WO2021117211A1 - Cell culture device - Google Patents

Cell culture device Download PDF

Info

Publication number
WO2021117211A1
WO2021117211A1 PCT/JP2019/048875 JP2019048875W WO2021117211A1 WO 2021117211 A1 WO2021117211 A1 WO 2021117211A1 JP 2019048875 W JP2019048875 W JP 2019048875W WO 2021117211 A1 WO2021117211 A1 WO 2021117211A1
Authority
WO
WIPO (PCT)
Prior art keywords
medium
culture tank
unit
cells
observation
Prior art date
Application number
PCT/JP2019/048875
Other languages
French (fr)
Japanese (ja)
Inventor
達哉 南
佐々木 浩
祐輔 松本
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2021563556A priority Critical patent/JPWO2021117211A1/ja
Priority to PCT/JP2019/048875 priority patent/WO2021117211A1/en
Publication of WO2021117211A1 publication Critical patent/WO2021117211A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/02Apparatus for enzymology or microbiology with agitation means; with heat exchange means

Definitions

  • the present invention relates to a cell culture device.
  • the culture solution and the cells are separated by centrifuging the culture solution and the cells are collected.
  • the conventional recovery method has the disadvantage that all the cultured cells are recovered, and it is not possible to recover only the desired cells.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a cell culture apparatus capable of recovering only desired cells at an optimum timing while continuing culturing in a suspension culture system. There is.
  • One aspect of the present invention is an observation unit for observing cells housed together with a medium in a culture tank, a stirring unit for stirring the medium in the culture tank, and an observation unit adjacent to the observation unit. It includes a recovery unit for collecting the cells in the culture tank, and a control unit for detecting the cells having desired characteristics by the observation unit and collecting the detected cells having the desired characteristics by the collection unit. It is a cell culture device.
  • the medium in the culture tank is agitated by the stirring unit, so that the cells in the culture tank are cultured in a state of being suspended in the medium.
  • the control unit In this state, cells floating in the medium are observed by the observation unit, and cells having desired characteristics are detected by the control unit. Then, when a cell having a desired characteristic is detected, the recovery unit arranged adjacent to the observation unit is controlled by the control unit, and the cell having the desired characteristic is collected by the collection unit. Therefore, in the suspension culture system, only desired cells can be recovered at the optimum timing while continuing the culture.
  • the cell culture apparatus includes a transparent portion capable of transmitting light, a housing having a tubular shape for accommodating the observation portion, and a tubular body in which the recovery portion can be inserted into the medium.
  • the suction port of the collection unit is adjacent to the observation area by the observation unit in a state where the housing and the collection unit are inserted into the medium. It may be arranged as follows.
  • the housing and the recovery part may be integrally configured.
  • the culture tank may have an annular space capable of accommodating the medium and the cells between the cylindrical inner wall and the outer wall. If the stirring unit forms a flow path through which the medium flows in the circumferential direction in the annular space between the inner wall and the outer wall of the culture tank, the movement direction of the cells can be specified, and the desired cells can be easily detected and recovered. be able to.
  • the recovery unit may be arranged on the downstream side in the flow direction of the medium with respect to the observation unit.
  • FIG. 8 It is a figure which looked at the cell culture apparatus of FIG. 8 from above. It is a schematic block diagram explaining the structure of the observation part of FIG. It is a schematic block diagram of the cell culture apparatus which concerns on 2nd Embodiment of this invention. It is a schematic block diagram of the cell culture apparatus which concerns on 3rd Embodiment of this invention. It is a figure explaining the shape of the housing of FIG. It is a vertical cross-sectional view explaining the structure of the observation part and the housing of FIG. It is a schematic block diagram of the cell culture apparatus which concerns on 1st modification of 3rd Embodiment of this invention. It is a schematic block diagram of the cell culture apparatus which concerns on 2nd modification of 3rd Embodiment of this invention.
  • the cell culture apparatus 1 observes the stirring mechanism (stirring unit) 5 for stirring the medium W contained in the culture tank 3 and the cells S housed together with the medium W in the culture tank 3. It includes an observation unit 7, a collection unit 9 that collects cells S in the culture tank 3, and a control unit 11 that controls the stirring mechanism 5, the observation unit 7, and the collection unit 9.
  • the culture tank 3 is, for example, a bottomed cylindrical container in which the upper surface 3a is closed.
  • the culture tank 3 is formed of, for example, an optically transparent material.
  • a recovery unit 9 is connected to the culture tank 3.
  • the stirring mechanism 5 rotates around the stirring shaft 5a inserted into the culture tank 3 via the upper surface 3a of the culture tank 3, a plurality of stirring blades 5b provided on the stirring shaft 5a, and the stirring shaft 5a. It is equipped with a motor 5c that rotates the shaft.
  • the stirring blade 5b rotates together with the stirring shaft 5a in the medium W, so that the stirring shaft 5 is transferred to the medium W and the cells S in the culture tank 3.
  • a flow around 5a can be generated.
  • the observation unit 7 is arranged on the side of the culture tank 3. As shown in FIG. 3, the observation unit 7 irradiates an arbitrary observation surface (observation region) R in the culture tank 3 in which the medium W and the cells S are present with illumination light from the outside of the culture tank 3 (Light).
  • the lens 15 that collects the observation light from the observation surface R irradiated with the illumination light outside the culture tank 3, and the observation light collected by the lens 15.
  • an imaging unit 17 such as a CCD image sensor or a CMOS image sensor that acquires an image of the observation surface R.
  • the collection unit 9 is arranged adjacent to the observation unit 7. As shown in FIG. 4, the recovery unit 9 includes, for example, a cell recovery container 19 for collecting medium W and cells S, a tubular member 21 such as a tube connecting the cell recovery container 19 and the culture tank 3, and cell recovery. It is provided with a negative pressure supply unit 23 such as a suction pump that applies negative pressure to the container 19.
  • the cell collection container 19 is, for example, a bottomed tubular container whose upper surface is closed, and the inside is sealed.
  • the cell collection container 19 has an inflow port 19a on the upper surface for allowing the sucked medium W and cells S to flow into the inside. Further, a negative pressure supply unit 23 is connected to the cell collection container 19.
  • the tubular member 21 has a suction port 21a at one end in the longitudinal direction for sucking the medium W and cells S in the culture tank 3 by being inserted into the culture tank 3.
  • the suction port 21a of the tubular member 21 is arranged at a position adjacent to the observation surface R of the observation unit 7 in the culture tank 3.
  • the suction port 21a of the tubular member 21 is arranged at a position adjacent to the observation surface R and on the downstream side of the flow of cells S generated by stirring by the stirring mechanism 5.
  • the suction port 21a may be opened to the inner surface of the culture tank 3 instead of being inserted into the culture tank 3.
  • the tubular member 21 is provided from the culture tank 3 by inserting one end in the longitudinal direction, that is, the suction port 21a into the culture tank 3, and connecting the other end in the longitudinal direction to the inflow port 19a of the cell collection container 19. A flow path for sucking the cells S together with the medium W is formed in the cell collection container 19.
  • the negative pressure supply unit 23 includes a tubular member 25 connected to the cell collection container 19 and a pump body 27.
  • the pump main body 27 has a receiving unit (not shown), and ON / OFF is switched when the receiving unit receives a signal from the control unit 11.
  • ON / OFF is switched when the receiving unit receives a signal from the control unit 11.
  • the pump body 27 is switched to the ON state, negative pressure is applied to the cell collection container 19 via the tubular member 25, so that the medium W and the cells S in the culture tank 3 pass through the tubular member 21 to the cell collection container. It is sucked into 19.
  • the pump body 27 is switched to the OFF state, the suction of the medium W and the cells S in the culture tank 3 is stopped.
  • the negative pressure supply unit 23 may include a temperature control means for controlling the temperatures of the medium W and the cells S in the cell collection container 19.
  • the medium W and the cells S may be kept at a temperature suitable for storage, for example, 4 ° C. in the cell recovery container 19 by the temperature control means.
  • the temperature control means By keeping the medium W at 4 ° C. in the cell recovery container 19, deterioration of the medium W can be prevented. Further, by keeping the cells S at 4 ° C. in the cell recovery container 19, the growth of the cells S can be suppressed.
  • the control unit 11 includes, for example, a storage unit such as a hard disk drive, a CPU (Central Processing Unit), and a RAM (Random Access Memory) (all not shown).
  • the control unit 11 may be, for example, a PC (Personal Computer).
  • the control unit 11 realizes the following functions by executing the control program stored in the memory by the CPU.
  • control unit 11 stirs the medium W in the culture tank 3 by driving the motor 5c of the stirring mechanism 5. Further, the control unit 11 operates the observation unit 7 to periodically acquire an image of the observation surface R in the culture tank 3.
  • control unit 11 stores a desired feature amount of the cell S, for example, an index of the size and morphology of each cell S or each colony.
  • the control unit 11 detects the characteristics of the cells S included in the image acquired by the observation unit 7. Then, the control unit 11 determines whether or not the cell S in the image acquired by the observation unit 7 is a desired cell S by collating the detected feature of the cell S with the stored feature amount. ..
  • control unit 11 detects the cell S having a desired characteristic
  • the control unit 11 sends a drive signal to the negative pressure supply unit 23 of the recovery unit 9.
  • the control unit 11 may transmit a signal to the negative pressure supply unit 23 by wire, or may wirelessly transmit a signal by a transmission unit (not shown). Processing such as detection, collation, determination, and transmission of a drive signal by the control unit 11 of the characteristics of the cell S is performed instantaneously.
  • the stirring mechanism 5 is driven by the control unit 11 in a state where the medium W and the cells S are contained in the culture tank 3, so that the cells S are contained in the culture tank 3.
  • Medium W is stirred.
  • the cells S are cultured while floating in the medium W.
  • the observation unit 7 is controlled by the control unit 11, so that an image of the observation surface R in the culture tank 3 is periodically acquired.
  • the control unit 11 detects the characteristics of the cell S contained in the image acquired by the observation unit 7, and the detected characteristics of the cell S are collated with the desired feature amount stored in the control unit 11. To.
  • control unit 11 determines that the cell S in the image acquired by the observation unit 7 is a cell S having a desired characteristic
  • the control unit 11 transmits a drive signal to the negative pressure supply unit 23.
  • the pump body 27 of the negative pressure supply unit 23 is driven by the drive signal from the control unit 11 as a trigger, and the suction port 21a arranged adjacent to the observation surface R of the observation unit 7 desires the operation.
  • the cells S having the characteristics of are aspirated.
  • the cells S in the culture tank 3 are moving along with the flow of the medium W, but the control by the control unit 11 is fast, and the suction port 21a of the collection unit 9 is the observation surface R of the observation unit 7.
  • the cells S having the desired characteristics detected by the control unit 11 can be collected by the collection unit 9.
  • the cell culture apparatus 1 in the suspension culture system, only the desired cells S can be recovered at the optimum timing while continuing the culture. Further, by arranging the suction port 21a of the collection unit 9 on the downstream side of the observation surface R of the observation unit 7 in the flow direction of the cells S, the cells S having the desired characteristics detected by the control unit 11 can be collected. Efficiency can be improved.
  • This embodiment can be transformed into the following configuration.
  • a narrow flow path 29 extending from the side wall portion 3b of the culture tank 3 to the outside of the culture tank 3 and connecting to the inside of the culture tank 3 again is provided.
  • the observation unit 7 and the collection unit 9 may be arranged in the flow path 29.
  • a flow path inlet 29a and a flow path outlet 29b are provided on the side wall portion 3b of the culture tank 3 at intervals in the circumferential direction of the culture tank 3, and a tubular member 29c connecting the flow path inlet 29a and the flow path outlet 29b is used.
  • the flow path 29 may be configured.
  • the observation surface R of the observation unit 7 may be arranged in the flow path 29, and the suction port 21a of the collection unit 9 may be arranged at a position adjacent to the observation surface R.
  • the medium W and the cells S that have flowed into the flow path 29 by stirring by the stirring mechanism 5 are observed by the observation unit 7 when passing through the observation surface R in the flow path 29. Then, the cell S having a desired characteristic contained in the image acquired by the observation unit 7 is detected by the control unit 11, and the cell S having the detected desired characteristic is sucked by the collecting unit 9.
  • the cell S having the desired characteristics detected by the observation unit 7 is obtained by detecting the cell S by the observation unit 7 and sucking the cell S by the recovery unit 9 in the narrow flow path 29. It can be efficiently collected by the collection unit 9.
  • a protrusion 31 protruding inward in the radial direction may be provided on the inner surface near the flow path inlet 29a of the culture tank 3.
  • the flow of the medium W is disturbed by the protrusions 31, and the flow velocity in the vicinity of the flow path inlet 29a and the flow path outlet 29b is different, so that the medium W can easily flow into the flow path inlet 29a.
  • the medium W and the cells S may be allowed to flow into the flow path 29 by arranging the liquid feed pump in the flow path 29.
  • a wall 33 for guiding cells S may be provided in the culture tank 3 on the observation surface R of the observation unit 7. Good.
  • a wall 33 having a curved shape is arranged along the flow direction of the cells S by the stirring mechanism 5, and a flow path is formed between the inner wall surface of the culture tank 3 and the wall 33 so as to pass on the observation surface R. You may do it.
  • the distance between the wall 33 on the upstream side in the flow direction of the cells S and the inner wall surface of the culture tank 3 by the stirring mechanism 5 is widened, and the wall 33 on the downstream side in the flow direction of the cells S and the inner wall surface of the culture tank 3 are widened.
  • the distance between the two and the vehicle may be narrowed.
  • a culture tank As a third modification, for example, as shown in FIGS. 8 and 9, as a culture tank, a container having a hollow structure, that is, a medium W and cells S are housed between the cylindrical inner wall 35a and the outer wall 35b. A culture tank 35 having a possible annular space H may be adopted.
  • the stirring unit may be any one that can generate a flow in the circumferential direction of the culture tank 35 in the medium W in the space H.
  • a magnetic stirrer (not shown) may be adopted, and the magnetic stirrer may be rotated in the medium W to generate a flow in the medium W.
  • a liquid feeding pump (not shown) may be adopted as the stirring unit, and the medium W in the culture tank 3 may be circulated by the liquid feeding pump to generate a flow in the medium W.
  • the observation unit 7 is preferably arranged at an angle at which the observation surface R diagonally intersects the direction of the flow of the cells S in the space H by the stirring unit.
  • the cells S do not move along the observation surface R, but the cells S pass in the direction intersecting the observation surface R, so that the cells S disappear instantly from the observation surface R. This makes it easier to measure the timing of collecting the cells S.
  • the cells S flow in the circumferential direction of the culture tank 3 together with the medium W by stirring by the stirring mechanism 5, which is desired. It becomes easy to detect and aspirate cells S having the characteristics of.
  • the cell culture device 41 according to the present embodiment is different from the first embodiment in that, for example, as shown in FIG. 11, the observation unit 7 includes a retroreflective member 47 and the like. Although the cell culture device 41 includes a control unit 11, the control unit 11 is not shown in FIG.
  • the parts having the same configuration as the cell culture apparatus 1 according to the first embodiment are designated by the same reference numerals and the description thereof will be omitted.
  • the observation unit 7 cultures the light source 13, the objective lens 43 arranged on the side of the culture tank 3, and the illumination light from the light source 13 from the outside of the culture tank 3 via the objective lens 43.
  • the illumination optical system 45 that irradiates the inside of the tank 3, the retroreflective member 47 that reflects the illumination light transmitted through the culture tank 3 toward the culture tank 3, and the detection that detects the illumination light collected by the objective lens 43. It is equipped with an optical system 49.
  • a light source generally used for acquiring a phase difference image for example, a lamp light source such as mercury, halogen, or xenon may be adopted.
  • the optical axis of the objective lens 43 is arranged in a substantially horizontal direction. Further, the objective lens 43 faces the culture tank 3.
  • the focal plane F of the objective lens 43, that is, the observation plane R is arranged inside the culture tank 3.
  • the illumination optical system 45 includes a lens 51 that converts illumination light emitted from a light source 13 into parallel light, a diaphragm 53 having a ring slit 53a that is an annular opening, a relay optical system 55, and a half mirror 57. I have.
  • the ring slit 53a of the aperture 53 is arranged at a position optically conjugate with the pupil position of the objective lens 43.
  • the illumination light from the lens 51 passes only through the ring slit 53a in the aperture 53.
  • the relay optical system 55 relays the illumination light from the ring slit 53a.
  • a relay optical system 55 is composed of, for example, a pair of convex lenses.
  • the half mirror 57 reflects a part of the illumination light from the relay optical system 55, for example, 50% of the illumination light incident on the half mirror 57 from the relay optical system 55 toward the objective lens 43. Further, the half mirror 57 transmits a part of the illumination light from the objective lens 43, for example, 50% of the illumination light incident on the half mirror 57 from the objective lens 43.
  • the illumination light reflected by the half mirror 57 enters the objective lens 43 along the optical axis of the objective lens 43, and is emitted from the objective lens 43 toward the culture tank 3. That is, the objective lens 43 also functions as a part of the illumination optical system 45.
  • the illumination light from the objective lens 43 passes through the side wall of the culture tank 3 and crosses the inside of the culture tank 3 in a substantially horizontal direction, and then passes through the side wall of the culture tank 3 again and is emitted to the outside of the culture tank 3.
  • the position of the diaphragm 53 can be adjusted in a direction orthogonal to the optical axis of the illumination light incident on the diaphragm 53. By adjusting the position of the aperture 53, the position of the illumination light incident on the culture tank 3 from the objective lens 43 can be changed in a direction intersecting the optical axis of the illumination light.
  • the retroreflective member 47 is arranged so as to sandwich the culture tank 3 with the objective lens 43 in a substantially horizontal direction.
  • the retroreflective member 47 has an array in which a large number of minute reflective elements 47a are arranged along the surface P.
  • the surface P is a surface that intersects the optical axis of the illumination light that has passed through the culture tank 3.
  • the reflective element 47a is, for example, a prism or spherical glass beads.
  • the illumination light incident on the reflective element 47a is emitted from the reflective element 47a in the opposite direction to that at the time of incident. Since the reflective element 47a is minute, there is almost no shift in the path of the illumination light between the time of incident and the time of emission. Therefore, the illumination light reflected by the retroreflective member 47 returns along the same path as the path of the illumination light incident on the retroreflective member 47. That is, the illumination light reciprocates in the same path between the inside of the culture tank 3 and the retroreflective member 47.
  • the surface P on which the reflective elements 47a are arranged may be either a flat surface or a curved surface.
  • the surface P may be a curved surface having a constant curvature and curved in one direction as shown in FIG. 11, or may be a curved surface curved in a plurality of directions.
  • the objective lens 43 and the retroreflective member 47 are arranged at positions where the stirring shaft 5a and the stirring blade 5b of the stirring mechanism 5 do not interfere with the optical path of the illumination light between the objective lens 43 and the retroreflective member 47.
  • the detection optical system 49 includes a phase film 59 arranged at the pupil position of the objective lens 43, a lens 15, and an imaging unit 17.
  • the phase film 59 has a shape corresponding to the shape of the ring slit 53a, that is, an annular shape.
  • the phase film 59 shifts the phase of the illumination light transmitted through the phase film 59.
  • the phase film 59 may be arranged at a position optically conjugate with the pupil position of the objective lens 43.
  • the suction port 21a of the collection unit 9 is arranged at a position adjacent to the observation surface R of the observation unit 7. Also in this embodiment, the suction port 21a of the collection unit 9 is arranged on the downstream side of the flow of the cells S with respect to the observation surface R of the observation unit 7.
  • the illumination light emitted from the light source 13 is emitted from the illumination optical system 45 to the culture tank 3 via the objective lens 43. After being incident on the culture tank 3, the illumination light passes through the medium W in the culture tank 3 and is emitted from the culture tank 3.
  • the illumination light is reflected by the retroreflective member 47 and re-enters the culture tank 3, and then passes through the medium W in the culture tank 3 in the opposite direction and is emitted from the culture tank 3. Therefore, the cells S floating in the medium W in the culture tank 3 are illuminated by two types of illumination methods: epi-illumination by the objective lens 43 and transmission illumination by the retroreflective member 47.
  • the illumination light While passing through the culture tank 3 twice, a part of the illumination light is refracted by passing through the transparent cells S floating in the medium W. After passing through the culture tank 3 twice, the illumination light passes through the objective lens 43 and the half mirror 57, and is imaged on the image pickup unit 17 by the lens 15.
  • the phase film 59 is arranged at a position optically conjugate with the ring slit 53a.
  • the illumination light (refracted light) transmitted through the cells S in the culture tank 3 passes through a position different from that of the phase film 59 in the objective lens 43 and is emitted from the objective lens 43.
  • the illumination light (straight light) that did not pass through the cells S in the culture tank 3 is given a phase shift by passing through the phase film 59 in the objective lens 43, and is emitted from the objective lens 43. Therefore, an optical image of the cell S with light and darkness due to the interference between the refracted light and the straight light is formed on the imaging unit 17.
  • the imaging unit 17 acquires a phase-difference image of the cell S.
  • control unit 11 detects the cells S having the desired characteristics from the phase difference image acquired by the observation unit 7, and the detected cells S having the desired characteristics are sucked by the recovery unit 9.
  • the retroreflective member 47 reflects the illumination light along the same path as at the time of incident by a large number of minute reflecting elements 47a. Therefore, the illumination light incident on the culture tank 3 from the retroreflective member 47 is the culture tank 3 regardless of the shape of the side wall of the culture tank 3 existing between the retroreflective member 47 and the inside of the culture tank 3. The cells S inside are illuminated from the same direction at the same angle.
  • the side wall of the culture tank 3 when the side wall of the culture tank 3 has a curvature or unevenness, the side wall of the culture tank 3 exerts a lens effect with respect to illumination light. However, the lens effect is canceled by the illumination light reciprocating along the same path on the side wall of the culture tank 3. That is, the direction and angle of the illumination light incident on the culture tank 3 from the retroreflective member 47 are not affected by the side wall between the retroreflective member 47 and the inside of the culture tank 3. Therefore, even if the culture tank 3 is made of a flexible material and the side wall of the culture tank 3 is deformed over time, or even if the culture tank 3 is replaced with another culture tank 3 having a different shape and size, it is reflexive.
  • the cells S in the culture tank 3 can be stably illuminated by the illumination light from the reflective member 47.
  • the illumination light incident on the culture tank 3 from the objective lens 43 travels along the optical axis of the objective lens 43. That is, coaxial epi-illumination is realized.
  • the optical axis of the illumination light incident on the culture tank 3 from the objective lens 43 is the culture tank 3. It tilts with respect to the optical axis of the objective lens 43 due to the lens effect of the side wall. As a result, the position of the illumination light (straight light) returned from the retroreflective member 47 to the objective lens 43 may shift from the position of the phase film 59 in the direction intersecting the optical axis.
  • the illumination optical system 6 to the culture tank 3 are adjusted by adjusting the position of the aperture 53 so that the illumination light (straight light) returned from the retroreflective member 47 to the objective lens 43 passes through the phase film 59.
  • the position of the illumination light applied to the light is adjusted.
  • the illumination optical system 45 irradiates the observation surface R in the culture tank 3 with the illumination light via the objective lens 43, but instead of this, the illumination optical system 45 passes through the objective lens 43, for example.
  • the observation surface R in the culture tank 3 may be irradiated with illumination light without causing the observation.
  • the illumination optical system 45 may include a light source arranged on the side of the objective lens 43, and the observation surface R in the culture tank 3 may be irradiated with illumination light from this light source. In order to bring the optical axis of the illumination light as close as possible to the optical axis of the objective lens 43, it is preferable that this light source is arranged in the vicinity of the objective lens 43.
  • the phase difference image of the cell S is acquired by using the ring slit 53a and the phase film 59, but instead, a bright field image of the cell S may be acquired. That is, the illumination optical system 45 does not have to include the aperture 53, and the detection optical system 49 does not have to include the phase film 59. In this case, the epi-illuminated visual field image and the transmitted bright-field image of the cells S are acquired.
  • a medium having a refractive index different from that of air may be filled between the objective lens 43 and the culture tank 3.
  • the medium is, for example, water, oil, gel or water-absorbing polymer.
  • the refractive index of the medium is preferably the same as or close to the refractive index of the medium W.
  • the refractive index of the medium may be the same as or close to the refractive index of the material of the culture tank 3.
  • the medium between the objective lens 43 and the culture tank 3 reduces the lens effect of the side wall of the culture tank 3 with respect to the illumination light incident on the culture tank 3 from the objective lens 43. Thereby, when the side wall of the culture tank 3 has a curvature or unevenness, the direction and angle of the illumination light emitted from the objective lens 43 to the cells S can be stabilized.
  • the medium may be held between the objective lens 43 and the culture tank 3 by the surface tension of the medium.
  • the cell culture device 61 according to the present embodiment is different from the first embodiment in that, for example, as shown in FIGS. 12 to 14, a housing 63 having a tubular shape for accommodating the observation unit 7 is adopted.
  • the cell culture device 61 includes a control unit 11, the control unit 11 is not shown in FIGS. 12 to 14.
  • the parts having the same configuration as the cell culture apparatus 1 according to the first embodiment are designated by the same reference numerals and the description thereof will be omitted.
  • the housing 63 has an elongated tubular shape that can be inserted into the medium W via a port (not shown) on the upper surface 3a of the culture tank 3. Further, the housing 63 is made of, for example, polyvinyl chloride or the like and has flexibility. As shown in FIG. 13, the housing 63 is bent in a direction in which the tip portions 63a in the longitudinal direction intersect in the longitudinal direction.
  • the housing 63 has a transparent portion 63b that transmits illumination light and observation light at the cutting edge of the tip portion 63a.
  • a stirring mechanism when the housing 63 is inserted into the culture tank 3 along the stirring shaft 5a by bending the tip 63a of the housing 63 and illuminating and photographing through the cutting-edge transparent portion 63b of the tip 63a.
  • the observation surface R of the observation unit 7 can be arranged at an angle that diagonally intersects the flow direction of the medium W according to 5.
  • the light source 13 is arranged at the tip end portion 63a of the housing 63 so as to face the transparent portion 63b.
  • the lens 15 is arranged side by side with the light source 13 at the tip end portion 63a of the housing 63 so as to face the transparent portion 63b.
  • the image pickup unit 17 is arranged at the tip end portion a of the housing 63 on the proximal end side of the lens 15.
  • the collection unit 9 is arranged at a position adjacent to the observation surface R of the observation unit 7. Also in this embodiment, the suction port 21a of the collection unit 9 is arranged on the downstream side of the flow of the cells S with respect to the observation surface R of the observation unit 7.
  • the housing 63 is inserted into the medium W via the port of the culture tank 3. To do.
  • the housing 63 is sterilized in advance.
  • illumination light is generated from the light source 13 in the housing 63.
  • the illumination light emitted from the light source 13 is applied to the observation surface R in the culture tank 3 via the transparent portion 63b of the housing 63.
  • the observation light incident on the housing 63 from the observation surface R irradiated with the illumination light via the transparent portion 63b is collected by the lens 15, and the optical image of the observation light is photographed by the imaging unit 17.
  • the image of the observation surface R acquired by the imaging unit 17 is sent to the control unit 11.
  • the control unit 11 detects the cells S having the desired characteristics from the image acquired by the observation unit 7, and the collection unit 9 sucks the detected cells having the desired characteristics.
  • the transparent portion 63b of the housing 63 and the suction port 21a of the recovery unit 9 are arranged.
  • cells S having the desired characteristics detected while observing the cells S in the medium W can be aspirated.
  • the collection unit 9 may be inserted into the medium W in parallel with the housing 63 via the port on the upper surface 3a of the culture tank 3, and the suction port 21a may be arranged in the vicinity of the observation surface R.
  • the housing 63 and the collection unit 9 may be integrally configured.
  • This embodiment can be transformed into the following configuration.
  • the light source 13 and the image pickup unit 17 are arranged at the tip end portion 63a of the housing 63, but as a first modification, for example, the light source 13 and the image pickup unit 17 are arranged instead. May be arranged at the base end portion of the housing 63.
  • the illumination light emitted from the light source 13 may be guided by a fiber (not shown) and emitted from the tip of the fiber at the tip 63a of the housing 63. Further, the observation light from the observation surface R may be received by the bundle fiber (not shown) at the tip end portion 63a of the housing 63, and may be incident on the imaging unit 17 from the bundle fiber at the base end portion of the housing 63.
  • the suction port 21a of the collection unit 9 is arranged on the downstream side of the observation surface R in the flow direction of the cell S, but as a second modification, for example, as shown in FIG.
  • the suction port 21a of the collection unit 9 may be arranged at an arbitrary position adjacent to the observation surface R, such as the upstream side of the observation surface R.
  • a tubular protective tube 67 that covers the periphery of the housing 63 may be provided.
  • the protective tube 67 has an elongated shape that can be inserted into the medium W via the port of the culture tank 3. Further, the protective tube 67 is formed so that the housing 63 can be inserted and removed inside.
  • the protective tube 67 is made of a transparent resin material such as, for example, acrylic resin (PMMA) or polyvinyl chloride. Therefore, the entire protective tube 67 constitutes an optically transparent transparent portion that transmits illumination light and observation light.
  • the tip of the protective tube 67 in the longitudinal direction is a transparent portion 67a.
  • the protective tube 67 has a protrusion 69 protruding in the longitudinal direction of the protective tube 67 on the outside of the transparent portion 67a.
  • the protrusion 69 has a columnar portion 69a extending from the tip of the protective tube 67 along the longitudinal direction of the protective tube 67 and a direction intersecting the longitudinal direction of the protective tube 67 from the tip of the columnar portion 69a. It is provided with a bent portion 69b arranged at a position of blocking the front of the transparent portion 67a by bending the transparent portion 67a.
  • the columnar portion 69a is arranged at a position deviated from each optical axis of the light source 13 and the lens 15 with the housing 63 inserted in the protective tube 67.
  • the bent portion 69b is arranged on the optical axis of the light source 13 and the lens 15 with the housing 63 inserted in the protective tube 67.
  • the bent portion 69b reflects the illumination light emitted from the light source 13 to the outside of the protective tube 67 via the transparent portion 63b of the housing 63 and the transparent portion 67a of the protective tube 67 toward the lens 15. It functions as a reflective member that obliquely illuminates the observation surface R in the culture tank 3.
  • the illumination light is emitted from the light source 13 in the housing 63 via the transparent portion 63b of the housing 63 and the transparent portion 67a of the protective tube 67.
  • the illumination light emitted from the transparent portion 67a of the protective tube 67 is reflected toward the transparent portion 67a of the protective tube 67 by the bent portion 69b of the protrusion 31 in front of the transparent portion 67a of the protective tube 67.
  • the observation surface R in the culture tank 3 between the transparent portion 67a and the bent portion 69b of the protective tube 67 is irradiated with the illumination light.
  • the observation light returned from the observation surface R by being irradiated with the illumination light is collected by the lens 15 via the transparent portion 67a of the protective tube 67 and the transparent portion 63b of the housing 63, and an optical image of the observation light is captured. Photographed by part 17.
  • the control unit 11 detects the cells S having the desired characteristics from the image acquired by the observation unit 7, and the recovery unit 9 sucks the detected cells having the desired characteristics.
  • the protective tube 67 has a shape that can be inserted into the medium W via the port of the culture tank 3, so that the protective tube 67 causes the housing 63, the light source 13 in the housing 63, and the lens. With the 15 and the imaging unit 17 safely protected, the housing 63, the light source 13, the lens 15 and the imaging unit 17 can be inserted into the culture tank 3 and operated in the culture tank 3.
  • the protective tube 67 is formed with a transparent resin material such as acrylic resin or polyvinyl chloride, the protective tube 67 is used in a UV sterilized state, and after use, only the protective tube 67 is made disposable and replaced. Can be done. As a result, it is possible to avoid contamination of the medium W as compared with the case where the housing 63 to be used repeatedly is directly inserted into the medium W.
  • a transparent resin material such as acrylic resin or polyvinyl chloride
  • the observation surface R irradiated with the illumination light in the culture tank 3 is limited to the space between the transparent portion 63b of the protective tube 67 and the bent portion 69b of the protrusion 31, so that the transparent portion 63b of the protective tube 67 is restricted.
  • the cells S that have invaded the space between the protrusion 31 and the bent portion 69b of the protrusion 31 can be photographed.
  • the cell culture apparatus 71 according to the present embodiment includes a culture medium supply unit 73 that supplies the culture medium W to the culture tank 3, and the control unit 11 controls the culture medium supply unit 73. It differs from the first embodiment in that it is different from the first embodiment.
  • the parts having the same configuration as the cell culture apparatus 1 according to the first embodiment are designated by the same reference numerals and the description thereof will be omitted.
  • the medium supply unit 73 includes a medium holding container 75 that holds a new medium W, and a tubular member 77 such as a tube that connects the medium holding container 75 and the culture tank 3.
  • the medium holding container 75 is, for example, a bottomed tubular container. As shown in FIG. 18, the medium holding container 75 has a discharge port 75a for discharging the medium W near the bottom surface.
  • the tubular member 77 has one end in the longitudinal direction connected to the discharge port 75a of the culture medium holding container 75 and the other end in the longitudinal direction connected to the supply port 3c of the culture tank 3. As a result, the tubular member 77 forms a flow path for supplying the medium W from the medium holding container 75 to the culture tank 3.
  • the tubular member 77 is provided with a liquid feeding pump 79 such as a perista pump that switches between supply and non-supply of the medium W from the medium holding container 75 to the culture tank 3.
  • the liquid feed pump 79 has a receiving unit (not shown) that receives a signal from the control unit 11.
  • the liquid feed pump 79 is switched on / off when the receiving unit receives the signal from the control unit 11.
  • the liquid feed pump 79 is switched to the ON state, the medium W in the medium holding container 75 is supplied to the culture tank 3 via the tubular member 77. Further, when the liquid feed pump 79 is switched to the OFF state, the supply of the medium W from the medium holding container 75 to the culture tank 3 is stopped.
  • the control unit 11 switches ON / OFF of the supply of the medium W from the medium holding container 75 to the culture tank 3 by controlling the drive of the liquid feeding pump 79. Further, when the amount of the medium W sucked by the collection unit 9 exceeds a predetermined threshold value, the control unit 11 sends a drive signal to the medium supply unit 73 by a transmission unit (not shown). As a result, the medium supply unit 73 supplies the culture medium W with the new medium W.
  • the control unit 11 determines whether or not the amount of the medium W sucked by the recovery unit 9 exceeds a predetermined threshold value. Then, when it is determined that the amount of the medium W sucked by the collection unit 9 exceeds a predetermined threshold value, the medium supply unit 73 is controlled by the control unit 11, and the culture medium supply unit 73 controls the culture medium supply unit 73 to add new medium to the culture tank 3. W is supplied.
  • the medium W reduced by the recovery of the cells S by the recovery unit 9 can be replenished by the medium supply unit 73. Further, since a part of the medium W in the culture tank 3 is replaced, deterioration of the medium W in the culture tank 3 can be suppressed.
  • This embodiment can be transformed into the following configuration.
  • the medium holding container 75 may be arranged above the culture tank 3 in the direction of gravity. Then, the medium W may be supplied from the medium holding container 75 to the culture tank 3 via the tubular member 77 by gravity.
  • the tubular member 77 may be provided with a gate opening / closing portion 81 such as a valve for opening / closing the flow path.
  • the gate opening / closing unit 81 may have a receiving unit (not shown) for receiving a signal from the control unit 11, and the opening / closing may be switched when the receiving unit receives the signal from the control unit 11.
  • the gate opening / closing portion 81 when the gate opening / closing portion 81 is switched to the open state, the flow path of the tubular member 77 is opened, and the medium W in the medium holding container 75 passes through the tubular member 77 by gravity to the culture tank 3 Is supplied to.
  • the gate opening / closing portion 81 when the gate opening / closing portion 81 is switched to the closed state, the flow path of the tubular member 77 is blocked, and the supply of the medium W from the medium holding container 75 to the culture tank 3 is stopped. Therefore, the supply and non-supply of the medium W to the culture tank 3 can be switched by a simple configuration in which the flow path of the tubular member 77 is opened and closed by the gate opening / closing portion 81.
  • the medium holding container 75 may further include a medium holding container 83 and a tubular member 85 that supply the medium W to the medium holding container 75.
  • the medium holding container 75 and the tubular member 77 are also referred to as the first medium holding container 75 and the first tubular member 77
  • the medium holding container 83 and the tubular member 85 are also referred to as the second medium holding container 83 and the second tubular member 85.
  • the second medium holding container 83 and the second tubular member 85 may have the same configurations as the first medium holding container 75 and the first tubular member 77.
  • the second medium holding container 83 may have a discharge port 83a near the bottom surface.
  • the second tubular member 85 may have a liquid feeding pump 87 such as a perista pump that switches between supply and non-supply of the medium W from the second medium holding container 83 to the first medium holding container 75.
  • the medium supply unit 73 is provided with temperature control means (not shown) for controlling the temperature of the medium W in the first medium holding container 75 and the temperature of the medium W in the second medium holding container 83, respectively. May be good.
  • the medium W in the first medium holding container 75, the medium W may be held at a temperature suitable for cell S culture, for example, 37 ° C., by a temperature control means.
  • the medium W in the second medium holding container 83, the medium W may be held at a temperature suitable for storage, for example, 4 ° C., by the temperature control means.
  • the medium W By holding the medium W at, for example, 4 ° C. in the second medium holding container 83, deterioration of the medium W can be prevented. Further, by warming the medium W supplied from the second medium holding container 83 to the first medium holding container 75 to, for example, 37 ° C. in the first medium holding container 75, the medium W having a temperature suitable for culturing is provided in the culture tank 3. It is possible to reduce the stress on the cell S due to the temperature change.
  • the first medium holding container 75 is arranged above the culture tank 3 in the gravity direction, and further above the first medium holding container 75 in the gravity direction.
  • the second medium holding container 83 may be arranged in the container 83. Then, by gravity, the medium W is supplied from the second medium holding container 83 via the second tubular member 85 to the first medium holding container 75, and the medium W is supplied from the first medium holding container 75 via the first tubular member 77.
  • the medium W may be supplied to the culture tank 3.
  • the gate opening / closing portion 81 may be provided on the first tubular member 77.
  • the second tubular member 85 may be provided with a gate opening / closing portion 89 such as a valve for opening / closing the flow path thereof. Then, the control unit 11 may control the opening / closing of the flow path of the first tubular member 77 by the gate opening / closing unit 81 and the opening / closing of the flow path of the second tubular member 85 by the gate opening / closing unit 89.
  • the present invention is not limited to the one applied to the above-described embodiment and the modified example, and may be applied to an embodiment in which these embodiments and the modified example are appropriately combined, and the present invention is not particularly limited.
  • a configuration including a stereo optical system may be adopted as the observation unit.
  • It may be provided with a stereo imaging optical system including an imaging unit for capturing each of the two images formed by the above, and an optically transparent housing for accommodating the stereo imaging optical system.
  • the housing is inserted into the medium W in the culture tank 3, and the same cells S floating in the medium W have parallax from different viewpoints depending on the stereo optical system in the housing.
  • Two images are imaged, and the two imaged images are imaged by the imaging unit.
  • the control unit 11 may detect the characteristics of the cells S included in each image of the two images acquired by the stereo imaging optical system.
  • the bottomed cylindrical culture tank 3 formed of an optically transparent material has been described as an example, but the culture tank has an arbitrary shape such as a bag shape, a spherical shape, or a box shape. Can be adopted.
  • a disposable bag-shaped culture tank may be adopted.
  • any material such as hard or soft such as vinyl can be adopted.
  • the culture tank 3 does not have to be entirely transparent, and the culture tank 3 may partially have a transparent portion through which light such as illumination light and observation light is transmitted.
  • the configuration in which one observation unit 7 and one collection unit 9 are provided has been described as an example, but instead of this, for example, in the culture tank 3.
  • a plurality of observation units 7 and recovery units 9 may be arranged by shifting their positions in the depth direction. With this configuration, the recovery efficiency of cells S having desired characteristics can be improved. In this case, the medium W and the cells S sucked by each collection unit 9 may be collected in a common cell collection container 19.
  • the stirring mechanism 5 is adopted as the stirring unit, a magnetic stirrer, a liquid feeding pump, or the like may be adopted instead.
  • the stirring mechanism 5 is inserted into the culture tank 3 via the upper surface 3a of the culture tank 3, but is inserted into the culture tank 3 via the lower surface of the culture tank 3. It may be the mode that is done.
  • the control unit 11 controls the stirring of the medium W in the culture tank 3, but the control unit 11 may not control the stirring of the medium W in the culture tank 3.
  • the characteristics of the cell S detected by the control unit 11 include, for example, the morphological characteristics of the cell S (cell S size, cell mass size, presence / absence of protrusions, number of protrusions, protrusion length, perfect circle). Degree, etc.), optical characteristics of cell S (color, brightness, wavelength characteristics, etc.), characteristics related to cell activity (cell life and death, etc.) can be mentioned. Two or more features may be combined and detected.
  • one observation unit 7 and one recovery unit 9 are provided for one culture tank 3, but two or more observation units 7 and collection units are provided for one culture tank 3. 9 may be provided. As a result, the cells S can be recovered more efficiently.
  • a main culture tank having a large capacity is separately provided, and the cells S cultured in the main culture tank are transferred together with the medium W to the culture tank 3 (hereinafter, referred to as a sub-culture tank) of each of the above embodiments.
  • Cell recovery may be performed.
  • the main culture tank and the sub-culture tank are connected by a flow path, and the medium W containing the cells S may be moved automatically or manually.

Abstract

A cell culture device (1) comprising an observation unit (7) for observing cells (S) accommodated in a culture tank (3) together with a medium (W), a stirring mechanism (5) for stirring the medium (W) in the culture tank (3), a collecting unit (9) arranged adjacent to the observation unit (7) and collecting the cells (S) in the culture tank (3), and a controller (11) for detecting the cells (S) having desired characteristics through the observation unit (7) and collecting the detected cells (S) having desired characteristics with the collecting unit (9).

Description

細胞培養装置Cell culture device
 本発明は、細胞培養装置に関するものである。 The present invention relates to a cell culture device.
 近年、幹細胞研究および再生医療の進展、および、抗体医薬等のバイオ医薬の発展に伴い、細胞を大量に培養することが要求されている。細胞を大量に培養する際、フラスコまたはシャーレを用いることに代え、バイオリアクター等の培養槽を用いることが多くなってきた(例えば、特許文献1参照。)。培養中の細胞は、他の細胞と接触すると接触による刺激によって悪影響を受ける可能性がある。そのため、所望の状態となった細胞は最適なタイミングで回収および保存することが望ましい。 In recent years, with the progress of stem cell research and regenerative medicine, and the development of biopharmacy such as antibody medicine, it is required to culture a large amount of cells. When culturing a large amount of cells, instead of using a flask or a petri dish, a culture tank such as a bioreactor is often used (see, for example, Patent Document 1). When cells in culture come into contact with other cells, they can be adversely affected by contact irritation. Therefore, it is desirable to collect and store the cells in the desired state at the optimum timing.
特開2011-188777号公報Japanese Unexamined Patent Publication No. 2011-188777
 通常、バイオリアクター等の培養槽を用いた浮遊培養系においては、培養液を遠心分離器にかけることによって、培養液と細胞とを分離させて細胞を回収する。しかしながら、従来の回収方法では、培養した全ての細胞を回収することになり、所望の細胞のみを回収するということができないという不都合がある。 Normally, in a suspension culture system using a culture tank such as a bioreactor, the culture solution and the cells are separated by centrifuging the culture solution and the cells are collected. However, the conventional recovery method has the disadvantage that all the cultured cells are recovered, and it is not possible to recover only the desired cells.
 本発明は上述した事情に鑑みてなされたものであって、浮遊培養系において、培養を継続しながら所望の細胞のみを最適なタイミングで回収することができる細胞培養装置を提供することを目的としている。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a cell culture apparatus capable of recovering only desired cells at an optimum timing while continuing culturing in a suspension culture system. There is.
 上記目的を達成するために、本発明は以下の手段を提供する。
 本発明の一態様は、培養槽内に培地とともに収容されている細胞を観察する観察部と、前記培養槽内の前記培地を撹拌する撹拌部と、前記観察部に隣接して配され、前記培養槽内の前記細胞を回収する回収部と、前記観察部によって所望の特徴を有する前記細胞を検出し、検出した前記所望の特徴を有する前記細胞を前記回収部によって回収する制御部とを備える細胞培養装置である。
In order to achieve the above object, the present invention provides the following means.
One aspect of the present invention is an observation unit for observing cells housed together with a medium in a culture tank, a stirring unit for stirring the medium in the culture tank, and an observation unit adjacent to the observation unit. It includes a recovery unit for collecting the cells in the culture tank, and a control unit for detecting the cells having desired characteristics by the observation unit and collecting the detected cells having the desired characteristics by the collection unit. It is a cell culture device.
 本態様によれば、撹拌部によって培養槽内の培地が撹拌されることにより、培養槽内の細胞が培地中に浮遊した状態で培養される。この状態で、培地中に浮遊している細胞が観察部によって観察され、所望の特徴を有する細胞が制御部によって検出される。そして、所望の特徴を有する細胞が検出された場合に、観察部に隣接して配されている回収部が制御部によって制御され、その所望の特徴を有する細胞が回収部によって回収される。したがって、浮遊培養系において、培養を継続しながら所望の細胞のみを最適なタイミングで回収することができる。 According to this aspect, the medium in the culture tank is agitated by the stirring unit, so that the cells in the culture tank are cultured in a state of being suspended in the medium. In this state, cells floating in the medium are observed by the observation unit, and cells having desired characteristics are detected by the control unit. Then, when a cell having a desired characteristic is detected, the recovery unit arranged adjacent to the observation unit is controlled by the control unit, and the cell having the desired characteristic is collected by the collection unit. Therefore, in the suspension culture system, only desired cells can be recovered at the optimum timing while continuing the culture.
 上記態様に係る細胞培養装置は、光を透過可能な透明部を有し、前記観察部を収容する筒状の形態を有する筐体を備え、前記回収部が、前記培地中に挿入可能な管状の形態を有し、長手方向の先端に吸引口を備え、前記回収部の前記吸引口が、前記筐体および前記回収部が前記培地中に挿入された状態において前記観察部による観察領域に隣接して配置されることとしてもよい。 The cell culture apparatus according to the above aspect includes a transparent portion capable of transmitting light, a housing having a tubular shape for accommodating the observation portion, and a tubular body in which the recovery portion can be inserted into the medium. The suction port of the collection unit is adjacent to the observation area by the observation unit in a state where the housing and the collection unit are inserted into the medium. It may be arranged as follows.
 この構成によって、筐体および回収部を培養槽内に挿入することにより、観察部による観察領域および回収部の吸引口が配置される培養槽内の所望の位置において、培地中の細胞を観察しながら検出した所望の特徴を有する細胞を吸引することができる。
 上記態様に係る細胞培養装置は、前記筐体と前記回収部が一体として構成されていてもよい。
With this configuration, by inserting the housing and the recovery part into the culture tank, the cells in the medium can be observed at a desired position in the culture tank where the observation area by the observation part and the suction port of the recovery part are arranged. However, cells having the desired characteristics detected can be aspirated.
In the cell culture device according to the above aspect, the housing and the recovery unit may be integrally configured.
 上記態様に係る細胞培養装置は、前記培養槽が、円筒状の内壁と外壁との間に前記培地および前記細胞を収容可能な円環状の空間を有することとしてもよい。
 撹拌部によって、培養槽の内壁と外壁との間の円環状の空間において培地が周方向に流れる流路を形成すれば、細胞の移動方向を特定でき、所望の細胞を検出および回収し易くすることができる。
In the cell culture apparatus according to the above aspect, the culture tank may have an annular space capable of accommodating the medium and the cells between the cylindrical inner wall and the outer wall.
If the stirring unit forms a flow path through which the medium flows in the circumferential direction in the annular space between the inner wall and the outer wall of the culture tank, the movement direction of the cells can be specified, and the desired cells can be easily detected and recovered. be able to.
 上記態様に係る細胞培養装置は、前記回収部が、前記観察部に対して前記培地の流れ方向の下流側に配置されていることとしてもよい。
 この構成によって、観察部によって所望の特徴を有する細胞を検出した直後に回収部によってその細胞を回収することができ、所望の細胞の回収効率の向上を図ることができる。
In the cell culture apparatus according to the above aspect, the recovery unit may be arranged on the downstream side in the flow direction of the medium with respect to the observation unit.
With this configuration, the cells can be recovered by the recovery unit immediately after the observation unit detects the cells having the desired characteristics, and the recovery efficiency of the desired cells can be improved.
  本発明によれば、浮遊培養系において、培養を継続しながら所望の細胞のみを最適なタイミングで回収することができるという効果を奏する。 According to the present invention, in a suspension culture system, it is possible to recover only desired cells at an optimum timing while continuing the culture.
本発明の第1実施形態に係る細胞培養装置の概略構成図である。It is a schematic block diagram of the cell culture apparatus which concerns on 1st Embodiment of this invention. 図1の細胞培養装置を上方から見た図である。It is a figure which looked at the cell culture apparatus of FIG. 1 from above. 図1の観察部の構成を説明する概略構成図である。It is a schematic block diagram explaining the structure of the observation part of FIG. 図1の回収部の構成を説明する概略構成図である。It is a schematic block diagram explaining the structure of the collection part of FIG. 本発明の第1実施形態の第1変形例に係る細胞培養装置の概略構成図である。It is a schematic block diagram of the cell culture apparatus which concerns on 1st modification of 1st Embodiment of this invention. 図5の細胞培養装置を上方から見た図である。It is a figure which looked at the cell culture apparatus of FIG. 5 from above. 本発明の第1実施形態の第2変形例に係る細胞培養装置の概略構成図である。It is a schematic block diagram of the cell culture apparatus which concerns on 2nd modification of 1st Embodiment of this invention. 本発明の第1実施形態の第3変形例に係る細胞培養装置の概略構成図である。It is a schematic block diagram of the cell culture apparatus which concerns on 3rd modification of 1st Embodiment of this invention. 図8の細胞培養装置を上方から見た図である。It is a figure which looked at the cell culture apparatus of FIG. 8 from above. 図9の観察部の構成を説明する概略構成図である。It is a schematic block diagram explaining the structure of the observation part of FIG. 本発明の第2実施形態に係る細胞培養装置の概略構成図である。It is a schematic block diagram of the cell culture apparatus which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る細胞培養装置の概略構成図である。It is a schematic block diagram of the cell culture apparatus which concerns on 3rd Embodiment of this invention. 図12の筐体の形状を説明する図である。It is a figure explaining the shape of the housing of FIG. 図13の観察部および筐体の構成を説明する縦断面図である。It is a vertical cross-sectional view explaining the structure of the observation part and the housing of FIG. 本発明の第3実施形態の第1変形例に係る細胞培養装置の概略構成図である。It is a schematic block diagram of the cell culture apparatus which concerns on 1st modification of 3rd Embodiment of this invention. 本発明の第3実施形態の第2変形例に係る細胞培養装置の概略構成図である。It is a schematic block diagram of the cell culture apparatus which concerns on 2nd modification of 3rd Embodiment of this invention. 本発明の第4実施形態に係る細胞培養装置の概略構成図である。It is a schematic block diagram of the cell culture apparatus which concerns on 4th Embodiment of this invention. 図17の細胞培養装置の培地供給部の構成を説明する概略構成図である。It is a schematic block diagram explaining the structure of the culture medium supply part of the cell culture apparatus of FIG. 本発明の第4実施形態の第1変形例に係る細胞培養装置の概略構成図である。It is a schematic block diagram of the cell culture apparatus which concerns on 1st modification of 4th Embodiment of this invention. 本発明の第4実施形態の第2変形例に係る細胞培養装置の概略構成図である。It is a schematic block diagram of the cell culture apparatus which concerns on 2nd modification of 4th Embodiment of this invention. 本発明の第4実施形態の第3変形例に係る細胞培養装置の概略構成図である。It is a schematic block diagram of the cell culture apparatus which concerns on 3rd modification of 4th Embodiment of this invention.
〔第1実施形態〕
 本発明の第1実施形態に係る細胞培養装置について、図面を参照して以下に説明する。
 本実施形態に係る細胞培養装置1は、培養槽3に収容されている培地Wを撹拌する撹拌機構(撹拌部)5と、培養槽3内に培地Wとともに収容されている細胞Sを観察する観察部7と、培養槽3内の細胞Sを回収する回収部9と、これら撹拌機構5、観察部7および回収部9を制御する制御部11とを備えている。
[First Embodiment]
The cell culture apparatus according to the first embodiment of the present invention will be described below with reference to the drawings.
The cell culture apparatus 1 according to the present embodiment observes the stirring mechanism (stirring unit) 5 for stirring the medium W contained in the culture tank 3 and the cells S housed together with the medium W in the culture tank 3. It includes an observation unit 7, a collection unit 9 that collects cells S in the culture tank 3, and a control unit 11 that controls the stirring mechanism 5, the observation unit 7, and the collection unit 9.
 培養槽3は、例えば、上面3aが閉塞された有底円筒状の容器である。この培養槽3は、例えば、光学的に透明な材質によって形成されている。培養槽3には回収部9が接続されている。 The culture tank 3 is, for example, a bottomed cylindrical container in which the upper surface 3a is closed. The culture tank 3 is formed of, for example, an optically transparent material. A recovery unit 9 is connected to the culture tank 3.
 撹拌機構5は、例えば、培養槽3の上面3aを経由して培養槽3内に挿入される撹拌軸5aと、撹拌軸5aに設けられた複数の撹拌翼5bと、撹拌軸5aを軸線回りに回転させるモータ5cとを備えている。この撹拌機構5は、モータ5cによって撹拌軸5aを軸線回りに回転させると、培地W中で撹拌軸5aとともに撹拌翼5bが回転することにより、培養槽3内の培地Wおよび細胞Sに撹拌軸5a回りの流れを発生させることができる。 The stirring mechanism 5 rotates around the stirring shaft 5a inserted into the culture tank 3 via the upper surface 3a of the culture tank 3, a plurality of stirring blades 5b provided on the stirring shaft 5a, and the stirring shaft 5a. It is equipped with a motor 5c that rotates the shaft. In this stirring mechanism 5, when the stirring shaft 5a is rotated about the axis by the motor 5c, the stirring blade 5b rotates together with the stirring shaft 5a in the medium W, so that the stirring shaft 5 is transferred to the medium W and the cells S in the culture tank 3. A flow around 5a can be generated.
 観察部7は、培養槽3の側方に配置されている。この観察部7は、図3に示すように、培養槽3内の培地Wおよび細胞Sが存在する任意の観察面(観察領域)Rに培養槽3の外部から照明光を照射するLED(Light Emitting Diode)等の光源13と、照明光が照射された観察面Rからの観察光を培養槽3の外部において集光するレンズ15と、レンズ15によって集光された観察光を撮影することにより、観察面Rの画像を取得するCCDイメージセンサまたはCMOSイメージセンサ等の撮像部17とを備えている。 The observation unit 7 is arranged on the side of the culture tank 3. As shown in FIG. 3, the observation unit 7 irradiates an arbitrary observation surface (observation region) R in the culture tank 3 in which the medium W and the cells S are present with illumination light from the outside of the culture tank 3 (Light). By photographing the light source 13 such as Emitting Diode), the lens 15 that collects the observation light from the observation surface R irradiated with the illumination light outside the culture tank 3, and the observation light collected by the lens 15. It is provided with an imaging unit 17 such as a CCD image sensor or a CMOS image sensor that acquires an image of the observation surface R.
 回収部9は、観察部7に隣接して配置されている。この回収部9は、例えば、図4に示すように、培地Wおよび細胞Sを回収する細胞回収容器19と、細胞回収容器19と培養槽3とを繋ぐチューブ等の管状部材21と、細胞回収容器19に陰圧をかける吸引ポンプ等の陰圧供給部23とを備えている。 The collection unit 9 is arranged adjacent to the observation unit 7. As shown in FIG. 4, the recovery unit 9 includes, for example, a cell recovery container 19 for collecting medium W and cells S, a tubular member 21 such as a tube connecting the cell recovery container 19 and the culture tank 3, and cell recovery. It is provided with a negative pressure supply unit 23 such as a suction pump that applies negative pressure to the container 19.
 細胞回収容器19は、例えば、上面が閉塞された有底筒状の容器であり、内部が密封されている。この細胞回収容器19は、吸引されてきた培地Wおよび細胞Sを内部に流入させる流入口19aを上面に有している。また、細胞回収容器19には、陰圧供給部23が連結されている。 The cell collection container 19 is, for example, a bottomed tubular container whose upper surface is closed, and the inside is sealed. The cell collection container 19 has an inflow port 19a on the upper surface for allowing the sucked medium W and cells S to flow into the inside. Further, a negative pressure supply unit 23 is connected to the cell collection container 19.
 管状部材21は、図3に示すように、長手方向の一端に、培養槽3内に挿入されることによって培養槽3内の培地Wおよび細胞Sを吸引する吸引口21aを有している。管状部材21の吸引口21aは、培養槽3内における観察部7の観察面Rに隣接する位置に配置されている。本実施形態においては、管状部材21の吸引口21aは、観察面Rに対して、隣接する位置であって、撹拌機構5による撹拌によって生じる細胞Sの流れの下流側に配置されている。観察面Rが培養槽3の内面付近にある場合、吸引口21aは培養槽3内に挿入されるのではなく培養槽3の内面に開口していてもよい。 As shown in FIG. 3, the tubular member 21 has a suction port 21a at one end in the longitudinal direction for sucking the medium W and cells S in the culture tank 3 by being inserted into the culture tank 3. The suction port 21a of the tubular member 21 is arranged at a position adjacent to the observation surface R of the observation unit 7 in the culture tank 3. In the present embodiment, the suction port 21a of the tubular member 21 is arranged at a position adjacent to the observation surface R and on the downstream side of the flow of cells S generated by stirring by the stirring mechanism 5. When the observation surface R is near the inner surface of the culture tank 3, the suction port 21a may be opened to the inner surface of the culture tank 3 instead of being inserted into the culture tank 3.
 この管状部材21は、長手方向の一端、すなわち、吸引口21aが培養槽3内に挿入され、長手方向の他端が細胞回収容器19の流入口19aに連結されることによって、培養槽3から細胞回収容器19へ培地Wとともに細胞Sを吸引する流路を形成する。 The tubular member 21 is provided from the culture tank 3 by inserting one end in the longitudinal direction, that is, the suction port 21a into the culture tank 3, and connecting the other end in the longitudinal direction to the inflow port 19a of the cell collection container 19. A flow path for sucking the cells S together with the medium W is formed in the cell collection container 19.
 陰圧供給部23は、細胞回収容器19に連結される管状部材25と、ポンプ本体27とを備えている。
 ポンプ本体27は、図示しない受信部を有しており、受信部が制御部11からの信号を受信することによってON/OFFが切り替えられる。ポンプ本体27がON状態に切り替わると、管状部材25を経由して細胞回収容器19に陰圧がかけられることによって培養槽3内の培地Wおよび細胞Sが管状部材21を経由して細胞回収容器19に吸引される。ポンプ本体27がOFF状態に切り替わると、培養槽3内の培地Wおよび細胞Sの吸引が停止される。
The negative pressure supply unit 23 includes a tubular member 25 connected to the cell collection container 19 and a pump body 27.
The pump main body 27 has a receiving unit (not shown), and ON / OFF is switched when the receiving unit receives a signal from the control unit 11. When the pump body 27 is switched to the ON state, negative pressure is applied to the cell collection container 19 via the tubular member 25, so that the medium W and the cells S in the culture tank 3 pass through the tubular member 21 to the cell collection container. It is sucked into 19. When the pump body 27 is switched to the OFF state, the suction of the medium W and the cells S in the culture tank 3 is stopped.
 陰圧供給部23は、細胞回収容器19内の培地Wおよび細胞Sの温度を制御する温度制御手段を備えていてもよい。この場合、温度制御手段により、細胞回収容器19内において培地Wおよび細胞Sを保存に適した温度、例えば4℃に保持することができることとしてもよい。細胞回収容器19において培地Wを4℃に保持しておくことにより、培地Wの劣化を防ぐことができる。また、細胞回収容器19において細胞Sを4℃に保持しておくことにより、細胞Sの成長を抑制することができる。 The negative pressure supply unit 23 may include a temperature control means for controlling the temperatures of the medium W and the cells S in the cell collection container 19. In this case, the medium W and the cells S may be kept at a temperature suitable for storage, for example, 4 ° C. in the cell recovery container 19 by the temperature control means. By keeping the medium W at 4 ° C. in the cell recovery container 19, deterioration of the medium W can be prevented. Further, by keeping the cells S at 4 ° C. in the cell recovery container 19, the growth of the cells S can be suppressed.
 制御部11は、例えば、ハードディスクドライブ等の記憶部と、CPU(Central Processing Unit)と、RAM(Random Access Memory)(いずれも図示略)とを備えている。制御部11は、例えばPC(Personal Computer)であってもよい。この制御部11は、メモリに記憶されている制御プログラムをCPUが実行することによって、以下の機能を実現する。 The control unit 11 includes, for example, a storage unit such as a hard disk drive, a CPU (Central Processing Unit), and a RAM (Random Access Memory) (all not shown). The control unit 11 may be, for example, a PC (Personal Computer). The control unit 11 realizes the following functions by executing the control program stored in the memory by the CPU.
 例えば、制御部11は、撹拌機構5のモータ5cを駆動させることによって、培養槽3内の培地Wを撹拌させる。また、制御部11は、観察部7を作動させ、培養槽3内の観察面Rの画像を定期的に取得させる。 For example, the control unit 11 stirs the medium W in the culture tank 3 by driving the motor 5c of the stirring mechanism 5. Further, the control unit 11 operates the observation unit 7 to periodically acquire an image of the observation surface R in the culture tank 3.
 また、制御部11は、細胞Sの所望の特徴量、例えば、細胞S1個1個またはコロニー1個1個の大きさおよび形態の指標等を記憶している。制御部11は、観察部7によって取得された画像に含まれている細胞Sの特徴を検出する。そして、制御部11は、検出した細胞Sの特徴と記憶している特徴量とを照合することにより、観察部7によって取得された画像内の細胞Sが所望の細胞Sか否かを判定する。 Further, the control unit 11 stores a desired feature amount of the cell S, for example, an index of the size and morphology of each cell S or each colony. The control unit 11 detects the characteristics of the cells S included in the image acquired by the observation unit 7. Then, the control unit 11 determines whether or not the cell S in the image acquired by the observation unit 7 is a desired cell S by collating the detected feature of the cell S with the stored feature amount. ..
 また、制御部11は、所望の特徴を有する細胞Sを検出した場合に、回収部9の陰圧供給部23に駆動信号を送る。これにより、検出した所望の特徴を有する細胞Sが陰圧供給部23によって細胞回収容器19に吸引される。なお、制御部11は、陰圧供給部23に対して、有線で信号を送信してもよいし、図示しない送信部によって無線で信号を送信してもよい。制御部11による細胞Sの特徴の検出、照合、判定および駆動信号の送信等の処理は瞬時に行われる。 Further, when the control unit 11 detects the cell S having a desired characteristic, the control unit 11 sends a drive signal to the negative pressure supply unit 23 of the recovery unit 9. As a result, the detected cells S having the desired characteristics are sucked into the cell collection container 19 by the negative pressure supply unit 23. The control unit 11 may transmit a signal to the negative pressure supply unit 23 by wire, or may wirelessly transmit a signal by a transmission unit (not shown). Processing such as detection, collation, determination, and transmission of a drive signal by the control unit 11 of the characteristics of the cell S is performed instantaneously.
 次に、本実施形態に係る細胞培養装置1の作用について説明する。
 上記構成の細胞培養装置1によって細胞Sを培養する場合は、培養槽3に培地Wおよび細胞Sを収容した状態で、制御部11によって撹拌機構5が駆動されることにより、培養槽3内の培地Wが撹拌される。これにより、培地W中において細胞Sが浮遊しながら培養される。
Next, the operation of the cell culture device 1 according to the present embodiment will be described.
When the cells S are cultured by the cell culture apparatus 1 having the above configuration, the stirring mechanism 5 is driven by the control unit 11 in a state where the medium W and the cells S are contained in the culture tank 3, so that the cells S are contained in the culture tank 3. Medium W is stirred. As a result, the cells S are cultured while floating in the medium W.
 次いで、制御部11によって観察部7が制御されることにより、培養槽3内の観察面Rの画像が定期的に取得される。そして、制御部11により、観察部7によって取得された画像中に含まれる細胞Sの特徴が検出され、検出された細胞Sの特徴が制御部11において記憶されている所望の特徴量と照合される。 Next, the observation unit 7 is controlled by the control unit 11, so that an image of the observation surface R in the culture tank 3 is periodically acquired. Then, the control unit 11 detects the characteristics of the cell S contained in the image acquired by the observation unit 7, and the detected characteristics of the cell S are collated with the desired feature amount stored in the control unit 11. To.
 観察部7によって取得された画像中の細胞Sが所望の特徴を有する細胞Sであると制御部11によって判定されると、制御部11から陰圧供給部23に駆動信号が送信される。そして、制御部11からの駆動信号をトリガにして陰圧供給部23のポンプ本体27が駆動することにより、観察部7の観察面Rに隣接して配置されている吸引口21aによって、その所望の特徴を有する細胞Sが吸引される。 When the control unit 11 determines that the cell S in the image acquired by the observation unit 7 is a cell S having a desired characteristic, the control unit 11 transmits a drive signal to the negative pressure supply unit 23. Then, the pump body 27 of the negative pressure supply unit 23 is driven by the drive signal from the control unit 11 as a trigger, and the suction port 21a arranged adjacent to the observation surface R of the observation unit 7 desires the operation. The cells S having the characteristics of are aspirated.
 この場合において、培養槽3内の細胞Sは培地Wの流れに乗って移動しているが、制御部11による制御が速く、また、回収部9の吸引口21aが観察部7の観察面Rに隣接する位置に配置されていることにより、制御部11によって検出された所望の特徴を有する細胞Sを回収部9によって回収することができる。 In this case, the cells S in the culture tank 3 are moving along with the flow of the medium W, but the control by the control unit 11 is fast, and the suction port 21a of the collection unit 9 is the observation surface R of the observation unit 7. By being arranged at a position adjacent to the cell S, the cells S having the desired characteristics detected by the control unit 11 can be collected by the collection unit 9.
 したがって、本実施形態に係る細胞培養装置1によれば、浮遊培養系において、培養を継続しながら所望の細胞Sのみを最適なタイミングで回収することができる。さらに、観察部7の観察面Rに対して細胞Sの流れ方向の下流側に回収部9の吸引口21aを配置することにより、制御部11によって検出された所望の特徴を有する細胞Sの回収効率を向上することができる。 Therefore, according to the cell culture apparatus 1 according to the present embodiment, in the suspension culture system, only the desired cells S can be recovered at the optimum timing while continuing the culture. Further, by arranging the suction port 21a of the collection unit 9 on the downstream side of the observation surface R of the observation unit 7 in the flow direction of the cells S, the cells S having the desired characteristics detected by the control unit 11 can be collected. Efficiency can be improved.
 本実施形態は以下の構成に変形することができる。
 第1変形例としては、例えば、図5および図6に示すように、培養槽3の側壁部3bから培養槽3の外部に延び、再び培養槽3の内部に繋がる細い流路29を設け、その流路29に観察部7および回収部9を配置することとしてもよい。
This embodiment can be transformed into the following configuration.
As a first modification, for example, as shown in FIGS. 5 and 6, a narrow flow path 29 extending from the side wall portion 3b of the culture tank 3 to the outside of the culture tank 3 and connecting to the inside of the culture tank 3 again is provided. The observation unit 7 and the collection unit 9 may be arranged in the flow path 29.
 例えば、培養槽3の側壁部3bに培養槽3の周方向に間隔をあけて流路入口29aと流路出口29bを設け、これら流路入口29aと流路出口29bとを繋ぐ管状部材29cによって流路29を構成することとしてもよい。そして、この流路29内に、観察部7の観察面Rを配置するとともに、観察面Rに隣接する位置に回収部9の吸引口21aを配置することとしてもよい。本変形例においても、観察部7の観察面Rに対して、細胞Sの流れの下流側に回収部9の吸引口21aを配置することが好ましい。 For example, a flow path inlet 29a and a flow path outlet 29b are provided on the side wall portion 3b of the culture tank 3 at intervals in the circumferential direction of the culture tank 3, and a tubular member 29c connecting the flow path inlet 29a and the flow path outlet 29b is used. The flow path 29 may be configured. Then, the observation surface R of the observation unit 7 may be arranged in the flow path 29, and the suction port 21a of the collection unit 9 may be arranged at a position adjacent to the observation surface R. Also in this modification, it is preferable to arrange the suction port 21a of the collection unit 9 on the downstream side of the flow of the cells S with respect to the observation surface R of the observation unit 7.
 この場合、撹拌機構5による撹拌によって流路29内に流れ込んだ培地Wおよび細胞Sが流路29内の観察面Rを通過する際に観察部7によって観察される。そして、観察部7によって取得された画像中に含まれる所望の特徴を有する細胞Sが制御部11によって検出され、検出された所望の特徴を有する細胞Sが回収部9によって吸引される。 In this case, the medium W and the cells S that have flowed into the flow path 29 by stirring by the stirring mechanism 5 are observed by the observation unit 7 when passing through the observation surface R in the flow path 29. Then, the cell S having a desired characteristic contained in the image acquired by the observation unit 7 is detected by the control unit 11, and the cell S having the detected desired characteristic is sucked by the collecting unit 9.
 本変形例によれば、細い流路29内において観察部7によって細胞Sを検出するとともに回収部9によって細胞Sを吸引することにより、観察部7によって検出された所望の特徴を有する細胞Sを効率的に回収部9によって回収することができる。 According to this modification, the cell S having the desired characteristics detected by the observation unit 7 is obtained by detecting the cell S by the observation unit 7 and sucking the cell S by the recovery unit 9 in the narrow flow path 29. It can be efficiently collected by the collection unit 9.
 本変形例においては、例えば、図6に示すように、培養槽3の流路入口29a付近の内面に径方向内方に突出する突起31を設けることとしてもよい。
 突起31によって培地Wの流れが乱れ、流路入口29aと流路出口29bの付近の流速に差が生じることによって、流路入口29aに培地Wが流れ込み易くなる。
 または、流路29に送液ポンプを配置することによって、培地Wおよび細胞Sを流路29内に流してもよい。
In this modification, for example, as shown in FIG. 6, a protrusion 31 protruding inward in the radial direction may be provided on the inner surface near the flow path inlet 29a of the culture tank 3.
The flow of the medium W is disturbed by the protrusions 31, and the flow velocity in the vicinity of the flow path inlet 29a and the flow path outlet 29b is different, so that the medium W can easily flow into the flow path inlet 29a.
Alternatively, the medium W and the cells S may be allowed to flow into the flow path 29 by arranging the liquid feed pump in the flow path 29.
 第2変形例としては、流路29に代えて、例えば、図7に示すように、観察部7の観察面Rに細胞Sを誘導するための壁33を培養槽3内に設けることとしてもよい。
 この場合、撹拌機構5による細胞Sの流れ方向に沿って湾曲させた形状の壁33を配置し、培養槽3の内壁面と壁33との間に観察面R上を通過させる流路を形成することとしてもよい。
As a second modification, instead of the flow path 29, for example, as shown in FIG. 7, a wall 33 for guiding cells S may be provided in the culture tank 3 on the observation surface R of the observation unit 7. Good.
In this case, a wall 33 having a curved shape is arranged along the flow direction of the cells S by the stirring mechanism 5, and a flow path is formed between the inner wall surface of the culture tank 3 and the wall 33 so as to pass on the observation surface R. You may do it.
 また、撹拌機構5による細胞Sの流れ方向の上流側の壁33と培養槽3の内壁面との距離間隔を広くし、細胞Sの流れ方向の下流側の壁33と培養槽3の内壁面との距離間隔を狭くすることとしてもよい。この構成によって、培養槽3内の培地Wを壁33と培養槽3の内壁面との間の観察面R上に誘導し易くなる。 Further, the distance between the wall 33 on the upstream side in the flow direction of the cells S and the inner wall surface of the culture tank 3 by the stirring mechanism 5 is widened, and the wall 33 on the downstream side in the flow direction of the cells S and the inner wall surface of the culture tank 3 are widened. The distance between the two and the vehicle may be narrowed. With this configuration, the medium W in the culture tank 3 can be easily guided on the observation surface R between the wall 33 and the inner wall surface of the culture tank 3.
 第3変形例としては、例えば、図8および図9に示すように、培養槽として、中空構造を有する容器、すなわち、円筒状の内壁35aと外壁35bとの間に培地Wおよび細胞Sを収容可能な円環状の空間Hを有する培養槽35を採用することとしてもよい。 As a third modification, for example, as shown in FIGS. 8 and 9, as a culture tank, a container having a hollow structure, that is, a medium W and cells S are housed between the cylindrical inner wall 35a and the outer wall 35b. A culture tank 35 having a possible annular space H may be adopted.
 この場合、撹拌部としては、空間H内の培地Wに培養槽35の周方向に流れを発生させることができるものであればよい。例えば、撹拌機構5に代えて、マグネティックスターラ(図示略)を採用し、培地W中でマグネティックスターラを回転させることによって、培地Wに流れを発生させることとしてもよい。また、撹拌部として、送液ポンプ(図示略)を採用し、送液ポンプによって培養槽3内の培地Wを循環させることによって、培地Wに流れを発生させることとしてもよい。 In this case, the stirring unit may be any one that can generate a flow in the circumferential direction of the culture tank 35 in the medium W in the space H. For example, instead of the stirring mechanism 5, a magnetic stirrer (not shown) may be adopted, and the magnetic stirrer may be rotated in the medium W to generate a flow in the medium W. Further, a liquid feeding pump (not shown) may be adopted as the stirring unit, and the medium W in the culture tank 3 may be circulated by the liquid feeding pump to generate a flow in the medium W.
 観察部7は、例えば、図10に示すように、撹拌部による空間H内の細胞Sの流れの方向に対して観察面Rが斜めに交差する角度で配置することが好ましい。この構成によって、細胞Sが観察面Rに沿って移動するのではなく、観察面Rに交差する方向に細胞Sが通過するので、細胞Sが観察面R上から瞬時に消えることになる。これにより、細胞Sを回収するタイミングが計り易くなる。また、本変形例においても、観察部7の観察面Rに対して、細胞Sの流れの下流側に回収部9の吸引口21aを配置することが好ましい。 For example, as shown in FIG. 10, the observation unit 7 is preferably arranged at an angle at which the observation surface R diagonally intersects the direction of the flow of the cells S in the space H by the stirring unit. With this configuration, the cells S do not move along the observation surface R, but the cells S pass in the direction intersecting the observation surface R, so that the cells S disappear instantly from the observation surface R. This makes it easier to measure the timing of collecting the cells S. Further, also in this modification, it is preferable to arrange the suction port 21a of the collection unit 9 on the downstream side of the flow of the cells S with respect to the observation surface R of the observation unit 7.
 本変形例によれば、培養槽3の内壁35aと外壁35bとの間の円環状の空間Hにおいて、撹拌機構5による撹拌によって培地Wとともに細胞Sが培養槽3の周方向に流れるので、所望の特徴を有する細胞Sを検出および吸引し易くなる。 According to this modification, in the annular space H between the inner wall 35a and the outer wall 35b of the culture tank 3, the cells S flow in the circumferential direction of the culture tank 3 together with the medium W by stirring by the stirring mechanism 5, which is desired. It becomes easy to detect and aspirate cells S having the characteristics of.
〔第2実施形態〕
 次に、本発明の第2実施形態に係る細胞培養装置について説明する。
 本実施形態に係る細胞培養装置41は、例えば、図11に示すように、観察部7が、再帰性反射部材47等を備える点で第1実施形態と異なる。細胞培養装置41は制御部11を備えているが、図11においては、制御部11の図示を省略している。
 以下、第1実施形態に係る細胞培養装置1と構成を共通する箇所には、同一符号を付して説明を省略する。
[Second Embodiment]
Next, the cell culture apparatus according to the second embodiment of the present invention will be described.
The cell culture device 41 according to the present embodiment is different from the first embodiment in that, for example, as shown in FIG. 11, the observation unit 7 includes a retroreflective member 47 and the like. Although the cell culture device 41 includes a control unit 11, the control unit 11 is not shown in FIG.
Hereinafter, the parts having the same configuration as the cell culture apparatus 1 according to the first embodiment are designated by the same reference numerals and the description thereof will be omitted.
 本実施形態に係る観察部7は、光源13と、培養槽3の側方に配置された対物レンズ43と、光源13からの照明光を対物レンズ43を経由して培養槽3の外側から培養槽3の内部へ照射する照明光学系45と、培養槽3を透過した照明光を培養槽3へ向けて反射する再帰性反射部材47と、対物レンズ43によって集められた照明光を検出する検出光学系49とを備えている。 The observation unit 7 according to the present embodiment cultures the light source 13, the objective lens 43 arranged on the side of the culture tank 3, and the illumination light from the light source 13 from the outside of the culture tank 3 via the objective lens 43. The illumination optical system 45 that irradiates the inside of the tank 3, the retroreflective member 47 that reflects the illumination light transmitted through the culture tank 3 toward the culture tank 3, and the detection that detects the illumination light collected by the objective lens 43. It is equipped with an optical system 49.
 光源13は、LEDの他、位相差画像の取得に一般に使用される光源、例えば、水銀、ハロゲン、キセノン等のランプ光源を採用することとしてもよい。
 対物レンズ43の光軸は略水平方向に配置される。また、対物レンズ43は培養槽3の方を向いている。対物レンズ43の焦点面F、すなわち観察面Rは、培養槽3の内部に配置される。
As the light source 13, in addition to the LED, a light source generally used for acquiring a phase difference image, for example, a lamp light source such as mercury, halogen, or xenon may be adopted.
The optical axis of the objective lens 43 is arranged in a substantially horizontal direction. Further, the objective lens 43 faces the culture tank 3. The focal plane F of the objective lens 43, that is, the observation plane R is arranged inside the culture tank 3.
 照明光学系45は、光源13から射出された照明光を平行光に変換するレンズ51と、円環状の開口であるリングスリット53aを有する絞り53と、リレー光学系55と、ハーフミラー57とを備えている。
 絞り53のリングスリット53aは、対物レンズ43の瞳位置と光学的に共役な位置に配置されている。レンズ51からの照明光は、絞り53においてリングスリット53aのみを通過する。
The illumination optical system 45 includes a lens 51 that converts illumination light emitted from a light source 13 into parallel light, a diaphragm 53 having a ring slit 53a that is an annular opening, a relay optical system 55, and a half mirror 57. I have.
The ring slit 53a of the aperture 53 is arranged at a position optically conjugate with the pupil position of the objective lens 43. The illumination light from the lens 51 passes only through the ring slit 53a in the aperture 53.
 リレー光学系55は、リングスリット53aからの照明光をリレーする。このようなリレー光学系55は、例えば、一対の凸レンズから構成される。
 ハーフミラー57は、リレー光学系55からの照明光の一部、例えば、リレー光学系55からハーフミラー57に入射する照明光の50%を対物レンズ43に向かって反射する。また、ハーフミラー57は、対物レンズ43からの照明光の一部、例えば、対物レンズ43からハーフミラー57に入射する照明光の50%を透過させる。
The relay optical system 55 relays the illumination light from the ring slit 53a. Such a relay optical system 55 is composed of, for example, a pair of convex lenses.
The half mirror 57 reflects a part of the illumination light from the relay optical system 55, for example, 50% of the illumination light incident on the half mirror 57 from the relay optical system 55 toward the objective lens 43. Further, the half mirror 57 transmits a part of the illumination light from the objective lens 43, for example, 50% of the illumination light incident on the half mirror 57 from the objective lens 43.
 ハーフミラー57によって反射された照明光は、対物レンズ43の光軸に沿って対物レンズ43に入射し、対物レンズ43から培養槽3へ向かって射出される。すなわち、対物レンズ43は、照明光学系45の一部としても機能する。対物レンズ43からの照明光は、培養槽3の側壁を透過して培養槽3の内部を略水平方向に横断した後、培養槽3の側壁を再び透過して培養槽3の外部へ射出される。絞り53の位置は、絞り53に入射する照明光の光軸に直交する方向に調整可能である。絞り53の位置調整によって、対物レンズ43から培養槽3に入射する照明光の位置を照明光の光軸に交差する方向に変更することができる。 The illumination light reflected by the half mirror 57 enters the objective lens 43 along the optical axis of the objective lens 43, and is emitted from the objective lens 43 toward the culture tank 3. That is, the objective lens 43 also functions as a part of the illumination optical system 45. The illumination light from the objective lens 43 passes through the side wall of the culture tank 3 and crosses the inside of the culture tank 3 in a substantially horizontal direction, and then passes through the side wall of the culture tank 3 again and is emitted to the outside of the culture tank 3. To. The position of the diaphragm 53 can be adjusted in a direction orthogonal to the optical axis of the illumination light incident on the diaphragm 53. By adjusting the position of the aperture 53, the position of the illumination light incident on the culture tank 3 from the objective lens 43 can be changed in a direction intersecting the optical axis of the illumination light.
 再帰性反射部材47は、対物レンズ43との間に培養槽3を略水平方向に挟んで配置されている。再帰性反射部材47は、面Pに沿って多数の微小な反射要素47aが配列されたアレイを有している。面Pは、培養槽3を透過した照明光の光軸に交差する面である。反射要素47aは、例えば、プリズムまたは球状のガラスビーズである。 The retroreflective member 47 is arranged so as to sandwich the culture tank 3 with the objective lens 43 in a substantially horizontal direction. The retroreflective member 47 has an array in which a large number of minute reflective elements 47a are arranged along the surface P. The surface P is a surface that intersects the optical axis of the illumination light that has passed through the culture tank 3. The reflective element 47a is, for example, a prism or spherical glass beads.
 反射要素47aに入射した照明光は、入射時とは逆向きに反射要素47aから射出される。反射要素47aは微小であるので、入射時と射出時との間で照明光の経路のシフトはほとんど生じない。したがって、再帰性反射部材47によって反射された照明光は、再帰性反射部材47に入射する照明光の経路と同一の経路に沿って戻る。すなわち、培養槽3の内部と再帰性反射部材47との間で照明光は同一経路を往復する。 The illumination light incident on the reflective element 47a is emitted from the reflective element 47a in the opposite direction to that at the time of incident. Since the reflective element 47a is minute, there is almost no shift in the path of the illumination light between the time of incident and the time of emission. Therefore, the illumination light reflected by the retroreflective member 47 returns along the same path as the path of the illumination light incident on the retroreflective member 47. That is, the illumination light reciprocates in the same path between the inside of the culture tank 3 and the retroreflective member 47.
 反射要素47aが配列される面Pは、平面および曲面のいずれであってもよい。例えば、面Pは、図11に示されるように一定の曲率を有し一方向に湾曲する曲面であってもよいし、複数方向に湾曲する曲面であってもよい。
 対物レンズ43および再帰性反射部材47は、対物レンズ43と再帰性反射部材47との間の照明光の光路に撹拌機構5の撹拌軸5aおよび撹拌翼5bが干渉しない位置に配置される。
The surface P on which the reflective elements 47a are arranged may be either a flat surface or a curved surface. For example, the surface P may be a curved surface having a constant curvature and curved in one direction as shown in FIG. 11, or may be a curved surface curved in a plurality of directions.
The objective lens 43 and the retroreflective member 47 are arranged at positions where the stirring shaft 5a and the stirring blade 5b of the stirring mechanism 5 do not interfere with the optical path of the illumination light between the objective lens 43 and the retroreflective member 47.
 検出光学系49は、対物レンズ43の瞳位置に配置された位相膜59と、レンズ15と、撮像部17とを備えている。
 位相膜59は、リングスリット53aの形状に対応する形状、すなわち円環状を有する。位相膜59は、位相膜59を透過する照明光の位相をシフトさせる。位相膜59は、対物レンズ43の瞳位置と光学的に共役な位置に配置されていてもよい。
The detection optical system 49 includes a phase film 59 arranged at the pupil position of the objective lens 43, a lens 15, and an imaging unit 17.
The phase film 59 has a shape corresponding to the shape of the ring slit 53a, that is, an annular shape. The phase film 59 shifts the phase of the illumination light transmitted through the phase film 59. The phase film 59 may be arranged at a position optically conjugate with the pupil position of the objective lens 43.
 回収部9の吸引口21aは、観察部7の観察面Rに隣接する位置に配置されている。本実施形態においても、観察部7の観察面Rに対して、細胞Sの流れの下流側に回収部9の吸引口21aが配置されている。 The suction port 21a of the collection unit 9 is arranged at a position adjacent to the observation surface R of the observation unit 7. Also in this embodiment, the suction port 21a of the collection unit 9 is arranged on the downstream side of the flow of the cells S with respect to the observation surface R of the observation unit 7.
 次に、上記構成の細胞培養装置41の作用について説明する。
 光源13から発せられた照明光は、図11に示されるように、照明光学系45から対物レンズ43を経由して培養槽3に照射される。照明光は、培養槽3内に入射した後、培養槽3内の培地Wを透過して培養槽3から射出される。
Next, the operation of the cell culture device 41 having the above configuration will be described.
As shown in FIG. 11, the illumination light emitted from the light source 13 is emitted from the illumination optical system 45 to the culture tank 3 via the objective lens 43. After being incident on the culture tank 3, the illumination light passes through the medium W in the culture tank 3 and is emitted from the culture tank 3.
 続いて、照明光は、再帰性反射部材47によって反射されて培養槽3内に再び入射した後、培養槽3内の培地Wを逆向きに透過して培養槽3から射出される。したがって、培養槽3内で培地W中に浮遊する細胞Sは、対物レンズ43による落射照明と再帰性反射部材47による透過照明の2種類の照明法によって照明される。 Subsequently, the illumination light is reflected by the retroreflective member 47 and re-enters the culture tank 3, and then passes through the medium W in the culture tank 3 in the opposite direction and is emitted from the culture tank 3. Therefore, the cells S floating in the medium W in the culture tank 3 are illuminated by two types of illumination methods: epi-illumination by the objective lens 43 and transmission illumination by the retroreflective member 47.
 培養槽3内を2回透過する間に、照明光の一部は、培地W中に浮遊する透明な細胞Sを透過することによって、屈折する。培養槽3を2回透過した後、照明光は、対物レンズ43およびハーフミラー57を透過し、レンズ15によって撮像部17上に結像される。 While passing through the culture tank 3 twice, a part of the illumination light is refracted by passing through the transparent cells S floating in the medium W. After passing through the culture tank 3 twice, the illumination light passes through the objective lens 43 and the half mirror 57, and is imaged on the image pickup unit 17 by the lens 15.
 対物レンズ43内には、リングスリット53aと光学的に共役な位置に位相膜59が配置されている。培養槽3内で細胞Sを透過した照明光(屈折光)は、対物レンズ43内で位相膜59とは異なる位置を通過し、対物レンズ43から射出される。一方、培養槽3内で細胞Sを透過しなかった照明光(直進光)は、対物レンズ43内で位相膜59を透過することによって位相にシフトが与えられ、対物レンズ43から射出される。したがって、撮像部17上には、屈折光と直進光との干渉による明暗がついた細胞Sの光学像が形成される。これにより、撮像部17によって細胞Sの位相差画像が取得される。 In the objective lens 43, the phase film 59 is arranged at a position optically conjugate with the ring slit 53a. The illumination light (refracted light) transmitted through the cells S in the culture tank 3 passes through a position different from that of the phase film 59 in the objective lens 43 and is emitted from the objective lens 43. On the other hand, the illumination light (straight light) that did not pass through the cells S in the culture tank 3 is given a phase shift by passing through the phase film 59 in the objective lens 43, and is emitted from the objective lens 43. Therefore, an optical image of the cell S with light and darkness due to the interference between the refracted light and the straight light is formed on the imaging unit 17. As a result, the imaging unit 17 acquires a phase-difference image of the cell S.
 次いで、制御部11により、観察部7によって取得された位相差画像から所望の特徴を有する細胞Sが検出され、検出され所望の特徴を有する細胞Sが回収部9によって吸引される。 Next, the control unit 11 detects the cells S having the desired characteristics from the phase difference image acquired by the observation unit 7, and the detected cells S having the desired characteristics are sucked by the recovery unit 9.
 この場合において、再帰性反射部材47は、上述したように、多数の微小な反射要素47aによって、入射時と同一経路に沿って照明光を反射する。したがって、再帰性反射部材47から培養槽3内に入射した照明光は、再帰性反射部材47と培養槽3の内部との間に存在する培養槽3の側壁の形状に関わらず、培養槽3内の細胞Sを同一方向から同一角度で照明する。 In this case, as described above, the retroreflective member 47 reflects the illumination light along the same path as at the time of incident by a large number of minute reflecting elements 47a. Therefore, the illumination light incident on the culture tank 3 from the retroreflective member 47 is the culture tank 3 regardless of the shape of the side wall of the culture tank 3 existing between the retroreflective member 47 and the inside of the culture tank 3. The cells S inside are illuminated from the same direction at the same angle.
 例えば、培養槽3の側壁が曲率または凹凸を有する場合、培養槽3の側壁は照明光に対してレンズ効果を発揮する。ただし、培養槽3の側壁を照明光が同一経路に沿って往復することによって、レンズ効果はキャンセルされる。すなわち、再帰性反射部材47から培養槽3内に入射する照明光の向きおよび角度は、再帰性反射部材47と培養槽3の内部との間の側壁の影響を受けない。したがって、培養槽3が柔軟な材質からなり培養槽3の側壁が継時的に変形したとしても、あるいは、培養槽3を形状およびサイズが異なる他の培養槽3に交換したとしても、再帰性反射部材47からの照明光によって培養槽3内の細胞Sを安定的に照明することができる。 For example, when the side wall of the culture tank 3 has a curvature or unevenness, the side wall of the culture tank 3 exerts a lens effect with respect to illumination light. However, the lens effect is canceled by the illumination light reciprocating along the same path on the side wall of the culture tank 3. That is, the direction and angle of the illumination light incident on the culture tank 3 from the retroreflective member 47 are not affected by the side wall between the retroreflective member 47 and the inside of the culture tank 3. Therefore, even if the culture tank 3 is made of a flexible material and the side wall of the culture tank 3 is deformed over time, or even if the culture tank 3 is replaced with another culture tank 3 having a different shape and size, it is reflexive. The cells S in the culture tank 3 can be stably illuminated by the illumination light from the reflective member 47.
 対物レンズ43と培養槽3の内部との間の培養槽3の側壁が平坦である場合、対物レンズ43から培養槽3内に入射した照明光は、対物レンズ43の光軸に沿って進む。すなわち、同軸落射照明が実現される。 When the side wall of the culture tank 3 between the objective lens 43 and the inside of the culture tank 3 is flat, the illumination light incident on the culture tank 3 from the objective lens 43 travels along the optical axis of the objective lens 43. That is, coaxial epi-illumination is realized.
 一方、対物レンズ43と培養槽3の内部との間の培養槽3の側壁が曲率または凹凸を有する場合、対物レンズ43から培養槽3内に入射する照明光の光軸が、培養槽3の側壁のレンズ効果によって対物レンズ43の光軸に対して傾く。その結果、再帰性反射部材47から対物レンズ43に戻った照明光(直進光)の位置が、位相膜59の位置から光軸に交差する方向にずれることがある。このような場合には、再帰性反射部材47から対物レンズ43に戻った照明光(直進光)が位相膜59を透過するように、絞り53の位置調整によって、照明光学系6から培養槽3に照射される照明光の位置が調整される。 On the other hand, when the side wall of the culture tank 3 between the objective lens 43 and the inside of the culture tank 3 has a curvature or unevenness, the optical axis of the illumination light incident on the culture tank 3 from the objective lens 43 is the culture tank 3. It tilts with respect to the optical axis of the objective lens 43 due to the lens effect of the side wall. As a result, the position of the illumination light (straight light) returned from the retroreflective member 47 to the objective lens 43 may shift from the position of the phase film 59 in the direction intersecting the optical axis. In such a case, the illumination optical system 6 to the culture tank 3 are adjusted by adjusting the position of the aperture 53 so that the illumination light (straight light) returned from the retroreflective member 47 to the objective lens 43 passes through the phase film 59. The position of the illumination light applied to the light is adjusted.
 本実施形態においては、照明光学系45が、対物レンズ43を経由して培養槽3内の観察面Rに照明光を照射することとしたが、これに代えて、例えば、対物レンズ43を経由させずに培養槽3内の観察面Rに照明光を照射してもよい。この場合、照明光学系45が、対物レンズ43の側方に配置される光源を備え、この光源から培養槽3内の観察面Rに照明光を照射することとすればよい。照明光の光軸を対物レンズ43の光軸にできるだけ近付かせるために、この光源は対物レンズ43の近傍に配置されることが好ましい。 In the present embodiment, the illumination optical system 45 irradiates the observation surface R in the culture tank 3 with the illumination light via the objective lens 43, but instead of this, the illumination optical system 45 passes through the objective lens 43, for example. The observation surface R in the culture tank 3 may be irradiated with illumination light without causing the observation. In this case, the illumination optical system 45 may include a light source arranged on the side of the objective lens 43, and the observation surface R in the culture tank 3 may be irradiated with illumination light from this light source. In order to bring the optical axis of the illumination light as close as possible to the optical axis of the objective lens 43, it is preferable that this light source is arranged in the vicinity of the objective lens 43.
 また、本実施形態においては、リングスリット53aおよび位相膜59を用いて細胞Sの位相差画像を取得することとしたが、これに代えて、細胞Sの明視野画像を取得してもよい。すなわち、照明光学系45が絞り53を備えず、検出光学系49が位相膜59を備えていなくてもよい。この場合、細胞Sの落射明視野画像と透過明視野画像が取得される。 Further, in the present embodiment, the phase difference image of the cell S is acquired by using the ring slit 53a and the phase film 59, but instead, a bright field image of the cell S may be acquired. That is, the illumination optical system 45 does not have to include the aperture 53, and the detection optical system 49 does not have to include the phase film 59. In this case, the epi-illuminated visual field image and the transmitted bright-field image of the cells S are acquired.
 また、本実施形態においては、対物レンズ43と培養槽3との間に、空気とは異なる屈折率を有する媒質が充填されてもよい。媒質は、例えば、水、オイル、ゲルまたは吸水性ポリマである。媒質の屈折率は、培地Wの屈折率と同一または近いことが好ましい。媒質の屈折率は、培養槽3の材質の屈折率と同一または近くてもよい。 Further, in the present embodiment, a medium having a refractive index different from that of air may be filled between the objective lens 43 and the culture tank 3. The medium is, for example, water, oil, gel or water-absorbing polymer. The refractive index of the medium is preferably the same as or close to the refractive index of the medium W. The refractive index of the medium may be the same as or close to the refractive index of the material of the culture tank 3.
 対物レンズ43と培養槽3との間の媒質によって、対物レンズ43から培養槽3内に入射する照明光に対する、培養槽3の側壁のレンズ効果が低減される。これにより、培養槽3の側壁が曲率または凹凸を有する場合に、対物レンズ43から細胞Sに照射される照明光の向きおよび角度を安定させることができる。媒質は、媒質の表面張力によって対物レンズ43と培養槽3との間に保持されてもよい。 The medium between the objective lens 43 and the culture tank 3 reduces the lens effect of the side wall of the culture tank 3 with respect to the illumination light incident on the culture tank 3 from the objective lens 43. Thereby, when the side wall of the culture tank 3 has a curvature or unevenness, the direction and angle of the illumination light emitted from the objective lens 43 to the cells S can be stabilized. The medium may be held between the objective lens 43 and the culture tank 3 by the surface tension of the medium.
〔第3実施形態〕
 次に、本発明の第3実施形態に係る細胞培養装置について説明する。
 本実施形態に係る細胞培養装置61は、例えば、図12~図14に示すように、観察部7を収容する筒状の形態を有する筐体63を採用する点で第1実施形態と異なる。細胞培養装置61は制御部11を備えているが、図12~図14においては、制御部11の図示を省略している。
 以下、第1実施形態に係る細胞培養装置1と構成を共通する箇所には、同一符号を付して説明を省略する。
[Third Embodiment]
Next, the cell culture apparatus according to the third embodiment of the present invention will be described.
The cell culture device 61 according to the present embodiment is different from the first embodiment in that, for example, as shown in FIGS. 12 to 14, a housing 63 having a tubular shape for accommodating the observation unit 7 is adopted. Although the cell culture device 61 includes a control unit 11, the control unit 11 is not shown in FIGS. 12 to 14.
Hereinafter, the parts having the same configuration as the cell culture apparatus 1 according to the first embodiment are designated by the same reference numerals and the description thereof will be omitted.
 筐体63は、培養槽3の上面3aのポート(図示略)を経由して培地W中に挿入可能な細長い筒状の形態を有している。また、筐体63は、例えば、ポリ塩化ビニル等により形成され、柔軟性を有している。この筐体63は、図13に示すように、長手方向の先端部63aが長手方向に交差する方向に折り曲げられている。 The housing 63 has an elongated tubular shape that can be inserted into the medium W via a port (not shown) on the upper surface 3a of the culture tank 3. Further, the housing 63 is made of, for example, polyvinyl chloride or the like and has flexibility. As shown in FIG. 13, the housing 63 is bent in a direction in which the tip portions 63a in the longitudinal direction intersect in the longitudinal direction.
 また、筐体63は、図14に示すように、先端部63aの最先端において、照明光および観察光を透過させる透明部63bを有している。筐体63の先端部63aを折り曲げ、先端部63aの最先端の透明部63bを通して照明および撮影することによって、筐体63を撹拌軸5aに沿って培養槽3内に挿入した場合に、撹拌機構5による培地Wの流れ方向に対して、観察部7の観察面Rを斜めに交差させる角度で配置することができる。 Further, as shown in FIG. 14, the housing 63 has a transparent portion 63b that transmits illumination light and observation light at the cutting edge of the tip portion 63a. A stirring mechanism when the housing 63 is inserted into the culture tank 3 along the stirring shaft 5a by bending the tip 63a of the housing 63 and illuminating and photographing through the cutting-edge transparent portion 63b of the tip 63a. The observation surface R of the observation unit 7 can be arranged at an angle that diagonally intersects the flow direction of the medium W according to 5.
 光源13は、図14に示すように、筐体63の先端部63aにおいて、透明部63bに対向した状態で配置されている。
 レンズ15は、筐体63の先端部63aにおいて、透明部63bに対向した状態で光源13と並んで配置されている。
 撮像部17は、筐体63の先端部aにおいて、レンズ15よりも基端側に配置されている。
As shown in FIG. 14, the light source 13 is arranged at the tip end portion 63a of the housing 63 so as to face the transparent portion 63b.
The lens 15 is arranged side by side with the light source 13 at the tip end portion 63a of the housing 63 so as to face the transparent portion 63b.
The image pickup unit 17 is arranged at the tip end portion a of the housing 63 on the proximal end side of the lens 15.
 回収部9は、観察部7の観察面Rに隣接する位置に配置されている。本実施形態においても、観察部7の観察面Rに対して、細胞Sの流れの下流側に回収部9の吸引口21aが配置されている。 The collection unit 9 is arranged at a position adjacent to the observation surface R of the observation unit 7. Also in this embodiment, the suction port 21a of the collection unit 9 is arranged on the downstream side of the flow of the cells S with respect to the observation surface R of the observation unit 7.
 次に、本実施形態に係る細胞培養装置61の作用について説明する。
 上記構成の細胞培養装置61によって細胞Sを培養しながら観察する場合は、まず、図12および図13に示すように、培養槽3のポートを経由させて、培地W内に筐体63を挿入する。筐体63には予め滅菌処理を施しておく。
Next, the operation of the cell culture device 61 according to the present embodiment will be described.
When observing the cells S while culturing them with the cell culture device 61 having the above configuration, first, as shown in FIGS. 12 and 13, the housing 63 is inserted into the medium W via the port of the culture tank 3. To do. The housing 63 is sterilized in advance.
 次いで、撹拌機構5によって培地Wを撹拌しながら、筐体63内の光源13から照明光を発生させる。光源13から発せられた照明光は、筐体63の透明部63bを経由して培養槽3内の観察面Rに照射される。そして、照明光が照射された観察面Rから透明部63bを経由して筐体63内に入射した観察光がレンズ15によって集光され、観察光の光学像が撮像部17によって撮影される。 Next, while stirring the medium W by the stirring mechanism 5, illumination light is generated from the light source 13 in the housing 63. The illumination light emitted from the light source 13 is applied to the observation surface R in the culture tank 3 via the transparent portion 63b of the housing 63. Then, the observation light incident on the housing 63 from the observation surface R irradiated with the illumination light via the transparent portion 63b is collected by the lens 15, and the optical image of the observation light is photographed by the imaging unit 17.
 撮像部17によって取得された観察面Rの画像は制御部11に送られる。制御部11により、観察部7によって取得された画像から所望の特徴を有する細胞Sが検出され、検出された所望の特徴を有する細胞が回収部9によって吸引される。 The image of the observation surface R acquired by the imaging unit 17 is sent to the control unit 11. The control unit 11 detects the cells S having the desired characteristics from the image acquired by the observation unit 7, and the collection unit 9 sucks the detected cells having the desired characteristics.
 本実施形態に係る細胞培養装置61によれば、筐体63および回収部9を培養槽3内に挿入することにより、筐体63の透明部63bおよび回収部9の吸引口21aが配置される培養槽3内の所望の位置において、培地W中の細胞Sを観察しながら検出した所望の特徴を有する細胞Sを吸引することができる。 According to the cell culture apparatus 61 according to the present embodiment, by inserting the housing 63 and the recovery unit 9 into the culture tank 3, the transparent portion 63b of the housing 63 and the suction port 21a of the recovery unit 9 are arranged. At a desired position in the culture tank 3, cells S having the desired characteristics detected while observing the cells S in the medium W can be aspirated.
 回収部9は、培養槽3の上面3aのポートを経由して、筐体63と並行して培地W中に挿入され、観察面Rの近傍に吸引口21aが配置されてもよい。この場合、筐体63と回収部9とが一体として構成されていてもよい。 The collection unit 9 may be inserted into the medium W in parallel with the housing 63 via the port on the upper surface 3a of the culture tank 3, and the suction port 21a may be arranged in the vicinity of the observation surface R. In this case, the housing 63 and the collection unit 9 may be integrally configured.
 本実施形態は以下の構成に変形することができる。
 本実施形態においては、光源13および撮像部17が筐体63の先端部63aに配置されていることとしたが、第1変形例としては、これに代えて、例えば、光源13および撮像部17を筐体63の基端部に配置することとしてもよい。
This embodiment can be transformed into the following configuration.
In the present embodiment, the light source 13 and the image pickup unit 17 are arranged at the tip end portion 63a of the housing 63, but as a first modification, for example, the light source 13 and the image pickup unit 17 are arranged instead. May be arranged at the base end portion of the housing 63.
 この場合、光源13から発せられた照明光をファイバ(図示略)によって導光し、筐体63の先端部63aにおいてファイバの先端から射出させることとしてもよい。また、筐体63の先端部63aにおいて観察面Rからの観察光をバンドルファイバ(図示略)によって受光し、筐体63の基端部においてバンドルファイバから撮像部17に入射させることとしてもよい。 In this case, the illumination light emitted from the light source 13 may be guided by a fiber (not shown) and emitted from the tip of the fiber at the tip 63a of the housing 63. Further, the observation light from the observation surface R may be received by the bundle fiber (not shown) at the tip end portion 63a of the housing 63, and may be incident on the imaging unit 17 from the bundle fiber at the base end portion of the housing 63.
 本実施形態においては、観察面Rに対して細胞Sの流れ方向の下流側に回収部9の吸引口21aを配置することとしたが、第2変形例としては、例えば、図15に示すように、観察面Rの上流側等、観察面Rに隣接する任意の位置に回収部9の吸引口21aを配置することとしてもよい。 In the present embodiment, the suction port 21a of the collection unit 9 is arranged on the downstream side of the observation surface R in the flow direction of the cell S, but as a second modification, for example, as shown in FIG. In addition, the suction port 21a of the collection unit 9 may be arranged at an arbitrary position adjacent to the observation surface R, such as the upstream side of the observation surface R.
 観察面R上を通過する細胞Sの流れの速度に対して、観察部7による画像取得および制御部11による細胞Sの検出に係る速度が十分に速い場合に有効である。この構成によって、回収部9の吸引口21aを配置する位置の自由度を向上することができる。 It is effective when the speed of image acquisition by the observation unit 7 and the detection of the cell S by the control unit 11 is sufficiently faster than the speed of the flow of the cells S passing over the observation surface R. With this configuration, it is possible to improve the degree of freedom in the position where the suction port 21a of the collection unit 9 is arranged.
 また、第3変形例としては、例えば、図16に示すように、筐体63の周囲を覆う筒状の保護チューブ67を備えることとしてもよい。 Further, as a third modification, for example, as shown in FIG. 16, a tubular protective tube 67 that covers the periphery of the housing 63 may be provided.
 保護チューブ67は、培養槽3のポートを経由して培地W中に挿入可能な細長い形状を有している。また、保護チューブ67は、内部に筐体63を挿脱可能に形成されている。この保護チューブ67は、例えば、アクリル樹脂(PMMA)またはポリ塩化ビニル等の透明な樹脂材料により形成されている。したがって、保護チューブ67の全体が照明光および観察光を透過させる光学的に透明な透明部を構成している。本実施形態においては、保護チューブ67の長手方向の先端を透明部67aとする。 The protective tube 67 has an elongated shape that can be inserted into the medium W via the port of the culture tank 3. Further, the protective tube 67 is formed so that the housing 63 can be inserted and removed inside. The protective tube 67 is made of a transparent resin material such as, for example, acrylic resin (PMMA) or polyvinyl chloride. Therefore, the entire protective tube 67 constitutes an optically transparent transparent portion that transmits illumination light and observation light. In the present embodiment, the tip of the protective tube 67 in the longitudinal direction is a transparent portion 67a.
 保護チューブ67は、透明部67aの外側において、保護チューブ67の長手方向に突出する突起69を有している。突起69は、例えば、図16に示すように、保護チューブ67の先端から保護チューブ67の長手方向に沿って延びる柱状部69aと、柱状部69aの先端から保護チューブ67の長手方向に交差する方向に屈曲することによって透明部67aの前方を遮る位置に配置される屈曲部69bとを備えている。 The protective tube 67 has a protrusion 69 protruding in the longitudinal direction of the protective tube 67 on the outside of the transparent portion 67a. As shown in FIG. 16, the protrusion 69 has a columnar portion 69a extending from the tip of the protective tube 67 along the longitudinal direction of the protective tube 67 and a direction intersecting the longitudinal direction of the protective tube 67 from the tip of the columnar portion 69a. It is provided with a bent portion 69b arranged at a position of blocking the front of the transparent portion 67a by bending the transparent portion 67a.
 柱状部69aは、保護チューブ67に筐体63が挿入された状態で、光源13およびレンズ15の各光軸からずれた位置に配置される。
 屈曲部69bは、保護チューブ67に筐体63が挿入された状態で、光源13およびレンズ15の光軸上に配置される。この屈曲部69bは、光源13から筐体63の透明部63bおよび保護チューブ67の透明部67aを経由して保護チューブ67の外部に射出された照明光をレンズ15に向けて反射することによって、培養槽3内の観察面Rを偏斜照明する反射部材として機能する。
The columnar portion 69a is arranged at a position deviated from each optical axis of the light source 13 and the lens 15 with the housing 63 inserted in the protective tube 67.
The bent portion 69b is arranged on the optical axis of the light source 13 and the lens 15 with the housing 63 inserted in the protective tube 67. The bent portion 69b reflects the illumination light emitted from the light source 13 to the outside of the protective tube 67 via the transparent portion 63b of the housing 63 and the transparent portion 67a of the protective tube 67 toward the lens 15. It functions as a reflective member that obliquely illuminates the observation surface R in the culture tank 3.
 上記構成によれば、筐体63内の光源13から筐体63の透明部63bおよび保護チューブ67の透明部67aを経由して照明光が射出される。保護チューブ67の透明部67aから射出された照明光は、保護チューブ67の透明部67aの前方において、突起31の屈曲部69bによって保護チューブ67の透明部67aに向かって反射される。これにより、保護チューブ67の透明部67aと屈曲部69bとの間における培養槽3内の観察面Rに照明光が照射される。 According to the above configuration, the illumination light is emitted from the light source 13 in the housing 63 via the transparent portion 63b of the housing 63 and the transparent portion 67a of the protective tube 67. The illumination light emitted from the transparent portion 67a of the protective tube 67 is reflected toward the transparent portion 67a of the protective tube 67 by the bent portion 69b of the protrusion 31 in front of the transparent portion 67a of the protective tube 67. As a result, the observation surface R in the culture tank 3 between the transparent portion 67a and the bent portion 69b of the protective tube 67 is irradiated with the illumination light.
 照明光が照射されることによって観察面Rから戻る観察光は、保護チューブ67の透明部67aおよび筐体63の透明部63bを経由してレンズ15によって集光され、観察光の光学像が撮像部17によって撮影される。
 次いで、制御部11により、観察部7によって取得された画像から所望の特徴を有する細胞Sが検出され、検出された所望の特徴を有する細胞が回収部9によって吸引される。
The observation light returned from the observation surface R by being irradiated with the illumination light is collected by the lens 15 via the transparent portion 67a of the protective tube 67 and the transparent portion 63b of the housing 63, and an optical image of the observation light is captured. Photographed by part 17.
Next, the control unit 11 detects the cells S having the desired characteristics from the image acquired by the observation unit 7, and the recovery unit 9 sucks the detected cells having the desired characteristics.
 本変形例によれば、保護チューブ67が培養槽3のポートを経由して培地W中に挿入可能な形状を有することによって、保護チューブ67によって筐体63と筐体63内の光源13、レンズ15および撮像部17とを安全に保護した状態で、これら筐体63、光源13、レンズ15および撮像部17を培養槽3内に挿入するとともに培養槽3内で作動させることができる。 According to this modification, the protective tube 67 has a shape that can be inserted into the medium W via the port of the culture tank 3, so that the protective tube 67 causes the housing 63, the light source 13 in the housing 63, and the lens. With the 15 and the imaging unit 17 safely protected, the housing 63, the light source 13, the lens 15 and the imaging unit 17 can be inserted into the culture tank 3 and operated in the culture tank 3.
 また、保護チューブ67をアクリル樹脂やポリ塩化ビニル等の透明な樹脂材料により形成することによって、保護チューブ67をUV滅菌した状態で使用し、使用後は保護チューブ67のみをディスポーザブルにして交換することができる。これにより、繰り返し使用する筐体63を培地W中に直接挿入する場合よりも、培地Wが汚染されるのを回避することができる。 Further, by forming the protective tube 67 with a transparent resin material such as acrylic resin or polyvinyl chloride, the protective tube 67 is used in a UV sterilized state, and after use, only the protective tube 67 is made disposable and replaced. Can be done. As a result, it is possible to avoid contamination of the medium W as compared with the case where the housing 63 to be used repeatedly is directly inserted into the medium W.
 また、培養槽3内で照明光が照射される観察面Rが保護チューブ67の透明部63bと突起31の屈曲部69bとの間の空間に制限されることによって、保護チューブ67の透明部63bと突起31の屈曲部69bとの間の空間に侵入した細胞Sを撮影することができる。 Further, the observation surface R irradiated with the illumination light in the culture tank 3 is limited to the space between the transparent portion 63b of the protective tube 67 and the bent portion 69b of the protrusion 31, so that the transparent portion 63b of the protective tube 67 is restricted. The cells S that have invaded the space between the protrusion 31 and the bent portion 69b of the protrusion 31 can be photographed.
〔第4実施形態〕
 次に、本発明の第4実施形態に係る細胞培養装置について説明する。
 本実施形態に係る細胞培養装置71は、例えば、図17および図18に示すように、培養槽3に培地Wを供給する培地供給部73を備え、制御部11が培地供給部73を制御する点で第1実施形態と異なる。
 以下、第1実施形態に係る細胞培養装置1と構成を共通する箇所には、同一符号を付して説明を省略する。
[Fourth Embodiment]
Next, the cell culture apparatus according to the fourth embodiment of the present invention will be described.
As shown in FIGS. 17 and 18, for example, the cell culture apparatus 71 according to the present embodiment includes a culture medium supply unit 73 that supplies the culture medium W to the culture tank 3, and the control unit 11 controls the culture medium supply unit 73. It differs from the first embodiment in that it is different from the first embodiment.
Hereinafter, the parts having the same configuration as the cell culture apparatus 1 according to the first embodiment are designated by the same reference numerals and the description thereof will be omitted.
 培地供給部73は、新しい培地Wを保持している培地保持容器75と、培地保持容器75と培養槽3とを繋ぐチューブ等の管状部材77とを備えている。
 培地保持容器75は、例えば、有底筒状の容器である。この培地保持容器75は、図18に示すように、培地Wを排出するための排出口75aを底面近傍に有している。
The medium supply unit 73 includes a medium holding container 75 that holds a new medium W, and a tubular member 77 such as a tube that connects the medium holding container 75 and the culture tank 3.
The medium holding container 75 is, for example, a bottomed tubular container. As shown in FIG. 18, the medium holding container 75 has a discharge port 75a for discharging the medium W near the bottom surface.
 管状部材77は、図18に示すように、長手方向の一端が培地保持容器75の排出口75aに接続され、長手方向の他端が培養槽3の供給口3cに接続されている。これにより、管状部材77は、培地保持容器75から培養槽3へ培地Wを供給するための流路を形成する。管状部材77には、培地保持容器75から培養槽3への培地Wの供給と非供給とを切り替えるペリスタポンプ等の送液ポンプ79が設けられている。 As shown in FIG. 18, the tubular member 77 has one end in the longitudinal direction connected to the discharge port 75a of the culture medium holding container 75 and the other end in the longitudinal direction connected to the supply port 3c of the culture tank 3. As a result, the tubular member 77 forms a flow path for supplying the medium W from the medium holding container 75 to the culture tank 3. The tubular member 77 is provided with a liquid feeding pump 79 such as a perista pump that switches between supply and non-supply of the medium W from the medium holding container 75 to the culture tank 3.
 送液ポンプ79は、制御部11からの信号を受信する受信部(図示略)を有している。この送液ポンプ79は、受信部が制御部11からの信号を受信することによってON/OFFが切り替えられる。送液ポンプ79は、ON状態に切り替えられると、培地保持容器75内の培地Wを管状部材77を経由させて培養槽3へ供給する。また、送液ポンプ79は、OFF状態に切り替えられると、培地保持容器75から培養槽3への培地Wの供給を停止する。 The liquid feed pump 79 has a receiving unit (not shown) that receives a signal from the control unit 11. The liquid feed pump 79 is switched on / off when the receiving unit receives the signal from the control unit 11. When the liquid feed pump 79 is switched to the ON state, the medium W in the medium holding container 75 is supplied to the culture tank 3 via the tubular member 77. Further, when the liquid feed pump 79 is switched to the OFF state, the supply of the medium W from the medium holding container 75 to the culture tank 3 is stopped.
 制御部11は、送液ポンプ79の駆動を制御することによって、培地保持容器75から培養槽3への培地Wの供給のON/OFFを切り換える。また、制御部11は、回収部9によって吸引した培地Wの量が所定の閾値を超えた場合に、図示しない送信部によって培地供給部73に駆動信号を送る。これにより、培地供給部73によって培養槽3に新たな培地Wが供給される。 The control unit 11 switches ON / OFF of the supply of the medium W from the medium holding container 75 to the culture tank 3 by controlling the drive of the liquid feeding pump 79. Further, when the amount of the medium W sucked by the collection unit 9 exceeds a predetermined threshold value, the control unit 11 sends a drive signal to the medium supply unit 73 by a transmission unit (not shown). As a result, the medium supply unit 73 supplies the culture medium W with the new medium W.
 本実施形態に係る細胞培養装置71によれば、制御部11により、回収部9によって吸引された培地Wの量が所定の閾値を超えたか否かが判定される。そして、回収部9によって吸引された培地Wの量が所定の閾値を超えたと判定された場合に、制御部11によって培地供給部73が制御され、培地供給部73によって培養槽3に新たな培地Wが供給される。 According to the cell culture device 71 according to the present embodiment, the control unit 11 determines whether or not the amount of the medium W sucked by the recovery unit 9 exceeds a predetermined threshold value. Then, when it is determined that the amount of the medium W sucked by the collection unit 9 exceeds a predetermined threshold value, the medium supply unit 73 is controlled by the control unit 11, and the culture medium supply unit 73 controls the culture medium supply unit 73 to add new medium to the culture tank 3. W is supplied.
 以上説明したように、本実施形態に係る細胞培養装置71によれば、回収部9による細胞Sの回収によって減った分の培地Wを培地供給部73によって補給することができる。また、培養槽3内の培地Wの一部を交換することになるので、培養槽3内の培地Wの劣化を抑制することができる。 As described above, according to the cell culture apparatus 71 according to the present embodiment, the medium W reduced by the recovery of the cells S by the recovery unit 9 can be replenished by the medium supply unit 73. Further, since a part of the medium W in the culture tank 3 is replaced, deterioration of the medium W in the culture tank 3 can be suppressed.
 本実施形態は以下の構成に変形することができる。
 第1変形例としては、例えば、図19に示すように、培養槽3よりも重力方向における上方に培地保持容器75を配置することとしてもよい。そして、重力により、培地保持容器75から管状部材77を経由させて培養槽3に培地Wを供給することとしてもよい。
This embodiment can be transformed into the following configuration.
As a first modification, for example, as shown in FIG. 19, the medium holding container 75 may be arranged above the culture tank 3 in the direction of gravity. Then, the medium W may be supplied from the medium holding container 75 to the culture tank 3 via the tubular member 77 by gravity.
 この場合、送液ポンプ79に代えて、管状部材77にその流路を開閉するためのバルブ等のゲート開閉部81を設けることとしてもよい。また、ゲート開閉部81は、制御部11からの信号を受信する受信部(図示略)を有し、制御部11からの信号を受信部が受信することによって開閉が切り替えられることとしてもよい。 In this case, instead of the liquid feed pump 79, the tubular member 77 may be provided with a gate opening / closing portion 81 such as a valve for opening / closing the flow path. Further, the gate opening / closing unit 81 may have a receiving unit (not shown) for receiving a signal from the control unit 11, and the opening / closing may be switched when the receiving unit receives the signal from the control unit 11.
 本変形例によれば、ゲート開閉部81が開状態に切り替えられると、管状部材77の流路が開放され、培地保持容器75内の培地Wが重力によって管状部材77を経由して培養槽3に供給される。一方、ゲート開閉部81が閉状態に切り替えられると、管状部材77の流路が閉塞され、培地保持容器75から培養槽3への培地Wの供給が停止される。
 したがって、ゲート開閉部81によって管状部材77の流路を開閉するだけの簡易な構成により、培養槽3への培地Wの供給と非供給とを切り替えることができる。
According to this modification, when the gate opening / closing portion 81 is switched to the open state, the flow path of the tubular member 77 is opened, and the medium W in the medium holding container 75 passes through the tubular member 77 by gravity to the culture tank 3 Is supplied to. On the other hand, when the gate opening / closing portion 81 is switched to the closed state, the flow path of the tubular member 77 is blocked, and the supply of the medium W from the medium holding container 75 to the culture tank 3 is stopped.
Therefore, the supply and non-supply of the medium W to the culture tank 3 can be switched by a simple configuration in which the flow path of the tubular member 77 is opened and closed by the gate opening / closing portion 81.
 第2変形例としては、例えば、図20に示すように、培地保持容器75が、培地保持容器75に培地Wを供給する培地保持容器83および管状部材85をさらに備えることとしてもよい。
 以下、培地保持容器75および管状部材77を第1培地保持容器75および第1管状部材77ともいい、培地保持容器83および管状部材85を第2培地保持容器83および第2管状部材85ともいう。
As a second modification, for example, as shown in FIG. 20, the medium holding container 75 may further include a medium holding container 83 and a tubular member 85 that supply the medium W to the medium holding container 75.
Hereinafter, the medium holding container 75 and the tubular member 77 are also referred to as the first medium holding container 75 and the first tubular member 77, and the medium holding container 83 and the tubular member 85 are also referred to as the second medium holding container 83 and the second tubular member 85.
 第2培地保持容器83および第2管状部材85は、第1培地保持容器75および第1管状部材77と同様の構成を有することとしてもよい。例えば、第2培地保持容器83が、底面近傍に排出口83aを有することとしてもよい。また、第2管状部材85が、第2培地保持容器83から第1培地保持容器75への培地Wの供給と非供給とを切り替えるペリスタポンプ等の送液ポンプ87を有することとしてもよい。 The second medium holding container 83 and the second tubular member 85 may have the same configurations as the first medium holding container 75 and the first tubular member 77. For example, the second medium holding container 83 may have a discharge port 83a near the bottom surface. Further, the second tubular member 85 may have a liquid feeding pump 87 such as a perista pump that switches between supply and non-supply of the medium W from the second medium holding container 83 to the first medium holding container 75.
 この場合、培地供給部73が、第1培地保持容器75内の培地Wの温度と、第2培地保持容器83内の培地Wの温度をそれぞれ制御する温度制御手段(図示略)を備えることとしてもよい。例えば、第1培地保持容器75においては、温度制御手段によって、培地Wを細胞S培養に適した温度、例えば37℃に保持することができることとしてもよい。また、第2培地保持容器83においては、温度制御手段によって、培地Wを保存に適した温度、例えば4℃に保持することができることとしてもよい。 In this case, the medium supply unit 73 is provided with temperature control means (not shown) for controlling the temperature of the medium W in the first medium holding container 75 and the temperature of the medium W in the second medium holding container 83, respectively. May be good. For example, in the first medium holding container 75, the medium W may be held at a temperature suitable for cell S culture, for example, 37 ° C., by a temperature control means. Further, in the second medium holding container 83, the medium W may be held at a temperature suitable for storage, for example, 4 ° C., by the temperature control means.
 第2培地保持容器83において培地Wを例えば4℃に保持しておくことにより、培地Wの劣化を防ぐことができる。また、第2培地保持容器83から第1培地保持容器75に供給されてきた培地Wを第1培地保持容器75において例えば37℃まで温めることにより、培養に適した温度の培地Wを培養槽3に供給することができ、温度変化による細胞Sへのストレスを低減することができる。 By holding the medium W at, for example, 4 ° C. in the second medium holding container 83, deterioration of the medium W can be prevented. Further, by warming the medium W supplied from the second medium holding container 83 to the first medium holding container 75 to, for example, 37 ° C. in the first medium holding container 75, the medium W having a temperature suitable for culturing is provided in the culture tank 3. It is possible to reduce the stress on the cell S due to the temperature change.
 第3変形例としては、例えば、図21に示すように、培養槽3よりも重力方向における上方に第1培地保持容器75を配置するとともに、第1培地保持容器75よりも重力方向におけるさらに上方に第2培地保持容器83を配置することとしてもよい。そして、重力によって、第2培地保持容器83から第2管状部材85を経由させて第1培地保持容器75に培地Wを供給するとともに、第1培地保持容器75から第1管状部材77を経由させて培養槽3に培地Wを供給することとしてもよい。 As a third modification, for example, as shown in FIG. 21, the first medium holding container 75 is arranged above the culture tank 3 in the gravity direction, and further above the first medium holding container 75 in the gravity direction. The second medium holding container 83 may be arranged in the container 83. Then, by gravity, the medium W is supplied from the second medium holding container 83 via the second tubular member 85 to the first medium holding container 75, and the medium W is supplied from the first medium holding container 75 via the first tubular member 77. The medium W may be supplied to the culture tank 3.
 この場合、送液ポンプ79に代えて、第1管状部材77にゲート開閉部81を設けることとしてもよい。また、送液ポンプ87に代えて、第2管状部材85にその流路を開閉するためのバルブ等のゲート開閉部89を設けることとしてもよい。そして、制御部11によって、ゲート開閉部81による第1管状部材77の流路の開閉、および、ゲート開閉部89による第2管状部材85の流路の開閉をそれぞれ制御することとしてもよい。 In this case, instead of the liquid feeding pump 79, the gate opening / closing portion 81 may be provided on the first tubular member 77. Further, instead of the liquid feeding pump 87, the second tubular member 85 may be provided with a gate opening / closing portion 89 such as a valve for opening / closing the flow path thereof. Then, the control unit 11 may control the opening / closing of the flow path of the first tubular member 77 by the gate opening / closing unit 81 and the opening / closing of the flow path of the second tubular member 85 by the gate opening / closing unit 89.
 以上、本発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。例えば、本発明を上記実施形態および変形例に適用したものに限定されることなく、これらの実施形態および変形例を適宜組み合わせた実施形態に適用してもよく、特に限定されるものではない。 Although the embodiments of the present invention have been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and includes design changes and the like within a range that does not deviate from the gist of the present invention. For example, the present invention is not limited to the one applied to the above-described embodiment and the modified example, and may be applied to an embodiment in which these embodiments and the modified example are appropriately combined, and the present invention is not particularly limited.
 また、上記各実施形態においては、観察部として、例えば、ステレオ光学系を備える構成等を採用することとしてもよい。この場合、観察部7が、例えば、培地W中に浮遊している同一の細胞Sに対して、異なる視点から見た互いに視差がある2つの像を結像させるステレオ光学系と、ステレオ光学系によって結像された2つの像をそれぞれ撮影する撮像部とを備えるステレオ撮像光学系と、ステレオ撮像光学系を収容する光学的に透明な筐体とを備えることとしてもよい。 Further, in each of the above embodiments, for example, a configuration including a stereo optical system may be adopted as the observation unit. In this case, for example, a stereo optical system and a stereo optical system in which the observation unit 7 forms an image of two images of the same cell S floating in the medium W, which are different from each other when viewed from different viewpoints. It may be provided with a stereo imaging optical system including an imaging unit for capturing each of the two images formed by the above, and an optically transparent housing for accommodating the stereo imaging optical system.
 この場合、培養槽3内の培地W中に筐体を挿入し、培地W中に浮遊している同一の細胞Sに対して、筐体内のステレオ光学系によって異なる視点から見た互いに視差がある2つの像を結像させ、結像した2つの像を撮像部によって撮像する。そして、制御部11により、ステレオ撮像光学系によって取得された2つの像の各画像に含まれている細胞Sの特徴を検出することとしてもよい。 In this case, the housing is inserted into the medium W in the culture tank 3, and the same cells S floating in the medium W have parallax from different viewpoints depending on the stereo optical system in the housing. Two images are imaged, and the two imaged images are imaged by the imaging unit. Then, the control unit 11 may detect the characteristics of the cells S included in each image of the two images acquired by the stereo imaging optical system.
 また、上記実施形態においては、光学的に透明な材質によって形成された有底円筒状の培養槽3を例示して説明したが、培養槽は、袋状、球状または箱状等、任意の形状のものを採用することができる。例えば、使い捨て可能な袋状の培養槽を採用することとしてもよい。また、培養槽は、硬質またはビニール等の軟質等、任意の材質のものを採用することができる。また、培養槽3は、全体が透明である必要はなく、培養槽3が照明光および観察光等の光を透過させる透明部を部分的に有するものであってもよい。 Further, in the above embodiment, the bottomed cylindrical culture tank 3 formed of an optically transparent material has been described as an example, but the culture tank has an arbitrary shape such as a bag shape, a spherical shape, or a box shape. Can be adopted. For example, a disposable bag-shaped culture tank may be adopted. Further, as the culture tank, any material such as hard or soft such as vinyl can be adopted. Further, the culture tank 3 does not have to be entirely transparent, and the culture tank 3 may partially have a transparent portion through which light such as illumination light and observation light is transmitted.
 また、第1実施形態、第2実施形態および第4実施形態においては、観察部7および回収部9を1つ設ける構成を例示して説明したが、これに代えて、例えば、培養槽3の深さ方向に位置をずらして、複数の観察部7および回収部9を配置することとしてもよい。この構成によって、所望の特徴を有する細胞Sの回収効率を向上することができる。この場合、各回収部9によって吸引された培地Wおよび細胞Sを共通の細胞回収容器19に回収することとしてもよい。 Further, in the first embodiment, the second embodiment and the fourth embodiment, the configuration in which one observation unit 7 and one collection unit 9 are provided has been described as an example, but instead of this, for example, in the culture tank 3. A plurality of observation units 7 and recovery units 9 may be arranged by shifting their positions in the depth direction. With this configuration, the recovery efficiency of cells S having desired characteristics can be improved. In this case, the medium W and the cells S sucked by each collection unit 9 may be collected in a common cell collection container 19.
 上記各実施形態においては、撹拌部として撹拌機構5を採用した構成においても、これに代えて、マグネティックスターラまたは送液ポンプ等を採用することとしてもよい。
 上記各実施形態においては、撹拌機構5が培養槽3の上面3aを経由して培養槽3内に挿入される態様を示したが、培養槽3の下面を経由して培養槽3内に挿入される態様でもよい。
In each of the above embodiments, even in the configuration in which the stirring mechanism 5 is adopted as the stirring unit, a magnetic stirrer, a liquid feeding pump, or the like may be adopted instead.
In each of the above embodiments, the stirring mechanism 5 is inserted into the culture tank 3 via the upper surface 3a of the culture tank 3, but is inserted into the culture tank 3 via the lower surface of the culture tank 3. It may be the mode that is done.
 上記各実施形態においては、制御部11が培養槽3内の培地Wの撹拌を制御する態様を示したが、制御部11が培養槽3内の培地Wの撹拌を制御しない態様でもよい。
 上記各実施形態において、制御部11が検出する細胞Sの特徴としては、例えば、細胞Sの形態的特徴(細胞Sのサイズ、細胞塊のサイズ、突起の有無、突起数、突起長、真円度、など。)、細胞Sの光学的特徴(色、輝度、波長特性、など。)、細胞活性に関する特徴(細胞生死など。)を挙げることができる。2以上の特徴を組み合わせて検出してもよい。
In each of the above embodiments, the control unit 11 controls the stirring of the medium W in the culture tank 3, but the control unit 11 may not control the stirring of the medium W in the culture tank 3.
In each of the above embodiments, the characteristics of the cell S detected by the control unit 11 include, for example, the morphological characteristics of the cell S (cell S size, cell mass size, presence / absence of protrusions, number of protrusions, protrusion length, perfect circle). Degree, etc.), optical characteristics of cell S (color, brightness, wavelength characteristics, etc.), characteristics related to cell activity (cell life and death, etc.) can be mentioned. Two or more features may be combined and detected.
 上記各実施形態においては、1の培養槽3に対して1の観察部7および回収部9を備えた態様を示したが、1の培養槽3に対して2以上の観察部7および回収部9を備えていてもよい。このことにより、さらに効率的に細胞Sを回収することができる。 In each of the above embodiments, one observation unit 7 and one recovery unit 9 are provided for one culture tank 3, but two or more observation units 7 and collection units are provided for one culture tank 3. 9 may be provided. As a result, the cells S can be recovered more efficiently.
 上記各実施形態においては、容量が大きい主培養槽を別途備え、主培養槽で培養した細胞Sを培地Wとともに上記各実施形態の培養槽3(以下、副培養槽という。)に移すことで細胞回収を実施してもよい。この場合、主培養槽と副培養槽は流路で連結されており、細胞Sを含んだ培地Wを自動または手動で移動させればよい。 In each of the above embodiments, a main culture tank having a large capacity is separately provided, and the cells S cultured in the main culture tank are transferred together with the medium W to the culture tank 3 (hereinafter, referred to as a sub-culture tank) of each of the above embodiments. Cell recovery may be performed. In this case, the main culture tank and the sub-culture tank are connected by a flow path, and the medium W containing the cells S may be moved automatically or manually.
 1,41,61,71   細胞培養装置
 3      培養槽
 5      撹拌機構
 7      観察部
 9      回収部
 11     制御部
 63     筐体
 S      細胞
 W      培地
1,41,61,71 Cell culture device 3 Culture tank 5 Stirring mechanism 7 Observation unit 9 Recovery unit 11 Control unit 63 Housing S cell W medium

Claims (5)

  1.  培養槽内に培地とともに収容されている細胞を観察する観察部と、
     前記培養槽内の前記培地を撹拌する撹拌部と、
     前記観察部に隣接して配され、前記培養槽内の前記細胞を回収する回収部と、
     前記観察部によって所望の特徴を有する前記細胞を検出し、検出した前記所望の特徴を有する前記細胞を前記回収部によって回収する制御部とを備える細胞培養装置。
    An observation unit for observing the cells contained in the culture tank together with the medium,
    A stirring unit that stirs the medium in the culture tank, and a stirring unit.
    A collection unit, which is arranged adjacent to the observation unit and collects the cells in the culture tank,
    A cell culture apparatus including a control unit that detects cells having desired characteristics by the observation unit and collects the detected cells having the desired characteristics by the collection unit.
  2.  光を透過可能な透明部を有し、前記観察部を収容する筒状の形態を有する筐体を備え、
     前記回収部が、前記培地中に挿入可能な管状の形態を有し、長手方向の先端に吸引口を備え、
     前記回収部の前記吸引口が、前記筐体および前記回収部が前記培地中に挿入された状態において前記観察部による観察領域に隣接して配置される請求項1に記載の細胞培養装置。
    A housing having a transparent portion capable of transmitting light and having a tubular shape for accommodating the observation portion is provided.
    The collection unit has a tubular shape that can be inserted into the medium, and has a suction port at the tip in the longitudinal direction.
    The cell culture apparatus according to claim 1, wherein the suction port of the collection unit is arranged adjacent to an observation area by the observation unit in a state where the housing and the collection unit are inserted into the medium.
  3.  前記筐体と前記回収部が一体として構成された請求項2に記載の細胞培養装置。 The cell culture apparatus according to claim 2, wherein the housing and the collection unit are integrally configured.
  4.  前記培養槽が、円筒状の内壁と外壁との間に前記培地および前記細胞を収容可能な円環状の空間を有する請求項1に記載の細胞培養装置。 The cell culture apparatus according to claim 1, wherein the culture tank has an annular space capable of accommodating the medium and the cells between the cylindrical inner wall and the outer wall.
  5.  前記回収部が、前記観察部に対して前記培地の流れ方向の下流側に配置されている請求項1から請求項4のいずれかに記載の細胞培養装置。 The cell culture apparatus according to any one of claims 1 to 4, wherein the recovery unit is arranged on the downstream side in the flow direction of the medium with respect to the observation unit.
PCT/JP2019/048875 2019-12-13 2019-12-13 Cell culture device WO2021117211A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021563556A JPWO2021117211A1 (en) 2019-12-13 2019-12-13
PCT/JP2019/048875 WO2021117211A1 (en) 2019-12-13 2019-12-13 Cell culture device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/048875 WO2021117211A1 (en) 2019-12-13 2019-12-13 Cell culture device

Publications (1)

Publication Number Publication Date
WO2021117211A1 true WO2021117211A1 (en) 2021-06-17

Family

ID=76330088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048875 WO2021117211A1 (en) 2019-12-13 2019-12-13 Cell culture device

Country Status (2)

Country Link
JP (1) JPWO2021117211A1 (en)
WO (1) WO2021117211A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115242951A (en) * 2022-07-27 2022-10-25 国家海洋环境监测中心 Rapid detection method for zooplankton based on image scanning system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04126066A (en) * 1990-06-20 1992-04-27 P C C Technol:Kk Device for stirring cell, cell fusion apparatus and flow cytometer apparatus containing the same
JP2004242513A (en) * 2003-02-10 2004-09-02 Japan Science & Technology Agency Marker for detecting undifferentiated hematopoietic cell
JP2010022331A (en) * 2008-07-24 2010-02-04 Takenaka Komuten Co Ltd System and method for regenerating carbon dioxide
WO2013128914A1 (en) * 2012-02-28 2013-09-06 独立行政法人産業技術総合研究所 Cell differentiation assay method, cell isolation method, method for producing induced pluripotent stem cells, and method for producing differentiated cells
JP2014161266A (en) * 2013-02-25 2014-09-08 Dainippon Printing Co Ltd Culture bag
JP2018189447A (en) * 2017-04-28 2018-11-29 日本精工株式会社 Droplet detector and flow cytometer
JP2019020337A (en) * 2017-07-20 2019-02-07 富士通株式会社 Dry weight estimation program, dry weight estimation method, and dry weight estimation device
JP2019020343A (en) * 2017-07-20 2019-02-07 富士通株式会社 Dry weight estimation program, dry weight estimation method, and dry weight estimation device
JP2019154370A (en) * 2018-03-15 2019-09-19 オリンパス株式会社 Analyzer, analysis system, spinner flask, and program

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04126066A (en) * 1990-06-20 1992-04-27 P C C Technol:Kk Device for stirring cell, cell fusion apparatus and flow cytometer apparatus containing the same
JP2004242513A (en) * 2003-02-10 2004-09-02 Japan Science & Technology Agency Marker for detecting undifferentiated hematopoietic cell
JP2010022331A (en) * 2008-07-24 2010-02-04 Takenaka Komuten Co Ltd System and method for regenerating carbon dioxide
WO2013128914A1 (en) * 2012-02-28 2013-09-06 独立行政法人産業技術総合研究所 Cell differentiation assay method, cell isolation method, method for producing induced pluripotent stem cells, and method for producing differentiated cells
JP2014161266A (en) * 2013-02-25 2014-09-08 Dainippon Printing Co Ltd Culture bag
JP2018189447A (en) * 2017-04-28 2018-11-29 日本精工株式会社 Droplet detector and flow cytometer
JP2019020337A (en) * 2017-07-20 2019-02-07 富士通株式会社 Dry weight estimation program, dry weight estimation method, and dry weight estimation device
JP2019020343A (en) * 2017-07-20 2019-02-07 富士通株式会社 Dry weight estimation program, dry weight estimation method, and dry weight estimation device
JP2019154370A (en) * 2018-03-15 2019-09-19 オリンパス株式会社 Analyzer, analysis system, spinner flask, and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115242951A (en) * 2022-07-27 2022-10-25 国家海洋环境监测中心 Rapid detection method for zooplankton based on image scanning system

Also Published As

Publication number Publication date
JPWO2021117211A1 (en) 2021-06-17

Similar Documents

Publication Publication Date Title
KR101238765B1 (en) Disposable endoscope
US9578220B2 (en) Observation device, observation program, and observation system
JP2009539563A (en) Ophthalmic surgery cassette and system
JP6692660B2 (en) Imaging device
WO2021117211A1 (en) Cell culture device
JP7136723B2 (en) Cell culture device
WO2018013489A1 (en) Three-dimensional imaging using swept, confocally aligned planar excitation with an image relay
US11747605B2 (en) System and method for formation and detection of immersion fluid boluses on a microscope objective
US20190197294A1 (en) Imaging device for measuring sperm motility
US10094759B1 (en) Imaging device for measuring sperm motility
JP2009074886A (en) Image guide
US20210027043A1 (en) Observation device
WO2021081607A1 (en) Device for differential counting of microparticles in biological liquids
JP7064584B2 (en) Observation device and cell observation method
JP6664909B2 (en) Imaging optical device
KR20120054474A (en) Optical probe and optical system therefor
JP7401875B2 (en) observation device
JP7208969B2 (en) Observation system and observation method
US20220196520A1 (en) Cell recovery apparatus, cell recovery method, and computer readable medium
WO2016025007A1 (en) Microscope apparatus and applications thereof
JP2006091506A (en) Optical microscope
JP2010273632A5 (en)
CN103149678A (en) Miniature bifocus objective lens probe
JP2020174574A (en) Culture medium exchanging system, and culture medium exchanging method
JP2020150815A (en) Culture medium monitoring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19955943

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021563556

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19955943

Country of ref document: EP

Kind code of ref document: A1