WO2021117205A1 - 耳模型、性能評価方法、および性能評価システム - Google Patents

耳模型、性能評価方法、および性能評価システム Download PDF

Info

Publication number
WO2021117205A1
WO2021117205A1 PCT/JP2019/048843 JP2019048843W WO2021117205A1 WO 2021117205 A1 WO2021117205 A1 WO 2021117205A1 JP 2019048843 W JP2019048843 W JP 2019048843W WO 2021117205 A1 WO2021117205 A1 WO 2021117205A1
Authority
WO
WIPO (PCT)
Prior art keywords
ear
ear model
type device
model
individual
Prior art date
Application number
PCT/JP2019/048843
Other languages
English (en)
French (fr)
Inventor
隆行 荒川
良峻 伊藤
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to PCT/JP2019/048843 priority Critical patent/WO2021117205A1/ja
Priority to EP19956063.2A priority patent/EP4075423A4/en
Priority to US17/782,726 priority patent/US20230007418A1/en
Priority to JP2021563551A priority patent/JP7375830B2/ja
Publication of WO2021117205A1 publication Critical patent/WO2021117205A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R29/00Monitoring arrangements; Testing arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/117Identification of persons
    • A61B5/1171Identification of persons based on the shapes or appearances of their bodies or parts thereof
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • G09B23/30Anatomical models
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K15/00Acoustics not otherwise provided for
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R29/00Monitoring arrangements; Testing arrangements
    • H04R29/001Monitoring arrangements; Testing arrangements for loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1016Earpieces of the intra-aural type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1041Mechanical or electronic switches, or control elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/027Spatial or constructional arrangements of microphones, e.g. in dummy heads

Definitions

  • the present invention relates to an ear model, a performance evaluation method, and a performance evaluation system, and more particularly to a personal authentication technique based on the personal characteristics of the shape of a human ear canal.
  • biometric authentication technology As personal authentication technology (called biometric authentication technology) based on the personal characteristics of the living body, for example, fingerprint authentication, vein authentication, face authentication, iris authentication, voice authentication, etc. are known.
  • biometric authentication technology based on the personal characteristics of the living body
  • otoacoustic authentication focuses on the personal characteristics of the internal structure of the human ear canal.
  • an inspection signal is input to the ear canal of an individual to be authenticated, and personal authentication is performed using a reverberant signal based on the reverberant sound from the ear canal.
  • An individual (certified person) who is the target of personal authentication wears a device (called an earphone type device or hearable device) having the shape of an earphone with a built-in speaker and microphone to the auricle.
  • the speaker of the earphone type device transmits an inspection signal (sound wave) into the ear canal of the person to be authenticated.
  • the microphone of the earphone type device collects the echo sound from the ear canal. Then, a reverberation signal based on the reverberation sound is transmitted from the earphone type device to the personal authentication device.
  • the personal authentication device executes personal authentication by collating the reverberation signal of one or more individuals registered in advance with the reverberation signal received from the earphone type device.
  • Otoacoustic authentication technology enables instant and stable personal authentication to be completed, and even when an individual is on the move or working, the individual can be instantly authenticated while wearing the earphone-type device (). Hands-free), and has the advantage of high confidentiality regarding the internal structure of the human ear canal.
  • Performance evaluation of earphone type devices is performed in the related otoacoustic emission authentication technology. Specifically, the same earphone-type device is attached to a plurality of subjects in order, the ear acoustic authentication is tested, and the false rejection rate (FRR), which is an index value of the performance of the earphone-type device, and false acceptance rate are accepted. Calculate the false acceptance rate (FAR).
  • FAR false rejection rate
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a technique for easily and at low cost to evaluate the performance of an earphone type device used for otoacoustic authentication.
  • the ear model according to one aspect of the present invention includes a plurality of plate-shaped members provided with holes and an artificial eardrum member corresponding to an individual eardrum, and the holes provided in each of the plurality of plate-shaped members.
  • the plurality of plate-shaped members are laminated on the artificial eardrum member so as to simulate the external auditory canal of the individual.
  • the performance evaluation method is a method of evaluating the performance of an earphone-type device used for ear acoustic authentication using the ear model, from the earphone-type device to the external auditory canal of the individual.
  • An inspection signal is transmitted toward the portion of the ear model corresponding to, and the reverberant sound transmitted from the ear model after the inspection signal propagates in the ear model is collected by using the earphone type device.
  • the acoustic characteristics of the ear model are calculated from the reverberation signal based on the collected reverberation sound, and the performance of the earphone type device is evaluated based on the acoustic characteristics.
  • the performance evaluation system transmits an inspection signal from the ear model and the earphone type device toward the portion of the ear model corresponding to the external auditory canal of the individual, and the inspection signal is generated.
  • the acoustic characteristics of the ear model are calculated from the earphone-type device that collects the reverberant sound transmitted from the ear model after propagating in the ear model and the reverberant signal based on the collected reverberant sound, and the acoustic characteristics are calculated. It is provided with a calculation device that calculates an index value indicating the performance of the earphone type device based on the characteristics.
  • the earphone type device used for otoacoustic emission it is possible to evaluate the performance of the earphone type device used for otoacoustic emission easily and at low cost.
  • FIG. It is the schematic which shows the structure of the performance evaluation system which concerns on Embodiment 1.
  • FIG. It is sectional drawing of the ear model provided with the performance evaluation system which concerns on Embodiment 1.
  • FIG. It is a figure which shows the shape of the plate type member provided with the ear model which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the structure of the arithmetic unit which concerns on Embodiment 1.
  • FIG. This is an example of acoustic characteristic data generated by the acoustic characteristic storage unit of the arithmetic unit according to the first embodiment. It is a flowchart which shows the operation of the arithmetic unit which concerns on Embodiment 1.
  • FIG. It is a graph which shows the evaluation result (J value) of the performance of the earphone type device by the performance evaluation system which concerns on Embodiment 1.
  • FIG. It is sectional drawing of the ear model which concerns on Embodiment 2.
  • FIG. It is sectional drawing of the ear model which concerns on Embodiment 3.
  • FIG. It is a figure which shows the hardware configuration of the arithmetic unit which concerns on one of Embodiments 1 to 3.
  • FIG. 1 is a schematic view showing the configuration of the performance evaluation system 1.
  • the performance evaluation system 1 includes an arithmetic unit 10, an ear model 20, and an earphone type device 30.
  • the performance evaluation system 1 is used to evaluate the performance of the earphone type device 30.
  • the arithmetic unit 10 reproduces the inspection signal and transmits the inspection signal from the earphone type device 30 to the ear model 20. Then, the arithmetic device 10 observes a reverberation signal based on the reverberation sound transmitted from the ear model 20 after the inspection signal propagates in the ear model 20, and is an index indicating the performance of the earphone type device 30 based on the reverberation signal. Calculate the value.
  • the arithmetic unit 10 calculates the J value as one index value indicating the performance of the earphone type device 30. The J value will be described in detail later.
  • the ear model 20 simulates the internal structure of an individual's ear canal. More specifically, the ear model 20 is provided with a hole, which at least simulates the internal structure of an individual's ear canal from the ear canal to the eardrum (hereinafter referred to as the ear canal) (hole in the ear model 20). Will be described later).
  • An auricle model is placed on the ear model 20.
  • the pinna model is made to match the shape of the earphone type device 30 (FIG. 1).
  • a pinna model is made by taking a mold of an individual pinna and pouring a fluid material such as silicone rubber into the mold.
  • the auricle of an individual may be scanned to generate 3D data of the auricle, and the auricle model may be produced by 3D printer technology based on the generated 3D data of the auricle.
  • the earphone type device 30 has at least a built-in speaker and a microphone. However, in FIG. 1, the speaker and the microphone built in the earphone type device 30 are schematically shown on the surface of the earphone type device 30.
  • the earphone type device 30 is attached so as to be embedded in a portion corresponding to the ear hole opening of the auricle model.
  • the earphone type device 30 is connected to the arithmetic unit 10 wirelessly or by wire.
  • the earphone type device 30 receives an instruction to transmit an inspection signal from the arithmetic unit 10.
  • the earphone-type device 30 transmits an inspection signal from the speaker built in the earphone-type device 30 toward the inside of the hole of the ear model 20 through the ear hole opening provided in the auricle model. Further, the earphone type device 30 collects the reverberant sound transmitted from the ear model 20 after the inspection signal propagates in the ear model 20 by the microphone.
  • the earphone type device 30 generates a reverberation signal based on the reverberation sound collected by the microphone, and transmits the reverberation signal to the arithmetic unit 10.
  • FIG. 2 is a cross-sectional view of the ear model 20a, which is an example of the ear model 20 shown in FIG.
  • the ear model 20a according to the first embodiment includes at least a plurality of plate-shaped members 201 and one artificial eardrum member 202.
  • the illustration of the pinna model (sometimes referred to as artificial pinna) on the ear model 20a is omitted.
  • the plate type member 201 is made of, for example, acrylic.
  • the artificial eardrum member 202 is, for example, a film made of silicon or Teflon.
  • the upper surface of the ear model 20a shown in FIG. 2 corresponds to the surface on which the auricle model is arranged in FIG.
  • the hole of the plate-shaped member 201 located on the uppermost surface of the ear model 20a corresponds to the ear canal opening of an individual. From the upper surface of the ear model 20a (the surface in contact with the auricle model) to the artificial eardrum member 202, the holes provided in the centers of the plurality of plate-shaped members 201 are connected to form the internal structure of the ear canal of an individual. (Specifically, the ear canal) is simulated.
  • the plurality of plate-type members 201 are stacked and housed in a hollow cylinder. In the hollow cylinder, the upper plate-type member 201 is in close contact with the lower plate-type member 201 (or the artificial eardrum member 202) due to its own weight and the weight of the upper plate-type member 201.
  • FIG. 3 shows the shape of the plate type member 201 constituting the ear model 20a.
  • a hole that penetrates the plate-type member 201 in the thickness direction is provided at the center of the plate-type member 201.
  • the thickness of the plate type member 201 is, for example, 5 mm.
  • the size (R) of the hole diameter is variable, for example, from 5 mm to 20 mm.
  • the plate type member 201 is made of, for example, acrylic.
  • the material of the plate type member 201 is not particularly limited.
  • the acoustic properties of the ear canal depend on the length and thickness, but not on the complexity of the curvature of the ear canal.
  • the acoustic characteristics of the ear canal do not depend on the material and texture (hardness) of the inner wall of the ear canal. Therefore, even if the ear model 20a is made of a plate-shaped member 201 having a material and texture different from that of the human ear, or even if a plurality of plate-shaped members 201 are linearly arranged, the hole of the ear model 20a is formed. It has almost the same acoustic characteristics as an individual ear hole of the same length and thickness.
  • the plurality of plate-type members 201 are laminated in the order of arrangement according to the number (n) given in advance to each plate-type member 201.
  • the hole size (R) and the arrangement order (n) of the plurality of plate-shaped members 201 are determined based on the internal structure of the individual ear hole to be simulated by the ear model 20a.
  • the thickness and number of the plurality of plate-shaped members 201 constituting the ear model 20a correspond to the length from the external auditory canal opening to the eardrum of an individual (the internal structure of the hole of the ear model 20a is simulated).
  • the size of the hole diameter provided in each of the plurality of plate-shaped members 201 constituting the ear model 20a corresponds to the thickness of the ear canal of an individual (the internal structure of the hole of the ear model 20a is simulated). ..
  • Data on the internal structure of an individual's ear canal can be obtained, for example, by a CT (computed tomography) scan.
  • the parameters (R, n) of the ear model 20a may be obtained from the result of performing a CT scan on the subject.
  • the three-dimensional data of the external auditory canal of the subject may be displayed on the display, and the operator may be requested to input the parameters (R, n) of the ear model 20a.
  • the arithmetic unit 10 determines the parameters (R, n) by analyzing the result of performing the CT scan.
  • the performance evaluation system 1 can be applied to a communication device other than the earphone type device 30.
  • the performance evaluation system 1 evaluates the performance of the headphone type device that covers the auricle model instead of the earphone type device 30.
  • a speaker and a microphone may be provided in the earmuffs portion of the headphone type device.
  • the performance evaluation system 1 can also evaluate the performance of a telephone-type device in which a speaker and a microphone are provided in a portion corresponding to a handset, instead of the earphone-type device 30.
  • FIG. 4 is a block diagram showing the configuration of the arithmetic unit 10.
  • the arithmetic unit 10 includes an inspection signal reproduction unit 101, an echo signal observation unit 102, an acoustic characteristic calculation unit 103, an input unit 104, an acoustic characteristic storage unit 105, and an index value calculation unit 106. ..
  • the inspection signal reproduction unit 101 reproduces the inspection signal input to the ear model 20a.
  • the inspection signal input to the ear model 20a reverberates inside the hole of the ear model 20a, and the reverberant sound is output from the ear model 20a.
  • the data in which the inspection signal reproduced by the inspection signal reproduction unit 101 is encoded is stored in advance in a recording medium (not shown).
  • the inspection signal reproduction unit 101 acquires the data of the inspection signal stored in the recording medium and reproduces the inspection signal.
  • the method of determining the inspection signal is not particularly limited.
  • the test signal is experimentally determined based on the general thickness and length of the ear canals of multiple individuals so that the echo from each individual's ear canal is strong (or S / N is large). Will be done.
  • the reverberant sound shows a characteristic (called an acoustic characteristic of the ear model 20a) that depends on the internal structure of the hole of the ear model 20a.
  • the acoustic characteristics of the ear model 20a correspond to the acoustic characteristics of the individual ear hole simulated by the hole of the ear model 20a. Since the internal structure of an individual's ear canal has individuality, it is possible in principle to identify the individual based on the acoustic characteristics of the individual's ear canal.
  • the inspection signal reproduction unit 101 wirelessly or wiredly transmits the reproduced inspection signal to the earphone type device 30, and outputs the inspection signal from the speaker of the earphone type device 30.
  • the inspection signal is specifically an impulse wave.
  • the reverberation signal observation unit 102 observes the reverberation signal based on the reverberation sound from the ear model 20a by using the microphone of the earphone type device 30. More specifically, after the inspection signal propagates in the ear model 20a, a reverberant sound is output from the ear model 20a.
  • the microphone of the earphone type device 30 collects the reverberant sound output from the ear model 20a.
  • the earphone type device 30 generates a reverberation signal by converting the reverberation sound collected by the microphone into digital data.
  • the reverberation signal observation unit 102 requests the reverberation signal from the earphone type device 30.
  • the earphone type device 30 transmits a reverberation signal to the reverberation signal observation unit 102 wirelessly or by wire.
  • the reverberation signal observation unit 102 receives the reverberation signal from the earphone type device 30 wirelessly or by wire.
  • the reverberation signal observation unit 102 transmits the reverberation signal received from the earphone type device 30 to the acoustic characteristic calculation unit 103.
  • the acoustic characteristic calculation unit 103 receives the reverberation signal from the reverberation signal observation unit 102.
  • the acoustic characteristic calculation unit 103 calculates a transfer function as the acoustic characteristic of the ear model 20a from the received echo signal. That is, the transfer function is an example of acoustic characteristics.
  • a response function based on the response (reverberation signal) of the ear model 20a to the inspection signal is another example of acoustic characteristics.
  • the acoustic characteristic calculation unit 103 first extracts an impulse response from the echo signal.
  • the impulse response is a response (reverberation signal) of the ear model 20 to an inspection signal that is an impulse wave.
  • the acoustic characteristic calculation unit 103 calculates the transfer function by performing the Fourier transform or the Laplace transform of the impulse response.
  • the acoustic characteristic calculation unit 103 transmits the calculated transfer function data to the acoustic characteristic storage unit 105.
  • the input unit 104 has, as parameters of the ear model 20a, the size (R) of the diameter of the hole provided in the center of each plate type member 201 (FIG. 4), and the number of each plate type member 201, that is, the arrangement.
  • the information indicating the order (n) is acquired.
  • the input unit 104 tells the user the size (R) of the diameter of the hole provided in each of the plurality of plate-type members 201 by display, voice, or other means, and the plate-type members thereof. Requests input of the order of 201.
  • the input unit 104 acquires information indicating the parameters (R, n) of the ear model 20a by analyzing the user's input operation to the arithmetic unit 10.
  • the input unit 104 transmits information indicating the parameters (R, n) of the ear model 20a to the acoustic characteristic storage unit 105.
  • the acoustic characteristic storage unit 105 receives the transfer function data from the acoustic characteristic calculation unit 103. Further, the acoustic characteristic storage unit 105 receives information indicating the parameters (R, n) of the ear model 20a from the input unit 104. The acoustic characteristic storage unit 105 associates the transfer function data received from the acoustic characteristic calculation unit 103 with the information indicating the parameters (R, n) of the ear model 20a, and stores it as acoustic characteristic data in a recording medium (not shown). (The first flow ends here).
  • the arithmetic unit 10 reacquires the data of the acoustic characteristics by the procedure described above. By repeatedly acquiring the acoustic characteristic data in this way, how reproducible the earphone-type device 30 is with respect to attachment / detachment to / from the single ear model 20a, that is, how little variation the acoustic characteristic is. It is possible to evaluate whether or not the data of can be acquired.
  • the operator attaches the earphone type device 30 to a separate ear model (hereinafter, tentatively referred to as an ear model 20a) having a parameter (R, n) different from that of the ear model 20a.
  • the parameters (R, n) of the separate ear model 20a are different from the parameters (R, n) of the ear model 20a.
  • Arithmetic unit 10 in the above-described procedure, acquires a predetermined plurality of times of transfer functions (x i), and stores the parameters (R, n) of the set and the cord with the recording medium.
  • ear model ID: g 1 to G (> 1). Further, the ear model 20a to which the ear model ID: g is given may be described as "ear model 20a (ear model ID: g)".
  • FIG. 5 is an example of acoustic characteristic data stored in the recording medium by the acoustic characteristic storage unit 105.
  • the parameters (R, n) are the size of the hole diameter (R) of the plate-type member 201 and the number (n) of the plate-type member 201.
  • the acoustic characteristic storage unit 105 generates the acoustic characteristic data shown in FIG. 5 for each of the plurality of ear models 20a having different parameters (R, n).
  • the index value calculation unit 106 receives the acoustic characteristic data shown in FIG. 5 from the acoustic characteristic storage unit 105.
  • the index value calculation unit 106 calculates an index value indicating the performance of the earphone type device 30 by using the received acoustic characteristic data. Specifically, the index value calculation unit 106 calculates V B and V W , respectively, according to the following mathematical formulas.
  • mu g has one ear model 20a
  • Ear Model ID: g is the mean value of the output vector for.
  • T represents the transpose of the vector.
  • V B changes depending on how the earphone type device 30 is attached to the ear model 20a, and V B also depends on the characteristics, arrangement, volume, etc. of the speaker and microphone of the earphone type device 30. B changes. More earphone device 30, such as V B is increased, preferably in terms of the identification of the ear model 20a (and thus the identification of individuals).
  • V B is associated with the acceptance rate (FAR), which indicates the first performance of the earphone type device 30.
  • FAR acceptance rate
  • the V W shown in the equation (2) relates to a system in which one ear model 20a (ear model ID: g) and an earphone type device 30 are integrated.
  • the V W changes depending on how the earphone type device 30 is attached to the ear model 20a, and also depending on the characteristics, arrangement, volume, etc. of the speaker and microphone of the earphone type device 30. The variance changes.
  • V W is preferable in that the success rate (or non-authentication rate) of personal authentication can be made constant.
  • V W is associated with the false rejection rate (FRR), which indicates the second performance of the earphone-type device 30.
  • FRR false rejection rate
  • V B may be referred to as inter-model variance (sum)
  • V W may be referred to as self-model variance (sum).
  • the index value calculation unit 106 calculates the following J value using the inter-model variance V B and the self-model in-model variance V W.
  • the J value indicates the characteristics of this system when the earphone type device 30 and the ear model 20a are regarded as an integrated system. The larger the J value, the higher the accuracy with which the arithmetic unit 10 correctly identifies the ear model 20a.
  • the inter-model dispersion V B and the self-model intra-model dispersion V W are different.
  • an ear model 20a having a sufficient number of samples G an inter-model dispersion V B and an intra-model dispersion V W are required, and each ear model 20a has various attributes (for example, age, gender, etc.). If it corresponds to the individual ear canal of race, height, etc.), even if some ear models 20a are replaced by others, the inter-model dispersion V B and the self-model intra-model dispersion V W , It is thought that there will be no big difference. In that case, if the accuracy of identifying the ear model 20a (or an individual) in which the arithmetic unit 10 is located is high, it can be expected that the identification accuracy of the other ear model 20a (or another individual) is also high.
  • the inter-model dispersion V B and the self-model intra-model dispersion V W are measured, and the earphone type device 30 has a large number of ear models 20a. Whether or not it suits the purpose of identifying (or a large number of individuals) can be evaluated based on the magnitude of the following J value.
  • the J value is a function of frequency ⁇ .
  • the J value is called an evaluation function in Fisher's Linear Discriminant Analysis (LDA) (for example, Patent Document 3 and Non-Patent Document 1).
  • LDA Linear Discriminant Analysis
  • the larger the inter-model variance V B the larger the J value.
  • the smaller the variance V W in the self-model the larger the J value.
  • a large inter-model dispersion V B means that the accuracy of the identification function of the ear model 20a by the earphone type device 30 is high.
  • the fact that the dispersion V W in the self-model is small means that even if the same earphone type device 30 is repeatedly attached to and detached from the same ear model 20a, the variation in accuracy for successful otoacoustic authentication is small. Therefore, it can be said that the earphone type device 30 having a high J value has high performance.
  • FIG. 6 is a flowchart showing the flow of the performance evaluation method.
  • the first variable g and the second variable i are set (S1, S10).
  • the first variable g indicates the ear model ID described above.
  • the second variable i is a flow ID for identifying a plurality of measurements.
  • the input unit 104 acquires the parameters (R, n) of the ear model 20a (ear model ID; g) (S101).
  • the input unit 104 transmits information indicating the acquired parameters (R, n) to the acoustic characteristic storage unit 105.
  • the inspection signal reproduction unit 101 reproduces an inspection signal to be input to the hole of the ear model 20a (S102).
  • the inspection signal reproduction unit 101 transmits the reproduced inspection signal to the earphone type device 30 (FIG. 1) wirelessly or by wire.
  • the inspection signal reproduction unit 101 transmits a reproduction signal from the speaker of the earphone type device 30.
  • the speaker built in the earphone type device 30 transmits an inspection signal toward the hole of the ear model 20a.
  • the microphone of the earphone type device 30 collects the echo sound from the ear model 20a.
  • the earphone type device 30 generates a reverberation signal by converting the collected reverberation sound into digital data. Then, the earphone type device 30 transmits a reverberation signal to the arithmetic unit 10 wirelessly or by wire.
  • the echo signal observation unit 102 of the arithmetic unit 10 observes the echo signal based on the echo sound from the ear model 20a (S103). Specifically, the reverberation signal observation unit 102 receives the reverberation signal generated from the reverberation sound wirelessly or by wire from the earphone type device 30.
  • the acoustic characteristic calculation unit 103 calculates the acoustic characteristic of the ear model 20a based on the received echo signal (S104). Specifically, the acoustic characteristic calculation unit 103 calculates a transfer function obtained by Fourier transforming or Laplace transforming the impulse response as the acoustic characteristic of the ear model 20a. Acoustic characteristics calculating unit 103, the data of the calculated transfer function (x i), and transmits the acoustic characteristic storage unit 105.
  • Acoustic characteristic storage unit 105 receives the data of the transfer function (x i). Further, the acoustic characteristic storage unit 105 receives the parameters (R, n) of the ear model 20a from the input unit 104. Acoustic characteristic storage unit 105, the data of the acoustic characteristics received from the acoustic characteristic calculation unit 103 (x i), in association with information indicating a parameter (R, n), as the acoustic characteristic data (Fig. 5), not shown It accumulates in a recording medium (S105).
  • the flow ID is added to the above-mentioned second variable (flow ID) i (S20).
  • the second variable i is ng or less (No in S30)
  • the flow returns to step S101.
  • the operator removes the earphone type device 30 from the ear model 20a and reattaches the same earphone type device 30 to the same ear model 20a.
  • the same ear model 20a means an ear model 20a having the same parameters (R, n), and therefore does not necessarily have to be one specific ear model 20a.
  • n g is expressed as "n_g”.
  • the operator removes the earphone type device 30 from the ear model 20a and attaches the earphone type device 30 to the separate ear model 20a having different parameters (R, n).
  • the flow returns to step S10.
  • the acoustic characteristic storage unit 105 transmits the acoustic characteristic data accumulated in the recording medium to the index value calculation unit 106.
  • the index value calculation unit 106 receives the acoustic characteristic data from the acoustic characteristic storage unit 105.
  • the index value calculation unit 106 uses the received acoustic characteristic data to calculate the J value, which is one index value indicating the performance of the earphone type device 30, according to the above-mentioned equation (3) (S106). This completes the flow of the performance evaluation method.
  • FIG. 7 shows the evaluation result of the performance of the earphone type device 30 by the arithmetic unit 10.
  • FIG. 7 shows an example of the J value, which is an index value calculated by the index value calculation unit 106.
  • FIG. 7 shows a graph of J values for the two earphone type devices 30 (A and B).
  • the earphone type device (B) has a larger J value in the frequency band of 10 kHz and its vicinity as compared with the earphone type device (A). That is, it can be said that the earphone-type device (B) has higher performance than the earphone-type device (A), at least in this frequency band.
  • the plurality of plate-type members 201 are provided with holes, and the artificial eardrum member 202 corresponds to the eardrum of an individual and is provided in each of the plurality of plate-type members 201.
  • the holes By connecting the holes, a plurality of plate-shaped members 201 are laminated on the artificial eardrum member 202 so as to simulate the ear canal of an individual.
  • the earphone-type device 30 is attached to the ear model 20a, and otoacoustic authentication is attempted in order to evaluate the performance of the earphone-type device 30.
  • the ear model 20a having various parameters (R, n) can be easily realized. Obtained in. Thereby, the performance of the earphone type device 30 used for otoacoustic emission can be evaluated easily and at low cost.
  • FIG. 8 is a cross-sectional view of the ear model 20b, which is an example of the ear model 20 shown in FIG.
  • the ear model 20b according to the second embodiment further includes two pneumatic control units 203 in addition to the plurality of plate-type members 201 and one artificial eardrum member 202.
  • the illustration of the pinna model on the ear model 20b is omitted.
  • a plurality of plate-type members 201 are arranged on both the upper and lower sides of the artificial eardrum member 202.
  • the holes in the plurality of plate-shaped members 201 above the artificial eardrum member 202 simulate the ear canal of an individual.
  • the holes of the plurality of plate-type members 201 below the artificial eardrum member 202 simulate the middle ear cavity of an individual.
  • the air pressure control unit 203 controls the air pressure in the cavity formed in the ear model 20b.
  • the air pressure control unit 203 is an example of the air pressure control means.
  • the air pressure control unit 203 includes a valve inserted into the plate type member 201, a compressor that sends air into the cavity formed in the ear model 20b, and a pressure for measuring the air pressure in the cavity formed in the ear model 20b. It is equipped with a meter and piping for sending air.
  • One air pressure control unit 203 controls the air pressure in the space formed by the holes of the plurality of plate-type members 201 above the artificial eardrum member 202, that is, the space simulating the ear canal of an individual.
  • the other air pressure control unit 203 controls the air pressure in the space formed by the holes of the plurality of plate-type members 201 below the artificial eardrum member 202, that is, the space simulating the middle ear cavity of an individual.
  • the two air pressure control units 203 control so that the air pressure in the space simulating the ear canal of one individual is high (low) and the air pressure in the space simulating the middle ear cavity of one individual is low (high).
  • a low pressure in the highlands and the sky, or a high pressure in water can be reproduced in the ear model 20b.
  • the plurality of plate-type members 201 are provided with holes, and the artificial eardrum member 202 corresponds to the eardrum of an individual and is provided in each of the plurality of plate-type members 201.
  • the holes By connecting the holes, a plurality of plate-shaped members 201 are laminated on the artificial eardrum member 202 so as to simulate the ear canal of an individual.
  • the earphone-type device 30 is attached to the ear model 20b, and otoacoustic authentication is attempted in order to evaluate the performance of the earphone-type device 30.
  • the ear model 20b having various parameters (R, n) can be easily realized. Obtained in. Thereby, the performance of the earphone type device 30 used for otoacoustic emission can be evaluated easily and at low cost.
  • the air pressure control unit 203 controls the air pressure in the cavity formed in the ear model 20b. Thereby, the performance of the earphone type device 30 under various environments can be evaluated.
  • FIG. 9 is a cross-sectional view of the ear model 20c, which is an example of the ear model 20 shown in FIG.
  • the ear model 20c according to the third embodiment further includes an artificial muscle member 204 in addition to the plurality of plate-shaped members 201 and one artificial eardrum member 202.
  • the illustration of the pinna model on the ear model 20c is omitted.
  • the artificial muscle member 204 corresponds to the muscle in the vocal tract of an individual.
  • the artificial muscle member 204 is a type of actuator that simulates the structure and properties of muscles in an individual's vocal tract.
  • the artificial muscle member 204 is made of a polymer such as a synthetic resin.
  • the artificial muscle member 204 may be formed of a shape memory alloy, hydrogel, or the like.
  • the artificial muscle member 204 responds to the vibration of air generated in the cavity in the ear model 20c. In other words, the artificial muscle member 204 converts the vibration of air into elastic energy. This makes it possible to reproduce the trembling of the vocal tract when sound is generated in the ear canal. Furthermore, the interaction between sound and vocal tract tremor can be reproduced.
  • a plurality of plate-type members 201 are arranged one above the other via the artificial eardrum member 202, similarly to the ear model 20b according to the second embodiment.
  • the holes in the plurality of plate-shaped members 201 above the artificial eardrum member 202 simulate the ear canal of an individual.
  • the holes in the plurality of plate-shaped members 201 below the artificial eardrum member 202 and above the artificial muscle member 204 simulate the middle ear cavity of an individual.
  • the holes of the plurality of plate-type members 201 below the artificial muscle member 204 simulate the vocal tract of an individual. That is, the ear model 20c simulates the internal structure from the external auditory canal (the part connected to the pinna) to the vocal tract in an individual's ear canal.
  • the plurality of plate-type members 201 are provided with holes, and the artificial eardrum member 202 corresponds to the eardrum of an individual and is provided in each of the plurality of plate-type members 201.
  • the holes By connecting the holes, a plurality of plate-shaped members 201 are laminated on the artificial eardrum member 202 so as to simulate the ear canal of an individual.
  • the earphone-type device 30 is attached to the ear model 20c, and otoacoustic authentication is attempted in order to evaluate the performance of the earphone-type device 30.
  • the ear model 20c having various parameters (R, n) can be easily realized. Obtained in. Thereby, the performance of the earphone type device 30 used for otoacoustic emission can be evaluated easily and at low cost.
  • the artificial muscle member 204 corresponds to the muscle in the vocal tract of one individual.
  • the vibration of the artificial muscle member 204 reproduces the trembling of an individual's vocal tract when sound is generated in the ear canal. Thereby, the performance of the earphone type device 30 can be evaluated more precisely.
  • Each component of the arithmetic unit 10 described in the first to third embodiments shows a block of functional units. Some or all of these components are realized by, for example, the information processing apparatus 900 as shown in FIG.
  • FIG. 10 is a block diagram showing an example of the hardware configuration of the information processing apparatus 900.
  • the information processing apparatus 900 includes the following configuration as an example.
  • -CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • a storage device 905 that stores the program 904.
  • a drive device 907 that reads and writes the recording medium 906.
  • -Communication interface 908 that connects to the communication network 909 -I / O interface 910 for inputting / outputting data -Bus 911 connecting each component
  • Each component of the arithmetic unit 10 described in the first to third embodiments is realized by the CPU 901 reading and executing the program 904 that realizes these functions.
  • the program 904 that realizes the functions of each component is stored in, for example, a storage device 905 or ROM 902 in advance, and the CPU 901 loads the program 904 into the RAM 903 and executes the program 904 as needed.
  • the program 904 may be supplied to the CPU 901 via the communication network 909, or may be stored in the recording medium 906 in advance, and the drive device 907 may read the program and supply the program to the CPU 901.
  • the arithmetic unit 10 described in the above embodiment is realized as hardware. Therefore, it is possible to obtain the same effect as the effect described in the first to third embodiments.
  • Appendix 2 The ear model according to Appendix 1, wherein the thickness and the number of the plurality of plate-shaped members correspond to the length from the external auditory canal opening to the eardrum of the individual.
  • Appendix 3 The ear model according to Appendix 1 or 2, wherein the size of the diameter of the hole provided in each of the plurality of plate-shaped members corresponds to the thickness of the ear canal of the individual.
  • Addendum 1 to 3 further provided with an air pressure control means for controlling the air pressure in the cavity formed in the ear model by connecting the holes provided in each of the plurality of plate type members.
  • the ear model according to any one of the above.
  • An inspection signal is transmitted from the earphone type device toward the part of the ear model corresponding to the ear canal opening of the individual.
  • the echo sound transmitted from the ear model after the inspection signal propagates in the ear model is collected by using the earphone type device.
  • the acoustic characteristics of the ear model are calculated from the reverberant signal based on the collected reverberant sound.
  • a performance evaluation method including evaluating the performance of the earphone type device based on the acoustic characteristics.
  • Appendix 8 Repeatedly attaching and detaching the same earphone type device to the ear model, Each time the same earphone type device is attached to or detached from the ear model, the acoustic characteristics are calculated.
  • the parameter is at least one of the number of the plurality of plate-shaped members corresponding to the length from the ear canal of the individual to the eardrum and the diameter of the hole corresponding to the thickness of the ear canal of the individual.
  • Appendix 11 The ear model according to any one of Appendix 1 to 6 and the ear model.
  • An inspection signal is transmitted toward the part of the ear model corresponding to the external auditory canal of the individual, and after the inspection signal propagates in the ear model, a reverberation signal based on the reverberation sound transmitted from the ear model is observed.
  • Earphone type device and Performance evaluation including a calculation device that calculates the acoustic characteristics of the ear model from the echo signal based on the collected echoes and calculates an index value indicating the performance of the earphone type device based on the acoustic characteristics. system.
  • Performance evaluation system 20 (20a to 20c) Ear model 30 Earphone type device 201 Plate type member 202 Artificial eardrum member 203 Pneumatic control unit 204 Artificial muscle member

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Otolaryngology (AREA)
  • Signal Processing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • General Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Algebra (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Computational Mathematics (AREA)
  • Multimedia (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Headphones And Earphones (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

[課題]耳音響認証に使用するイヤホン型デバイスの性能を容易かつ低コストで評価する。 [解決手段]複数のプレート型部材(201)には、穴が設けられており、人工鼓膜部材(202)は、一個人の鼓膜に対応し、複数のプレート型部材(201)の各々に設けられた穴が連結することで、前記一個人の外耳道を模擬するように、複数のプレート型部材(201)が人工鼓膜部材(202)の上に積層されている。

Description

耳模型、性能評価方法、および性能評価システム
 本発明は、耳模型、性能評価方法、および性能評価システムに関し、特に、人間の耳穴の形状の個人特性に基づいた個人認証技術に関する。
 生体が持つ個人特性に基づいた個人認証技術(生体認証技術と呼ぶ)として、例えば、指紋認証、静脈認証、顔認証、虹彩認証、そして音声認証などが知られている。個人認証技術のうち、特に、耳音響認証は、人間の耳穴の内部構造の個人特性に着目する。耳音響認証では、認証の対象である個人の耳穴に検査信号を入力し、耳穴からの反響音に基づく反響信号を用いて、個人認証を行う。
 個人認証の対象である個人(認証対象者)は、スピーカおよびマイクロフォンを内蔵したイヤホンの形状を有するデバイス(イヤホン型デバイスあるいはヒアラブルデバイスと呼ぶ)を耳介に装着する。イヤホン型デバイスのスピーカは、認証対象者の耳穴内へ向けて、検査信号(音波)を発信する。イヤホン型デバイスのマイクロフォンは、耳穴からの反響音を集音する。そして、反響音に基づく反響信号が、イヤホン型デバイスから個人認証装置へ送信される。個人認証装置は、予め登録された一または複数の個人の反響信号と、イヤホン型デバイスから受信した反響信号とを照合することによって、個人認証を実行する。
 耳音響認証技術は、瞬時かつ安定的に個人認証が完了すること、個人が移動中または作業中であっても、個人がイヤホン型デバイスを装着したまま、即時に個人認証を行うことができること(ハンズフリー)、また、人間の耳穴の内部構造に関する秘匿性が高いことといったメリットを有する。
国際公開第2017/069118号 国際公開第2013/172039号 特表2005-535017号公報
「PATTERN RECOGNITION AND MACHINE LEARNING」(CHRISTOPHER M. BISHOP) (Springer Science + Business Media, LLC)(2010/2/15)
 関連する耳音響認証技術において、イヤホン型デバイスの性能評価が行われる。具体的には、複数の被験者に同じイヤホン型デバイスを順番に装着させて、耳音響認証を試験し、イヤホン型デバイスの性能の指標値である本人拒否率(False Rejection Rate, FRR)および他人受入れ率(False Acceptance Rate, FAR)を算出する。しかしながら、イヤホン型デバイスの性能を正確に評価するために、被験者たちを長時間にわたって拘束する必要があるので、性能評価に係る手間が大きく、かつコストが高いという問題がある。
 本発明は、上記の課題に鑑みてなされたものであり、その目的は、耳音響認証に使用するイヤホン型デバイスの性能を容易かつ低コストで評価するための技術を提供することにある。
 本発明の一態様に係わる耳模型は、穴を設けられた複数のプレート型部材と、一個人の鼓膜に対応する人工鼓膜部材とを備え、前記複数のプレート型部材の各々に設けられた前記穴が連結することで、前記一個人の外耳道を模擬するように、前記複数のプレート型部材が前記人工鼓膜部材の上に積層されている。
 本発明の一態様に係わる性能評価方法は、前記耳模型を用いて、耳音響認証に使用されるイヤホン型デバイスの性能を評価する方法であって、前記イヤホン型デバイスから、前記一個人の外耳道口に相当する前記耳模型の部位に向かって、検査信号を発信し、前記検査信号が前記耳模型内を伝播した後に前記耳模型から発信される反響音を、前記イヤホン型デバイスを用いて集音し、集音した前記反響音に基づく反響信号から、前記耳模型の音響特性を算出し、前記音響特性に基づいて、前記イヤホン型デバイスの性能を評価することを含む。
 本発明の一態様に係わる性能評価システムは、前記耳模型と、前記イヤホン型デバイスから、前記一個人の外耳道口に相当する前記耳模型の部位に向かって、検査信号を発信し、前記検査信号が前記耳模型内を伝播した後に前記耳模型から発信される反響音を集音するイヤホン型デバイスと、集音した前記反響音に基づく反響信号から、前記耳模型の音響特性を算出し、前記音響特性に基づいて、前記イヤホン型デバイスの性能を示す指標値を算出する演算装置とを備えている。
 本発明の一態様によれば、耳音響認証に使用するイヤホン型デバイスの性能を容易かつ低コストで評価することが可能になる。
実施形態1に係わる性能評価システムの構成を示す概略図である。 実施形態1に係わる性能評価システムが備えた耳模型の断面図である。 実施形態1に係わる耳模型が備えたプレート型部材の形状を示す図である。 実施形態1に係わる演算装置の構成を示すブロック図である。 実施形態1に係わる演算装置の音響特性蓄積部が生成する音響特性データの一例である。 実施形態1に係わる演算装置の動作を示すフローチャートである。 実施形態1に係わる性能評価システムによるイヤホン型デバイスの性能の評価結果(J値)を示すグラフである。 実施形態2に係わる耳模型の断面図である。 実施形態3に係わる耳模型の断面図である。 実施形態1から3のいずれかに係わる演算装置のハードウェア構成を示す図である。
 〔実施形態1〕
 図1~図7を参照して、実施形態1について以下で説明する。
 (性能評価システム1)
 図1を参照して、本実施形態1に係わる性能評価システム1の構成を説明する。図1は、性能評価システム1の構成を示す概略図である。図1に示すように、性能評価システム1は、演算装置10、耳模型20、およびイヤホン型デバイス30を備えている。性能評価システム1は、イヤホン型デバイス30の性能を評価するために用いられる。
 演算装置10は、検査信号を再生し、イヤホン型デバイス30から耳模型20へ、検査信号を発信させる。そして、演算装置10は、検査信号が耳模型20内を伝播した後に耳模型20から発信される反響音に基づく反響信号を観測し、反響信号に基づいて、イヤホン型デバイス30の性能を示す指標値を算出する。
 一般的に、イヤホン型デバイス30の性能には、2つの要素が存在する。すなわち、本人拒否率(FRR)、および、他人受入れ率(FAR)である。イヤホン型デバイス30の性能が高いとは、本人拒否率(FRR)および他人受入れ率(FAR)がどちらも低いことである。本実施形態1では、演算装置10は、イヤホン型デバイス30の性能を示す一つの指標値として、J値を算出する。J値に関しては、後に詳細を説明する。
 耳模型20は、一個人の耳穴の内部構造を模擬する。より詳細には、耳模型20には穴が設けられており、この穴は、一個人の耳穴における外耳道口から鼓膜までの内部構造(以下、外耳道と呼ぶ)を少なくとも模擬する(耳模型20の穴については後述)。耳模型20の上には、耳介模型が載置されている。耳介模型は、イヤホン型デバイス30の形状と適合するように作製される(図1)。例えば、耳介模型は、個人の耳介の型を取り、その型に流体のシリコーンゴム等の材料を流し込むことによって作製される。あるいは、個人の耳介をスキャンして、耳介の3Dデータを生成し、生成した耳介の3Dデータに基づいて、3Dプリンタ技術によって、耳介模型を作製してもよい。
 イヤホン型デバイス30は、スピーカおよびマイクロフォンを少なくとも内蔵している。ただし、図1では、模式的に、イヤホン型デバイス30に内蔵されたスピーカおよびマイクロフォンを、イヤホン型デバイス30の表面上に示している。イヤホン型デバイス30は、耳介模型の耳穴口に相当する部分に埋め込むように装着される。イヤホン型デバイス30は、無線または有線で、演算装置10と接続されている。
 イヤホン型デバイス30は、演算装置10から検査信号を発信するように指示を受信する。イヤホン型デバイス30は、イヤホン型デバイス30に内蔵されたスピーカから、耳介模型に設けられた耳穴口を介し、耳模型20の穴の内部に向けて、検査信号を発信する。また、イヤホン型デバイス30は、検査信号が耳模型20内を伝播した後に耳模型20から発信される反響音を、マイクロフォンによって集音する。イヤホン型デバイス30は、マイクロフォンによって集音した反響音に基づく反響信号を生成して、演算装置10へ反響信号を送信する。
 (耳模型20a)
 図2は、図1に示す耳模型20の一例である耳模型20aの断面図である。図2に示すように、本実施形態1に係わる耳模型20aは、複数のプレート型部材201および1つの人工鼓膜部材202を少なくとも備えている。なお、図2では、耳模型20a上にある耳介模型(人工耳介と呼ぶ場合もある)の図示を省略している。プレート型部材201は例えばアクリル製である。人工鼓膜部材202は例えばシリコンまたはテフロン製の膜である。
 図2に示す耳模型20aの上面は、図1において、耳介模型が配置されている面に相当する。耳模型20aの最上面に位置するプレート型部材201の穴は、一個人の外耳道口に相当する。耳模型20aの上面(耳介模型と接する面)から、人工鼓膜部材202までの間で、複数のプレート型部材201の中心にそれぞれ設けられた穴が連結することによって、一個人の耳穴の内部構造(具体的には外耳道)を模擬している。複数のプレート型部材201は、積み重なって、中空の筒の中に収容されている。中空の筒内において、上側のプレート型部材201は、自重およびより上側のプレート型部材201の重量によって、下側のプレート型部材201(または人工鼓膜部材202)と密着している。
 図3は、耳模型20aを構成するプレート型部材201の形状を示す。図3に示すように、プレート型部材201の中心には、プレート型部材201を厚み方向に貫通する穴が設けられている。プレート型部材201の厚みは、例えば5mmである。穴の径の大きさ(R)は、例えば5mmから20mmまでの間で可変である。プレート型部材201は、例えばアクリル製である。
 しかしながら、プレート型部材201の材料は特に限定されない。一般的に、耳穴の音響特性は、長さおよび太さに依存するが、耳穴の湾曲の複雑さには依存しない。また、耳穴の音響特性は、耳穴の内壁の材質や質感(硬さ)にも依存しない。したがって、耳模型20aは、人間の耳とは異なる材質や質感のプレート型部材201で形成されていても、また複数のプレート型部材201が直線的に並んでいても、耳模型20aの穴と長さおよび太さが等しい一個人の耳穴とほぼ同等の音響特性を備える。
 耳模型20aにおいて、複数のプレート型部材201は、それぞれのプレート型部材201に予め付与された番号(n)にしたがう並び順で積層されている。複数のプレート型部材201の穴の大きさ(R)および並び順(n)は、耳模型20aが模擬の対象とする個人の耳穴の内部構造に基づいて定められる。
 耳模型20aを構成する複数のプレート型部材201の厚みおよび枚数が、(耳模型20aの穴の内部構造が模擬している)一個人の外耳道口から鼓膜までの長さに対応する。
 耳模型20aを構成する複数のプレート型部材201の各々に設けられた穴の径の大きさが、(耳模型20aの穴の内部構造が模擬している)一個人の外耳道の太さに対応する。
 一個人の耳穴の内部構造に関するデータは、例えば、CT(computed tomography)スキャンによって得られる。この場合、耳模型20aのパラメータ(R,n)は、被験者に対してCTスキャンを実行した結果から得られてもよい。
 一例では、被験者の外耳道の3次元データをディスプレイに表示して、作業者に対し耳模型20aのパラメータ(R,n)を入力することを要求してもよい。別の例では、演算装置10が、CTスキャンを実行した結果を解析することによって、パラメータ(R,n)を決定する。
 (適用例)
 なお、性能評価システム1は、イヤホン型デバイス30以外の通話デバイスにも適用可能である。例えば、性能評価システム1は、イヤホン型デバイス30に代えて、耳介模型を覆ったヘッドホン型デバイスの性能を評価する。この場合、ヘッドホン型デバイスの耳当て部分に、スピーカおよびマイクロフォンが設けられてもよい。他の適用例では、性能評価システム1は、イヤホン型デバイス30に代えて、受話器に相当する部分にスピーカおよびマイクロフォンを設けた電話機型デバイスの性能を評価することもできる。
 (演算装置10)
 図4を参照して、本実施形態1に係わる演算装置10の構成を説明する。図4は、演算装置10の構成を示すブロック図である。図4に示すように、演算装置10は、検査信号再生部101、反響信号観測部102、音響特性算出部103、入力部104、音響特性蓄積部105、および指標値算出部106を備えている。
 検査信号再生部101は、耳模型20aへ入力される検査信号を再生する。耳模型20aへ入力された検査信号は、耳模型20aの穴の内部で反響し、反響音が耳模型20aから出力される。検査信号再生部101が再生する検査信号を符号化したデータは、図示しない記録媒体にあらかじめ格納される。検査信号再生部101は、この記録媒体に格納された検査信号のデータを取得して、検査信号を再生する。検査信号の決め方は特に限定されない。例えば、検査信号は、複数の個人の耳穴の一般的な太さや長さに基づいて、いずれの個人の耳穴からの反響音も強く(あるいはS/Nが大きく)なるように、実験的に決定される。
 反響音は、耳模型20aの穴の内部構造に依存する特性(耳模型20aの音響特性と呼ぶ)を示す。耳模型20aの音響特性は、耳模型20aの穴が模擬する個人の耳穴の音響特性と対応する。個人の耳穴の内部構造は、個別性を持っているので、個人の耳穴の音響特性に基づいて、当該個人を識別することが原理的に可能である。
 検査信号再生部101は、再生した検査信号を、無線または有線で、イヤホン型デバイス30へ送信し、イヤホン型デバイス30のスピーカから検査信号を出力させる。検査信号は、具体的にはインパルス波である。
 反響信号観測部102は、イヤホン型デバイス30のマイクロフォンを用いて、耳模型20aからの反響音に基づく反響信号を観測する。より詳細には、検査信号が耳模型20a内を伝播した後に、耳模型20aから反響音が出力される。イヤホン型デバイス30のマイクロフォンは、耳模型20aから出力された反響音を集音する。イヤホン型デバイス30は、マイクロフォンが集音した反響音をデジタルデータに変換することによって、反響信号を生成する。
 反響信号観測部102は、イヤホン型デバイス30に対し、反響信号を要求する。イヤホン型デバイス30は、無線または有線で、反響信号を反響信号観測部102へ送信する。反響信号観測部102は、無線または有線で、イヤホン型デバイス30から反響信号を受信する。反響信号観測部102は、イヤホン型デバイス30から受信した反響信号を、音響特性算出部103へ送信する。
 音響特性算出部103は、反響信号観測部102から反響信号を受信する。音響特性算出部103は、受信した反響信号から、耳模型20aの音響特性として、伝達関数を算出する。すなわち、伝達関数は、音響特性の一例である。検査信号に対する耳模型20aの応答(反響信号)に基づく応答関数が、音響特性の他の例である。
 具体的には、音響特性算出部103は、まず、反響信号から、インパルス応答を抽出する。インパルス応答とは、インパルス波である検査信号に対する耳模型20の応答(反響信号)である。音響特性算出部103は、インパルス応答をフーリエ変換またはラプラス変換することによって、伝達関数を算出する。音響特性算出部103は、算出した伝達関数のデータを、音響特性蓄積部105へ送信する。
 入力部104は、耳模型20aのパラメータとして、それぞれのプレート型部材201(図4)の中心に設けられた穴の径の大きさ(R)、および、それぞれのプレート型部材201の番号すなわち並び順(n)を示す情報を取得する。例えば、入力部104は、ユーザに対し、表示、音声、またはその他の手段によって、複数のプレート型部材201の各々に設けられた穴の径の大きさ(R)、および、それらのプレート型部材201の並び順の入力を要求する。
 入力部104は、演算装置10に対するユーザの入力操作を解析することによって、耳模型20aのパラメータ(R,n)を示す情報を取得する。入力部104は、耳模型20aのパラメータ(R,n)を示す情報を、音響特性蓄積部105へ送信する。
 音響特性蓄積部105は、音響特性算出部103から、伝達関数のデータを受信する。また音響特性蓄積部105は、入力部104から、耳模型20aのパラメータ(R,n)を示す情報を受信する。音響特性蓄積部105は、音響特性算出部103から受信した伝達関数のデータを、耳模型20aのパラメータ(R,n)を示す情報と紐付けて、音響特性データとして、図示しない記録媒体に蓄積する(ここで1回目のフローが終了)。
 その後、作業者が、耳模型20aからイヤホン型デバイス30を外し、同じ耳模型20aに対し、同じイヤホン型デバイス30を再び装着する(ここから2回目のフローが開始)。演算装置10は、上述した手順で、音響特性のデータを再び取得する。このように、音響特性のデータを繰り返し取得することによって、イヤホン型デバイス30が、単一の耳模型20aへの着脱に対してどれぐらい再現性があるか、すなわち、どれぐらいばらつきの少ない音響特性のデータを取得できるかを評価することができる。
 以下では、1回目のフローで取得された伝達関数と、2回目以降のフローで取得された伝達関数とを区別するため、フローID:i(i=1,2,・・・)を導入する。演算装置10は、i回目のフローで得られた音響特性のデータ(x)と、パラメータ(R,n)とを紐付けて、記録媒体に格納する。以上の手順を、所定の複数回にわたって繰り返す。その後、音響特性蓄積部105は、記録媒体に蓄積していた音響特性データ(すなわち、伝達関数(x)(i=1,2,・・・)およびパラメータ(R,n))を、指標値算出部106へ送信する。ここまでは、単一の耳模型20a(より詳細には、同一のパラメータを持つ耳模型20a)を用いて、伝達関数(x)(i=1,2,・・・)のデータを収集した。
 続いて、作業者は、先の耳模型20aとは異なるパラメータ(R,n)を有する別個の耳模型(以下では、仮に耳模型20aと呼ぶ)に、イヤホン型デバイス30を装着する。ここで、別個の耳模型20aのパラメータ(R,n)は、先の耳模型20aのパラメータ(R,n)と異なる。演算装置10は、上述した手順で、所定の複数回分の伝達関数(x)を取得し、パラメータ(R,n)の集合と紐付けて記録媒体に格納する。
 以下では、互いに異なるパラメータ(R,n)を有する複数の耳模型20aを、耳模型ID:g=1~G(>1)によって区別する。また、耳模型ID:gを付与された耳模型20aを、「耳模型20a(耳模型ID:g)」と記載する場合がある。
 図5は、音響特性蓄積部105が記録媒体に格納する音響特性データの一例である。図5に示すように、音響特性データは、耳模型20aのパラメータ(R,n)と、伝達関数(x)(i=1,2,・・・)とを含む。前述したように、パラメータ(R,n)は、プレート型部材201の穴の径の大きさ(R)、および、プレート型部材201の番号(n)である。音響特性蓄積部105は、パラメータ(R,n)が互いに異なる複数の耳模型20aについて、それぞれ、図5に示す音響特性データを生成する。
 指標値算出部106は、音響特性蓄積部105から、図5に示す音響特性データを受信する。指標値算出部106は、受信した音響特性データを用いて、イヤホン型デバイス30の性能を示す指標値を算出する。具体的には、指標値算出部106は、以下の数式にしたがって、VおよびVをそれぞれ算出する。
Figure JPOXMLDOC01-appb-I000001

Figure JPOXMLDOC01-appb-I000002
 ここで、数式(2)において、太字のy(i=1,2,・・・)は、伝達関数(x)(i=1,2,・・・)を有する耳模型20a(耳模型ID:g)とイヤホン型デバイス30との系に対し、所定の入力があったときの出力を表すベクトル(出力ベクトルと呼ぶ)である。n(g=1~G)は、1つの耳模型20a(耳模型ID:g)に関する計測回数である。μgは、1つの耳模型20a(耳模型ID:g)に関する出力ベクトルの平均値である。μは、全ての耳模型20a(耳模型ID:1~G)に関するμg(g=1~G)の平均値である。Tはベクトルの転置を表す。また(2)式中の2つ目のシグマの「i:=g」は、iが変数であり、gが固定であることを示す。
 (1)式に示すVは、1つの耳模型20a(耳模型ID:g)と、イヤホン型デバイス30とを一体としてみた系に関する出力ベクトルの平均値μ(g=1~G)の間の分散を、全ての耳模型20a(耳模型ID:1~G)について総和したものである。耳模型20aに対して、イヤホン型デバイス30がどのように取り付けられているかによって、Vは変化するほか、イヤホン型デバイス30のスピーカおよびマイクロフォンの特性、配置、および音量などに応じても、Vは変化する。Vが大きくなるようなイヤホン型デバイス30ほど、耳模型20aの識別(ひいては個人の識別)の面で好ましい。Vは、イヤホン型デバイス30の第1の性能を示す他人受入れ率(FAR)と関連している。
 (2)式に示すVは、1つの耳模型20a(耳模型ID:g)と、イヤホン型デバイス30とを一体としてみた系に関する。(2)式では、n回のフローで得られた出力ベクトル(太字のy)(i=1,2,・・・,n)の間の分散を求め、全ての耳模型20a(耳模型ID:g=1~G)について、この分散の総和を取ったものである。耳模型20aに対して、イヤホン型デバイス30がどのように取り付けられているかによって、Vは変化するほか、イヤホン型デバイス30のスピーカおよびマイクロフォンの特性、配置、および音量などに応じても、この分散は変化する。Vが小さくなるようなイヤホン型デバイス30ほど、個人認証の成功率(または非認証率)を一定にできる点で好ましい。Vは、イヤホン型デバイス30の第2の性能を示す本人拒否率(FRR)と関連している。以下では、Vを模型間分散(の総和)、Vを自模型内分散(の総和)と、それぞれ呼ぶ場合がある。
 指標値算出部106は、模型間分散Vおよび自模型内分散Vを用いて、以下のJ値を計算する。J値は、イヤホン型デバイス30と耳模型20aとが一体となった系とみなしたときに、この系の特性を示すものである。J値が大きいほど、演算装置10が耳模型20aを正しく識別する精度が高くなる。
 厳密に言えば、イヤホン型デバイス30と耳模型20a(あるいは個人)との組み合わせが異なれば、模型間分散Vおよび自模型内分散Vは異なる。しかしながら、十分なサンプル数Gの耳模型20aについて、模型間分散Vおよび自模型内分散Vが求められており、かつ、個々の耳模型20aが、多様な属性(例えば、年齢、性別、人種、身長など)の個人の耳穴と対応しているならば、仮に、いくつかの耳模型20aが別のものに置き換わったとしても、模型間分散Vおよび自模型内分散Vには、それほど大きな差は生じないと考えられる。その場合、演算装置10がある耳模型20a(あるいはある個人)を識別する精度が高いならば、他の耳模型20a(あるいは他の個人)の識別精度も高いことを期待できる。
 したがって、イヤホン型デバイス30といくつかの耳模型20a(あるいは何人かの個人)の組み合わせについて、模型間分散Vおよび自模型内分散Vを計測し、イヤホン型デバイス30が多数の耳模型20a(あるいは多数の個人)を識別する目的に合っているかどうかを、以下のJ値の大小に基づいて評価することができる。
Figure JPOXMLDOC01-appb-I000003
 J値は周波数ωの関数である。J値は、フィッシャーの線形判別分析法(Fisher's Linear Discriminative Analysis:LDA)では評価関数と呼ばれる(例えば特許文献3、非特許文献1)。(3)式によれば、模型間分散Vが大きいほど、J値は大きくなる。また、自模型内分散Vが小さいほど、J値は大きくなる。模型間分散Vが大きいことは、イヤホン型デバイス30による耳模型20aの識別機能の精度が高いことを意味する。また、自模型内分散Vが小さいことは、同じ耳模型20aに対して、同じイヤホン型デバイス30の着脱を繰り返しても、耳音響認証が成功する精度の変動が小さいことを意味する。したがって、J値が高いイヤホン型デバイス30は、その性能が高いといえる。
 (性能評価方法)
 図6を参照して、本実施形態1に係わる性能評価システム1の演算装置10が実行する性能評価方法について説明する。図6は、性能評価方法の流れを示すフローチャートである。
 図6に示すように、性能評価方法では、まず、第1の変数gおよび第2の変数iが設定される(S1、S10)。第1の変数gは、上述した耳模型IDを示す。第2の変数iは、複数回の計測を識別するためのフローIDである。
 入力部104は、耳模型20a(耳模型ID;g)のパラメータ(R,n)を取得する(S101)。入力部104は、取得したパラメータ(R,n)を示す情報を、音響特性蓄積部105へ送信する。
 検査信号再生部101は、耳模型20aの穴に入力するための検査信号を再生する(S102)。
 検査信号再生部101は、再生した検査信号を、無線または有線で、イヤホン型デバイス30(図1)へ送信する。検査信号再生部101は、イヤホン型デバイス30のスピーカから、再生信号を発信させる。イヤホン型デバイス30に内蔵されたスピーカは、耳模型20aの穴に向けて、検査信号を発信する。
 イヤホン型デバイス30のマイクロフォンが、耳模型20aからの反響音を集音する。イヤホン型デバイス30は、集音した反響音をデジタルデータに変換することによって、反響信号を生成する。そして、イヤホン型デバイス30は、無線または有線で、演算装置10へ反響信号を送信する。
 図6に戻って、演算装置10の反響信号観測部102は、耳模型20aからの反響音に基づく反響信号を観測する(S103)。具体的には、反響信号観測部102は、イヤホン型デバイス30から、無線または有線で、反響音から生成された反響信号を受信する。
 音響特性算出部103は、受信した反響信号に基づいて、耳模型20aの音響特性を算出する(S104)。具体的には、音響特性算出部103は、耳模型20aの音響特性として、インパルス応答をフーリエ変換またはラプラス変換した伝達関数を算出する。音響特性算出部103は、算出した伝達関数(x)のデータを、音響特性蓄積部105に送信する。
 音響特性蓄積部105は、音響特性算出部103から、伝達関数(x)のデータを受信する。また音響特性蓄積部105は、入力部104から、耳模型20aのパラメータ(R,n)を受信する。音響特性蓄積部105は、音響特性算出部103から受信した音響特性のデータ(x)を、パラメータ(R,n)を示す情報と紐付けて、音響特性データ(図5)として、図示しない記録媒体に蓄積する(S105)。
 その後、上述した第2の変数(フローID)iに1を加算する(S20)。第2の変数iがn以下である場合(S30でNo)、フローは、ステップS101へ戻る。このとき、作業者は、耳模型20aからイヤホン型デバイス30を外し、同じ耳模型20aに対し、同じイヤホン型デバイス30を再び装着する。ここで同じ耳模型20aとは、同じパラメータ(R,n)を有する耳模型20aを意味するので、必ずしも特定の1つの耳模型20aではなくてもよい。
 第2の変数iがnを上回った場合(S30でYes)、第1の変数g(耳模型ID)に1を加算する(S2)。この場合、フローはステップS3へ進む。なお、図6では、「n」が「n_g」と表記されている。このとき、作業者は、耳模型20aからイヤホン型デバイス30を外し、異なるパラメータ(R,n)を有する別個の耳模型20aに対し、イヤホン型デバイス30を装着する。
 第1の変数gがGを上回らない場合(S3でNo)、フローは、ステップS10へ戻る。第1の変数gがGを上回る場合(S3でYes)、音響特性蓄積部105は、記録媒体に蓄積した音響特性データを、指標値算出部106へ送信する。
 指標値算出部106は、音響特性蓄積部105から、音響特性データを受信する。指標値算出部106は、受信した音響特性データを用いて、上述した(3)式にしたがって、イヤホン型デバイス30の性能を示す一つの指標値であるJ値を算出する(S106)。以上で、性能評価方法のフローは終了する。
 (イヤホン型デバイス30の性能の評価結果)
 図7は、演算装置10によるイヤホン型デバイス30の性能の評価結果を示す。図7は、指標値算出部106が算出する指標値であるJ値の一例を示す。図7には、2つのイヤホン型デバイス30(AおよびB)についてのJ値のグラフが示されている。図7によれば、イヤホン型デバイス(B)は、イヤホン型デバイス(A)と比較して、10kHzおよびその近傍の周波数帯において、J値が大きい。すなわち、イヤホン型デバイス(B)は、少なくともこの周波数帯では、イヤホン型デバイス(A)よりも性能が高いといえる。なお、極低周波数帯(0kHz近傍)において、イヤホン型デバイス(A)のJ値と、イヤホン型デバイス(B)のJ値との間の差が大きい理由は、通常のスピーカは、人間が不可聴である極低周波数帯における出力が小さいため、反響音が弱く、また、弱い反響音に対するノイズの影響が相対的に大きいからである。
 (本実施形態の効果)
 本実施形態の構成によれば、複数のプレート型部材201には、穴が設けられており、人工鼓膜部材202は、一個人の鼓膜に対応し、複数のプレート型部材201の各々に設けられた穴が連結することで、一個人の外耳道を模擬するように、複数のプレート型部材201が人工鼓膜部材202の上に積層されている。イヤホン型デバイス30が、耳模型20aに装着されて、イヤホン型デバイス30の性能を評価するために、耳音響認証が試行される。複数のプレート型部材201に設けられている穴の径の大きさ、および、複数のプレート型部材201の並び順を変更することにより、様々なパラメータ(R,n)を持つ耳模型20aを容易に得られる。これにより、耳音響認証に使用するイヤホン型デバイス30の性能を容易かつ低コストで評価することができる。
 〔実施形態2〕
 図8を参照して、実施形態2について説明する。
 (耳模型20b)
 図8は、図1に示す耳模型20の一例である耳模型20bの断面図である。図8に示すように、本実施形態2に係わる耳模型20bは、複数のプレート型部材201および1つの人工鼓膜部材202に加えて、2つの空気圧制御部203をさらに備えている。なお、図8では、耳模型20b上にある耳介模型の図示を省略している。
 図8に示すように、耳模型20bでは、複数のプレート型部材201が、人工鼓膜部材202を挟んで、上下の両側に配置されている。人工鼓膜部材202よりも上側にある複数のプレート型部材201の穴は、一個人の外耳道を模擬する。一方、人工鼓膜部材202よりも下側にある複数のプレート型部材201の穴は、一個人の中耳腔を模擬する。
 空気圧制御部203は、耳模型20b内に形成される空洞内の空気圧を制御する。空気圧制御部203は、空気圧制御手段の一例である。例えば、空気圧制御部203は、プレート型部材201に挿入されるバルブ、耳模型20b内に形成される空洞内へ空気を送り込むコンプレッサ、耳模型20b内に形成される空洞内の空気圧を計測する圧力計、および空気を送出するための配管を備えている。
 1つの空気圧制御部203は、人工鼓膜部材202よりも上側にある複数のプレート型部材201の穴が形成する空間、すなわち一個人の外耳道を模擬する空間内の空気圧を制御する。もう一つの空気圧制御部203は、人工鼓膜部材202よりも下側にある複数のプレート型部材201の穴が形成する空間、すなわち一個人の中耳腔を模擬する空間内の空気圧を制御する。例えば、2つの空気圧制御部203は、一個人の外耳道を模擬する空間内の空気圧が高く(低く)、一個人の中耳腔を模擬する空間内の空気圧が低く(高く)なるように制御する。これにより、例えば高地や上空における低気圧、あるいは、水中における高気圧を耳模型20b内において再現することができる。
 (本実施形態の効果)
 本実施形態の構成によれば、複数のプレート型部材201には、穴が設けられており、人工鼓膜部材202は、一個人の鼓膜に対応し、複数のプレート型部材201の各々に設けられた穴が連結することで、一個人の外耳道を模擬するように、複数のプレート型部材201が人工鼓膜部材202の上に積層されている。イヤホン型デバイス30が、耳模型20bに装着されて、イヤホン型デバイス30の性能を評価するために、耳音響認証が試行される。複数のプレート型部材201に設けられている穴の径の大きさ、および、複数のプレート型部材201の並び順を変更することにより、様々なパラメータ(R,n)を持つ耳模型20bを容易に得られる。これにより、耳音響認証に使用するイヤホン型デバイス30の性能を容易かつ低コストで評価することができる。
 さらに、本実施形態の構成によれば、空気圧制御部203によって、耳模型20b内に形成される空洞内の空気圧が制御される。これにより、様々な環境下におけるイヤホン型デバイス30の性能を評価することができる。
 〔実施形態3〕
 図9を参照して、実施形態3について説明する。
 (耳模型20c)
 図9は、図1に示す耳模型20の一例である耳模型20cの断面図である。図9に示すように、本実施形態3に係わる耳模型20cは、複数のプレート型部材201および1つの人工鼓膜部材202に加えて、人工筋肉部材204をさらに備えている。なお、図9では、耳模型20c上にある耳介模型の図示を省略している。
 人工筋肉部材204は、一個人の声道内の筋肉に対応する。人工筋肉部材204は、一個人の声道内の筋肉の構造及び性質を模擬するアクチュエータの一種である。人工筋肉部材204は、例えば、合成樹脂などの高分子で形成される。あるいは、人工筋肉部材204は、形状記憶合金またはヒドロゲルなどによって形成されてもよい。
 人工筋肉部材204は、耳模型20c内の空洞で生じる空気の振動に応答する。換言すれば、人工筋肉部材204は、空気の振動を弾性エネルギーに変換する。これにより、耳穴内で音響が発生した際の声道の震えを再現できる。さらに、音響と声道の震えの相互作用を再現できる。
 本実施形態3に係わる耳模型20cでは、前記実施形態2に係わる耳模型20bと同様に、複数のプレート型部材201が、人工鼓膜部材202を介して、上下に配置されている。人工鼓膜部材202よりも上側にある複数のプレート型部材201の穴は、一個人の外耳道を模擬する。人工鼓膜部材202よりも下側で、かつ人工筋肉部材204よりも上側にある複数のプレート型部材201の穴は、一個人の中耳腔を模擬する。
 また、人工筋肉部材204よりも下側にある複数のプレート型部材201の穴は、一個人の声道を模擬する。すなわち、耳模型20cは、一個人の耳穴における外耳道口(耳介と接続する部分)から声道までの内部構造を模擬する。
 (本実施形態の効果)
 本実施形態の構成によれば、複数のプレート型部材201には、穴が設けられており、人工鼓膜部材202は、一個人の鼓膜に対応し、複数のプレート型部材201の各々に設けられた穴が連結することで、一個人の外耳道を模擬するように、複数のプレート型部材201が人工鼓膜部材202の上に積層されている。イヤホン型デバイス30が、耳模型20cに装着されて、イヤホン型デバイス30の性能を評価するために、耳音響認証が試行される。複数のプレート型部材201に設けられている穴の径の大きさ、および、複数のプレート型部材201の並び順を変更することにより、様々なパラメータ(R,n)を持つ耳模型20cを容易に得られる。これにより、耳音響認証に使用するイヤホン型デバイス30の性能を容易かつ低コストで評価することができる。
 さらに、本実施形態の構成によれば、人工筋肉部材204は、一個人の声道内の筋肉に対応する。人工筋肉部材204の振動は、耳穴内で音響が発生した際の一個人の声道の震えを再現する。これにより、イヤホン型デバイス30の性能をより精密に評価することができる。
 〔ハードウェア構成〕
 前記実施形態1~3で説明した演算装置10の各構成要素は、機能単位のブロックを示している。これらの構成要素の一部又は全部は、例えば図10に示すような情報処理装置900により実現される。図10は、情報処理装置900のハードウェア構成の一例を示すブロック図である。
 図10に示すように、情報処理装置900は、一例として、以下のような構成を含む。
  ・CPU(Central Processing Unit)901
  ・ROM(Read Only Memory)902
  ・RAM(Random Access Memory)903
  ・RAM903にロードされるプログラム904
  ・プログラム904を格納する記憶装置905
  ・記録媒体906の読み書きを行うドライブ装置907
  ・通信ネットワーク909と接続する通信インタフェース908
  ・データの入出力を行う入出力インタフェース910
  ・各構成要素を接続するバス911
 前記実施形態1~3で説明した演算装置10の各構成要素は、これらの機能を実現するプログラム904をCPU901が読み込んで実行することで実現される。各構成要素の機能を実現するプログラム904は、例えば、予め記憶装置905やROM902に格納されており、必要に応じてCPU901がRAM903にロードして実行される。なお、プログラム904は、通信ネットワーク909を介してCPU901に供給されてもよいし、予め記録媒体906に格納されており、ドライブ装置907が当該プログラムを読み出してCPU901に供給してもよい。
 (本実施形態の効果)
 本実施形態の構成によれば、前記実施形態において説明した演算装置10が、ハードウェアとして実現される。したがって、前記実施形態1~3において説明した効果と同様の効果を奏することができる。
 以上、実施形態(及び実施例)を参照して本願発明を説明したが、本願発明は上記実施形態(及び実施例)に限定されるものではない。実施形態(及び実施例)の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 (付記)
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
  (付記1)
 穴を設けられた複数のプレート型部材と、
 一個人の鼓膜に対応する人工鼓膜部材とを備え、
 前記複数のプレート型部材の各々に設けられた前記穴が連結することで、前記一個人の外耳道を模擬するように、前記複数のプレート型部材が前記人工鼓膜部材の上に積層された
 耳模型。
  (付記2)
 前記複数のプレート型部材の厚みおよび枚数が、前記一個人の外耳道口から鼓膜までの長さに対応する
 ことを特徴とする付記1に記載の耳模型。
  (付記3)
 前記複数のプレート型部材の各々に設けられた前記穴の径の大きさが、前記一個人の外耳道の太さに対応する
 ことを特徴とする付記1または2に記載の耳模型。
  (付記4)
 前記複数のプレート型部材の各々に設けられた前記穴が連結することによって前記耳模型内に形成される空洞内の空気圧を制御する空気圧制御手段をさらに備えた
 ことを特徴とする付記1から3のいずれか1項に記載の耳模型。
  (付記5)
 前記複数のプレート型部材の各々に設けられた前記穴が連結することで、前記一個人の外耳道および中耳腔をそれぞれ模擬するように、前記複数のプレート型部材が前記人工鼓膜部材を挟んで両側にそれぞれ積層された
 ことを特徴とする付記1から4のいずれか1項に記載の耳模型。
  (付記6)
 前記一個人の声道内の筋肉に対応する人工筋肉部材をさらに備え、
 前記複数のプレート型部材の各々に設けられた前記穴が連結することで、前記一個人の声道を模擬するように、前記人工筋肉部材と前記人工鼓膜部材との間において、前記複数のプレート型部材が積層された
 ことを特徴とする付記1から5のいずれか1項に記載の耳模型。
  (付記7)
 付記1から6のいずれか1項に記載の耳模型を用いて、耳音響認証に使用されるイヤホン型デバイスの性能を評価する方法であって、
 前記イヤホン型デバイスから、前記一個人の外耳道口に相当する前記耳模型の部位に向かって、検査信号を発信し、
 前記検査信号が前記耳模型内を伝播した後に前記耳模型から発信される反響音を、前記イヤホン型デバイスを用いて集音し、
 集音した前記反響音に基づく反響信号から、前記耳模型の音響特性を算出し、
 前記音響特性に基づいて、前記イヤホン型デバイスの性能を評価する
 ことを含む性能評価方法。
  (付記8)
 前記耳模型に対し、同一のイヤホン型デバイスを着脱することを繰り返し、
 前記耳模型に対し、前記同一のイヤホン型デバイスを着脱するごとに、前記音響特性を算出し、
 繰り返し算出された前記音響特性の分散に基づいて、前記同一のイヤホン型デバイスの第1の性能を評価する
 ことを特徴とする付記7に記載の性能評価方法。
  (付記9)
 形状の異なる複数の耳模型に関して、前記音響特性をそれぞれ算出し、
 前記複数の耳模型のそれぞれの形状を表すパラメータと、前記複数の耳模型のそれぞれの音響特性とを紐付けた音響特性データを蓄積し、
 前記複数の耳模型の間における前記音響特性の分散に基づいて、前記イヤホン型デバイスの第2の性能を評価する
 ことを特徴とする付記7または8に記載の性能評価方法。
  (付記10)
 前記パラメータは、前記一個人の外耳道口から鼓膜までの長さに対応する前記複数のプレート型部材の枚数、および、前記一個人の外耳道の太さに対応する前記穴の径の大きさのうち、少なくともいずれか一方である
 ことを特徴とする付記9に記載の性能評価方法。
  (付記11)
 付記1から6のいずれか1項に記載の耳模型と、
 前記一個人の外耳道口に相当する前記耳模型の部位に向かって、検査信号を発信し、前記検査信号が前記耳模型内を伝播した後に前記耳模型から発信される反響音に基づく反響信号を観測するイヤホン型デバイスと、
 集音した前記反響音に基づく反響信号から、前記耳模型の音響特性を算出し、前記音響特性に基づいて、前記イヤホン型デバイスの性能を示す指標値を算出する演算装置と
 を備えた性能評価システム。
   1 性能評価システム
  20(20a~20c) 耳模型
  30 イヤホン型デバイス
 201 プレート型部材
 202 人工鼓膜部材
 203 空気圧制御部
 204 人工筋肉部材

Claims (11)

  1.  穴を設けられた複数のプレート型部材と、
     一個人の鼓膜に対応する人工鼓膜部材とを備え、
     前記複数のプレート型部材の各々に設けられた前記穴が連結することで、前記一個人の外耳道を模擬するように、前記複数のプレート型部材が前記人工鼓膜部材の上に積層された
     耳模型。
  2.  前記複数のプレート型部材の厚みおよび枚数が、前記一個人の外耳道口から鼓膜までの長さに対応する
     ことを特徴とする請求項1に記載の耳模型。
  3.  前記複数のプレート型部材の各々に設けられた前記穴の径の大きさが、前記一個人の外耳道の太さに対応する
     ことを特徴とする請求項1または2に記載の耳模型。
  4.  前記複数のプレート型部材の各々に設けられた前記穴が連結することによって前記耳模型内に形成される空洞内の空気圧を制御する空気圧制御手段をさらに備えた
     ことを特徴とする請求項1から3のいずれか1項に記載の耳模型。
  5.  前記複数のプレート型部材の各々に設けられた前記穴が連結することで、前記一個人の外耳道および中耳腔をそれぞれ模擬するように、前記複数のプレート型部材が前記人工鼓膜部材を挟んで両側にそれぞれ積層された
     ことを特徴とする請求項1から4のいずれか1項に記載の耳模型。
  6.  前記一個人の声道内の筋肉に対応する人工筋肉部材をさらに備え、
     前記複数のプレート型部材の各々に設けられた前記穴が連結することで、前記一個人の声道を模擬するように、前記人工筋肉部材と前記人工鼓膜部材との間において、前記複数のプレート型部材が積層された
     ことを特徴とする請求項1から5のいずれか1項に記載の耳模型。
  7.  請求項1から6のいずれか1項に記載の耳模型を用いて、耳音響認証に使用されるイヤホン型デバイスの性能を評価する方法であって、
     前記イヤホン型デバイスから、前記一個人の外耳道口に相当する前記耳模型の部位に向かって、検査信号を発信し、
     前記検査信号が前記耳模型内を伝播した後に前記耳模型から発信される反響音を、前記イヤホン型デバイスを用いて集音し、
     集音した前記反響音に基づく反響信号から、前記耳模型の音響特性を算出し、
     前記音響特性に基づいて、前記イヤホン型デバイスの性能を評価する
     ことを含む性能評価方法。
  8.  前記耳模型に対し、同一のイヤホン型デバイスを着脱することを繰り返し、
     前記耳模型に対し、前記同一のイヤホン型デバイスを着脱するごとに、前記音響特性を算出し、
     繰り返し算出された前記音響特性の分散に基づいて、前記同一のイヤホン型デバイスの第1の性能を評価する
     ことを特徴とする請求項7に記載の性能評価方法。
  9.  形状の異なる複数の耳模型に関して、前記音響特性をそれぞれ算出し、
     前記複数の耳模型のそれぞれの形状を表すパラメータと、前記複数の耳模型のそれぞれの音響特性とを紐付けた音響特性データを蓄積し、
     前記複数の耳模型の間における前記音響特性の分散に基づいて、前記イヤホン型デバイスの第2の性能を評価する
     ことを特徴とする請求項7または8に記載の性能評価方法。
  10.  前記パラメータは、前記一個人の外耳道口から鼓膜までの長さに対応する前記複数のプレート型部材の枚数、および、前記一個人の外耳道の太さに対応する前記穴の径の大きさのうち、少なくともいずれか一方である
     ことを特徴とする請求項9に記載の性能評価方法。
  11.  請求項1から6のいずれか1項に記載の耳模型と、
     前記一個人の外耳道口に相当する前記耳模型の部位に向かって、検査信号を発信し、前記検査信号が前記耳模型内を伝播した後に前記耳模型から発信される反響音を集音するイヤホン型デバイスと、
     集音した前記反響音に基づく反響信号から、前記耳模型の音響特性を算出し、前記音響特性に基づいて、前記イヤホン型デバイスの性能を示す指標値を算出する演算装置と
     を備えた性能評価システム。
PCT/JP2019/048843 2019-12-13 2019-12-13 耳模型、性能評価方法、および性能評価システム WO2021117205A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2019/048843 WO2021117205A1 (ja) 2019-12-13 2019-12-13 耳模型、性能評価方法、および性能評価システム
EP19956063.2A EP4075423A4 (en) 2019-12-13 2019-12-13 EAR MODEL, PERFORMANCE EVALUATION METHOD AND PERFORMANCE EVALUATION SYSTEM
US17/782,726 US20230007418A1 (en) 2019-12-13 2019-12-13 Ear model, performance evaluation method, and performance evaluation system
JP2021563551A JP7375830B2 (ja) 2019-12-13 2019-12-13 性能評価方法、および性能評価システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/048843 WO2021117205A1 (ja) 2019-12-13 2019-12-13 耳模型、性能評価方法、および性能評価システム

Publications (1)

Publication Number Publication Date
WO2021117205A1 true WO2021117205A1 (ja) 2021-06-17

Family

ID=76330076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048843 WO2021117205A1 (ja) 2019-12-13 2019-12-13 耳模型、性能評価方法、および性能評価システム

Country Status (4)

Country Link
US (1) US20230007418A1 (ja)
EP (1) EP4075423A4 (ja)
JP (1) JP7375830B2 (ja)
WO (1) WO2021117205A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005032056A (ja) * 2003-07-08 2005-02-03 Matsushita Electric Ind Co Ltd 個人識別機能付きコンピュータシステム、及びコンピュータシステムのユーザ管理方法
US20070057941A1 (en) * 2005-09-13 2007-03-15 Siemens Corporate Research Inc Method and Apparatus for the Registration of 3D Ear Impression Models
JP2015165717A (ja) * 2015-05-22 2015-09-17 京セラ株式会社 測定システムならびに測定方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5787187A (en) * 1996-04-01 1998-07-28 Sandia Corporation Systems and methods for biometric identification using the acoustic properties of the ear canal
US7995817B2 (en) * 2007-10-16 2011-08-09 Siemens Hearing Instruments, Inc. System and method for the analysis of basic ear canal taxonomy
EP2914020A4 (en) * 2012-10-24 2016-07-27 Kyocera Corp VIBRATION MEASURING DEVICE, VIBRATION MEASURING DEVICE, MEASURING SYSTEM AND MEASURING PROCEDURE
CN104490491B (zh) * 2014-12-26 2017-01-04 清华大学 一种生物相容的人工耳及其体外快速构建方法
CN110269626B (zh) * 2019-06-21 2022-07-19 佛山博智医疗科技有限公司 一种客观的模拟并调控真耳听力状态的装置及方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005032056A (ja) * 2003-07-08 2005-02-03 Matsushita Electric Ind Co Ltd 個人識別機能付きコンピュータシステム、及びコンピュータシステムのユーザ管理方法
US20070057941A1 (en) * 2005-09-13 2007-03-15 Siemens Corporate Research Inc Method and Apparatus for the Registration of 3D Ear Impression Models
JP2015165717A (ja) * 2015-05-22 2015-09-17 京セラ株式会社 測定システムならびに測定方法

Also Published As

Publication number Publication date
JPWO2021117205A1 (ja) 2021-06-17
US20230007418A1 (en) 2023-01-05
JP7375830B2 (ja) 2023-11-08
EP4075423A1 (en) 2022-10-19
EP4075423A4 (en) 2022-12-21

Similar Documents

Publication Publication Date Title
US11537695B2 (en) Detection of attachment problem of apparatus being worn by user
US8774435B2 (en) Audio device, system and method
JP6509213B2 (ja) 聴力プロファイル検査システム及び方法
WO2014206212A1 (zh) 声品质客观参量三维空间分布数字图像生成方法
CN105659629B (zh) 耳模型、人工头部以及使用它们的测量系统和测量方法
CN108235170A (zh) 用于耳机的自适应调整声音的电路及方法
CN104322078B (zh) 类人耳模拟器
Ohlenbusch et al. Modeling of Speech-dependent Own Voice Transfer Characteristics for Hearables with In-ear Microphones
Carillo et al. Passive earplug including Helmholtz resonators arranged in series to achieve broadband near zero occlusion effect at low frequencies
WO2021117205A1 (ja) 耳模型、性能評価方法、および性能評価システム
Nélisse et al. Systematic evaluation of the relationship between physical and psychoacoustical measurements of hearing protectors’ attenuation
Paulraj et al. Vehicle noise comfort level indication: A psychoacoustic approach
EP2636225A2 (en) Audio device, system and method
Jin et al. Individualized Hear-through for Acoustic Transparency using PCA-based sound pressure estimation at the eardrum
JP7405150B2 (ja) パラメータ決定装置、パラメータ決定方法、およびプログラム
DK3232906T3 (en) HEARING TEST SYSTEM
Wu et al. The influence of audiovisual ceiling performance on the relationship between reverberation and directional benefit: Perception and prediction
Xu et al. Simulation of the objective occlusion effect induced by bone-conducted stimulation using a three-dimensional finite-element model of a human head
Irwansyah et al. Evaluation of bone-conducted cross-talk sound in the head for biometric identification
Bockstael et al. Verifying the attenuation of earplugs in situ: Method validation on human subjects including individualized numerical simulations
KR20200137950A (ko) 보청기 적합관리 시스템의 제어 방법, 장치 및 프로그램
Husmark et al. Estimating Bone Conduction Hearing Perception Using Three-Dimensional Vibration in a Head Simulator
WO2022153133A1 (en) System for defining the hearing capacity
Nelson Stethoscope design for auscultation in high noise environments
Doutres et al. On the design of an acoustical test fixture for assessing the objective occlusion effect

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19956063

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021563551

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019956063

Country of ref document: EP

Effective date: 20220713