WO2021117730A1 - 飛行体及び給電ポートを備えた鉄塔 - Google Patents
飛行体及び給電ポートを備えた鉄塔 Download PDFInfo
- Publication number
- WO2021117730A1 WO2021117730A1 PCT/JP2020/045709 JP2020045709W WO2021117730A1 WO 2021117730 A1 WO2021117730 A1 WO 2021117730A1 JP 2020045709 W JP2020045709 W JP 2020045709W WO 2021117730 A1 WO2021117730 A1 WO 2021117730A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transmission line
- magnetic field
- air vehicle
- power
- flying object
- Prior art date
Links
- 230000005291 magnetic effect Effects 0.000 claims abstract description 95
- 230000005540 biological transmission Effects 0.000 claims description 157
- 238000010248 power generation Methods 0.000 claims description 63
- 229910000831 Steel Inorganic materials 0.000 claims description 22
- 239000010959 steel Substances 0.000 claims description 22
- 238000006243 chemical reaction Methods 0.000 claims description 12
- 239000003550 marker Substances 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- 238000004140 cleaning Methods 0.000 claims 1
- 238000012423 maintenance Methods 0.000 abstract description 16
- 230000005611 electricity Effects 0.000 abstract description 3
- 239000004020 conductor Substances 0.000 description 18
- 238000000034 method Methods 0.000 description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 12
- 238000007689 inspection Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 11
- 230000006870 function Effects 0.000 description 9
- 125000006850 spacer group Chemical group 0.000 description 9
- 230000033001 locomotion Effects 0.000 description 7
- 230000001141 propulsive effect Effects 0.000 description 7
- 235000012239 silicon dioxide Nutrition 0.000 description 6
- 239000000377 silicon dioxide Substances 0.000 description 6
- 238000004891 communication Methods 0.000 description 5
- 239000012212 insulator Substances 0.000 description 5
- 238000005507 spraying Methods 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 230000005684 electric field Effects 0.000 description 4
- 230000005674 electromagnetic induction Effects 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- 238000005265 energy consumption Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000009194 climbing Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005672 electromagnetic field Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000010422 painting Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 241000239290 Araneae Species 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000002902 ferrimagnetic material Substances 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U50/00—Propulsion; Power supply
- B64U50/30—Supply or distribution of electrical power
- B64U50/34—In-flight charging
- B64U50/35—In-flight charging by wireless transmission, e.g. by induction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D27/00—Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
- B64D27/02—Aircraft characterised by the type or position of power plants
- B64D27/24—Aircraft characterised by the type or position of power plants using steam or spring force
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U50/00—Propulsion; Power supply
- B64U50/10—Propulsion
- B64U50/19—Propulsion using electrically powered motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U50/00—Propulsion; Power supply
- B64U50/30—Supply or distribution of electrical power
- B64U50/31—Supply or distribution of electrical power generated by photovoltaics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U50/00—Propulsion; Power supply
- B64U50/30—Supply or distribution of electrical power
- B64U50/34—In-flight charging
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/001—Energy harvesting or scavenging
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U10/00—Type of UAV
- B64U10/10—Rotorcrafts
- B64U10/13—Flying platforms
- B64U10/14—Flying platforms with four distinct rotor axes, e.g. quadcopters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2101/00—UAVs specially adapted for particular uses or applications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2101/00—UAVs specially adapted for particular uses or applications
- B64U2101/30—UAVs specially adapted for particular uses or applications for imaging, photography or videography
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
Definitions
- the present invention relates to a steel tower provided with an air vehicle and a power supply port.
- flying bodies rotary wing aircraft
- these flying objects can easily reach high places and narrow closed spaces that humans cannot easily approach, for example, information gathering at the top of steel towers, inside tunnels, underground spaces, etc. It is expected to be used when work is required.
- these aircraft are mainly powered by batteries, they are difficult to operate for a long time, and their cruising range and time are limited, especially in a cold environment.
- Patent Document 1 discloses a system in which two rotorcrafts are connected and electric power is supplied from one rotorcraft to the other rotorcraft by using a power feeding cable.
- Patent Document 2 discloses a device for connecting a rotary wing aircraft to the ground or the like with a power feeding cable in order to operate the rotary wing aircraft for a long time.
- Patent Document 1 Even if the technique of Patent Document 1 is used, the amount of electric power that can be supplied from one rotorcraft to the other rotorcraft in the air is limited. Further, when the technique of Patent Document 2 is used, the flight range of the rotorcraft is limited to the length of the power feeding cable, and the existence of the feeding cable may restrict the flight of the rotorcraft. In particular, when maintenance / inspection of high-voltage power transmission lines existing in high places is carried out using an air vehicle, the presence of a power supply cable may be an obstacle for safe maintenance / inspection.
- one of the typical flying objects of the present invention has a module that generates electricity by an external magnetic field in the flying object.
- the flying object can continue to fly for a long time by utilizing the energy from the external magnetic field. Issues, configurations and effects other than those described above will be clarified by the description of the following embodiments.
- FIG. 1 is a schematic view of the upper surface of the flying object.
- FIG. 2 is a schematic view of the side surface of the flying object.
- FIG. 3 is an equivalent circuit of the magnetic field power generation module.
- FIG. 4 is a schematic view of the configuration of the magnetic field power generation unit.
- FIG. 5 is a diagram showing an air vehicle that flies in the vicinity of an overhead power transmission line and performs work such as maintenance and inspection of the overhead power transmission line.
- FIG. 6 is a schematic view of an air vehicle having legs.
- FIG. 7 is a schematic view of an air vehicle having a suspended lower portion.
- FIG. 8 is a diagram showing an overall image of the flying object according to the embodiment of the present invention.
- FIG. 1 is a schematic view of the upper surface of the flying object.
- FIG. 2 is a schematic view of the side surface of the flying object.
- FIG. 3 is an equivalent circuit of the magnetic field power generation module.
- FIG. 4 is a schematic view of the configuration of the magnetic field power generation
- FIG. 9 is a diagram showing a cross-sectional view of an air vehicle according to an embodiment of the present invention.
- FIG. 10 is a view showing a side view of an air vehicle according to an embodiment of the present invention.
- FIG. 11 is a diagram showing an overall image of the flying object according to the tenth embodiment of the present invention.
- FIG. 12 is a diagram showing an example of a case where a Rogoski coil is adopted as the magnetic field power generation module according to the embodiment of the present invention.
- FIG. 13 is a diagram showing an example of a configuration of a control system for an air vehicle according to an embodiment of the present invention.
- the flying object 1 (in the present disclosure, the flying object is sometimes referred to as a “drone”) has a plurality of arm portions 13 supporting a plurality of rotor blades 12 and a center to which the arm portions are connected.
- the part 11 is provided.
- the central portion 11 of the flying object 1 is located at a substantially central portion in an annulus formed by connecting the tip portions of the arm portions 13 when the flying object is viewed from directly above.
- four arm portions 13 and four rotary blades 12 are provided, but the number of arm portions 13 and the number of rotary blades 12 are not limited thereto.
- the number of arm portions 13 and rotary blades 12 is 6 or more.
- the arm portion 13 may have a linear shape or a bent shape.
- the case where the number of the arm portion 13 and the rotary blades 12 is 4 will be described as the simplest flying object.
- a control device for an air vehicle, a communication device, and the like are mounted in the central portion 11, and a battery and a GPS antenna are also mounted in the vicinity of the control device.
- the flying object is provided with a working unit (not shown) for performing various tasks.
- Typical functions and configurations provided in the working unit are as follows, but are not limited to these.
- the flying object 1 is a magnetic field power generation unit 20 or a power receiving unit that receives power from the outside near the center 11. (Not shown). In the example of FIG. 1, four magnetic field power generation units 20 are mounted, but the number of magnetic field power generation units mounted on the flying object is not limited.
- FIG. 2 is a side view of the flying object 1 as viewed from the side.
- the central portion 11 of the flying object has a disk shape in a planar shape composed of a flat plate.
- the arm portions 13 extend from the vicinity of the side surface of the central portion 11 toward the outer peripheral direction of the ring formed by connecting the tips of the arm portions. These four arm portions 13 are arranged so as to be symmetrical with respect to any cross section passing through the central portion.
- a power unit (not shown) is connected to the rotor 12.
- the rotor 12 rotates in response to the output from the power unit, and the rotation of the rotor 12 allows the aircraft 1 to take off from the starting point, move horizontally, and land at a target location.
- the power unit is not particularly limited as long as it is a means capable of driving the rotary blade 12, but an electric motor is suitable.
- the rotor blade can rotate to the right, stop, and rotate to the left.
- the magnetic field power generation unit for generating power by utilizing the magnetic field includes a magnetic field power generation module and a power conversion module.
- a magnetic field power generation module is a module that converts a magnetic field generated by the environment into electrical energy.
- a typical example of an environment that generates a large magnetic field is a magnetic field near an overhead power transmission line. For example, at a distance of 20 cm from an electric wire through which a current of 10000 A flows, a magnetic flux density of approximately 4300 ⁇ T exists.
- the recoverable power is calculated by the following formula.
- ⁇ 0H [T] means the average magnetic flux density interlinking with the coil.
- the magnetic field power generation unit as shown in FIG. 4 can be configured. Then, according to such a magnetic field power generation unit, it is possible to efficiently extract and utilize electric energy by using a magnetic field existing in the environment.
- the above-mentioned magnetic field power generation unit is attached to an air vehicle such as a drone.
- Aircraft such as drones are being considered for use in various fields, but due to battery capacity restrictions, it is not possible to obtain a sufficient flight time.
- drones have been attempted to confirm the soundness of overhead power transmission lines, but they have not been fully utilized due to restrictions such as cruising flight time.
- maintenance of overhead transmission lines is carried out by maintenance workers from the ground using a high-magnification scope, or by actually climbing up to a steel tower and hanging from the transmission line with special equipment.
- the drone by attaching the magnetic field power generation unit to the drone, the drone flies in the vicinity of the fictitious power transmission line as shown in FIG. 5, and performs work such as maintenance and inspection of the fictitious power transmission line. While doing so, at the same time, electrical energy for flight can be obtained from the magnetic fields of overhead power lines. Therefore, the drone can carry out maintenance and inspection work on the overhead power transmission line over a long distance without a problem of running out of batteries as long as it is in the vicinity of the overhead power transmission line.
- measures against icing and snow accretion on overhead transmission lines measures against snow accretion such as snow accretion rings and galloping (large shaking of transmission lines) caused by falling snow from overhead transmission lines
- the main measures were taken by maintenance and inspection workers climbing up the tower and performing dangerous work.
- an air vehicle such as the drone of this embodiment, it is possible to quickly observe the snow accretion / icing situation, and the snow accretion agent is sprayed from the air vehicle to the overhead power transmission line.
- the damage caused by the snow accretion is minimized by adding a physical stimulus to the overhead power transmission line to drop the snow accretion / icing from the drone. It is also possible. Moreover, since these operations are performed by an air vehicle such as a drone, maintenance and inspection workers are not endangered.
- the power supply port of the drone is provided in the steel tower of the overhead transmission line, and the flying body such as the drone approaches the drone port on the steel tower.
- This is an example of receiving (receiving) power from a steel tower.
- electric energy for supplying to an air vehicle in the form of electric energy directly from a transmission line may be obtained, or electric energy may be obtained by a magnetic field power generation unit by utilizing the magnetism generated by the transmission line.
- a coil of sufficient size for magnetic field power generation can be installed in the tower, and a sufficient function as a power supply port can be ensured.
- Various methods can be applied to supply power from the power supply port to an aircraft such as a drone.
- non-contact wireless power feeding may be used, or various known power feeding methods may be adopted as contact-type power feeding methods.
- the power supply port of the steel tower shown in the second embodiment is provided with a function of a marker (not shown) for accurately landing an air vehicle such as a drone.
- a marker for accurately landing an air vehicle such as a drone.
- an airframe such as a drone is automatically navigated by a human being visually observing the movement of the airframe, controlling a control signal with a pilot, or designating a waypoint using the GPS function mounted on the airframe.
- GPS may cause an error in accuracy, and in particular, on a high-altitude steel tower, there is a possibility that a position error related to altitude may occur only with GPS information.
- a position marker such as a self-sustaining power supply type beacon device (hereinafter referred to as "beacon”) or a laser transmitter is attached to the power supply port, which is a landing port, and when the aircraft is close to the power supply port, the position marker is attached. It is conceivable that the aircraft will land on the power supply port using the above as a guide.
- a beacon is a transmitter that emits a specific radio wave (for example, a radio wave having directivity) from a fixed point and informs the flying object 1 of its position.
- the beacon (not shown) according to the present invention may include, for example, a BLE (Bluetooth ⁇ registered trademark> Low Energy) beacon, a WiFi beacon, an AP (Access Point) beacon, or the like, as long as it can transmit radio waves.
- BLE Bluetooth ⁇ registered trademark> Low Energy
- WiFi beacon WiFi ⁇ registered trademark> Low Energy
- AP Access Point
- position markers such as beacons are configured to continuously transmit positioning signals.
- the positioning signal may include information indicating the beacon position.
- the positioning signal includes identification information that uniquely identifies the beacon, and the aircraft 1 that has received the positioning signal identifies the identification information included in the positioning signal, which is stored in the internal storage.
- the position of the beacon that transmitted the positioning signal may be specified by comparing each piece of information with a table showing the absolute position of the beacon.
- each beacon has an independent power supply.
- This self-sustaining power source may be a dry battery, a rechargeable battery, or the like, but from the viewpoint of reducing the trouble of battery replacement or charging of a beacon installed in a high place such as a steel tower, a power source having a self-power generation function is provided. Is desirable.
- An example of a power source having this self-power generation function is a silicon dioxide solar power generation device. Radio waves can be continuously emitted without replacing or charging the battery.
- a silicon dioxide photovoltaic power generation device for example, two conductive substrates are arranged so that their conductive surfaces face each other, and at least one of the substrates is transparent and serves as a light incident side substrate. It is possible to construct a silicon dioxide solar cell in which silicon dioxide and an electrolyte are arranged between two substrates.
- a silicon dioxide photovoltaic power generation device is used as a power source
- the present invention is not limited to this, and a silicon-based solar cell, a compound-based solar cell, and an organic-based solar cell are used.
- Perovskite type solar cell, quantum dot type solar cell, or any other solar cell other than the silicon dioxide photovoltaic power generation device may be used.
- the air vehicle lands on the power supply port, it is possible to utilize the image information of the camera provided on the air vehicle. Specifically, it is possible to acquire image information of the power supply port before landing by a camera provided in the air vehicle, and to realize accurate landing based on these image information.
- the image analysis technique by AI may be used, or if necessary, the image information may be transmitted to the outside of the flying object and the control information of the flying object may be received from the outside. ..
- the power supply port of the steel tower shown in the second or third embodiment is provided with a function of receiving information collected by an air vehicle such as a drone.
- an air vehicle such as a drone
- Various information collected by an aircraft such as a drone can be transmitted to the outside via radio, but in mountainous areas, etc., the range of radio transmitted from the aircraft is limited.
- the power supply port is provided with equipment for receiving information collected by the aircraft such as a drone, and the information collected by the aircraft is transmitted to the outside via the power supply port to ensure that the collected information is transmitted to the outside. It becomes possible to transmit.
- Example 5 when an air vehicle such as a drone flies in the vicinity of an overhead power transmission line, the air vehicle rides on the upper part of the power transmission line and is provided with a jig capable of gliding on the power transmission line, depending on the situation.
- the drone can be landed on the overhead power transmission line by providing the leg portion 30 downward from the central portion 11 of the drone.
- the tip portion 31 of the leg portion 30 By forming the tip portion 31 of the leg portion 30 with an insulator according to the shape of the transmission line, the drone can be landed on the two transmission lines. In this case, the flying object such as a drone can glide on the power transmission line only by driving the propulsive force in the lateral direction.
- the positions and directions of the rotor blade 12 and the arm portion 13 can be adjusted so that the propulsive force suitable for gliding can be obtained. You may.
- Such gliding makes it possible to save the electrical energy required for the aircraft to move, and it is possible to further increase the cruising range of the aircraft.
- the flying object rises and flies in the air, and on the power transmission line where there is no member that hinders the fictitious flight.
- the sixth embodiment is an air vehicle provided with a jig capable of hanging down from the power transmission line and gliding on the power transmission line, depending on the situation, when an air vehicle such as a drone flies in the vicinity of an overhead power transmission line. ..
- the drone can be suspended from the overhead power transmission line by providing the suspension portion 40 upward from the central portion 11 of the drone.
- the tip of the suspension portion 40 is formed by an insulator according to the shape of the transmission line, so that the drone can be suspended on the transmission line.
- the flying object such as a drone can glide on the power transmission line only by driving the propulsive force in the lateral direction.
- the positions and directions of the rotor blade 12 and the arm portion 13 can be adjusted so that the propulsive force suitable for gliding can be obtained. It may be the same as in the case of Example 5.
- Such gliding makes it possible to save the electrical energy required for the aircraft to move, and it is possible to further increase the cruising range of the aircraft.
- Example 7 Around the transmission line, there are commercial frequency electric fields caused by the transmission voltage of the transmission line, commercial frequency magnetic fields caused by the current flowing through the transmission line, and radiation associated with spark discharges that occur at poor contact points of metal fittings such as insulators of the transmission line. An electromagnetic field is generated. For this reason, when an air vehicle such as a drone flies near an overhead power transmission line, the air vehicle is provided with a strong electric field or magnetic field so that electronic circuits such as control circuits are not adversely affected by a radiated electromagnetic field associated with a discharge phenomenon.
- the attached magnetic field power generation unit may be hung from the main body of the flying object and arranged at a position away from the flying object. Then, the air vehicle may obtain electric energy from the magnetic field power generation unit at a position away from the transmission line.
- the power supply port of the steel tower may be provided at a position separated from the transmission line, and the magnetic field power generation unit may be provided in the vicinity of the transmission line.
- Example 9 the flying object according to the ninth embodiment of the present invention will be described with reference to FIGS. 8 to 10.
- the air vehicle when an air vehicle such as a drone flies in the vicinity of an overhead power transmission line, the air vehicle surrounds the power transmission line and can glide on the power transmission line depending on the situation (hereinafter referred to as a gliding jig 820). It is an air vehicle equipped with.
- FIG. 8 is a diagram showing an overall image of the flying object according to the ninth embodiment of the present invention.
- the drone is placed along an overhead power transmission line 815 (hereinafter, also referred to as a “transmission line”).
- the gliding jig 820 is defined by the first surface, the second surface, the third surface, the first surface, the second surface, and the third surface surrounding the power transmission line, and feeds the jig 820.
- Guide rollers 830A and 830B for sliding the transmission line are included in the holes 825 for passing the electric wires (hereinafter, also referred to as “holes”), and the first surface, the second surface, and the third surface, respectively. , 830C are arranged. These guide rollers 830A, 830B, and 830C are members for guiding the movement of the drone 1 along the overhead power transmission line 815, and even if they are arranged so as to sandwich the power transmission line 815 as shown in FIG. Good.
- these guide rollers 830A, 830B, and 830C may be, for example, insulators that can come into contact with the transmission line, or may be formed according to the shape of the transmission line 815.
- the configuration of the gliding jig 820 including the three guide rollers 830A, 830B, and 830C surrounding the power transmission line 815 is shown as an example, the present invention is not limited to this, and the number and arrangement locations of the guide rollers are drones. It may be appropriately determined according to the purpose of the above, the condition of the transmission line, and the like.
- a configuration in which a plurality of guide rollers are arranged in a row at predetermined intervals, or a configuration in which only two guide rollers (for example, upper and lower) are provided is also possible.
- the drone 1 includes a plurality of sensors 845A, 845B, 845C. These sensors may be cameras, for example, as described above.
- the drone 1 can detect foreign substances (snow accretion, icing, etc.) and obstacles (correlation spacers, birds, branches) adhering to the power transmission line by using, for example, these sensors 845A, 845B, 845C. .. Further, the drone 1 may perform an operation of dealing with foreign matter or obstacles detected by these sensors 845A, 845B, 845C.
- the drone 1 when a location where a member that hinders gliding such as a correlation spacer is installed is detected, the drone 1 flies in the air so as to leave the power transmission line and lands again on the power transmission line that does not have a member that hinders fictitious flight. If you then resume gliding, you can save a lot of electrical energy consumption to travel on the transmission lines.
- the drone 1 may spray a snow melting agent or the like to remove the snow or ice on the power transmission line. ..
- the drone 1 may include a plurality of rotor blades 12. By gliding along the transmission line 815 by the propulsive force of these rotors 12, the drone 1 can prevent the load of the drone 1 from being applied to the transmission line 815 and reduce the load on the transmission line 815. ..
- the drone 1 converts the magnetic field generated by the transmission line 815 into electric energy and the alternating current generated by the magnetic field power generation module into direct current, as described above.
- a power conversion module may be used.
- this magnetic field power generation module may be, for example, a magnetic core coil, a Rogoski coil, or the like. Further, these coils may be arranged so as to satisfy a predetermined distance reference (for example, the optimum distance for electromagnetic induction) from the transmission line 815.
- the gliding jig 820 that surrounds the transmission line 815 it is possible to maintain a distance for an air vehicle such as a drone to efficiently perform electromagnetic induction using the magnetic field generated from the transmission line 815. it can. Therefore, the drone can stably move along the transmission line 815 while utilizing the energy obtained from the magnetic field of the transmission line 815, and can perform maintenance and inspection of the transmission line 815.
- FIG. 9 is a diagram showing a cross-sectional view of the flying object according to the ninth embodiment of the present invention.
- the gliding jig 820 is arranged above the drone 1 according to the embodiment of the present invention, and the gliding jig 820 has a first surface 901 and a second surface 902 surrounding the power transmission line 815. , And a third surface 903. Further, as shown in FIG. 9, the first surface 901 and the second surface 902 face each other and are connected to the third surface 903. These first surface 901, second surface 902, and third surface 903 define a through hole 825 through which the transmission line 815 passes. Further, the guide rollers 830A, 830B, and 830C described above are arranged on the first surface 901, the second surface 902, and the third surface 903, respectively.
- the power feeding coil 920 is arranged inside the gliding jig 820 as the above-mentioned magnetic field power generation module.
- the power feeding coil 920 converts the magnetic field generated by the overhead power transmission line into electric energy.
- the power feeding coil 920 is, for example, a magnetic core coil or a Rogowski coil that is configured as a winding of an electric conductor and has a ferromagnetic or ferrimagnetic material or air as a core and a copper wire wound around the core. It may be an air-core coil, a high-frequency coil, or the like. Further, the same wire wound around the core may be wound according to a honeycomb winding method, a spider winding method, or any other method.
- the power feeding coil 920 may be arranged inside the first surface 901, the second surface 902, and the third surface 903 constituting the gliding jig 820.
- the power feeding coil 920 may be arranged so as to satisfy a predetermined distance reference (for example, an optimum distance for electromagnetic induction) from the transmission line 815. Further, the length, diameter, number of turns, material, etc. of the power feeding coil 920 may be appropriately determined according to the characteristics (amount, frequency) of the current passing through the transmission line.
- the electric power generated by the magnetic induction by the feeding coil 920 may be output as an alternating current.
- the drone 1 according to the ninth embodiment of the present invention may include a power conversion module that converts an alternating current generated by a magnetic field power generation module (that is, a power feeding coil 920) into a direct current (that is,). Not shown in FIG. 10).
- the direct current converted by this power conversion module may be supplied to the motor of the rotor 12 of the drone 1 and used as the power of the drone 1, for example.
- FIG. 10 is a view showing a side view of the flying object according to the ninth embodiment of the present invention. Since the configuration of the gliding jig 820 shown in FIG. 10 is substantially the same as that of the gliding jig 820 described with reference to FIG. 9, for convenience of explanation, overlapping description will be omitted here.
- the flying object according to the tenth embodiment of the present invention will be described with reference to FIG.
- the air vehicle when an air vehicle such as a drone flies in the vicinity of an overhead power transmission line, the air vehicle surrounds the power transmission line and can glide on the power transmission line depending on the situation (hereinafter, gliding jig 820). It is an air vehicle equipped with.
- the configuration of a drone that surrounds the fictitious power transmission lines 815 one by one and slides on the power transmission lines using the electric power generated from the magnetic field generated by the fictitious power transmission lines has been described, but the present invention is limited thereto.
- the overhead power transmission line 815 is configured by the multi-conductor system.
- the multi-conductor system means that the number of electric wires of the transmission line 815 is not one conductor, but is composed of 2, 4, 6, 8, or other two or more conductors.
- each conductor is maintained at a constant distance from other conductors by a member such as the spacer 911 shown in FIG.
- the drone 1 When the overhead power transmission line 815 is configured by such a multi-conductor system, the drone 1 according to the embodiment of the present invention is a gliding jig that surrounds a plurality of conductors constituting the overhead power transmission line 815 together. It may be configured to be provided with a tool.
- the configuration of the drone 1 according to the tenth embodiment of the present invention which surrounds a plurality of the lines and glides on the power transmission line using the electric power generated from the magnetic field generated by the overhead power transmission line 815, will be described.
- FIG. 11 is a diagram showing an overall image of the flying object according to the tenth embodiment of the present invention.
- the drone 1 according to the tenth embodiment is provided with a ring-shaped gliding jig 820 configured to be openable and closable so as to collectively surround a plurality of conductors constituting the overhead power transmission line 815. It is different from the drone related to.
- the present invention can be applied even when the above-mentioned multi-conductor method is adopted, and more electric power can be generated as compared with the drone described in the ninth embodiment. it can.
- a ring-shaped gliding jig 820 is provided below the main body of the drone 1. Similar to the configuration described for the ninth embodiment, the ring-shaped gliding jig 820 of the drone 1 according to the tenth embodiment includes a hole 825 through which the transmission line 815 is passed (hereinafter, “hole portion”).
- the through-hole portion 825 of the drone 1 according to No. 10 is different from the through-hole portion of the drone 1 according to the ninth embodiment in that a plurality of transmission lines 815 can be collectively surrounded.
- the diameter of the ring-shaped gliding jig 820 may be appropriately set depending on the distance between the transmission lines and the number of transmission lines 815, and is not particularly limited.
- the ring-shaped gliding jig 820 is configured to be openable and closable. More specifically, as shown in FIG. 11, the ring-shaped gliding jig 820 includes an opening / closing portion 913, and the opening / closing portion 913 is a closed state forming a ring, which is shown by a dotted line. It is movable between the open state and the C-shaped open state.
- the state of the opening / closing unit 913 may be controlled by, for example, the working unit of the drone 1 (for example, the working unit 1170 shown in FIG. 13).
- the drone 1 By opening the opening / closing portion 913 of the gliding jig 820, the drone 1 surrounds a plurality of conductors constituting the overhead power transmission line 815 by the through-hole portion 25 of the gliding jig 820, or has already passed through the hole.
- the transmission line 815 surrounded by 25 can be released and separated from the transmission line 815.
- the drone 1 moves stably along the transmission line 815 while utilizing the energy obtained from the magnetic field of the transmission line 815 by closing the opening / closing portion 913 of the gliding jig 820, and the transmission line 1 is used. Maintenance / inspection of 815 can be performed.
- guide rollers 830A, 830B, 830C, and 830D for sliding the transmission line 815 are arranged on the inner peripheral surface of the gliding jig 820.
- These guide rollers 830A, 830B, 830C, and 830D are members for guiding the movement of the drone 1 along the overhead transmission line 815, and as shown in FIG. 11, each transmission line constituting the multi-conductor system. It may be appropriately arranged according to the interval of 815.
- these guide rollers 830A, 830B, 830C, and 830D may be, for example, insulators that can come into contact with the transmission line, or may be formed according to the shape of the transmission line 815.
- the configuration of the gliding jig 820 including the four guide rollers 830A, 830B, 830C, and 830D is shown as an example, the present invention is not limited to this, and the number and arrangement locations of the guide rollers are the purpose of the drone. It may be appropriately determined according to the condition of the transmission line and the like.
- the drone 1 converts the magnetic field generated by the transmission line 815 into electric energy and the alternating current generated by the magnetic field power generation module into direct current, as described above.
- a power conversion module may be used.
- the magnetic field power generation module may be, for example, a magnetic core coil or a Rogowski coil arranged inside (the whole or a part of the circumference) of the ring-shaped gliding jig 820. Further, these coils may be arranged so as to satisfy a predetermined distance reference (for example, the optimum distance for electromagnetic induction) from the transmission line 815.
- the drone 1 includes a plurality of sensors as in the configuration according to the above-described embodiment. These sensors may be, for example, a camera or the like.
- the drone 1 can detect foreign substances (snow accretion, icing, etc.) and obstacles (correlation spacers, birds, branches) adhering to the power transmission line by using these sensors. Further, the drone 1 may perform an operation of dealing with foreign matter or obstacles detected by these sensors 845A, 845B, 845C.
- the drone 1 when a place where a member that hinders gliding such as a correlation spacer is installed is detected, the drone 1 opens the opening / closing part 913, flies in the air so as to leave the power transmission line, and there is no member that hinders the imagination. By landing on the transmission line again, closing the opening / closing section 913, and resuming gliding, the consumption of electrical energy for moving on the transmission line can be significantly saved.
- the drone 1 may drive the guide rollers 830A, 830B, 830C, and 830D described above so as to overcome the location. ..
- the drone can utilize the energy obtained from the magnetic field of the transmission line 815 and along the transmission line 815. It can move stably and perform maintenance and inspection of the transmission line 815.
- a multi-conductor type transmission line including four transmission lines 815 is shown as an example, but the present invention is not limited to this, and the number of transmission lines is arbitrary. Further, the diameter of the ring-shaped gliding jig 820 may be appropriately set depending on the distance between the transmission lines and the number of transmission lines 815. ⁇ Example of using Rogoski coil as a magnetic field power generation module>
- FIG. 12 is a diagram showing an example in the case where the Rogoski coil 1000 is adopted as the magnetic field power generation module according to the embodiment of the present invention.
- a Rogoski coil can be used as an example of the magnetic field power generation module according to the embodiment of the present invention.
- the Rogowski coil is a coil in which an induced voltage is generated when a magnetic field generated by an alternating current flowing through a conductor such as a power transmission line interlinks with an air core coil.
- the Rogoski coil 1000 includes a toroidal coil 1003 and an external circuit 1004 for outputting the generated current.
- the electromotive force E (t) of the Rogoski coil 1000 is calculated by the following mathematical formula 2.
- ⁇ is the magnetic conductivity of the core of the Rogowski coil 1000
- ⁇ 0 is the magnetic constant
- N is the number of turns of the coil
- d is the diameter of the copper wire wound around the coil
- D is the coil.
- I 0 is the current flowing through the conductor (for example, the transmission line).
- a current of 1000 A is flowing through a transmission line with a diameter of about 35 mm, and the Rogowski coil has a diameter of 50 cm (ie, the size used for the multiconductor conductor described with reference to Example 10).
- the coil core is ferrite and the diameter is 2 cm and the diameter of the copper wire wound around the ferrite is 1 mm, an output of at least about 10 W can be obtained.
- the drone according to the embodiment of the present invention is self-propelled by increasing the number of turns of the copper wire of the coil and replacing the core with a material having a lighter magnetic permeability. Sufficient power can be obtained.
- FIG. 13 is a diagram showing an example of the control system configuration 1100 of the drone 1 according to the embodiment of the present invention.
- the drone 1 includes a drone control device 1115 that controls the drone 1.
- the drone control device 1115 may be implemented as, for example, a microcomputer mounted on the drone 1 or a SoC (System on a Chip).
- the drone control device 1115 has a processor 1116 for executing instructions stored in the memory 1130, an I / O interface 1117 for controlling internal and external communication such as signals from a device such as a beacon, and communication such as GPS.
- the functions of the network interface 1118 for controlling communication via the network the user I / O interface 1119 for receiving signals from a remote remote controller, and the operation control unit 1140 for controlling the operation of the drone 1.
- a memory 1130 including a storage unit 1145 for storing commands for execution and various information, a power unit 1150, a magnetic field power generation unit 1160, a working unit 1170, and these components. Includes bus 1120.
- the operation control unit 1140 is, for example, a functional unit that controls the operation of the drone 1 based on the route information that defines the movement route in the environment in which the drone 1 flies and the work information that defines the operation of the work in the environment. is there. These route information, work information, and the like may be stored in, for example, the storage unit 1145.
- the drone 1 includes the power unit 1150.
- the power unit 1150 supplies electric power to the rotor blades of the flying object to rotate them. The rotation of the rotor allows the drone 1 to take off from the starting point, move horizontally, and land at the desired location.
- the power unit 1150 is not particularly limited as long as it is a means capable of driving the rotary blades, but an electric motor is suitable.
- the magnetic field power generation unit 1160 is a functional unit for generating electric power by utilizing a magnetic field such as a transmission line. As described above, the magnetic field power generation unit 1160 includes a magnetic field power generation module 1161 and a power conversion module 1162.
- the magnetic field power generation module 1161 is a module that converts a magnetic field generated by the environment into electrical energy.
- the power conversion module 1162 is a module that converts the alternating current generated by the magnetic field power generation module 1161 into a direct current and supplies it to the above-mentioned power unit 1150 or the like.
- the work unit 1170 is provided with a functional unit for causing the drone 1 to perform various tasks.
- Typical functions and configurations provided in the work unit 1170 are, for example, (1) photography, monitoring, investigation, recording by an information acquisition device capable of acquiring external information such as a camera, a sensor, and a microphone, and (2) a sprayer.
- the magnetic power generation unit has described the mode of converting the magnetic field generated by the overhead transmission line into electric energy, but the magnetic power generation unit can convert the magnetic field in any environment into electric energy. That is, the present invention is not limited to the overhead transmission line, and any magnetic field in the substation equipment and other environments can be utilized, and the present invention is not limited to the overhead transmission line. Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to add / delete / replace a part of the configuration of each embodiment with another configuration.
- an air vehicle or a steel tower can utilize various power generation sources such as a photovoltaic power generation device, a wind power generation device, and a temperature difference power generation device in addition to the magnetic power generation unit.
- various power generation sources such as a photovoltaic power generation device, a wind power generation device, and a temperature difference power generation device in addition to the magnetic power generation unit.
- the control unit of the flying object may be adversely affected by a strong electric field or magnetic field, it is possible to provide a shielding member or the like that suppresses the influence of the electric field or magnetic field at a necessary place.
- each of the above configurations, functions, means and the like can be replaced with a part or all of them by the same means.
- Air vehicle 11 Central part 12: Rotor blade 13: Arm part 20: Magnetic field power generation unit 30: Leg part 31: Tip part 40: Suspended lower part
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Aviation & Aerospace Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Power Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Forklifts And Lifting Vehicles (AREA)
Abstract
Description
これらの飛行体は、人間が容易に近づくことができない高所や狭隘な閉所などに容易に到達することが可能であるため、例えば、鉄塔の上部、トンネルの内部や地下空間などで、情報収集や作業が求められる場合の活用が期待されている。
しかし、これらの飛行体は、主にバッテリーを電源としているため、長時間の稼働が難しく、特に気温の低い環境下では航続距離や時間が制限される。
また、特許文献2には、回転翼機を長時間稼働させるために、回転翼機と地上等を給電ケーブルで接続する装置が開示されている。
また、特許文献2の技術を用いた場合は、回転翼機の飛行範囲が給電ケーブルの長さに限定されるとともに、給電ケーブルの存在が回転翼機の飛行を制約することとなりかねない。
特に、高所に存在している高圧送電線の保守・点検等を飛行体を用いて行う場合には、給電ケーブルの存在が安全な保守・点検のための障害となりかねない。
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
まず、図1を参照して、本開示の飛行体について説明する。図1に示されるように、飛行体1(本開示では、飛行体を「ドローン」ということもある)は、複数の回転翼12を支持する複数のアーム部13、アーム部が接続された中心部11を備えている。飛行体1の中心部11は当該飛行体を真上から見た場合にアーム部13の先端部を結んで形成される円環内の略中心部に位置している。
図1の例では、アーム部13及び回転翼12はそれぞれ4本備えているが、アーム部13の数や回転翼12の数はこれに限定されない。例えば、飛行体が大型の場合などでは、アーム部13及び回転翼12の数は6以上であることが望ましい。
なお、アーム部13は直線形状でもよいし、折れ曲がった形状を有していてもよい。
実施形態1では、最も簡易な飛行体として、アーム部13及び回転翼12の数が4の場合について説明する。
また、飛行体は種々の作業を行うための作業部(図示しない)を備えている。作業部に備えられている代表的な機能及び構成は、以下の通りであるが、これに限定されるものではない。
(1)カメラやセンサ、マイク等の外界情報を取得可能な情報取得機器による撮影や監視、調査、記録
(2)噴霧器や吹き付け装置、放水装置による液体の散布、塗装、消火、融雪剤の散布、動植物への散水
(3)スピーカーや臭気発生装置、発光装置による外部への働きかけ、
(4)工具やロボットアーム、回転ブラシ等による工作や整備、物体の移動、着氷の除去 等
さらに、飛行体1は中心部11の付近に磁界発電ユニット20または外部からの給電を受ける受電部(図示しない)を備えている。図1の例では、磁界発電ユニット20は、4個装着されているが、飛行体に装着する磁界発電ユニットの数に限定はない。
動力部は、回転翼12を駆動させることができる手段であれば特に制限されるものではないが、電気モータが適している。
なお、回転翼は、右方向への回転、停止、左方向への回転が可能である。
磁界を活用して発電を行うための磁界発電ユニットは、磁界発電モジュール及び電力変換モジュールを備えている。
磁界発電モジュールは、環境が発生する磁界を電気エネルギーに変換するモジュールである。大きな磁界を発生する環境として代表的な例は、架空送電線の近傍の磁界がある。
例えば、10000Aの電流が流れる電線から20cmの距離の場合、おおむね、4300μTの磁束密度が存在する。
そして、コイル幅:c、内径:2c、外形:4cのBrooksコイルを用いた場合、回収可能電力は、以下の式で算出される。
このような磁界発電モジュールの等価回路は、図3の通りである。
そして、このような磁界発電ユニットによれば、環境中に存在する磁界を用いて電気エネルギーを効率的に取り出し、活用することが可能となる。
実施例1は上述した磁界発電ユニットをドローンなどの飛行体に装着したものである。
ドローンなどの飛行体は、さまざまな領域での活用の検討が進められているが、バッテリー容量の制約から十分な飛行時間は航続距離を得ることができない。
特に、架空送電線の健全性確認にドローンの活用が試みられているが、やはり、航続飛行時間などの制約から十分な活用がなされていない。
通常、架空送電線の保守管理は、保守作業員による高倍率スコープを用いた地上からの点検や、実際に鉄塔に昇り専用の器具で送電線にぶら下がっての点検が行われている。しかし、山間部など保守作業員が容易に確認できない一部の架空送電線については、これまで、ヘリコプターで撮影したVTRを、作業員がスローモーション再生で点検を行うなど、当該作業に長時間を要していた。
その後、これまでに蓄積してきた架空送電線のVTR撮影データや点検技術と、AIや深層学習の技術を融合させたシステムなども開発され、架空送電線の点検作業にはドローンで撮影したVTRデータを使う計画も進んでいる。
しかし、ドローンには電池切れの問題があり、人手を削減する効果についてその問題点は払拭されていないのが現状である。
これに対して、本実施例のドローンなどの飛行体を用いることにより、着雪・着氷の状況を迅速に観察することが可能となるとともに、飛行体から融雪剤を架空送電線に散布したり、架空送電線の着雪・着氷が軽度な段階で、ドローンから着雪・着氷を落下させるための物理的な刺激を架空送電線に加えることにより、落雪による被害を最小限に抑えることも可能となる。
しかも、これらの作業はドローンなどの飛行体が実施するので、保守点検作業員が危険に晒されることがない。
実施例2は、実施例1においてドローンなどの飛行体が磁界発電ユニット有しない場合に、架空送電線の鉄塔にドローンの給電ポートを設け、ドローンなどの飛行体が鉄塔上のドローンポートに接近した際に、鉄塔から給電を受ける(受電する)例である。
この方式によれば、ドローンなどの飛行体が磁界発電ユニットを装着する必要がないため、飛行体の重量を軽減させることができ、その結果、飛行体の航続距離をさらに高めることが可能となる。
一方、鉄塔では、送電線から直接電気エネルギーの形で飛行体に供給するための電気エネルギーを取得してもよいし、送電線が発する磁気を活用し、磁界発電ユニットによって電気エネルギーを得てもよい。
鉄塔には磁界発電に十分な大きさのコイルを設置可能であり、給電ポートとして十分な機能を確保することができる。
給電ポートからドローンなどの飛行体に対する給電には、様々な方式が適用可能である。その一例としては、非接触の無線給電を用いてもよいし、接触型の給電手法として公知の様々な給電方式を採用することができる。当然に急速充電を行う手法を採用することも可能である。
実施例3は、実施例2で示した鉄塔の給電ポートに、ドローン等の飛行体を正確に着陸させるためのマーカ(図示しない)の機能を持たせたものである。
通常、ドローン等の飛行体は、人間が機体の動きを目視しながら、操縦機で制御信号を制御したり、飛行体に搭載されているGPS機能を用いてウェイポイントを指定し、自動航行させる手法が用いられている。
しかし、GPSは、精度上の誤差が発生する可能性があり、特に、高度の高い鉄塔上では、GPSの情報のみでは、高度に関する位置誤差が発生する恐れがある。
このため、着陸ポートである給電ポートに、自立電源型ビーコン装置(以下、「ビーコン」という。)やレーザー発信機などの位置マーカを取り付け、飛行体が給電ポートに近接した場合には、位置マーカを目安として飛行体を給電ポートに着陸されることが考えられる。
このような二酸化ケイ素太陽光発電装置の構成の一例として、例えば、導電性を有する2枚の基板が各々の導電面を向かい合わせて配置され、基板の少なくとも一方が透明で光入射側基板とされ、2枚の基板の間に2酸化ケイ素と電解質が配置された2酸化ケイ素ソーラーセルによる構成が可能である。
なお、以上では、電源として、二酸化ケイ素太陽光発電装置を用いる場合を一例として説明したが、本発明はこれに限定されず、シリコン系の太陽電池、化合物系の太陽電池、有機系の太陽電池、ペロブスカイト型の太陽電池、量子ドット型の太陽電池等、二酸化ケイ素太陽光発電装置以外の任意の太陽電池であってもよい。
具体的には、飛行体に備えられているカメラによって着地前の給電ポートの画像情報を取得し、これらの画像情報に基づいて、正確な着地を実現することが可能となる。画像情報の解析については、AIによる画像解析技術を用いてもよいし、必要に応じて、画像情報を飛行体の外部に送信して、外部から飛行体の制御情報を受信することとしてもよい。
実施例4は、実施例2又は3で示した鉄塔の給電ポートに、ドローン等の飛行体が収集した情報を受信する機能を持たせたものである。
ドローン等の飛行体が収集した様々な情報は、無線を通じて外部に送信することができるが、山間部等においては、飛行体から発信する無線の到達距離には制限がある。このため、給電ポートに、ドローン等の飛行体が収集した情報を受信する設備を設け、給電ポートを介して飛行体の収集した情報を外部に伝送することによって、収集した情報を確実に外部に伝送することが可能となる。
実施例5は、ドローン等の飛行体が架空送電線の近傍を飛行するに際し、状況に応じて、飛行体が送電線の上部に乗り上げて、送電線上を滑空可能な治具を備えた飛行体である。
図6に例示するように、ドローンの中心部11から下方に向けて脚部30を設けることにより、ドローンを架空送電線上に着陸させることができる。脚部30の先端部31を絶縁体によって、送電線の形状に合わせて形成することにより、ドローンを2本の送電線上に着地させることが可能となる。この場合、ドローン等の飛行体は、横方向への推進力を駆動するだけで、飛行体が送電線上を滑空することも可能となる。
そして、飛行体の推進力が主に略水平方向に必要となる場合には、回転翼12やアーム部13の位置や方向を調整可能とし、滑空に適した推進力を得ることができるようにしてもよい。
こうした滑空により、飛行体が移動に要する電気エネルギーを節約することが可能となり、飛行体の航続距離をさらに高めることが可能となる。
架空送電線上に、相関スペーサなどの滑空を妨げる部材が設置してある箇所のあった場合には、その都度、飛行体は上昇して空中を飛行し、架空を妨げる部材の存在しない送電線上に再度、着地して滑空を再開すれば、送電線上を移動するための電気エネルギーの消費を大幅に節約することができる。
そして、送電線上に着雪・着氷が存在している場合には、このような滑空を行うことにより、送電線上の雪や氷を除去することができる。
実施例6は、ドローン等の飛行体が架空送電線の近傍を飛行するに際し、状況に応じて、飛行体が送電線から釣り下がり、送電線上を滑空可能な治具を備えた飛行体である。
図7に例示するように、ドローンの中心部11から上方に向けて吊下部40を設けることにより、ドローンを架空送電線から吊り下げることができる。吊下部40の先端は絶縁体によって、送電線の形状に合わせて形成することにより、ドローンを送電線上に吊下げることが可能となる。この場合、ドローン等の飛行体は、横方向への推進力を駆動するだけで、飛行体が送電線上を滑空することも可能となる。
そして、飛行体の推進力が主に略水平方向に必要となる場合には、回転翼12やアーム部13の位置や方向を調整可能とし、滑空に適した推進力を得ることができるようにしてもよいことは、実施例5の場合と同様である。
こうした滑空により、飛行体が移動に要する電気エネルギーを節約することが可能となり、飛行体の航続距離をさらに高めることが可能となる。
架空送電線上に、相関スペーサなどの滑空を妨げる部材が設置してある箇所のあった場合には、その都度、飛行体は上昇して空中を飛行し、架空を妨げる部材の存在しない送電線上に、再度、吊下って滑空を再開すれば、送電線上を移動するための電気エネルギーの消費を大幅に節約することができる。
そして、実施例5の場合と同様に、送電線上に着雪・着氷が存在している場合には、このような滑空を行うことにより、送電線上の雪や氷を除去することができる。
送電線の周囲には、送電線の送電電圧に起因する商用周波電界、送電線を流れる電流に起因する商用周波磁界、送電線のがいし装置などの金具の接触不良箇所で生じる火花放電に伴う放射電磁界が発生する。
このため、ドローン等の飛行体が架空送電線の近傍を飛行するに際し、強力な電界や磁界、特に放電現象に伴う放射電磁界によって制御回路等の電子回路が悪影響を受けないよう、飛行体に付属する磁界発電ユニットを飛行体本体から吊下げるなどして、飛行体から離間した位置に配置してもよい。そして、飛行体は、送電線から離間した位置で、磁界発電ユニットから電気エネルギーを得ることとしてもよい。
実施例7と同様の理由により、実施例3及び4について、鉄塔の給電ポートは、送電線から離間した位置に設けられ、磁界発電ユニットが送電線の近傍に設けられている構成としてもよい。
次に、図8~10を参照して、本発明の実施例9に係る飛行体について説明する。実施例9は、ドローン等の飛行体が架空送電線の近傍を飛行するに際し、状況に応じて、飛行体が送電線を取り囲み、送電線上を滑空可能な治具(以下、滑空治具820)を備えた飛行体である。
図8に例示するように、ドローン1の本体の上方に、略C字状の滑空治具820を設けることにより、ドローンを架空送電線815(以下、「送電線」ということもある)に沿って安定的に移動させることができる。より具体的には、この滑空治具820は、送電線を取り囲む第1面、第2面、及び第3面と、第1面と前記第2面と前記第3面によって画定されて、送電線を通す孔825(以下、「通孔部」ともいう。)を含み、これらの第1面と第2面と第3面のそれぞれには、送電線を滑走するためのガイドローラー830A,830B,830Cが配置されている。これらのガイドローラー830A、830B、830Cは、ドローン1の移動を架空送電線815に沿って案内するための部材であり、図8に示すように、送電線815を挟持するように配置されてもよい。
なお、送電線815を取り囲む3つのガイドローラー830A、830B、830Cを含む滑空治具820の構成を一例として示しているが、本発明はこれに限定されず、ガイドローラーの数及び配置箇所はドローンの目的や送電線の状況等に応じて適宜に定められてもよい。例えば、別の例として、複数のガイドローラーが所定の間隔を開けて一列となる構成や、2つのみのガイドローラー(例えば、上方と下方)を有する構成も可能である。
一例として、相関スペーサなどの滑空を妨げる部材が設置してある箇所が検知されると、ドローン1は送電線を離れるように空中を飛行し、架空を妨げる部材の存在しない送電線上に再度、着地して滑空を再開すれば、送電線上を移動するための電気エネルギーの消費を大幅に節約することができる。
別の一例として、送電線815の上に着雪・着氷が存在していることが検知されると、ドローン1は融雪剤等を散布し、送電線上の雪や氷を除去してもよい。
なお、図10に示す滑空治具820の構成は、図9を参照して説明した滑空治具820と実質的に同様であるため、説明の便宜上、ここでは、重複する説明を省略する。
<実施例10>
多導体方式とは、送電線815の電線本数が1導体ではなく、2、4、6、8、又はそれ以外の2以上の数の導体で構成されている構成を意味する。
なお、架空送電線815が多導体方式で構成されている場合には、それぞれの導体は、例えば図11に示すスペーサー911のような部材によって、他の導体から一定の距離で保たれている。
以下、複数本を取り囲み、架空送電線815が発生する磁界から生成される電力を用いて送電線上を滑空する、本発明の実施例10に係るドローン1の構成について説明する。
実施例9について説明した構成と同様に、実施例10に係るドローン1の輪型の滑空治具820は、送電線815を通す孔825(以下、「通孔部」)を含むが、実施例10に係るドローン1の通孔部825は、複数本の送電線815をまとめて取り囲むことができる点において実施例9に係るドローン1の通孔部と異なる。
なお、輪型の滑空治具820の直径は、送電線間の間隔や送電線815の数によって適宜に設定されてもよく、特に限定されない。
なお、4つのガイドローラー830A、830B、830C、830Dを含む滑空治具820の構成を一例として示しているが、本発明はこれに限定されず、ガイドローラーの数及び配置箇所はドローンの目的や送電線の状況等に応じて適宜に定められてもよい。
<磁界発電モジュールとしてロゴスキーコイルを採用した場合の一例>
また、得られる出力を更に上げるためには、コイルの銅線の巻き数を増やすことや、芯を軽くて透磁率の高い素材に換えることで、本発明の実施例に係るドローンを自走させるに十分な電力を得ることができる。
<飛行体の制御システム構成>
磁界発電モジュール1161は、環境が発生する磁界を電気エネルギーに変換するモジュールである。また、電力変換モジュール1162は、磁界発電モジュール1161によって生成された交流電流を直流電流に変換し、上述した動力部1150等に供給するモジュールである。
また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。例えば、飛行体や鉄塔は、磁気発電ユニット以外に、光起電装置や風力発電装置、温度差発電装置など様々な発電源を活用することも可能である。
さらに、飛行体の制御部などが、強力な電界や磁界によって悪影響が生じるおそれがある場合には、必要な箇所に電界や磁界の影響を抑制する遮蔽部材などを備えることも可能である。また、上記の各構成、機能、手段等はそれらの一部または全部を同様な手段で置き換えることも可能である。
11:中心部
12:回転翼
13:アーム部
20:磁界発電ユニット
30:脚部
31:先端部
40:吊下部
Claims (15)
- 磁界発電ユニットを備えた飛行体であって、
前記磁界発電ユニットは、磁界発電モジュール及び電力変換モジュールを備え、
前記磁界発電モジュールは、架空送電線が発生する磁界を電気エネルギーに変換し、
前記電力変換モジュールは、前記磁界発電モジュールによって生成された交流電流を直流電流に変換する
ものである飛行体。 - 架空送電線から得た電気エネルギーを飛行体に供給する給電ポートを備えた架空送電線用の鉄塔。
- 請求項2に記載の鉄塔であって、
前記給電ポートは、磁界発電ユニットから電気エネルギーの供給を受け、
前記磁界発電ユニットは、磁界発電モジュール及び電力変換モジュールを備え、
前記磁界発電モジュールは、架空送電線が発生する磁界を電気エネルギーに変換し、
前記電力変換モジュールは、前記磁界発電モジュールによって生成された交流電流を直流電流に変換し、前記給電ポートまたは前記給電ポートに接続する蓄電池に電気エネルギーとして供給することを特徴とする鉄塔。 - 請求項2または3に記載された鉄塔の給電ポートから、電気エネルギーを受電するための受電手段を備えた飛行体。
- 請求項4に記載された飛行体であって、
前記受電手段は、飛行体から離間した距離に配置することが可能なことを特徴とする飛行体。 - 請求項1、4または5のいずれか一項に記載された飛行体であって、
架空送電線上を滑空可能な治具を備えた飛行体。 - 請求項6に記載された飛行体であって、
前記滑空可能な治具は、
第1面、第2面、及び第3面と、
前記第1面、前記第2面及び前記第3面によって画定される通孔部と、
を含み、
前記第1面と前記第2面は互いに対向しており、
前記第3面は前記第1面と前記第2面とを繋ぎ、
少なくとも前記第1面には、架空送電線に滑走するガイドローラーが配置されている、
ことを特徴とする飛行体。 - 請求項7に記載された飛行体であって、
前記架空送電線に滑走するガイドローラーが前記第1面、前記第2面及び前記第3面のそれぞれに配置されていることを特徴とする飛行体。 - 請求項1に記載された飛行体であって、
予め定まった経路情報に基づいて前記飛行体の運行を制御する運行制御部を更に備える飛行体。 - 請求項1に記載された飛行体であって、
外界情報を取得するためのセンサを制御する作業部を更に備え、
前記架空送電線上の障害物を前記センサにより検知すると、一旦前記架空送電線から離れ、前記障害物を乗り越えた後、前記架空送電線に戻り、再び前記架空送電線上の滑空運行を再開する飛行体。 - 請求項10に記載された飛行体であって、
前記架空送電線に付着している異物を前記センサにより検知すると、前記異物の種類に応じた清掃手段を用いて清掃する飛行体。 - 請求項2または3に記載された鉄塔であって、
前記給電ポートは、飛行体が前記給電ポートに着地する際に用いる位置マーカを備えたこと特徴とする鉄塔。 - 請求項2、3または12のいずれか一項に記載された鉄塔であって、
前記給電ポートは、前記飛行体が収集した情報を受信するための手段を備えたことを特徴とする鉄塔。 - 請求項2、3、12または13のいずれか一項に記載の鉄塔及び請求項4~6のいずれか一項に記載の飛行体からなる飛行体給電システム。
- 請求項6に記載された飛行体であって、
前記滑空可能な治具は、
架空送電線を取り囲むように開閉可能な形態であり、
少なくとも治具の一部に前記架空送電線に滑走するガイドローラーが配置されている、
ことを特徴とする飛行体。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021563976A JPWO2021117730A1 (ja) | 2019-12-09 | 2020-12-08 | |
EP20900654.3A EP4074595A4 (en) | 2019-12-09 | 2020-12-08 | AIRCRAFT AND TOWER WITH LOADING OPENING |
US17/783,665 US12060173B2 (en) | 2019-12-09 | 2020-12-08 | Aerial vehicle with magnetic field power generation unit and tower including charging port |
AU2020403602A AU2020403602A1 (en) | 2019-12-09 | 2020-12-08 | Aerial vehicle and tower including charging port |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-222232 | 2019-12-09 | ||
JP2019222232 | 2019-12-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021117730A1 true WO2021117730A1 (ja) | 2021-06-17 |
Family
ID=76329863
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/045709 WO2021117730A1 (ja) | 2019-12-09 | 2020-12-08 | 飛行体及び給電ポートを備えた鉄塔 |
Country Status (5)
Country | Link |
---|---|
US (1) | US12060173B2 (ja) |
EP (1) | EP4074595A4 (ja) |
JP (1) | JPWO2021117730A1 (ja) |
AU (1) | AU2020403602A1 (ja) |
WO (1) | WO2021117730A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH033847B2 (ja) | 1982-06-21 | 1991-01-21 | Matsushita Electric Ind Co Ltd | |
US9421869B1 (en) * | 2015-09-25 | 2016-08-23 | Amazon Technologies, Inc. | Deployment and adjustment of airborne unmanned aerial vehicles |
US20170015415A1 (en) * | 2015-07-15 | 2017-01-19 | Elwha Llc | System and method for operating unmanned aircraft |
WO2017094842A1 (ja) | 2015-12-04 | 2017-06-08 | 株式会社ナイルワークス | 無人飛行体による薬剤散布装置 |
JP2018090990A (ja) * | 2016-11-30 | 2018-06-14 | 阪神高速技術株式会社 | ケーブル点検装置 |
JP2019089361A (ja) * | 2017-11-10 | 2019-06-13 | 中国電力株式会社 | 無人飛行体の制御方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4818990A (en) * | 1987-09-11 | 1989-04-04 | Fernandes Roosevelt A | Monitoring system for power lines and right-of-way using remotely piloted drone |
US7398946B1 (en) * | 2004-10-04 | 2008-07-15 | United States Of America As Represented By The Secretary Of The Air Force | Power line sentry charging |
US20150326136A1 (en) * | 2014-05-09 | 2015-11-12 | Analog Devices Technology | Magnetic field energy harvesting device |
US20170015414A1 (en) * | 2015-07-15 | 2017-01-19 | Elwha Llc | System and method for power transfer to an unmanned aircraft |
MX2018007476A (es) * | 2016-01-13 | 2018-08-01 | Gen Cable Technologies Corp | Sistema y metodo para la aplicacion de un recubrimiento en conductores de transmision de energia electrica aereos utilizando un vehiculo aereo no tripulado. |
RU2634931C1 (ru) | 2016-06-08 | 2017-11-08 | Общество с ограниченной ответственностью "Лаборатория будущего" | Устройство для зарядки аккумулятора от провода воздушных линий электропередач |
US10418853B2 (en) * | 2016-09-30 | 2019-09-17 | Intel Corporation | Methods and apparatus to wirelessly power an unmanned aerial vehicle |
US11027838B2 (en) * | 2017-05-06 | 2021-06-08 | Karman, Inc. | In flight charging system |
FR3078317B1 (fr) | 2018-02-27 | 2022-04-01 | Commissariat Energie Atomique | Dispositif volant |
US10391867B1 (en) | 2018-06-09 | 2019-08-27 | Nxp Aeronautics Research, Llc | Apparatus having electric-field actuated generator for powering electrical load within vicinity of powerlines |
CN112384443B (zh) | 2018-07-17 | 2021-09-10 | 株式会社爱隆未来 | 旋翼机系统 |
CN109638718B (zh) | 2019-01-02 | 2020-02-07 | 中国科学院自动化研究所 | 架空输电线路的巡检机器人 |
-
2020
- 2020-12-08 EP EP20900654.3A patent/EP4074595A4/en active Pending
- 2020-12-08 JP JP2021563976A patent/JPWO2021117730A1/ja active Pending
- 2020-12-08 AU AU2020403602A patent/AU2020403602A1/en active Pending
- 2020-12-08 WO PCT/JP2020/045709 patent/WO2021117730A1/ja unknown
- 2020-12-08 US US17/783,665 patent/US12060173B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH033847B2 (ja) | 1982-06-21 | 1991-01-21 | Matsushita Electric Ind Co Ltd | |
US20170015415A1 (en) * | 2015-07-15 | 2017-01-19 | Elwha Llc | System and method for operating unmanned aircraft |
US9421869B1 (en) * | 2015-09-25 | 2016-08-23 | Amazon Technologies, Inc. | Deployment and adjustment of airborne unmanned aerial vehicles |
WO2017094842A1 (ja) | 2015-12-04 | 2017-06-08 | 株式会社ナイルワークス | 無人飛行体による薬剤散布装置 |
JP2018090990A (ja) * | 2016-11-30 | 2018-06-14 | 阪神高速技術株式会社 | ケーブル点検装置 |
JP2019089361A (ja) * | 2017-11-10 | 2019-06-13 | 中国電力株式会社 | 無人飛行体の制御方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4074595A4 |
Also Published As
Publication number | Publication date |
---|---|
EP4074595A1 (en) | 2022-10-19 |
AU2020403602A1 (en) | 2022-08-04 |
EP4074595A4 (en) | 2023-11-29 |
US12060173B2 (en) | 2024-08-13 |
US20230026256A1 (en) | 2023-01-26 |
JPWO2021117730A1 (ja) | 2021-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8880241B2 (en) | Vertical takeoff and landing (VTOL) small unmanned aerial system for monitoring oil and gas pipelines | |
Alhassan et al. | Power transmission line inspection robots: A review, trends and challenges for future research | |
US9975632B2 (en) | Aerial vehicle system | |
US9421869B1 (en) | Deployment and adjustment of airborne unmanned aerial vehicles | |
CN204606235U (zh) | 基于悬挂系留系统的长航时多旋翼无人机装置 | |
US11059378B2 (en) | Charging a rechargeable battery of an unmanned aerial vehicle in flight using a high voltage power line | |
CN103612756B (zh) | 电力线巡检用的多旋翼飞行器以及基于它的系统 | |
US8666553B2 (en) | Line inspection robot and system | |
US7510142B2 (en) | Aerial robot | |
US11643206B2 (en) | Power line inspection vehicle | |
WO2016103264A1 (en) | A method and apparatus for extending range of small unmanned aerial vehicles - multicopters | |
US20240025575A1 (en) | Ultra-low frequency wireless power transfer technology for unmanned aerial vehicles | |
CN105302155B (zh) | 一种以电力载波辐射确定安全距离的无人机巡线方法 | |
KR101788261B1 (ko) | 레일 시스템을 이용한 전력 공급 장치 및 이를 포함한 유선 드론 시스템 | |
Foudeh et al. | An advanced unmanned aerial vehicle (UAV) approach via learning-based control for overhead power line monitoring: A comprehensive review | |
CN107404348A (zh) | 复杂危险场景的监测方法及相应的监测系统 | |
WO2021117730A1 (ja) | 飛行体及び給電ポートを備えた鉄塔 | |
US20240017856A1 (en) | Electricity and data communication access to unmanned aerial vehicles from over-head power lines | |
EP3486179B1 (en) | Inpecting utilities by means of an unmanned aerial vehicle and charging a rechargeable battery of the vehicle in flight using a high voltage power line and method and apparatus for generating a flight plan for the vehicle | |
CN215598427U (zh) | 一种无人机航空磁场测量装置 | |
CN206696428U (zh) | 电力线路测量装置 | |
CN114766467A (zh) | 驱鸟装置及驱鸟系统 | |
JP2021092418A (ja) | 飛行体及び飛行体測位システム | |
Mehendale | Investigating the Battery Life Issues in Unmanned Aerial Vehicles: An Analysis of Challenges and Proposed Solutions | |
CN204528914U (zh) | 一种基于空中飞行平台的输电线缆放线装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20900654 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021563976 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020900654 Country of ref document: EP Effective date: 20220711 |
|
ENP | Entry into the national phase |
Ref document number: 2020403602 Country of ref document: AU Date of ref document: 20201208 Kind code of ref document: A |