WO2021117630A1 - Drive device of rotary electric machine - Google Patents

Drive device of rotary electric machine Download PDF

Info

Publication number
WO2021117630A1
WO2021117630A1 PCT/JP2020/045237 JP2020045237W WO2021117630A1 WO 2021117630 A1 WO2021117630 A1 WO 2021117630A1 JP 2020045237 W JP2020045237 W JP 2020045237W WO 2021117630 A1 WO2021117630 A1 WO 2021117630A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
loss
inverter
electric machine
rotary electric
Prior art date
Application number
PCT/JP2020/045237
Other languages
French (fr)
Japanese (ja)
Inventor
浩史 清水
貞洋 赤間
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2021117630A1 publication Critical patent/WO2021117630A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present disclosure relates to a drive device for a rotary electric machine, which is applied to a rotary electric machine having a plurality of windings corresponding to a plurality of phases.
  • a drive device for a rotary electric machine which includes two inverters and has a drive circuit configured to enable H drive of the rotary electric machine.
  • Patent Document 1 describes a drive circuit for driving a winding of each phase with two inverters (H-bridge inverters) in a rotary electric machine having three-phase windings.
  • alternate PWM drive In a drive circuit configured to enable H drive of a rotary electric machine, alternate PWM drive is known in which two inverters are alternately PWM-controlled. In the alternate PWM drive, one of the two inverters executes PWM control and the other does not execute PWM control. Of the two inverters, the inverter on the side that is not executing PWM control has a higher conduction loss in one of the paired upper arm switch and lower arm switch than in the other switch. Become. Due to the imbalance of loss between the upper arm switch and the lower arm switch that are paired with each other, there is a concern that the amount of heat generated will be higher in the switch on the side with the higher loss, and the deterioration of the element and the temperature destruction will proceed unbalanced. Will be done.
  • Patent Document 1 in order to improve the above-mentioned loss imbalance, PD-PWM (Phase Disposition PWM) control, which similarly PWM-controls the upper arm switch and the lower arm switch of two inverters under predetermined conditions, is performed. Execute.
  • PD-PWM Phase Disposition PWM
  • the system loss may increase while the above-mentioned imbalance of conduction loss is improved.
  • complicated phase control is required, and if the phase control is deviated, there is a concern that torque ripple may occur.
  • the present disclosure provides a drive device for a rotary electric machine, which is applied to a rotary electric machine having a plurality of windings corresponding to a plurality of phases.
  • This drive device was connected to a DC power supply, and was connected to a first inverter including an upper arm switch and a lower arm switch, which were connected to one end of the winding for each phase, and to the other end of the winding for each phase.
  • a second inverter including an upper arm switch and a lower arm switch, a high potential connection line connecting the DC high potential side of the first inverter and the DC high potential side of the second inverter, and a DC low of the first inverter.
  • a drive circuit capable of H-driving the rotary electric machine including a low-potential connection line connecting the potential side and the DC low-potential side of the second inverter, and opening / closing of the upper arm switch and the lower arm switch.
  • a control unit capable of executing asymmetric switching control for alternately operating the first inverter and the second inverter by controlling the inverter is provided.
  • One of the paired upper arm switch and the lower arm switch is a high-loss switch on the side where the conduction loss increases during the asymmetric switching control, and the other switch has a conduction loss during the asymmetric switching control. It is a low loss switch on the lower side.
  • the high loss switch is a switching element having a lower on-resistance than the low loss switch.
  • a pair of upper arm switches is used when executing asymmetric switching control in which the first inverter and the second inverter are alternately operated by controlling the opening and closing of the upper arm switch and the lower arm switch.
  • One of the lower arm switch and the lower arm switch can be a high loss switch on the side where the conduction loss is high when not operating in the asymmetric switching control, and the other can be a low loss switch on the side where the conduction loss is low.
  • the high loss switch is a switching element used as each switch so that a switching element having a lower on-resistance than the low loss switch is used. Has been selected.
  • the conduction loss is reduced and the loss in the high-loss switch is reduced. This improves the loss imbalance between the high loss switch and the low loss switch. In other words, the loss imbalance between the upper arm switch and the lower arm switch is improved. As a result, it is possible to improve the loss imbalance between the upper arm switch and the lower arm switch constituting the inverter without increasing the system loss by simple control.
  • FIG. 1 shows a drive device for a rotary electric machine according to an embodiment.
  • FIG. 2 is a diagram showing a drive pattern of alternating PWM drive as an example of asymmetric switching control when driving a rotary electric machine to H.
  • FIG. 3 is a diagram showing a current path during the alternate PWM drive shown in FIG.
  • FIG. 4 is a diagram showing the on-resistance of the semiconductor element used as a switch in the drive device of FIG.
  • FIG. 5 is a diagram showing the loss of the switch in the drive device of FIG.
  • FIG. 6 is a diagram showing a drive pattern of alternating PWM drive according to a modified example.
  • FIG. 7 is a diagram showing a control example of each switch when driving the rotary electric machine in Y.
  • FIG. 1 shows a drive device 10 that executes drive control of a rotary electric machine.
  • the rotary electric machine includes a U-phase winding U, a V-phase winding V, and a W-phase winding W.
  • the drive device 10 includes a drive circuit 11, a control unit 12, and a DC power supply VDC.
  • the drive circuit 11 includes a first inverter INV1, a second inverter INV2, a high potential connection line La, a low potential connection line Lb, and a connection line switch SC.
  • the first inverter INV1 is connected to the DC power supply VDC, and is connected to the upper arm switch SU1a and the lower arm switch SU1b connected to one end of the U-phase winding U of the rotary electric machine, and to one end of the V-phase winding V. It also includes an upper arm switch SV1a and a lower arm switch SV1b, and an upper arm switch SW1a and a lower arm switch SW1b connected to one end of the W-phase winding W.
  • the second inverter INV2 is connected to the DC power supply VDC, and is connected to the upper arm switch SU2a and the lower arm switch SU2b connected to the other end of the U-phase winding U of the rotary electric machine, and to the other end of the V-phase winding V. It includes a connected upper arm switch SV2a and a lower arm switch SV2b, and an upper arm switch SW2a and a lower arm switch SW2b connected to the other end of the W-phase winding W.
  • the high potential connection line La is a wiring that connects the DC high potential side of the first inverter INV1 and the DC high potential side of the second inverter INV2.
  • the low potential connection line Lb connects the DC low potential side of the first inverter INV1 and the DC low potential side of the second inverter.
  • the high potential side terminals of the upper arm switches SU1a, SV1a, SW1a of each phase are connected to the positive electrode terminals of the DC power supply VDC, and the low potential side terminals of the lower arm switches SU1b, SV1b, SW1b of each phase are It is connected to the negative electrode terminal of the DC power supply VDC.
  • the upper arm switches SU1a, SV1a, SW1a and the lower arm switches SU1b, SV1b, SW1b are semiconductor switching elements, respectively.
  • the upper arm switches SU1a, SV1a, and SW1a are MOSFETs (Metal-Oxide-Semiconductor Field-Effective Transistors) made of silicon carbide (SiC) as a material.
  • MOSFETs Metal-Oxide-Semiconductor Field-Effective Transistors
  • the lower arm switches SU1b, SV1b, and SW1b are IGBTs (Insulated Gate Bipolar Transistors) made of silicon and having freewheeling diodes connected in antiparallel.
  • the high potential side terminals of the upper arm switches SU2a, SV2a, SW2a of each phase are connected to the high potential connection line La, and the low potential side terminals of the lower arm switches SU2b, SV2b, SW2b of each phase are low. It is connected to the potential connection line Lb.
  • the upper arm switches SU2a, SV2a, SW2a and the lower arm switches SU2b, SV2b, SW2b are semiconductor switching elements, respectively. More specifically, the upper arm switches SU2a, SV2a, and SW2a are MOSFETs made of SiC as a material.
  • the lower arm switches SU2b, SV2b, and SW2b are IGBTs made of silicon and having a freewheeling diode connected in antiparallel.
  • first inverter INV1 one ends of windings U, V, and W (second inverter) are located at intermediate points between the upper arm switches SU1a, SV1a, and SW1a of each phase and the lower arm switches SU1b, SV1b, and SW1b, respectively. One end that is not connected to INV2) is connected.
  • second inverter INV2 one ends of windings U, V, and W (first inverter) are located at intermediate points between the upper arm switches SU2a, SV2a, SW2a and the lower arm switches SU2b, SV2b, SW2b of each phase, respectively.
  • One end that is not connected to INV1 is connected.
  • connection line switch SC is provided on the high-potential connection line La, and conducts or cuts off the first inverter INV1 and the second inverter INV2 by conducting or cutting off the high-potential connection line La.
  • the drive circuit 11 can be used as an H-bridge circuit, and the rotary electric machine can be driven by H.
  • the drive circuit 11 When the connection line switch SC is in the open state (off state), the drive circuit 11 enables Y drive of the rotary electric machine. For example, by closing all the upper arm switches SU2a, SV2a, SW2a of the second inverter INV2 and opening all the lower arm switches SU2b, SV2b, SW2b, Y drive of the rotary electric machine becomes possible. .. That is, the U-phase winding U of the rotary electric machine, the V-phase winding V, and the W-phase winding W can be connected by a Y connection.
  • the upper arm switches SU2a, SV2a, and SW2a correspond to the neutral point configuration switch that constitutes the neutral point of the Y connection (star-shaped connection).
  • the control unit 12 includes a microcomputer composed of a CPU and various memories, and opens and closes each switch in the first inverter INV1 and the second inverter INV2 based on various detection information in the rotary electric machine and requests for power running and power generation. Energization control is performed by (on / off).
  • the detection information of the rotating electric machine includes, for example, the rotation angle of the rotor (electric angle information) detected by an angle detector such as a resolver, the power supply voltage (inverter input voltage) detected by the voltage sensor, and the current sensor.
  • the energizing current of each phase is included.
  • the control unit 12 further controls the opening and closing of the connection line switch SC.
  • the control unit 12 generates and outputs an operation signal for operating each switch of the first inverter INV1 and the second inverter INV2 and the connection line switch SC.
  • FIG. 2 is a diagram showing an example of switch control of the first inverter INV1 and the second inverter INV2 by the control unit 12. More specifically, as a drive example when the connection line switch SC is controlled to the closed state to drive the rotary electric machine in H, a drive pattern when alternating PWM drive is executed is shown.
  • the alternate PWM drive is an example of asymmetric switching control in which the first inverter INV1 and the second inverter INV2 are operated alternately.
  • one cycle of the U-phase voltage UV waveform is configured by the period T1 and the period T2.
  • the phase of the U-phase current UI is 90 ° behind the U-phase voltage UV.
  • PWM control is executed on the first inverter INV1 side, and the upper arm switches SU2a, SV2a, SW2a are fixed in the closed state and the lower arm switches SU2b, SV2b, SW2b are fixed in the open state on the second inverter INV2 side.
  • the second inverter INV2 side executes PWM control, and the first inverter INV1 side fixes the upper arm switches SU1a, SV1a, SW1a in the closed state and the lower arm switches SU1b, SV1b, SW1b in the open state.
  • the control of the period T1 and the period T2 is executed alternately.
  • the current path flowing through the drive circuit 11 during the period T1 is shown by a thick line.
  • the U-phase current is a negative current in the period T1
  • the current flows in the direction indicated by the arrow in FIG. 3, and the current flows through the MOSFETs of the upper arm switches SU2a, SV2a, and SW2a.
  • the U-phase current is a positive current
  • the current flows in the direction opposite to the direction indicated by the arrow in FIG. 3, and the current flows through the diodes of the upper arm switches SU2a, SV2a, and SW2a.
  • the upper arm of the first inverter INV1 and the second inverter INV2 on the side not controlled by the PWM control (for example, the second inverter INV2).
  • the switches for example, upper arm switches SU2a, SV2a, SW2a
  • the lower arm switches for example, lower arm switches SU2b, SV2b, SW2b
  • a conduction loss occurs in the upper arm switch
  • no conduction loss occurs in the lower arm switch. Due to the conduction loss, the amount of heat generated by the upper arm switch becomes larger than the amount of heat generated by the lower arm switch.
  • FIG. 4 is a diagram showing the on-resistance of the IGBT or MOSFET.
  • the vertical axis shows the collector current Ic or the drain current Id
  • the horizontal axis shows the collector-emitter voltage Vce or the drain-source voltage Vds.
  • Reference numbers 21, 22, and 23 indicate a MOSFET made of silicon carbide (SiC), a MOSFET made of silicon (Si), and an IGBT made of silicon, respectively.
  • MOSFETs have linear on-resistance characteristics from a low potential region of about 0 volt, and have higher on-resistance than IGBTs (reference number 23) that include a pn junction in the forward current-carrying layer. It gets lower. Further, as shown in Reference Nos. 21 and 22, the on-resistance of the MOSFET made of SiC is lower than that of the MOSFET made of silicon.
  • FIG. 5 is a diagram showing the result of calculating the change in loss when the IGBT is replaced with a MOSFET having a lower on-resistance by simulation.
  • Reference numerals 31 to 34 indicate a forward conduction loss, a reverse conduction loss, a switching loss, and a recovery loss, respectively.
  • an IGBT is used as the upper arm switch SU1a
  • a MOSFET is used as the upper arm switch SU1a
  • an IGBT is used as the lower arm switch SU1b.
  • the IGBT used in (1) and (3) is the same semiconductor element, and corresponds to the semiconductor element of reference number 23 shown in FIG.
  • the MOSFET used in (2) corresponds to the semiconductor element of reference number 21 shown in FIG. 4, and has a lower on-resistance than the IGBTs of (1) and (3).
  • the order shown mainly in reference numbers 31 and 32 is higher than that when the IGBT is also used as the lower arm switch SU1b (3). Due to the high conduction loss in the directional and reverse directions, the overall loss is high. When both IGBTs are used, the total loss in the upper arm switch SU1a is higher than the total loss in the lower arm switch SU1b.
  • the inverter on the side not controlled by the PWM is used.
  • Upper arm switches SU1a, SV1a, SW1a, SU2a, SV2a, SW2a are high loss switches on the side where the conduction loss is high
  • lower arm switches SU1b, SV1b, SW1b, SU2b, SV2b, SW2b are on the side where the conduction loss is low. It becomes a low loss switch.
  • MOSFETs are used as the upper arm switches SU1a, SV1a, SW1a, SU2a, SV2a, and SW2a
  • IGBTs are used as the lower arm switches SU1b, SV1b, SW1b, SU2b, SV2b, and SW2b.
  • the on-resistance is lower than that of the IGBT used for the lower arm switches SU1b, SV1b, SW1b, SU2b, SV2b, and SW2b.
  • the conduction loss can be reduced as compared with the case of using IGBTs. Can be done. As a result, as shown in FIG. 5, the imbalance between the total loss in the paired upper arm switch and the total loss in the lower arm switch can be improved.
  • MOSFET is exemplified as a switching element having a relatively low on-resistance used in a high-loss switch
  • IGBT is exemplified as a switching element having a relatively high on-resistance used in a low-loss switch.
  • the switching element used in the high-loss switch may have a lower on-resistance than the switching element used in the low-loss switch.
  • the high-loss switch can have a lower on-resistance than the low-loss switch by appropriately selecting the element structure, material, element size, and the like of the semiconductor element.
  • a unipolar semiconductor element may be used as the high loss switch, and a bipolar semiconductor element may be used as the low loss switch.
  • the unipolar semiconductor element is composed of only conductive semiconductor layers (for example, n layers) having the same forward conduction layer, it has a linear on-resistance characteristic from a low potential region of about 0 volt as shown in FIG. , The on-resistance is lower than that of a bipolar semiconductor device having a pn junction in the forward conductive layer.
  • the high loss switch it is preferable to use a unipolar semiconductor element capable of synchronous rectification when conducting in the reverse direction.
  • Such a unipolar element can be energized in the reverse direction without passing through a body diode by inputting an on signal to the gate terminal when conducting in the reverse direction, it has a linear on-resistance characteristic from a low potential region of about 0 volt. , Furthermore, the on-resistance becomes lower.
  • a MOSFET can be exemplified as a unipolar semiconductor element capable of synchronous rectification when conducting in the reverse direction.
  • a semiconductor element made of a semiconductor having a wider bandgap than silicon may be used as a high-loss switch, and a semiconductor element made of silicon as a low-loss switch may be used.
  • a semiconductor having a wider bandgap as a material, the on-resistance can be reduced.
  • semiconductors having a wider bandgap than silicon include silicon carbide (SiC) and gallium nitride (GaN).
  • SiC silicon carbide
  • GaN gallium nitride
  • a semiconductor having a wide bandgap has a high dielectric breakdown strength, and the element thickness (thickness in the conduction direction) of the semiconductor element can be reduced, so that the on-resistance can be reduced.
  • the high-loss switch may be a semiconductor element having a larger element size than the low-loss switch.
  • a large element size means that a surface substantially perpendicular to the conduction direction of the semiconductor element is large.
  • the high-loss switch may be a semiconductor element having a thinner element thickness in the conduction direction than the low-loss switch.
  • the conduction distance is shortened, so that the on-resistance can be reduced.
  • PWM control is executed on the first inverter INV1 side and the upper arm switches SU2a, SV2a on the second inverter INV2 side during the period T1 as in FIG.
  • the SW2a is fixed in the open state and the lower arm switches SU2b, SV2b, and SW2b are fixed in the closed state.
  • PWM control is executed on the second inverter INV2 side, and the upper arm switches SU1a, SV1a, SW1a are fixed in the open state and the lower arm switches SU1b, SV1b, SW1b are fixed in the closed state on the first inverter INV1 side.
  • the control of the period T1 and the period T2 is executed alternately.
  • the upper arm switch is controlled to be in the open state and a current flows in the inverter of the first inverter INV1 and the second inverter INV2 that is not PWM controlled. Instead, the lower arm switch is controlled to the closed state and current flows. Therefore, a conduction loss occurs in the lower arm switch, and no conduction loss occurs in the upper arm switch.
  • a semiconductor element having a lower on-resistance than the upper arm switch as the lower arm switch in the drive device 10 shown in FIG.
  • the upper arm switches SU1a, SV1a, SW1a an IGBT made of silicon and having a freewheeling diode connected in antiparallel is used, and the lower arm switch SU1b is used.
  • SV1b, SW1b may be MOSFETs made of SiC as a material.
  • the control unit 12 raises the upper arm when PWM control is executed by the other inverter, as shown in FIG. It is preferable that the alternating PWM control is executed so as to control the switch in the open state and control the lower arm switch in the closed state.
  • the control unit 12 switches the upper arm switch when PWM control is executed by the other inverter, as shown in FIG. It is preferable that the alternating PWM control is executed so as to control the closed state and control the lower arm switch to the open state.
  • FIG. 7 is a diagram showing an example of a state in which the drive circuit 11 is controlled so as to be usable for Y drive of the rotary electric machine by the control unit 12.
  • the connection line switch SC is controlled to be in the open state
  • the upper arm switches SU2a, SV2a, SW2a of the second inverter INV2 are controlled to be in the closed state
  • the lower arm switches SU2b, SV2b, of the second inverter INV2 are controlled.
  • the SW2b By controlling the SW2b to the open state, the U-phase winding U, the V-phase winding V, and the W-phase winding W of the rotary electric machine are in a Y-connected state.
  • the Y connection is realized by connecting the winding terminals of the windings U, V, and W on the second inverter INV2 side via the upper arm switches SU2a, SV2a, and SW2a, respectively.
  • the rotary electric machine can be driven in Y by forming a Y connection using the second inverter INV2 and executing PWM control or the like on the first inverter INV1.
  • the upper arm switches SU2a, SV2a, and SW2a correspond to the neutral point configuration switch that constitutes the neutral point of the Y connection. Since the lower arm switches SU2b, SV2b, and SW2b do not form a neutral point, they correspond to non-neutral point configuration switches.
  • the upper arm switches SU2a, SV2a, and SW2a are controlled to be in the closed state and a current flows, and the lower arm switches SU2b, SV2b, and SW2b are controlled to be in the open state.
  • the current does not flow. Therefore, conduction loss occurs in the upper arm switches SU2a, SV2a, and SW2a, and no conduction loss occurs in the lower arm switches SU2b, SV2b, and SW2b.
  • the upper arm switches SU2a, SV2a, and SW2a which are neutral point configuration switches, have a relatively high conduction loss
  • the lower arm switches SU2b, SV2b, and SW2b which are non-neutral point configuration switches, have a relatively low conduction loss. ..
  • MOSFETs are used as the upper arm switches SU2a, SV2a, SW2a
  • IGBTs are used as the lower arm switches SU2b, SV2b, SW2b
  • these MOSFETs are used for the lower arm switches SU2b, SV2b, SW2b.
  • On resistance is lower than that of IGBT.
  • MOSFETs with lower on-resistance as the upper arm switches SU2a, SV2a, and SW2a, which are neutral point configuration switches with high conduction loss, conduction loss can be reduced as compared with the case of using IGBTs.
  • the imbalance between the total loss of the upper arm switches SU2a, SV2a, and SW2a and the total loss of the lower arm switches SU2b, SV2b, and SW2b can be improved.
  • connection line switch SC provided on the high-potential connection line La and capable of switching between conduction and interruption of the high-potential connection line La has been described as an example, but the present invention is not limited to this.
  • the connection line switch SC may be provided on either the high potential connection line La or the low potential connection line Lb.
  • the neutral point configuration switch As the switching element used in the neutral point configuration switch, a switching element having a low on-resistance similar to that of a high-loss switch can be used.
  • the neutral point configuration switch can have a lower on-resistance than the non-neutral point configuration switch by appropriately selecting the element structure, material, element size, etc. of the semiconductor element. it can.
  • the neutral point configuration switch may be a unipolar semiconductor element. Further, the neutral point configuration switch may be a unipolar semiconductor element capable of synchronous rectification when conducting in the reverse direction.
  • the neutral point configuration switch may be a semiconductor element made of a semiconductor (for example, SiC, GaN) having a bandgap wider than that of silicon. Further, the neutral point configuration switch may be a semiconductor element having a larger element size than the non-neutral point configuration switch. Further, the neutral point configuration switch may be a semiconductor element having a thinner element thickness than the non-neutral point configuration switch.
  • the installation position of the connection line switch SC so that the switch that becomes the neutral point configuration switch during Y drive matches the switch that becomes the high loss switch during H drive ( It is preferable to select the high-potential connection line La or the low-potential connection line Lb) and the pattern of alternating PWM control (the pattern shown in FIG. 2 or FIG. 6). In both the H drive and the Y drive patterns, the imbalance between the total loss in the upper arm switch and the total loss in the lower arm switch can be improved.
  • connection line switch SC when executing the alternate PWM control shown in FIG. 2, it is preferable to install the connection line switch SC on the high potential connection line La.
  • a switching element with low on-resistance as the upper arm switch, which increases the conduction loss in both H drive and Y drive, the total loss in the lower arm switch and the total loss in the upper arm switch are inconsistent. The balance can be improved.
  • connection line switch SC when executing the alternate PWM control shown in FIG. 6, it is preferable to install the connection line switch SC on the low potential connection line Lb.
  • a switching element with low on-resistance as the lower arm switch, which increases the conduction loss in both H drive and Y drive, the total loss in the upper arm switch and the total loss in the lower arm switch are inconsistent. The balance can be improved.
  • the switch that is a high-loss switch and the neutral point configuration switch may be used as the switching element with low on-resistance, and the same switching element may be used for the other switches.
  • the upper arm switches SU2a, SV2a, and SW2a which are high-loss switches and neutral point configuration switches, are executed.
  • the lower arm switches SU1b, SV1b, SW1b which are low-loss switches, are used.
  • a switching element having a relatively high on-resistance may be used.
  • a switching element with low on-resistance is relatively expensive
  • a switching element with low on-resistance is used only for the upper arm switches SU2a, SV2a, and SW2a, which have high conduction loss during both H drive and Y drive.
  • the drive device 10 of a rotary electric machine is applied to a rotary electric machine having a plurality of windings (for example, U-phase winding U, V-phase winding V, W-phase winding W) corresponding to a plurality of phases, and is applied to a drive circuit 11 and a drive circuit 11.
  • the control unit 12 is provided.
  • the drive circuit 11 is configured to be capable of executing H drive of the rotary electric machine, and is connected to the DC power supply VDC and is connected to one end of the winding for each phase of the upper arm switches SU1a, SV1a, SW1a and the lower arm switch SU1b.
  • the high potential connection line La that connects the DC high potential side of the 1 inverter INV1 and the DC high potential side of the 2nd inverter INV2, and the DC low potential side of the 1st inverter INV1 and the DC low potential side of the 2nd inverter INV2. Includes a low potential connection line Lb to be connected.
  • the control unit 12 controls the opening and closing of the upper arm switches SU1a, SV1a, SW1a, SU2a, SV2a, SW2a and the lower arm switches SU1b, SV1b, SW1b, SU2b, SV2b, and SW2b to control the opening and closing of the first inverter INV1 and the second inverter INV2.
  • Asymmetric switching control for example, alternating PWM control
  • one of the paired upper arm switch and lower arm switch (for example, upper arm switch SU1a and lower arm switch SU1b) is a high loss switch (for example, the side where the conduction loss is high during asymmetric switching control).
  • the upper arm switch SU1a) and the other switch (for example, the lower arm switch SU1b) are low-loss switches on the side where the conduction loss is low during asymmetric switching control.
  • a high loss switch eg, upper arm switch SU1a
  • Is also a MOSFET with low on-resistance. Since a switching element having a low on-resistance is used as the high-loss switch having a high conduction loss, the conduction loss is reduced and the loss in the high-loss switch is reduced. Therefore, the loss imbalance between the high loss switch and the low loss switch is improved, and the loss imbalance between the upper arm switch and the lower arm switch is improved.
  • the switching element used in the high-loss switch may have a lower on-resistance than the switching element used in the low-loss switch.
  • the high-loss switch can have a lower on-resistance than the low-loss switch by appropriately selecting the element structure, material, element size, and the like of the semiconductor element.
  • the high-loss switch may be a unipolar semiconductor element. Examples of the unipolar semiconductor element include a field effect transistor (FET) and a MOSFET. Further, the high-loss switch may be a unipolar semiconductor element (for example, MOSFET) capable of synchronous rectification at the time of reverse conduction.
  • the high-loss switch may be a semiconductor element made of a semiconductor (for example, SiC, GaN) having a bandgap wider than that of silicon. Further, the high-loss switch may be a semiconductor element having a larger element size than the low-loss switch. Further, the high-loss switch may be a semiconductor element having a thinner element thickness than the low-loss switch.
  • the drive circuit 11 further includes a connection line switch SC provided on at least one of the high-potential connection line La and the low-potential connection line Lb to open and close the continuity between the first inverter INV1 and the second inverter INV2. , It is possible to switch between H drive and Y drive of the rotary electric machine. Further, the control unit 12 can switch between H drive control and Y drive control of the rotary electric machine by controlling the opening and closing of the connection line switch SC, the upper arm switch, and the lower arm switch.
  • the neutral point configuration switch preferably has a lower on-resistance than the non-neutral point configuration switch. Since a switching element having a low on-resistance is used as the neutral point configuration switch having a high conduction loss, the conduction loss is reduced and the loss in the neutral point configuration switch is reduced. Therefore, the loss imbalance between the neutral point configuration switch and the non-neutral point configuration switch is improved, and the loss imbalance between the upper arm switch and the lower arm switch is improved.
  • a switch which is a switch, may be configured to have a lower on-resistance than other switches. For example, when a switching element with low on-resistance is relatively expensive, only a switch that is a high-loss switch and a neutral point configuration switch is used as a switching element with low on-resistance, and other switches are relatively inexpensive. It may be a switching element whose on-resistance is not low. As a result, it is possible to achieve both cost reduction and improvement of the imbalance between the loss in the upper arm switch and the loss in the lower arm switch.
  • the controls and methods thereof described in the present disclosure are realized by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. May be done.
  • the controls and methods thereof described in the present disclosure may be implemented by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits.
  • the control unit and method thereof described in the present disclosure may be a combination of a processor and memory programmed to perform one or more functions and a processor composed of one or more hardware logic circuits. It may be realized by one or more dedicated computers configured.
  • the computer program may be stored in a computer-readable non-transitional tangible recording medium as an instruction executed by the computer.

Abstract

This drive device (10) of a rotary electric machine having a plurality of windings corresponding to a plurality of phases is provided with: a first inverter (INV1) which is connected to a DC power supply and includes upper and lower arm switches connected to one end of the windings for each phase; a second inverter (INV2) having upper and lower arm switches connected to the other end of the windings for each phase; a high-potential connection line (La); a low-potential connection line (Lb); a drive circuit (11) capable of H-driving the rotary electric machine; and a control unit (12) capable of executing asymmetric switching control for alternately operating the first inverter and the second inverter. One switch among the paired upper and lower arm switches is a high-loss switch that has a high conduction loss during asymmetric switching control, and the other switch is a low-loss switch that has a low conduction loss during asymmetric switching control. In at least a pair of upper and lower arm switches, the high-loss switch has lower on-resistance than the low-loss switch.

Description

回転電機の駆動装置Drive device for rotary electric machine 関連出願の相互参照Cross-reference of related applications
 本出願は、2019年12月9日に出願された日本出願番号2019-222183号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2019-222183, which was filed on December 9, 2019, and the contents of the description are incorporated herein by reference.
 本開示は、複数相に対応する複数の巻線を有する回転電機に適用される、回転電機の駆動装置に関する。 The present disclosure relates to a drive device for a rotary electric machine, which is applied to a rotary electric machine having a plurality of windings corresponding to a plurality of phases.
 2つのインバータを含み、回転電機のH駆動が可能に構成された駆動回路を備える、回転電機の駆動装置が知られている。特許文献1には、3相の巻線を備える回転電機において、各相の巻線を2つのインバータ(Hブリッジインバータ)で駆動する駆動回路が記載されている。 A drive device for a rotary electric machine is known, which includes two inverters and has a drive circuit configured to enable H drive of the rotary electric machine. Patent Document 1 describes a drive circuit for driving a winding of each phase with two inverters (H-bridge inverters) in a rotary electric machine having three-phase windings.
特開2017-93077号公報JP-A-2017-93077
 回転電機のH駆動が可能に構成された駆動回路においては、2つのインバータを交互にPWM制御する交互PWM駆動が知られている。交互PWM駆動では、2つのインバータのうち一方においてはPWM制御を実行し、他方においてはPWM制御を実行しない。2つのインバータのうち、PWM制御を実行中ではない側のインバータでは、対となる上アームスイッチと下アームスイッチのうちのいずれか一方のスイッチにおける導通損失が、他方のスイッチにおける導通損失よりも高くなる。このような対となる上アームスイッチと下アームスイッチにおける損失の不均衡により、損失の高い側のスイッチにおいてより発熱量が高くなり、素子の劣化や温度破壊等が不均衡に進行することが懸念される。 In a drive circuit configured to enable H drive of a rotary electric machine, alternate PWM drive is known in which two inverters are alternately PWM-controlled. In the alternate PWM drive, one of the two inverters executes PWM control and the other does not execute PWM control. Of the two inverters, the inverter on the side that is not executing PWM control has a higher conduction loss in one of the paired upper arm switch and lower arm switch than in the other switch. Become. Due to the imbalance of loss between the upper arm switch and the lower arm switch that are paired with each other, there is a concern that the amount of heat generated will be higher in the switch on the side with the higher loss, and the deterioration of the element and the temperature destruction will proceed unbalanced. Will be done.
 特許文献1では、上記の損失の不均衡を改善するために、所定の条件下で2つのインバータの上アームスイッチと下アームスイッチとを同様にPWM制御するPD-PWM(Phase Disposition PWM)制御を実行する。しかしながら、特許文献1のPD-PWM制御では、上記の導通損失の不均衡を改善される一方でシステム損失が増加することが懸念される。また、複雑な位相制御が要求され、位相制御にずれが生じるとトルクリプルの発生が懸念される。 In Patent Document 1, in order to improve the above-mentioned loss imbalance, PD-PWM (Phase Disposition PWM) control, which similarly PWM-controls the upper arm switch and the lower arm switch of two inverters under predetermined conditions, is performed. Execute. However, in the PD-PWM control of Patent Document 1, there is a concern that the system loss may increase while the above-mentioned imbalance of conduction loss is improved. Further, complicated phase control is required, and if the phase control is deviated, there is a concern that torque ripple may occur.
 上記に鑑み、本開示は、簡易な制御でシステム損失を増やすことなく、インバータを構成する上アームスイッチと下アームスイッチにおける損失の不均衡を改善する技術を提供することを目的とする。 In view of the above, it is an object of the present disclosure to provide a technique for improving the loss imbalance between the upper arm switch and the lower arm switch constituting the inverter without increasing the system loss by simple control.
 本開示は、複数相に対応する複数の巻線を有する回転電機に適用される、回転電機の駆動装置を提供する。この駆動装置は、直流電源に接続され、前記巻線の一端に相ごとに接続された上アームスイッチ及び下アームスイッチを備える第1インバータと、前記巻線の他端に相ごとに接続された上アームスイッチ及び下アームスイッチを備える第2インバータと、前記第1インバータの直流高電位側と前記第2インバータの直流高電位側とを接続する高電位接続線と、前記第1インバータの直流低電位側と前記第2インバータの直流低電位側とを接続する低電位接続線と、を含み、前記回転電機のH駆動が可能な駆動回路と、前記上アームスイッチ及び前記下アームスイッチの開閉を制御することにより前記第1インバータと前記第2インバータとを交互に作動させる非対称スイッチング制御を実行可能な制御部と、を備える。対となる前記上アームスイッチと前記下アームスイッチにおける一方のスイッチは、前記非対称スイッチング制御時に導通損失が高くなる側である高損失スイッチであり、他方のスイッチは、前記非対称スイッチング制御時に導通損失が低くなる側である低損失スイッチである。少なくとも1対の前記上アームスイッチと前記下アームスイッチにおいて、前記高損失スイッチは、前記低損失スイッチよりもオン抵抗が低いスイッチング素子である。 The present disclosure provides a drive device for a rotary electric machine, which is applied to a rotary electric machine having a plurality of windings corresponding to a plurality of phases. This drive device was connected to a DC power supply, and was connected to a first inverter including an upper arm switch and a lower arm switch, which were connected to one end of the winding for each phase, and to the other end of the winding for each phase. A second inverter including an upper arm switch and a lower arm switch, a high potential connection line connecting the DC high potential side of the first inverter and the DC high potential side of the second inverter, and a DC low of the first inverter. A drive circuit capable of H-driving the rotary electric machine, including a low-potential connection line connecting the potential side and the DC low-potential side of the second inverter, and opening / closing of the upper arm switch and the lower arm switch. A control unit capable of executing asymmetric switching control for alternately operating the first inverter and the second inverter by controlling the inverter is provided. One of the paired upper arm switch and the lower arm switch is a high-loss switch on the side where the conduction loss increases during the asymmetric switching control, and the other switch has a conduction loss during the asymmetric switching control. It is a low loss switch on the lower side. In at least a pair of the upper arm switch and the lower arm switch, the high loss switch is a switching element having a lower on-resistance than the low loss switch.
 本開示に係る駆動装置では、上アームスイッチ及び下アームスイッチの開閉を制御することにより第1インバータと第2インバータとを交互に作動させる非対称スイッチング制御を実行する際に、対となる上アームスイッチと下アームスイッチのうち、一方は、非対称スイッチング制御における非作動時に導通損失が高くなる側である高損失スイッチとなり、他方は、導通損失が低くなる側である低損失スイッチとなり得る。本開示に係る駆動装置では、少なくとも1対の上アームスイッチと下アームスイッチにおいて、高損失スイッチは、低損失スイッチよりもオン抵抗が低いスイッチング素子が用いられるように、各スイッチとして用いられるスイッチング素子が選定されている。導通損失の高い高損失スイッチとして、オン抵抗が低いスイッチング素子が用いられるため、導通損失が低減されて、高損失スイッチにおける損失が低減される。このため、高損失スイッチと低損失スイッチとの間の損失の不均衡が改善される。言い換えると、上アームスイッチと下アームスイッチとの間の損失の不均衡が改善される。その結果、簡易な制御でシステム損失を増やすことなく、インバータを構成する上アームスイッチと下アームスイッチにおける損失の不均衡を改善することができる。 In the drive device according to the present disclosure, a pair of upper arm switches is used when executing asymmetric switching control in which the first inverter and the second inverter are alternately operated by controlling the opening and closing of the upper arm switch and the lower arm switch. One of the lower arm switch and the lower arm switch can be a high loss switch on the side where the conduction loss is high when not operating in the asymmetric switching control, and the other can be a low loss switch on the side where the conduction loss is low. In the drive device according to the present disclosure, in at least one pair of upper arm switch and lower arm switch, the high loss switch is a switching element used as each switch so that a switching element having a lower on-resistance than the low loss switch is used. Has been selected. Since a switching element having a low on-resistance is used as the high-loss switch having a high conduction loss, the conduction loss is reduced and the loss in the high-loss switch is reduced. This improves the loss imbalance between the high loss switch and the low loss switch. In other words, the loss imbalance between the upper arm switch and the lower arm switch is improved. As a result, it is possible to improve the loss imbalance between the upper arm switch and the lower arm switch constituting the inverter without increasing the system loss by simple control.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、実施形態に係る回転電機の駆動装置であり、 図2は、回転電機をH駆動する際の非対称スイッチング制御の一例としての交互PWM駆動の駆動パターンを示す図であり、 図3は、図2に示す交互PWM駆動時の電流経路を示す図であり、 図4は、図1の駆動装置においてスイッチとして用いられる半導体素子のオン抵抗を示す図であり、 図5は、図1の駆動装置におけるスイッチの損失を示す図であり、 図6は、変形例に係る交互PWM駆動の駆動パターンを示す図であり、 図7は、回転電機をY駆動する際の各スイッチの制御例を示す図である。
The above objectives and other objectives, features and advantages of the present disclosure will be clarified by the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 shows a drive device for a rotary electric machine according to an embodiment. FIG. 2 is a diagram showing a drive pattern of alternating PWM drive as an example of asymmetric switching control when driving a rotary electric machine to H. FIG. 3 is a diagram showing a current path during the alternate PWM drive shown in FIG. FIG. 4 is a diagram showing the on-resistance of the semiconductor element used as a switch in the drive device of FIG. FIG. 5 is a diagram showing the loss of the switch in the drive device of FIG. FIG. 6 is a diagram showing a drive pattern of alternating PWM drive according to a modified example. FIG. 7 is a diagram showing a control example of each switch when driving the rotary electric machine in Y.
 (第1実施形態)
 図1に、回転電機の駆動制御を実行する駆動装置10を示す。回転電機は、U相巻線Uと、V相巻線Vと、W相巻線Wとを備えている。駆動装置10は、駆動回路11と、制御部12と、直流電源VDCとを備えている。駆動回路11は、第1インバータINV1と、第2インバータINV2と、高電位接続線Laと、低電位接続線Lbと、接続線スイッチSCとを備えている。
(First Embodiment)
FIG. 1 shows a drive device 10 that executes drive control of a rotary electric machine. The rotary electric machine includes a U-phase winding U, a V-phase winding V, and a W-phase winding W. The drive device 10 includes a drive circuit 11, a control unit 12, and a DC power supply VDC. The drive circuit 11 includes a first inverter INV1, a second inverter INV2, a high potential connection line La, a low potential connection line Lb, and a connection line switch SC.
 第1インバータINV1は、直流電源VDCに接続されており、回転電機のU相巻線Uの一端に接続された上アームスイッチSU1a及び下アームスイッチSU1bと、V相巻線Vの一端に接続された上アームスイッチSV1a及び下アームスイッチSV1bと、W相巻線Wの一端に接続された上アームスイッチSW1a及び下アームスイッチSW1bとを備える。 The first inverter INV1 is connected to the DC power supply VDC, and is connected to the upper arm switch SU1a and the lower arm switch SU1b connected to one end of the U-phase winding U of the rotary electric machine, and to one end of the V-phase winding V. It also includes an upper arm switch SV1a and a lower arm switch SV1b, and an upper arm switch SW1a and a lower arm switch SW1b connected to one end of the W-phase winding W.
 第2インバータINV2は、直流電源VDCに接続されており、回転電機のU相巻線Uの他端に接続された上アームスイッチSU2a及び下アームスイッチSU2bと、V相巻線Vの他端に接続された上アームスイッチSV2a及び下アームスイッチSV2bと、W相巻線Wの他端に接続された上アームスイッチSW2a及び下アームスイッチSW2bとを備える。 The second inverter INV2 is connected to the DC power supply VDC, and is connected to the upper arm switch SU2a and the lower arm switch SU2b connected to the other end of the U-phase winding U of the rotary electric machine, and to the other end of the V-phase winding V. It includes a connected upper arm switch SV2a and a lower arm switch SV2b, and an upper arm switch SW2a and a lower arm switch SW2b connected to the other end of the W-phase winding W.
 高電位接続線Laは、第1インバータINV1の直流高電位側と第2インバータINV2の直流高電位側とを接続する配線である。低電位接続線Lbは、第1インバータINV1の直流低電位側と前記第2インバータの直流低電位側とを接続する。 The high potential connection line La is a wiring that connects the DC high potential side of the first inverter INV1 and the DC high potential side of the second inverter INV2. The low potential connection line Lb connects the DC low potential side of the first inverter INV1 and the DC low potential side of the second inverter.
 第1インバータINV1において、各相の上アームスイッチSU1a,SV1a,SW1aの高電位側端子は直流電源VDCの正極端子に接続され、各相の下アームスイッチSU1b,SV1b,SW1bの低電位側端子は直流電源VDCの負極端子に接続されている。上アームスイッチSU1a,SV1a,SW1a及び下アームスイッチSU1b,SV1b,SW1bは、それぞれ半導体スイッチング素子である。より具体的には、上アームスイッチSU1a,SV1a,SW1aは、炭化ケイ素(SiC)を材料とするMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)である。下アームスイッチSU1b,SV1b,SW1bは、シリコンを材料とする、逆並列に接続された還流ダイオードを有するIGBT(Insulated Gate Bipolar Transistor)である。 In the first inverter INV1, the high potential side terminals of the upper arm switches SU1a, SV1a, SW1a of each phase are connected to the positive electrode terminals of the DC power supply VDC, and the low potential side terminals of the lower arm switches SU1b, SV1b, SW1b of each phase are It is connected to the negative electrode terminal of the DC power supply VDC. The upper arm switches SU1a, SV1a, SW1a and the lower arm switches SU1b, SV1b, SW1b are semiconductor switching elements, respectively. More specifically, the upper arm switches SU1a, SV1a, and SW1a are MOSFETs (Metal-Oxide-Semiconductor Field-Effective Transistors) made of silicon carbide (SiC) as a material. The lower arm switches SU1b, SV1b, and SW1b are IGBTs (Insulated Gate Bipolar Transistors) made of silicon and having freewheeling diodes connected in antiparallel.
 第2インバータINV2において、各相の上アームスイッチSU2a,SV2a,SW2aの高電位側端子は高電位接続線Laに接続され、各相の下アームスイッチSU2b,SV2b,SW2bの低電位側端子は低電位接続線Lbに接続されている。上アームスイッチSU2a,SV2a,SW2a及び下アームスイッチSU2b,SV2b,SW2bは、それぞれ半導体スイッチング素子である。より具体的には、上アームスイッチSU2a,SV2a,SW2aは、SiCを材料とする、MOSFETである。下アームスイッチSU2b,SV2b,SW2bは、シリコンを材料とする、逆並列に接続された還流ダイオードを有するIGBTである。 In the second inverter INV2, the high potential side terminals of the upper arm switches SU2a, SV2a, SW2a of each phase are connected to the high potential connection line La, and the low potential side terminals of the lower arm switches SU2b, SV2b, SW2b of each phase are low. It is connected to the potential connection line Lb. The upper arm switches SU2a, SV2a, SW2a and the lower arm switches SU2b, SV2b, SW2b are semiconductor switching elements, respectively. More specifically, the upper arm switches SU2a, SV2a, and SW2a are MOSFETs made of SiC as a material. The lower arm switches SU2b, SV2b, and SW2b are IGBTs made of silicon and having a freewheeling diode connected in antiparallel.
 第1インバータINV1において、各相の上アームスイッチSU1a,SV1a,SW1aと下アームスイッチSU1b,SV1b,SW1bとの間の中間点には、それぞれ、巻線U、V、Wの一端(第2インバータINV2と接続されていない一端)が接続されている。第2インバータINV2において、各相の上アームスイッチSU2a,SV2a,SW2aと下アームスイッチSU2b,SV2b,SW2bとの間の中間点には、それぞれ、巻線U、V、Wの一端(第1インバータINV1と接続されていない一端)が接続されている。 In the first inverter INV1, one ends of windings U, V, and W (second inverter) are located at intermediate points between the upper arm switches SU1a, SV1a, and SW1a of each phase and the lower arm switches SU1b, SV1b, and SW1b, respectively. One end that is not connected to INV2) is connected. In the second inverter INV2, one ends of windings U, V, and W (first inverter) are located at intermediate points between the upper arm switches SU2a, SV2a, SW2a and the lower arm switches SU2b, SV2b, SW2b of each phase, respectively. One end that is not connected to INV1) is connected.
 接続線スイッチSCは、高電位接続線Laに設けられており、高電位接続線Laを導通または遮断することにより、第1インバータINV1と第2インバータINV2とを導通または遮断する。接続線スイッチSCが閉状態(オン状態)の場合には、駆動回路11は、Hブリッジ回路として利用することができ、回転電機のH駆動が可能となる。 The connection line switch SC is provided on the high-potential connection line La, and conducts or cuts off the first inverter INV1 and the second inverter INV2 by conducting or cutting off the high-potential connection line La. When the connection line switch SC is in the closed state (on state), the drive circuit 11 can be used as an H-bridge circuit, and the rotary electric machine can be driven by H.
 接続線スイッチSCが開状態(オフ状態)の場合には、駆動回路11によって回転電機のY駆動が可能となる。例えば、第2インバータINV2の全ての上アームスイッチSU2a,SV2a,SW2aを閉状態とするとともに全ての下アームスイッチSU2b,SV2b,SW2bを開状態とすることにより、回転電機のY駆動が可能となる。すなわち、回転電機のU相巻線Uと、V相巻線Vと、W相巻線WとをY結線で接続することができる。この場合、上アームスイッチSU2a,SV2a,SW2aは、Y結線(星形結線)の中性点を構成する中性点構成スイッチに相当する。 When the connection line switch SC is in the open state (off state), the drive circuit 11 enables Y drive of the rotary electric machine. For example, by closing all the upper arm switches SU2a, SV2a, SW2a of the second inverter INV2 and opening all the lower arm switches SU2b, SV2b, SW2b, Y drive of the rotary electric machine becomes possible. .. That is, the U-phase winding U of the rotary electric machine, the V-phase winding V, and the W-phase winding W can be connected by a Y connection. In this case, the upper arm switches SU2a, SV2a, and SW2a correspond to the neutral point configuration switch that constitutes the neutral point of the Y connection (star-shaped connection).
 制御部12は、CPUや各種メモリからなるマイコンを備えており、回転電機における各種の検出情報や、力行駆動及び発電の要求に基づいて、第1インバータINV1および第2インバータINV2における各スイッチの開閉(オンオフ)により通電制御を実施する。回転電機の検出情報には、例えば、レゾルバ等の角度検出器により検出される回転子の回転角度(電気角情報)や、電圧センサにより検出される電源電圧(インバータ入力電圧)、電流センサにより検出される各相の通電電流が含まれる。制御部12は、さらに、接続線スイッチSCの開閉を制御する。制御部12は、第1インバータINV1および第2インバータINV2の各スイッチおよび接続線スイッチSCを操作する操作信号を生成して出力する。 The control unit 12 includes a microcomputer composed of a CPU and various memories, and opens and closes each switch in the first inverter INV1 and the second inverter INV2 based on various detection information in the rotary electric machine and requests for power running and power generation. Energization control is performed by (on / off). The detection information of the rotating electric machine includes, for example, the rotation angle of the rotor (electric angle information) detected by an angle detector such as a resolver, the power supply voltage (inverter input voltage) detected by the voltage sensor, and the current sensor. The energizing current of each phase is included. The control unit 12 further controls the opening and closing of the connection line switch SC. The control unit 12 generates and outputs an operation signal for operating each switch of the first inverter INV1 and the second inverter INV2 and the connection line switch SC.
 図2は、制御部12による第1インバータINV1および第2インバータINV2のスイッチ制御の一例を示す図である。より具体的には、接続線スイッチSCを閉状態に制御して回転電機をH駆動する際の駆動例として、交互PWM駆動を実行する場合の駆動パターンを示している。交互PWM駆動は、第1インバータINV1と第2インバータINV2とを交互に作動させる非対称スイッチング制御の一例である。 FIG. 2 is a diagram showing an example of switch control of the first inverter INV1 and the second inverter INV2 by the control unit 12. More specifically, as a drive example when the connection line switch SC is controlled to the closed state to drive the rotary electric machine in H, a drive pattern when alternating PWM drive is executed is shown. The alternate PWM drive is an example of asymmetric switching control in which the first inverter INV1 and the second inverter INV2 are operated alternately.
 図2に示す交互PWM駆動においては、期間T1と期間T2とによってU相電圧UVの波形の1周期が構成されている。U相電流UIは、U相電圧UVに対して位相が90°遅れている。期間T1において第1インバータINV1側では、PWM制御を実行し、第2インバータINV2側では、上アームスイッチSU2a,SV2a,SW2aを閉状態かつ下アームスイッチSU2b,SV2b,SW2bを開状態に固定する。期間T2において第2インバータINV2側では、PWM制御を実行し、第1インバータINV1側では、上アームスイッチSU1a,SV1a,SW1aを閉状態かつ下アームスイッチSU1b,SV1b,SW1bを開状態に固定する。交互に期間T1と期間T2の制御が実行される。 In the alternate PWM drive shown in FIG. 2, one cycle of the U-phase voltage UV waveform is configured by the period T1 and the period T2. The phase of the U-phase current UI is 90 ° behind the U-phase voltage UV. During the period T1, PWM control is executed on the first inverter INV1 side, and the upper arm switches SU2a, SV2a, SW2a are fixed in the closed state and the lower arm switches SU2b, SV2b, SW2b are fixed in the open state on the second inverter INV2 side. During the period T2, the second inverter INV2 side executes PWM control, and the first inverter INV1 side fixes the upper arm switches SU1a, SV1a, SW1a in the closed state and the lower arm switches SU1b, SV1b, SW1b in the open state. The control of the period T1 and the period T2 is executed alternately.
 図3には、期間T1において駆動回路11に流れる電流経路を太線で示している。期間T1において、U相電流が負電流である場合には、図3に矢印で示す方向に電流が流れ、上アームスイッチSU2a,SV2a,SW2aのMOSFETに電流が流れる。U相電流が正電流である場合には、図3に矢印で示す方向とは逆方向に電流が流れ、上アームスイッチSU2a,SV2a,SW2aのダイオードに電流が流れる。期間T1ごとに周期的に上アームスイッチSU2a,SV2a,SW2aに電流が流れる一方で、期間T1においては下アームスイッチSU2b,SV2b,SW2bには電流が流れないという状態が繰り返される。このため、上アームスイッチSU2a,SV2a,SW2aにおける発熱量は、下アームスイッチSU2b,SV2b,SW2bにおける発熱量よりも大きくなる。 In FIG. 3, the current path flowing through the drive circuit 11 during the period T1 is shown by a thick line. When the U-phase current is a negative current in the period T1, the current flows in the direction indicated by the arrow in FIG. 3, and the current flows through the MOSFETs of the upper arm switches SU2a, SV2a, and SW2a. When the U-phase current is a positive current, the current flows in the direction opposite to the direction indicated by the arrow in FIG. 3, and the current flows through the diodes of the upper arm switches SU2a, SV2a, and SW2a. While a current flows through the upper arm switches SU2a, SV2a, and SW2a periodically for each period T1, a state in which no current flows through the lower arm switches SU2b, SV2b, and SW2b is repeated during the period T1. Therefore, the amount of heat generated by the upper arm switches SU2a, SV2a, and SW2a is larger than the amount of heat generated by the lower arm switches SU2b, SV2b, and SW2b.
 図2,3に示すように、交互PWM制御を実行する際に、第1インバータINV1と第2インバータINV2のうち、PWM制御をしていない側のインバータ(例えば第2インバータINV2)では、上アームスイッチ(例えば、上アームスイッチSU2a,SV2a,SW2a)は閉状態に制御されて電流が流れ、下アームスイッチ(例えば、下アームスイッチSU2b,SV2b,SW2b)は開状態に制御されて電流が流れない。このため、上アームスイッチにおいては、導通損失が生じ、下アームスイッチでは、導通損失が生じない。導通損失により、上アームスイッチにおける発熱量は、下アームスイッチにおける発熱量よりも大きくなる。 As shown in FIGS. 2 and 3, when the alternate PWM control is executed, the upper arm of the first inverter INV1 and the second inverter INV2 on the side not controlled by the PWM control (for example, the second inverter INV2). The switches (for example, upper arm switches SU2a, SV2a, SW2a) are controlled to be in the closed state and current flows, and the lower arm switches (for example, lower arm switches SU2b, SV2b, SW2b) are controlled to be in the open state and no current flows. .. Therefore, a conduction loss occurs in the upper arm switch, and no conduction loss occurs in the lower arm switch. Due to the conduction loss, the amount of heat generated by the upper arm switch becomes larger than the amount of heat generated by the lower arm switch.
 図4は、IGBTまたはMOSFETのオン抵抗を示す図である。縦軸はコレクタ電流Icまたはドレイン電流Idを示しており、横軸は、コレクタ-エミッタ間電圧Vceまたはドレイン-ソース間電圧Vdsを示している。参照番号21,22,23は、それぞれ、炭化ケイ素(SiC)を材料とするMOSFET,シリコン(Si)を材料とするMOSFET、シリコンを材料とするIGBTを示している。参照番号21,22にしめすように、MOSFETでは、零ボルト程度の低電位領域から線形のオン抵抗特性を有し、順方向通電層にpn接合を含むIGBT(参照番号23)よりもオン抵抗が低くなる。また、参照番号21,22に示すように、シリコンを材料とするMOSFETよりも、SiCを材料とするMOSFETの方がオン抵抗が低くなる。 FIG. 4 is a diagram showing the on-resistance of the IGBT or MOSFET. The vertical axis shows the collector current Ic or the drain current Id, and the horizontal axis shows the collector-emitter voltage Vce or the drain-source voltage Vds. Reference numbers 21, 22, and 23 indicate a MOSFET made of silicon carbide (SiC), a MOSFET made of silicon (Si), and an IGBT made of silicon, respectively. As shown in reference numbers 21 and 22, MOSFETs have linear on-resistance characteristics from a low potential region of about 0 volt, and have higher on-resistance than IGBTs (reference number 23) that include a pn junction in the forward current-carrying layer. It gets lower. Further, as shown in Reference Nos. 21 and 22, the on-resistance of the MOSFET made of SiC is lower than that of the MOSFET made of silicon.
 図5は、IGBTを、よりオン抵抗の低いMOSFETに置き換えた場合の損失の変化をシミュレーションにより算出した結果を示す図である。参照番号31~34は、それぞれ、順方向導通損失、逆方向導通損失、スイッチング損失、リカバリ損失を示している。図5の左側から、(1)上アームスイッチSU1aとしてIGBTを用いた場合、(2)上アームスイッチSU1aとしてMOSFETを用いた場合、(3)下アームスイッチSU1bとしてIGBTを用いた場合を示している。なお、(1)と(3)に用いたIGBTは同じ半導体素子であり、図4に示す参照番号23の半導体素子に相当する。(2)に用いたMOSFETは、図4に示す参照番号21の半導体素子に相当し、(1)および(3)のIGBTよりもオン抵抗が低い。 FIG. 5 is a diagram showing the result of calculating the change in loss when the IGBT is replaced with a MOSFET having a lower on-resistance by simulation. Reference numerals 31 to 34 indicate a forward conduction loss, a reverse conduction loss, a switching loss, and a recovery loss, respectively. From the left side of FIG. 5, (1) an IGBT is used as the upper arm switch SU1a, (2) a MOSFET is used as the upper arm switch SU1a, and (3) an IGBT is used as the lower arm switch SU1b. There is. The IGBT used in (1) and (3) is the same semiconductor element, and corresponds to the semiconductor element of reference number 23 shown in FIG. The MOSFET used in (2) corresponds to the semiconductor element of reference number 21 shown in FIG. 4, and has a lower on-resistance than the IGBTs of (1) and (3).
 図5に示すように、上アームスイッチSU1aとしてIGBTを用いた場合(1)には、同様にIGBTを下アームスイッチSU1bとして用いた場合(3)よりも、主として参照番号31,32に示す順方向および逆方向の導通損失が高くなることにより、全体の損失が高くなっている。双方ともIGBTを用いた場合には、上アームスイッチSU1aにおける全損失が下アームスイッチSU1bにおける全損失より高くなる。 As shown in FIG. 5, when the IGBT is used as the upper arm switch SU1a (1), the order shown mainly in reference numbers 31 and 32 is higher than that when the IGBT is also used as the lower arm switch SU1b (3). Due to the high conduction loss in the directional and reverse directions, the overall loss is high. When both IGBTs are used, the total loss in the upper arm switch SU1a is higher than the total loss in the lower arm switch SU1b.
 これに対して、上アームスイッチSU1aとしてMOSFETを用いた場合(2)には、(1)に示す場合と比較して、参照番号31,32に示す順方向および逆方向の導通損失が低減されている。上アームスイッチSU1aを、IGBTから、よりオン抵抗の低いMOSFETに置き換えることにより、導通損失の1/4程度を低減することができ、上アームスイッチSU1aにおける全損失を、下アームスイッチSU1bにおける全損失と同程度に低減できることが分かった。その結果、上アームスイッチSU1aにおける全損失と下アームスイッチSU1bにおける全損失との不均衡を改善できることが分かった。 On the other hand, when the MOSFET is used as the upper arm switch SU1a, the conduction loss in the forward direction and the reverse direction shown in reference numbers 31 and 32 is reduced as compared with the case shown in (1). ing. By replacing the IGBT with a MOSFET having a lower on-resistance by replacing the upper arm switch SU1a with a MOSFET having a lower on-resistance, about 1/4 of the conduction loss can be reduced, and the total loss in the upper arm switch SU1a can be reduced to the total loss in the lower arm switch SU1b. It was found that it can be reduced to the same extent as. As a result, it was found that the imbalance between the total loss in the upper arm switch SU1a and the total loss in the lower arm switch SU1b can be improved.
 上記のとおり、第1実施形態によれば、第1インバータINV1と第2インバータINV2とを交互に作動させる非対称スイッチング制御として、交互PWM制御を実行する際に、PWM制御されていない側のインバータにおいて、上アームスイッチSU1a,SV1a,SW1a,SU2a,SV2a,SW2aは導通損失が高くなる側である高損失スイッチとなり、下アームスイッチSU1b,SV1b,SW1b,SU2b,SV2b,SW2bは導通損失が低くなる側である低損失スイッチとなる。駆動装置10では、上アームスイッチSU1a,SV1a,SW1a,SU2a,SV2a,SW2aとしてMOSFETが用いられる一方、下アームスイッチSU1b,SV1b,SW1b,SU2b,SV2b,SW2bとしてはIGBTが用いられ、このMOSFETは、下アームスイッチSU1b,SV1b,SW1b,SU2b,SV2b,SW2bに用いられるIGBTよりもオン抵抗が低い。導通損失が高くなる高損失スイッチとなる上アームスイッチSU1a,SV1a,SW1a,SU2a,SV2a,SW2aとして、よりオン抵抗が低いMOSFETが用いられることにより、IGBTを用いる場合よりも導通損失を低減することができる。その結果、図5に示すように、対となる上アームスイッチにおける全損失と下アームスイッチにおける全損失との不均衡を改善できる。 As described above, according to the first embodiment, as the asymmetric switching control in which the first inverter INV1 and the second inverter INV2 are operated alternately, when the alternate PWM control is executed, the inverter on the side not controlled by the PWM is used. , Upper arm switches SU1a, SV1a, SW1a, SU2a, SV2a, SW2a are high loss switches on the side where the conduction loss is high, and lower arm switches SU1b, SV1b, SW1b, SU2b, SV2b, SW2b are on the side where the conduction loss is low. It becomes a low loss switch. In the drive device 10, MOSFETs are used as the upper arm switches SU1a, SV1a, SW1a, SU2a, SV2a, and SW2a, while IGBTs are used as the lower arm switches SU1b, SV1b, SW1b, SU2b, SV2b, and SW2b. , The on-resistance is lower than that of the IGBT used for the lower arm switches SU1b, SV1b, SW1b, SU2b, SV2b, and SW2b. By using MOSFETs with lower on-resistance as the upper arm switches SU1a, SV1a, SW1a, SU2a, SV2a, and SW2a, which are high-loss switches with high conduction loss, the conduction loss can be reduced as compared with the case of using IGBTs. Can be done. As a result, as shown in FIG. 5, the imbalance between the total loss in the paired upper arm switch and the total loss in the lower arm switch can be improved.
 なお、第1実施形態では、高損失スイッチに用いられる比較的オン抵抗の低いスイッチング素子としてMOSFETを例示し、低損失スイッチに用いられる比較的オン抵抗の高いスイッチング素子としてIGBTを例示して説明したが、これに限定されない。高損失スイッチに用いられるスイッチング素子は、低損失スイッチに用いられるスイッチング素子よりもオン抵抗が低いものであればよい。半導体素子をスイッチング素子として用いる場合には、半導体素子の素子構造、材料、素子サイズなどを適宜選択することにより、高損失スイッチを低損失スイッチよりも低オン抵抗にすることができる。 In the first embodiment, MOSFET is exemplified as a switching element having a relatively low on-resistance used in a high-loss switch, and IGBT is exemplified as a switching element having a relatively high on-resistance used in a low-loss switch. However, it is not limited to this. The switching element used in the high-loss switch may have a lower on-resistance than the switching element used in the low-loss switch. When a semiconductor element is used as a switching element, the high-loss switch can have a lower on-resistance than the low-loss switch by appropriately selecting the element structure, material, element size, and the like of the semiconductor element.
 例えば、素子構造としては、高損失スイッチとして、ユニポーラ半導体素子を用い、低損失スイッチとしてバイポーラ半導体素子を用いてもよい。ユニポーラ半導体素子は、順方向通電層が同じ導電型の半導体層(例えばn層)のみから構成されるため、図4に示すように零ボルト程度の低電位領域から線形のオン抵抗特性を有し、順方向通電層にpn接合を含むバイポーラ半導体素子よりもオン抵抗が低くなる。さらに、高損失スイッチとしては、逆方向導通時の同期整流が可能なユニポーラ半導体素子を用いることが好ましい。このようなユニポーラ素子は逆方向導通時にゲート端子にオン信号を入力することにより、ボディダイオードを介さずに逆方向通電ができるため、零ボルト程度の低電位領域から線形のオン抵抗特性を有し、さらにオン抵抗が低くなる。逆方向導通時の同期整流が可能なユニポーラ半導体素子としては、MOSFETを例示することができる。 For example, as the element structure, a unipolar semiconductor element may be used as the high loss switch, and a bipolar semiconductor element may be used as the low loss switch. Since the unipolar semiconductor element is composed of only conductive semiconductor layers (for example, n layers) having the same forward conduction layer, it has a linear on-resistance characteristic from a low potential region of about 0 volt as shown in FIG. , The on-resistance is lower than that of a bipolar semiconductor device having a pn junction in the forward conductive layer. Further, as the high loss switch, it is preferable to use a unipolar semiconductor element capable of synchronous rectification when conducting in the reverse direction. Since such a unipolar element can be energized in the reverse direction without passing through a body diode by inputting an on signal to the gate terminal when conducting in the reverse direction, it has a linear on-resistance characteristic from a low potential region of about 0 volt. , Furthermore, the on-resistance becomes lower. As a unipolar semiconductor element capable of synchronous rectification when conducting in the reverse direction, a MOSFET can be exemplified.
 例えば、半導体素子の材料について、高損失スイッチとして、シリコンよりもバンドギャップが広い半導体を材料とする半導体素子を用い、低損失スイッチとしてシリコンを材料とする半導体素子を用いてもよい。よりバンドギャップが広い半導体を材料とすることにより、オン抵抗を低減することができる。シリコンよりもバンドギャップが広い半導体としては、炭化ケイ素(SiC)、窒化ガリウム(GaN)等を例示することができる。バンドギャップが広い半導体は、絶縁破壊強度が高く、半導体素子の素子厚(導通方向の厚み)を薄くすることができるため、オン抵抗を低減することができる。 For example, as a material of a semiconductor element, a semiconductor element made of a semiconductor having a wider bandgap than silicon may be used as a high-loss switch, and a semiconductor element made of silicon as a low-loss switch may be used. By using a semiconductor having a wider bandgap as a material, the on-resistance can be reduced. Examples of semiconductors having a wider bandgap than silicon include silicon carbide (SiC) and gallium nitride (GaN). A semiconductor having a wide bandgap has a high dielectric breakdown strength, and the element thickness (thickness in the conduction direction) of the semiconductor element can be reduced, so that the on-resistance can be reduced.
 また、高損失スイッチは、低損失スイッチよりも素子サイズが大きい半導体素子であってもよい。素子サイズが大きいとは、半導体素子の導通方向に略垂直な面が大きいことを意味する。半導体素子の素子サイズを大きくすることにより電流密度が低くなるため、オン抵抗を低減することができる。 Further, the high-loss switch may be a semiconductor element having a larger element size than the low-loss switch. A large element size means that a surface substantially perpendicular to the conduction direction of the semiconductor element is large. By increasing the element size of the semiconductor element, the current density becomes low, so that the on-resistance can be reduced.
 また、高損失スイッチは、低損失スイッチよりも、導通方向の素子厚が薄い半導体素子であってもよい。縦型のMOSFETやIGBTにおいては、導通方向の素子厚を薄くすると導通距離が短くなるため、オン抵抗を低減することができる。 Further, the high-loss switch may be a semiconductor element having a thinner element thickness in the conduction direction than the low-loss switch. In a vertical MOSFET or IGBT, if the element thickness in the conduction direction is reduced, the conduction distance is shortened, so that the on-resistance can be reduced.
 (変形例)
 図6に示すように、交互PWM制御においては、第1インバータINV1と第2インバータINV2について、PWM制御を実行する順序を逆にしても、同様のU相電圧VUの波形およびU相電流IUの波形を得ることができる。図6に示す交互PWM制御では、U相電圧VUおよびU相電流IUの波形は図2と同様であるが、期間T1と期間T2との順序が入れ替わっている。
(Modification example)
As shown in FIG. 6, in the alternate PWM control, the waveform of the U-phase voltage VU and the U-phase current IU are the same even if the order of executing the PWM control is reversed for the first inverter INV1 and the second inverter INV2. A waveform can be obtained. In the alternate PWM control shown in FIG. 6, the waveforms of the U-phase voltage VU and the U-phase current IU are the same as those in FIG. 2, but the order of the period T1 and the period T2 is changed.
 なお、図6に示す交互PWM駆動においても、図2と同様に、期間T1においては、第1インバータINV1側では、PWM制御が実行され、第2インバータINV2側では、上アームスイッチSU2a,SV2a,SW2aを開状態かつ下アームスイッチSU2b,SV2b,SW2bを閉状態に固定する。期間T2においては、第2インバータINV2側では、PWM制御が実行され、第1インバータINV1側では、上アームスイッチSU1a,SV1a,SW1aを開状態かつ下アームスイッチSU1b,SV1b,SW1bを閉状態に固定する。交互に期間T1と期間T2の制御が実行される。 In the alternate PWM drive shown in FIG. 6, PWM control is executed on the first inverter INV1 side and the upper arm switches SU2a, SV2a on the second inverter INV2 side during the period T1 as in FIG. The SW2a is fixed in the open state and the lower arm switches SU2b, SV2b, and SW2b are fixed in the closed state. In the period T2, PWM control is executed on the second inverter INV2 side, and the upper arm switches SU1a, SV1a, SW1a are fixed in the open state and the lower arm switches SU1b, SV1b, SW1b are fixed in the closed state on the first inverter INV1 side. To do. The control of the period T1 and the period T2 is executed alternately.
 図6に示す交互PWM制御を実行する際には、第1インバータINV1と第2インバータINV2のうち、PWM制御をしていない側のインバータでは、上アームスイッチは開状態に制御されて電流が流れず、下アームスイッチは閉状態に制御されて電流が流れる。このため、下アームスイッチにおいては、導通損失が生じ、上アームスイッチでは、導通損失が生じない。 When the alternate PWM control shown in FIG. 6 is executed, the upper arm switch is controlled to be in the open state and a current flows in the inverter of the first inverter INV1 and the second inverter INV2 that is not PWM controlled. Instead, the lower arm switch is controlled to the closed state and current flows. Therefore, a conduction loss occurs in the lower arm switch, and no conduction loss occurs in the upper arm switch.
 このため、図6に示す交互PWM制御を実行する場合には、図1に示す駆動装置10において、下アームスイッチとして、上アームスイッチよりもオン抵抗が低い半導体素子を用いることが好ましい。具体的には、例えば、第1実施形態とは逆に、上アームスイッチSU1a,SV1a,SW1aとして、シリコンを材料とする、逆並列に接続された還流ダイオードを有するIGBTを用い、下アームスイッチSU1b,SV1b,SW1bとして、SiCを材料とするMOSFETを用いてもよい。 Therefore, when executing the alternate PWM control shown in FIG. 6, it is preferable to use a semiconductor element having a lower on-resistance than the upper arm switch as the lower arm switch in the drive device 10 shown in FIG. Specifically, for example, contrary to the first embodiment, as the upper arm switches SU1a, SV1a, SW1a, an IGBT made of silicon and having a freewheeling diode connected in antiparallel is used, and the lower arm switch SU1b is used. , SV1b, SW1b may be MOSFETs made of SiC as a material.
 言い換えると、駆動回路11の第1インバータINV1及び第2インバータINV2において、上アームスイッチSU1a,SV1a,SW1a,SU2a,SV2a,SW2aにオン抵抗の高い半導体素子が用いられ、下アームスイッチSU1b,SV1b,SW1b,SU2b,SV2b,SW2bにオン抵抗の低い半導体素子が用いられている場合には、制御部12は、図6に示すように、他方のインバータでPWM制御が実行されている際に上アームスイッチを開状態に制御し、下アームスイッチを閉状態に制御するように、交互PWM制御を実行するように構成されていることが好ましい。 In other words, in the first inverter INV1 and the second inverter INV2 of the drive circuit 11, semiconductor elements having high on-resistance are used for the upper arm switches SU1a, SV1a, SW1a, SU2a, SV2a, SW2a, and the lower arm switches SU1b, SV1b, When a semiconductor element having a low on-resistance is used for SW1b, SU2b, SV2b, and SW2b, the control unit 12 raises the upper arm when PWM control is executed by the other inverter, as shown in FIG. It is preferable that the alternating PWM control is executed so as to control the switch in the open state and control the lower arm switch in the closed state.
 また、駆動回路11の第1インバータINV1及び第2インバータINV2において、下アームスイッチSU1b,SV1b,SW1b,SU2b,SV2b,SW2bにオン抵抗の高い半導体素子が用いられ、上アームスイッチSU1a,SV1a,SW1a,SU2a,SV2a,SW2aにオン抵抗の低い半導体素子が用いられている場合には、制御部12は、図2に示すように、他方のインバータでPWM制御が実行されている際に上アームスイッチを閉状態に制御し、下アームスイッチを開状態に制御するように、交互PWM制御を実行するように構成されていることが好ましい。 Further, in the first inverter INV1 and the second inverter INV2 of the drive circuit 11, semiconductor elements having high on-resistance are used for the lower arm switches SU1b, SV1b, SW1b, SU2b, SV2b, and SW2b, and the upper arm switches SU1a, SV1a, and SW1a are used. When a semiconductor element having a low on-resistance is used for SU2a, SV2a, and SW2a, the control unit 12 switches the upper arm switch when PWM control is executed by the other inverter, as shown in FIG. It is preferable that the alternating PWM control is executed so as to control the closed state and control the lower arm switch to the open state.
 (第2実施形態)
 図7は、制御部12により、駆動回路11を回転電機のY駆動に利用可能に制御された状態の一例を示す図である。図7に示すように、接続線スイッチSCを開状態に制御し、第2インバータINV2の上アームスイッチSU2a,SV2a,SW2aを閉状態に制御し、第2インバータINV2の下アームスイッチSU2b,SV2b,SW2bを開状態に制御することにより、回転電機のU相巻線Uと、V相巻線Vと、W相巻線Wとは、Y結線された状態となる。より具体的には、巻線U,V,Wの第2インバータINV2側の巻線端子が、それぞれ上アームスイッチSU2a,SV2a,SW2aを介して接続されることにより、Y結線が実現される。第2インバータINV2を利用してY結線を構成するとともに、第1インバータINV1についてPWM制御等を実行することにより、回転電機をY駆動させることができる。上アームスイッチSU2a,SV2a,SW2aは、Y結線の中性点を構成する中性点構成スイッチに相当する。下アームスイッチSU2b,SV2b,SW2bは、中性点を構成しないため、非中性点構成スイッチに相当する。
(Second Embodiment)
FIG. 7 is a diagram showing an example of a state in which the drive circuit 11 is controlled so as to be usable for Y drive of the rotary electric machine by the control unit 12. As shown in FIG. 7, the connection line switch SC is controlled to be in the open state, the upper arm switches SU2a, SV2a, SW2a of the second inverter INV2 are controlled to be in the closed state, and the lower arm switches SU2b, SV2b, of the second inverter INV2 are controlled. By controlling the SW2b to the open state, the U-phase winding U, the V-phase winding V, and the W-phase winding W of the rotary electric machine are in a Y-connected state. More specifically, the Y connection is realized by connecting the winding terminals of the windings U, V, and W on the second inverter INV2 side via the upper arm switches SU2a, SV2a, and SW2a, respectively. The rotary electric machine can be driven in Y by forming a Y connection using the second inverter INV2 and executing PWM control or the like on the first inverter INV1. The upper arm switches SU2a, SV2a, and SW2a correspond to the neutral point configuration switch that constitutes the neutral point of the Y connection. Since the lower arm switches SU2b, SV2b, and SW2b do not form a neutral point, they correspond to non-neutral point configuration switches.
 図7に示すように回転電機のY駆動を実行する際には、上アームスイッチSU2a,SV2a,SW2aは閉状態に制御されて電流が流れ、下アームスイッチSU2b,SV2b,SW2bは開状態に制御されて電流が流れない。このため、上アームスイッチSU2a,SV2a,SW2aにおいては、導通損失が生じ、下アームスイッチSU2b,SV2b,SW2bにおいては、導通損失が生じない。すなわち、中性点構成スイッチである上アームスイッチSU2a,SV2a,SW2aは導通損失が比較的高くなり、非中性点構成スイッチである下アームスイッチSU2b,SV2b,SW2bは導通損失が比較的低くなる。 As shown in FIG. 7, when the Y drive of the rotary electric machine is executed, the upper arm switches SU2a, SV2a, and SW2a are controlled to be in the closed state and a current flows, and the lower arm switches SU2b, SV2b, and SW2b are controlled to be in the open state. The current does not flow. Therefore, conduction loss occurs in the upper arm switches SU2a, SV2a, and SW2a, and no conduction loss occurs in the lower arm switches SU2b, SV2b, and SW2b. That is, the upper arm switches SU2a, SV2a, and SW2a, which are neutral point configuration switches, have a relatively high conduction loss, and the lower arm switches SU2b, SV2b, and SW2b, which are non-neutral point configuration switches, have a relatively low conduction loss. ..
 駆動装置10では、上アームスイッチSU2a,SV2a,SW2aとしてMOSFETが用いられる一方、下アームスイッチSU2b,SV2b,SW2bとしてはIGBTが用いられ、このMOSFETは、下アームスイッチSU2b,SV2b,SW2bに用いられるIGBTよりもオン抵抗が低い。導通損失が高い中性点構成スイッチとなる上アームスイッチSU2a,SV2a,SW2aとして、よりオン抵抗が低いMOSFETが用いられることにより、IGBTを用いる場合よりも導通損失を低減することができる。その結果、上アームスイッチSU2a,SV2a,SW2aにおける全損失と下アームスイッチSU2b,SV2b,SW2bにおける全損失との不均衡を改善できる。 In the drive device 10, MOSFETs are used as the upper arm switches SU2a, SV2a, SW2a, while IGBTs are used as the lower arm switches SU2b, SV2b, SW2b, and these MOSFETs are used for the lower arm switches SU2b, SV2b, SW2b. On resistance is lower than that of IGBT. By using MOSFETs with lower on-resistance as the upper arm switches SU2a, SV2a, and SW2a, which are neutral point configuration switches with high conduction loss, conduction loss can be reduced as compared with the case of using IGBTs. As a result, the imbalance between the total loss of the upper arm switches SU2a, SV2a, and SW2a and the total loss of the lower arm switches SU2b, SV2b, and SW2b can be improved.
 なお、上記の実施形態では、高電位接続線Laに設けられ、高電位接続線Laの導通と遮断とを切り替え可能な接続線スイッチSCを例示して説明したが、これに限定されない。接続線スイッチSCは、高電位接続線Laと低電位接続線Lbとのいずれか一方に設けられていればよい。 In the above embodiment, the connection line switch SC provided on the high-potential connection line La and capable of switching between conduction and interruption of the high-potential connection line La has been described as an example, but the present invention is not limited to this. The connection line switch SC may be provided on either the high potential connection line La or the low potential connection line Lb.
 中性点構成スイッチに用いられるスイッチング素子としては、高損失スイッチと同様のオン抵抗が低いスイッチング素子を用いることができる。半導体素子をスイッチング素子として用いる場合には、半導体素子の素子構造、材料、素子サイズなどを適宜選択することにより、中性点構成スイッチを非中性点構成スイッチよりも低オン抵抗にすることができる。半導体素子の素子構造について、例えば、中性点構成スイッチは、ユニポーラ半導体素子であってもよい。さらには、中性点構成スイッチは、逆方向導通時の同期整流が可能なユニポーラ半導体素子であってもよい。 As the switching element used in the neutral point configuration switch, a switching element having a low on-resistance similar to that of a high-loss switch can be used. When a semiconductor element is used as a switching element, the neutral point configuration switch can have a lower on-resistance than the non-neutral point configuration switch by appropriately selecting the element structure, material, element size, etc. of the semiconductor element. it can. Regarding the element structure of the semiconductor element, for example, the neutral point configuration switch may be a unipolar semiconductor element. Further, the neutral point configuration switch may be a unipolar semiconductor element capable of synchronous rectification when conducting in the reverse direction.
 また、半導体素子の材料について、中性点構成スイッチは、シリコンよりもバンドギャップが広い半導体(例えば、SiC、GaN)を材料とする半導体素子であってもよい。また、中性点構成スイッチは、非中性点構成スイッチよりも素子サイズが大きい半導体素子であってもよい。また、中性点構成スイッチは、非中性点構成スイッチよりも素子厚が薄い半導体素子であってもよい。 Regarding the material of the semiconductor element, the neutral point configuration switch may be a semiconductor element made of a semiconductor (for example, SiC, GaN) having a bandgap wider than that of silicon. Further, the neutral point configuration switch may be a semiconductor element having a larger element size than the non-neutral point configuration switch. Further, the neutral point configuration switch may be a semiconductor element having a thinner element thickness than the non-neutral point configuration switch.
 1対の上アームスイッチと下アームスイッチにおいて、Y駆動時において中性点構成スイッチとなるスイッチが、H駆動時において高損失スイッチとなるスイッチに一致するように、接続線スイッチSCの設置位置(高電位接続線Laまたは低電位接続線Lb)と交互PWM制御のパターン(図2または図6に示すパターン)とを選択することが好ましい。H駆動とY駆動とのいずれの駆動パターンにおいても、上アームスイッチにおける全損失と下アームスイッチにおける全損失との不均衡を改善できる。 In the pair of upper arm switch and lower arm switch, the installation position of the connection line switch SC so that the switch that becomes the neutral point configuration switch during Y drive matches the switch that becomes the high loss switch during H drive ( It is preferable to select the high-potential connection line La or the low-potential connection line Lb) and the pattern of alternating PWM control (the pattern shown in FIG. 2 or FIG. 6). In both the H drive and the Y drive patterns, the imbalance between the total loss in the upper arm switch and the total loss in the lower arm switch can be improved.
 具体的には、図2に示す交互PWM制御を実行する場合には、接続線スイッチSCは高電位接続線Laに設置することが好ましい。H駆動時とY駆動時とのいずれの場合においても導通損失が高くなる上アームスイッチとして低オン抵抗のスイッチング素子を用いることにより、下アームスイッチにおける全損失と上アームスイッチにおける全損失との不均衡を改善できる。 Specifically, when executing the alternate PWM control shown in FIG. 2, it is preferable to install the connection line switch SC on the high potential connection line La. By using a switching element with low on-resistance as the upper arm switch, which increases the conduction loss in both H drive and Y drive, the total loss in the lower arm switch and the total loss in the upper arm switch are inconsistent. The balance can be improved.
 また、図6に示す交互PWM制御を実行する場合には、接続線スイッチSCは低電位接続線Lbに設置することが好ましい。H駆動時とY駆動時とのいずれの場合においても導通損失が高くなる下アームスイッチとして低オン抵抗のスイッチング素子を用いることにより、上アームスイッチにおける全損失と下アームスイッチにおける全損失との不均衡を改善できる。 Further, when executing the alternate PWM control shown in FIG. 6, it is preferable to install the connection line switch SC on the low potential connection line Lb. By using a switching element with low on-resistance as the lower arm switch, which increases the conduction loss in both H drive and Y drive, the total loss in the upper arm switch and the total loss in the lower arm switch are inconsistent. The balance can be improved.
 なお、各スイッチのうち、高損失スイッチかつ中性点構成スイッチであるスイッチのみを低オン抵抗のスイッチング素子として、他のスイッチは、同じスイッチング素子を用いてもよい。例えば、H駆動時に図2に示す交互PWM制御を実行し、Y駆動時には図7に示す制御を実行する場合には、高損失スイッチかつ中性点構成スイッチである上アームスイッチSU2a,SV2a,SW2aとしては低オン抵抗のスイッチング素子を用いる一方で、高損失スイッチかつ非中性点構成スイッチである上アームスイッチSU1a,SV1a,SW1aとしては、低損失スイッチである下アームスイッチSU1b,SV1b,SW1b,SU2b,SV2b,SW2bと同様に、比較的オン抵抗の高いスイッチング素子を用いてもよい。例えば、低オン抵抗のスイッチング素子が比較的高価である場合などに、H駆動時とY駆動時の双方において導通損失が高くなる上アームスイッチSU2a,SV2a,SW2aのみに低オン抵抗のスイッチング素子を適用することにより、コストを抑えながら、各駆動時における上アームスイッチにおける損失と下アームスイッチにおける損失との不均衡を改善できる。 Of the switches, only the switch that is a high-loss switch and the neutral point configuration switch may be used as the switching element with low on-resistance, and the same switching element may be used for the other switches. For example, when the alternate PWM control shown in FIG. 2 is executed during H drive and the control shown in FIG. 7 is executed during Y drive, the upper arm switches SU2a, SV2a, and SW2a, which are high-loss switches and neutral point configuration switches, are executed. As the upper arm switches SU1a, SV1a, SW1a, which are high-loss switches and non-neutral point configuration switches, the lower arm switches SU1b, SV1b, SW1b, which are low-loss switches, are used. Similar to SU2b, SV2b, and SW2b, a switching element having a relatively high on-resistance may be used. For example, when a switching element with low on-resistance is relatively expensive, a switching element with low on-resistance is used only for the upper arm switches SU2a, SV2a, and SW2a, which have high conduction loss during both H drive and Y drive. By applying it, it is possible to improve the imbalance between the loss in the upper arm switch and the loss in the lower arm switch at each drive while suppressing the cost.
 上記の各実施形態によれば、下記の効果を得ることができる。 According to each of the above embodiments, the following effects can be obtained.
 回転電機の駆動装置10は、複数相に対応する複数の巻線(例えば、U相巻線U、V相巻線V、W相巻線W)を有する回転電機に適用され、駆動回路11と、制御部12とを備える。駆動回路11は、回転電機のH駆動を実行可能に構成されており、直流電源VDCに接続され、巻線の一端に相ごとに接続された上アームスイッチSU1a,SV1a,SW1a及び下アームスイッチSU1b,SV1b,SW1bを備える第1インバータINV1と、巻線の他端に相ごとに設けられた上アームスイッチSU2a,SV2a,SW2a及び下アームスイッチSU2b,SV2b,SW2bを備える第2インバータINV2と、第1インバータINV1の直流高電位側と第2インバータINV2の直流高電位側とを接続する高電位接続線Laと、第1インバータINV1の直流低電位側と第2インバータINV2の直流低電位側とを接続する低電位接続線Lbと、を含む。 The drive device 10 of a rotary electric machine is applied to a rotary electric machine having a plurality of windings (for example, U-phase winding U, V-phase winding V, W-phase winding W) corresponding to a plurality of phases, and is applied to a drive circuit 11 and a drive circuit 11. , The control unit 12 is provided. The drive circuit 11 is configured to be capable of executing H drive of the rotary electric machine, and is connected to the DC power supply VDC and is connected to one end of the winding for each phase of the upper arm switches SU1a, SV1a, SW1a and the lower arm switch SU1b. , SV1b, first inverter INV1 including SW1b, second inverter INV2 including upper arm switches SU2a, SV2a, SW2a and lower arm switches SU2b, SV2b, SW2b provided for each phase at the other end of the winding. The high potential connection line La that connects the DC high potential side of the 1 inverter INV1 and the DC high potential side of the 2nd inverter INV2, and the DC low potential side of the 1st inverter INV1 and the DC low potential side of the 2nd inverter INV2. Includes a low potential connection line Lb to be connected.
 制御部12は、上アームスイッチSU1a,SV1a,SW1a,SU2a,SV2a,SW2a及び下アームスイッチSU1b,SV1b,SW1b,SU2b,SV2b,SW2bの開閉を制御することにより第1インバータINV1と第2インバータINV2とを交互に作動させる非対称スイッチング制御(例えば、交互PWM制御)を実行可能に構成されている。 The control unit 12 controls the opening and closing of the upper arm switches SU1a, SV1a, SW1a, SU2a, SV2a, SW2a and the lower arm switches SU1b, SV1b, SW1b, SU2b, SV2b, and SW2b to control the opening and closing of the first inverter INV1 and the second inverter INV2. Asymmetric switching control (for example, alternating PWM control) that alternately operates and is configured to be feasible.
 駆動装置10では、対となる上アームスイッチと下アームスイッチ(例えば、上アームスイッチSU1aと下アームスイッチSU1b)における一方のスイッチは、非対称スイッチング制御時に導通損失が高くなる側である高損失スイッチ(例えば、上アームスイッチSU1a)であり、他方のスイッチ(例えば、下アームスイッチSU1b)は、非対称スイッチング制御時に導通損失が低くなる側である低損失スイッチである。少なくとも1対の上アームスイッチと下アームスイッチにおいて、高損失スイッチ(例えば、上アームスイッチSU1a)は、低損失スイッチ(例えば、下アームスイッチSU1b)よりもオン抵抗が低いスイッチング素子(例えば、IGBTよりもオン抵抗が低いMOSFET)である。導通損失の高い高損失スイッチとして、オン抵抗が低いスイッチング素子が用いられるため、導通損失が低減されて、高損失スイッチにおける損失が低減される。このため、高損失スイッチと低損失スイッチとの間の損失の不均衡が改善され、上アームスイッチと下アームスイッチとの間の損失の不均衡が改善される。 In the drive device 10, one of the paired upper arm switch and lower arm switch (for example, upper arm switch SU1a and lower arm switch SU1b) is a high loss switch (for example, the side where the conduction loss is high during asymmetric switching control). For example, the upper arm switch SU1a) and the other switch (for example, the lower arm switch SU1b) are low-loss switches on the side where the conduction loss is low during asymmetric switching control. In at least a pair of upper and lower arm switches, a high loss switch (eg, upper arm switch SU1a) has a lower on-resistance than a low loss switch (eg, lower arm switch SU1b) than a switching element (eg, an IGBT). Is also a MOSFET with low on-resistance). Since a switching element having a low on-resistance is used as the high-loss switch having a high conduction loss, the conduction loss is reduced and the loss in the high-loss switch is reduced. Therefore, the loss imbalance between the high loss switch and the low loss switch is improved, and the loss imbalance between the upper arm switch and the lower arm switch is improved.
 高損失スイッチに用いられるスイッチング素子は、低損失スイッチに用いられるスイッチング素子よりもオン抵抗が低いものであればよい。半導体素子をスイッチング素子として用いる場合には、半導体素子の素子構造、材料、素子サイズなどを適宜選択することにより、高損失スイッチを低損失スイッチよりも低オン抵抗にすることができる。半導体素子の素子構造について、例えば、高損失スイッチは、ユニポーラ半導体素子であってもよい。ユニポーラ半導体素子としては、電界効果トランジスタ(FET)、MOSFET等を例示できる。さらには、高損失スイッチは、逆方向導通時の同期整流が可能なユニポーラ半導体素子(例えば、MOSFET)であってもよい。 The switching element used in the high-loss switch may have a lower on-resistance than the switching element used in the low-loss switch. When a semiconductor element is used as a switching element, the high-loss switch can have a lower on-resistance than the low-loss switch by appropriately selecting the element structure, material, element size, and the like of the semiconductor element. Regarding the element structure of the semiconductor element, for example, the high-loss switch may be a unipolar semiconductor element. Examples of the unipolar semiconductor element include a field effect transistor (FET) and a MOSFET. Further, the high-loss switch may be a unipolar semiconductor element (for example, MOSFET) capable of synchronous rectification at the time of reverse conduction.
 また、半導体素子の材料について、高損失スイッチは、シリコンよりもバンドギャップが広い半導体(例えば、SiC、GaN)を材料とする半導体素子であってもよい。また、高損失スイッチは、低損失スイッチよりも素子サイズが大きい半導体素子であってもよい。また、高損失スイッチは、低損失スイッチよりも素子厚が薄い半導体素子であってもよい。 Regarding the material of the semiconductor element, the high-loss switch may be a semiconductor element made of a semiconductor (for example, SiC, GaN) having a bandgap wider than that of silicon. Further, the high-loss switch may be a semiconductor element having a larger element size than the low-loss switch. Further, the high-loss switch may be a semiconductor element having a thinner element thickness than the low-loss switch.
 駆動回路11は、さらに、高電位接続線Laおよび低電位接続線Lbの少なくとも一方に備えられた、第1インバータINV1と第2インバータINV2との導通を開閉する接続線スイッチSCをさらに備えることにより、回転電機のH駆動とY駆動とを切り替え可能である。また、制御部12は、接続線スイッチSCと、上アームスイッチと、下アームスイッチとの開閉を制御することにより、回転電機のH駆動制御とY駆動制御とを切り替え可能である。 The drive circuit 11 further includes a connection line switch SC provided on at least one of the high-potential connection line La and the low-potential connection line Lb to open and close the continuity between the first inverter INV1 and the second inverter INV2. , It is possible to switch between H drive and Y drive of the rotary electric machine. Further, the control unit 12 can switch between H drive control and Y drive control of the rotary electric machine by controlling the opening and closing of the connection line switch SC, the upper arm switch, and the lower arm switch.
 駆動回路11において、Y駆動制御時には、第1インバータINV1と第2インバータINV2のうちの少なくともいずれか一方は、上アームスイッチと下アームスイッチのうち、いずれか一方が中性点を構成する中性点構成スイッチであり、他方が中性点を構成しない非中性点構成スイッチである。この場合、中性点構成スイッチは、非中性点構成スイッチよりもオン抵抗が低いことが好ましい。導通損失の高い中性点構成スイッチとして、オン抵抗が低いスイッチング素子が用いられるため、導通損失が低減されて、中性点構成スイッチにおける損失が低減される。このため、中性点構成スイッチと非中性点構成スイッチとの間の損失の不均衡が改善され、上アームスイッチと下アームスイッチとの間の損失の不均衡が改善される。 In the drive circuit 11, at the time of Y drive control, at least one of the first inverter INV1 and the second inverter INV2 has a neutrality in which one of the upper arm switch and the lower arm switch constitutes a neutral point. It is a point configuration switch, and the other is a non-neutral point configuration switch that does not constitute a neutral point. In this case, the neutral point configuration switch preferably has a lower on-resistance than the non-neutral point configuration switch. Since a switching element having a low on-resistance is used as the neutral point configuration switch having a high conduction loss, the conduction loss is reduced and the loss in the neutral point configuration switch is reduced. Therefore, the loss imbalance between the neutral point configuration switch and the non-neutral point configuration switch is improved, and the loss imbalance between the upper arm switch and the lower arm switch is improved.
 さらに、接続線スイッチSCを備え、回転電機のH駆動制御とY駆動制御とを切り替え可能な駆動回路11においては、上アームスイッチと下アームスイッチのうち、高損失スイッチであるとともに中性点構成スイッチであるスイッチは、他のスイッチよりもオン抵抗が低いように構成されていてもよい。例えば、低オン抵抗のスイッチング素子が比較的高価である場合などに、高損失スイッチであるとともに中性点構成スイッチであるスイッチのみを低オン抵抗の低いスイッチング素子とし、他のスイッチは比較的安価でオン抵抗が低くないスイッチング素子としてもよい。これによって、コストを抑えることと、上アームスイッチにおける損失と下アームスイッチにおける損失との不均衡を改善することとを両立することができる。 Further, in the drive circuit 11 provided with the connection line switch SC and capable of switching between the H drive control and the Y drive control of the rotary electric machine, among the upper arm switch and the lower arm switch, it is a high loss switch and has a neutral point configuration. A switch, which is a switch, may be configured to have a lower on-resistance than other switches. For example, when a switching element with low on-resistance is relatively expensive, only a switch that is a high-loss switch and a neutral point configuration switch is used as a switching element with low on-resistance, and other switches are relatively inexpensive. It may be a switching element whose on-resistance is not low. As a result, it is possible to achieve both cost reduction and improvement of the imbalance between the loss in the upper arm switch and the loss in the lower arm switch.
 本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部及びその手法は、一つ以上の専用ハードウエア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウエア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。 The controls and methods thereof described in the present disclosure are realized by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. May be done. Alternatively, the controls and methods thereof described in the present disclosure may be implemented by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits. Alternatively, the control unit and method thereof described in the present disclosure may be a combination of a processor and memory programmed to perform one or more functions and a processor composed of one or more hardware logic circuits. It may be realized by one or more dedicated computers configured. Further, the computer program may be stored in a computer-readable non-transitional tangible recording medium as an instruction executed by the computer.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although this disclosure has been described in accordance with the examples, it is understood that the disclosure is not limited to the examples and structures. The present disclosure also includes various modifications and modifications within an equal range. In addition, various combinations and forms, as well as other combinations and forms that include only one element, more, or less, are also within the scope of the present disclosure.

Claims (8)

  1.  複数相に対応する複数の巻線を有する回転電機に適用される、回転電機の駆動装置(10)であって、
     直流電源に接続され、前記巻線の一端に相ごとに接続された上アームスイッチ及び下アームスイッチを備える第1インバータ(INV1)と、
     前記巻線の他端に相ごとに接続された上アームスイッチ及び下アームスイッチを備える第2インバータ(INV2)と、
     前記第1インバータの直流高電位側と前記第2インバータの直流高電位側とを接続する高電位接続線(La)と、
     前記第1インバータの直流低電位側と前記第2インバータの直流低電位側とを接続する低電位接続線(Lb)と、
    を含み、前記回転電機のH駆動が可能な駆動回路(11)と、
     前記上アームスイッチ及び前記下アームスイッチの開閉を制御することにより前記第1インバータと前記第2インバータとを交互に作動させる非対称スイッチング制御を実行可能な制御部(12)と、を備え、
     対となる前記上アームスイッチと前記下アームスイッチにおける一方のスイッチは、前記非対称スイッチング制御時に導通損失が高くなる側である高損失スイッチであり、他方のスイッチは、前記非対称スイッチング制御時に導通損失が低くなる側である低損失スイッチであり、
     少なくとも1対の前記上アームスイッチと前記下アームスイッチにおいて、前記高損失スイッチは、前記低損失スイッチよりもオン抵抗が低いスイッチング素子である、回転電機の駆動装置。
    A rotary electric machine drive device (10) applied to a rotary electric machine having a plurality of windings corresponding to a plurality of phases.
    A first inverter (INV1) having an upper arm switch and a lower arm switch connected to a DC power supply and connected to one end of the winding for each phase.
    A second inverter (INV2) having an upper arm switch and a lower arm switch connected to the other end of the winding for each phase.
    A high potential connection line (La) connecting the DC high potential side of the first inverter and the DC high potential side of the second inverter, and
    A low potential connection line (Lb) connecting the DC low potential side of the first inverter and the DC low potential side of the second inverter, and
    (11), a drive circuit (11) capable of H-driving the rotary electric machine, and
    A control unit (12) capable of executing asymmetric switching control for alternately operating the first inverter and the second inverter by controlling the opening and closing of the upper arm switch and the lower arm switch is provided.
    One of the paired upper arm switch and the lower arm switch is a high-loss switch on the side where the conduction loss increases during the asymmetric switching control, and the other switch has a conduction loss during the asymmetric switching control. It is a low loss switch on the lower side,
    In at least a pair of the upper arm switch and the lower arm switch, the high-loss switch is a switching element having a lower on-resistance than the low-loss switch, which is a driving device for a rotary electric machine.
  2.  前記高損失スイッチは、ユニポーラ半導体素子である請求項1に記載の回転電機の駆動装置。 The drive device for a rotary electric machine according to claim 1, wherein the high-loss switch is a unipolar semiconductor element.
  3.  前記高損失スイッチは、逆方向導通時の同期整流が可能なユニポーラ半導体素子である請求項1または2に記載の回転電機の駆動装置。 The drive device for a rotary electric machine according to claim 1 or 2, wherein the high-loss switch is a unipolar semiconductor element capable of synchronous rectification when conducting in the reverse direction.
  4.  前記高損失スイッチは、シリコンよりもバンドギャップが広い半導体を材料とする半導体素子である請求項1~3のいずれかに記載の回転電機の駆動装置。 The drive device for a rotary electric machine according to any one of claims 1 to 3, wherein the high-loss switch is a semiconductor element made of a semiconductor having a bandgap wider than that of silicon.
  5.  前記高損失スイッチは、前記低損失スイッチよりも素子サイズが大きい半導体素子である請求項1~4のいずれかに記載の回転電機の駆動装置。 The drive device for a rotary electric machine according to any one of claims 1 to 4, wherein the high-loss switch is a semiconductor element having a larger element size than the low-loss switch.
  6.  前記高損失スイッチは、前記低損失スイッチよりも素子厚が薄い半導体素子である請求項1~5のいずれかに記載の回転電機の駆動装置。 The drive device for a rotary electric machine according to any one of claims 1 to 5, wherein the high-loss switch is a semiconductor element having a thinner element thickness than the low-loss switch.
  7.  前記駆動回路は、前記高電位接続線および前記低電位接続線の少なくとも一方に備えられた、前記第1インバータと前記第2インバータとを導通または遮断する接続線スイッチ(SC)をさらに備えることにより、前記回転電機のH駆動とY駆動とを切り替え可能であり、
     前記制御部は、前記接続線スイッチと、前記上アームスイッチと、前記下アームスイッチとの開閉を制御することにより、前記回転電機のH駆動制御とY駆動制御とを切り替え可能であり、
     前記Y駆動制御時には、前記第1インバータと前記第2インバータのうちの少なくともいずれか一方は、前記上アームスイッチと前記下アームスイッチのうち、いずれか一方が中性点を構成する中性点構成スイッチであるとともに他方が中性点を構成しない非中性点構成スイッチであり、
     前記中性点構成スイッチは、前記非中性点構成スイッチよりもオン抵抗が低いスイッチング素子である、請求項1~6のいずれかに記載の回転電機の駆動装置。
    The drive circuit is further provided with a connection line switch (SC) provided on at least one of the high-potential connection line and the low-potential connection line to conduct or cut off the first inverter and the second inverter. , The H drive and Y drive of the rotary electric machine can be switched.
    The control unit can switch between H drive control and Y drive control of the rotary electric machine by controlling the opening and closing of the connection line switch, the upper arm switch, and the lower arm switch.
    At the time of the Y drive control, at least one of the first inverter and the second inverter has a neutral point configuration in which one of the upper arm switch and the lower arm switch constitutes a neutral point. It is a non-neutral point configuration switch that is a switch and the other does not constitute a neutral point.
    The drive device for a rotary electric machine according to any one of claims 1 to 6, wherein the neutral point configuration switch is a switching element having a lower on-resistance than the non-neutral point configuration switch.
  8.  前記上アームスイッチと前記下アームスイッチのうち、前記高損失スイッチであるとともに前記中性点構成スイッチであるスイッチは、他のスイッチよりもオン抵抗が低い、請求項7に記載の回転電機の駆動装置。 The drive of a rotary electric machine according to claim 7, wherein of the upper arm switch and the lower arm switch, the switch which is the high loss switch and the neutral point configuration switch has a lower on-resistance than the other switches. apparatus.
PCT/JP2020/045237 2019-12-09 2020-12-04 Drive device of rotary electric machine WO2021117630A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-222183 2019-12-09
JP2019222183A JP7402030B2 (en) 2019-12-09 2019-12-09 Rotating electric machine drive device

Publications (1)

Publication Number Publication Date
WO2021117630A1 true WO2021117630A1 (en) 2021-06-17

Family

ID=76310911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045237 WO2021117630A1 (en) 2019-12-09 2020-12-04 Drive device of rotary electric machine

Country Status (2)

Country Link
JP (1) JP7402030B2 (en)
WO (1) WO2021117630A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220159223A (en) * 2021-05-25 2022-12-02 현대모비스 주식회사 Inverter circuit for a vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006149153A (en) * 2004-11-24 2006-06-08 Mitsubishi Electric Corp Controller for motor
JP2010081786A (en) * 2008-09-01 2010-04-08 Suri-Ai:Kk Power switching circuit
JP2011066954A (en) * 2009-09-15 2011-03-31 Daikin Industries Ltd Method of controlling inverter
JP2017175747A (en) * 2016-03-23 2017-09-28 株式会社Soken Power conversion device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006149153A (en) * 2004-11-24 2006-06-08 Mitsubishi Electric Corp Controller for motor
JP2010081786A (en) * 2008-09-01 2010-04-08 Suri-Ai:Kk Power switching circuit
JP2011066954A (en) * 2009-09-15 2011-03-31 Daikin Industries Ltd Method of controlling inverter
JP2017175747A (en) * 2016-03-23 2017-09-28 株式会社Soken Power conversion device

Also Published As

Publication number Publication date
JP2021093806A (en) 2021-06-17
JP7402030B2 (en) 2023-12-20

Similar Documents

Publication Publication Date Title
JP4798291B2 (en) Bidirectional switch circuit and power conversion device including the same
JP6683514B2 (en) Power converter
JP4818489B1 (en) Power converter
JP6477915B2 (en) Power converter
JP6907171B2 (en) Drive device for rotary electric machine
WO2018042636A1 (en) Inverter device, compressor drive device, and air-conditioner
US11489474B2 (en) Driving device for rotating electric machine
JP6852445B2 (en) Semiconductor device
JP6627637B2 (en) Electronic circuit
WO2021117630A1 (en) Drive device of rotary electric machine
JP2002272125A (en) Controller of power converter
KR101261793B1 (en) Apparatus for controlling phase current detection in inverter
WO2008026642A1 (en) Power supply device for permanent magnet field type linear motor and pwm inverter for permanent magnet field type motor
JP3683259B2 (en) Motor drive device
JP5647558B2 (en) Inverter device
JP7104642B2 (en) Drive device for rotary electric machine
JP6996539B2 (en) Power converter
JP6908303B2 (en) Power converter
JP6673192B2 (en) Control device for power conversion circuit
JP5857189B2 (en) Inverter device
JP2022179964A (en) Power conversion device
KR20240040045A (en) Gate driver system for detecting a short circuit condition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20899224

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20899224

Country of ref document: EP

Kind code of ref document: A1