B2 (en) Abnormality diagnosis device and sensor disconnection detection method
JP6605865B2 (en) Rolling bearing state monitoring device and rolling bearing state monitoring method
JP2018141804A (en) Method of determining remaining useful life of rotary machinery
WO2021117752A1 (en) Rolling bearing state monitoring method and rolling bearing state monitoring device
WO2016042983A1 (en) Rolling bearing abnormality diagnosis device, wind power generator, and rolling bearing abnormality diagnosis method
WO2011081085A1 (en) Abnormality diagnosis device for rolling bearing, wind power generator, and abnormality diagnosis system
JP6650030B2 (en) Rolling bearing fatigue state prediction device and rolling bearing fatigue state prediction method
JP7027782B2 (en) Rolling bearing abnormality diagnostic device
JP6958068B2 (en) Abnormality diagnosis system and abnormality diagnosis method for rotating machinery and equipment
WO2017145687A1 (en) Abnormality diagnosing device and abnormality diagnosing method
JP6728808B2 (en) Measuring and diagnosing device and measuring and diagnosing method
JP6374234B2 (en) Condition monitoring system and wind power generation system including the same
JP2021096102A (en) Method and device for monitoring state of rolling bearing
JP6654002B2 (en) Setting method of abnormality judgment threshold value of rolling bearing, and monitoring method of rolling bearing condition
JP6192413B2 (en) Vibration analysis method for bearing device, vibration analysis device for bearing device, and state monitoring device for rolling bearing
JP6686625B2 (en) Rolling bearing diagnostic device
JP7113668B2 (en) Condition monitoring system
JP7098399B2 (en) Status monitoring device and status monitoring method
JPWO2020040280A1 (en) Rolling bearing abnormality diagnosis method and abnormality diagnosis device
JP6639266B2 (en) Abnormality diagnosis device and abnormality diagnosis method
JP6192414B2 (en) Rolling bearing condition monitoring device
JP6824076B2 (en) Condition monitoring system and wind power generator
JP2021092455A (en) State surveillance method of rolling bearing and state surveillance device of rolling bearing
JP6639265B2 (en) Abnormality diagnosis device and abnormality diagnosis method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20899063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20899063

Country of ref document: EP

Kind code of ref document: A1