WO2021117216A1 - ストラドルドビークル - Google Patents

ストラドルドビークル Download PDF

Info

Publication number
WO2021117216A1
WO2021117216A1 PCT/JP2019/048900 JP2019048900W WO2021117216A1 WO 2021117216 A1 WO2021117216 A1 WO 2021117216A1 JP 2019048900 W JP2019048900 W JP 2019048900W WO 2021117216 A1 WO2021117216 A1 WO 2021117216A1
Authority
WO
WIPO (PCT)
Prior art keywords
power storage
storage unit
permanent magnet
voltage
saddle
Prior art date
Application number
PCT/JP2019/048900
Other languages
English (en)
French (fr)
Inventor
日野 陽至
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to PCT/JP2019/048900 priority Critical patent/WO2021117216A1/ja
Priority to JP2021563982A priority patent/JP7235897B2/ja
Priority to PCT/JP2020/045725 priority patent/WO2021117738A1/ja
Priority to TW109143866A priority patent/TWI764426B/zh
Publication of WO2021117216A1 publication Critical patent/WO2021117216A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/28Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the electric energy storing means, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a saddle-mounted vehicle.
  • Patent Document 1 discloses a saddle-mounted vehicle.
  • the saddle-mounted vehicle of Patent Document 1 is a hybrid vehicle.
  • the saddle-mounted vehicle of Patent Document 1 includes an engine, an ACG starter (alternating current generator starter), a first battery, and a second battery.
  • the engine is started by driving the ACG starter.
  • the first battery is a 48V battery that supplies power to the ACG starter.
  • the second battery is a low-voltage 12V battery that supplies electric power to a plurality of auxiliary machines.
  • the ACG starter functions as a generator.
  • the first battery is charged.
  • the electric charge caused by the voltage of the first battery is accumulated in the capacitor. This charge is charged to the second battery via the converter.
  • the first battery of the saddle-mounted vehicle of Patent Document 1 starts the engine by supplying electric power to the ACG starter. When the remaining capacity of the first battery is less than the set value, the ACG starter is driven by the electric power supplied from the second battery.
  • the saddle-mounted vehicle is configured so that the posture of the vehicle is controlled by the weight shift of the driver during traveling. Therefore, from the viewpoint of operability and running performance, the saddle-mounted vehicle is required to have a compact body. Saddle-mounted vehicles are required to have a compact body while suppressing deterioration of engine starting performance.
  • An object of the present invention is to provide a saddle-mounted vehicle capable of making the vehicle body compact while suppressing deterioration of engine starting performance.
  • the first battery outputs 48V for starting the engine. If the remaining capacity of the first battery is less than the set value, the power supply is switched from the first battery to the second battery of the 12V system.
  • the first battery that outputs 48V for starting the engine is generally larger than the battery that outputs 12V.
  • the present inventor has considered a method for effectively utilizing two types of power storage units.
  • the present inventor has studied a second power storage unit that has a maximum rated voltage of 12 V or more and stores electric power, and a second power storage unit that is always connected in series with the first power storage unit.
  • the second power storage unit is set to have a maximum charge rate higher than the maximum charge rate of the first power storage unit.
  • the present inventor further examined the addition of a current maintenance circuit that maintains a state in which a charging current flows to the first storage unit so that the voltage applied to the second storage unit does not exceed the upper limit voltage of the second storage unit.
  • the power storage device When the power storage device is provided with a first power storage unit and a second power storage unit having a maximum rated voltage of 12 V or more, and the first power storage unit and the second power storage unit are always connected in series, the power storage device is discharged. , A voltage larger than 12V can be output. As a result, when the engine is started, the permanent magnet generator and the inverter can be driven by a voltage larger than 12V. By combining the second power storage unit, it is easy to output a voltage larger than 12V. Moreover, by adjusting the type and configuration of the second power storage unit combined with the first power storage unit and the voltage of the current maintenance circuit, the voltage when the power storage device is discharged can be determined by the capacity and requirement of the permanent magnet generator. It can be easily adapted to the output.
  • the maximum charging rate of the second power storage unit is set to be larger than twice the maximum charging rate of the first power storage unit. Therefore, when the current flowing through the second power storage unit also flows when charging the power storage device, the charge rate for the full charge of the second power storage unit tends to be higher than the charge rate in the first power storage unit. That is, for example, the second power storage unit is charged in a shorter period of time than the first power storage unit. Therefore, even while the power storage device is being charged after being discharged, the power storage device can output a voltage larger than 12 V, and can be restored to a state in which a large voltage can be output in a short time after the start of charging.
  • the permanent magnet generator When starting the engine, the permanent magnet generator can be driven with a voltage larger than 12V. Therefore, the permanent magnet generator can output a larger torque than the case of 12 V or less. Also, a permanent magnet generator can drive the crankshaft up to higher rotational speeds. Therefore, the starting performance of the saddle-mounted vehicle can be improved.
  • the power storage device can output a voltage larger than 12V by the combination of the first power storage unit and the second power storage unit. Therefore, neither the first power storage unit nor the second power storage unit need to output a voltage larger than 12V by itself. Therefore, in a configuration in which a permanent magnet generator is driven with a voltage larger than 12V, for example, as in Patent Document 1, at least one of the first storage unit and the second storage unit corresponds to a voltage larger than 12V. In comparison, the volume of the power storage device can be reduced.
  • the voltage between the power storage device and the permanent magnet type generator is larger than 12V both when the power storage device is discharged and when the power storage device is charged. Therefore, when transmitting electric power, the current flowing between the power storage device and the permanent magnet type generator can be reduced. Therefore, the loss due to the current can be reduced. Further, as described above, the second power storage unit is charged in a shorter period of time than the first power storage unit. Therefore, a large voltage can be output in a short time after the start of charging from the discharged state of the power storage device. Therefore, the wiring distance between the power storage device and the inverter permanent magnet generator can be increased with respect to a certain loss tolerance.
  • the degree of freedom in layout of the power storage device and the inverter in the vehicle body is increased, so that the arrangement position of the power storage device and the inverter can be adjusted so as to suppress the waste of space generated when the power storage device and the inverter are arranged. Therefore, the vehicle body can be made compact.
  • the saddle-type vehicle according to each viewpoint of the present invention completed based on the above findings has the following configurations.
  • the saddle-mounted vehicle is With wheels
  • An engine that has a crankshaft and outputs torque for driving the wheels generated by the combustion operation of gas from the crankshaft.
  • a permanent magnet generator provided at one end of the crankshaft, having a permanent magnet, starting the engine by rotating the crankshaft, and generating electricity by being driven by the engine.
  • the first power storage unit which is a battery that has a maximum rated voltage of 12 V or more and stores electric power
  • a second power storage unit that is always connected in series with the first power storage unit and has a maximum charge rate that is greater than twice the maximum charge rate of the first power storage unit.
  • An inverter provided with a plurality of switching units that are electrically connected to the permanent magnet type generator and the first power storage unit and the second power storage unit to control the current output from the permanent magnet type generator. While the inverter charges at least the first power storage unit by generating electricity from the permanent magnet type generator, the voltage applied to the second power storage unit is the voltage applied to the second power storage unit without electrically disconnecting the second power storage unit. 2
  • a current maintenance circuit that maintains a state in which a charging current flows to the first power storage unit so as not to exceed the upper limit voltage set in the power storage unit. To be equipped.
  • the first power storage unit and the second power storage unit having a maximum rated voltage of 12 V or more are always connected in series, so that when the power storage device discharges, a voltage larger than 12 V is output. can do.
  • the power storage device includes a first power storage unit and a second power storage unit.
  • the permanent magnet generator and the inverter can be driven by a voltage larger than 12V.
  • the second power storage unit it is easy to output a voltage larger than 12V.
  • the type and configuration of the second power storage unit combined with the first power storage unit the voltage when the power storage device discharges can be easily matched to the capacity and required output of the permanent magnet generator. it can.
  • the maximum charging rate of the second power storage unit is set to be larger than twice the maximum charging rate of the first power storage unit. Therefore, when the current flowing through the second power storage unit during charging of the power storage device also flows to the first power storage unit which is connected in series with the second power storage unit, the charge rate for the full charge of the second power storage unit is the second. It tends to be higher than the charge rate in one power storage unit. That is, for example, the second power storage unit is charged in a shorter period of time than the first power storage unit. Therefore, even when the power storage device is discharged once and then discharged in the middle of being charged, the power storage device can output a voltage larger than 12V. The state of charge of the second power storage unit changes in a shorter period of time than that of the first power storage unit.
  • the current maintenance circuit maintains a state in which the charging current flows to the first power storage unit so that the second power storage unit does not exceed the upper limit voltage of the second power storage unit. Therefore, for example, the charging state of the first power storage unit can be continued even after the charging of the second power storage unit is completed.
  • the permanent magnet generator can be driven by a voltage larger than 12V when the engine is started, so that the permanent magnet generator is larger than the case of 12V or less. Can output torque. Also, a permanent magnet generator can drive the crankshaft up to higher rotational speeds. Therefore, the starting performance of the saddle-mounted vehicle can be improved.
  • the power storage device can output a voltage larger than 12V by the combination of the first power storage unit and the second power storage unit. Therefore, neither the first power storage unit nor the second power storage unit need to output a voltage larger than 12V. Therefore, in a configuration in which a permanent magnet generator is driven with a voltage larger than 12V, for example, as in Patent Document 1, at least one of the first storage unit and the second storage unit corresponds to a voltage larger than 12V. In comparison, the volume of the power storage device can be reduced.
  • the voltage between the power storage device and the permanent magnet type generator is larger than 12V both when the power storage device is discharged and when the power storage device is charged. Therefore, when transmitting electric power, the current flowing between the power storage device and the permanent magnet type generator can be reduced. Therefore, the loss due to the current can be reduced. Therefore, the wiring distance between the power storage device and the inverter permanent magnet generator can be increased with respect to a certain loss tolerance. As a result, the degree of freedom in layout of the power storage device and the inverter in the vehicle body is increased, so that the arrangement position of the power storage device and the inverter can be adjusted so as to suppress the waste of space generated when the power storage device and the inverter are arranged. Therefore, the vehicle body can be made compact. As described above, according to the saddle-mounted vehicle in the above configuration, the vehicle body can be made compact while suppressing the deterioration of the engine starting performance.
  • the upper limit voltage of the second power storage unit is lower than the maximum rated voltage of the first power storage unit.
  • the second power storage unit when charging the power storage device, the second power storage unit is likely to be charged in a shorter period of time than the first power storage unit. Therefore, the second power storage unit is charged in a charging period shorter than the charging period of the first power storage unit that outputs a voltage of 12 V or more. Therefore, the second power storage unit can be utilized even after a short charging period.
  • the second voltage is lower than the first voltage. Therefore, the voltage of the power storage device can be adjusted without changing the type of the electric auxiliary machine that operates by receiving the voltage supply from the power storage device and the inverter.
  • the saddle-mounted vehicle of (1) includes a capacitor connected in parallel with a first power storage unit that is a battery.
  • the first power storage unit of the saddle-mounted vehicle in the above configuration can charge the capacitor at the maximum rated voltage because the decrease in the maximum rated voltage is suppressed even when the charging capacity decreases due to deterioration, for example. Therefore, when the engine is started, electric power can be output to the permanent magnet generator together with the electric charge charged in the capacitor.
  • the saddle-mounted vehicle of (1) The permanent magnet type generator includes a rotor having a plurality of magnetic poles composed of the permanent magnets and a rotor.
  • a stator core having a plurality of slots formed at intervals in the circumferential direction of the permanent magnet generator and a stator having windings provided so as to pass through the slots are provided.
  • the number of magnetic poles is larger than the number of the plurality of teeth.
  • the angular velocity with respect to the rotational speed of the rotor is larger than that in the case where the number of magnetic poles is smaller than the number of the plurality of teeth.
  • the angular velocity is the angular velocity with respect to the electric angle based on the repetition period of the magnetic poles.
  • the inductance of the winding is large.
  • the angular velocity further increases as the rotation speed of the rotor increases.
  • the inductance of the winding interferes with the current flowing through the winding. Therefore, the induced electromotive voltage increases as the rotation speed of the rotor increases, but the large winding inductance suppresses an excessive increase in the current output from the generator.
  • the power storage device can be charged to a higher rotation speed of the crankshaft than in the case where the number of magnetic poles is smaller than the number of the plurality of teeth. Therefore, wasteful consumption of electric power can be suppressed.
  • the saddle-mounted vehicle of (1) further comprises a crankcase configured to lubricate the interior with oil.
  • the permanent magnet type generator is provided at a position where it comes into contact with the oil.
  • the power storage device can be charged in the range up to the rotation speed of the high crankshaft without wasting electric power. Therefore, in such a permanent magnet generator, the temperature of the stator winding does not become higher than or is unlikely to be higher than the temperature of the lubricating oil, so that even if the permanent magnet generator is arranged so as to come into contact with the lubricating oil, Evaporation of lubricating oil can be suppressed.
  • the permanent magnet type generator is arranged in an environment where it comes into contact with lubricating oil, it is usually required to increase the size of the cooling mechanism.
  • the saddle-mounted vehicle of (1) The inverter supplies electric power from the first power storage unit and the second power storage unit to the permanent magnet type generator while the saddle-mounted vehicle is traveling, and assists the permanent magnet type generator in rotation of the crankshaft. ..
  • the permanent magnet generator can be driven by a voltage larger than 12 V while the saddle-mounted vehicle is running. Therefore, the crankshaft can be driven to a higher rotation speed than, for example, when it is driven at 12 V. Therefore, it is possible to assist the acceleration by the engine up to a higher rotation speed as compared with the case of driving at 12V, for example. Further, the vehicle body can be made more compact as compared with the case where a power storage device different from, for example, a 12V power storage device is provided.
  • the first power storage unit is, for example, a battery.
  • the first power storage unit is, for example, a lead battery.
  • the first power storage unit is not particularly limited, and may be, for example, a lithium ion battery.
  • the second power storage unit is, for example, a capacitor.
  • the second power storage unit is, for example, a lithium ion capacitor.
  • the second power storage unit is not particularly limited, and may be, for example, an electric double layer capacitor or an electrolytic capacitor.
  • the second power storage unit may be, for example, a battery.
  • the second power storage unit may be, for example, a lithium ion battery (for example, SCiB (registered trademark)) in which a carbon material is used for the negative electrode, or a nickel hydrogen battery.
  • the power storage device includes a first power storage unit, a second power storage unit, and a current maintenance circuit.
  • the power storage device may include other power storage units. Examples of other power storage units include capacitors connected in parallel with the first power storage unit.
  • the power storage device does not necessarily have to be unitized as a whole.
  • each power storage unit constituting the power storage device does not necessarily have to be physically integrated.
  • the power storage units may be separately installed at different positions in the saddle-type vehicle while being electrically connected to each other.
  • the maximum charging rate is the maximum charging rate allowed by the power storage unit.
  • the charging rate represents the speed of charging.
  • the unit is C.
  • the magnitude of the current that completely charges the capacity of the battery in one hour is defined as 1C. For example, when the capacity of the battery is 2Ah, 1C is 2A.
  • the permanent magnet type generator has a permanent magnet.
  • the configuration in which the rotor is provided with a coil instead of a permanent magnet is different from the permanent magnet type generator in this configuration.
  • “Electrically disconnecting” means opening a part of the closed circuit of electric power including the target by, for example, operating a switch or a relay. “Electrically disconnecting” also includes changing the transistors constituting the closed circuit from a conductive state to a non-conducting state.
  • “without electrical disconnection” means maintaining the closed circuit state of the power including the target. The state of "without electrical disconnection” includes a state in which no current flows through the target. For example, when the target is a charged capacitor and a voltage equal to the voltage across the capacitor is applied to the capacitor, no current flows through the capacitor but it is not electrically cut off.
  • the engine is, for example, a single-cylinder engine, a 2-cylinder engine, an unequal interval combustion type 3-cylinder engine, or an unequal interval combustion type 4-cylinder engine.
  • the engine is, for example, an engine having less than three cylinders.
  • the two-cylinder engine may be a non-equidistant combustion engine having two cylinders.
  • a V-type engine can be mentioned.
  • the engine is not particularly limited, and an evenly spaced combustion type multi-cylinder engine may be used.
  • a saddle-mounted vehicle is a vehicle in which the driver sits across the saddle.
  • a saddle-type vehicle is a vehicle equipped with a saddle-type seat.
  • a saddle-mounted vehicle is a vehicle in which the driver rides in a riding style.
  • a saddle-mounted vehicle is an example of a vehicle.
  • the saddle-mounted vehicle is, for example, a vehicle that turns in a lean posture, and is configured to lean toward the center of the curve when turning.
  • the saddle-mounted vehicle is, for example, a motorcycle.
  • the motorcycle is not particularly limited, and examples thereof include a scooter type, a moped type, an off-road type, and an on-road type motorcycle.
  • the saddle-mounted vehicle is not limited to a motorcycle, and may be, for example, a tricycle.
  • the saddle-mounted vehicle may be, for example, an ATV (All-Terrain Vehicle) or the like.
  • the terminology used herein is for the purpose of defining only specific embodiments and is not intended to limit the invention.
  • the term “and / or” includes any or all combinations of one or more related listed components.
  • the use of the terms “including, including,””comprising,” or “having,” and variations thereof, is a feature, process, operation, described. It identifies the presence of elements, components and / or their equivalents, but can include one or more of steps, actions, elements, components, and / or groups thereof.
  • the terms “attached”, “combined” and / or their equivalents are widely used and are both direct and indirect attachments and bindings unless otherwise specified. Including.
  • FIG. 1 is a side view showing the first modification of the arrangement of the power storage device in a saddle-mounted vehicle.
  • B is a side view showing a second modification of the arrangement of the power storage device in the saddle-mounted vehicle.
  • FIG. 1 is a side view showing typically the saddle-type vehicle and the electric system which are application examples of the embodiment shown in FIG. It is a partial cross-sectional view schematically showing the schematic structure of the engine unit shown in FIG.
  • FIG. 1 is a diagram schematically showing a saddle-type vehicle according to an embodiment of the present invention.
  • Part (a) of FIG. 1 is a side view of a saddle-mounted vehicle.
  • Part (b) of FIG. 1 is a block diagram showing a schematic electrical configuration of the saddle-mounted vehicle shown in Part (a).
  • the saddle-mounted vehicle 1 shown in FIG. 1 includes wheels 3a and 3b, an engine 10, a permanent magnet generator 20, a power storage device 4, and an inverter 21. Further, the saddle-mounted vehicle 1 is provided with an electric auxiliary machine L.
  • the power storage device 4 includes a first power storage unit 41, a second power storage unit 42, and a current maintenance circuit 43. That is, the saddle-mounted vehicle 1 includes wheels 3a and 3b, an engine 10, a permanent magnet generator 20, a first power storage unit 41, a second power storage unit 42, a current maintenance circuit 43, and an inverter 21. To be equipped. Further, the saddle-mounted vehicle 1 includes a vehicle body 2.
  • FIG. 1 shows a lean vehicle as an example of the saddle-mounted vehicle 1. The lean vehicle tilts to the left of the vehicle while turning left and tilts to the right of the vehicle while turning right.
  • the wheels 3a and 3b provided in the saddle-mounted vehicle 1 include a front wheel 3a and a rear wheel 3b.
  • the rear wheel 3b is a driving wheel.
  • the engine 10 includes a crankshaft 15.
  • the engine 10 outputs power via the crankshaft 15.
  • the engine 10 outputs torque for driving the wheels 3b from the crankshaft 15.
  • the wheels 3b receive the power of the crankshaft 15 to drive the saddle-mounted vehicle 1.
  • the power output from the engine 10 can be transmitted to the wheels 3b via, for example, a transmission and a clutch.
  • the electric auxiliary machine L is an electric device mounted on the saddle-mounted vehicle 1.
  • the electric auxiliary machine L operates by being supplied with electric power.
  • the electric auxiliary machine L is, for example, an engine auxiliary machine that operates so as to cause the engine 10 to perform combustion.
  • Engine accessories include, for example, a fuel injection device 18 and an ignition device 19 (see FIG. 5).
  • the fuel injection device 18 injects fuel toward or inside the engine 10.
  • the ignition device 19 ignites the fuel inside the engine 10.
  • the permanent magnet type generator 20 is provided at one end of the crankshaft 15.
  • the permanent magnet type generator 20 has a permanent magnet. More specifically, the permanent magnet type generator 20 includes a permanent magnet portion 37 composed of a permanent magnet.
  • the permanent magnet type generator 20 also serves as a starter for starting the engine 10.
  • the permanent magnet type generator 20 is a permanent magnet type starting generator.
  • the permanent magnet type generator 20 starts the engine 10 by rotating the crankshaft 15.
  • the permanent magnet generator 20 also generates electricity by being driven by the engine 10.
  • the power storage device 4 is a device capable of charging and discharging electricity.
  • the power storage device 4 stores electric power.
  • the power storage device 4 outputs the charged electric power to the outside.
  • the power storage device 4 supplies electric power to the permanent magnet type generator 20.
  • the power storage device 4 supplies electric power to the permanent magnet generator 20 when the engine 10 is started. Further, for example, after the engine 10 is started, the power storage device 4 is charged by the electric power generated by the permanent magnet type generator 20.
  • the power storage device 4 includes a first power storage unit 41, a second power storage unit 42, and a current maintenance circuit 43.
  • the first power storage unit 41 is a battery that stores electric power.
  • the first power storage unit 41 has a maximum rated voltage of 12 V or more.
  • the first power storage unit 41 is a battery having a nominal voltage of 12 V.
  • the first power storage unit 41 is a lead battery.
  • the first power storage unit 41 has, for example, a maximum rated voltage of 14V.
  • the first power storage unit 41 has a capacity capable of charging an amount of electric power that starts the engine 10 at least once.
  • the second power storage unit 42 is always connected in series with the first power storage unit 41.
  • the second power storage unit 42 has a maximum charge rate that is greater than twice the maximum charge rate of the first power storage unit 41.
  • the second power storage unit 42 is a battery that stores electric power.
  • the second power storage unit 42 has a capacity capable of charging an amount of electric power that starts the engine 10 at least once.
  • the charging rate represents the speed of charging.
  • the unit is C [sea].
  • the magnitude of the current that fully charges the capacity of the battery in one hour is defined as 1C.
  • the maximum charge rate is the maximum charge rate allowed.
  • the combination of the first power storage unit 41 and the second power storage unit 42 is not limited to this.
  • the second power storage unit 42 has a maximum charge rate that is greater than twice the maximum charge rate of the first power storage unit 41.
  • Examples of the first power storage unit 41 include a battery having a maximum charging rate of 1C or less.
  • the type of the first power storage unit 41 is, for example, a lead battery and a lithium ion battery in which a carbon material is used for the negative electrode.
  • Examples of the second power storage unit 42 include a battery having a maximum charge rate of 20 C or more.
  • the type of the second power storage unit 42 is, for example, a nickel hydrogen battery and a lithium ion battery in which lithium titanate is used for the negative electrode.
  • Examples of the type of the second power storage unit 42 include a capacitor. For example, electric double layer capacitors and lithium ion capacitors can be mentioned.
  • the second power storage unit 42 a device having a maximum charge rate larger than twice the maximum charge rate of the first power storage unit 41 can be adopted.
  • the first power storage unit 41 is a battery having a maximum charge rate of 1C
  • the second power storage unit 42 is a battery having a maximum charge rate of 40C.
  • the first power storage unit 41 is a lead battery having a maximum charge rate of 1C.
  • the first power storage unit 41 is a lead battery having a capacity of 6 Ah and a maximum charging current of 6 A.
  • the maximum charging rate of the first power storage unit 41 is 1C.
  • the second power storage unit 42 is a nickel-metal hydride battery having a maximum charge rate of 10C.
  • the second power storage unit 42 is a nickel-metal hydride battery having a capacity of 1 Ah and a maximum charging current of 20 A. In this case, the maximum charging rate of the first power storage unit 41 is 20C.
  • a charging current flows through the first power storage unit 41 so that the voltage applied to the second power storage unit 42 does not exceed the upper limit voltage set in the second power storage unit 42. Maintain the state.
  • the term "while the power storage device 4 is being charged” as used herein means at least the time when the first power storage unit 41 is being charged.
  • the current maintenance circuit 43 maintains a state in which the charging current flows to the first power storage unit without electrically disconnecting the second power storage unit 42.
  • the upper limit voltage set in the second power storage unit 42 is the upper limit that can be applied to the second power storage unit 42.
  • the upper limit voltage set in the second power storage unit 42 is smaller than the maximum rated voltage of the second power storage unit 42.
  • the second power storage unit 42 for example, a device having a maximum rated voltage smaller than the maximum rated voltage of the first power storage unit 41 is adopted.
  • an upper limit voltage smaller than the maximum rated voltage of the first power storage unit 41 is adopted.
  • a first storage unit 41 having a nominal voltage of 12V and a second storage unit 42 having an upper limit voltage of 6V are adopted.
  • the combination of the first power storage unit 41 and the second power storage unit 42 is not limited to this.
  • the maximum rated voltage of the second power storage unit 42 is smaller than 14V.
  • the upper limit voltage of the second power storage unit 42 is smaller than 14V.
  • the maximum rated voltage of the first power storage unit 41 may be other than 14V.
  • the maximum rated voltage of the first power storage unit 41 may be, for example, 28V or 7V.
  • Examples of the current maintenance circuit 43 include a circuit connected in parallel with the second power storage unit 42 and connected in series with the first power storage unit 41. In this case, when the voltage applied to the second power storage unit 42 exceeds the upper limit voltage, the current maintenance circuit 43 causes the current flowing from the power storage device 4 to flow to the first power storage unit 41.
  • the current maintenance circuit 43 includes a circuit that detects that the voltage of the second power storage unit 42 exceeds the upper limit voltage, and a circuit that causes the current flowing from the power storage device 4 to flow to the first power storage unit 41 in response to the detection. Have.
  • the current maintenance circuit 43 may be, for example, a number of low-voltage diodes connected in series corresponding to the upper limit voltage. Further, the current maintenance circuit 43 may be connected in series with the second power storage unit 42.
  • the inverter 21 supplies the electric power generated by the permanent magnet generator 20 to the power storage device 4.
  • the inverter 21 rectifies the current generated by the permanent magnet generator 20.
  • the inverter 21 rotates the permanent magnet type generator 20 by supplying electric power to the permanent magnet type generator 20.
  • the inverter 21 controls the current by controlling the on / off of the current flowing through the stator winding W of the permanent magnet generator 20.
  • the inverter 21 includes a switching unit 211 and a control device 60.
  • the control device 60 is physically provided integrally with the inverter 21.
  • the control device 60 controls the voltage output from the inverter 21 by controlling the operation of the switching unit 211 of the inverter 21.
  • the control device 60 controls the current flowing between the permanent magnet type generator 20 and the power storage device 4 by controlling the operation of the switching unit 211 of the inverter 21. Further, the control device 60 controls the operation of the permanent magnet type generator 20.
  • the control device 60 controls the voltage output from the inverter 21 by, for example, a phase control method or vector control.
  • control device 60 outputs the inverter 21 so that the voltage output from the inverter 21 is smaller than the sum of the maximum rated voltage of the first storage unit 41 and the maximum rated voltage of the second storage unit 42.
  • the control device 60 controls the inverter 21, for example, so that the voltage output from the inverter 21 is smaller than the sum of the maximum rated voltage of the first power storage unit 41 and the upper limit voltage of the second power storage unit 42. To do.
  • the control device 60 causes the inverter 21 to supply a current from the power storage device 4 to the permanent magnet type generator 20 in response to the signal from the starter switch 6.
  • electric power is supplied from the power storage device 4 to the permanent magnet type generator 20, and the engine 10 is started.
  • the power storage device 4 can drive the permanent magnet generator 20 with a voltage larger than 12V which is generally used in the past. Therefore, the permanent magnet type generator 20 can output a larger torque than in the case of 12V. Therefore, the deterioration of the performance of the permanent magnet type generator 20 can be suppressed.
  • the control device 60 controls the inverter 21 so that the current from the permanent magnet type generator 20 flows through the power storage device 4. As a result, the power storage device 4 is charged by the generated power of the permanent magnet type generator 20. Further, the control device 60 transfers the electric power of the power storage device 4 to the permanent magnet generator 20 in response to the operation of the acceleration indicator 8 (see FIG. 4) after the engine 10 is started, that is, after the combustion operation is started. Can be supplied. More specifically, the control device 60 supplies electric power from the power storage device 4 to the permanent magnet generator 20 while the saddle-mounted vehicle 1 is traveling, and assists the permanent magnet generator 20 in rotating the crankshaft 15. Let me. As a result, the acceleration of the saddle-mounted vehicle 1 by the engine 10 is assisted by the permanent magnet generator 20.
  • the control device 60 also has a function of an engine control unit that controls the supply and combustion of fuel to the engine 10.
  • the control device 60 controls the combustion of the engine 10 by controlling the operation of the electric auxiliary machine L that functions as an auxiliary machine for the engine.
  • the control device 60 includes a central processing unit and a memory (not shown).
  • the control device 60 controls the combustion of the engine 10 by executing a program stored in the memory.
  • the control device 60 operates with the electric power of the power storage device 4. More specifically, the control device 60 operates from the voltage of the power storage device 4 at an operating voltage down-converted so as to be applied to the control device 60.
  • the down converter is provided in, for example, the inverter 21.
  • the control device 60 may operate at an operating voltage down-converted from the voltage of the battery.
  • FIG. 2 is a chart showing an outline of the voltage of the first power storage unit 41 shown in FIG. 1 and the voltage change during charging of an example of the second power storage unit 42.
  • a combination of a battery having a nominal voltage of 12 V as an example of the first power storage unit 41 and a battery having a nominal voltage of 6 V is shown as an example of the second power storage unit 42.
  • the voltage of the first power storage unit 41 before charging is 11V due to discharge.
  • the voltage of the second power storage unit 42 before charging is 6.5V due to discharge.
  • the second power storage unit 42 has a maximum charge rate that is greater than twice the maximum charge rate of the first power storage unit 41.
  • the first voltage V1 of the first storage unit 41 and the second voltage V2 of the second storage unit 42 With the lapse of the charging time. Rise. Since the second power storage unit 42 has a maximum charge rate larger than twice the maximum charge rate of the first power storage unit 41, the second voltage V2 of the second power storage unit 42 is the first voltage V1 of the first power storage unit 41. It rises rapidly compared to. That is, the second power storage unit 42 is charged more rapidly than the first power storage unit 41.
  • the voltage VT of the power storage device 4 is the sum of the first voltage V1 of the first power storage unit 41 and the second voltage V2 of the second power storage unit 42.
  • the voltage VT of the power storage device 4 is larger than the voltage VT'of the power storage device when, for example, the scale of the first power storage unit 41 is simply 1.5 times the scale without the second power storage unit.
  • the time t1 from the start of charging until the voltage VT of the power storage device 4 reaches 17.5 V, which is about 95% of the charging voltage is simply the scale of the first power storage unit 41 without the second power storage unit, for example.
  • the voltage VT'of the power storage device is shorter than the time t2 until the voltage reaches 17.5 V.
  • the voltage VT of the power storage device 4 is compared with, for example, the voltage VT'when the scale of the first power storage unit 41 is simply expanded. large.
  • the power storage device 4 is large in a short time after the start of charging from the state in which the power storage device 4 is discharged.
  • a voltage VT can be output.
  • the permanent magnet generator 20 can be driven by 17V, which is larger than 12V which is generally used in the past.
  • the voltage when the power storage device 4 is discharged can be adjusted by adjusting the type and configuration of the second power storage unit 42 and the upper limit voltage set value of the current maintenance circuit 43. , Can be easily adjusted. That is, as the output voltage of the power storage device 4, a voltage higher than the voltage of the first power storage unit 41 can be easily set. For example, when a battery having a nominal voltage of 12 V is used as the first power storage unit 41, it is easy to adjust the voltage that can be output by the power storage device 4 to a required voltage larger than 12 V in a short charging time after the power storage device 4 is discharged. Is.
  • the power storage device 4 When the power storage device 4 can output a large voltage, it is permissible to increase the wiring distance of the power storage device 4-inverter 21-permanent magnet type generator 20 with respect to a certain loss tolerance range. As a result, the degree of freedom in layout of the power storage device 4 and the inverter 21 in the vehicle body is increased.
  • FIG. 3A is a side view showing a first modification of the arrangement of the power storage device 4 in the saddle-mounted vehicle 1.
  • FIG. 3B is a side view showing a second modification of the arrangement of the power storage device 4 in the saddle-mounted vehicle 1.
  • the power storage device 4 is arranged at the rear end of the vehicle body 2.
  • the power storage device 4 is arranged at the front end portion of the vehicle body 2. Since it is permissible to increase the wiring distance of the power storage device 4-inverter 21-permanent magnet type generator 20, as shown in FIG. 3 (A) or FIG. 3 (B), in the vehicle body of the power storage device 4 and the inverter 21. Increases layout freedom. Therefore, the arrangement positions of the power storage device 4 and the inverter 21 can be adjusted so as to suppress the waste of space generated when the power storage device 4 and the inverter 21 are arranged. Therefore, the vehicle body 2 can be made compact.
  • the vehicle body can be made compact while suppressing the deterioration of the engine starting performance.
  • FIG. 4 is a diagram schematically showing a saddle-mounted vehicle 1 and an electric system, which are application examples of the embodiment shown in FIG. Part (a) of FIG. 4 is a plan view of the saddle-mounted vehicle 1. Part (b) of FIG. 4 is a side view of the saddle-mounted vehicle 1. Part (c) of FIG. 4 is a physical wiring diagram schematically showing the connection of the electric system of the saddle-mounted vehicle 1.
  • FIGS. 4 and 4 the elements corresponding to the embodiments shown in FIG. 1 will be described with the same reference numerals as those in FIG.
  • the saddle-mounted vehicle 1 shown in FIG. 4 includes a vehicle body 2.
  • the vehicle body 2 is provided with a seat 2a for the driver to sit on. The driver sits so as to straddle the seat 2a.
  • FIG. 4 shows a motorcycle as an example of the saddle-mounted vehicle 1.
  • the saddle-mounted vehicle 1 is provided with front wheels 3a and rear wheels 3b.
  • the tread surfaces of the wheels 3a and 3b of the saddle-mounted vehicle 1 have an arcuate cross-sectional shape in a state where they do not come into contact with the road surface.
  • the engine 10 constitutes an engine unit EU. That is, the saddle-mounted vehicle 1 includes an engine unit EU.
  • the engine unit EU includes an engine 10 and a permanent magnet generator 20.
  • the engine 10 outputs power via the crankshaft 15.
  • the engine 10 outputs torque for driving the wheels 3b from the crankshaft 15.
  • the wheels 3b receive the power of the crankshaft 15 to drive the saddle-mounted vehicle 1.
  • the engine 10 has, for example, a displacement of 100 mL or more.
  • the engine 10 has, for example, a displacement of less than 400 mL.
  • the saddle-mounted vehicle 1 includes a transmission CVT and a clutch CL. The power output from the engine 10 is transmitted to the wheels 3b via the transmission CVT and the clutch CL.
  • the permanent magnet type generator 20 is driven by the engine 10 to generate electricity.
  • the permanent magnet type generator 20 shown in FIG. 4 is a magnet type start generator.
  • the permanent magnet generator 20 has a rotor 30 and a stator 40 (see FIG. 5).
  • the rotor 30 includes a permanent magnet portion 37 composed of a permanent magnet.
  • the rotor 30 rotates with the power output from the crankshaft 15.
  • the stator 40 is arranged so as to face the rotor 30.
  • the power storage device 4 is a device that can be charged and discharged.
  • the power storage device 4 outputs the charged electric power to the outside.
  • the power storage device 4 supplies electric power to the permanent magnet type generator 20 and the electric auxiliary machine L.
  • the power storage device 4 supplies electric power to the permanent magnet generator 20 when the engine 10 is started. Further, the power storage device 4 is charged by the electric power generated by the permanent magnet type generator 20.
  • the saddle-mounted vehicle 1 is equipped with an inverter 21.
  • the inverter 21 includes a plurality of switching units 211 that control the current flowing between the permanent magnet type generator 20 and the power storage device 4.
  • the permanent magnet type generator 20 rotates the crankshaft 15 by the electric power of the power storage device 4. As a result, the permanent magnet generator 20 starts the engine 10.
  • the saddle-mounted vehicle 1 includes a main switch 5.
  • the main switch 5 is a switch for supplying electric power to the electric auxiliary machine L (see FIG. 4C) provided in the saddle-mounted vehicle 1 according to the operation.
  • the electric auxiliary machine L comprehensively represents a device that operates while consuming electric power, except for the permanent magnet type generator 20.
  • the electric auxiliary machine L includes, for example, a headlight 9, a fuel injection device 18, and an ignition device 19 (see FIG. 5).
  • the saddle-mounted vehicle 1 includes a starter switch 6.
  • the starter switch 6 is a switch for starting the engine 10 in response to an operation.
  • the saddle-mounted vehicle 1 includes a main relay 75.
  • the main relay 75 opens and closes a circuit including the electric auxiliary machine L in response to a signal from the main switch 5.
  • the saddle-mounted vehicle 1 includes an acceleration indicator 8.
  • the acceleration instruction unit 8 is an operator for instructing the acceleration of the saddle-mounted vehicle 1 according to the operation.
  • the acceleration indicator 8 is, in detail, an accelerator
  • the power storage device 4 includes, for example, a first power storage unit 41 that operates at 12 V, and a second power storage unit 42 that is connected in series to the battery.
  • the first power storage unit 41 is, for example, a lead battery.
  • the capacitor is, for example, an Electric Double Layer Capacitor (EDLC).
  • EDLC Electric Double Layer Capacitor
  • the power storage device 4 has a current maintenance circuit 43 that supplies the current input to the power storage device 4 to the battery instead of the capacitor when the voltage of the capacitor exceeds 6 V.
  • the power storage device 4 is charged with 18V and outputs 18V.
  • the charging voltage and the output voltage also vary depending on the charging state of the power storage device 4 and the rotation speed of the crankshaft 15.
  • the voltage in the range including 18V is referred to as an 18V system voltage.
  • the power storage device 4 supplies electric power to the permanent magnet generator 20 when the engine 10 is started.
  • the permanent magnet generator 20 can be driven by an 18V system voltage. Therefore, the permanent magnet type generator 20 can output a larger torque than in the case of, for example, 12V.
  • the permanent magnet type generator 20, the power storage device 4, the main relay 75, the inverter 21, and the electric auxiliary machine L are electrically connected by wiring J.
  • the code (J) of the wiring is attached to a part of the wiring shown in the part (c) of FIG.
  • the wiring J is composed of, for example, a lead wire.
  • the wiring J may be composed of a plurality of connected lead wires.
  • the wiring J may include a connector for relaying a lead wire, a fuse, and a connection terminal. The illustration of connectors, fuses, and connection terminals is omitted. Further, in the physical wiring diagram of the part (c) of FIG. 4, the connection of the positive electrode region is shown.
  • the negative electrode region that is, the ground region is electrically connected via the vehicle body 2. More specifically, the negative electrode region is electrically connected via a metal frame (not shown) of the vehicle body 2.
  • the distance of electrical connection of each device via the vehicle body 2 is usually equal to or shorter than the connection of the positive electrode region by a lead wire or the like. Therefore, in the part (c) of FIG. 4, the connection of the negative electrode region by the vehicle body 2 is not shown, and the wiring of the positive electrode region will be mainly described.
  • the wiring J shown in FIG. 4 is combined with other wiring provided in the vehicle to form a wire harness (not shown).
  • Part (c) of FIG. 4 shows only the wiring J that electrically connects the devices shown in the figure.
  • Part (c) of FIG. 4 schematically shows the connection relationship of the wiring J between the devices and the distance of the wiring J.
  • FIG. 5 is a partial cross-sectional view schematically showing a schematic configuration of the engine unit EU shown in FIG.
  • the engine unit EU includes an engine 10.
  • the engine 10 includes a crankcase 11, a cylinder 12, a piston 13, a connecting rod 14, and a crankshaft 15.
  • the piston 13 is provided in the cylinder 12 so as to be reciprocating.
  • the crankshaft 15 is rotatably provided in the crankcase 11.
  • the crankshaft 15 is connected to the piston 13 via a connecting rod 14.
  • a cylinder head 16 is attached to the upper part of the cylinder 12.
  • a combustion chamber is formed by the cylinder 12, the cylinder head 16, and the piston 13.
  • the crankshaft 15 is supported by the crankcase 11 in a rotatable manner.
  • a permanent magnet type generator 20 is attached to one end portion 15a of the crankshaft 15.
  • a transmission CVT is attached to the other end 15b of the crankshaft 15.
  • the transmission CVT can change the gear ratio, which is the ratio of the rotation speed of the output to the rotation speed of the input.
  • the transmission CVT can change the gear ratio corresponding to the rotation speed of the wheels with respect to
  • the engine unit EU is provided with a fuel injection device 18.
  • the fuel injection device 18 supplies fuel to the combustion chamber by injecting fuel.
  • the fuel injection device 18 injects fuel into the air flowing through the intake passage Ip.
  • a mixture of air and fuel is supplied to the combustion chamber of the engine 10.
  • the engine unit EU is provided with an ignition device 19.
  • the ignition device 19 has a spark plug 19a and an ignition voltage generation circuit 19b.
  • the spark plug 19a is provided in the engine 10.
  • the spark plug 19a is electrically connected to the ignition voltage generation circuit 19b.
  • the fuel injection device 18 and the ignition device 19 are examples of the electric auxiliary machine L shown in FIG.
  • the fuel injection device 18 and the ignition device 19 are examples of auxiliary equipment for an engine.
  • the fuel injection device 18 and the ignition device 19 operate at an 18V system voltage.
  • the engine 10 is an internal combustion engine.
  • the engine 10 is supplied with fuel.
  • the engine 10 outputs power by a combustion operation that burns the air-fuel mixture. That is, the piston 13 reciprocates by burning the air-fuel mixture containing the fuel supplied to the combustion chamber.
  • the crankshaft 15 rotates in conjunction with the reciprocating movement of the piston 13.
  • the power is output to the outside of the engine 10 via the crankshaft 15.
  • the fuel injection device 18 adjusts the power output from the engine 10 by adjusting the amount of fuel to be supplied.
  • the fuel injection device 18 is controlled by the control device 60.
  • the fuel injection device 18 is controlled to supply an amount of fuel based on the amount of air supplied to the engine 10.
  • the igniter 19 ignites a gas in which fuel and air are mixed.
  • the fuel injection device 18 and the ignition device 19 are engine auxiliary machines that operate to cause the engine 10 to perform combustion.
  • the engine 10 outputs power via the crankshaft 15.
  • the power of the crankshaft 15 is transmitted to the wheels 3b via the transmission CVT and the clutch CL (see part (b) of FIG. 4).
  • the crankcase 11 is configured so that the inside is lubricated with oil.
  • the permanent magnet type generator 20 is provided at a position where it comes into contact with oil.
  • the engine 10 has a high load region in which the load for rotating the crankshaft 15 is large and a low load region in which the load for rotating the crankshaft 15 is smaller than the load in the high load region during the four strokes.
  • the high load region means a region in which the load torque is higher than the average value of the load torque in one combustion cycle in one combustion cycle of the engine 10.
  • the low load region means a region in which the load torque is lower than the average value of the load torque in one combustion cycle in one combustion cycle of the engine 10. Looking at the rotation angle of the crankshaft 15 as a reference, the low load region is wider than the high load region. More specifically, the engine 10 rotates forward while repeating four strokes of an intake stroke, a compression stroke, an expansion stroke, and an exhaust stroke. The compression stroke has an overlap with the high load region.
  • the engine 10 is a single cylinder engine.
  • FIG. 6 is a cross-sectional view showing a cross section perpendicular to the rotation axis of the permanent magnet type generator 20 shown in FIG.
  • the permanent magnet type generator 20 will be described with reference to FIGS. 5 and 6.
  • the permanent magnet type generator 20 has a rotor 30 and a stator 40.
  • the permanent magnet type generator 20 of this application example is a radial gap type.
  • the permanent magnet type generator 20 is an outer rotor type. That is, the rotor 30 is an outer rotor.
  • the stator 40 is an inner stator.
  • the rotor 30 has a rotor main body 31.
  • the rotor body 31 is made of, for example, a ferromagnetic material.
  • the rotor main body 31 has a bottomed tubular shape.
  • the rotor main body 31 has a tubular boss portion 32, a disk-shaped bottom wall portion 33, and a tubular back yoke portion 34.
  • the bottom wall portion 33 and the back yoke portion 34 are integrally formed.
  • the bottom wall portion 33 and the back yoke portion 34 may be configured separately.
  • the bottom wall portion 33 and the back yoke portion 34 are fixed to the crankshaft 15 via the tubular boss portion 32.
  • the rotor 30 is not provided with a winding to which a current is supplied.
  • the rotor 30 has a permanent magnet portion 37.
  • the rotor 30 has a plurality of magnetic pole portions 37a.
  • the plurality of magnetic pole portions 37a are formed by the permanent magnet portions 37.
  • the plurality of magnetic pole portions 37a are provided on the inner peripheral surface of the back yoke portion 34.
  • the permanent magnet portion 37 has a plurality of permanent magnets. That is, the rotor 30 has a plurality of permanent magnets.
  • the plurality of magnetic pole portions 37a are provided on each of the plurality of permanent magnets.
  • the permanent magnet portion 37 can also be formed by one annular permanent magnet. In this case, one permanent magnet is magnetized so that a plurality of magnetic pole portions 37a are lined up on the inner peripheral surface.
  • the plurality of magnetic pole portions 37a are provided so that the north pole and the south pole are alternately arranged in the circumferential direction of the permanent magnet type generator 20.
  • the number of magnetic poles of the rotor 30 facing the stator 40 is 24.
  • the number of magnetic poles of the rotor 30 means the number of magnetic poles facing the stator 40.
  • No magnetic material is provided between the magnetic pole portion 37a and the stator 40.
  • the magnetic pole portion 37a is provided outside the stator 40 in the radial direction of the permanent magnet type generator 20.
  • the back yoke portion 34 is provided outside the magnetic pole portion 37a in the radial direction.
  • the permanent magnet type generator 20 has more magnetic pole portions 37a than the number of tooth portions 45.
  • the rotor 30 may be of an embedded magnet type (IPM type) in which the magnetic pole portion 37a is embedded in a magnetic material, but as in this application example, the magnetic pole portion 37a is a surface magnet type exposed from the magnetic material. (SPM type) is preferable.
  • IPM type embedded magnet type
  • SPM type surface magnet type exposed from the magnetic material
  • the stator 40 has a stator core ST and a plurality of stator windings W.
  • the stator core ST has a plurality of teeth 45 provided at intervals in the circumferential direction.
  • the plurality of tooth portions 45 integrally extend radially outward from the stator core ST.
  • a total of 18 tooth portions 45 are provided at intervals in the circumferential direction.
  • the stator core ST has a total of 18 slots SL formed at intervals in the circumferential direction.
  • the tooth portions 45 are arranged at equal intervals in the circumferential direction.
  • the rotor 30 has a number of magnetic pole portions 37a that is larger than the number of tooth portions 45.
  • the number of magnetic poles is 4/3 of the number of slots.
  • FIG. 6 shows a state in which the stator winding W is in the slot SL.
  • the permanent magnet type generator 20 is a three-phase generator.
  • Each of the stator windings W belongs to any of U phase, V phase, and W phase.
  • the stator windings W are arranged so as to be arranged in the order of, for example, U phase, V phase, and W phase.
  • the power storage device 4 When the engine 10 is operating while the saddle-mounted vehicle 1 is running, the power storage device 4 is charged by the electric power generated by the permanent magnet generator 20. When the power storage device 4 is fully charged, the electric power generated by the permanent magnet generator 20 is consumed as heat by, for example, a short circuit of the windings, without being used for charging. Further, when the rotation speed of the crankshaft 15 becomes so large that the voltage output from the inverter 21 to the power storage device 4 cannot be suppressed to the rated value, the inverter 21 short-circuits the stator winding W of the permanent magnet generator 20. The switching unit 211 is controlled so as to do so. The upper limit rotation speed of the crankshaft 15 capable of charging the power storage device 4 can be set to a high value.
  • Impedance is an element that hinders the current flowing through the stator winding W.
  • Impedance includes the product of rotational speed ⁇ and inductance.
  • the rotation speed ⁇ actually corresponds to the number of magnetic poles passing near the tooth portion in a unit time. That is, the rotation speed ⁇ is proportional to the ratio of the number of magnetic poles to the number of teeth in the generator and the rotation speed of the rotor.
  • the permanent magnet type generator 20 shown in FIG. 6 has a number of magnetic pole portions 37a that is larger than the number of tooth portions 45. That is, the permanent magnet type generator 20 has a number of magnetic pole portions 37a that is larger than the number of slots SL. Therefore, the stator winding W has a large impedance. Therefore, the voltage applied to the power storage device 4 is reduced as compared with the case where the number of magnetic poles is smaller than the number of teeth, for example. Therefore, the upper limit rotation speed of the crankshaft 15 can be set to a higher value than in the case of, for example, 12V. Therefore, in order to increase the torque at the time of starting in the permanent magnet type generator 20, a thick winding having a small electric resistance can be adopted.
  • the temperature of the stator winding W does not become higher than the temperature of the lubricating oil or is unlikely to become higher than the temperature of the lubricating oil. Therefore, even if the permanent magnet type generator 20 is arranged so as to come into contact with the lubricating oil, Evaporation of lubricating oil can be suppressed. Therefore, it is possible to suppress or avoid an increase in the size of the lubricating oil cooling mechanism.
  • FIG. 7 is a chart showing an outline of a voltage change during charging of a second application example having a second storage unit 42 of a different type.
  • a capacitor is assumed as the second power storage unit 42.
  • the first power storage unit 41 is the same battery as the example shown in FIG.
  • a capacitor is an element that stores electric charges such as ions by utilizing electrostatic force regardless of a chemical reaction. Therefore, the voltage of the capacitor is almost proportional to the amount of charge. For example, the voltage of the capacitor decreases as the capacitor discharges. Capacitor capacities generally have a smaller capacity than batteries of equal volume. Capacitors also have a higher maximum charging current than batteries of equal volume because they store charge regardless of chemical reaction. Therefore, the maximum charging rate of the capacitor is higher than that of the battery.
  • FIG. 7 shows an outline of the voltage change when charging is started from the state (time 0) when the charging amount of the second storage unit 42, which is a capacitor, becomes almost 0% due to the discharge.
  • the second voltage V2b of the second power storage unit 42 which has a charge amount of almost 0%, is almost 0V. Since the second power storage unit 42 has a large maximum charging rate, the second voltage V2b of the second power storage unit 42 rises rapidly. The second power storage unit 42 is charged more rapidly than the first power storage unit 41. When the second voltage V2b of the second power storage unit 42 reaches the upper limit voltage, the second voltage V2b is controlled to the upper limit voltage by the current maintenance circuit 43. In the example of FIG. 7, it is maintained at about 6V. The second power storage unit 42 is charged more rapidly until the second voltage V2b of the second power storage unit 42 reaches the upper limit voltage than after the second voltage V2b reaches the upper limit voltage.
  • Rapid charging is charging with a high charging speed, that is, a large amount of charge per unit time.
  • the second power storage unit 42 is charged at a charging speed higher than that in the period before the time t3 and in the period after the time t3.
  • the first power storage unit 41 is charged at a charging speed smaller than that after the time t3 in the period before the time t3.
  • the first power storage unit 41 is charged at a large charging speed by the current from the current maintenance circuit 43 in a period after the time t3.
  • the voltage VTb of the power storage device 4 is the sum of the first voltage V1b of the first power storage unit 41 and the second voltage V2b of the second power storage unit 42.
  • FIG. 8 is a diagram showing an example of variations of the power storage device 4 shown in FIG.
  • the power storage device 4 of the example shown in FIG. 8A includes a battery as the first power storage unit 41 and a battery as the second power storage unit 42.
  • the power storage device 4 is provided with a current maintenance circuit 43.
  • the maximum charge rate of the battery as the second power storage unit 42 is larger than twice the maximum charge rate of the battery as the first power storage unit 41.
  • the maximum rated voltage of the battery as the second power storage unit 42 is smaller than the maximum rated voltage of the battery as the first power storage unit 41.
  • the upper limit voltage of the battery as the second power storage unit 42 is smaller than the maximum rated voltage of the battery as the first power storage unit 41.
  • the upper limit voltage of the battery as the second power storage unit 42 is smaller than the nominal voltage of the battery as the first power storage unit 41.
  • the nominal voltage of the battery as the first power storage unit 41 is, for example, 12V.
  • the nominal voltage of the battery as the second power storage unit 42 is, for example, 6V.
  • the upper limit voltage of the battery as the second power storage unit 42 is, for example, 6V.
  • the specific combination of voltages is not particularly limited, and may be, for example, a combination of 8V and 6V, for example, a combination of 10V and 8V, or a combination of 11V and 8V.
  • the power storage device 4 of the example shown in FIG. 8B includes a battery as the first power storage unit 41 and one capacitor as the second power storage unit 42.
  • the power storage device 4 is provided with a current maintenance circuit 43.
  • the maximum voltage applied to one capacitor as the second power storage unit 42 is the upper limit voltage set in the current maintenance circuit 43.
  • the upper limit voltage of the current maintenance circuit 43 is set according to the withstand voltage of the capacitor and the maximum rated voltage of the power storage device 4.
  • the upper limit voltage set in the current maintenance circuit 43 is, for example, 6V. However, the upper limit voltage is not particularly limited and may be 8V or 10V depending on the withstand voltage of the capacitor and the power storage device 4.
  • the power storage device 4 of the example shown in FIG. 8C includes a battery as the first power storage unit 41 and two capacitors as the second power storage unit 42. As a result, a voltage larger than the withstand voltage of one capacitor can be set as the upper limit voltage of the current maintenance circuit 43. Further, the second storage unit 42 can input and output a voltage larger than the withstand voltage of one capacitor.
  • the power storage device 4 of the example shown in FIG. 8D includes a battery as the first power storage unit 41 and three capacitors as the second power storage unit 42.
  • the upper limit voltage of the current maintenance circuit 43 can be set to a voltage larger than twice the withstand voltage of one capacitor.
  • the second storage unit 42 can input and output a voltage larger than twice the withstand voltage of one capacitor.
  • the power storage device 4 of the example shown in FIG. 8 (E) further includes a parallel capacitor unit 44 as compared with the example shown in FIG. 8 (B).
  • the parallel capacitor unit 44 is connected in parallel with the first power storage unit 41.
  • the parallel capacitor unit 44 includes one capacitor. This configuration is suitable when the withstand voltage of one capacitor is larger than that of the battery as the first power storage unit 41.
  • Capacitors can generally supply power in a shorter period of time than batteries that discharge the same amount of power.
  • the internal resistance of a capacitor is generally smaller than the internal resistance of a battery.
  • the capacitor stores electric power (charge) substantially proportional to the voltage. Capacitors can generally discharge power proportional to voltage.
  • the voltage can be supplied from the first storage unit 41 to the parallel capacitor unit 44. That is, the parallel capacitor unit 44 can be charged with the electric power of the first power storage unit 41.
  • the parallel capacitor unit 44 can supply the electric power required for the start even in a situation where the first power storage unit 41 cannot independently supply the electric power required for the start.
  • a parallel capacitor unit 44 is added to the example shown in FIG. 8 (C).
  • the number of capacitors included in the first storage unit 41 and the number of capacitors included in the parallel capacitor unit 44 may be different.
  • the number of capacitors possessed by the first storage unit 41 and the number of capacitors possessed by the parallel capacitor unit 44 are selected according to the upper limit voltage of the current maintenance circuit 43 and the maximum rated voltage of the battery as the first storage unit 41. Is possible.
  • the parallel capacitor unit 44 includes four capacitors.
  • a parallel capacitor unit 44 is added to the example shown in FIG. 8 (D).
  • the parallel capacitor unit 44 includes three capacitors.
  • the parallel capacitor unit 44 may include six capacitors with respect to the power storage device 4 of the example shown in FIG. 6 (G). It is easy to maintain the balance between the maximum rated voltage of the capacitor constituting the first storage unit 41 and the capacitor constituting the parallel capacitor unit 44.
  • the first power storage unit 41 may include, for example, a set of two sets of capacitors connected in parallel to each other. The set of capacitors is composed of, for example, three capacitors connected in series. In this case, the capacity of the first power storage unit 41 increases.
  • the parallel capacitor unit 44 may further include six capacitors.
  • the capacitor included in the parallel capacitor section 44 and the capacitor included in the second storage section 42 are of the same type.
  • a capacitor having substantially the same maximum rated voltage and capacitance is a capacitor of the same type.
  • a capacitor having the same nominal value of voltage and capacitance is a capacitor of the same type.
  • the capacitor included in the parallel capacitor section 44 and the capacitor included in the second storage section 42 may be of different types.

Abstract

本発明の目的は、エンジン始動性能低下を抑えつつ車体をコンパクトにできるストラドルドビークルを提供することである。ストラドルドビークルは、車輪と、エンジンと永久磁石式発電機と、蓄電装置と、インバータとを備える。蓄電装置は、12V以上の最大定格電圧を有し電力を蓄えるバッテリである第1蓄電部と、前記第1蓄電部と常時直列接続され、前記第1蓄電部の最大充電レートの2倍より大きい最大充電レートを有する前記第2蓄電部と、前記永久磁石式発電機が発電することにより前記インバータが前記蓄電装置を充電する間、前記第2蓄電部を電気的に切断することなく、前記第2蓄電部に掛かる電圧が前記第2蓄電部に設定された上限電圧を超えないように前記第1蓄電部へ充電電流が流れる状態を維持する電流維持回路と、を備える。

Description

ストラドルドビークル
 本発明は、鞍乗型車両に関する。
 例えば、特許文献1には、鞍乗型車両が示されている。特許文献1の鞍乗型車両は、ハイブリッド車両である。特許文献1の鞍乗型車両は、エンジンと、ACGスタータ(alternating current generator starter)と、第1バッテリと、第2バッテリとを備える。
 エンジンは、ACGスタータの駆動により始動する。第1バッテリは、ACGスタータに電力を供給する48V系のバッテリである。第2バッテリは、複数の補機に電力を供給する低電圧12V系のバッテリである。ACGスタータは発電機として機能する。第1バッテリが充電される。また、第1バッテリの電圧に起因する電荷がコンデンサに蓄積される。この電荷は、コンバータを介して第2バッテリに充電される。
 特許文献1の鞍乗型車両の第1バッテリは、ACGスタータに電力を供給することによりエンジンを始動させる。第1バッテリの残容量が設定値未満である場合、第2バッテリから供給される電力によりACGスタータが駆動される。
国際公開第2017/154778号
 鞍乗型車両は、走行時に運転者の体重移動によって車両の姿勢が制御されるように構成されている。そのため、操作性及び走行性能の観点から、鞍乗型車両は、車体をコンパクトにすることが求められている。
 鞍乗型車両は、エンジン始動性能の低下を抑えつつ車体をコンパクトにすることが求められている。
 本発明の目的は、エンジン始動性能の低下を抑えつつ車体をコンパクトにできる鞍乗型車両を提供することである。
 特許文献1の鞍乗型車両によれば、例えば第1バッテリはエンジン始動のため48Vを出力する。なお、第1バッテリの残容量が設定値未満である場合、電源が第1バッテリから12V系の第2バッテリに切り替わる。エンジン始動のため48Vを出力する第1バッテリは、一般的に12Vを出力するバッテリと比べて大型である。
 本発明者は、2種類の蓄電部を有効活用する方法を考えた。
 本発明者は、12V以上の最大定格電圧を有し電力を蓄える第1蓄電部に加え、第1蓄電部と常時直列接続される第2蓄電部について検討した。第2蓄電部が、第1蓄電部の最大充電レートより大きい最大充電レートを有するように設定した。本発明者は、更に、第2蓄電部に掛かる電圧が第2蓄電部の上限電圧を超えないように第1蓄電部へ充電電流が流れる状態を維持する電流維持回路の追加を検討した。
 蓄電装置が、12V以上の最大定格電圧を有する第1蓄電部と第2蓄電部とを備え、第1蓄電部と第2蓄電部とが常時直列接続されることによって、蓄電装置が放電する時に、12Vよりも大きな電圧を出力することができる。これにより、エンジンの始動時に、永久磁石式発電機及びインバータを12Vよりも大きな電圧で駆動することができる。第2蓄電部の組合せによって、12Vよりも大きな電圧を出力することが容易である。
 しかも、第1蓄電部に組合せられる第2蓄電部の種類及び構成、及び、電流維持回路の電圧を調整することによって、蓄電装置が放電する場合の電圧を、永久磁石式発電機の能力及び要求出力に容易に適合することができる。つまり、蓄電装置の出力電圧として、第1蓄電部の電圧より大きな電圧を容易に設定することができる。
 第2蓄電部の最大充電レートは、第1蓄電部の最大充電レートの2倍より大きく設定される。このため、蓄電装置の充電時に第2蓄電部を流れる電流が第1蓄電部も流れる場合、第2蓄電部の満充電に対する充電率は、第1蓄電部における充電率よりも高くなりやすい。つまり、例えば、第2蓄電部は、第1蓄電部よりも短い期間で充電される。このため、蓄電装置が放電した後で充電されている途中でも、蓄電装置が12Vよりも大きな電圧を出力でき、しかも、充電開始後に短時間で大きな電圧を出力可能な状態に回復できる。
 エンジンの始動時に、永久磁石式発電機を12Vよりも大きな電圧で駆動することができる。そのため、12V以下の場合と比べて、永久磁石式発電機が大きいトルクを出力できる。また、永久磁石式発電機が、より高い回転速度まで、クランク軸を駆動することができる。従って、鞍乗型車両の始動性能を向上できる。
 蓄電装置は、第1蓄電部と第2蓄電部の組合せにより12Vよりも大きな電圧を出力することができる。このため、第1蓄電部も第2蓄電部も、単独で、12Vよりも大きな電圧を出力する必要はない。従って、12Vよりも大きな電圧で永久磁石式発電機を駆動する構成において、例えば、特許文献1のように第1蓄電部又は第2蓄電部の少なくとも一方が12Vよりも大きな電圧に対応する場合と比べ、蓄電装置の容積を小型化することができる。
 また、蓄電装置が放電する場合及び充電する場合の双方で、蓄電装置と永久磁石式発電機との間の電圧が、12Vよりも大きい。このため、電力を伝送する場合に、蓄電装置と永久磁石式発電機との間で流れる電流を低減できる。従って、電流による損失を低減できる。また、上述したように第2蓄電部は、第1蓄電部よりも短い期間で充電される。このため、蓄電装置が放電した状態から充電開始後に短時間で大きな電圧を出力できる。
 このため、ある損失の許容範囲に対し、蓄電装置-インバータ永久磁石式発電機の配線距離を長くすることができる。この結果、蓄電装置及びインバータの車体におけるレイアウト自由度が高まるので、蓄電装置及びインバータを配置する場合に生じる空間の無駄が抑えられるように蓄電装置及びインバータの配置位置を調整することができる。従って、車体をコンパクトにすることができる。
 以上の知見に基づいて完成した本発明の各観点による鞍乗型車両は、次の構成を備える。
 (1) 鞍乗型車両であって、
 前記鞍乗型車両は、
 車輪と、
 クランク軸を有し、ガスの燃焼動作によって生じた前記車輪を駆動するためのトルクを前記クランク軸から出力するエンジンと、
 前記クランク軸の一端部に設けられ、永久磁石を有し、前記クランク軸を回転させることにより前記エンジンを始動するとともに、前記エンジンに駆動されることにより発電する永久磁石式発電機と、
 12V以上の最大定格電圧を有し電力を蓄えるバッテリである第1蓄電部と、
 前記第1蓄電部と常時直列接続され、前記第1蓄電部の最大充電レートの2倍より大きい最大充電レートを有する第2蓄電部と、
 前記永久磁石式発電機と前記第1蓄電部及び前記第2蓄電部とに電気的に接続され、前記永久磁石式発電機から出力される電流を制御する複数のスイッチング部を備えたインバータと、
 前記永久磁石式発電機が発電することにより前記インバータが少なくとも前記第1蓄電部を充電する間、前記第2蓄電部を電気的に切断することなく、前記第2蓄電部に掛かる電圧が前記第2蓄電部に設定された上限電圧を超えないように前記第1蓄電部へ充電電流が流れる状態を維持する電流維持回路と、
を備える。
 上記構成における鞍乗型車両では、12V以上の最大定格電圧を有する第1蓄電部と第2蓄電部とが常時直列接続されることによって、蓄電装置が放電する場合、12Vよりも大きな電圧を出力することができる。なお、蓄電装置は、第1蓄電部と第2蓄電部とを備える。これにより、エンジンの始動時に、永久磁石式発電機及びインバータを12Vよりも大きな電圧で駆動することができる。第2蓄電部の組合せによって、12Vよりも大きな電圧を出力することが容易である。
 しかも、第1蓄電部に組合せられる第2蓄電部の種類及び構成を調整することによって、蓄電装置が放電する場合の電圧を、永久磁石式発電機の能力及び要求出力に容易に適合することができる。
 第2蓄電部の最大充電レートは、第1蓄電部の最大充電レートの2倍より大きく設定される。このため、蓄電装置の充電時に第2蓄電部を流れる電流が、第2蓄電部と直列接続の関係にある第1蓄電部にも流れる場合、第2蓄電部の満充電に対する充電率は、第1蓄電部における充電率よりも高くなりやすい。つまり、例えば、第2蓄電部は、第1蓄電部よりも短い期間で充電される。このため、蓄電装置が一旦放電した後で充電されている途中で放電する場合でも、蓄電装置が12Vよりも大きな電圧を出力できる。
 第2蓄電部は、第1蓄電部よりも短い期間で充電状態の変化が進む。上記構成における鞍乗型車両では、電流維持回路によって、第2蓄電部が第2蓄電部の上限電圧を超えないように第1蓄電部へ充電電流が流れる状態が維持される。従って、例えば第2蓄電部の充電終了後も第1蓄電部への充電状態が継続できる。
 また、上記構成における鞍乗型車両では、エンジンの始動時に、永久磁石式発電機を12Vよりも大きな電圧で駆動することができるので、12V以下の場合と比べて、永久磁石式発電機が大きいトルクを出力できる。また、永久磁石式発電機が、より高い回転速度まで、クランク軸を駆動することができる。従って、鞍乗型車両の始動性能を向上できる。
 蓄電装置は、第1蓄電部と第2蓄電部の組合せにより12Vよりも大きな電圧を出力することができる。このため、第1蓄電部も第2蓄電部も、12Vよりも大きな電圧を出力する必要はない。従って、12Vよりも大きな電圧で永久磁石式発電機を駆動する構成において、例えば、特許文献1のように第1蓄電部又は第2蓄電部の少なくとも一方が12Vよりも大きな電圧に対応する場合と比べ、蓄電装置の容積を小型化することができる。
 また、蓄電装置が放電する場合及び充電する場合の双方で、蓄電装置と永久磁石式発電機との間の電圧が、12Vよりも大きい。このため、電力を伝送する場合に、蓄電装置と永久磁石式発電機との間で流れる電流を低減できる。従って、電流による損失を低減できる。このため、ある損失の許容範囲に対し、蓄電装置-インバータ永久磁石式発電機の配線距離を長くすることができる。この結果、蓄電装置及びインバータの車体におけるレイアウト自由度が高まるので、蓄電装置及びインバータを配置する場合に生じる空間の無駄が抑えられるように蓄電装置及びインバータの配置位置を調整することができる。従って、車体をコンパクトにすることができる。
 このように、上記構成における鞍乗型車両によれば、エンジン始動性能の低下を抑えつつ車体をコンパクトにすることができる。
 (2) (1)の鞍乗型車両であって、前記第2蓄電部の上限電圧は、前記第1蓄電部の最大定格電圧よりも低い。
 上記構成における鞍乗型車両によれば、蓄電装置の充電時、第2蓄電部は、第1蓄電部よりも短い期間で充電されやすい。このため、12V以上の電圧を出力する第1蓄電部の充電期間よりも短い充電期間で第2蓄電部が充電される。従って、短い充電期間の後でも、第2蓄電部の活用が可能となる。
 (3) (1)の鞍乗型車両であって、
 前記インバータが少なくとも前記第1蓄電部を充電する間、前記第2蓄電部に掛かる前記電圧である第2電圧が、前記第1蓄電部に掛かる第1電圧よりも低い。
 上記構成における鞍乗型車両によれば、第2電圧が第1電圧よりも低い。このため、蓄電装置及びインバータから電圧の供給を受けて動作する電動補機の種類の変更なしに、蓄電装置の電圧を調整することができる。
 (4) (1)の鞍乗型車両であって、
 前記鞍乗型車両は、バッテリである第1蓄電部と並列接続されたキャパシタを備える。
 上記構成における鞍乗型車両の第1蓄電部は、例えば劣化により充電容量が低下した場合でも最大定格電圧の低下が抑えられるので、最大定格電圧でキャパシタを充電することができる。このため、エンジンの始動時に、キャパシタに充電された電荷も合わせて、永久磁石式発電機に電力を出力することができる。
 (5) (1)の鞍乗型車両であって、
 永久磁石式発電機は、前記永久磁石で構成された複数の磁極部を有するロータと、
複数のスロットが前記永久磁石式発電機の周方向に間隔を空けて形成されたステータコア及び前記スロットを通るように設けられた巻線を有するステータと、を備え、
前記磁極部の数は前記複数のティースの数より多い。
 上記構成における鞍乗型車両によれば、磁極部の数が複数のティースの数より少ない場合と比べてロータの回転速度に対する角速度が大きい。
 角速度は、磁極の繰返し周期を基準とした電気角についての角速度である。角速度が大きいと、巻線のインダクタンスが大きい。また、角速度は、ロータの回転速度の増大に伴い更に増大する。巻線のインダクタンスは、巻線を流れる電流を妨げる。このため、誘導起電圧は、ロータの回転速度の増大に伴い増大するが、大きな巻線のインダクタンスによって、発電機から出力される過度の電流の増大が抑えられる。
 このため、上記構成における鞍乗型車両によれば、磁極部の数が複数のティースの数より少ない場合と比べて、さらに高いクランク軸の回転速度まで蓄電装置を充電することができる。従って、電力の無駄な消費を抑えることができる。
 (6) (1)の鞍乗型車両であって、
 前記エンジンは、オイルで内部が潤滑されるように構成されたクランクケースを更に備え、
 前記永久磁石式発電機は、前記オイルと接触する位置に設けられる。
 上記構成における鞍乗型車両によれば、高いクランク軸の回転速度までの範囲で、電力を無駄に消費することなく蓄電装置を充電することができる。従って、このような永久磁石式発電機では、ステータ巻線の温度が潤滑オイルの温度よりも高くならない又は高くなり難いため、永久磁石式発電機が潤滑オイルと接触するように配置されても、潤滑オイルの蒸発を抑制できる。
 例えば、永久磁石式発電機が潤滑オイルと接触する環境下に配置される場合には、通常、冷却機構を大型化することが求められる。しかし、上記構成における鞍乗型車両によれば、冷却機構の大型化を抑制乃至回避できる。従って、車体をよりコンパクトにできる。
 (7) (1)の鞍乗型車両であって、
 前記インバータは、前記鞍乗型車両の走行中、前記永久磁石式発電機に前記第1蓄電部及び第2蓄電部からの電力を供給し、永久磁石式発電機にクランク軸の回転を補助する。
 上記構成における鞍乗型車両によれば、鞍乗型車両の走行中、永久磁石式発電機が、12Vよりも大きい電圧で駆動することができる。このため、例えば12Vで駆動する場合と比べて、より高い回転速度までクランク軸を駆動することができる。従って、例えば12Vで駆動する場合と比べて、より高い回転速度までエンジンによる加速を補助することができる。さらに、例えば12Vの蓄電装置とは異なる蓄電装置を設ける場合と比べて、車体をよりコンパクトにできる。
 第1蓄電部は、例えばバッテリである。第1蓄電部は、例えば鉛バッテリである。ただし、第1蓄電部は、特に限定されず例えばリチウムイオンバッテリでもよい。
 第2蓄電部は、例えばキャパシタである。第2蓄電部は、例えば、リチウムイオンキャパシタである。但し、第2蓄電部は、特に限定されず例えば電気二重層キャパシタ、又は電解コンデンサでもよい。また、第2蓄電部は、例えばバッテリであってもよい。第2蓄電部は、例えば、負極に炭素材料を採用したリチウムイオンバッテリ(例えばSCiB(登録商標))、又はニッケル水素電池でもよい。なお、蓄電装置は、第1蓄電部及び第2蓄電部、並びに電流維持回路を備える。蓄電装置は、他の蓄電部を備えていてもよい。他の蓄電部としては、例えば、第1蓄電部と並列接続されるキャパシタが挙げられる。蓄電装置は、必ずしも、全体としてユニット化されている必要は無い。言い換えれば、蓄電装置を構成する各蓄電部は、必ずしも、物理的に一体として構成されている必要は無い。各蓄電部が、互いに電気的に接続された状態で、鞍乗型車両における異なる位置に別々に設置されていてもよい。
 最大充電レートとは、蓄電部が許容する最大の充電レートである。充電レートとは、充電のスピードを表す。単位はCである。定電流充電測定の場合、電池の容量を1時間で完全充電させる電流の大きさを1Cと定義される。例えば、電池の容量が2Ahである場合、1Cは、2Aである。
 永久磁石式発電機は、永久磁石を有する。例えばロータに永久磁石ではなくコイルを備えた構成は、本構成における永久磁石式発電機と異なる。
 「電気的に切断する」とは、対象を含む電力の閉回路の一部を、例えば、スイッチ又はリレーの動作により開状態とすることである。「電気的に切断する」には、閉回路を構成するトランジスタを導通状態から非導通状態にすることも含まれる。これに対し、「電気的に切断することなく」とは、対象を含む電力の閉回路の状態を維持することである。「電気的に切断することなく」する状態は、対象に電流が流れない状態も含む。例えば、対象が充電されたキャパシタであり、しかも、キャパシタの両端の電圧と等しい電圧がキャパシタに印加された場合は、キャパシタに電流は流れないが電気的に切断されていない状態である。
 エンジンは、例えば単気筒エンジン、2気筒エンジン、不等間隔燃焼型3気筒エンジン、又は、不等間隔燃焼型4気筒エンジンである。エンジンは、例えば、3つより少ない気筒を有するエンジンである。2気筒エンジンは、2つの気筒を有する不等間隔燃焼エンジンであってもよい。2つの気筒を有する不等間隔燃焼エンジンとして、例えばV型エンジンが挙げられる。但し、エンジンは、特に限定されず、等間隔燃焼型多気筒エンジンでもよい。
 鞍乗型車両は、運転者がサドルに跨って着座する形式の車両をいう。鞍乗型車両は、サドル型のシートを備える車両である。鞍乗型車両は、運転者が騎乗スタイルで乗車する車両である。鞍乗型車両は、ビークルの一例である。鞍乗型車両は、例えば、リーン姿勢で旋回する車両であり、旋回時にカーブ中心方向にリーンするように構成されている。
 鞍乗型車両は例えば自動二輪車である。自動二輪車としては、特に限定されず、例えば、スクータ型、モペット型、オフロード型、オンロード型の自動二輪車が挙げられる。また、鞍乗型車両としては、自動二輪車に限定されず、例えば三輪車であってもよい。また、鞍乗型車両としては、例えば、ATV(All-Terrain Vehicle)等であってもよい。
 本明細書にて使用される専門用語は特定の実施例のみを定義する目的であって発明を制限する意図を有しない。
 本明細書にて使用される用語「および/または」はひとつの、または複数の関連した列挙された構成物のあらゆるまたはすべての組み合わせを含む。
 本明細書中で使用される場合、用語「含む、備える(including)」「含む、備える(comprising)」または「有する(having)」およびその変形の使用は、記載された特徴、工程、操作、要素、成分および/またはそれらの等価物の存在を特定するが、ステップ、動作、要素、コンポーネント、および/またはそれらのグループのうちの1つまたは複数を含むことができる。
 本明細書中で使用される場合、用語「取り付けられた」、「結合された」および/またはそれらの等価物は広く使用され、特に指定しない限り直接的および間接的な取り付け、および結合の両方を包含する。
 他に定義されない限り、本明細書で使用される全ての用語(技術用語および科学用語を含む)は、本発明が属する当業者によって一般的に理解されるのと同じ意味を有する。
 一般的に使用される辞書に定義された用語のような用語は、関連する技術および本開示の文脈における意味と一致する意味を有すると解釈されるべきであり、本明細書で明示的に定義されていない限り、理想的または過度に形式的な意味で解釈されることはない。
 本発明の説明においては、技術および多くの工程が開示されていると理解される。
 これらの各々は個別の利益を有し、それぞれは、他の開示された技術の1つ以上、または、場合によっては全てと共に使用することもできる。
 したがって、明確にするために、この説明は、不要に個々のステップの可能な組み合わせをすべて繰り返すことを控える。
 それにもかかわらず、明細書および特許請求の範囲は、そのような組み合わせがすべて本発明および請求項の範囲内にあることを理解して読まれるべきである。
 本明細書では、新しい鞍乗型車両について説明する。
 以下の説明では、説明の目的で、本発明の完全な理解を提供するために多数の具体的な詳細を述べる。
 しかしながら、当業者には、これらの特定の詳細なしに本発明を実施できることが明らかである。
 本開示は、本発明の例示として考慮されるべきであり、本発明を以下の図面または説明によって示される特定の実施形態に限定することを意図するものではない。
 本発明によれば、エンジン始動性能の低下を抑えつつ車体をコンパクトにできる鞍乗型車両を実現できる。
本発明の一実施形態に係る鞍乗型車両を模式的に示す図である。 図1に示す第1蓄電部の電圧と第2蓄電部の一例の充電時における電圧変化の概略を示すチャートである。 (A)は、鞍乗型車両における蓄電装置の配置の第1の変形例を示す側面図である。(B)は、鞍乗型車両における蓄電装置の配置の第2の変形例を示す側面図である。 図1に示す実施形態の適用例である鞍乗型車両及び電気系統を模式的に示す図である 図4に示すエンジンユニットの概略構成を模式的に示す部分断面図である。 図5に示す永久磁石式発電機の回転軸線に垂直な断面を示す断面図である。 異なる種類の第2蓄電部を有する第2の適用例の充電時における電圧変化の概略を示すチャートである。 図1に示す蓄電装置のバリエーションの例を示す図である。
 以下、本発明を、実施形態に基づいて図面を参照しつつ説明する。
 図1は、本発明の一実施形態に係る鞍乗型車両を模式的に示す図である。図1のパート(a)は、鞍乗型車両の側面図である。図1のパート(b)は、パート(a)に示す鞍乗型車両の概略的な電気構成を示すブロック図である。
 図1に示す鞍乗型車両1は、車輪3a,3bと、エンジン10と、永久磁石式発電機20と、蓄電装置4と、インバータ21とを備える。また、鞍乗型車両1は、電動補機Lを備えている。蓄電装置4は、第1蓄電部41と、第2蓄電部42と、電流維持回路43とを備える。つまり、鞍乗型車両1は、車輪3a,3bと、エンジン10と、永久磁石式発電機20と、第1蓄電部41と、第2蓄電部42と、電流維持回路43と、インバータ21とを備える。
 また、鞍乗型車両1は、車体2を備えている。図1には、鞍乗型車両1の例として、リーン車両が示されている。リーン車両は、左旋回中に車両左方向に傾斜し右旋回中に車両右方向に傾斜する。
 鞍乗型車両1に備えられた車輪3a,3bは、前の車輪3aと後ろの車輪3bを含む。後ろの車輪3bは駆動輪である。
 エンジン10は、クランク軸15を備えている。
 エンジン10は、クランク軸15を介して動力を出力する。エンジン10は、車輪3bを駆動するためのトルクをクランク軸15から出力する。車輪3bは、クランク軸15の動力を受け、鞍乗型車両1を走行させる。
 エンジン10から出力される動力は、例えば、変速機及びクラッチを介して車輪3bに伝達されることができる。
 電動補機Lは、鞍乗型車両1に搭載される電動装置である。電動補機Lは、電力の供給を受けて動作する。
 電動補機Lは、例えば、エンジン10に燃焼を行なわせるよう動作するエンジン用補機である。エンジン用補機は、例えば、燃料噴射装置18及び点火装置19(図5参照)を含む。燃料噴射装置18は、エンジン10の内部に向けて若しくは当該内部において燃料を噴射する。点火装置19は、エンジン10の内部の燃料に点火する。
 永久磁石式発電機20は、クランク軸15の一端部に設けられる。
 永久磁石式発電機20は、永久磁石を有する。より詳細には、永久磁石式発電機20は、永久磁石で構成された永久磁石部37を備えている。
 永久磁石式発電機20は、エンジン10を始動するスタータを兼ねる。永久磁石式発電機20は、永久磁石式始動発電機である。永久磁石式発電機20は、クランク軸15を回転させることによりエンジン10を始動する。永久磁石式発電機20はまた、エンジン10に駆動されることにより発電する。
 蓄電装置4は、電気を充電及び放電することができる装置である。蓄電装置4は、電力を蓄える。
 蓄電装置4は、充電された電力を外部に出力する。蓄電装置4は、電力を永久磁石式発電機20に供給する。蓄電装置4は、エンジン10の始動時に永久磁石式発電機20に電力を供給する。また、例えばエンジン10の始動後、蓄電装置4は、永久磁石式発電機20で発電された電力によって充電される。
 蓄電装置4は、第1蓄電部41と、第2蓄電部42と、電流維持回路43とを備える。
 第1蓄電部41は、電力を蓄えるバッテリである。第1蓄電部41は、12V以上の最大定格電圧を有する。例えば、第1蓄電部41は、12Vの公称電圧を有するバッテリである。例えば、第1蓄電部41は、鉛バッテリである。第1蓄電部41は、例えば最大定格電圧14Vを有する。第1蓄電部41は、エンジン10を少なくとも1回始動する量の電力を充電可能な容量を有する。
 第2蓄電部42は、第1蓄電部41と常時直列接続される。第2蓄電部42は、第1蓄電部41の最大充電レートの2倍より大きい最大充電レートを有する。例えば、第2蓄電部42は、電力を蓄えるバッテリである。第2蓄電部42は、エンジン10を少なくとも1回始動する量の電力を充電可能な容量を有する。
 充電レートとは、充電のスピードを表す。単位はC[シー]である。電池の容量を1時間で完全充電させる電流の大きさを1Cと定義される。最大充電レートとは、許容する最大の充電レートである。
 第1蓄電部41と第2蓄電部42のコンビネーションはこれに限られない。上述したように、第2蓄電部42は、第1蓄電部41の最大充電レートの2倍より大きい最大充電レートを有する。
 第1蓄電部41としては、例えば1C以下の最大充電レートを有するバッテリが挙げられる。
 第1蓄電部41の種類は、例えば、鉛バッテリ、負極に炭素材料を採用したリチウムイオンバッテリである。
 第2蓄電部42としては、例えば20C以上の最大充電レートを有するバッテリが挙げられる。
 第2蓄電部42の種類は、例えば、ニッケル水素バッテリ、及び負極にチタン酸リチウムを採用したリチウムイオンバッテリである。第2蓄電部42の種類として、例えば、キャパシタが挙げられる。例えば、電気二重層キャパシタ、リチウムイオンキャパシタが挙げられる。
 ただし、第2蓄電部42としては、第1蓄電部41の最大充電レートの2倍より大きい最大充電レートを有する装置が採用可能である。
 例えば、第1蓄電部41は、1Cの最大充電レートを有するバッテリであり、第2蓄電部42は、40Cの最大充電レートを有するバッテリである。例えば、第1蓄電部41は、1Cの最大充電レートを有する鉛バッテリである。例えば、第1蓄電部41は、6Ahの容量を有し最大充電電流6Aの鉛バッテリである。この場合、第1蓄電部41の最大充電レートは、1Cである。
 第2蓄電部42は、10Cの最大充電レートを有するニッケル水素バッテリである。例えば、第2蓄電部42は、1Ahの容量を有し最大充電電流20Aのニッケル水素バッテリである。この場合、第1蓄電部41の最大充電レートは、20Cである。
 電流維持回路43は、蓄電装置4が充電される間、第2蓄電部42に掛かる電圧が第2蓄電部42に設定された上限電圧を超えないように第1蓄電部41へ充電電流が流れる状態を維持する。ここでいう「蓄電装置4が充電される間」とは、少なくとも第1蓄電部41が充電される間を指す。電流維持回路43は、第2蓄電部42を電気的に切断することなく、第1蓄電部へ充電電流が流れる状態を維持する。
 第2蓄電部42に設定された上限電圧は、第2蓄電部42に印加され得る上限である。第2蓄電部42に設定された上限電圧は、第2蓄電部42の最大定格電圧よりも小さい。第2蓄電部42として、例えば、第1蓄電部41の最大定格電圧よりも小さい最大定格電圧を有する装置が採用される。この場合、第1蓄電部41の最大定格電圧よりも小さい上限電圧が採用される。例えば、公称電圧12Vの第1蓄電部41と、上限電圧6Vの第2蓄電部42が採用される。但し、第1蓄電部41と第2蓄電部42の組合せはこれに限られない。例えば、最大定格電圧が14Vの第1蓄電部41が採用される場合、第2蓄電部42の最大定格電圧は14Vよりも小さい。例えば、第2蓄電部42の上限電圧は14Vよりも小さい。また、第1蓄電部41の最大定格電圧は14V以外でもよい。第1蓄電部41の最大定格電圧は、例えば、28V、または、7Vでもよい。
 電流維持回路43としては、例えば、第2蓄電部42と並列接続され、かつ、第1蓄電部41と直列接続された回路が挙げられる。この場合、電流維持回路43は、第2蓄電部42に掛かる電圧が、上限電圧を超えると、蓄電装置4から流れる電流を第1蓄電部41に流す。例えば、電流維持回路43は、第2蓄電部42の電圧が上限電圧を超えたことを検出する回路と、検出に応じて、蓄電装置4から流れる電流を第1蓄電部41に流す回路とを有する。
 但し、電流維持回路43は、例えば、上限電圧に見合う数の直列接続された低電圧ダイオードでもよい。また、電流維持回路43は、第2蓄電部42と直列接続されてもよい。
 インバータ21は、例えばエンジン10が燃焼動作している場合に、永久磁石式発電機20で発電された電力を、蓄電装置4に供給する。この場合、インバータ21は、永久磁石式発電機20で発電された電流を整流する。
 また、インバータ21は、永久磁石式発電機20に電力を供給することによって、永久磁石式発電機20を回転させる。インバータ21は、永久磁石式発電機20のステータ巻線Wに流れる電流のオン・オフを制御することによって、電流を制御する。
 インバータ21は、スイッチング部211と、制御装置60を含んでいる。制御装置60は、インバータ21と物理的に一体に設けられている。制御装置60は、インバータ21のスイッチング部211の動作を制御することによって、インバータ21から出力される電圧を制御する。制御装置60は、インバータ21のスイッチング部211の動作を制御することによって、永久磁石式発電機20と蓄電装置4との間で流れる電流を制御する。また、制御装置60は、永久磁石式発電機20の動作を制御する。制御装置60は、例えば位相制御方式又はベクトル制御によって、インバータ21から出力される電圧を制御する。
 制御装置60は、例えば、インバータ21から出力される電圧が、第1蓄電部41の最大定格電圧と第2蓄電部42の最大定格電圧との和よりも小さい電圧を出力するよう、インバータ21を制御する。制御装置60は、例えば、インバータ21から出力される電圧が、第1蓄電部41の最大定格電圧と第2蓄電部42の上限電圧との和よりも小さい電圧を出力するよう、インバータ21を制御する。
 例えば、制御装置60は、スタータスイッチ6からの信号に応じて、インバータ21に、蓄電装置4から永久磁石式発電機20に電流を供給させる。これによって、蓄電装置4から永久磁石式発電機20に電力が供給され、エンジン10が始動する。
 エンジン10の始動の場合に、蓄電装置4が、従来一般に採用されている12Vよりも大きい電圧で永久磁石式発電機20を駆動することができる。従って、永久磁石式発電機20は、12Vの場合と比べて大きいトルクを出力できる。従って、永久磁石式発電機20の性能の低下が抑えられる。
 エンジン10の始動後、即ち燃焼動作開始後、制御装置60は、永久磁石式発電機20からの電流を蓄電装置4に流すようインバータ21を制御する。これによって、蓄電装置4が永久磁石式発電機20の発電電力によって充電される。
 また、制御装置60は、エンジン10の始動後、即ち燃焼動作開始後、加速指示部8(図4参照)の操作に応じてインバータ21に、蓄電装置4の電力を永久磁石式発電機20に供給させることができる。より詳細には、制御装置60は、鞍乗型車両1の走行中、永久磁石式発電機20に蓄電装置4からの電力を供給し、永久磁石式発電機20にクランク軸15の回転を補助させる。これによって、エンジン10による鞍乗型車両1の加速が永久磁石式発電機20でアシストされる。
 制御装置60は、エンジン10への燃料の供給及び燃焼を制御するエンジン制御部の機能も有する。制御装置60は、エンジン用補機として機能する電動補機Lの動作を制御することによって、エンジン10の燃焼を制御する。
 制御装置60は、図示しない中央処理装置及びメモリを備えている。制御装置60は、メモリに記憶されたプログラムを実行することによって、エンジン10の燃焼を制御する。
 制御装置60は、蓄電装置4の電力で動作する。より詳細には、制御装置60は、蓄電装置4の電圧から、制御装置60に適用するようダウンコンバートされた動作電圧で動作する。ダウンコンバータは、例えばインバータ21に設けられている。例えば蓄電装置4がバッテリとキャパシタを有する場合、制御装置60は、バッテリの電圧からダウンコンバートされた動作電圧で動作してもよい。
 図2は、図1に示す第1蓄電部41の電圧と第2蓄電部42の一例の充電時における電圧変化の概略を示すチャートである。
 第1蓄電部41の例として公称電圧12Vのバッテリと、第2蓄電部42の例として公称電圧6Vバッテリの組合せが示されている。第1蓄電部41の充電前の電圧は放電により11Vとなっている。第2蓄電部42の充電前の電圧は放電により6.5Vとなっている。第2蓄電部42は、第1蓄電部41の最大充電レートの2倍より大きい最大充電レートを有する。
 直列接続された第1蓄電部41と第2蓄電部42が18Vで充電されると、充電時間の経過に伴い第1蓄電部41の第1電圧V1および第2蓄電部42の第2電圧V2が上昇する。第2蓄電部42は、第1蓄電部41の最大充電レートの2倍より大きい最大充電レートを有するので、第2蓄電部42の第2電圧V2は、第1蓄電部41の第1電圧V1と比べて急速に上昇する。つまり、第2蓄電部42は、第1蓄電部41と比べて急速に充電される。
 蓄電装置4の電圧VTは、第1蓄電部41の第1電圧V1と第2蓄電部42の第2電圧V2との合計である。蓄電装置4の電圧VTは、例えば第2蓄電部無しで第1蓄電部41の規模の単純に1.5倍とした場合における蓄電装置の電圧VT’と比べて大きい。例えば、充電開始から、蓄電装置4の電圧VTが充電電圧の約95%である17.5Vに到達するまでの時間t1は、例えば第2蓄電部無しで第1蓄電部41の規模を単純に1.5倍とした場合における蓄電装置の電圧VT’が17.5Vに到達するまでの時間t2よりも短い。
 このように、直列接続された第1蓄電部41と第2蓄電部42によって、蓄電装置4の電圧VTは、例えば第1蓄電部41の規模が単純に拡大した場合の電圧VT’と比べて大きい。
 図2の例に示すように、第2蓄電部42が第1蓄電部41よりも短い期間で充電されるため、蓄電装置4は、蓄電装置4が放電した状態から充電開始後に短時間で大きな電圧VTを出力できる。例えば、時刻t1でエンジン10の始動の場合でも、永久磁石式発電機20が、従来一般に採用されている12Vよりも大きい17Vで駆動されることができる。
 図2を参照して、12Vと6Vの組合せを説明した。しかし、本実施形態の鞍乗型車両1では、第2蓄電部42の種類及び構成、及び、電流維持回路43の上限電圧設定値を調整することによって、蓄電装置4が放電する場合の電圧を、容易に調整することができる。つまり、蓄電装置4の出力電圧として、第1蓄電部41の電圧より高い電圧を容易に設定することができる。例えば、第1蓄電部41として公称電圧12Vのバッテリを用いる場合、蓄電装置4が放電した後の短い充電時間で蓄電装置4が出力可能な電圧を12Vよりも大きい要求電圧に調整することが容易である。
 蓄電装置4が大きな電圧を出力できる場合、ある損失の許容範囲に対し、蓄電装置4-インバータ21-永久磁石式発電機20の配線距離を長くすることが許容できる。この結果、蓄電装置4及びインバータ21の車体におけるレイアウト自由度が高まる。
 図3(A)は、鞍乗型車両1における蓄電装置4の配置の第1の変形例を示す側面図である。図3(B)は、鞍乗型車両1における蓄電装置4の配置の第2の変形例を示す側面図である。
 図3(A)に示す第1の変形例では、蓄電装置4が、車体2の後端部に配置されている。図3(B)に示す第2の変形例では、蓄電装置4が、車体2の前端部に配置されている。
 蓄電装置4-インバータ21-永久磁石式発電機20の配線距離を長くすることが許容できるので、図3(A)又は図3(B)に示すように、蓄電装置4及びインバータ21の車体におけるレイアウト自由度が高まる。このため、蓄電装置4及びインバータ21を配置する場合に生じる空間の無駄が抑えられるように蓄電装置4及びインバータ21の配置位置を調整することができる。従って、車体2をコンパクトにすることができる。
 このように、鞍乗型車両1によれば、エンジン始動性能の低下を抑えつつ車体をコンパクトにできる。
[第1の適用例]
 続いて、図4を参照して、実施形態の適用例を説明する。
 図4は、図1に示す実施形態の適用例である鞍乗型車両1及び電気系統を模式的に示す図である。図4のパート(a)は、鞍乗型車両1の平面図である。図4のパート(b)は、鞍乗型車両1の側面図である。図4のパート(c)は、鞍乗型車両1の電気系統の接続を模式的に示す実体配線図である。
 図4以降に示す適用例において、図1に示す実施形態に対応する要素は、図1と同じ符号を付して説明を行う。
 図4に示す鞍乗型車両1は、車体2を備えている。車体2には、運転者が着座するためのシート2aが備えられている。運転者は、シート2aに跨がるようにして着座する。図4には、鞍乗型車両1の一例として自動二輪車が示されている。
 鞍乗型車両1は、前の車輪3aと後ろの車輪3bを備えている。鞍乗型車両1の車輪3a,3bのトレッド面は、路面と接触しない状態で円弧状の断面形状を有する。
 エンジン10は、エンジンユニットEUを構成する。即ち、鞍乗型車両1は、エンジンユニットEUを備えている。
 エンジンユニットEUは、エンジン10と、永久磁石式発電機20とを含む。
 エンジン10は、クランク軸15を介して動力を出力する。エンジン10は、車輪3bを駆動するためのトルクをクランク軸15から出力する。車輪3bは、クランク軸15の動力を受け、鞍乗型車両1を走行させる。エンジン10は、例えば100mL以上の排気量を有する。エンジン10は、例えば、400mL未満の排気量を有する。
 また、鞍乗型車両1は、変速機CVT及びクラッチCLを備えている。エンジン10から出力される動力は、変速機CVT及びクラッチCLを介して車輪3bに伝達される。
 永久磁石式発電機20は、エンジン10に駆動されて発電する。図4に示す永久磁石式発電機20は、磁石式始動発電機である。
 永久磁石式発電機20は、ロータ30及びステータ40(図5参照)を有する。ロータ30は、永久磁石で構成された永久磁石部37を備えている。ロータ30は、クランク軸15から出力される動力で回転する。ステータ40は、ロータ30と対向するように配置されている。
 蓄電装置4は、充電及び放電することができる装置である。蓄電装置4は、充電された電力を外部に出力する。蓄電装置4は、電力を永久磁石式発電機20及び電動補機Lに供給する。蓄電装置4は、エンジン10の始動時に永久磁石式発電機20に電力を供給する。また、蓄電装置4は、永久磁石式発電機20で発電された電力によって充電される。
 鞍乗型車両1は、インバータ21を備えている。インバータ21は、永久磁石式発電機20と蓄電装置4との間を流れる電流を制御する複数のスイッチング部211を備えている。
 永久磁石式発電機20は、蓄電装置4の電力によってクランク軸15を回転させる。これによって永久磁石式発電機20はエンジン10を始動する。
 鞍乗型車両1は、メインスイッチ5を備えている。メインスイッチ5は、操作に応じて鞍乗型車両1に備えられた電動補機L(図4(c)参照)に電力を供給するためのスイッチである。電動補機Lは、永久磁石式発電機20を除いて、電力を消費しながら動作する装置を包括的に表したものである。電動補機Lは、例えば、前照灯9、燃料噴射装置18、及び点火装置19(図5参照)を含む。
 鞍乗型車両1は、スタータスイッチ6を備えている。スタータスイッチ6は、操作に応じてエンジン10を始動するためのスイッチである。鞍乗型車両1は、メインリレー75を備えている。メインリレー75は、メインスイッチ5からの信号に応じて、電動補機Lを含む回路を開閉する。
 鞍乗型車両1は、加速指示部8を備えている。加速指示部8は、操作に応じて鞍乗型車両1の加速を指示するための操作子である。加速指示部8は、詳細には、アクセルグリップである。
 蓄電装置4は、例えば、12Vで動作する第1蓄電部41と、このバッテリに直列接続された第2蓄電部42とを有する。第1蓄電部41は、例えば鉛バッテリである。キャパシタは、例えば電気二重層キャパシタ(Electric Double Layer Capacitor, EDLC)である。
 また、蓄電装置4は、キャパシタの電圧が6Vを超えると蓄電装置4に入力される電流を、キャパシタではなくバッテリに供給する電流維持回路43を有する。
 蓄電装置4は、18Vで充電され、18Vを出力する。ただし、充電電圧及び出力電圧は、蓄電装置4の充電状態及びクランク軸15の回転速度によっても変動する。18Vを含む範囲の電圧を、18V系統電圧と称する。
 図4に示す構成で、蓄電装置4は、エンジン10の始動時に永久磁石式発電機20に電力を供給する。永久磁石式発電機20が、18V系統電圧で駆動されることができる。従って、永久磁石式発電機20は、例えば12Vの場合と比べて大きいトルクを出力できる。
 図4のパート(c)に示すように、永久磁石式発電機20、蓄電装置4、メインリレー75、インバータ21、及び電動補機Lは、配線Jで電気的に接続されている。符号の見やすさのため、配線の符号(J)は、図4のパート(c)に示す配線の一部に付している。
 配線Jは、例えばリード線で構成される。配線Jは、繋ぎ合わされた複数のリード線で構成される場合もある。また、配線Jは、リード線を中継するコネクタ、ヒューズ、及び接続端子を含む場合もある。コネクタ、ヒューズ、及び接続端子の図示は省略する。また、図4のパート(c)の実体配線図では、正極領域の接続が示されている。負極領域即ちグランド領域は、車体2を介して電気的に接続されている。より詳細には、負極領域は、車体2の図示しない金属製フレームを介して電気的に接続されている。車体2を介した各装置の電気的な接続の距離は、通常、リード線等による正極領域の接続と同等であるか、より短い。そこで、図4のパート(c)において、車体2による負極領域の接続の図示を省略し、主として、正極領域の配線について説明する。
 図4に示す配線Jは、車両に設けられた他の配線と組み合わされて図示しないワイヤハーネスを構成する。図4のパート(c)では、図に示された装置を電気的に接続する配線Jのみを示す。
 図4のパート(c)には、各装置間の配線Jの接続関係、及び配線Jの距離が概略的に示されている。
[エンジンユニット]
 図5は、図4に示すエンジンユニットEUの概略構成を模式的に示す部分断面図である。
 エンジンユニットEUは、エンジン10を備えている。エンジン10は、クランクケース11と、シリンダ12と、ピストン13と、コネクティングロッド14と、クランク軸15とを備えている。ピストン13は、シリンダ12内に往復動可能に設けられている。
 クランク軸15は、クランクケース11内に回転可能に設けられている。クランク軸15は、コネクティングロッド14を介して、ピストン13と連結されている。シリンダ12の上部には、シリンダヘッド16が取り付けられている。シリンダ12とシリンダヘッド16とピストン13とによって、燃焼室が形成される。クランク軸15は、クランクケース11に、回転自在な態様で支持されている。クランク軸15の一端部15aには、永久磁石式発電機20が取り付けられている。クランク軸15の他端部15bには、変速機CVTが取り付けられている。変速機CVTは、入力の回転速度に対する出力の回転速度の比である変速比を変更することができる。変速機CVTは、クランク軸15の回転速度に対する、車輪の回転速度に対応する変速比を変更することができる。
 エンジンユニットEUには、燃料噴射装置18が備えられている。燃料噴射装置18は、燃料を噴射することによって、燃焼室に燃料を供給する。吸気通路Ipを通って流れる空気に対し、燃料噴射装置18が燃料を噴射する。空気と燃料の混合気が、エンジン10の燃焼室に供給される。
 また、エンジンユニットEUには、点火装置19が設けられている。点火装置19は、点火プラグ19a及び点火電圧生成回路19bを有する。点火プラグ19aは、エンジン10に設けられている。点火プラグ19aは、点火電圧生成回路19bと電気的に接続される。
 燃料噴射装置18及び点火装置19は、図1に示す電動補機Lの一例である。燃料噴射装置18及び点火装置19は、エンジン用補機の一例である。燃料噴射装置18及び点火装置19は、18V系統電圧で動作する。
 エンジン10は、内燃機関である。エンジン10は、燃料の供給を受ける。エンジン10は、混合気を燃焼する燃焼動作によって動力を出力する。即ち、ピストン13が、燃焼室に供給された燃料を含む混合気の燃焼によって往復動する。ピストン13の往復動に連動してクランク軸15が回転する。動力は、クランク軸15を介してエンジン10の外部に出力される。
 燃料噴射装置18は、供給燃料の量を調整することによって、エンジン10から出力される動力を調節する。燃料噴射装置18は、制御装置60によって制御される。燃料噴射装置18は、エンジン10に供給される空気の量に基づいた量の燃料を供給するよう制御される。点火装置19は、燃料と空気が混合されたガスに点火する。燃料噴射装置18及び点火装置19は、エンジン10に燃焼を行なわせるよう動作するエンジン用補機である。
 エンジン10は、クランク軸15を介して動力を出力する。クランク軸15の動力は、変速機CVT及びクラッチCL(図4のパート(b)参照)を介して、車輪3bに伝達される。
 クランクケース11は、オイルで内部が潤滑されるように構成されている。永久磁石式発電機20は、オイルと接触する位置に設けられている。
 エンジン10は、4ストロークの間に、クランク軸15を回転させる負荷が大きい高負荷領域と、クランク軸15を回転させる負荷が高負荷領域の負荷より小さい低負荷領域とを有する。高負荷領域とは、エンジン10の1燃焼サイクルにおいて、負荷トルクが1燃焼サイクルにおける負荷トルクの平均値よりも高い領域をいう。また、低負荷領域とは、エンジン10の1燃焼サイクルにおいて、負荷トルクが1燃焼サイクルにおける負荷トルクの平均値よりも低い領域をいう。クランク軸15の回転角度を基準として見ると、低負荷領域は高負荷領域よりも広い。より詳細には、エンジン10は、吸気行程、圧縮行程、膨張行程、及び排気行程の4行程を繰返しながら正回転する。圧縮行程は、高負荷領域との重なりを有する。エンジン10は、単気筒エンジンである。
 図6は、図5に示す永久磁石式発電機20の回転軸線に垂直な断面を示す断面図である。
 図5及び図6を参照して永久磁石式発電機20を説明する。
 永久磁石式発電機20は、ロータ30と、ステータ40とを有する。本適用例の永久磁石式発電機20は、ラジアルギャップ型である。永久磁石式発電機20は、アウタロータ型である。即ち、ロータ30はアウタロータである。ステータ40はインナーステータである。
 ロータ30は、ロータ本体部31を有する。ロータ本体部31は、例えば強磁性材料からなる。ロータ本体部31は、有底筒状を有する。ロータ本体部31は、筒状ボス部32と、円板状の底壁部33と、筒状のバックヨーク部34とを有する。底壁部33及びバックヨーク部34は一体的に形成されている。なお、底壁部33とバックヨーク部34とは別体に構成されていてもよい。底壁部33及びバックヨーク部34は筒状ボス部32を介してクランク軸15に固定されている。ロータ30には、電流が供給される巻線が設けられていない。
 ロータ30は、永久磁石部37を有する。ロータ30は、複数の磁極部37aを有する。複数の磁極部37aは永久磁石部37により形成されている。複数の磁極部37aは、バックヨーク部34の内周面に、設けられている。本適用例において、永久磁石部37は、複数の永久磁石を有する。即ち、ロータ30は、複数の永久磁石を有する。複数の磁極部37aは、複数の永久磁石のそれぞれに設けられている。
 なお、永久磁石部37は、1つの環状の永久磁石によって形成されることも可能である。この場合、1つの永久磁石は、複数の磁極部37aが内周面に並ぶように着磁される。
 複数の磁極部37aは、永久磁石式発電機20の周方向にN極とS極とが交互に配置されるように設けられている。本適用例では、ステータ40と対向するロータ30の磁極数が24個である。ロータ30の磁極数とは、ステータ40と対向する磁極数をいう。磁極部37aとステータ40との間には磁性体が設けられていない。
 磁極部37aは、永久磁石式発電機20の径方向におけるステータ40よりも外方に設けられている。バックヨーク部34は、径方向における磁極部37aよりも外方に設けられている。永久磁石式発電機20は、歯部45の数よりも多い磁極部37aを有している。
 なお、ロータ30は、磁極部37aが磁性材料に埋め込まれた埋込磁石型(IPM型)であってもよいが、本適用例のように、磁極部37aが磁性材料から露出した表面磁石型(SPM型)であることが好ましい。
 ステータ40は、ステータコアSTと複数のステータ巻線Wとを有する。ステータコアSTは、周方向に間隔を空けて設けられた複数の歯部(ティース)45を有する。複数の歯部45は、ステータコアSTから径方向外方に向かって一体的に延びている。本適用例においては、合計18個の歯部45が周方向に間隔を空けて設けられている。換言すると、ステータコアSTは、周方向に間隔を空けて形成された合計18個のスロットSLを有する。歯部45は周方向に等間隔で配置されている。
 ロータ30は、歯部45の数より多い数の磁極部37aを有する。磁極部の数は、スロット数の4/3である。
 各歯部45の周囲には、ステータ巻線Wが巻回している。つまり、複数相のステータ巻線Wは、スロットSLを通るように設けられている。図6には、ステータ巻線Wが、スロットSLの中にある状態が示されている。
 永久磁石式発電機20は、三相発電機である。ステータ巻線Wのそれぞれは、U相、V相、W相の何れかに属する。ステータ巻線Wは、例えば、U相、V相、W相の順に並ぶように配置される。
 鞍乗型車両1が走行中にエンジン10が動作状態している場合、永久磁石式発電機20で発電される電力によって、蓄電装置4が充電される。蓄電装置4が満充電になると、永久磁石式発電機20で発電される電力は、充電に用いられることなく例えば巻線の短絡によって熱として消費される。また、インバータ21から蓄電装置4に出力される電圧が定格値に抑えられない程度にクランク軸15の回転速度が大きくなる場合、インバータ21は、永久磁石式発電機20のステータ巻線Wを短絡するようにスイッチング部211を制御する。蓄電装置4を充電することができるクランク軸15の上限回転速度は、高い値に設定することができる。
 発電機が発電する場合、ステータ巻線Wを流れる電流は、ステータ巻線W自体に生じるインピーダンスの影響を受ける。インピーダンスはステータ巻線Wを流れる電流を妨げる要素である。インピーダンスは、回転速度ωとインダクタンスの積を含む。ここで、回転速度ωは、実際には、単位時間に歯部近傍を通過する磁極部の数に相当する。即ち、回転速度ωは、発電機における歯部の数に対する磁極部の数の比と、ロータの回転速度とに比例する。
 図6に示す永久磁石式発電機20は、歯部45の数より多い数の磁極部37aを有する。即ち、永久磁石式発電機20は、スロットSLの数より多い数の磁極部37aを有する。このため、ステータ巻線Wが大きなインピーダンスを有する。従って、蓄電装置4に掛かる電圧が、例えば歯部の数より少ない数の磁極部を有する場合と比べ、減少する。このため、クランク軸15の上限回転速度は、例えば12Vの場合と比べて高い値に設定することができる。このため、永久磁石式発電機20において始動時のトルクを増大するため、電気抵抗の小さい太い巻線を採用することができる。
 また、永久磁石式発電機20では、ステータ巻線Wの温度が潤滑オイルの温度よりも高くならない又は高くなり難いため、永久磁石式発電機20が潤滑オイルと接触するように配置されても、潤滑オイルの蒸発を抑制できる。従って、潤滑オイルの冷却機構の大型化を抑制乃至回避できる。
[第2の適用例]
 図7は、異なる種類の第2蓄電部42を有する第2の適用例の充電時における電圧変化の概略を示すチャートである。
 図7に示される第2の適用例では、第2蓄電部42としてキャパシタが想定されている。なお、第1蓄電部41は、図2に示す例と同じバッテリである。
 キャパシタは、化学反応によらず静電気力を利用してイオンといった電荷を蓄える素子である。このため、キャパシタの電圧は、充電量にほぼ比例する。例えば、キャパシタの放電に従いキャパシタの電圧は低下する。
 キャパシタの容量は、一般的に、等しい容積を有するバッテリよりも小さい容量を有する。また、キャパシタは、化学反応によらず電荷を蓄えるため、等しい容積を有するバッテリよりも大きな最大充電電流を有する。このため、キャパシタの最大充電レートは、バッテリよりも高い。
 図7では、キャパシタである第2蓄電部42で充電量が放電によってほぼ0%となった状態(時刻0)から、充電が開始した場合における電圧変化の概略を示す。
 時刻0で、充電量がほぼ0%である第2蓄電部42の第2電圧V2bは、ほぼ0Vである。
 第2蓄電部42は、大きい最大充電レートを有するので、第2蓄電部42の第2電圧V2bは、急速に上昇する。第2蓄電部42は、第1蓄電部41と比べて急速に充電される。第2蓄電部42の第2電圧V2bが上限電圧に達すると、第2電圧V2bは、電流維持回路43によって上限電圧に制御される。図7の例では約6Vに維持される。第2蓄電部42は、第2蓄電部42の第2電圧V2bが上限電圧に達するまで、第2電圧V2bが上限電圧に達する後よりも急速に充電される。急速な充電は、充電速度、即ち単位時間あたりの充電量が大きい充電である。図7に示す例において、第2蓄電部42は、時刻t3よりも前の期間で、時刻t3よりも後の期間に比べ大きな充電速度で充電される。これに対し、第1蓄電部41は、時刻t3よりも前の期間で、時刻t3よりも後に比べ小さな充電速度で充電される。第1蓄電部41は、時刻t3よりも後の期間で電流維持回路43からの電流により、大きな充電速度で充電される。
 蓄電装置4の電圧VTbは、第1蓄電部41の第1電圧V1bと第2蓄電部42の第2電圧V2bとの合計である。充電開始から、蓄電装置4の電圧VTbが例えば充電電圧の約95%である17.5Vに到達するまでの時間t3は、例えば第2蓄電部無しに第1蓄電部41の規模が単純に1.5倍となった場合における蓄電装置4の電圧VTb’が17.5Vに到達するまでの時間t4よりも短い。
 図8は、図1に示す蓄電装置4のバリエーションの例を示す図である。
 図8の(A)に示す例の蓄電装置4は、第1蓄電部41としてのバッテリと、第2蓄電部42としてのバッテリとを備える。蓄電装置4には、電流維持回路43が設けられている。
 第2蓄電部42としてのバッテリの最大充電レートは、第1蓄電部41としてのバッテリの最大充電レートの2倍より大きい。第2蓄電部42としてのバッテリの最大定格電圧は、第1蓄電部41としてのバッテリの最大定格電圧より小さい。第2蓄電部42としてのバッテリの上限電圧は、第1蓄電部41としてのバッテリの最大定格電圧より小さい。第2蓄電部42としてのバッテリの上限電圧は、第1蓄電部41としてのバッテリの公称電圧よりも小さい。
 第1蓄電部41としてのバッテリの公称電圧は、例えば12Vである。第2蓄電部42としてのバッテリの公称電圧は、例えば6Vである。第2蓄電部42としてのバッテリの上限電圧は、例えば6Vである。但し、具体的な電圧の組合せは特に限られず、例えば8Vと6Vの組合せ、例えば10Vと8Vの組合せ、又は、11Vと8Vの組合せでもよい。
 図8の(B)に示す例の蓄電装置4は、第1蓄電部41としてのバッテリと、第2蓄電部42としての1個のキャパシタとを備える。蓄電装置4には、電流維持回路43が設けられている。第2蓄電部42としての1個のキャパシタに掛かる最大電圧は、電流維持回路43に設定される上限電圧である。電流維持回路43の上限電圧は、キャパシタの耐圧及び蓄電装置4の最大定格電圧に応じて設定される。電流維持回路43に設定される上限電圧は、例えば6Vである。但し、上限電圧は、特に限られず、キャパシタの耐圧及び蓄電装置4に応じて8V又は10Vでもよい。
 図8の(C)に示す例の蓄電装置4は、第1蓄電部41としてのバッテリと、第2蓄電部42としての2個のキャパシタとを備える。これによって、電流維持回路43の上限電圧として、1つのキャパシタの耐圧よりも大きな電圧を設定することができる。また、第2蓄電部42が1つのキャパシタの耐圧よりも大きな電圧を入力及び出力することができる。
 図8の(D)に示す例の蓄電装置4は、第1蓄電部41としてのバッテリと、第2蓄電部42としての3個のキャパシタとを備える。これによって、電流維持回路43の上限電圧として、1つのキャパシタの耐圧の2倍よりも大きな電圧を設定することができる。また、第2蓄電部42が1つのキャパシタの耐圧の2倍よりも大きな電圧を入力及び出力することができる。
 図8の(E)に示す例の蓄電装置4は、図8の(B)に示す例に対し、さらに並列キャパシタ部44を備える。並列キャパシタ部44は、第1蓄電部41と並列に接続されている。並列キャパシタ部44は、1個のキャパシタを備える。この構成は、1個のキャパシタの耐圧が第1蓄電部41としてのバッテリよりも大きい場合に好適である。
 キャパシタは、一般的に、同じ電力を放電するバッテリよりも短い期間で電力を供給することができる。キャパシタの内部抵抗は、一般的にバッテリの内部抵抗よりも小さい。また、キャパシタは、電圧に実質的に比例した電力(電荷)を蓄電する。キャパシタは、一般的に電圧に比例する電力を放電することができる。
 従って、例えばエンジン始動によって第1蓄電部41と並列キャパシタ部44の電力が消費された後、第1蓄電部41から並列キャパシタ部44に電圧が供給され得る。即ち並列キャパシタ部44が、第1蓄電部41の電力で充電できる。次のエンジン始動で、第1蓄電部41が、始動に求められる電力を単独で供給できない状況でも、並列キャパシタ部44が、始動に求められる電力を供給できる可能性が高い。
 図8の(F)に示す例の蓄電装置4では、図8の(C)に示す例に対し、並列キャパシタ部44が付加されている。
 図8の(F)に示す例のように、第1蓄電部41が有するキャパシタの数と、並列キャパシタ部44が有するキャパシタの数とは異なってもよい。第1蓄電部41が有するキャパシタの数と、並列キャパシタ部44が有するキャパシタの数とは、電流維持回路43の上限電圧及び第1蓄電部41としてのバッテリの最大定格電圧に応じて選択することが可能である。図8の(F)に示す例の蓄電装置4では、並列キャパシタ部44が4個のキャパシタを備えている。
 図8の(G)に示す例の蓄電装置4では、図8の(D)に示す例に対し、並列キャパシタ部44が付加されている。図8の(G)に示す例の蓄電装置4では、並列キャパシタ部44が3個のキャパシタを備えている。
 バッテリの数及びキャパシタの数は、図8の(A)から(G)に示す数に限られない。
例えば、図6の(G)に示す例の蓄電装置4に対し、並列キャパシタ部44が6個のキャパシタを備えていてもよい。第1蓄電部41を構成するキャパシタと、並列キャパシタ部44を構成するキャパシタの最大定格電圧のバランスが保ちやすい。
 また更に、蓄電装置4に対し、第1蓄電部41は、例えば、互いに並列接続された2組のキャパシタの組を備えてもよい。キャパシタの組は、例えば、直列接続された3個のキャパシタで構成される。この場合、第1蓄電部41の容量が増大する。また例えば、更に、並列キャパシタ部44が6個のキャパシタを備えていてもよい。
 並列キャパシタ部44が有するキャパシタと第2蓄電部42が有するキャパシタは同種類である。例えば最大定格電圧及び静電容量が実質的に等しいキャパシタは同種類のキャパシタである。例えば電圧及び静電容量の公称値が等しいキャパシタは同種類のキャパシタである。
 但し、並列キャパシタ部44が有するキャパシタと第2蓄電部42が有するキャパシタとは互いに異なる種類でもよい。
 1  鞍乗型車両
 3a,3b  車輪
 4  蓄電装置
 41 第1蓄電部
 42 第2蓄電部
 43 電流維持回路
 10  エンジン
 15  クランク軸
 20  永久磁石式発電機
 21  インバータ

Claims (7)

  1. 鞍乗型車両であって、
     前記鞍乗型車両は、
     車輪と、
     クランク軸を有し、ガスの燃焼動作によって生じた前記車輪を駆動するためのトルクを前記クランク軸から出力するエンジンと、
     前記クランク軸の一端部に設けられ、永久磁石を有し、前記クランク軸を回転させることにより前記エンジンを始動するとともに、前記エンジンに駆動されることにより発電する永久磁石式発電機と、
     12V以上の最大定格電圧を有し電力を蓄えるバッテリである第1蓄電部と、
     前記第1蓄電部と常時直列接続され、前記第1蓄電部の最大充電レートの2倍より大きい最大充電レートを有する第2蓄電部と、
     前記永久磁石式発電機と前記第1蓄電部及び前記第2蓄電部とに電気的に接続され、前記永久磁石式発電機から出力される電流を制御する複数のスイッチング部を備えたインバータと、
     前記永久磁石式発電機が発電することにより前記インバータが少なくとも前記第1蓄電部を充電する間、前記第2蓄電部を電気的に切断することなく、前記第2蓄電部に掛かる電圧が前記第2蓄電部に設定された上限電圧を超えないように前記第1蓄電部へ充電電流が流れる状態を維持する電流維持回路と、
    を備える。
  2.  請求項1記載の鞍乗型車両であって、前記第2蓄電部の上限電圧は、前記第1蓄電部の最大定格電圧よりも低い。
  3.  請求項1記載の鞍乗型車両であって、
     前記インバータが少なくとも前記第1蓄電部を充電する間、前記第2蓄電部に掛かる前記電圧である第2電圧が、前記第1蓄電部に掛かる第1電圧よりも低い。
  4.  請求項1記載の鞍乗型車両であって、
     前記鞍乗型車両は、バッテリである第1蓄電部と並列接続されたキャパシタを備える。
  5.  請求項1記載の鞍乗型車両であって、
     永久磁石式発電機は、前記永久磁石で構成された複数の磁極部を有するロータと、
    複数のスロットが前記永久磁石式発電機の周方向に間隔を空けて形成されたステータコア及び前記スロットを通るように設けられた巻線を有するステータと、を備え、
    前記磁極部の数は前記複数のティースの数より多い。
  6.  請求項1記載の鞍乗型車両であって、
     前記エンジンは、オイルで内部が潤滑されるように構成されたクランクケースを更に備え、
     前記永久磁石式発電機は、前記オイルと接触する位置に設けられる。
  7.  請求項1記載の鞍乗型車両であって、
     前記インバータは、前記鞍乗型車両の走行中、前記永久磁石式発電機に前記第1蓄電部及び前記第2蓄電部からの電力を供給し、永久磁石式発電機にクランク軸の回転を補助する。
PCT/JP2019/048900 2019-12-13 2019-12-13 ストラドルドビークル WO2021117216A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2019/048900 WO2021117216A1 (ja) 2019-12-13 2019-12-13 ストラドルドビークル
JP2021563982A JP7235897B2 (ja) 2019-12-13 2020-12-08 ストラドルドビークル
PCT/JP2020/045725 WO2021117738A1 (ja) 2019-12-13 2020-12-08 ストラドルドビークル
TW109143866A TWI764426B (zh) 2019-12-13 2020-12-11 跨坐型車輛

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/048900 WO2021117216A1 (ja) 2019-12-13 2019-12-13 ストラドルドビークル

Publications (1)

Publication Number Publication Date
WO2021117216A1 true WO2021117216A1 (ja) 2021-06-17

Family

ID=76329924

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2019/048900 WO2021117216A1 (ja) 2019-12-13 2019-12-13 ストラドルドビークル
PCT/JP2020/045725 WO2021117738A1 (ja) 2019-12-13 2020-12-08 ストラドルドビークル

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045725 WO2021117738A1 (ja) 2019-12-13 2020-12-08 ストラドルドビークル

Country Status (3)

Country Link
JP (1) JP7235897B2 (ja)
TW (1) TWI764426B (ja)
WO (2) WO2021117216A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6194535A (ja) * 1984-10-15 1986-05-13 Yamaha Motor Co Ltd 磁石発電機の冷却装置
JP2011031837A (ja) * 2009-08-05 2011-02-17 Kokusan Denki Co Ltd 自動二輪車
JP2014510657A (ja) * 2011-02-03 2014-05-01 バイエリッシェ モートーレン ウエルケ アクチエンゲゼルシャフト 車両の車載電源網に配置される第1の電装品に印加される電圧を安定化するための装置および方法
JP2015074296A (ja) * 2013-10-07 2015-04-20 株式会社デンソー 車両駆動システム
JP2017131042A (ja) * 2016-01-20 2017-07-27 ヤマハ発動機株式会社 ビークル

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003087988A (ja) * 2001-09-06 2003-03-20 Furukawa Electric Co Ltd:The 蓄電装置
US9415732B2 (en) * 2011-07-22 2016-08-16 Panasonic Intellectual Property Management Co., Ltd. Vehicle power unit
US20140265560A1 (en) * 2013-03-15 2014-09-18 Levant Power Corporation System and method for using voltage bus levels to signal system conditions
US10272788B2 (en) * 2015-08-28 2019-04-30 General Electric Company Hybrid system with multiple energy storage devices

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6194535A (ja) * 1984-10-15 1986-05-13 Yamaha Motor Co Ltd 磁石発電機の冷却装置
JP2011031837A (ja) * 2009-08-05 2011-02-17 Kokusan Denki Co Ltd 自動二輪車
JP2014510657A (ja) * 2011-02-03 2014-05-01 バイエリッシェ モートーレン ウエルケ アクチエンゲゼルシャフト 車両の車載電源網に配置される第1の電装品に印加される電圧を安定化するための装置および方法
JP2015074296A (ja) * 2013-10-07 2015-04-20 株式会社デンソー 車両駆動システム
JP2017131042A (ja) * 2016-01-20 2017-07-27 ヤマハ発動機株式会社 ビークル

Also Published As

Publication number Publication date
TWI764426B (zh) 2022-05-11
TW202128471A (zh) 2021-08-01
WO2021117738A1 (ja) 2021-06-17
JPWO2021117738A1 (ja) 2021-06-17
JP7235897B2 (ja) 2023-03-08

Similar Documents

Publication Publication Date Title
US20130233268A1 (en) Engine starting apparatus
US7622840B2 (en) Electric machine and method of using electric machine
EP3640079B1 (en) Vehicle
US8492914B2 (en) Crank-web mounted linearly segmented starter generator system
EP3489103B1 (en) Control apparatus and control method for hybrid vehicle
WO2021117738A1 (ja) ストラドルドビークル
WO2017126165A1 (ja) エンジン搭載ビークル
WO2021117739A1 (ja) ストラドルドビークル
CN102763320A (zh) 车辆的再生控制系统
WO2021117215A1 (ja) ストラドルドビークル
JP6847140B2 (ja) 鞍乗型車両
WO2020262225A1 (ja) リーン車両
JPS6166820A (ja) エンジンのトルク変動制御装置
JP2024009992A (ja) リーン車両
CN106787066B (zh) 一种用于摩托车的磁电机以及混合动力系统
JP2023131296A (ja) 車両
WO2020262226A1 (ja) リーン車両
JP2024009993A (ja) リーン車両
WO2020261478A1 (ja) リーン車両
EP3767778B1 (en) Battery control system for nickel-metal hydride battery
Morris et al. A New Engine Boosting Concept with Energy Recuperation for Micro/Mild Hybrid Applications
JP3598190B2 (ja) 内燃機関用の発電装置
JP2019052538A (ja) ビークル
KR100409257B1 (ko) 영구 자석식 회전 전동기 및 그 구동 장치
JP5402549B2 (ja) 車両用交流発電機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19956160

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19956160

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP