WO2008026642A1 - Power supply device for permanent magnet field type linear motor and pwm inverter for permanent magnet field type motor - Google Patents

Power supply device for permanent magnet field type linear motor and pwm inverter for permanent magnet field type motor Download PDF

Info

Publication number
WO2008026642A1
WO2008026642A1 PCT/JP2007/066777 JP2007066777W WO2008026642A1 WO 2008026642 A1 WO2008026642 A1 WO 2008026642A1 JP 2007066777 W JP2007066777 W JP 2007066777W WO 2008026642 A1 WO2008026642 A1 WO 2008026642A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
permanent magnet
linear motor
magnet field
coil
Prior art date
Application number
PCT/JP2007/066777
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuo Shoda
Yuki Nomura
Yoshifumi Nagato
Original Assignee
Thk Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thk Co., Ltd. filed Critical Thk Co., Ltd.
Priority to CN2007800289950A priority Critical patent/CN101501982B/en
Priority to JP2008532093A priority patent/JP5315053B2/en
Priority to KR1020097006290A priority patent/KR101384063B1/en
Publication of WO2008026642A1 publication Critical patent/WO2008026642A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/006Controlling linear motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2209/00Indexing scheme relating to controlling arrangements characterised by the waveform of the supplied voltage or current
    • H02P2209/09PWM with fixed limited number of pulses per period
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S388/00Electricity: motor control systems
    • Y10S388/907Specific control circuit element or device
    • Y10S388/912Pulse or frequency counter

Definitions

  • the present invention relates to a permanent magnet field linear motor power supply device that supplies electric power to an armature of a permanent magnet field linear motor that generates magnetic flux with a field permanent magnet, and a field permanent magnet.
  • the present invention relates to a PWM inverter for a permanent magnet field motor that supplies electric power to an armature of a permanent magnet field motor that generates magnetic flux.
  • a linear motor is obtained by extending a stator side and a mover side of a rotary motor in a straight line, and directly converts electric energy to a linear thrust.
  • Linear motors are classified into DC motors, AC motors, stepping motors, brushless DC motors, etc., as well as rotary motors.
  • DC motors and brushless DC motors are roughly classified into two types: permanent magnet field types that use permanent magnets, and permanent magnets that do not use permanent magnets!
  • a permanent magnet field type linear motor generates a magnetic flux by a field permanent magnet and causes an AC current to flow through the armature, thereby generating a thrust in the field permanent magnet or the armature (for example, a patent Reference 1).
  • a permanent magnet field type linear motor as shown in FIG. 9, a multi-phase (generally three-phase) coil is wound around the comb teeth 1.
  • the coil is a set of three phases U, W, and V. Since three sets of three coils are provided, the total number of coils is an integer multiple of three.
  • the number of teeth of comb tooth 1 is an integral multiple of 3 equal to the total number of coils.
  • the plurality of coils and comb teeth are arranged side by side in the operating direction of the armature or permanent magnet.
  • Patent Document 1 JP 2003-70226 A (see page 1)
  • the magnetic flux ⁇ generated by the W-phase coil is the adjacent teeth of the U-phase and V-phase teeth.
  • the magnetic flux ⁇ generated by the two-phase coil can pass through the teeth of both adjacent teeth u-phase and V-phase.
  • the magnetic flux ⁇ generated by the U-phase coil passes through the W-phase teeth, but is indicated by a broken line in the figure. It is difficult for the magnetic flux to pass through the area.
  • V-phase teeth located at the other end of the comb teeth
  • An object of the present invention is to provide a permanent magnet field type linear motor power supply device and a permanent magnet field type motor PWM inverter.
  • the invention according to claim 1 is directed to a permanent magnet field linear motor power supply that supplies power to an armature of a permanent magnet field linear motor that generates magnetic flux with a field permanent magnet.
  • a power supply means for supplying a multiphase alternating current to a multiphase coil of an armature of a linear motor, and at least one phase (for example, W phase) not located at both ends in the operating direction of the linear motor.
  • a permanent magnet field linear motor comprising: current adjusting means for reducing the current supplied to the coil to be less than the current supplied to the remaining two phases (for example, U phase and V phase) located at both ends of the operating direction. Power supply device.
  • the invention according to claim 2 is a power supply device for a permanent magnet field linear motor that supplies power to an armature of a permanent magnet field linear motor that generates a magnetic flux with a field permanent magnet. Therefore, the U, V, W phase force of the armature of the linear motor, a power supply circuit that supplies a three-phase alternating current to the three-phase coil, and one phase that is not located at both ends of the linear motor operating direction ( For example, the current supplied to the one phase coil is connected to the other two phases (for example, the U phase and the V phase) located at both ends of the operation direction. And a power supply device for a permanent magnet field type linear motor.
  • the invention of claim 3 is a PWM inverter for a permanent magnet field type motor for supplying electric power to an armature of a permanent magnet field type motor that generates a magnetic flux with a field permanent magnet.
  • the arm composed of the upper and lower switching elements operating in the form of three-phase coils for the three-phase coil composed of the U, V, and W phases of the armature and in parallel between the DC power supplies,
  • An arm composed of two upper and lower switching elements that operate in pairs is further provided in parallel between the DC power supplies for the lead wire drawn from the neutral point (N) of the star-connected three-phase coil.
  • a PWM inverter for a permanent magnet field type motor that controls on and off of the switching element for the three-phase coil and the switching element for the lead wire by a control circuit.
  • the invention according to claim 4 is the PWM inverter for the permanent magnet field type motor according to claim 3, wherein the permanent magnet field type motor is a linear motor, and the permanent magnet field type
  • the PWM inverter for motor uses one phase that is not located at both ends of the linear motor operating direction (for example, It is characterized in that the current supplied to the coil of the W phase is made lower than the current supplied to the remaining two phases (for example, the U phase and the V phase) located at both ends of the operating direction.
  • the current adjusting means places the current supplied to the coils of at least one phase (for example, W phase) not located at both ends in the operating direction at both ends in the operating direction. This reduces the current supplied to the remaining two phases (for example, U phase and V phase), so that the thrust generated in the coils of each phase can be made uniform. Therefore, the force S is used to reduce the speed ripple.
  • the current supplied to the coil of at least one phase (for example, W phase) that is not located at both ends in the operation direction is supplied to the remaining resistors located at both ends in the operation direction. Since the current supplied to two phases (for example, U phase and V phase) is reduced, the thrust generated in the coils of each phase can be made uniform. Therefore, the speed ripple can be reduced.
  • the current supplied to the three-phase coil of the armature of the motor can be controlled for each phase.
  • the thrust generated in the coils of each phase can be made uniform. Therefore, the speed lip glue can be reduced.
  • FIG. 1 A sectional view along the direction of operation of a permanent magnet field linear motor.
  • FIG. 2 is a configuration diagram of a power supply device for a permanent magnet field linear motor according to an embodiment of the present invention.
  • FIG. 5A is a graph showing an example in which a three-phase alternating current having the same amplitude is supplied to each phase coil.
  • FIG. 5B is a graph showing an example in which the amplitude of the current supplied to the W-phase coil is reduced below the amplitude of the current supplied to the U-phase and V-phase.
  • FIG. 6 is a block diagram showing a PWM inverter for a permanent magnet field motor in an embodiment of the present invention.
  • FIG. 8A Schottrachloro-2
  • FIG. 8B Schematic showing the current flowing in the three-phase coil in the second stage process
  • FIG. 1 shows a cross-sectional view along the operating direction of a permanent magnet field type linear motor whose armature side is movable as an example of the permanent magnet field type linear motor 2.
  • N-pole and S-pole permanent magnets 4 are alternately arranged at a constant pitch in the armature operating direction.
  • armature 5 side a three-phase coil 10 having U, V, and W phase forces is provided.
  • the armature 5 includes a comb tooth 9 fixed to the top plate 7 with a bolt 8 or the like, and a coil 10 wound around the tooth 9a of the comb tooth 9.
  • the coil 10 is a set of three phases U, W, and V.
  • the total number of coils 10 is an integer multiple of three.
  • the number of teeth 9a as an iron core is an integral multiple of 3 equal to the total number of coils 10.
  • Coils 10 are arranged side by side in the operating direction of the U, W, V, ..., U, W, V phase and armature. Both ends of the armature 5 in the operating direction are a U-phase coil 10 and a V-phase coil 10.
  • the coil 10 may be a coreless coil without an iron core.
  • the linear motor may be a so-called rod-type linear motor in which a coil is wound in an annular shape around a rod.
  • FIG. 2 shows a permanent magnet field type linear motor power supply device 11 according to an embodiment of the present invention.
  • the power supply device 11 of this embodiment is composed of a voltage-type PWM inverter (PWM: Pulse Width Modulation) that converts a DC voltage into an AC voltage, and the armature 5 of the linear motor 2 has a three-phase AC. Supply current.
  • PWM Pulse Width Modulation
  • the permanent magnet field linear motor power supply device 11 includes a DC power source 12, an inverter main circuit 13, and a control circuit 14.
  • the inverter main circuit 13 consists of three phases (U phase, W phase, V phase) arm 15, 16, 17 force.
  • Each of the arms 15, 16, and 17 is also configured with switching elements 15a, 15b, 16a, 16b, 17a, and 17b that move in pairs.
  • Each of the switching elements 15a to 17b is composed of a parallel connection of a transistor and a flywheel diode. The flywheel diode is used to feed back the reverse current to the transistor.
  • the on / off of the switching elements 15a to 17b is determined by the on / off signal of the transistor.
  • MOSFETs Metal Oxide Semi-conductors or Piezoelectric Defects
  • IGBTs Insulated Bipolar Mode Transistors
  • the control circuit 14 outputs a PWM signal for controlling on / off of the transistor.
  • a triangular wave comparison method is used in which a three-phase sine wave voltage command is compared with a triangular wave (carrier) that is a carrier wave to obtain a voltage of a pulse train.
  • the inverter main circuit 13 outputs a voltage in a Nores series approximated to a three-phase AC voltage.
  • a three-phase AC voltage is output from the inverter main circuit 13
  • a three-phase AC current is supplied to the three-phase coil of the linear motor.
  • FIG. 3 shows a method for connecting coils of a linear motor.
  • delta connection delta connection
  • Y connection star
  • Figure 3 shows a commonly used star connection.
  • the voltage output from the inverter main circuit 13 is a line voltage between WV, WU, and UV.
  • the resistor 19 is connected in parallel with the W-phase coil in order to reduce the current supplied to the W-phase harder than the current supplied to the U-phase and V-phase coils.
  • the resistor 19 may be provided in the power supply device or may be provided in the linear motor.
  • the current flowing in the W-phase coil branches into a current flowing in the resistor 19 side and a current flowing in the W-phase coil side.
  • Fig. 4 shows the voltage generated in the coils of each phase when the armature is moved at a constant speed.
  • the W-phase coil Since the W-phase coil is not located at both ends of the linear motor in the operating direction, it has a lower magnetic resistance than the other U-phase and V-phase. For this reason, as shown in FIG. 4, the amplitude force of the generated voltage at both ends of the W-phase coil is larger than the amplitude of the generated voltage generated in the U-phase and V-phase coils. In other words, the counter electromotive force constant of the W phase coil is larger than the counter electromotive force constant of the U phase and V phase coils. In the case of a DC motor, the counter electromotive force constant is equal to the torque constant.
  • the motor connection may be a ⁇ connection, or the motor may be driven by a unipolar drive using three semiconductor elements. Further, the motor may be a four-phase motor connected with a three-phase motor.
  • FIG. 6 shows a PWM inverter 20 (PWM: Pulse Width Modulation) for a permanent magnet field motor in an embodiment of the present invention.
  • PWM Pulse Width Modulation
  • the PWM inverter 20 converts a DC voltage into an AC voltage and supplies a three-phase AC current to the armature of the linear motor.
  • the PWM inverter 20 includes a DC power source 21, an inverter main circuit 22, and a control circuit 28.
  • the inverter main circuit 22 has two upper and lower switching elements 23a, 23b, 24a, 24b, 25a, and 25b that operate in pairs. For three-phase coils consisting of phases, three phases are provided in parallel between DC power supplies 21. More
  • the inverter main circuit 22 of this embodiment includes the upper and lower switching elements 26a and 26b acting as a pair, and the arm 26 consisting of the neutral point of the star-connected three-phase coil. Provided in parallel between the DC power supplies 21 for the lead wire 27 drawn from N.
  • the arm 26 composed of the upper and lower switching elements 26a, 26b is connected in parallel to the DC power source 21, while the lead wire 27 is drawn from the neutral point N, and the upper switching element 26a and the lower switching element Connect lead wire 27 drawn from neutral point N to 26b.
  • Each arm 23 to 26 is composed of switching elements 23a to 26b that operate in pairs in the vertical direction.
  • Each switching element 23a to 26b is configured by a parallel connection of a transistor and a flywheel diode.
  • the flywheel diode is used to feed back the reverse current to the transistor.
  • the on / off state of the switching element is determined by the on / off signal of the transistor.
  • By turning on and off the switching element it is possible to output a three-phase AC voltage equivalently by changing the width of the output voltage without changing the magnitude of the DC voltage.
  • a MOSFET Metal Oxide Semi-conductor or Piezoelectric Effect Transistor
  • a "IGBT Insulated Bipolar Mode Transistor
  • an arm 26 is provided for the lead-out line drawn from the neutral point N.
  • the processing when the switching element is on is divided into two stages. Specifically, as shown in FIG. 8A, in the first stage processing, current I flows from the W-phase coil to the lead wire 27.
  • Table 1 shows the two-step switching mode of the PWM inverter 20.
  • control by a conventional triangular wave comparison method that obtains a voltage of a pulse train by comparing a three-phase sine wave voltage command and a triangular wave (carrier) as a carrier wave, and a current to a W-phase coil.

Abstract

Provided is a power supply device for a permanent magnet field type linear motor capable of controlling power supply to coils of the respective phases of the linear motor so as to reduce irregularities in thrust generated in the coils of the respective phases and reduce the speed ripple. The power supply device (11) for a permanent magnet field type linear motor supplies power to an armature (5) of the permanent magnet field type linear motor generating a magnetic flux by a field permanent magnet (4). The power supply device (11) includes: power supply means (13) which supplies a multi-phase AC current to multi-phase coils of the armature (5) of the linear motor (2); and current adjusting means (19) which reduces the current supplied to a coil of at least one phase (for example, W-phase) not located at both ends of the work direction of the linear motor (2) as compared to the current supplied to the remaining two phases (for example, U-phase and V-phase) located at the both ends of the work direction. Thus, it is possible to make the thrusts generated in the coils of the respective phases to be identical, which in turn reduces the speed ripple.

Description

明 細 書  Specification
永久磁石界磁型リニアモータ用電力供給装置、及び永久磁石界磁型モ ータ用 PWMインバータ  Power supply device for permanent magnet field type linear motor and PWM inverter for permanent magnet field type motor
技術分野  Technical field
[0001] 本発明は、界磁用永久磁石で磁束を作る永久磁石界磁型リニアモータの電機子に 電力を供給する永久磁石界磁型リニアモータ用電力供給装置、並びに界磁用永久 磁石で磁束を作る永久磁石界磁型モータの電機子に電力を供給する永久磁石界磁 型モータ用 PWMインバータに関する。  The present invention relates to a permanent magnet field linear motor power supply device that supplies electric power to an armature of a permanent magnet field linear motor that generates magnetic flux with a field permanent magnet, and a field permanent magnet. The present invention relates to a PWM inverter for a permanent magnet field motor that supplies electric power to an armature of a permanent magnet field motor that generates magnetic flux.
背景技術  Background art
[0002] リニアモータは、回転形モータの固定子側と可動子側を直線状に引き伸ばしたもの で、電気工ネルギを直接、直線的な推力に変換する。リニアモータは、回転形モータ と同様に、 DCモータ、 ACモータ、ステッピングモータ、ブラシレス DCモータなどに分 類される。 DCモータ、ブラシレス DCモータは、永久磁石を用いる永久磁石界磁型と 、永久磁石を使わな!/、電磁石界磁型との二種類に大別される。  [0002] A linear motor is obtained by extending a stator side and a mover side of a rotary motor in a straight line, and directly converts electric energy to a linear thrust. Linear motors are classified into DC motors, AC motors, stepping motors, brushless DC motors, etc., as well as rotary motors. DC motors and brushless DC motors are roughly classified into two types: permanent magnet field types that use permanent magnets, and permanent magnets that do not use permanent magnets!
[0003] 永久磁石界磁型のリニアモータは、界磁用永久磁石で磁束を作り、電機子に交流 電流を流すことにより、界磁用永久磁石又は電機子に推力を発生させる(例えば特 許文献 1参照)。永久磁石界磁型のリニアモータにおいては、図 9に示されるように、 櫛歯 1に多相(一般的には三相)のコイルが巻かれている。コイルは、 U, W, Vの三 相で一組となる。三つで一組のコイルが複数組設けられるから、コイルの総数は 3の 整数倍になる。櫛歯 1の歯の個数は、コイルの総数と等しぐ 3の整数倍になる。複数 のコイル及び櫛歯は電機子又は永久磁石の作動方向に並べて配列される。  [0003] A permanent magnet field type linear motor generates a magnetic flux by a field permanent magnet and causes an AC current to flow through the armature, thereby generating a thrust in the field permanent magnet or the armature (for example, a patent Reference 1). In a permanent magnet field type linear motor, as shown in FIG. 9, a multi-phase (generally three-phase) coil is wound around the comb teeth 1. The coil is a set of three phases U, W, and V. Since three sets of three coils are provided, the total number of coils is an integer multiple of three. The number of teeth of comb tooth 1 is an integral multiple of 3 equal to the total number of coils. The plurality of coils and comb teeth are arranged side by side in the operating direction of the armature or permanent magnet.
[0004] 特許文献 1 :特開 2003— 70226号公報(1頁参照)  [0004] Patent Document 1: JP 2003-70226 A (see page 1)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] W相の歯の両隣には、必ず U相の歯と V相の歯が存在するから、例えば W相のコ ィルによって発生する磁束 φは両隣の歯 U相及び V相の歯を通ることができ、 W [0005] Since there are always U-phase teeth and V-phase teeth on both sides of the W-phase teeth, for example, the magnetic flux φ generated by the W-phase coil is the adjacent teeth of the U-phase and V-phase teeth. W
1 1 2 相のコイルによって発生する磁束 φは両隣の歯 u相及び V相の歯を通ることができ る。しかし、櫛歯の端に位置する 相の歯に隣接するのは 相の歯のみであるから 、 U相のコイルによって発生する磁束 φは、 W相の歯を通るものの、図中破線で示 される領域については磁束が通り難くなつている。櫛歯の他端に位置する V相の歯 1 1 The magnetic flux φ generated by the two-phase coil can pass through the teeth of both adjacent teeth u-phase and V-phase. The However, since only the phase teeth are adjacent to the phase teeth located at the ends of the comb teeth, the magnetic flux φ generated by the U-phase coil passes through the W-phase teeth, but is indicated by a broken line in the figure. It is difficult for the magnetic flux to pass through the area. V-phase teeth located at the other end of the comb teeth
2 についても同じことがいえる。言い換えれば、櫛歯の両端に位置する U, V相コィノレ は、 w相コイルと比較して磁気抵抗が高くなる。そして、これが原因で、各相のコィノレ (U, W, V相それぞれ)に等しい大きさの電流を流した場合、 U, V相コイルに働く推 力は、 W相コイルに働く推力よりも小さくなつてしまい、速度リップルが発生する。  The same can be said for 2. In other words, the U and V phase coinoles located at both ends of the comb teeth have higher magnetic resistance than the w phase coil. For this reason, when a current of the same magnitude is applied to the coinole of each phase (U, W, V phases respectively), the thrust acting on the U, V phase coil is smaller than the thrust acting on the W phase coil. As a result, speed ripple occurs.
[0006] リニアモータに発生する速度リップルを低減させるために、従来から様々な方法が 提案されている。例えば特許文献 1には、固定子側の永久磁石の磁化方向及び配 列を工夫することによって、永久磁石列による磁束密度分布を正弦波にし、コイルに 誘起される逆起電力を正弦波に近づける方法が開示されている。しかし、従来技術 には、リニアモータの各相のコイルの磁気抵抗に着目し、各相のコイルに供給される 供給電流を制御することで推力むらを低減する技術は存在しない。 [0006] Various methods have been proposed in the past in order to reduce the speed ripple generated in the linear motor. For example, in Patent Document 1, by devising the magnetization direction and arrangement of the permanent magnets on the stator side, the magnetic flux density distribution by the permanent magnet array is made a sine wave, and the counter electromotive force induced in the coil is made closer to a sine wave. A method is disclosed. However, there is no technology in the prior art that reduces the thrust unevenness by focusing on the magnetic resistance of each phase coil of the linear motor and controlling the supply current supplied to each phase coil.
[0007] そこで本発明は、リニアモータの各相のコイルへの供給電流を制御することによつ て、各相のコイルに発生する推力のむらを低減させることができ、ひいては速度リップ ルを低減することができる永久磁石界磁型リニアモータ用電力供給装置、及び永久 磁石界磁型モータ用 PWMインバータを提供することを目的とする。  [0007] Therefore, according to the present invention, by controlling the current supplied to the coils of each phase of the linear motor, it is possible to reduce the unevenness of the thrust generated in the coils of each phase, and thus reduce the speed ripple. An object of the present invention is to provide a permanent magnet field type linear motor power supply device and a permanent magnet field type motor PWM inverter.
課題を解決するための手段  Means for solving the problem
[0008] 以下、本発明につ!/、て説明する。 [0008] Hereinafter, the present invention will be described.
上記課題を解決するために、請求項 1に記載の発明は、界磁用永久磁石で磁束を 作る永久磁石界磁型リニアモータの電機子に電力を供給する永久磁石界磁型リニア モータ用電力供給装置であって、リニアモータの電機子の多相のコイルに多相交流 電流を供給する電力供給手段と、前記リニアモータの作動方向の両端に位置しない 少なくとも一つの相(例えば W相)のコイルに供給する電流を、前記作動方向の両端 に位置する残りの二つの相(例えば U相及び V相)に供給する電流よりも低減させる 電流調整手段と、を備える永久磁石界磁型リニアモータ用電力供給装置である。  In order to solve the above-mentioned problems, the invention according to claim 1 is directed to a permanent magnet field linear motor power supply that supplies power to an armature of a permanent magnet field linear motor that generates magnetic flux with a field permanent magnet. A power supply means for supplying a multiphase alternating current to a multiphase coil of an armature of a linear motor, and at least one phase (for example, W phase) not located at both ends in the operating direction of the linear motor. A permanent magnet field linear motor comprising: current adjusting means for reducing the current supplied to the coil to be less than the current supplied to the remaining two phases (for example, U phase and V phase) located at both ends of the operating direction. Power supply device.
[0009] 請求項 2に記載の発明は、界磁用永久磁石で磁束を作る永久磁石界磁型リニアモ ータの電機子に電力を供給する永久磁石界磁型リニアモータ用電力供給装置であ つて、リニアモータの電機子の U, V, W相力、らなる三相コイルに三相交流電流を供 給する電力供給回路と、前記リニアモータの作動方向の両端に位置しない一つの相 (例えば W相)のコイルと並列に接続され、前記一つの相のコイルに供給する電流を 、前記作動方向の両端に位置する残りの二つの相(例えば U相及び V相)に供給す る電流よりも低減させる抵抗と、を備える永久磁石界磁型リニアモータ用電力供給装 置である。 [0009] The invention according to claim 2 is a power supply device for a permanent magnet field linear motor that supplies power to an armature of a permanent magnet field linear motor that generates a magnetic flux with a field permanent magnet. Therefore, the U, V, W phase force of the armature of the linear motor, a power supply circuit that supplies a three-phase alternating current to the three-phase coil, and one phase that is not located at both ends of the linear motor operating direction ( For example, the current supplied to the one phase coil is connected to the other two phases (for example, the U phase and the V phase) located at both ends of the operation direction. And a power supply device for a permanent magnet field type linear motor.
[0010] 請求項 3に記載の発明は、界磁用永久磁石で磁束を作る永久磁石界磁型モータ の電機子に電力を供給する永久磁石界磁型モータ用 PWMインバータであって、対 になって動作する上側及び下側二つのスイッチング素子からなるアームを、前記電 機子の U, V, W相からなる三相のコイル用に三相分、直流電源間に並列に備えると 共に、対になって動作する上側及び下側二つのスイッチング素子からなるアームを、 スター結線された三相のコイルの中性点 (N)から引き出した引出し線用に、直流電源 間に並列にさらに備え、前記三相のコイル用の前記スイッチング素子、及び前記引 出し線用の前記スイッチング素子のオン、オフを、制御回路によって制御する永久磁 石界磁型モータ用 PWMインバータである。  [0010] The invention of claim 3 is a PWM inverter for a permanent magnet field type motor for supplying electric power to an armature of a permanent magnet field type motor that generates a magnetic flux with a field permanent magnet. The arm composed of the upper and lower switching elements operating in the form of three-phase coils for the three-phase coil composed of the U, V, and W phases of the armature and in parallel between the DC power supplies, An arm composed of two upper and lower switching elements that operate in pairs is further provided in parallel between the DC power supplies for the lead wire drawn from the neutral point (N) of the star-connected three-phase coil. And a PWM inverter for a permanent magnet field type motor that controls on and off of the switching element for the three-phase coil and the switching element for the lead wire by a control circuit.
[0011] 請求項 4に記載の発明は、請求項 3に記載の永久磁石界磁型モータ用 PWMイン バータにおいて、前記永久磁石界磁型モータは、リニアモータであり、前記永久磁石 界磁型モータ用 PWMインバータは、前記リニアモータの電機子の U, V, W相から なる三相コイルに三相交流電流を供給する際、前記リニアモータの作動方向の両端 に位置しない一つの相(例えば W相)のコイルに供給する電流を、前記作動方向の 両端に位置する残りの二つの相(例えば U相及び V相)に供給する電流よりも低減さ せることを特徴とする。  [0011] The invention according to claim 4 is the PWM inverter for the permanent magnet field type motor according to claim 3, wherein the permanent magnet field type motor is a linear motor, and the permanent magnet field type When a three-phase alternating current is supplied to a three-phase coil consisting of U, V, and W phases of the armature of the linear motor, the PWM inverter for motor uses one phase that is not located at both ends of the linear motor operating direction (for example, It is characterized in that the current supplied to the coil of the W phase is made lower than the current supplied to the remaining two phases (for example, the U phase and the V phase) located at both ends of the operating direction.
発明の効果  The invention's effect
[0012] 請求項 1に記載の発明によれば、電流調整手段が、作動方向の両端に位置しない 少なくとも一つの相(例えば W相)のコイルに供給する電流を、作動方向の両端に位 置する残りの二つの相(例えば U相及び V相)に供給する電流よりも低減させるので、 各相のコイルに発生する推力を均等にすることができる。よって、速度リップルを低減 させること力 Sでさる。 [0013] 請求項 2に記載の発明によれば、抵抗が、作動方向の両端に位置しない少なくとも 一つの相(例えば W相)のコイルに供給する電流を、作動方向の両端に位置する残り の二つの相(例えば U相及び V相)に供給する電流よりも低減させるので、各相のコィ ルに発生する推力を均等にすることができる。よって、速度リップルを低減させること ができる。 [0012] According to the invention described in claim 1, the current adjusting means places the current supplied to the coils of at least one phase (for example, W phase) not located at both ends in the operating direction at both ends in the operating direction. This reduces the current supplied to the remaining two phases (for example, U phase and V phase), so that the thrust generated in the coils of each phase can be made uniform. Therefore, the force S is used to reduce the speed ripple. [0013] According to the invention of claim 2, the current supplied to the coil of at least one phase (for example, W phase) that is not located at both ends in the operation direction is supplied to the remaining resistors located at both ends in the operation direction. Since the current supplied to two phases (for example, U phase and V phase) is reduced, the thrust generated in the coils of each phase can be made uniform. Therefore, the speed ripple can be reduced.
[0014] 請求項 3に記載の発明によれば、モータの電機子の三相のコイルに供給される電 流を相毎に制御することができる。  [0014] According to the invention of claim 3, the current supplied to the three-phase coil of the armature of the motor can be controlled for each phase.
[0015] 請求項 4に記載の発明によれば、各相のコイルに発生する推力を均等にすることが できる。よって、速度リップノレを低減させることカできる。 [0015] According to the invention described in claim 4, the thrust generated in the coils of each phase can be made uniform. Therefore, the speed lip glue can be reduced.
図面の簡単な説明  Brief Description of Drawings
[0016] [図 1]永久磁石界磁型リニアモータの作動方向に沿った断面図  [0016] [FIG. 1] A sectional view along the direction of operation of a permanent magnet field linear motor.
[図 2]本発明の一実施形態における永久磁石界磁型リニアモータ用電力供給装置の 構成図  FIG. 2 is a configuration diagram of a power supply device for a permanent magnet field linear motor according to an embodiment of the present invention.
[図 3]リニアモータのコイルの結線方法を示す図  [Fig.3] Diagram showing how to wire the linear motor coil
[図 4]各相のコイルに発生する発生電圧(逆起電力)を測定したグラフ  [Fig.4] A graph of measured voltage (back electromotive force) generated in each phase coil
[図 5A]各相のコイルに同じ振幅の三相交流電流を供給した例を示すグラフ  FIG. 5A is a graph showing an example in which a three-phase alternating current having the same amplitude is supplied to each phase coil.
[図 5B]W相のコイルに供給される電流の振幅を U相及び V相に供給される電流の振 幅よりも低減させた例を示すグラフ  FIG. 5B is a graph showing an example in which the amplitude of the current supplied to the W-phase coil is reduced below the amplitude of the current supplied to the U-phase and V-phase.
[図 6]本発明の一実施形態における永久磁石界磁型モータ用 PWMインバータを示 す構成図  FIG. 6 is a block diagram showing a PWM inverter for a permanent magnet field motor in an embodiment of the present invention.
[図 7]三相のコイルに流れる電流を示す概略図  [Fig. 7] Schematic showing the current flowing in the three-phase coil
[図 8A]—段目の処理において、三相のコイルに流れる電流を示す概略図  [FIG. 8A] —Schematic showing the current flowing in the three-phase coil in the stage processing.
[図 8B]二段目の処理において、三相のコイルに流れる電流を示す概略図  [FIG. 8B] Schematic showing the current flowing in the three-phase coil in the second stage process
[図 9]リニアモータの櫛歯を示す図  [Fig.9] Diagram showing comb teeth of linear motor
符号の説明  Explanation of symbols
[0017] 2· · ·永久磁石界磁型リニアモータ [0017] 2 · · · Permanent magnet field linear motor
3· · ·固定子  3 ··· Stator
4…永久磁石 5··,電機子 4 ... Permanent magnet 5. Armature
10…コィノレ 10 ... Koinole
11 · ··永久磁石界磁型リニアモータ用電力供給装置  11 ··· Power supply device for permanent magnet field type linear motor
13···インバータ主回路 (電力供給手段) 13 ... Inverter main circuit (Power supply means)
19···抵抗 (電力調整手段) 19 .. Resistance (Power adjustment means)
N…中†生点 N ... medium raw
20···永久磁石界磁型モータ用 PWMインバータ(電力調整手段)  20 ... PWM inverter for permanent magnet field type motor (power adjustment means)
21···直流電源 21 ... DC power supply
22·· 'インバータ主回路 (電力供給手段)  22 ... 'Inverter main circuit (power supply means)
28···制御回路 28 ... Control circuit
23, 24, 25···三相のコィノレ用のアーム  23, 24, 25 ... Three-phase coinole arm
23a, 23b, 24a, 24b, 25a, 25b…三相のコイル用のスィッチング素子 26…中性点 用のアーム  23a, 23b, 24a, 24b, 25a, 25b… switching element for three-phase coil 26… arm for neutral point
26a, 26b…中性点用のスイッチング素子  26a, 26b… Switching element for neutral point
27···引出し線 27 ... Leader
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下添付図面に基づいて、本発明の実施形態を詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
図 1は永久磁石界磁型リニアモータ 2の一例として、電機子側が可動する永久磁石 界磁型リニアモータの作動方向に沿った断面図を示す。固定子 3側には N極と S極 の永久磁石 4が交互に一定のピッチで電機子の作動方向に配列される。電機子 5側 には、 U, V, W相力もなる三相のコイル 10が設けられる。電機子 5は、天板 7にボル ト 8等で固定される櫛歯 9と、櫛歯 9の歯 9aに巻かれるコイル 10とで構成される。コィ ル 10は、 U, W, Vの三相で一組となる。三つで一組のコイル 10が複数組設けられる から、コイル 10の総数は 3の整数倍になる。鉄心としての歯 9aの個数は、コイル 10の 総数と等しぐ 3の整数倍になる。コイル 10は U, W, V, ···, U, W, V相と電機子の 作動方向に並べて配列される。電機子 5の作動方向の両端は U相のコイル 10と V相 のコイル 10になる。三相のコイル 10に三相交流電流を流すことによって直線的に移 動する移動界磁が発生し、電機子 5が固定子 3に対して直線的に移動する。なお、コ ィル 10は、鉄心が設けられないコアレスのコイルであってもよい。リニアモータは、ロッ ドの周囲に円環状にコイルを巻いた所謂ロッドタイプのリニアモータであってもよい。 FIG. 1 shows a cross-sectional view along the operating direction of a permanent magnet field type linear motor whose armature side is movable as an example of the permanent magnet field type linear motor 2. On the stator 3 side, N-pole and S-pole permanent magnets 4 are alternately arranged at a constant pitch in the armature operating direction. On the armature 5 side, a three-phase coil 10 having U, V, and W phase forces is provided. The armature 5 includes a comb tooth 9 fixed to the top plate 7 with a bolt 8 or the like, and a coil 10 wound around the tooth 9a of the comb tooth 9. The coil 10 is a set of three phases U, W, and V. Since three sets of three coils 10 are provided, the total number of coils 10 is an integer multiple of three. The number of teeth 9a as an iron core is an integral multiple of 3 equal to the total number of coils 10. Coils 10 are arranged side by side in the operating direction of the U, W, V, ..., U, W, V phase and armature. Both ends of the armature 5 in the operating direction are a U-phase coil 10 and a V-phase coil 10. When a three-phase alternating current is passed through the three-phase coil 10, a moving field that moves linearly is generated, and the armature 5 moves linearly with respect to the stator 3. In addition, The coil 10 may be a coreless coil without an iron core. The linear motor may be a so-called rod-type linear motor in which a coil is wound in an annular shape around a rod.
[0019] 図 2は、本発明の一実施形態における永久磁石界磁型リニアモータ用電力供給装 置 11を示す。この実施形態の電力供給装置 11は、直流電圧を交流電圧に変換する 電圧形の PWMインバータ(PWM: Pulse Width Modulation:パルス幅変調)から構成 され、上記リニアモータ 2の電機子 5に三相交流電流を供給する。  FIG. 2 shows a permanent magnet field type linear motor power supply device 11 according to an embodiment of the present invention. The power supply device 11 of this embodiment is composed of a voltage-type PWM inverter (PWM: Pulse Width Modulation) that converts a DC voltage into an AC voltage, and the armature 5 of the linear motor 2 has a three-phase AC. Supply current.
[0020] 永久磁石界磁型リニアモータ用電力供給装置 11は、直流電源 12と、インバータ主 回路 13と、制御回路 14と、を備える。インバータ主回路 13は、三相分(U相、 W相、 V相)のアーム 15, 16, 17力、らなる。各アーム 15, 16, 17は、上下で対に動作する スィッチング素子 15a, 15b, 16a, 16b, 17a, 17b力も構成される。各スイッチング 素子 15a〜; 17bは、トランジスタとフライホイールダイオードとの並列接続で構成され る。フライホイールダイオードはトランジスタに対して逆方向の電流を帰還するのに用 いられる。スイッチング素子 15a〜17bのオン、オフは、トランジスタのオン'オフ信号 で決まる。スイッチング素子をオン、オフさせることによって、直流電圧の大きさは変え ないで出力電圧のノ ルス幅を変えて等価的に三相交流電圧を出力することができる 。なお、スイッチング素子 15a〜; 17bとしては、 MOSFET(Metal Oxide Semi-conduct or Pield mfect Ί ransistor)A"IGBT(Insulated ate Bipolar mode Transistor:絶,減ク ートバイポーラモードトランジスタ)を用いることもできる。  The permanent magnet field linear motor power supply device 11 includes a DC power source 12, an inverter main circuit 13, and a control circuit 14. The inverter main circuit 13 consists of three phases (U phase, W phase, V phase) arm 15, 16, 17 force. Each of the arms 15, 16, and 17 is also configured with switching elements 15a, 15b, 16a, 16b, 17a, and 17b that move in pairs. Each of the switching elements 15a to 17b is composed of a parallel connection of a transistor and a flywheel diode. The flywheel diode is used to feed back the reverse current to the transistor. The on / off of the switching elements 15a to 17b is determined by the on / off signal of the transistor. By turning on and off the switching element, it is possible to output a three-phase AC voltage equivalently by changing the width of the output voltage without changing the magnitude of the DC voltage. As the switching elements 15a to 17b, MOSFETs (Metal Oxide Semi-conductors or Piezoelectric Defects) A "IGBTs (Insulated Bipolar Mode Transistors) can be used.
[0021] 制御回路 14は、トランジスタのオン,オフを制御するための PWM信号を出力する。  The control circuit 14 outputs a PWM signal for controlling on / off of the transistor.
PWM信号の生成方法には、例えば三相正弦波電圧指令と搬送波である三角波(キ ャリア)とを比較することにより、ノ ルス列の電圧を得る三角波比較法が用いられる。 三角波比較法を用いた PWM信号によってトランジスタをオン、オフさせると、インバ ータ主回路 13から三相交流電圧に近似させたノ レス列の電圧が出力される。インバ ータ主回路 13から三相交流電圧が出力されると、リニアモータの三相コイルには三 相交流電流が供給される。各相で直列に接続された二つのトランジスタ力 わずかな 時間でも同時にオンすると直流電圧の短絡を引き起こし、トランジスタの破壊を招くか ら、それを防ぐために二つのトランジスタのオン、オフ信号には両方ともに短絡防止 時間が設けられている。 [0022] 図 3はリニアモータのコイルの結線方法を示す。結線方法には、コイルを環状に結 線する Δ結線(デルタ結線)と、三つのコイルの U, V, Wをひとまとめにする Y結線( スター)と力 Sある。図 3には一般的に使用されるスター結線を示す。 As a method for generating a PWM signal, for example, a triangular wave comparison method is used in which a three-phase sine wave voltage command is compared with a triangular wave (carrier) that is a carrier wave to obtain a voltage of a pulse train. When the transistor is turned on and off by the PWM signal using the triangular wave comparison method, the inverter main circuit 13 outputs a voltage in a Nores series approximated to a three-phase AC voltage. When a three-phase AC voltage is output from the inverter main circuit 13, a three-phase AC current is supplied to the three-phase coil of the linear motor. Two transistor powers connected in series in each phase.If they are turned on at the same time for a short time, a short-circuit of the DC voltage will be caused and the transistor will be destroyed. There is a short-circuit prevention time. FIG. 3 shows a method for connecting coils of a linear motor. There are two types of connection methods: delta connection (delta connection) that connects coils in a ring, Y connection (star) that combines U, V, and W of three coils together, and force S. Figure 3 shows a commonly used star connection.
[0023] インバータ主回路 13から出力される電圧は、 WV, WU, UV間の線間電圧である。  [0023] The voltage output from the inverter main circuit 13 is a line voltage between WV, WU, and UV.
WV線間に電圧を印加すると、 W相のコイルと V相のコイルに同時に電流が流れ、 W U線間に電圧を印加すると、 W相のコイルと U相のコイルに同時に電流が流れる。そ れゆえ、インバータから出力される電圧をいくらソフト的に制御したとしても、 V相のコ ィルに供給する電流の大きさをそのままにして W相のコイルに供給する電流を低減 することはできず、また U相のコイルに供給する電流の大きさをそのままにして W相の コイルに供給する電流を低減することはできない。このため、本実施形態では、 W相 に供給する電流を U相及び V相のコイルに供給する電流よりもハード的に低減する ために、 W相のコイルと並列に抵抗 19を接続する。この抵抗 19は、電力供給装置に 設けられても、リニアモータの内部に設けられてもよい。  When a voltage is applied between the WV lines, a current flows through the W phase coil and the V phase coil simultaneously. When a voltage is applied between the W U lines, a current flows through the W phase coil and the U phase coil simultaneously. Therefore, no matter how softly the voltage output from the inverter is controlled, it is not possible to reduce the current supplied to the W-phase coil while keeping the magnitude of the current supplied to the V-phase coil unchanged. In addition, the current supplied to the U-phase coil cannot be reduced while the magnitude of the current supplied to the U-phase coil remains unchanged. For this reason, in this embodiment, the resistor 19 is connected in parallel with the W-phase coil in order to reduce the current supplied to the W-phase harder than the current supplied to the U-phase and V-phase coils. The resistor 19 may be provided in the power supply device or may be provided in the linear motor.
[0024] W相のコイルに並列に抵抗 19を接続し、 WV間に線間電圧を印加すると、図中矢 印 (1)に示されるように、電流が抵抗 19側と W相コイル側とに分岐される。抵抗 19側 に流れる電流と V相のコイル側に流れる電流は、中性点 Nで合流した後、 V相のコィ ルに流れる。図中白抜きの矢印 (2)に示されるように、 V相のコイルから W相のコイル に向力、つて反対方向の電流が流れるときも、 V相のコイルを流れた電流は中性点 N で W相のコイル側に流れる電流と抵抗 19側に流れる電流とに分岐する。その後、合 流してインバータ主回路 13に戻される。 WU間に線間電圧を印加した場合も同様に 、 W相のコイルに流れる電流が抵抗 19側に流れる電流と W相のコイル側に流れる電 流とに分岐する。このように W相のコイルに並列に抵抗 19を接続することによって、 U 相や V相のコイルに流れる電流に影響を与えることなぐ W相のコイルに流れる電流 を低減すること力 Sできる。  [0024] When a resistor 19 is connected in parallel to the W-phase coil and a line voltage is applied across WV, the current flows between the resistor 19 side and the W-phase coil side as indicated by the arrow (1) in the figure. Branch off. The current flowing in the resistor 19 side and the current flowing in the V-phase coil side merge at the neutral point N and then flow into the V-phase coil. As indicated by the white arrow (2) in the figure, even when a directional force flows from the V-phase coil to the W-phase coil, the current flowing through the V-phase coil is neutral. N branches into a current flowing in the W-phase coil side and a current flowing in the resistor 19 side. Thereafter, they are joined and returned to the inverter main circuit 13. Similarly, when a line voltage is applied between WUs, the current flowing in the W-phase coil branches into a current flowing in the resistor 19 side and a current flowing in the W-phase coil side. By connecting the resistor 19 in parallel to the W-phase coil in this way, it is possible to reduce the current flowing through the W-phase coil without affecting the current flowing through the U-phase and V-phase coils.
[0025] 図 4は、電機子を一定速度で移動させたときに、各相のコイルに発生する発生電圧  [0025] Fig. 4 shows the voltage generated in the coils of each phase when the armature is moved at a constant speed.
(逆起電力)を測定したグラフを示す。この発生電圧を測定する際には、電機子には 電流が供給されておらず、また、 W相のコイルには抵抗 19が並列接続されていない The graph which measured (back electromotive force) is shown. When measuring this generated voltage, no current is supplied to the armature, and the resistor 19 is not connected in parallel to the W-phase coil.
〇 [0026] W相のコイルは、リニアモータの作動方向の両端に位置しないから、他の U相や V 相に比べて磁気抵抗が小さい。このため、図 4に示されるように、 W相のコイルの両端 の発生電圧の振幅力 U相や V相のコイルに発生する発生電圧の振幅よりも大きくな る。すなわち、 W相のコイルの逆起電力定数が U相や V相のコイルの逆起電力定数 よりも大きくなる。 DCモータの場合、逆起電力定数とトルク定数とは等しいから、三相 コイルに同じ振幅の三相交流電流を流すと、 W相のコイルによって発生するトルクが 、 U相や V相のコイルによって発生するトルクよりも大きくなる。これが原因で速度が一 定にならなレ、速度リップルが発生する。 Yes [0026] Since the W-phase coil is not located at both ends of the linear motor in the operating direction, it has a lower magnetic resistance than the other U-phase and V-phase. For this reason, as shown in FIG. 4, the amplitude force of the generated voltage at both ends of the W-phase coil is larger than the amplitude of the generated voltage generated in the U-phase and V-phase coils. In other words, the counter electromotive force constant of the W phase coil is larger than the counter electromotive force constant of the U phase and V phase coils. In the case of a DC motor, the counter electromotive force constant is equal to the torque constant. Therefore, when a three-phase AC current with the same amplitude is passed through a three-phase coil, the torque generated by the W-phase coil is caused by the U-phase and V-phase coils. It becomes larger than the generated torque. As a result, the speed becomes constant and speed ripple occurs.
[0027] 速度リップルを解消するには、図 5Aに示されるように、三相のコイルに同じ振幅の 電流を供給するのではなぐ図 5Bに示されるように、 W相のコイルに供給される電流 を U相や V相のコイルに供給される電流よりも低減 (すなわち振幅を小さく)すればよ い。図 3に示されるコイルの結線方法によれば、 W相のコイルに抵抗 19が並列接続 されるので、 W相のコイルに供給される電流を U相や V相のコイルに供給される電流 よりも低減すること力 Sできる。このため、各相のコイルによって発生する推力のバラッ キをなくすことができ、ひいては速度リップルを低減することができる。抵抗 19の大き さは、各相のコイルの逆起電力定数のばらつきや、各相のコイルのインダクタンスを 考慮して定められる。  [0027] To eliminate the speed ripple, as shown in FIG. 5A, instead of supplying the same amplitude current to the three-phase coil, it is supplied to the W-phase coil as shown in FIG. 5B. It is only necessary to reduce the current (ie, reduce the amplitude) compared to the current supplied to the U-phase and V-phase coils. According to the coil connection method shown in Fig. 3, the resistor 19 is connected in parallel to the W-phase coil. Therefore, the current supplied to the W-phase coil is more than the current supplied to the U-phase and V-phase coils. Can also reduce power S. For this reason, it is possible to eliminate the variation in thrust generated by the coils of each phase, and to reduce the speed ripple. The size of the resistor 19 is determined in consideration of variations in the back electromotive force constant of each phase coil and the inductance of each phase coil.
[0028] なお、 W相のコイルに抵抗を並列接続した場合、モータの結線は Δ結線でもよレ、し 、モータの駆動方法は、三つの半導体素子を使うュニポーラ駆動でもよい。また、モ ータは三相モータでなぐ四相モータであってもよい。  [0028] When a resistor is connected in parallel to the W-phase coil, the motor connection may be a Δ connection, or the motor may be driven by a unipolar drive using three semiconductor elements. Further, the motor may be a four-phase motor connected with a three-phase motor.
[0029] 図 6は、本発明の一実施形態における永久磁石界磁型モータ用 PWMインバータ 2 0 (PWM: Pulse Width Modulation: ノ ルス幅変調)を示す。この PWMインバータ 20 は、直流電圧を交流電圧に変換し、リニアモータの電機子に三相交流電流を供給す  FIG. 6 shows a PWM inverter 20 (PWM: Pulse Width Modulation) for a permanent magnet field motor in an embodiment of the present invention. The PWM inverter 20 converts a DC voltage into an AC voltage and supplies a three-phase AC current to the armature of the linear motor.
[0030] PWMインバータ 20は、直流電源 21と、インバータ主回路 22と、制御回路 28と、を 備える。インバータ主回路 22は、対になって動作する上側及び下側二つのスィッチ ング素子 23a, 23b, 24a, 24b, 25a, 25b力もなるアーム 23, 24, 25を、電機子の U, V, W相からなる三相のコイル用に三相分、直流電源 21間に並列に備える。さら に、この実施形態のインバータ主回路 22は、対になって動作する上側及び下側二つ のスイッチング素子 26a, 26b力、らなるアーム 26を、スター結線された三相のコイルの 中性点 Nから引き出した引出し線 27用に、直流電源 21間に並列に備える。すなわち 、上側及び下側二つのスイッチング素子 26a, 26bからなるアーム 26を直流電源 21 に並列に接続する一方、中性点 Nから引出し線 27を引き出し、上側のスイッチング 素子 26aと下側のスイッチング素子 26bとの間に、中性点 Nから引き出された引出し 線 27を接続する。 The PWM inverter 20 includes a DC power source 21, an inverter main circuit 22, and a control circuit 28. The inverter main circuit 22 has two upper and lower switching elements 23a, 23b, 24a, 24b, 25a, and 25b that operate in pairs. For three-phase coils consisting of phases, three phases are provided in parallel between DC power supplies 21. More In addition, the inverter main circuit 22 of this embodiment includes the upper and lower switching elements 26a and 26b acting as a pair, and the arm 26 consisting of the neutral point of the star-connected three-phase coil. Provided in parallel between the DC power supplies 21 for the lead wire 27 drawn from N. That is, the arm 26 composed of the upper and lower switching elements 26a, 26b is connected in parallel to the DC power source 21, while the lead wire 27 is drawn from the neutral point N, and the upper switching element 26a and the lower switching element Connect lead wire 27 drawn from neutral point N to 26b.
[0031] 各アーム 23〜26は、上下で対に動作するスイッチング素子 23a〜26bから構成さ れる。各スイッチング素子 23a〜26bは、トランジスタとフライホイールダイオードとの 並列接続で構成される。フライホイールダイオードはトランジスタに対して逆方向の電 流を帰還するのに用いられる。スイッチング素子のオン、オフは、トランジスタのオン' オフ信号で決まる。スイッチング素子をオン、オフさせることによって、直流電圧の大 きさは変えないで出力電圧のノ ルス幅を変えて等価的に三相交流電圧を出力するこ と力できる。なお、スイッチング素子としては、 MOSFET(Metal Oxide Semi-conduct or Pield mfect Ί ransistor)A"IGBT(Insulated ate Bipolar mode Transistor:絶,減ク ートバイポーラモードトランジスタ)を用いることもできる。  [0031] Each arm 23 to 26 is composed of switching elements 23a to 26b that operate in pairs in the vertical direction. Each switching element 23a to 26b is configured by a parallel connection of a transistor and a flywheel diode. The flywheel diode is used to feed back the reverse current to the transistor. The on / off state of the switching element is determined by the on / off signal of the transistor. By turning on and off the switching element, it is possible to output a three-phase AC voltage equivalently by changing the width of the output voltage without changing the magnitude of the DC voltage. As the switching element, a MOSFET (Metal Oxide Semi-conductor or Piezoelectric Effect Transistor) A "IGBT (Insulated Bipolar Mode Transistor) can be used.
[0032] 中性点用のアームを設けずに、三相のコイル用のアームを設けた従来の PWMイン バータ 11 (図 2参照)においては、三相のコイル用のアームのスイッチング素子をオン 、オフさせることで、三相交流電圧を出力する。しかし、上述したように、インバータ主 回路 13から出力される電圧は、 WV, WU, UV間の線間電圧であるから、例えば図 5Aの (1)のポイントにおいては、スイッチング素子がオンの時、 WV線間に線間電圧( 例えば 280V)が印加されていると共に、 WV間に線間電圧(例えば 280V)が印加さ れている。このとき、図 7に示されるように、 W相のコイルと U相のコイルには電流 I 流れ、 W相のコイルと V相のコイルには電流 Iが流れる。このため、 U相や V相に供給  [0032] In the conventional PWM inverter 11 (see Fig. 2) in which the arm for the three-phase coil is provided without providing the arm for the neutral point, the switching element of the arm for the three-phase coil is turned on. By turning it off, a three-phase AC voltage is output. However, as described above, since the voltage output from the inverter main circuit 13 is a line voltage between WV, WU, and UV, for example, at the point (1) in FIG. A line voltage (for example, 280V) is applied between the WV lines, and a line voltage (for example, 280V) is applied between the WV lines. At this time, as shown in FIG. 7, a current I flows through the W-phase coil and the U-phase coil, and a current I flows through the W-phase coil and the V-phase coil. Therefore, supply to U phase and V phase
2  2
される電流をそのままにして、 W相のコイルに供給される電流のみを低減することが できない。  It is not possible to reduce only the current supplied to the W-phase coil without changing the current that is supplied.
[0033] この問題を解決するために、この実施形態の PWMインバータ 20においては、中性 点 Nから引き出した引出し線用にアーム 26を設け、例えば図 5Aの (1)ポイントにおい て、スイッチング素子がオンの時の処理を二段階に分けている。具体的には、図 8A に示されるように、一段目の処理では、 W相のコイルから引出し線 27に電流 Iが流れ [0033] In order to solve this problem, in the PWM inverter 20 of this embodiment, an arm 26 is provided for the lead-out line drawn from the neutral point N. For example, at the point (1) in FIG. Thus, the processing when the switching element is on is divided into two stages. Specifically, as shown in FIG. 8A, in the first stage processing, current I flows from the W-phase coil to the lead wire 27.
3 るようにし、 U相、 V相のコイルには電流が流れないようにする。一方、図 8Bに示され るように、二段階目の処理では、引出し線 27から U相のコイルに電流 Iが流れ、これ  3 so that no current flows through the U-phase and V-phase coils. On the other hand, as shown in FIG. 8B, in the second stage processing, current I flows from the lead wire 27 to the U-phase coil.
4  Four
と同時に引出し線 27から V相のコイルに電流 Iが流れ、 W相のコイルには電流が流  At the same time, current I flows from lead wire 27 to the V-phase coil, and current flows to the W-phase coil.
5  Five
れないようにする。 PWMインバータ 20の二段階のスイッチングモードは、表 1に示さ れる。  Do not let it. Table 1 shows the two-step switching mode of the PWM inverter 20.
[0034] [表 1] [0034] [Table 1]
Figure imgf000012_0001
Figure imgf000012_0001
[0035] そして、一段目、二段目それぞれの処理時間を調整することで、 U相や V相に流れ る電流の大きさをそのままにして、 W相に流れる電流の大きさのみを低減することが できる。 W相のコイルに流れる電流を低減できるので、各相のコイルによって発生す る推力のバラツキをなくすことができ、ひいては速度リップルを低減することができる。 スイッチング素子をオン、オフするための PWM信号は、制御回路によって作成され d * o [0035] Then, by adjusting the processing time of each of the first and second stages, the magnitude of the current flowing in the U phase and the V phase is left unchanged, and only the magnitude of the current flowing in the W phase is reduced. be able to. Since the current flowing through the W-phase coil can be reduced, variations in the thrust generated by the coils of each phase can be eliminated, and consequently the speed ripple can be reduced. The PWM signal for turning on and off the switching element is created by the control circuit d * o
[0036] なお、この他にも、三相正弦波電圧指令と搬送波である三角波(キャリア)とを比較 してパルス列の電圧を得る従来の三角波比較法による制御と、 W相のコイルに電流 を流さずに、 U相と V相のコイルにのみ電流を流す上記二段階目のスイッチングモー ドの制御とを組み合わせることによつても、 W相のコイルに流す電流を低減することが できる。  In addition to this, control by a conventional triangular wave comparison method that obtains a voltage of a pulse train by comparing a three-phase sine wave voltage command and a triangular wave (carrier) as a carrier wave, and a current to a W-phase coil. By combining the control in the second switching mode in which the current flows only to the U-phase and V-phase coils without flowing, the current flowing to the W-phase coil can be reduced.
[0037] 中性点 N用にアーム 26を設けることで、 W相のコイルに流れる電流を低減するだけ でなぐ W相のコイルに流れる電流を増大させることも可能になる。さらに、 U→V, U →wや、 v→u, v→wに電流を流す場合についても、二段階のスイッチングモード を設けることにより、 U相のコイル、 V相のコイルに流れる電流を制御することが可能 になる。よって、各相のコイルに流れる電流を制御することが可能になる。 本明細書は、 2006年 8月 30曰出願の特願 2006— 234412に基づく。この内容は すべてここに含めておく。 [0037] By providing the arm 26 for the neutral point N, it is possible to increase the current flowing in the W-phase coil as well as reducing the current flowing in the W-phase coil. Furthermore, even when current flows from U → V, U → w, v → u, v → w, the current flowing in the U-phase coil and V-phase coil is controlled by providing a two-step switching mode. It becomes possible to do. Therefore, it is possible to control the current flowing through the coils of each phase. This specification is based on Japanese Patent Application No. 2006-234412 filed on August 30, 2006. All this content is included here.

Claims

請求の範囲 The scope of the claims
[1] 界磁用永久磁石で磁束を作る永久磁石界磁型リニアモータの電機子に電力を供 給する永久磁石界磁型リニアモータ用電力供給装置であって、  [1] A power supply device for a permanent magnet field linear motor that supplies power to an armature of a permanent magnet field linear motor that generates magnetic flux with a field permanent magnet,
リニアモータの電機子の多相のコイルに多相交流電流を供給する電力供給手段と 前記リニアモータの作動方向の両端に位置しない少なくとも一つの相(例えば W相 Power supply means for supplying a multiphase alternating current to the multiphase coil of the armature of the linear motor, and at least one phase (for example, W phase) not located at both ends of the linear motor in the operating direction.
)のコイルに供給する電流を、前記作動方向の両端に位置する残りの二つの相(例え ば U相及び V相)に供給する電流よりも低減させる電流調整手段と、を備える永久磁 石界磁型リニアモータ用電力供給装置。 Current adjusting means for reducing the current supplied to the coil of (2) below the current supplied to the remaining two phases (for example, the U phase and the V phase) located at both ends of the operating direction. Power supply device for magnetic linear motor.
[2] 界磁用永久磁石で磁束を作る永久磁石界磁型リニアモータの電機子に電力を供 給する永久磁石界磁型リニアモータ用電力供給装置であって、  [2] A power supply device for a permanent magnet field linear motor that supplies power to an armature of a permanent magnet field linear motor that generates magnetic flux with a field permanent magnet,
リニアモータの電機子の U, V, W相からなる三相コイルに三相交流電流を供給す る電力供給回路と、  A power supply circuit for supplying a three-phase alternating current to a three-phase coil composed of U, V, and W phases of a linear motor armature;
前記リニアモータの作動方向の両端に位置しない一つの相(例えば W相)のコイル と並列に接続され、前記一つの相のコイルに供給する電流を、前記作動方向の両端 に位置する残りの二つの相(例えば U相及び V相)に供給する電流よりも低減させる 抵抗と、を備える永久磁石界磁型リニアモータ用電力供給装置。  The current supplied to the coil of one phase that is connected in parallel to one phase (for example, W phase) coil that is not located at both ends in the operation direction of the linear motor is supplied to the remaining two coils that are located at both ends in the operation direction. A permanent magnet field-type linear motor power supply device comprising a resistance that is reduced more than the current supplied to two phases (for example, U phase and V phase).
[3] 界磁用永久磁石で磁束を作る永久磁石界磁型モータの電機子に電力を供給する 永久磁石界磁型モータ用 PWMインバータであって、  [3] A PWM inverter for a permanent magnet field motor that supplies electric power to the armature of a permanent magnet field motor that generates magnetic flux with a field permanent magnet,
対になって動作する上側及び下側二つのスイッチング素子からなるアームを、前記 電機子の U, V, W相からなる三相のコイル用に三相分、直流電源間に並列に備え ると共に、  Arms composed of upper and lower switching elements that operate in pairs are provided in parallel for three-phase coils for the three-phase coil composed of the U, V, and W phases of the armature and between the DC power supplies. ,
対になって動作する上側及び下側二つのスイッチング素子からなるアームを、スタ 一結線された三相のコイルの中性点から引き出した引出し線用に、直流電源間に並 列にさらに備え、  Arms consisting of two upper and lower switching elements that operate in pairs are further provided in parallel between the DC power supplies for the lead wire drawn from the neutral point of the three-phase coil connected in a single line.
前記三相のコイル用の前記スイッチング素子、及び前記引出し線用の前記スィッチ ング素子のオン、オフを、制御回路によって制御する永久磁石界磁型モータ用 PW Mインバータ。 前記永久磁石界磁型モータは、リニアモータであり、 A permanent magnet field motor PWM inverter that controls on and off of the switching element for the three-phase coil and the switching element for the lead wire by a control circuit. The permanent magnet field type motor is a linear motor,
前記永久磁石界磁型モータ用 PWMインバータは、前記リニアモータの電機子の U, V, W相からなる三相コイルに三相交流電流を供給する際、前記リニアモータの 作動方向の両端に位置しない一つの相(例えば W相)のコイルに供給する電流を、 前記作動方向の両端に位置する残りの二つの相(例えば U相及び V相)に供給する 電流よりも低減させることを特徴とする請求項 3に記載の永久磁石界磁型モータ用 P WMインバータ。  The PWM inverter for the permanent magnet field type motor is positioned at both ends of the linear motor in the operation direction when supplying a three-phase alternating current to a three-phase coil composed of U, V, and W phases of the armature of the linear motor. The current supplied to the coil of one phase (for example, W phase) not to be reduced is less than the current supplied to the remaining two phases (for example, U phase and V phase) located at both ends of the operating direction. 4. A PWM inverter for a permanent magnet field motor according to claim 3.
PCT/JP2007/066777 2006-08-30 2007-08-29 Power supply device for permanent magnet field type linear motor and pwm inverter for permanent magnet field type motor WO2008026642A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2007800289950A CN101501982B (en) 2006-08-30 2007-08-29 Power supply device for permanent magnet field type linear motor
JP2008532093A JP5315053B2 (en) 2006-08-30 2007-08-29 Power supply device for permanent magnet field type linear motor and PWM inverter for permanent magnet field type motor
KR1020097006290A KR101384063B1 (en) 2006-08-30 2007-08-29 Power supply device for permanent magnet field type linear motor and pwm inverter for permanent magnet field type motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006234412 2006-08-30
JP2006-234412 2006-08-30

Publications (1)

Publication Number Publication Date
WO2008026642A1 true WO2008026642A1 (en) 2008-03-06

Family

ID=39135924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/066777 WO2008026642A1 (en) 2006-08-30 2007-08-29 Power supply device for permanent magnet field type linear motor and pwm inverter for permanent magnet field type motor

Country Status (4)

Country Link
JP (1) JP5315053B2 (en)
KR (1) KR101384063B1 (en)
CN (1) CN101501982B (en)
WO (1) WO2008026642A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3249803A1 (en) * 2016-05-25 2017-11-29 B&R Industrial Automation GmbH Control of long stator linear motor coils of a long stator linear motor stator
JP2018507490A (en) * 2014-11-28 2018-03-15 ハプテック,インコーポレーテッド Method and apparatus for haptic system
US10508883B2 (en) 2012-05-22 2019-12-17 Haptech, Inc. Method and apparatus for firearm recoil simulation
US10852093B2 (en) 2012-05-22 2020-12-01 Haptech, Inc. Methods and apparatuses for haptic systems

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108494295B (en) * 2018-03-13 2021-02-19 江西精骏电控技术有限公司 Model-based nonlinear compensation and temperature compensation method for alternating current motor inverter
CN112701985B (en) * 2020-12-11 2021-11-02 华中科技大学 Control method, device and system of linear permanent magnet synchronous motor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0880027A (en) * 1994-08-31 1996-03-22 Okuma Mach Works Ltd Linear motor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980021265A (en) * 1996-09-14 1998-06-25 김광호 Brushless Motor Control Circuit
KR19990011223A (en) * 1997-07-22 1999-02-18 이형도 Inverter Current Detection Circuit
EP1414145B1 (en) * 2001-08-02 2019-12-25 Toyota Jidosha Kabushiki Kaisha Motor drive control apparatus
JP2003189679A (en) * 2001-12-21 2003-07-04 Nikon Corp Polyphase motor driving unit, stage apparatus, and aligner
JP4065441B2 (en) * 2004-07-28 2008-03-26 松下電器産業株式会社 Motor driving apparatus and motor driving method
CN100373759C (en) * 2005-03-16 2008-03-05 南京航空航天大学 Control method for three-phase four-arm converter
KR101322514B1 (en) * 2011-03-09 2013-10-28 김광열 Controller of permanent magnet generator and permanent magnet generator with the controller

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0880027A (en) * 1994-08-31 1996-03-22 Okuma Mach Works Ltd Linear motor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10508883B2 (en) 2012-05-22 2019-12-17 Haptech, Inc. Method and apparatus for firearm recoil simulation
US10852093B2 (en) 2012-05-22 2020-12-01 Haptech, Inc. Methods and apparatuses for haptic systems
US11512919B2 (en) 2012-05-22 2022-11-29 Haptech, Inc. Methods and apparatuses for haptic systems
JP2018507490A (en) * 2014-11-28 2018-03-15 ハプテック,インコーポレーテッド Method and apparatus for haptic system
JP2020072929A (en) * 2014-11-28 2020-05-14 ハプテック,インコーポレーテッド Method and device for haptic system
EP3249803A1 (en) * 2016-05-25 2017-11-29 B&R Industrial Automation GmbH Control of long stator linear motor coils of a long stator linear motor stator
US10250176B2 (en) 2016-05-25 2019-04-02 B&R Industrial Automation GmbH Control of long-stator linear motor coils of long-stator linear motor stator

Also Published As

Publication number Publication date
KR101384063B1 (en) 2014-04-09
CN101501982B (en) 2011-10-19
JPWO2008026642A1 (en) 2010-01-21
JP5315053B2 (en) 2013-10-16
CN101501982A (en) 2009-08-05
KR20090043602A (en) 2009-05-06

Similar Documents

Publication Publication Date Title
US6577087B2 (en) Multilevel DC link inverter
JP5725572B2 (en) Stator teeth, stator, rotating electric machine, and control method of rotating electric machine
US6232731B1 (en) Multi-channel motor winding configuration and pulse width modulated controller
WO2008026642A1 (en) Power supply device for permanent magnet field type linear motor and pwm inverter for permanent magnet field type motor
WO2017086310A1 (en) Electric power conversion device
JP4302470B2 (en) Circuits used with switched reluctance machines
KR100439199B1 (en) Brushless dc motor having parallel connected windings and control circuit for it
JP2006287990A (en) Method of driving brushless motor
US10491150B2 (en) Switched reluctance machine and power converter
US6304045B1 (en) Commutation of split-phase winding brushless DC motor
WO2003032480A1 (en) Motor control system
JP2014501482A (en) Method and apparatus for operating an externally or hybrid excited electric machine
JP3721368B2 (en) Motor control device
JP3250555B2 (en) Inverter device for switch reluctance motor and control method thereof
JP7402030B2 (en) Rotating electric machine drive device
TWI356578B (en)
JP4147826B2 (en) Brushless motor drive control device
JP4880333B2 (en) Motor control device
WO2019155961A1 (en) Reluctance motor and motor system comprising said reluctance motor
Romeral Motion control for electric drives
WO2019155958A1 (en) Reluctance motor system
JP2022179964A (en) Power conversion device
CN106411222B (en) Power supply device for wide speed of motor
WO2019155960A1 (en) Reluctance motor and motor system comprising said reluctance motor
JP6337786B2 (en) Control device for rotating electrical machine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780028995.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07806254

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008532093

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020097006290

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07806254

Country of ref document: EP

Kind code of ref document: A1