WO2021116031A1 - Verfahren zum schneiden eines glaselements und schneidsystem - Google Patents

Verfahren zum schneiden eines glaselements und schneidsystem Download PDF

Info

Publication number
WO2021116031A1
WO2021116031A1 PCT/EP2020/084917 EP2020084917W WO2021116031A1 WO 2021116031 A1 WO2021116031 A1 WO 2021116031A1 EP 2020084917 W EP2020084917 W EP 2020084917W WO 2021116031 A1 WO2021116031 A1 WO 2021116031A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
cutting
processing
perforation
glass
Prior art date
Application number
PCT/EP2020/084917
Other languages
English (en)
French (fr)
Inventor
Jürgen Betz
Original Assignee
Flabeg Automotive Germany Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Flabeg Automotive Germany Gmbh filed Critical Flabeg Automotive Germany Gmbh
Priority to US17/783,633 priority Critical patent/US20230071407A1/en
Publication of WO2021116031A1 publication Critical patent/WO2021116031A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • B23K26/402Removing material taking account of the properties of the material involved involving non-metallic material, e.g. isolators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0613Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams having a common axis
    • B23K26/0617Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams having a common axis and with spots spaced along the common axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • B23K26/0676Dividing the beam into multiple beams, e.g. multifocusing into dependently operating sub-beams, e.g. an array of spots with fixed spatial relationship or for performing simultaneously identical operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/54Glass

Definitions

  • the invention relates to a method for laser cutting a glass element, in which a perforation is produced in the glass element by means of a perforating laser along an intended cutting line. It also relates to the use of a laser in such a process and a cutting system for performing the process.
  • a large number of processes and concepts can be used to cut or separate glasses or glass elements.
  • laser-based processes such as laser filament cutting can be used, especially with regard to complex cut shapes or high precision requirements.
  • non-linear optical effects are used.
  • a suitably selected laser - hereinafter also referred to as a “perforating laser” - is used, the focus of which is placed under the glass surface of the glass element to be cut into the material. Because of the so-called self-focusing, there is local heating in the glass material at the point where the focal point lies, the formation of local stresses and a change in the refractive index. As a result, the initially small volume element acts like a lens, and further such filaments can be generated in its continuation.
  • a so-called filament curtain is created, which acts like a perforation and can serve as a starting point for a subsequent separation step, for example by breaking.
  • This concept of laser filamenting is known, for example, from US 2013/0126573 A1.
  • a particularly high-quality and precise separation can be achieved with such a laser-based filament cutting process, in that a further treatment step is carried out with a laser for the actual separation, i.e. after the filamentation or perforation has been introduced.
  • a CO2 laser can be provided with which locally limited heating is generated in the glass material in the area of the filament track. This causes a chipping or breaking along the contour.
  • Such a method is particularly suitable for glasses with comparatively high thermal expansion; however, it also provides a comparatively sharp-edged and therefore susceptible separating edge. Usually, therefore, after cutting or separating, further post-treatment is required in which the separating edge is provided, for example, with a rounding or a bevel.
  • the invention is now based on the object of specifying a method of the above-mentioned type which, with high reliability, enables a process sequence that is kept particularly simple. Furthermore, a cutting system that is particularly suitable for carrying out the method should be specified.
  • this object is achieved according to the invention in that the processing laser is operated as a perforation laser in a first processing step, with which a perforation is created in the glass element along an intended cutting line, and in which the processing laser is operated in a second Processing step with a modified laser beam is operated as a separating laser, with which the filaments forming the perforation are split.
  • the invention is based on the consideration that in the known and customary processes of laser filament cutting, although very good and high quality results are often achieved, two different laser systems and an additional intermediate work step are required in the process. These concepts of laser filament cutting are therefore comparatively complex.
  • the process steps should be aligned so that both the introduction of the perforation tion in the first processing step as well as the induction of the actual separation in the second processing step can be carried out with one and the same laser.
  • this is not easily possible with a known laser system.
  • An ultrashort pulse (USP) laser is advantageously used as the processing laser, as is basically known for generating filamentary damage in a glass substrate, for example from WO 2018/130448 A1.
  • laser beam sources that emit pulsed laser light with pulse durations in the range of picoseconds and femtoseconds are referred to as ultra-short pulse lasers.
  • a solid-state laser preferably an Nd: YAG laser with a wavelength of 1064 nm or with a frequency doubling (corresponding to a green laser color), can be provided.
  • the splitting of the filaments forming the perforation is particularly advantageously effected during the separation by ablative laser processing.
  • the processing laser in its function as a separating laser in the second processing step is preferably operated in such a way that a notch is created by laser ablation as a result of the action of the laser beam on the glass substrate in the area of the previously introduced perforation or the filaments forming it.
  • an expanding plasma is created in the notch, the expansion pressure of which is preferably controlled by suitable control and tracking of the laser parameters in such a way that the forces acting on the edges of the notch as a result of the expansion pressure cause the glass element to split Cause area of filaments or modifications.
  • a suitable modification or beam shaping of the laser beam is provided in a particularly advantageous embodiment in the second processing step.
  • reliable control of the expansion pressures in the plasma and the position of the plasma in the notch and the splitting forces exerted with it is very important for a high-quality separation result with particularly little damage to the separation edge, such as mussels or cracks.
  • Such a comparatively precise control is not sufficient for the individual laser beam actually supplied by the processing laser; this could lead to premature breakage of the edge.
  • the laser beam of the processing laser is advantageously divided into a plurality, preferably six, parallel partial beams in the second processing step by beam shaping.
  • the beam is formed by means of a diffractive optical element (DOE) that can be swiveled into the beam path of the processing laser.
  • DOE diffractive optical element
  • This divides the incident primary beam into the multitude of secondary laser beams and refocuses them.
  • a pattern with focal points results in the line; corresponding to the second or further DOEs, a focus matrix is obtained on or below the glass surface, depending on the spatial arrangement.
  • the contour-adapted focus matrix can be implemented by rotating or moving the DOEs to the side.
  • the beam shaping can be suitably adjusted by the DOE, which in turn can be used to suitably control the expansion pressures of the plasma and the position of the plasma in the notch.
  • Beam shaping by means of the DOE also simultaneously fulfills the task of lateral arrangement of the laser beams for cutting contours, for example a triangular arrangement in which the beams act like a constant diameter or a polygon with a constant diameter in all directions.
  • the adapted focus matrix with focal points of different intensity and spatial position influences the formation of the process-related, laser-induced plasma. As a result of plasma composition, density, temperature and If the filament curtain lay in the intended expansion pressure towards the splitting and along the filaments in the glass body.
  • the stated object is achieved with a processing laser, in whose beam path a beam-shaping element, advantageously designed as a diffractive optical element, can be swiveled.
  • the advantages achieved with the invention are in particular that by using one and the same processing laser in both processing steps, i.e. in the production of the filaments and the perforation formed by them as well as in the subsequent separation, with the same high processing and production quality significant simplification of the process management and also the expenditure on equipment for the process of laser cutting can be achieved.
  • the separating edges that can be generated have a high edge definition and quality, and the concept of separation by mechanical forces by using the expansion pressure of the plasma in the resulting notch is particularly advantageous for separating comparatively thick materials and / or contours with comparatively small dimensions .
  • FIG. 1 schematically a cutting system for cutting glass elements
  • FIG. 2 a beam shaping element of the cutting system according to FIG. 1 ,
  • FIG. 3 a glass element with incorporated filaments
  • FIG. 4 the edge profile of a separating edge of the glass element according to FIG. 3.
  • the cutting system 1 according to FIG. 1 is intended for cutting glass elements 2 by laser filament cutting.
  • the cutting system 1 includes a processing laser 4, which is basically designed as a perforation laser suitable for filamentation and due to its design and is guided via an F1 optic 5 in the direction of the glass element 2.
  • a processing laser 4 when operating as a perforation laser, there is local heating in the material of the glass element 2, the formation of local stresses and a change in the refractive index, so that ultimately as a result of non-linear optical Effects in the glass material, elongated disruptions or modifications, also referred to as filaments 6, arise. It can be controlled via an assigned control device that is not shown in detail.
  • the focal point of the processing laser 4 can be guided along a predeterminable cutting line 10 on the surface of the glass element 2 to be cut.
  • the filaments 6, which form the desired perforation 12, are thus created along this cutting line 10.
  • the focus position can be used in particular as a parameter for offsetting in CNC data, since this can usually be easily described.
  • the focal position could be in, below or above the material of the glass element 2 in order to enable two-dimensional processing by the laser light.
  • the cutting system 1 is designed for a particularly efficient and cost-saving mode of operation when performing the cutting or separating process.
  • account is taken of the fact that two different laser systems are usually used in the process of laser filament cutting, one of the lasers being specifically designed as a perforation laser and the other laser being designed as a separating laser for use in the subsequent severing cut.
  • the processing laser 4 in the cutting system 1 is provided and designed for use both during the first processing step intended for making the perforation and during the second processing step intended for the actual separation.
  • the cutting system 1 is thus designed in the form of a combined configuration of the processing laser 4 so that the filaments 6 are generated in the glass substrate 2 with the processing laser 4 in the first treatment step, with the laser beam 14 of the Processing laser 4 is reshaped by means of a DOE (“diffractive optical element”) optics 16 provided as a beam-shaping element, and the filaments 6 are thus irradiated again.
  • DOE diffractive optical element
  • the DOE optics 16 provided as the beam shaping element are pivotably supported by means of a suitable suspension and in the beam path 20 of the Machining laser 4 can be swiveled in and out of this.
  • the DOE optics 16 can be arranged after the laser 4 parallel to the F1 optics 5, with a beam switch switching the laser output beam between the F1 optics 5 and the DOE optics 16.
  • the structure of the DOE optics 16 provided as the beam shaping element is shown schematically in FIG. 2 in the state pivoted into the beam path 20.
  • the element or the DOE optics 16 comprises the actual diffractive optical element 22 and a lens 24 connected downstream of this in the beam path 20.
  • the interconnection of these components is provided in the exemplary embodiment in such a way that the collimated laser beam 14 impinging on the element 16 is split into six secondary ones Laserstrah len or partial beams 28 is divided. For the wavelength of the processing laser 4 of 1064 nm provided in the exemplary embodiment, this results in six partial beams 28 with a spacing of about 10 ⁇ m from one another.
  • the transmission of the Laserstrah development for the element 16 is 97%, and the six partial beams 28 have a total proportion of the supplied laser power of 86% with the same intensity.
  • the processing laser 4 is operated as an ablation laser in its function as a separating laser in the area of the filaments 6 already set in the glass element.
  • a notch 30 is created by laser ablation in the area of the previously introduced perforation 12 or the filaments 6 forming it an expanding plasma is created in the notch 30.
  • the expansion pressure of this plasma can be used to cause the cleavage of the glass element 2 in the area of the filaments 6 or modifications as a result of the forces acting on the edges of the notch 30.
  • the beam shaping of the incident laser beam 26 is also important: To build up the desired pressure in the notch 30, the beam shaping is required because a single beam would destroy the material at the intensity or energy density required to form the plasma. In addition to the plasma formation (intensity), the length and position of the active plasma in the notch 30 also play an important role for reliable separation.
  • the edge profile of the separating edge 32 produced in this separating process is shown in FIG. 4 shown.
  • the separating edge 32 In its upper region, seen from the surface of the glass element 2 down to a depth of about 20-30 ⁇ m, the separating edge 32 has a bevel 34 delimiting the notch 30, which can be seen in a comparative manner in the depth of the substrate straight breaking wall 36 connects.

Abstract

Ein Verfahren zum Schneiden eines Glaselements (2) mit einem Bearbeitungslaser (4) soll bei hoher Zuverlässigkeit und mit gering gehaltenem apparativen Aufwand einen besonders einfach gehaltenen Prozessablauf ermöglichen. Dazu wird erfindungsgemäß der Bearbeitungslaser (4) in einem ersten Bearbeitungsschritt als Perforationslaser betrieben, mit dem entlang einer vorgesehenen Schnittlinie (8) eine Perforation (12) im Glaselement (2) erzeugt wird, wobei der Bearbeitungslaser (4) in einem zweiten Bearbeitungsschritt mit modifiziertem Laserstrahl (14) als Trennlaser betrieben wird, mit dem eine Spaltung der die Perforation (12) bildenden Filamente (6) bewirkt wird.

Description

Beschreibung
Verfahren zum Schneiden eines Glaselements und Schneidsystem
Die Erfindung bezieht sich auf ein Verfahren zum Laserschneiden eines Glaselements, bei dem mittels eines Perforierungslasers entlang einer vorgesehenen Schnittlinie eine Perforation im Glaselement erzeugt wird. Sie betrifft weiter die Verwendung eines La sers in einem solchen Verfahren sowie ein Schneidsystem zur Durchführung des Ver fahrens.
Zum Schneiden oder Trennen von Gläsern oder Glaselementen können eine Vielzahl von Verfahren und Konzepten eingesetzt werden. Unter anderem können dabei gerade im Hinblick auf komplexe Schnittformen oder hohe Präzisionsanforderungen laserba sierte Verfahren wie beispielsweise das Laserfilament-Schneiden zum Einsatz kommen.
Beim Laser-Filamentschneiden, auch als Filamentierung bezeichnet, werden nichtlinea re optische Effekte ausgenutzt. Dafür kommt üblicherweise ein geeignet ausgewählter Laser - nachfolgend auch als „Perforierungslaser“ bezeichnet - zum Einsatz, dessen Fokus unter die Glasoberfläche des zu schneidenden Glaselements in das Material hin ein gelegt wird. Aufgrund der so genannten Selbstfokussierung kommt es an der Stelle, an der der Brennpunkt liegt, zu einer lokalen Erhitzung im Glasmaterial, der Ausbildung lokaler Spannungen und zu einer Änderung der Brechzahl. Dadurch wirkt das zunächst kleine Volumenelement wie eine Linse, und in seiner Fortsetzung können weitere sol che Filamente erzeugt werden. Wird der Laserstrahl dabei über das Glas geführt, ent steht ein sogenannter Filamentvorhang, der in der Art einer Perforation wirkt und als Ansatz für einen nachfolgenden Trennschritt, beispielsweise durch Brechen, dienen kann. Dieses Konzept des Laser-Filamentierens ist beispielsweise aus der US 2013/0126573 A1 bekannt. Eine besonders hochwertige und präzise Trennung ist bei einem solchen laserbasierten Filament-Schneidverfahren erreichbar, indem nachfolgend, also nach Einbringung der Filamentierung oder Perforation, zur eigentlichen Trennung ein weiterer Behandlungs schritt mit einem Laser vorgenommen wird. Dabei kann beispielsweise ein CO2-Laser vorgesehen sein, mit dem im Bereich der Filamentspur eine lokal begrenzte Erwärmung im Glasmaterial erzeugt wird. Dies bewirkt ein Absprengen oder Brechen entlang der Kontur. Ein solches Verfahren ist besonders für Gläser vergleichsweiser hoher thermi scher Ausdehnung geeignet; es liefert jedoch auch eine vergleichsweise scharfkantige und damit anfällige Trennkante. Üblicherweise ist daher nach dem Schneiden oder Trennen eine weitere Nachbehandlung erforderlich, bei der die Trennkante beispiels weise mit einer Rundung oder einer Fase versehen wird.
Der Erfindung liegt nunmehr die Aufgabe zugrunde, ein Verfahren der oben genannten Art anzugeben, das bei hoher Zuverlässigkeit einen besonders einfach gehaltenen Pro- zess-ablauf ermöglicht. Des Weiteren soll ein für die Durchführung des Verfahrens be sonders geeignetes Schneidsystem angegeben werden.
Bezüglich des Verfahrens zum Schneiden eines Glaselements mit einem Bearbei tungslaser wird diese Aufgabe erfindungsgemäß gelöst, indem der Bearbeitungslaser in einem ersten Bearbeitungsschritt als Perforationslaser betrieben wird, mit dem entlang einer vorgesehenen Schnittlinie eine Perforation im Glaselement erzeugt wird, und bei dem der Bearbeitungslaser in einem zweiten Bearbeitungsschritt mit modifiziertem La serstrahl als Trennlaser betrieben wird, mit dem eine Spaltung der die Perforation bil denden Filamente bewirkt wird.
Die Erfindung geht dabei von der Überlegung aus, dass bei den bekannten und übli chen Prozessen des Laser-Filamentschneidens zwar oftmals sehr gute und qualitativ hochwertige Ergebnisse erzielt werden, wobei allerdings zwei unterschiedliche Laser systeme und bei der Verfahrensführung ein zusätzlicher Zwischenarbeitsgang erforder lich sind. Diese Konzepte des Laser-Filamentschneidens sind somit vergleichsweise aufwendig. Um vor diesem Hintergrund eine Vereinfachung der Prozessführung unter Einhaltung der qualitativen Anforderungen zu ermöglichen, sollte daher die Ausrichtung der Verfahrensschritte dahingehend erfolgen, dass sowohl die Einbringung der Perfora- tion im ersten Bearbeitungsschritt als auch die Induzierung der eigentlichen Trennung im zweiten Bearbeitungsschritt mit ein und demselben Laser durchgeführt werden kön nen. Im Hinblick auf die unterschiedlichen Anforderungen an die Wechselwirkung mit dem (Glas-) Substrat bei beiden Arbeitsschritten ist dies jedoch nicht ohne Weiteres mit einem bekannten Lasersystem möglich. Um dem Rechnung zu tragen, ist nunmehr vor gesehen, den Laserstrahl im zweiten Bearbeitungsschritt geeignet zu modifizieren, so dass die gewünschte Trennung unter Verwendung desselben Lasers ermöglicht wird, der auch zur Einbringung der Perforation in das Substrat verwendet wird.
Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.
Vorteilhafterweise wird, wie dies grundsätzlich zur Erzeugung von filamentförmigen Schädigungen in einem Glassubstrat beispielsweise aus der WO 2018/130448 A1 be kannt ist, als Bearbeitungslaser ein Ultrakurzpuls (UKP) - Laser verwendet. Als Ultra kurzpulslaserwerden insbesondere Laserstrahlquellen bezeichnet, die gepulstes Laser licht mit Pulsdauern im Bereich von Pikosekunden und Femtosekunden aussenden. In besonders bevorzugter Ausgestaltung kann dazu ein Festkörperlaser, vorzugsweise ein Nd:YAG-Laser mit einer Wellenlänge von 1064 nm oder mit Frequenzverdoppelung (entsprechend einer grünen Laserfarbe), vorgesehen sein.
Besonders vorteilhaft wird die Spaltung der die Perforation bildenden Filamente bei der Trennung durch ablative Laserbearbeitung bewirkt. Dabei wird der Bearbeitungslaser in seiner Funktion als Trennlaser im zweiten Bearbeitungsschritt bevorzugt derart betrie ben, dass in Folge der Einwirkung des Laserstrahls auf das Glassubstrat im Bereich der zuvor eingebrachten Perforation bzw. der diese bildenden Filamente durch Laserablati on eine Kerbe entsteht. Bei zunehmender Ablation der Kerbe entsteht in besonders vor teilhafter Ausgestaltung in der Kerbe ein expandierendes Plasma, dessen Expansions druck vorzugsweise durch geeignete Steuerung und Nachführung der Laserparameter derart gesteuert wird, dass die infolge des Expansionsdrucks auf die Ränder der Kerbe einwirkenden Kräfte die Spaltung des Glaselements im Bereich der Filamente oder Mo difikationen bewirken. Um den vorgesehenen Einsatz des Perforationslasers auch als Trennlaser im zweiten Bearbeitungsschritt zu ermöglichen, ist in besonders vorteilhafter Ausgestaltung im zweiten Bearbeitungsschritt eine geeignete Modifikation oder Strahlformung des Laser strahls vorgesehen. Wie sich überraschenderweise herausgestellt hat, ist für ein qualita tiv hochwertiges Trennergebnis mit besonders geringen Schädigungen an der Trenn kante wie beispielsweise Muscheln oder Rissen eine zuverlässige Steuerung der Ex pansionsdrücke im Plasma sowie der Lage des Plasmas in der Kerbe und der damit ausgeübten Spaltkräfte sehr bedeutsam. Eine derartige, vergleichsweise präzise Steue rung ist für den eigentlich vom Bearbeitungslaser gelieferten Einzel-Laserstrahl nicht ausreichend; dies könnte zu einem frühzeitigen Bruch der Kante führen. Um dem ent gegenzuwirken und ein qualitativ besonders hochwertiges Trennergebnis zu ermögli chen, wird der Laserstrahl des Bearbeitungslasers vorteilhafterweise im zweiten Bear beitungsschritt durch Strahlformung in eine Mehrzahl, vorzugsweise sechs, parallele Teilstrahlen geteilt.
Die Strahlformung erfolgt dabei in ganz besonders vorteilhafter Weiterbildung mittels eines in den Strahlengang des Bearbeitungslasers einschwenkbaren diffraktiven opti schen Elements (DOE). Durch dieses wird der einfallende Primärstrahl in die Vielzahl an sekundären Laserstrahlen aufgeteilt und refokussiert. Entsprechend der Gitterstruk tur des ersten DOEs ergibt sich ein Muster mit Brennpunk-ten in der Linie, entspre chend dem zweiten oder weiteren DOEs erhält man eine Fokusmatrix auf, oder unter halb der Glasoberfläche, je nach räumlicher Anordnung. Durch Rotation oder seitliche Bewegung der DOEs kann die konturangepasste Fokusmatrix realisiert werden. Im Er gebnis kann durch das DOE die Strahlformung geeignet eingestellt werden, durch die wiederum die Expansionsdrücke des Plasmas und die Lage des Plasmas in der Kerbe geeignet gesteuert werden können. Die Strahlformung mittels des DOE erfüllt zudem gleichzeitig die Aufgabe der lateralen Anordnung der Laserstrahlen für das Schneiden von Konturen, beispielsweise eine Dreieckanordnung, in der die Strahlen wie ein Gleichdick oder Polygon mit konstantem Durchmesser in alle Richtungen wirken. Dabei beeinflusst die angepasste Fokusmatrix mit Brennpunkten unterschiedlicher Intensität und räumlichen Lage (Strahlformung) die Bildung des verfahrensbedingten, laserindu zierten Plasmas. Als Folge von Plasmazusammensetzung, -dichte, -temperatur und - läge im Filament-Vorhang entsteht der vorgesehene Expansionsdruck zum Spalten hin und entlang der Filamente im Glaskörper.
Bezüglich des Schneidsystems wird die genannte Aufgabe gelöst mit einem Bear beitungslaser, in dessen Strahlengang ein Strahlformungselement, vorteilhafterweise ausgeführt als diffraktives optisches Element, einschwenkbar ist.
Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, dass durch die Verwendung ein und desselben Bearbeitungslasers in beiden Bearbeitungsschritten, also bei der Erzeugung der Filamente und der durch diese gebildeten Perforation eben so wie bei der anschließenden Trennung, bei unverändert hoher Bearbeitungs- und Produktionsqualität eine deutliche Vereinfachung der Verfahrensführung und auch des apparativen Aufwands für den Prozess des Laserschneidens erreichbar ist. Die dabei erzeugbaren Trennkanten weisen eine hohe Kantenschärfe und Qualität auf, und ins besondere für das Trennen vergleichsweise dickerer Materialien und/oder Konturen mit vergleichsweise kleinen Abmessungen ist das Konzept der Trennung durch mechani sche Kräfte durch Nutzung des Expansionsdrucks des Plasmas in der entstehenden Kerbe sehr vorteilhaft.
Ein Ausführungsbeispiel der Erfindung wird anhand einer Zeichnung näher erläutert. Darin zeigen:
FIG. 1 schematisch ein Schneidsystem zum Schneiden von Glaselementen,
FIG. 2 ein Strahlformungselement des Schneidsystems gemäß FIG. 1 ,
FIG. 3 ein Glaselement mit eingebrachten Filamenten, und
FIG. 4 das Kantenprofil einer Trennkante des Glaselements gemäß FIG. 3.
Gleiche Teile sind in allen Figuren mit denselben Bezugszeichen versehen. Das Schneidsystem 1 gemäß FIG. 1 ist zum Schneiden von Glaselementen 2 durch Laserfilament-Schneiden vorgesehen. Dazu umfasst das Schneidsystem 1 einen Bear beitungslaser 4, der dem Grunde nach und bauartbedingt als für die Filamentierung ge eigneter Perforationslaser ausgelegt ist und über eine Fl-Optik 5 in Richtung zum Gla selement 2 hin geleitet wird. Infolge der Auslegung des Bearbeitungslasers 4 beim Be trieb als Perforationslaser kommt es an der Stelle, an der der Brennpunkt liegt, zu einer lokalen Erhitzung im Material des Glaselements 2, der Ausbildung lokaler Spannungen und zu einer Änderung der Brechzahl, so dass letztlich infolge nichtlinearer optischer Effekte im Glasmaterial länglich ausgedehnte Störungen oder Modifikationen, auch als Filamente 6 bezeichnet, entstehen. Er ist über eine zugeordnete, nicht näher dargestell te Steuerungseinrichtung steuerbar. Über die Ansteuerung mittels der Steuereinrichtung 8 kann der Fokuspunkt des Bearbeitungslasers 4 entlang einer vorgebbaren Schnittlinie 10 auf der Oberfläche des zu schneidenden Glaselements 2 geführt werden. Entlang dieser Schnittlinie 10 entstehen somit die Filamente 6, die die gewünschte Perforation 12 bilden.
Bei der Führung des Laserstrahls 14 des Bearbeitungslasers 4 wird sein Auftreffpunkt auf dem Glaselement 2 und/oder sein Fokuspunkt geeignet geführt. Im Rahmen der Steuerung kann dabei insbesondere als Kenngröße zur Verrechnung in CNC-Daten die Fokuslage genutzt werden, da diese meist leicht beschreibbar ist. Die Fokuslage könnte dabei im, unter oder über dem Material des Glaselements 2 liegen, um flächige Bear beitungen durch das Laserlicht zu ermöglichen.
Zum eigentlichen Schneiden des Glaselements 2, also zur Separation der Teile entlang der Schnittlinie 10 und der Perforation 12, ist nachfolgend zur Filamentierung im ersten Bearbeitungsschritt, also nach Einbringung der Perforation 12, ein weiterer Bearbei tungsschritt vorgesehen. Das Schneidsystem 1 ist dabei für eine besonders effiziente und kostensparende Betriebsweise bei der Durchführung des Schneid- oder Trennpro zesses ausgelegt. Dabei ist insbesondere dem Umstand Rechnung getragen, dass beim Prozess des Laser-Filamentschneidens üblicherweise zwei verschiedene Laser systeme eingesetzt werden, wobei einer der Laser gezielt als Perforationslaser und der andere Laser zum Einsatz im nachfolgenden Trennschnitt als Trennlaser ausgelegt ist. Um den hierdurch bedingten möglicherweise erheblichen apparativen und auch verfah- rensseitigen Mehraufwand gezielt zu vermeiden, ist beim Schneidsystem 1 der Bearbei tungslaser 4 für eine Verwendung sowohl während des ersten, zur Herstellung der Per foration vorgesehenen Bearbeitungsschritts als auch beim zweiten, für die eigentliche Trennung vorgesehenen Bearbeitungsschritt vorgesehen und ausgelegt. Für eine be sonders effiziente Verfahrensführung ist das Schneidsystem 1 somit in der Art einer kombinierten Ausgestaltung des Bearbeitungslasers 4 dabei dafür ausgelegt, dass mit dem Bearbeitungslaser 4 im ersten Behandlungsschritt die Filamente 6 im Glassubstrat 2 erzeugt werden, wobei in einem zweiten Behandlungsschritt der Laserstrahl 14 des Bearbeitungslasers 4 mittels einer als Strahlformungselement vorgesehenen DOE - („diffraktiven optischen Element-“) Optik 16 umgeformt wird und die Filamente 6 damit erneut bestrahlt werden. Dabei wird ein Plasma im Bereich der Filamente 6 erzeugt; der dadurch ausgeübte Druck bewirkt die Trennung der Elemente.
Um auf vergleichsweise einfache Weise zwischen den Betriebsweisen des Bear beitungslasers 4 als Perforationslaser einerseits und Trennlaser andererseits um schalten zu können, ist die als Strahlformungselement vorgesehene DOE-Optik 16 wie durch den Doppelpfeil 18 angedeutet mittels einer geeigneten Aufhängung schwenkbar gehaltert und in den Strahlengang 20 des Bearbeitungslasers 4 ein- und aus diesem ausschwenkbar. Alternativ oder zusätzlich kann die DOE-Optik 16 nach dem Laser 4 parallel zur Fl-Optik 5 angeordnet sein, wobei eine Strahlweiche den Laserausgangs strahl zwischen Fl-Optik 5 und DOE-Optik 16 schaltet.
Die als Strahlformungselement vorgesehene DOE-Optik 16 ist in ihrem Aufbau im in den Strahlengang 20 eingeschwenkten Zustand schematisch in Fig, 2 gezeigt. Das Element oder die DOE-Optik 16 umfasst das eigentliche diffraktive optische Element 22 und diesem im Strahlengang 20 nachgeschaltet eine Linse 24. Die Zusammenschaltung dieser Komponenten ist dabei im Ausführungsbeispiel derart vorgesehen, dass der auf das Element 16 auftreffende kollim ierte Laserstrahl 14 in sechs sekundäre Laserstrah len oder Teilstrahlen 28 geteilt wird. Für die im Ausführungsbeispiel vorgesehene Wel lenlänge des Bearbeitungslasers 4 von 1064 nm ergeben sich damit sechs Teilstrahlen 28 mit einem Abstand zueinander von etwa 10 pm. Die Transmission der Laserstrah lung für das Element 16 liegt bei 97 %, und die sechs Teilstrahlen 28 weisen mit glei cher Intensität einen Gesamtanteil der zugeführten Laserleistung von 86 % auf. Wie der ausschnittsweise vergrößerten Darstellung des Glaselements 2 in FIG. 3 wäh rend der Phase des zweiten Bearbeitungsschritts entnehmbar ist, wird der Bearbei tungslaser 4 in seiner Funktion als Trennlaser im Bereich der im Glaselement bereits gesetzten Filamente 6 als Ablationslaser betrieben. In Folge der Einwirkung des im Element 16 geformten, aus den genannten sechs Teilstrahlen 28 zusammengesetzten Laserstrahls 14 auf das Glassubstrat 2 entsteht im Bereich der zuvor eingebrachten Perforation 12 bzw. der diese bildenden Filamente 6 durch Laserablation eine Kerbe 30. Bei zunehmender Ablation der Kerbe 30 entsteht in der Kerbe 30 ein expandierendes Plasma. Bei geeigneter Form und Geometrie der Kerbe 30 kann der Expansionsdruck dieses Plasmas genutzt werden, um infolge der auf die Ränder der Kerbe 30 einwirken den Kräfte die Spaltung des Glaselements 2 im Bereich der Filamente 6 oder Modifika tionen zu bewirken.
Diese Wirkungsweise wird insbesondere durch eine geeignete Steuerung und Nachfüh rung der Laserparameter sichergestellt. Wie sich überraschenderweise herausgestellt hat, ist für eine zuverlässige Nutzung des Expansionsdrucks zum Brechen des Gla selements 2 unter anderem eben auch die Strahlformung des einfallenden Laserstrahls 26 wichtig: Für den Aufbau des gewünschten Drucks in der Kerbe 30 wird die Strahl formung benötigt, da ein Einzelstrahl bei der zur Bildung des Plasmas erforderlichen Intensität oder Energiedichte das Material zerstören würde. Neben der Plasmabildung (Intensität) spielt auch die Länge und Lage des wirkenden Plasmas in der Kerbe 30 ei ne wichtige Rolle für eine zuverlässige Trennung.
Das Kantenprofil der bei diesem Trennprozess entstehenden Trennkante 32 ist in FIG. 4 gezeigt. In ihrem oberen Bereich, von der Oberfläche des Glaselements 2 aus gesehen bis in eine Tiefe von etwa 20 - 30 pm, weist die Trennkante 32 eine die Kerbe 30 begrenzende Abschrägung 34 auf, an die sich in die Tiefe des Substrats hinein ge sehen eine vergleichsweise gerade verlaufende Bruchwand 36 anschließt. Bezugszeichenliste
Schneidsystem
Glaselement
Bearbeitungslaser
Fl-Optik
Filament
Schnittlinie
Perforation
Laserstrahl
DOE-Optik
Doppelpfeil
Strahlengang
Diffraktives optisches Element Linse
Teilstrahlen
Kerbe
Trennkante
Abschrägung
Bruchkante

Claims

Ansprüche
1. Verfahren zum Schneiden eines Glaselements (2) mit einem Bearbeitungslaser (4), bei dem der Bearbeitungslaser (4) in einem ersten Bearbeitungsschritt als Per forationslaser betrieben wird, mit dem entlang einer vorgesehenen Schnittlinie (8) eine Perforation (12) im Glaselement (2) erzeugt wird, und bei dem der Bearbei tungslaser (4) in einem zweiten Bearbeitungsschritt mit modifiziertem Laserstrahl (14) als Trennlaser betrieben wird, mit dem eine Spaltung der die Perforation (12) bildenden Filamente (6) bewirkt wird.
2. Verfahren nach Anspruch 1 , bei dem als Bearbeitungslaser (4) ein Ultrakurzpuls- Laser verwendet wird.
3. Verfahren nach Anspruch 1 oder 2, bei dem die Spaltung der die Perforation (12) bildenden Filamente (6) durch ablative Laserbearbeitung erfolgt.
4. Verfahren nach einem der Ansprüche 1 bis 3, bei dem der Laserstrahl (14) des Bearbeitungslasers (4) im zweiten Bearbeitungsschritt durch Strahlformung in eine Mehrzahl von, vorzugsweise sechs, Teilstrahlen (28) geteilt wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, bei dem durch den Bearbei tungslaser (4) im Betrieb als Trennlaser im Glaselement (2) ein Plasma erzeugt wird.
6. Schneidsystem (1) zum Schneiden von Glaselementen (2), mit einem Bear beitungslaser (4), in dessen Strahlengang (20) ein Strahlformungselement (16) einschwenkbar ist.
7. Schneidsystem (1) nach Anspruch 6, dessen Strahlformungselement (16) als dif- fraktives optisches Element (16) ausgeführt ist.
PCT/EP2020/084917 2019-12-12 2020-12-07 Verfahren zum schneiden eines glaselements und schneidsystem WO2021116031A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/783,633 US20230071407A1 (en) 2019-12-12 2020-12-07 Method for cutting a glass element and cutting system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019219462.1A DE102019219462A1 (de) 2019-12-12 2019-12-12 Verfahren zum Schneiden eines Glaselements und Schneidsystem
DE102019219462.1 2019-12-12

Publications (1)

Publication Number Publication Date
WO2021116031A1 true WO2021116031A1 (de) 2021-06-17

Family

ID=73943293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/084917 WO2021116031A1 (de) 2019-12-12 2020-12-07 Verfahren zum schneiden eines glaselements und schneidsystem

Country Status (3)

Country Link
US (1) US20230071407A1 (de)
DE (1) DE102019219462A1 (de)
WO (1) WO2021116031A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021120648A1 (de) 2021-08-09 2023-02-09 Precitec Gmbh & Co. Kg Optimierung des Schneidprozesses beim Laserschneiden eines Werkstücks
DE102021131811A1 (de) * 2021-12-02 2023-06-07 Trumpf Laser- Und Systemtechnik Gmbh Vorrichtung und Verfahren zum Bearbeiten eines Werkstücks

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007037133A1 (de) * 2006-08-24 2008-03-13 Nanosystec Gmbh Verfahren und Vorrichtung zur Erzeugung einer Mehrzahl von Material-Schwächungsbereichen oder Perforierungen
US20130126573A1 (en) 2010-07-12 2013-05-23 Filaser Inc. Method of material processing by laser filamentation
EP2705812A1 (de) * 2012-09-05 2014-03-12 Universität zu Lübeck Vorrichtung zum Laserschneiden innerhalb transparenter Materialien
EP2859983A2 (de) * 2013-08-02 2015-04-15 Rofin-Sinar Technologies, Inc. System zur Laserverarbeitung eines transparenten Materials
WO2018130448A1 (de) 2017-01-16 2018-07-19 Schott Ag Vorrichtung und verfahren zur bearbeitung von glas- oder glaskeramikelementen mittels eines lasers
US20190221985A1 (en) * 2018-01-12 2019-07-18 Asato TAMURA Optical processing apparatus, optical processing method, and optically-processed product production method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10120923A1 (de) * 2001-04-30 2002-10-31 Hauni Maschinenbau Ag Vorrichtung zum Perforieren von stabförmigen Gegenständen insbesondere der Tabak verarbeitenden Industrie
US9138913B2 (en) * 2005-09-08 2015-09-22 Imra America, Inc. Transparent material processing with an ultrashort pulse laser
EP2965853B2 (de) * 2014-07-09 2020-03-25 High Q Laser GmbH Bearbeitung von Material unter Verwendung asymmetrischer Laserstrahlen

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007037133A1 (de) * 2006-08-24 2008-03-13 Nanosystec Gmbh Verfahren und Vorrichtung zur Erzeugung einer Mehrzahl von Material-Schwächungsbereichen oder Perforierungen
US20130126573A1 (en) 2010-07-12 2013-05-23 Filaser Inc. Method of material processing by laser filamentation
EP2705812A1 (de) * 2012-09-05 2014-03-12 Universität zu Lübeck Vorrichtung zum Laserschneiden innerhalb transparenter Materialien
EP2859983A2 (de) * 2013-08-02 2015-04-15 Rofin-Sinar Technologies, Inc. System zur Laserverarbeitung eines transparenten Materials
WO2018130448A1 (de) 2017-01-16 2018-07-19 Schott Ag Vorrichtung und verfahren zur bearbeitung von glas- oder glaskeramikelementen mittels eines lasers
US20190221985A1 (en) * 2018-01-12 2019-07-18 Asato TAMURA Optical processing apparatus, optical processing method, and optically-processed product production method

Also Published As

Publication number Publication date
DE102019219462A1 (de) 2021-06-17
US20230071407A1 (en) 2023-03-09

Similar Documents

Publication Publication Date Title
EP2931467B1 (de) Verfahren zur herstellung von linienförmig aufgereihten schädigungsstellen durch ultrakurz fokussierter gepulster laserstrahlung ; verfahren und vorrichtung zum trennen eines werkstückes mittels ultrakurz fokussierter laserstrahlung unter verwendung einer schutzgasatmosphäre
EP3169475B1 (de) Verfahren und vorrichtung zum laserbasierten bearbeiten von flächigen, kristallinen substraten, insbesondere von halbleitersubstraten
DE112004000581B4 (de) Verfahren zum Schneiden von Glas
EP2964416B1 (de) Verfahren zum trennen eines substrates
WO2017009379A1 (de) Verfahren und vorrichtung zum abtrennen von glas- oder glaskeramikteilen
WO2001032349A1 (de) Verfahren und vorrichtung zum schnellen schneiden eines werkstücks aus sprödbrüchigem werkstoff
WO2021116031A1 (de) Verfahren zum schneiden eines glaselements und schneidsystem
DE102020102077B4 (de) Laserbearbeitungsvorrichtung und Verfahren zur Laserbearbeitung eines Werkstücks
WO2017060252A1 (de) Dielektrisches werkstück mit einer zone definiert ausgebildeter festigkeit sowie verfahren zu dessen herstellung und dessen verwendung
DE19736110C2 (de) Verfahren und Vorrichtung zur grat- und schmelzfreien Mikrobearbeitung von Werkstücken
DE19715537A1 (de) Verfahren und Vorrichtung zum Durchtrennen von flachen Werkstücken aus sprödem Material, insbesondere aus Glas
DE102017106372B4 (de) Verfahren zur Bearbeitung eines Werkstückes
WO2020254639A1 (de) Verfahren und vorrichtung zum bearbeiten eines werkstücks mit zusammensetzung des bearbeitungsstrahles aus mindestens zwei strahlprofilen
EP3676045B1 (de) Laserbearbeitung eines transparenten werkstücks
DE102018219465A1 (de) Verfahren zum Schneiden eines Glaselements und Schneidsystem
WO2021122894A1 (de) Verfahren zur lasermaterialbearbeitung und laserbearbeitungsanlage
DE102011075328A1 (de) Vorrichtung und Verfahren zum Randentschichten und Kerben beschichteter Substrate
EP4031315B1 (de) Laserschneidverfahren und zugehörige laserschneidvorrichtung
EP3872041A1 (de) Verfahren zum trennen eines glaselements und glasteilelement
EP3875436A1 (de) Verfahren zum vorbereiten und/oder durchführen des trennens eines substratelements und substratteilelement
DE102021100675B4 (de) Verfahren zum Zerteilen eines transparenten Werkstücks
DE102020123928A1 (de) Verfahren und Vorrichtung zum Zuschneiden von Glasfolien
DE10232815B4 (de) Verfahren zur Modifizierung von dielektrischen Materialeigenschaften
DE102022128170A1 (de) Technik zum Verrunden einer Werkstückkante
WO2023041417A1 (de) Verfahren und vorrichtung zur laserbearbeitung eines werkstücks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20828834

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20828834

Country of ref document: EP

Kind code of ref document: A1