WO2021115434A1 - 警示装置、警示装置的控制方法及交通事故联动系统 - Google Patents
警示装置、警示装置的控制方法及交通事故联动系统 Download PDFInfo
- Publication number
- WO2021115434A1 WO2021115434A1 PCT/CN2020/135747 CN2020135747W WO2021115434A1 WO 2021115434 A1 WO2021115434 A1 WO 2021115434A1 CN 2020135747 W CN2020135747 W CN 2020135747W WO 2021115434 A1 WO2021115434 A1 WO 2021115434A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- layer
- warning device
- fluorescent
- light guide
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Q—ARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
- B60Q7/00—Arrangement or adaptation of portable emergency signal devices on vehicles
Definitions
- the present disclosure relates to the field of warning technology, and in particular to a warning device, a control method of the warning device, and a traffic accident linkage system.
- the warning device is usually provided with an optical device to use the optical function of the optical device to play a warning role.
- an optical device Take a warning triangle used for traffic warning as an example.
- Optical devices such as retro-reflectors and fluorescent devices are usually set on it. Based on the reflection effect of the retro-reflector in the warning triangle and the fluorescence effect of the fluorescent device, the purpose of warning can be achieved.
- the warning effect of the existing warning device is relatively single, and the optical effect is poor, and it is difficult to meet actual use requirements.
- the present disclosure provides a warning device, a control method of the warning device, and a traffic accident linkage system.
- a warning device in the first aspect, includes: an optical device; and a control module communicatively connected with the optical device, and the control module is used to control the light emitting mode of the optical device according to demand information.
- a method for controlling a warning device includes: obtaining demand information; and controlling the light emitting mode of the optical device according to the demand information.
- a traffic accident linkage system includes the warning device as described in any one of the embodiments of the first aspect; and a server side communicatively connected with the warning device, wherein the server side is used to perform an accident based on the information reported by the warning device Linkage control.
- the warning effect of the warning device can be adjusted according to the demand information, so as to better meet the actual use demand.
- Fig. 1 is a schematic structural diagram of a warning device provided by an embodiment of the present disclosure.
- FIG. 2 is a schematic structural diagram of an optical device provided by an embodiment of the disclosure.
- FIG. 3 is a schematic structural diagram of a functional layer provided by an embodiment of the disclosure.
- FIG. 4 is a schematic structural diagram of a functional layer provided by another embodiment of the present disclosure.
- FIG. 5 is a schematic diagram of the functional layer structure provided by another embodiment of the present disclosure.
- FIG. 6 is a schematic structural diagram of a functional layer provided by still another embodiment of the present disclosure.
- FIG. 7 is a schematic structural diagram of a functional layer provided by still another embodiment of the present disclosure.
- FIG. 8 is a schematic structural diagram of a functional layer provided by still another embodiment of the present disclosure.
- FIG. 9 is a schematic structural diagram of an optical device provided by another embodiment of the present disclosure.
- FIG. 10 is a schematic structural diagram of a first light direction changing layer provided by an embodiment of the disclosure.
- FIG. 11 is a schematic structural diagram of an optical device provided by another embodiment of the present disclosure.
- FIG. 12 is a schematic structural diagram of an optical device provided by another embodiment of the present disclosure.
- FIG. 13 is a schematic structural diagram of an optical device provided by another embodiment of the present disclosure.
- FIG. 14 is a schematic structural diagram of a warning device provided by another embodiment of the present disclosure.
- Fig. 15 is a schematic structural diagram of a warning triangle provided by an embodiment of the disclosure.
- Fig. 16 is a schematic diagram of the exploded structure of the warning triangle shown in Fig. 15.
- Fig. 17 is a structural schematic diagram of the warning triangle shown in Fig. 15 in another view direction.
- Fig. 18 is a schematic structural diagram of the folded state of the warning triangle shown in Fig. 15.
- Fig. 19 is a structural schematic diagram of the warning triangle shown in Fig. 18 in another view direction.
- FIG. 20 is a schematic structural diagram of a storage box provided by an embodiment of the present disclosure.
- FIG. 21 is a schematic flowchart of a control method of a warning device provided by an embodiment of the present disclosure.
- the warning device is usually provided with an optical device to use the optical function of the optical device to play a warning role.
- an optical device Take a warning triangle used for traffic warning as an example.
- Optical devices such as retro-reflectors and fluorescent devices are usually set on it. Based on the reflection effect of the retro-reflector in the warning triangle and the fluorescence effect of the fluorescent device, the purpose of warning can be achieved.
- the warning effect of optical devices such as retro-reflectors and phosphors are not ideal.
- the ambient light is weak and the fluorescent device cannot be fully activated.
- the retro-reflector cannot provide a warning effect.
- the fluorescent device has a warning effect. It also becomes worse, and the warning effect is not achieved.
- the penetration ability of yellow light is better, so the light emitted by the fog lamp is usually yellow.
- retro reflectors and phosphors are standard in red, so that only red light can be reflected.
- the warning effect of the existing warning device is relatively single, and the optical effect is poor, and it is only suitable for ideal weather, and it is difficult to meet the actual use requirements under all-weather conditions, which has huge disadvantages.
- the embodiments of the present disclosure provide a warning device.
- the warning effect of the warning device can be adjusted according to demand information, so as to better meet actual use requirements.
- Fig. 1 is a warning device provided according to an embodiment of the present disclosure.
- the warning device includes an optical device 100 and a control module 200.
- the optical device 100 is in communication connection with the control module 200.
- the control module 200 is used to control the light emitting mode of the optical device 100 according to demand information.
- the warning effect of the warning device can be adjusted according to the demand information, so as to better meet the actual use demand.
- the optical device 100 may be a signal lamp provided on the warning device.
- the optical device may also be an LED array provided on the warning device.
- Fig. 2 is a schematic structural diagram of an optical device provided according to an embodiment of the present disclosure.
- the optical device 100 includes a light source 10, a first light guide layer 20 and a functional layer 30.
- the first light guide layer 20 and the functional layer 30 are stacked.
- the light source 10 is provided on the non-stacking direction side of the first light guide layer 20.
- the control module 200 may be connected to the light source 10 in communication, for example, so as to control the light emitting mode of the optical device 100 by controlling the light source 10.
- the first light guide layer 20 may be used to gather the light incident on the first light guide layer 20 in the normal direction of the first light guide layer 20.
- the normal direction of the first light guide layer 20 refers to the z-axis direction shown in FIG. 2, that is, the direction perpendicular to the upper surface and/or the lower surface of the first light guide layer 20.
- the first light guide layer 20 may be, for example, a nano light guide plate or a micro light guide plate, and nano- or micro-level particles may be distributed therein.
- the light entering the first light guide layer 20 will be scattered, reflected or diffusely reflected when it encounters the micro particles. Since the size of the first light guide layer 20 in the normal direction is much smaller than the size in other directions, light close to the normal direction (or light with a small angle with the normal direction) encounters during propagation. The number of arriving microparticles is smaller, and light with a larger angle with the normal direction will encounter more microparticles.
- light close to the normal direction has a smaller probability of encountering micro particles and is easier to emit from the first light guide layer 20; while light with a larger angle with the normal direction has a greater probability of encountering micro particles , It is easier to cause scattering, reflection or diffuse reflection under the action of micro particles.
- the light with a larger angle to the normal direction will be emitted from the first light guide layer 20 if the direction becomes close to the normal direction after being scattered, reflected or diffusely reflected. If the direction is still sandwiched with the normal direction If the angle is larger, the scattering, reflection or diffuse reflection will continue to occur under the action of the microparticles. After multiple scattering, reflection or diffuse reflection, most of the light will exit the first light guide layer 20 in a direction close to the normal. It can be seen that the first light guide layer 20 can collect the light incident on the first light guide layer 20 in the normal direction of the first light guide layer 20.
- the first light guide layer 20 is not limited to a nano light guide plate or a micro light guide plate.
- the first light guide layer 20 may also be a nano light guide film or a micro light guide film. Compared with the light guide plate, it can be better implemented on a non-planar surface, and can be better adapted to flexible equipment or irregular equipment, or application scenarios with thinner thickness requirements.
- the functional layer 30 may be used, for example, to send light to the first light guide layer 20 based on the light from the first light guide layer 20.
- the functional layer 30 may include a fluorescent layer, so that fluorescence can be excited by the light from the first light guide layer 20, and the excited fluorescence can be injected into the first light guide layer 20.
- the functional layer 30 may also include a reflective layer, so that the light from the first light guide layer 20 can be reflected back to the first light guide layer 20.
- the number of the light source 10 can be one or multiple, and it can be arranged on one side of the first light guide layer 20 in the non-stacking direction, or it can be arranged at a greater number in the non-stacking direction of the first light guide layer 20.
- the specific number and specific position of the light source 10 are not specifically limited in the embodiment of the present application.
- the optical device 100 provided in this embodiment can achieve a better warning effect by combining the first light guide layer 20, the functional layer 30, and the light source 10.
- the first light guide layer 20 and the functional layer 30 are arranged so that the light emitted by the light source 10 can be uniformly moved from the first light guide layer 20 away from the functional layer 30. Shoot out, so as to be better seen by the observer and play a better warning effect.
- the optical device 100 due to the existence of the light source 10, the optical device 100 completely gets rid of the dependence on ambient light such as sunlight. In non-sunny weather, even if there is insufficient light in the environment, the optical device 100 can still have a better warning effect, thereby achieving Alerts around the clock.
- the functional layer 30 includes a fluorescent layer
- a part of the light emitted by the light source 10 can be moved away from the first light guide layer 20 in a direction close to the normal line of the first light guide layer 20 under the action of the first light guide layer 20.
- One side of the functional layer is emitted.
- This part of the light is combined with the fluorescence excited by the environment of the functional layer 30, which can make the light emitted by the optical device 100 more eye-catching.
- the light emitted by the light source 10 can also be used to excite the functional layer 30.
- ambient light such as sunlight, it can excite more eye-catching fluorescence.
- the optical device 100 can still have an enhanced warning effect without turning on the light source 10.
- the emission direction of the excited fluorescent light is effectively collected, so that the excited fluorescent light can be uniformly emitted in a direction close to the normal line. Therefore, it is significantly improved in the normal direction.
- the warning effect of the observation makes the observer who is facing the optical device 100 feel a stronger warning effect.
- FIG. 3 is a schematic structural diagram of a functional layer provided by an embodiment of the disclosure.
- the functional layer 30 provided by the embodiment of the present disclosure includes a fluorescent layer 31 and a first reflective layer laminated with the fluorescent layer 31.
- the fluorescent layer 31 includes a plurality of fluorescent grooves 311, and the plurality of fluorescent grooves 311 penetrate the fluorescent layer 31 along the stacking direction of the fluorescent layer 31 (the up-down direction of the orientation as shown in FIG. 3).
- the first reflective layer includes a first sub-reflective layer 32, and the first sub-reflective layer 32 is located on the first side of the fluorescent layer 31 (the lower side of the orientation as shown in FIG. 3).
- the first sub-reflective layer 32 includes a plurality of first reflecting units 321, and the plurality of first reflecting units 321 are arranged in a one-to-one correspondence with the plurality of fluorescent grooves 311 in the fluorescent layer 31, and the plurality of first reflecting units 321 are located on the fluorescent layer 31.
- the orthographic projection of 31 covers a plurality of fluorescent grooves 311.
- the functional layer 30 provided by the embodiment of the present disclosure further includes a transparent layer 33 laminated on the surface of the fluorescent layer 31 away from the first sub-reflective layer 32, and sequentially laminated on the surface of the first sub-reflective layer 32 away from the fluorescent layer 31.
- the adhesive layer 34 and the backing paper layer 35 are used to bond the fluorescent layer 31 and the reflective layer to other objects.
- the fluorescent layer 31 is used to perform a fluorescent reaction based on incident light, thereby exciting fluorescence.
- the first reflective layer is used to perform light reflection operations based on the plurality of fluorescent grooves 311. Because the circumferential groove wall of the fluorescent groove 311 can also perform a fluorescent reaction based on incident light. Therefore, the fluorescent area of the fluorescent layer 31 is larger than the orthographic projection area of the fluorescent layer 31 on the plane where the first sub-reflective layer 32 is located. Then, in the actual application process, the fluorescent groove 311 can not only increase the area involved in fluorescence excitation with the help of the circumferential groove wall, but also can use the fluorescent groove 311 and the first reflecting unit 321 corresponding to the fluorescent groove 311 to make the excited fluorescence.
- the cross-sectional shape of the fluorescent groove 311 is an inverted trapezoid.
- the circumferential groove wall of the inverted trapezoidal fluorescent groove 311 can further increase the area of the fluorescent reaction.
- the fluorescent layer 31 may be formed based on a material rich in fluorescence, or may be formed by laying a fluorescent material on the surface of a substrate that does not have a fluorescent function.
- the functional layer provided by the embodiments of the present disclosure utilizes a non-planar fluorescent layer to optimize the fluorescence excitation effect.
- the incident light can directly pass through the fluorescent groove 311 to the first reflecting unit 321, without passing through other hierarchical structures that can weaken the incident light, the light loss is extremely small, and the incident angle can be large (currently In some technologies, the fluorescence generated by light from this type of angle has almost no substantial effect on the observer).
- the excited fluorescence of the fluorescent layer 31 can also reach the first reflecting unit 321 through the fluorescent groove 311, so the fluorescent effect is enhanced.
- the functional layer provided by the embodiments of the present disclosure can not only optimize the fluorescence excitation effect and enhance the warning ability, but also enhance the reflection effect.
- the functional layer provided by the embodiments of the present disclosure is applied to warning triangles, road cones, etc. for traffic warning, the fluorescence excitation effect and reflection effect are optimized, which further improves the warning effect for drivers and passengers, and thus This further reduces the probability of secondary accidents.
- the existing triangular warning signs have very poor reflection effect on yellow light, and the triangular warning signs with the functional layer provided by the embodiments of the present disclosure are aimed at yellow light. The reflection effect is not affected.
- the functional layer mentioned in the above embodiment when the functional layer mentioned in the above embodiment is applied to the warning triangle, the fluorescent area and the reflective area of the existing warning triangle are replaced based on the functional layer. That is, with the functional layer, both the fluorescence requirements and the reflection requirements of the warning triangle are met.
- Such a setting can not only save materials, thereby saving costs, but also have better warning effects and environmental protection effects.
- the functional layer mentioned in the embodiments of the present disclosure is not limited to being applied to the warning triangle, and can also be applied to other items requiring warning after being laminated with structures such as an adhesive layer.
- the fluorescent grooves 311 may also be filled with transparent low-light loss materials.
- the first reflection unit 321 is a microprism unit 3211.
- the micro prism unit 3211 refers to a micro prism with a metal reflective film layer attached to the surface.
- the angle of the micro prism is smaller than the preset angle, and the reflectivity of the micro prism is greater than the preset reflectivity.
- the reflection angle mainly considers the vehicles in the same direction after the accident car. Therefore, this setting can further optimize the fluorescence excitation effect and reflection effect, so that the traditional fluorescence warning only scatters and diffuses.
- the reflection angle of the microprism is adjusted to a specific direction to enhance the intensity of fluorescence excitation light in a specific direction.
- the fluorescent area of the fluorescent layer 31 is larger than the orthographic projection area of the fluorescent layer 31 on the plane where the first reflective layer (such as the first sub-reflective layer 32) is located. More preferably, the fluorescent area of the fluorescent layer 31 is larger than the corresponding planar area of the fluorescent layer 31.
- the non-planar fluorescent layer can be used to increase the fluorescent area, and the increased fluorescent area can be used to further optimize the fluorescence excitation effect.
- FIG. 3 is a cross-sectional view of the functional layer 30 from the front view.
- FIG. 4 a schematic diagram of the structure of the functional layer 30 in a top view in another embodiment of the present disclosure is given below in conjunction with FIG. 4.
- the cross-sectional shape of the fluorescent groove 311 is not limited to an inverted trapezoid, and may also be semicircular or other shapes, as long as the actual fluorescent area can be increased. That's it. The following is an example with reference to FIG. 5.
- FIG. 5 is a schematic structural diagram of a functional layer provided by another embodiment of the present disclosure. As shown in FIG. 5, the difference between the embodiment shown in FIG. 5 and the embodiment shown in FIG. 3 is that, in the embodiment shown in FIG. 5, the cross-sectional shape of the fluorescent groove 311 is semicircular.
- FIG. 6 is a schematic structural diagram of a functional layer provided by still another embodiment of the present disclosure. Based on the embodiment shown in FIG. 3, the embodiment shown in FIG. 6 is extended. The following focuses on the differences between the embodiment shown in FIG. 6 and the embodiment shown in FIG. 3, and the similarities will not be repeated.
- the functional layer 30 provided by the embodiment of the present disclosure has the transparent layer 33, the adhesive layer 34 and the backing paper layer 35 removed.
- the functional layer 30 provided by the embodiment of the present disclosure further includes a second light guide layer 36.
- the second light guide layer 36 is stacked on the second side of the fluorescent layer 31 (ie, the upper side in the orientation shown in FIG. 6), and the second light guide layer 36 meets the preset light guide conditions.
- the material of the second light guide layer 36 is a transparent light guide material, so that the light incident on the second light guide layer 36 can be uniformly divergent and transmitted in the second light guide layer 36, and finally a large amount of light is brought close to the second light guide layer 36.
- the light guide layer 36 emits in the normal direction of the plane where the light guide layer 36 is located, thereby achieving the purpose of improving the light effect of the functional layer 30 (compared to the existing scattering and diffusion).
- the second light guide layer 36 is a micron light guide plate or a nano light guide plate or a light guide film.
- the shape, material, and light effect of the second light guide layer 36 mentioned in the embodiment of the present disclosure can be referred to the first light layer 20 mentioned in the above embodiment, and the embodiment of the present disclosure does not Go into details again.
- the incident light first enters the second light guide layer 36, so that the second light guide layer 36 converts the light source (such as a point light source) into a surface light source, and then makes the surface obtained by the second light guide layer 36
- the light source reaches the fluorescent layer 31 and the first sub-reflective layer 32, and finally, the fluorescence excited by the fluorescent layer 31 and the light reflected by the first sub-reflective layer 32 are finally emitted through the second light guide layer 36.
- the functional layer provided by the embodiment of the present disclosure further improves the light effect of the excitation light by means of the second light guide layer, which essentially functions as the direction of light emission and collection, thereby further improving the visual conspicuousness of the functional layer.
- a protective film structure is laminated on the light entrance side of the functional layer mentioned in the above embodiment (for example, the upper side of the functional layer in the orientation shown in FIG. 6) to protect the functional layer.
- the optical device 100 may further include a second light source (not shown in the figure) located in the non-stacking direction of the second light guide layer 36.
- the non-stacking direction refers to the extending direction of the plane where the second light guide layer 36 is located.
- the second light source is arranged in contact with the second light guide layer 36.
- the number of the second light source can be one or multiple, and it can be arranged on one side of the second light guide layer 36 in the non-stacking direction, or it can be arranged in the non-stacking direction of the second light guide layer 36. On multiple sides, the specific number of the second light sources is not specifically limited in the embodiment of the present disclosure.
- the shape, material, and effects of the second light source mentioned in the embodiments of the present disclosure can be referred to the first light source mentioned in the above-mentioned embodiments, and the details are not repeated in the embodiments of the present disclosure.
- FIG. 7 is a schematic structural diagram of a functional layer provided by still another embodiment of the present disclosure.
- the embodiment shown in FIG. 7 is extended on the basis of the embodiment shown in FIG. 6.
- the following focuses on the differences between the embodiment shown in FIG. 7 and the embodiment shown in 6, and the similarities will not be repeated.
- the first reflection unit 321 includes a micro prism 3212.
- the functional layer 30 further includes a supporting member 37 located on the side of the first sub-reflective layer 32 away from the fluorescent layer 31.
- the supporting member 37 is used to support the first sub-reflective layer 32 to support the reflective cavities 3213 corresponding to the plurality of microprisms 3212.
- the reflective cavity 3213 is loaded with low-refractive substances such as gas (such as air).
- gas such as air
- the combination of the micro prism 3212 and the reflective cavity 3213 can realize the functions implemented by the micro prism unit 3211 mentioned in the above embodiment.
- the cavity structure has a longer life cycle and less pollution than the film structure (usually a metal film is used, which is easy to oxidize and pollution occurs in both upstream and downstream processes).
- the functional layer provided by the embodiment of the present disclosure The fluorescence is more uniform.
- the embodiments of the present disclosure can further expand the auxiliary functions of the functional layer by means of the supporting member.
- the material of the supporting member 37 includes a luminous material, so as to improve the adaptability and wide application of the functional layer 30.
- a luminous material so as to improve the adaptability and wide application of the functional layer 30.
- the functional layer 30 is applied to a warning triangle for traffic warning, when there is no sunlight and no rear headlights are illuminated (such as at night), neither the fluorescent layer nor the reflective layer in the functional layer 30 will work.
- the purpose of traffic warning can be achieved by means of the supporting member 37 including the luminous material.
- FIG. 8 is a schematic structural diagram of a functional layer provided by still another embodiment of the present disclosure.
- the embodiment shown in FIG. 8 is extended on the basis of the embodiment shown in FIG. 3, and the following focuses on the differences between the embodiment shown in FIG. 8 and the embodiment shown in FIG. 3, and the similarities will not be repeated.
- the functional layer 30 provided by the embodiment of the present disclosure has the transparent layer 33, the adhesive layer 34 and the backing paper layer 35 removed.
- the first reflective layer includes a second sub-reflective layer 38 that is stacked on the fluorescent layer 31 and is located on the second side of the fluorescent layer 31.
- the second sub-reflective layer 38 is used for light incidence at various angles, and the outgoing light collects the effect of a specific angle.
- the functional layer 30 further includes a third light guide layer 39.
- the third light guide layer 39 is stacked between the fluorescent layer 31 and the second sub-reflective layer 38.
- the third light guide layer 38 meets the preset light guide conditions.
- the second sub-reflective layer 38 includes a plurality of second reflecting units 381.
- the second reflection unit 381 is a microprism-like or prism structure, and its function is different from that of a microprism in that the second reflection unit 381 can obtain external incident light in multiple directions at a larger angle, including scattering, diffusion, and direct radiation.
- the emitted light will be collected in the normal direction, and most of the emitted light in the illegal direction will enter the adjacent second reflecting unit 381 and return to the functional layer 30, so the second sub-reflecting layer 38 That is, more incident light can be obtained, and the emitted light can be gathered to a certain angle range such as the normal direction (microprism requires all retro-reflection, while the second reflection unit 381 requires most of the light to be emitted at a normal angle. So although it is also a kind of tiny prism or prismatic structure, it is different from the purpose of retroreflection of micro prism).
- the external incident light is fully utilized, and the excitation light and the reflected light are emitted in a better normal direction.
- the observer's angle of this structure is smaller and the brightness is stronger, which is particularly suitable for road warning and warning for longer distances.
- the optical device 100 may further include a third light source located in the non-stacking direction of the third light guide layer 39.
- a third light source located in the non-stacking direction of the third light guide layer 39.
- the first light guide layer 20 may also be provided with a fluorescent unit.
- the fluorescent unit may be, for example, fluorescent material particles distributed in the first light guide layer 20, which may have a size of nanometers or micrometers, so as to reduce the influence on the light transmittance of the first light guide layer 20.
- the embodiment of the present disclosure does not specifically limit the shape and size of the fluorescent unit.
- the angle of the emitted light will be more concentrated at the angle close to the normal, and the angle of the incident light close to the normal will be more concentrated.
- the transmission effect is better; the incident light in the stacking direction is emitted more uniformly, and it is more close to the normal direction to adapt to the application scenario of traffic warning.
- the light incident on the first light guide layer 20 can excite the fluorescent unit to generate fluorescence. That is to say, in addition to the fluorescent excitation of the functional layer 30, the fluorescent unit in the first light guide layer 20 can also produce fluorescent excitation, and finally the fluorescent excitation of the functional layer 30 and the first light guide layer 20 is emitted from the first light guide layer. The direction of the layer 20 away from the functional layer 30 is emitted. Since both the first light guide layer 20 and the functional layer 30 can generate fluorescence excitation, the amount of excited fluorescence is greater than that when only the functional layer 30 can generate fluorescence excitation, so that it can have a better fluorescence effect.
- the fluorescent unit in the first light guide layer 20 when the fluorescent unit in the first light guide layer 20 is excited, it can emit the first excitation light.
- the functional layer 30 can be excited by the first excitation light to produce the second excitation light; And/or, when the functional layer 30 is excited, the second excitation light can be emitted.
- the fluorescent unit in the first light guide layer 20 can be excited by the second excitation light to generate the first excitation light. In this way, the fluorescent units in the first light guide layer 20 and the functional layer 30 are mutually excited to generate a chain reaction of fluorescence excitation, thereby generating an enhanced fluorescence excitation effect under a certain external light intensity.
- the excited fluorescence generated by the fluorescent unit of the first light guide layer 20 can excite the fluorescent substance of the functional layer 30 to generate fluorescence excitation, or the fluorescence excited by the functional layer 30 can also excite the first light guide layer 20.
- the fluorescent unit in the fluorescent unit produces fluorescence, which will cause the optical device to undergo a fluorescent chain reaction (the fluorescent chain reaction refers to the first excitation light generated by exciting the first fluorescent substance, which can excite the second fluorescent substance and produce the second excitation Light).
- both the first light guide layer 20 and the functional layer 30 have fluorescent materials, even if the influence of mutual excitation (chain reaction) is not considered, for example, red fluorescence (normal warning color) is only excited by ultraviolet rays, it will be caused by
- the fluorescence excitation amount of the first light guide layer 20 and the functional layer 30 is greater than the fluorescence excitation amount of any one of the first light guide layer 20 or the functional layer 30 to enhance the fluorescence effect.
- the fluorescence generated by the fluorescent unit in the first light guide layer 20 and the fluorescence generated by the energy layer 30 should belong to light of similar wavelengths, for example, both in the orange-red to red wavelength range, so as to make the warning color For consistent color.
- the fluorescent material can be a material with dual or multiple excitable wavelengths in the ultraviolet and visible bands.
- the micro particles in the first light guide layer can be made of fluorescent materials to form a fluorescent unit.
- the microparticles can not only play the role of collecting light, but also play the role of fluorescence.
- This implementation can use the microparticles in the light guide layer to change the light exit direction, so that the excited fluorescence will move closer to the normal direction when passing through the first light guide layer 20, thereby enhancing the fluorescent effect (not close to the normal The direction fluorescence is excited, and it is also changed to the normal direction by the first light guide layer 20).
- externally incident light from the side of the first light guide layer 20 away from the functional layer 30, regardless of the angle, will be scattered, reflected or diffused by the micro and nano particles in the light guide layer.
- the light is repeatedly reflected and excited when emitted between the first light guide layer 20 and the functional layer 30, so the excitation is sufficient, so the excitation effect is much better than that when only the functional layer 30 is irradiated by external light, and when the first light guide layer 30 is irradiated by external light,
- the fluorescent effect is enhanced, and when only the first light guide layer 20, when the light enters from the side (the best uniformly directed incident light angle), only nearly half of the light It is emitted from the other side, so the effect is far inferior to the superposition of the first light guide layer 20 and the functional layer 30.
- the functional layer 30 may not include a fluorescent layer, but only includes a second reflective layer with a reflective function.
- the fluorescent unit can be excited to generate fluorescence.
- the fluorescent light directed to the second reflective layer will be reflected back to the first light guide layer 20, so that the fluorescent light generated by the fluorescent unit can be emitted from the side of the first light guide layer 20 away from the second reflective layer.
- the optical device provided by this embodiment still has a better fluorescent effect.
- the functional layer 30 since the functional layer 30 only includes a reflective layer, there is no fluorescent color of the functional layer 30, so that the color of the optical device is only excited by the first light source.
- the first light guide layer 20 can excite the excitation light of the fluorescent substance in the first light guide layer 20 by the wavelength of the excitation light. Therefore, when the first light guide layer 20 is made of materials excited by multiple wavelengths, different input light wavelengths are excited. Different colors are produced. When the excitation light is invisible light such as ultraviolet light, different wavelengths will excite different colors, such as red and yellow flashing alternately. The observer can obtain a variety of colors on a fluorescence excitation optical structure, but in the past it was only a fixed fluorescence.
- the light in the environment is in multiple directions, in order to make full use of the light with a large angle between the direction and the normal direction of the first light guide layer 20, so as to improve the utilization rate of external light.
- the optical device may further include a first light direction changing layer laminated and disposed on a side of the first light guide layer 20 away from the functional layer 30.
- Fig. 9 shows an optical device provided by another embodiment of the present disclosure. It should be understood that in FIG. 9, the first light source is not shown.
- the optical device 100 in addition to the first light guide layer 20 and the functional layer 30 that are laminated, the optical device 100 also includes a first light direction changing layer laminated on the side of the first light guide layer 20 away from the functional layer 30. 40.
- the first light direction changing layer 40 is used to perform refraction processing on the light incident on the first light direction changing layer 40, so as to reduce the propagation direction and the first light direction of the light entering the first light guide layer 20 through the first light direction changing layer 40.
- the dashed arrows ⁇ 1, ⁇ 2, and ⁇ 3 in FIG. 2 represent incident light in different directions, and all have a larger angle with the normal f of the first light guide layer 20.
- the lights ⁇ 1, ⁇ 2, and ⁇ 3 can all enter the functional layer 30 in a direction close to the normal f.
- the light ⁇ 1 is effectively used under the action of the first light direction changing layer 40.
- the first light direction changing layer 40 By arranging the first light direction changing layer 40, the light with a larger angle with the normal of the first light guide layer 20 in the environment can also be incident on the functional layer 30 in a direction close to the normal, thereby making full use of the environment. In the light, even if the ambient light is weak, it can also have a better fluorescent effect.
- first light direction changing layer 40 There are many implementations of the first light direction changing layer 40, which are not limited in the embodiment of the present disclosure.
- the first light direction changing layer 40 may be a micro lens film or a micro lens array provided on the first light guide layer 20.
- the first light direction changing layer 40 may be a microprism film or a microprism array provided on the first light guide layer 20.
- the first light direction changing layer 40 may also include a plurality of light direction changing sublayers.
- FIG. 10 is a schematic structural diagram of a first light direction changing layer provided according to an embodiment of the present disclosure.
- the first light direction changing layer 40 includes a plurality of light direction changing sublayers.
- the refractive index of the plurality of light direction changing sublayers sequentially increases along the direction from the light direction changing layer 40 to the first light guide layer 20.
- the angle of the incident light ⁇ gradually approaches the normal f, and finally enters the first light guide layer 20 in a direction close to the normal.
- the refractive index of the first light direction changing layer 40 should be set to be smaller than the refractive index of the first light guide layer 20. In this way, the light with a larger angle with the normal of the first light guide layer 20 will be totally reflected when it hits the interface between the first light guide layer 20 and the first light direction changing layer 40, and will be reflected back to the function.
- Layer 30 The refractive index of the first light direction changing layer 40 should be set to be smaller than the refractive index of the first light guide layer 20.
- FIG. 11 is a schematic structural diagram of an optical device provided according to another embodiment of the present disclosure. It should be understood that in FIG. 11, the first light source is not shown.
- the optical device 100 not only includes the first light guide layer 20 and the functional layer 30, but also includes a first light guide layer 20 on the side of the first light guide layer 20 away from the functional layer 30.
- Two light direction change layer 50 are two light direction change layer 50.
- the second light direction changing layer 50 may include a plurality of micro prism strip structures 51, for example.
- the second light direction changing layer 50 may be attached to the side of the first light guide layer 20 away from the functional layer 30 in a film, for example, may be a BEF (Brightness Enhancement Film, BEF) brightness enhancement film.
- a film for example, may be a BEF (Brightness Enhancement Film, BEF) brightness enhancement film.
- BEF Brightness Enhancement Film
- the second light direction changing layer 50 may also be integrally formed on the surface of the first light guide layer 20 on the side away from the functional layer 30.
- the second light direction changing layer By providing the second light direction changing layer, on the one hand, considering that the light receiving area of the prism surface is much larger than the plane, the amount of light entering the optical device is increased, so that the fluorescent material in the optical device can be more fully excited.
- the second light direction changing layer has the function of collecting light. Specifically, when light is emitted from the first light guide layer 20 to the second light direction changing layer 50, due to the structural characteristics of the second light direction changing layer 50, only the light rays close to the normal direction are emitted to the observer. The emitted light in other directions that is not reflected back will be reflected back to the inside due to the emergence angle of 51.
- the light that has a larger angle with the normal will be reflected back to the first light guide layer 20 again. , So the light cycles back and forth, eventually leading to most of the light being adjusted to be emitted in a direction close to the normal direction. Therefore, by providing the second light direction changing layer, when viewed from the external front, the brightness of the emitted light is greatly increased (because the incident light increases and the direction of the emitted light is adjusted to the normal direction), thereby improving the fluorescent effect of the optical device 100.
- this prism structure increases the amount of incident light, and at the same time adjusts the direction of the emitted light to the direction close to the normal direction, so that the front observer feels that the light is very bright, and it also enhances the fluorescence effect at a specific angle. .
- the second light direction changing layer shown in FIG. 11 is only a light direction changing layer provided by one embodiment of the present disclosure.
- the second light direction changing layer may not include the angular strip structure, but may include a plurality of triangular pyramid prisms, and the angle of the emitted light can be controlled by adjusting the angle.
- the side of the second light direction changing layer away from the first light guide layer 20 may be provided with a protective film/layer with high light transmission and low reflection.
- the wavelength range of the light emitted by the first light source and the wavelength range of the fluorescence excited by the fluorescent material in the optical device may belong to a certain preset wavelength range, so that the light emitted by the first light source and the fluorescent material The excited fluorescence belongs to the same hue. For example, if the light emitted by the first light source is orange-red, the fluorescence emitted by the fluorescent material is also orange-red or red. In this way, the light emitted by the first light source and the fluorescent light excited by the fluorescent material can have a better fluorescent effect and be more eye-catching after being superimposed.
- the fluorescent material refers to the fluorescent material constituting the fluorescent layer and/or the fluorescent unit in the optical device.
- the light emitted by the first light source and/or the fluorescence of the fluorescent material in the optical device excited by the first light source may include light in the yellow wavelength range. Compared with other colors of light, yellow light has better penetrability in rain and haze, so that the optical device provided in this embodiment can maintain a better fluorescence effect during fog and haze weather.
- the light emitted by the first light source and/or the light excited by the fluorescent material in the optical device by the first light source may be yellow light within a preset wavelength range of 580nm (for example, 580nm ⁇ 10nm), then , Even in the weather with weak sun illuminance such as haze and fog, the penetrating yellow light can ensure the visual enhancement effect, thereby overcoming the defect that the fluorescent structure is difficult to have the visual enhancement effect under any illumination.
- the excitation light emitted by the first light source includes yellow light, such as yellow light within a preset wavelength range of about 580 nm, such as 580 nm ⁇ 10 nm. Then, even in the weather with weak sun illuminance such as haze and fog, the penetrating yellow light can guarantee the enhancement effect of visual warning, thereby overcoming the difficulty of the existing traffic function layer to have the visual enhancement effect under any illumination. defect.
- the excitation of signal types such as short, short, and long has a stronger effect on the observer and an indication of signal content, which makes today's fluorescent warning equipment defects and standard defects completely changed.
- the light source wavelength is combined with the excitation wavelength of the fluorescent substance, that is, the input of a specific wavelength will excite the fluorescence of a specific color.
- the excitation light uses orange-red wavelength input
- the fluorescent material uses orange-red wavelength to excite red wavelength.
- Fluorescence, the incident light and fluorescence are both orange and red, which are relatively strong warning lights, thereby superimposing the output warning effect (such as in a cloudy day, this application can ensure that the fluorescent warning effect is stronger than the effect when the sun is the best on a sunny day) .
- the fluorescent material is of one or more wavelength bands
- different colors of excitation light can be emitted according to the control requirements, especially at night, through color signals to warn pedestrians and vehicles.
- the system adopts the structure of the present disclosure, so that it meets or exceeds the requirements of the existing national standard for fluorescence, and when it has electricity, the entire technical design defect of the European standard and the national standard is compensated.
- the fluorescent material in the optical device may include multiple fluorescent materials. Different fluorescent materials can be excited by light in different wavelength ranges, and the wavelength ranges of the fluorescence that are excited by different fluorescent materials can also be different.
- the fluorescent material may include a first fluorescent material and a second fluorescent material.
- the first fluorescent material is configured to be excited to emit light in the a2 wavelength range when receiving light in the a1 wavelength range.
- the second fluorescent material is configured to be excited to emit light in the b2 wavelength range when receiving light in the b1 wavelength range.
- the optical device can emit different colors of fluorescence under the excitation of light of different wavelength ranges, so that the optical device can emit a variety of colors of fluorescence, thereby making the warning of the warning device more flexible, and further improving the warning effect of the optical device .
- the optical device when multiple fluorescent materials with different excitation wavelengths are provided in the optical device, the optical device will be excited to emit light of multiple colors, thereby causing color confusion.
- FIG. 12 is a schematic structural diagram of an optical device provided according to still another embodiment of the present disclosure.
- the optical device 100 may further include a light filter layer 60 disposed on a side of the first light guide layer 20 away from the functional layer 30.
- the light filter layer 60 is used to prevent light with a predetermined wavelength range from being incident on the first light guide layer 20.
- the light filter layer 60 can, for example, filter out all the light that can excite different fluorescent substances in the optical device 100 in the environment, and only control the fluorescent color of the optical device 100 by controlling the first light source 60 to output light in different wavelength ranges.
- the light filter layer 60 can also be configured to allow light that can excite a certain fluorescent material to enter, so that when the first light source 60 is not turned on, the optical device can emit a certain color of fluorescence. When the fluorescent color needs to be changed, the first light source 60 is used to excite other fluorescent materials.
- the light filter layer 60 By providing the light filter layer 60, it is possible to prevent the light of the preset wavelength range from entering the optical device, thereby avoiding color confusion caused by simultaneous excitation of multiple fluorescent substances.
- the light filter layer 60 may be a filter film capable of filtering light in a certain wavelength range, for example, a film that filters ultraviolet rays.
- the light filter layer 60 may also be an electrochromic glass or an electrochromic film, so that the wavelength range of the incident light can be controlled according to actual requirements.
- FIG. 13 is a schematic structural diagram of an optical device provided according to still another embodiment of the present disclosure. It should be understood that in FIG. 13, the first light source is not shown.
- the optical device 100 may further include a light blocking layer 70.
- the light blocking layer 70 is disposed on the non-folding direction side of the first light guide layer 20 and is used to send light to the first light guide layer 20 based on the light incident from the first light guide layer 20 to the light blocking layer 70.
- the light blocking layer 70 may be, for example, a reflective layer, so as to reflect the light from the first light guide layer 20 back to the first light guide layer 20 through reflection.
- the light blocking layer 70 may also be a fluorescent layer, for example, so as to excite fluorescence based on the light from the first light guide layer 20 and emit the fluorescent light toward the first light guide layer 20.
- the light blocking layer 70 may have the same structure as the functional layer 30, for example.
- the outermost side of the optical device in the direction away from the functional layer may also be subjected to hydrophobic or super-hydrophobic treatment.
- the hydrophobic treatment needs to be set according to the structure of the optical device, so as to ensure the hydrophobic effect without destroying the original optical characteristics of the optical device.
- microstructures such as microprisms, etc.
- the light emitting mode of the optical device 100 may involve turning on or off of the optical device 100, the color of the emitted light, or the blinking mode, and so on. It should be understood that the embodiment of the present disclosure does not specifically limit the light emitting mode.
- control module 200 may be used to control the turning on or off of the optical device 100.
- the warning device can use the fluorescent effect excited by the ambient light to achieve the warning effect
- the optical device 100 can be controlled to turn on, so that the warning device can be used when the light is weak. Still has a better warning effect.
- control module 200 may be used to control the color of the optical device 100.
- the color of the optical device 100 can be controlled to be eye-catching red, while in foggy, haze or sandy weather, the optical device 100 can be controlled to emit yellow light, thereby improving the light penetration ability and avoiding The warning device loses its warning effect in an environment with low visibility.
- control module 200 may be used to control the blinking mode of the optical device 100.
- the eye-catching degree of the optical device 100 can be increased by increasing the flicker frequency of the optical device 100.
- the optical device may be used to send an ambulance signal to passing people and/or vehicles in a scene requiring ambulance. That is to say, an embodiment of the present disclosure also provides a warning device with rescue capability.
- the warning device includes the optical device mentioned in any one of the above embodiments, and the optical device is used to direct people and passers-by in a scene requiring rescue. / Or the vehicle sends out an ambulance signal.
- the warning device can send rescue to passing vehicles and people by controlling the flashing frequency and/or color of the optical device and/or the flashing sequence of multiple optical devices. signal.
- the embodiment of the present application does not specifically limit it.
- the rescue signal may be an international first aid signal, that is, a flashing mode of three long and three short.
- the warning device may further include an information input module 210 communicatively connected with the control module 200.
- the information input module 210 may be used for the user to input required information.
- the information input module 210 may be, for example, an input panel provided on a warning device, and the user can control the light emitting mode of the optical device through the input panel.
- the user can turn on the optical device 100 through the input panel.
- the user can adjust the luminous color of the optical device 100 through the input panel to make it close to yellow light.
- the user can also adjust the flickering frequency of the optical device 100 through the input panel to adjust the eye-catching degree of the optical device 100.
- the user can also adjust the flicker frequency and color change of the optical device 100 through the input panel to realize the encoding and transmission of information.
- the information input module Because of the existence of the information input module, it brings convenience to users.
- the user can input demand information through the information input module according to actual needs, so that the control module can control the light emitting mode of the optical device according to the demand information input by the user to better meet actual use needs.
- the warning device may further include the first sensor module 220.
- the first sensor module 220 may be used to determine environmental information of the environment in which the warning device is located.
- the demand information may include environmental information of the environment in which the warning device is located, so that the control module 200 can control the light emitting mode of the optical device 100 according to the environmental information of the environment in which the warning device is located determined by the first sensor module 220, thereby further facilitating the user's use.
- the environmental information may include visibility information, that is, the visibility of the environment in which the warning device is located.
- the first sensor module 220 may include a visibility sensor.
- the warning device when in fog, haze or sandy weather, the warning device can detect the visibility of the environment in which the warning device is located through the first sensor module.
- the control module 200 can be used to control the optical device 100 to emit yellow light, thereby improving the light penetration ability and avoiding the warning device from losing its warning effect in an environment with low visibility.
- the environment information may include brightness information, that is, the brightness of the environment in which the warning device is located.
- the first sensor module 220 may include a light sensor (or brightness sensor).
- the warning device can detect the brightness of the environment in which the warning device is located through the first sensor module 220.
- the control module 200 can be used to control the optical device 100 to turn on, so as to prevent the warning device from losing the warning effect when the ambient brightness is insufficient.
- the warning device may further include the first communication module 230.
- the first communication module 230 is in communication connection with the control module 200.
- the warning device can obtain demand information through the first communication module 230.
- the first communication module 230 may be used to obtain demand information from the server.
- the first communication module 230 can obtain weather information (for example, weather forecast information) of the location of the warning device from the server, so that the control module 200 can control the light emitting mode of the optical device 100 according to the weather information to deal with different weather. , So that the warning device can have a better warning effect in different weather.
- weather information for example, weather forecast information
- the first communication module 230 may be used to obtain demand information from a user terminal such as a mobile phone.
- the user terminal can be provided with an APP (or called an application program), and the user can input demand information on the APP.
- the user can directly use a user terminal such as a mobile phone to adjust the light emitting mode of the optical device 100, thereby bringing convenience to the user.
- the warning effect of optical devices usually attenuates as the distance increases, the warning effect will be lost if the distance is farther.
- the warning device When the warning device is applied in a traffic scene, if the speed of the driving vehicle is relatively fast, it may be too late to respond when the warning device is discovered.
- the warning device of the embodiments of the present disclosure may further include a second sensor module (not shown) and a second communication module (not shown) that are communicatively connected with the control module.
- the second sensor module can be used to obtain the position and orientation of the warning device.
- the second communication module is used to send report information to the server.
- the reported information may include the location and orientation of the warning device.
- the second sensor module may include a position sensor and a direction sensor, for example.
- the position sensor may be, for example, a satellite positioning sensor such as Beidou or GPS, and of course, it may also be a position sensor of other types, which is not specifically limited in the embodiment of the present disclosure.
- the direction sensor may be, for example, an electronic compass, or of course, it may also be another type of direction sensor, which is not specifically limited in the embodiment of the present disclosure.
- the warning triangle Take the warning triangle as an example.
- the warning triangle is usually placed with the optical device facing the direction of the oncoming vehicle, so the direction sensor can detect the direction of the warning triangle.
- the direction of the accident can be calculated according to the road direction on the GIS of the location and the value returned by the direction sensor. Therefore, not only the location of the accident can be reported, but the driving direction of the road where the accident is located can also be reported.
- the location and direction information needs to be calculated in conjunction with the GIS data on the background server to obtain the direction of the accident. Only the direction of the accident is fed back. Without the location and GIS, the road, direction and distance of the accident required by the traffic police and emergency units cannot be calculated. This kind of alarm format information.
- the server After reporting the location and orientation to the server, the server can remind and guide vehicles passing the accident location through information platforms including vehicle navigation systems, traffic police platforms, and vehicle Internet of Things. When they are far away from the accident location, the server can remind and guide them.
- information platforms including vehicle navigation systems, traffic police platforms, and vehicle Internet of Things.
- the reported information may also include lane occupation information of the accident.
- the lane occupation information is used to indicate the lane occupied by the accident.
- the user can input lane occupation information through the information input module.
- the user can also enter the lane occupation information through the APP of a mobile terminal such as a mobile phone.
- the embodiments of the present disclosure do not make specific limitations.
- the location, orientation, and lane occupation information can be reported at the same time, so that the location of the accident can be determined more accurately, and the passing vehicles can be more accurately reminded and guided.
- the warning device may be a warning triangle.
- the warning device can also be a traffic cone.
- the warning device may also be a warning column.
- the warning device in the foregoing embodiment may be a warning triangle.
- the triangular warning sign When there is a sudden breakdown on the road for maintenance or an accident, you can use the triangular warning sign to place it a certain distance away from the direction of the incoming vehicle (for example, on a city road, it can be placed 50 meters away from the direction of the incoming vehicle. ), which can remind other vehicles to pay attention to avoidance to avoid secondary accidents.
- the warning triangle has higher requirements on the warning effect.
- the existing triangle warning signs are difficult to achieve the expected warning effect in non-sunny weather, and there are serious safety risks.
- the existing warning triangle can only play a passive warning role through a retro-reflector or a fluorescent device, and cannot realize active warning or transmission of information through flashing or color changes.
- the warning triangle provided by the embodiments of the present disclosure has an all-weather warning effect, and can realize active warning or transmission of information, thereby significantly improving the warning effect of the warning triangle and greatly reducing the two The possibility of a traffic accident.
- the warning triangle usually has a folding function. When not in use, the warning triangle needs to be folded in order to reduce the space occupied, and then unfolded when needed.
- embodiments of the present disclosure provide a warning triangle that can be spliced with one hand.
- the warning triangle 400 includes a first part 410, a second part 420, and a third part 440 including a supporting structure.
- the second part 420 includes a first end 421 and a second end 422 opposite to each other.
- the first end 421 of the second part 420 is rotatably connected to the first part 410.
- the third part 430 includes a third end 431 and a fourth end 432 opposite to each other.
- the third end 431 is rotatably connected to the second end 422 of the second component 420.
- the fourth end 432 is detachably connected to the first component 410.
- connection between the second part 420 and the third part 430 of the existing warning triangle is detachable, that is, the connection between the second end 422 and the third end 431 is detachable of. Therefore, when the user unfolds the warning triangle, two hands are required to support the second part 420 and the third part 430 respectively, so as to complete the splicing of the second part 420 and the third part 430.
- connection of the third component 430 and the first component 410 of the warning triangle 400 provided in this embodiment is detachable, that is, the fourth end 432 is detachably connected to the first component 410.
- the user does not need two hands to support the second part 420 and the third part 430 respectively, and only needs one hand to connect the fourth end 432 to the first part 410.
- the splicing of the warning triangle 400 can be completed, thereby facilitating the user's use, especially for the situation where a female driver is injured after a car accident or is holding a mobile phone in one hand after the accident.
- the supporting structure may be, for example, a component for supporting the warning device.
- the supporting structure may include, for example, legs 411 and 412 provided at the bottom of the first part 410.
- legs 411 and 412 provided at the bottom of the first part 410.
- it may also include a supporting leg 413 rotatably provided at the bottom of the first component 410.
- the support structure can be implemented in many ways, and the embodiment of the present invention does not specifically limit it.
- the first component 410 may further include a receiving space 414.
- the accommodating space 414 is used for accommodating the second part 420 and the third part 430. This arrangement can reduce the space occupied by the warning triangle in the storage state, and make the warning triangle after storage more regular, which is more like an industrial product than the existing triangle warning signs.
- the fourth end 432 of the third component 430 may be provided with a hanging card 433, and correspondingly, a stopper 415 may be provided on the first component 410.
- the user can easily complete the splicing and disassembly of the warning triangle.
- magnets may also be provided on the fourth end 432 of the third component 430 and the corresponding position of the first component 410, so as to facilitate the splicing and disassembly by magnetic attraction.
- magnets may also be provided on the fourth end 432 of the third component 430 and the corresponding position of the first component 410, so as to facilitate the splicing and disassembly by magnetic attraction.
- pay attention to the magnetic field strength of the magnet to prevent the magnet from interfering with the direction sensor.
- the optical device in the foregoing embodiment may be provided on one or more of the first component, the second component, or the third component, for example.
- the optical device may include a first optical device, a second optical device, and a third optical device.
- the first optical device, the second optical device, and the third optical device may be provided on the first component, the second component, and the third component, respectively.
- the first optical device, the second optical device, and the third optical device may constitute a retro reflector and/or a fluorescent device of the warning triangle.
- the user can also input the type or attribute of the accident through the input panel 416.
- the user can input the level of the accident through the input panel 416.
- the accident level may be, for example, the accident level prescribed by the traffic law, which can be divided into general accidents, minor accidents, major accidents, and extraordinary accidents.
- the relevant parties for example, traffic police
- the user can also input whether the accident has caused a fire or whether medical rescue is required through the input panel 416, so that the fire department or medical department can perform fire fighting tasks or medical rescue in a timely manner.
- the warning triangle provided by the embodiments of the present invention may further include a wake-up module communicatively connected with the control module.
- the wake-up module is used to wake up the warning device when the warning triangle is adjusted to the unfolded state.
- the wake-up module may include, for example, a detection device and a detection point respectively provided at the connection of the two detachable components.
- the detection device and the detection point are close, so that it is detected that the warning triangle is adjusted to the unfolded state, and the warning triangle is awakened.
- a magnet may be provided on the fourth end 432 of the third part 430.
- the position of the first part 410 connected to the fourth end 432 may be provided with a reed switch. In this way, when the fourth end 432 is connected to the first component 410, the magnetic reed switch is close to the magnet, thereby detecting that the warning triangle 400 is adjusted to the unfolded state.
- an angle sensor may be deployed in the circuit board of the second component 420 or the third component 430, so that when the included angle of the second component 420 or the third component 430 is greater than the preset angle ( If it is greater than 45 degrees), it can be understood as the unfolded state.
- the circuit board in the first component 410 can also be detected by a sensor to detect whether it is placed horizontally, so that it can be combined with the angle sensor in the second component 420 or the third component 430 to determine the triangle
- the warning signs are deployed and not deployed flat.
- the user only needs to unfold the warning triangle to wake up the warning triangle, which further facilitates the use of the user and improves the user experience.
- the above-mentioned wake-up part can be replaced by a switch circuit when simplifying the function, such as magneto-electric wake-up becomes a magneto-electric switch mode or directly changed to a circuit switch.
- the warning triangle provided by the present invention may further include an enhanced sensor module and a third communication module (not shown) that are communicatively connected with the control module.
- first communication module, the second communication module, and the third communication module in the foregoing embodiments may be the same communication module with the function of receiving and sending information, or may be multiple different communication modules.
- the application examples are not specifically limited.
- the enhanced sensor module is used to detect emergencies, so as to control the third communication module to report emergencies information to the server through the control module.
- the enhanced sensor module may include, for example, an acceleration sensor, so that when the acceleration sensor detects abnormal acceleration information, the control module controls the third communication module to report the emergency information to the server.
- the abnormal acceleration information can be compared with the characteristic waveform pattern of the acceleration sensor such as violent collision, rotation, cliff falling of the vehicle, etc., so as to monitor and identify possible accident situations.
- the enhanced sensor module may also include, for example, a sound sensor for detecting abnormal sounds or abnormal voices, so as to report unexpected accident information to the server when abnormal sounds or abnormal voices are detected.
- a sound sensor for detecting abnormal sounds or abnormal voices, so as to report unexpected accident information to the server when abnormal sounds or abnormal voices are detected.
- the abnormal sound may include, for example, a sound whose decibel is greater than a preset value, and a specific sound characteristic of a collision.
- the abnormal voice may include voice information such as asking for help, for example.
- the enhanced sensor module may also include, for example, a smoke or temperature sensor, so that when smoke or a temperature greater than a preset value is detected, emergency information is reported to the server. It can be understood that when smoke or a temperature greater than a preset value is detected, it can be considered that the vehicle is on fire.
- the enhanced sensor module may include multiple sensors, so as to combine multiple sensors to improve the accuracy of detection.
- the driver may be injured and unable to contact rescue.
- the warning triangle can automatically report the accident information when an accident occurs, so that the rescue of the accident can be more timely.
- the warning triangle provided by the present invention may further include a playing module communicatively connected with the control module.
- the playback module is used to play voice guidance.
- the playing module may be a device capable of playing voice.
- the speaker 417 is provided on the warning triangle 400.
- the embodiments of the present invention do not specifically limit the content of the voice guidance.
- the content of the voice guidance can include, for example, how to deal with the accident in accordance with laws and textbooks after a car accident. It can also contain information to calm the accident person after the accident. It can also include how to arrange a warning triangle, for example, how to launch a warning triangle. brand.
- the voice guidance content may include “150 meters away from the vehicle, the optical facing the oncoming vehicle."
- the voice prompt function starts to broadcast after the warning triangle is taken out of the storage box.
- the purpose of this design is to provide the accidental person with post-accident guidance and warn him to calm down as soon as the device is awakened and turned on.
- the warning triangle provided by the present invention may further include a detection module communicatively connected with the control module.
- the detection module is used to detect the position of the warning triangle in the storage device for storing the warning triangle, so that when the warning triangle leaves the preset position in the storage device, the control module controls the playback module to play voice guidance.
- one side of the first component 410 of the warning triangle 400 may be provided with a detection module 418, for example.
- the corresponding position of the storage box 500 is provided with a detection point 510.
- the detection module 418 may be, for example, a magnetic reed switch, and the detection point 510 may be, for example, a magnet.
- the detection module 418 is close to the detection point 510.
- the detection module 418 is separated from the detection point 510, so that the control module 418 controls the playback module to play the voice guidance.
- the detection module 418 is not limited to a reed switch.
- the detection module 418 may also be a photoelectric switch, and correspondingly, the detection point 510 may be, for example, a reflective plate.
- the specific form of the detection module 418 is not limited in the embodiment of the present invention.
- the position of the detection module 418 is not limited to one side of the first component 410.
- the detection module 418 may also be arranged in other positions, which is not limited in the embodiment of the present invention.
- the playback module can automatically play the voice guidance, thereby further facilitating the use of the user.
- the position sensor may also be configured to detect the position of the warning triangle when it is taken out of the storage box and the position when the warning triangle is unfolded, and then the position of the warning triangle may be determined based on GIS system calculations. Whether the placement position meets the requirements of placement distance such as 50 meters, 150 meters, etc. If the user's placement does not meet the requirements, a reminder can be sent to the user, so as to prevent the placement distance of the warning triangle from not meeting the requirements.
- weather and/or time may also be used as parameters, so as to determine whether the user's placement distance meets the requirements according to different weather and/or time.
- the placement distance of high-speed night needs 200 meters, and it also needs 200 meters on rainy days.
- the first embodiment is an apparatus embodiment
- the second embodiment is a method embodiment.
- the description on the device side and the description on the method side correspond to each other, and repeated descriptions are appropriately omitted for brevity.
- FIG. 21 is a schematic flowchart of a control method of a warning device provided by an embodiment of the present disclosure.
- the control method S100 in FIG. 21 can be executed by the warning device mentioned above.
- the method S100 includes step S110 and step S120.
- step S110 obtain demand information
- step S120 the light emitting mode of the optical device is controlled according to the demand information.
- the warning effect of the warning device can be adjusted according to the demand information, so as to better meet the actual use demand.
- step S110 includes: obtaining demand information input by a user by using an information input module.
- the demand information includes environmental information of the environment where the warning device is located
- step S110 includes: using the first sensor module to determine the environmental information of the environment where the warning device is located.
- the environmental information includes visibility information and/or brightness information.
- step S110 includes: using the first communication module to obtain demand information from the server and/or the user terminal.
- step S120 includes: controlling the optical device to be turned on or off according to demand information, and/or controlling the wavelength range of the light emitted by the optical device according to demand information, and/or according to demand The information controls the blinking pattern of the optical device.
- the method S100 further includes: using a second sensor module to obtain the position and orientation of the warning device; using the second communication module to send report information to the server, and the report information includes the location and orientation of the warning device.
- the method S100 further includes: using a playback module to play voice guidance.
- the method S100 further includes: using the detection module to detect the position of the warning device in the storage device that houses the warning device, so that when the warning device is separated from the preset position in the storage device, control the playback The module plays the voice guidance.
- the traffic accident linkage system may include the warning device in the above-mentioned embodiment, and a server end communicatively connected with the warning device.
- the warning device can report location, direction, lane occupation, accident attributes and other information to the server.
- the server can perform linkage control of accidents based on the information reported by the warning device.
- the server can send guidance suggestions to subsequent vehicles through one or more of a navigation system, a car networking system, a traffic guidance system, and a traffic guidance system, so as to achieve linkage control of accidents.
- the server can send notifications to accident handling units such as traffic police departments, fire departments, or hospitals based on the information reported by the warning device, so as to achieve linkage control of accidents.
- accident handling units such as traffic police departments, fire departments, or hospitals based on the information reported by the warning device, so as to achieve linkage control of accidents.
- the server can perform accident linkage control based on the accident information reported by the warning device, which greatly increases the efficiency of accident handling, reduces the probability of subsequent vehicle accidents, and can prevent accidents. The loss is minimized.
- the guidance suggestions provided by the server to subsequent incoming vehicles may not only be accident reminders, but also optimal suggestions.
- the server can provide decision-making suggestions to platforms or users such as navigation and Internet of Vehicles based on accident information and road sections through big data learning based on accident attributes, location, and direction. If a certain road section is in such a serious accident, at the current time, it usually takes 2 hours to be blocked before the accident can be handled. Therefore, follow-up vehicle guidance suggestions can be comprehensively given based on the accident information (location, direction, lane occupation, accident attributes, historical processing data) obtained by the tripod.
- the accident information location, direction, lane occupation, accident attributes, historical processing data
- the server can form a message to notify the relevant traffic police and high-speed after the server-side calculation, so that the signal can respond.
- the server not only receives the information of the warning device, but also forms a message to the public security, traffic police and other related units based on the information of the warning device and GIS calculations, and also forms historical data based on the efficiency of handling accidents at the relevant location, and Provide the best advice to the relevant follow-up vehicles instead of just accident warnings
- the server can send it to the traffic department, fire department or hospital and other accident handling units according to the principle of proximity (the shortest path) and/or the principle of territoriality. Notification in order to maximize the response speed of accident handling, thereby minimizing the loss of the accident.
- the embodiments of the present disclosure may also be a computer program product, which includes computer program instructions that, when run by a processor, cause the processor to execute the above-described description of the present specification according to the present disclosure.
- the computer program product may use any combination of one or more programming languages to write program codes for performing the operations of the embodiments of the present disclosure.
- the programming languages include object-oriented programming languages, such as Java, C++, etc. , Also includes conventional procedural programming languages, such as "C" language or similar programming languages.
- the program code can be executed entirely on the user's computing device, partly on the user's device, executed as an independent software package, partly on the user's computing device and partly executed on the remote computing device, or entirely on the remote computing device or server Executed on.
- the embodiments of the present disclosure may also be a computer-readable storage medium, on which computer program instructions are stored.
- the processor executes the above-mentioned descriptions of the present specification according to the present disclosure. The steps in the control method of the warning device of this embodiment.
- the computer-readable storage medium may adopt any combination of one or more readable media.
- the readable medium may be a readable signal medium or a readable storage medium.
- the readable storage medium may include, but is not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or a combination of any of the above, for example. More specific examples (non-exhaustive list) of readable storage media include: electrical connections with one or more wires, portable disks, hard disks, random access memory (RAM), read-only memory (ROM), erasable Type programmable read only memory (EPROM or flash memory), optical fiber, portable compact disk read only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
- each component or each step can be decomposed and/or recombined. These decomposition and/or recombination should be regarded as equivalent solutions of the present disclosure.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Planar Illumination Modules (AREA)
Abstract
一种警示装置、警示装置的控制方法及交通事故联动系统。警示装置包括:光学器件(100)以及与光学器件(100)通信连接的控制模块(200),控制模块(200)用于根据需求信息控制光学器件(100)的发光模式。通过设置光学器件(100)和控制模块(200),使得警示装置的示警效果可以根据需求信息进行调整,从而更好地满足了实际使用需求。
Description
本公开涉及警示技术领域,具体涉及一种警示装置、警示装置的控制方法及交通事故联动系统。
发明背景
警示装置上通常设置有光学器件,以利用光学器件的光学功能,起到警示作用。以用于交通示警的三角警告牌为例,其上通常设置有回复反射器和荧光器等光学器件。基于三角警告牌中的回复反射器的反射作用和荧光器的荧光作用,能够实现示警的目的。
然而,现有警示装置的示警效果较为单一,且光学效果较差,难以满足实际使用需求。
发明内容
本公开提供一种警示装置、警示装置的控制方法及交通事故联动系统。
第一方面,提供一种警示装置。该警示装置包括:光学器件;以及与所述光学器件通信连接的控制模块,所述控制模块用于根据需求信息控制所述光学器件的发光模式。
第二方面,提供一种警示装置的控制方法。该警示装置的控制方法包括:获取需求信息;根据所述需求信息控制光学器件的发光模式。
第三方面,提供一种交通事故联动系统。该交通事故联动系统包括如第一方面中任一实施例所述的警示装置;以及与所述警示装置通信连接的服务器端,其中所述服务器端用于根据所述警示装置上报的信息进行事故联动控制。
通过设置光学器件和控制模块,使得警示装置的示警效果可以根据需求信息进行调整,从而更好地满足了实际使用需求。
附图简要说明
图1所示为本公开一实施例提供的警示装置的结构示意图。
图2所示为本公开一实施例提供的光学器件的结构示意图。
图3所示为本公开一实施例提供的功能层的结构示意图。
图4所示为本公开另一实施例提供的功能层的结构示意图。
图5所示为本公开又一实施例提供的功能层结构示意图。
图6所示为本公开再一实施例提供的功能层的结构示意图。
图7所示为本公开再一实施例提供的功能层的结构示意图。
图8所示为本公开再一实施例提供的功能层的结构示意图。
图9所示为本公开另一实施例提供的光学器件的结构示意图。
图10所示为本公开一实施例提供的第一光方向改变层的结构示意图。
图11所示为本公开另一实施例提供的光学器件的结构示意图。
图12所示为本公开另一实施例提供的光学器件的结构示意图。
图13所示为本公开另一实施例提供的光学器件的结构示意图。
图14所示为本公开另一实施例提供的警示装置的结构示意图。
图15所示为本公开一实施例提供的三角警告牌的结构示意图。
图16所示为图15所示的三角警告牌的分解结构示意图。
图17所示为图15所示的三角警告牌的另一个视向的结构示意图。
图18所示为图15所示的三角警告牌的折叠状态的结构示意图。
图19所示为图18所示的三角警告牌的另一个视向的结构示意图。
图20所示为本公开一实施例提供的收纳盒的结构示意图。
图21为本公开一实施例提供的警示装置的控制方法的示意性流程图。
实施本发明的方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。
警示装置上通常设置有光学器件,以利用光学器件的光学功能,起到警示作用。以用于交通示警的三角警告牌为例,其上通常设置有回复反射器和荧光器等光学器件。基于三角警告牌中的回复反射器的反射作用和荧光器的荧光作用,能够实现示警的目的。
然而,在非晴朗天气时,回复反射器和荧光器等光学器件的示警效果均不理想。例如,在阴雨天气时,环境光线较弱,荧光器无法被充分激发,而由于相当一部分驾驶者没有在阴雨天开启车灯的习惯,导致回复反射器也无法起到示警效果,荧光器警示效果也变差从而起不到警示效果。再例如,在雾天时,黄色光穿透能力较佳,因此雾灯发出的光通常为黄色。然而为了起到醒目效果,回复反射器和荧光器标准为红色,从而仅能反射红光。这样,即使黄光能够穿透雾气到达警示装置,也会因回复反射器和荧光器为红色,而无法被发射。可见,仅红色反射器难以应对雾、霾、雨等气候下的示警效果。此外,无论回复反射器或荧光器,均只能起到被动示警的作用,无法通过闪烁或颜色变化等方式,实现主动示警或传递信息。
可见,现有警示装置的示警效果较为单一,且光学效果较差,仅适用于理想天气,难以满足全天候下的实际使用需求,存在的巨大的缺陷。
示例性警示装置
为了解决上述问题,本公开实施例提供了一种警示装置,通过设置光学器件和控制模块,使得警示装置的示警效果可以根据需求信息进行调整,从而更好地满足了实际使用需求。
下面结合附图,对本公开实施例进行具体描述。
图1为根据本公开一实施例提供的警示装置。如图1所示,警示装置包括光学器件100和控制模块200。光学器件100与控制模块200通信连接。控制模块200用于根据需求信息控制光学器件100的发光模式。
通过设置光学器件和控制模块,使得警示装置的示警效果可以根据需求信息进行调整,从而更好地满足了实际使用需求。
光学器件100的实现方式有很多,本公开实施例对此不作具体限定。例如,光学器件可以是设置在警示装置上的信号灯。例如,光学器件也可以是设置警示装置上的LED阵列。
下面结合附图,给出一种示例性光学器件100的实施方式。
图2为根据本公开一实施例提供光学器件的结构示意图。
如图2所示,在该实施例中,光学器件100包括光源10、第一导光层20以及功能层30。第一导光层20和功能层30层叠设置。光源10设置在第一导光层20的非层叠方向侧。控制模块200例如可以与光源10通信连接,以便于通过控制光源10来实现对光学器件100的发光模式的控制。
第一导光层20可以用于将射入第一导光层20的光向第一导光层20的法线方向归集。
第一导光层20的法线方向是指图2所示的z轴方向,也就是垂直于第一导光层20的上表面和/或下表面的方向。
第一导光层20例如可以是纳米导光板或微米导光板,其内可以分布有纳米级或微米级的微颗粒。射入到第一导光层20中的光,遇到微颗粒时会发生散射、反射或漫反射。由于第一导光层20在法线方向上的尺寸远小于其它方向上的尺寸,因此,接近法线方向的光(或称与法线方向夹角较小的光)在传播的过程中遇到的微颗粒的数量较少,而与法线方向夹角较大的光则会遇到更多的微颗粒。
也就是说,接近法线方向的光遇到微颗粒的概率更小,更容易从第一导光层20中射出;而与法线方向夹角较大的光遇到微颗粒的概率更大,更容易在微颗粒的作用下发生散射、反射或漫反射。与法线方向夹角较大的光在经过散射、反射或漫反射后,若方向变为与法线方向接近,则会从第一导光层20中射出,若方向仍与法线方向夹角较大,则会继续在微颗粒的作用下发生散射、反射或漫反射。经过多次散射、反射或漫反射,大多数光都会以与法线接近的方向射出第一导光层20。由此可见,第一导光层20可以将射入第一导光层20的光向第一导光层20的法线方向归集。
当然,第一导光层20并不限于纳米导光板或微米导光板,在本公开的某些实施例中,第一导光层20也可以为纳米导光薄膜或微米导光薄膜。相较于导光板,可以更好的在非平面上实施,同时能够更好地适用于柔性设备或非规则设备,或者厚度要求较薄的应用场景。
功能层30例如可以用于基于来自第一导光层20的光,向第一导光层20发送光。
功能层30的实现方式很多,本申请实施例对此不作具体限定。
示例性地,在某些实施例中,功能层30可以包括荧光层,从而可以被来自第一导光层20的光激发出荧光,并将激发出的荧光射入第一导光层20。
示例性地,在某些实施例中,功能层30也可以包括反射层,从而可以对来自第一导光层20的光反射回第一导光层20。
光源10的数量可以是一个,也可以是多个,其可以设置在第一导光层20的非层叠方向上的一侧,也可以设在第一导光层20的非层叠方向上的多侧,对于光源10的具体数量和具体位置,本申请实施例不作具体限定。
再次参考图2,当光源10发出的光L1从第一导光层20的非层叠方向侧入射到第一导光层20后,在第一导光层20中微颗粒的作用下不断地发生散射、反射或漫反射,最终,一部分光L1从第一导光层20远离功能层30的一侧射出。另一部分光L1射向功能层30,产生光L2,然后光L2也从第一导光层20远离功能层30的一侧射出。
该实施例提供的光学器件100,通过结合第一导光层20、功能层30和光源10,能够实现较佳的警示效果。
具体来说,该实施例提供的光学器件100,通过设置第一导光层20和功能层30,使得光源10发出的光,可以均匀地从第一导光层20远离功能层30的一侧射出,从而更好地被观察者看到,起到更好的警示效果。同时,由于光源10的存在,使得光学器件100彻底摆脱了对日光等环境光的依赖,在非晴朗天气时,即使环境中光线不足,光学器件100仍能具有较佳的警示效果,从而实现了全天候警示。此外,在功能层30包括荧光层的实施例中,光源10发出的一部分光在第一导光层20的作用下能够以接近第一导光层20法线的方向从第一导光层远离功能层的一侧射出,这部分光与功能层30被环境激发出的荧光相结合,能够使得光学器件100发出的光更加醒目,同时,也可以利用光源10发出的光来激发功能层30,从而结合日光等环境光的激发,能够激发出更加醒目的荧光。此外,在功能层30包括荧光层的实施例中,光学器件100可以在不开启光源10的情况下,仍能具有增强警示效果。此外,由于第一导光层20的存在,有效地归集了激发出的荧光的射出方向,使得激发出的荧光能够均匀地以接近法线的方向射出,因此,显著提高在法线方向上观测的警示作用,使得正对该光学器件100的观察者感受到更强的警示效果。
图3所示为本公开一实施例提供的功能层的结构示意图。如图3所示,本公开实施例提供的功能层30包括荧光层31和与荧光层31层叠设置的第一反射层。具体而言,荧光层31包括多个荧光槽311,多个荧光槽311沿荧光层31的层叠方向(如图3所示方位的上下方向)贯穿荧光层31。第一反射层包括第一子反射层32,第一子反射层32位于荧光层31的第一侧(如图3所示方位的下侧)。第一子反射层32包括多个第一反射单元321,并且,多个第一反射单元321与荧光层31中的多个荧光槽311一一对应设置,多个第一反射单元321在荧光层31的正投影覆盖多个荧光槽311。
并且,本公开实施例提供的功能层30还包括层叠设置到荧光层31远离第一子反射层32的表面的透明层33,以及依次层叠设置到第一子反射层32远离荧光层31的表面的胶黏剂层34和背纸层35。其中,透明层33能够起到承载支撑荧光层31和发射层的作用。胶黏剂层34和背纸层35用于将荧光层31和反射层粘结到其他物体上。
应当理解,上述提及的透明层33、胶黏剂层34和背纸层35可以去除。
在本公开实施例中,荧光层31用于基于入射光进行荧光反应,进而激发出荧光。第一反射层用于基于多个荧光槽311进行光反射操作。由于荧光槽311的周向槽壁同样能够基于入射光进行荧光反应。因此,荧光层31的荧光面积大于荧光层31在第一子反射层32所在平面的正投影面积。那么,在实际应用过程中,荧光槽311不仅能够借助周向槽壁增大参与荧光激发的面积,而且能够借助荧光槽311和与荧光槽311对应的第一反射单元321使被激发的荧光,通过321,以特定角度的反射,从而进入特定方向观测者眼中,所以对比现有技术,充分利用各种角度入射光增大荧光激发效果(自然光线有大量散射漫射),又利用了反射结构,又将本散射、漫射的激发荧光,调整反射角度至特定方向(由321反射结构角度设定),使本来对观测者无效果的激发光,因反射结构而增强警示效果。
优选地,在如图3所示方位的主视视角截面图中,荧光槽311的截面形状为倒梯形。如此设置,能够借助倒梯形荧光槽311的周向槽壁进一步增大荧光反应的面积。
需要说明的是,荧光层31既可以基于富含荧光的材料形成,亦可以是通过在不具备荧光功能的基体表面敷设荧光材料的方式形成的。
与现有包括荧光层和/或反射层的功能层相比,本公开实施例提供的功能层利用非平面设置的荧光层优化了荧光激发效果。此外,由于荧光槽311的存在,入射光可直接通过荧光槽311到达第一反射单元321,无需再穿过能够削弱入射光的其他层级结构,光损极小,而且入射角度可以较大(现有技术中,该类角度光线产生的荧光对观测者几乎无实质效果),此外,荧光层31被激发的荧光也可以借助荧光槽311到达第一反射单元321,因此,荧光效果被增强。虽然在本公开实施例中,单位面积内的第一反射单元321的数量少于单位面积内全部铺设第一反射单元321的数量,但是由于光损减少,311槽面积及散漫射光线的利用,因此,本公开实施例提供的功能层,不仅能够优化荧光激发效果,增强警示能力,而且能够增强反射效果。尤其将本公开实施例提供的功能层应用到用于交通警示的三角警告牌、路锥等中时,其荧光激发效果和反射效果均被优化,进一步提高了针对驾乘人员的警示效果,进而进一步降低了二次事故发生的几率。尤其注意的是,在雾天、沙尘等颗粒气候天象时,现有三角警告牌对黄光的反射效果极差,而采用本公开实施例提供的功能层的三角警告牌,针对黄光的反射效果不受影响。
在本公开一实施例中,将上述实施例提及的功能层应用到三角警告牌时,基于功能层替代现有三角警告牌的荧光区和反射区。即,借助功能层同时满足了三角警告牌的荧光需求和反射需求。如此设置,不仅能够节省材料,进而节省成本,而且警示效果和环保效果亦更好。
需要说明的是,本公开实施例中提及的功能层,不局限于应用到三角警告牌中,还可以与粘合层等结构贴合后应用到其他需要警示的物品上。
此外,需要说明的是,在图3所示功能层30中,荧光槽311亦可以被透明低光损材料填充。
示例性地,第一反射单元321为微棱镜单元3211。其中,微棱镜单元3211指的是表面贴附有金属反射膜层的微棱镜。
优选地,微棱镜的角度小于预设角度,微棱镜的反射率大于预设反射率。由于在三角警告牌应用场景中,反射角度主要考虑的是事故车后续同向的车辆,因此,如此设置能够进一步优化荧光激发效果和反射效果,让传统荧光警示仅散射、漫射的情况,因微棱镜的反射角度而调优为特定方向,增强特定方向荧光激发光强度。
优选地,荧光层31的荧光面积大于荧光层31在第一反射层(比如第一子反射层32)所在平面的正投影面积。更优选地,荧光层31的荧光面积大于荧光层31对应的平面面积。如此设置,能够利用非平面设置的荧光层增大荧光面积,进而利用增大的荧光面积进一步优化荧光激发效果。
如前所述,图3所示方位为功能层30的主视视角截面图。为了清楚显示功能层30的结构,下面结合图4给出在本公开另一实施例中,功能层30的俯视视角的结构示意图。
需要说明的是,在如图3所示方位的主视视角截面图中,荧光槽311的截面形状不局限于倒梯形,亦可以为半圆形或者其他形状,只要能够增大实际的荧光面积即可。下面结合图5举例说明。
具体地,图5所示为本公开又一实施例提供的功能层的结构示意图。如图5所示,图5所示实施例与图3所示实施例的区别在于,在图5所示实施例中,荧光槽311的截面形状为半圆形。
图6所示为本公开再一实施例提供的功能层的结构示意图。在图3所示实施例基础上延伸出图6所示实施例,下面着重叙述图6所示实施例与图3所示实施例的不同之处,相同之处不再赘述。
如图6所示,本公开实施例提供的功能层30去除了透明层33、胶黏剂层34和背纸层35。并且,本公开实施例提供的功能层30还包括第二导光层36。其中,第二导光层36层叠设置于荧光层31的第二侧(即如图6所示方位的上侧),并且,第二导光层36符合预设的导光条件。
示例性地,第二导光层36的材料为透明导光材料,以便入射到第二导光层36的光能够在第二导光层36中均匀发散传导,最终将大量光以靠近第二导光层36所在平面的法线方向射出,从而实现提高功能层30的光效果的目的(对比现有的散射、漫射)。
可选地,第二导光层36为微米导光板或纳米导光板或导光膜。
示例性地,本公开实施例中提及的第二导光层36的形状、材料以及所能够带来的光效果均可参见上述实施例提及的第一光层20,本公开实施例不再赘述。
在实际应用过程中,入射光首先入射到第二导光层36,以便利用第二导光层36将光源(如点光源)转换成面光源,继而使经第二导光层36得到的面光源到达荧光层31和第一子反射层32,最后,经荧光层31激发的荧光和第一子反射层32反射的光最终经第二导光层36射出。
本公开实施例提供的功能层,借助第二导光层进一步提高了激发光光效果,实质起到光射出归集方向作用,进而进一步提高了功能层的视觉醒目程度。
在本公开另一实施例中,在上述实施例提及的功能层的进光侧(比如图6所示方位的功能层的上侧)层叠设置保护膜结构,以便保护功能层。
在图6所示实施例基础上延伸出本公开另一实施例。在本公开实施例中,光学器件100还可以包括位于第二导光层36的非层叠方向的第二光源(图中未示出)。其中,非层叠方向指的是第二导光层36所在平面的延伸方向。
优选地,第二光源与第二导光层36接触设置。
第二光源的数量可以是一个,也可以是多个,其可以设置在第二导光层36的非层叠方向上的一侧,也可以设在第二导光层36的非层叠方向上的多侧,对于第二光源的具体数量,本公开实施例不作具体限定。
同样地,本公开实施例中提及的第二光源的形状、材料以及所能够带来的效果均可参见上述实施例提及的第一光源,本公开实施例不再赘述。
图7所示为本公开再一实施例提供的功能层的结构示意图。在图6所示实施例基础上延伸出图7所示实施例,下面着重叙述图7所示实施例与6所示实施例的不同之处,相同之处不再赘述。
如图7所示,在本公开实施例中,第一反射单元321包括微棱镜3212。并且,功能层30还包括位于第一子反射层32远离荧光层31的一侧的支撑部件37。支撑部件37用于支撑第一子反射层32,以支撑多个微棱镜3212对应的反射空腔3213。
应当理解,反射空腔3213内装载有低折射的物质如气体(比如空气)。在实际应用过程中,微棱镜3212和反射空腔3213结合能够实现上述实施例提及的微棱镜单元3211所实现的功能。
与图6所示实施例相比,空腔结构比贴膜结构寿命周期更长、污染更小(通常采用金属膜,易氧化且上下游工艺都存在污染产生),本公开实施例提供的功能层荧光更均匀。此外,本公开实施例还能够借助支撑部件进一步扩展功能层的辅助功能。
在本公开一实施例中,支撑部件37的材料包括夜光材料,以提高功能层30的适应能力和应用广泛性。比如,将功能层30应用到用于交通示警的三角警告牌,当无阳光且无后车前灯照射时(比如夜晚),功能层30中的荧光层与反射层均不起作用。在此情况下,便可借助包括夜光材料的支撑部件37实现交通示警的目的。
图8所示为本公开再一实施例提供的功能层的结构示意图。在图3所示实施例基础上延伸出图8所示实施例,下面着重叙述图8所示实施例与图3所示实施例的不同之处,相同之处不再赘述。
如图8所示,本公开实施例提供的功能层30去除了透明层33、胶黏剂层34和背纸层35。并且,在本公开实施例中,第一反射层包括与荧光层31层叠设置、且位于荧光层31的第二侧的第二子反射层38。第二子反射层38用于各种角度光入射,而出射光归集特定角度的效果。
优选地,功能层30还包括第三导光层39。第三导光层39层叠设置于荧光层31和第二子反射层38之间。第三导光层38符合预设导光条件。
继续参照图8所示,第二子反射层38包括多个第二反射单元381。其中,第二反射单元381为类微棱镜或棱镜结构,其与微棱镜要实现功能不同的是第二反射单元381可以更大角度获得多个方向的外部入射光线,含散射、漫射与直射,同时还将射出光,归集在法线方向,而非法线方向的多数射出光又射入射入相邻的第二反射单元381,回到功能层30中,所以第二子反射层38即能获得更多的入光,又将射出光归集到某个角度范围如法线方向(微棱镜则要求全部逆反射,而第二反射单元381则要求大多数光线以法线角度射出,所以虽然也是一种微小棱镜或棱结构,但与微棱镜的逆反射目的不同)。
与图7所示实施例相比,更充分利用了外界入射光,并更好的法线方向射出激发光和反射光。但这种结构观测者的角度更小,亮度更强,特别适合道路警示,更远距离警示。
在本公开另一实施例中,光学器件100还可以包括位于第三导光层39的非层叠方向的第三光源。同样地,本公开实施例中提及的第三光源的形状、材料以及所能够带来的效果均可参见下述实施例提及的第一光源,本公开实施例不再赘述。
为了进一步增强光学器件的荧光效果,在本公开的一些实施例中,第一导光层20中也可以设置有荧光单元。
荧光单元例如可以是分布在第一导光层20中为荧光材料颗粒,其可以具有纳米或微米的尺寸,以减小对第一导光层20的透光性的影响。当然,对于荧光单元的形状和尺寸,本公开实施例不作具体限定。但应理解的是,通过对如纳米颗粒结构、尺寸、密度的改变、调整,利用反射与漫反射,会让出射光线角度更归集于靠近法线角度,而靠近法线角度射入光线,透射效果更佳;层叠方向入射光更均匀射出,且还多靠近法线方向,以适应交通警示这种应用场景。
这样,入射到第一导光层20的光能够激发荧光单元产生荧光。也就是说,除了功能层30能产生荧光激发外,第一导光层20中的荧光单元也能产生荧光激发,最终功能层30与第一导光层20被激发的荧光从第一导光层20的远离功能层30的方向射出。由于第一导光层20与功能层30均能产生荧光激发,所以激发出的荧光量大于仅功能层30能够产生荧光激发的情况,从而能够具有更佳的荧光效果。
优选地,在一些实施例中,当第一导光层20中的荧光单元被激发时,能够发出第一激发光,对应地,功能层30能够被第一激发光激发出第二激发光;和/或,当功能层30被激发时,可以发出第二激发光,对应地,第一导光层20中荧光单元能够被第二激发光激发出第一激发光。这样,第一导光层20中的荧光单元和功能层30相互激发,产生荧光激发的链式反应,从而在一定的外界光强度情况下产生了增强的荧光激发效果。
换句话说,如果第一导光层20的荧光单元产生的被激发的荧光又可以激发功能层30的荧光物质产生荧光激发,或者,功能层30激发的荧光也可以激发第一导光层20中的荧光单元产生荧光,则会使得光学器件发生荧光的链式反应(荧光的链式反应是指激发第一荧光物质产生的第一激发光,正好能激发第二荧光物质,产生第二激发光)。
此外,当第一导光层20和功能层30中都具有荧光材质时,即使不考虑相互激发(链式反应)的影响,例如仅由紫外线激发出红色荧光(常规警示色),也会因为第一导光层20和功能层30的荧光激发量大于第一导光层20或功能层30中任意一个的荧光激发量而增强荧光效果。
如果采用链式反应,则需要注意第一导光层20中的荧光单元产生的荧光与能层30产生的荧光应该属于相近波长的光,例如均在橙红到红色波长范围内,从而让警示色为一致色彩。当然荧光材质可以是紫外和可见波段的双或多可激发波长材质。
优选地,在第一导光层20为微、纳米导光板的实施例中,第一导光层中的微颗粒可以采用荧光材料,以构成荧光单元。这样,微颗粒既可以既能起到归集光的作用,又能起到荧光作用。
这种实现方式可以利用导光层中的微颗粒改变光的出射方向,使得激发的荧光在穿过第一导光层20时, 向法线方向靠拢,从而增强了荧光效果(非靠近法线方向荧光激发,也被第一导光层20变为法线方向)。此外,外部射入光(从第一导光层20远离功能层30的一侧),无论何种角度射入光线,均会在导光层中因微、纳米颗粒而发生散射、反射或漫反射,这样,光在第一导光层20与功能层30间射出时反复反射激发,所以激发充分,所以激发效果远优于仅功能层30被外部光线照射时效果,且当第一导光层20中有荧光单元时,也被充分激发,所以荧光效果增强,而仅第一导光层20时,在光线为侧入时(最佳均匀导向射入光角度),也仅近一半光线从另一面射出,所以效果远比不上第一导光层20与功能层30叠加。
在第一导光层20中设置有荧光单元的实施例中,功能层30也可以不包括荧光层,而仅包括具有反射功能的第二反射层。
由于第一导光层20中设置有荧光单元,光入射到第一导光层20中后,能够激发荧光单元产生荧光。射向第二反射层的荧光会被反射回第一导光层20,使得荧光单元产生的荧光都能够从第一导光层20远离第二反射层的一侧射出。
该实施例提供的光学器件,仍具有较佳的荧光效果,同时,由于功能层30仅包括反射层,所以因为没有功能层30的荧光色,从而使得光学器件的颜色仅由第一光源的激发光来决定。所以第一导光层20可以通过激发光波长,来激发第一导光层20中荧光物质的激发光,所以当第一导光层20为多种波长激发的材质时,不同输入光波长激发产生不同色彩,当激发光为不可见光如紫外时,不同波长激发出不同色彩,如红黄交替闪烁。而观测者可以在一个荧光激发光学结构上,获得多种色彩,而既往只能是一种固定荧光。
在实际应用场景中,环境中的光是多个方向的,为了充分利用方向与第一导光层20的法线方向夹角较大的光,以提升外界光利用率。在本公开的一些实施例中,光学器件还可以包括层叠设置于第一导光层20的远离功能层30的一侧的第一光方向改变层。
下面结合附图对该实施例进行示例性的描述。
图9所示为本公开另一实施例提供的光学器件。应当理解,在图9中,第一光源并未示出。
参考图9,光学器件100除了包括层叠设置的第一导光层20和功能层30外,还包括层叠设置于第一导光层20的远离功能层30的一侧的第一光方向改变层40。
第一光方向改变层40用于对入射到第一光方向改变层40的光进行折射处理,以便减小通过第一光方向改变层40进入第一导光层20的光的传播方向与第一导光层20的法线的夹角。
图2中虚线箭头λ1、λ2和λ3代表不同方向的入射光,均与第一导光层20的法线f具有较大的夹角。经第一光方向改变层40的折射处理后,光λ1、λ2和λ3均能以与接近法线f的方向入射到功能层30。尤其对于方向与法线f具有最大夹角的光λ1,在第一光方向改变层40作用下,光λ1被有效利用。
通过设置第一光方向改变层40,使得环境中与第一导光层20的法线夹角较大的光也能够以接近法线的方向入射到功能层30,从而更充分地利用了环境中的光,使得即使环境光较弱,也能具有较佳的荧光效果。
第一光方向改变层40的实现方式很多,本公开实施例不作限定。
示例性地,在一些实施例中,第一光方向改变层40可以是微透镜膜或设置第一导光层20上的微透镜阵列。
示例性地,在一些实施例中,第一光方向改变层40可以是微棱镜膜或设置第一导光层20上的微棱镜阵列。
优选地,在一些实施例中,第一光方向改变层40也可以包括多个光方向改变子层。
下面结合附图,对该实施例进行详细描述。
图10为根据本公开一实施例提供的第一光方向改变层的结构示意图。
如图10所示,第一光方向改变层40包括多个光方向改变子层。多个光方向改变子层的折射率沿光方向改变层40到第一导光层20的方向依次增加。
应当理解,本公开实施例对于光方向改变子层的具体数量不作限定,本领域技术人员可以根据实际需求进行设置。
根据折射原理,入射光λ射入到第一光方向改变层40后,在每两个第一光方向改变子层的交界处都会发生折射。在经过多次折射后,入射光λ的角度逐渐接近法线f,最后以接近法线的方向入射到第一导光层20。
考虑到当光线从较高折射率的介质进入到较低折射率的介质时才会发生全反射。因此,为了将与第一导光层20的法线方向的夹角较大的光被反射回第一导光层20中,仅使得与法线方向夹角较小的光射出,从而提高正视方向的荧光效果。第一光方向改变层40的折射率应该被设置为小于第一导光层20的折射率。这样,与第一导光层20法线夹角较大的光,射向第一导光层20和第一光方向改变层40的交界面时,才会发生全反射,从而被反射回功能层30。
图11为根据本公开又一实施例提供的光学器件的结构示意图。应当理解,在图11中,第一光源并未示出。
如图11所示,在该实施例中,光学器件100除了包括第一导光层20和功能层30外,还包括设置于第一导光层20远离所述功能层30的一侧的第二光方向改变层50。
第二光方向改变层50例如可以包括多个微棱镜条结构51。
第二光方向改变层50例如可以以膜层的方式贴合在第一导光层20远离功能层30的一侧,例如可以是BEF(Brightness Enhancement Film,BEF)增光膜。第二光方向改变层50例如也可以一体成型在第一导光层20的远离功能层30的一侧的表面上。
通过设置第二光方向改变层,一方面,考虑到棱镜表面的受光面积远大于平面,从而增加了进入到光学器件的入光量,使得光学器件中的荧光材料能够得到更充分的激发。另一方面,第二光方向改变层具有归集光的作用。具体来说,当光从第一导光层20射向第二光方向改变层50时,由于第二光方向改变层50结构特性,只有与法线方向接近的光线射出,射向观测者,而其它方向的没有被反射回的出射光,又因为51的出射角度,导致又射回内部,此外与法线具有较大夹角的光线,则会再次被回射至第一导光层20,所以光循环往复,最终导致大部分光被调整为与法线方向接近的方向射出。因此,通过设置第二光方向改变层,从外部正面观测时,出射光亮度大增(因入射光增大且出射光方向被调整至法线方向),从而提高了光学器件100的荧光效果。
所以利用这种棱镜结构,增大了入光量,同时将射出光的方向调整为方向与法线方向接近的方向,从而让正面的观察者感觉光很亮,也既增强了特定角度的荧光效果。
应当理解,图11所示的第二光方向改变层,仅为本公开请一实施例提供的光方向改变层。在本公开的其它实施例中,第二光方向改变层也可以不包括棱角条结构,而是包括多个三角锥型棱镜,出射光线的角度可以通过调整其角度而控制。
为了保护第二光方向改变层的微棱镜条结构,在一些实施例中,第二光方向改变层的远离第一导光层20的一侧可以设置有高透光低反射的保护膜/层。
在一些实施例中,第一光源发出的光的波长范围与光学器件中荧光材料被激发出的荧光的波长范围可以属于某一预设波长范围,以使得第一光源的射出的光和荧光材料被激发出的荧光属于同一色调。例如,若第一光源发出的光为橘红色,荧光材料被激发出的荧光也为橘红色或红色。这样,第一光源的射出的光和荧光材料被激发出的荧光在叠加后能够具有更好的荧光效果,更加醒目。
应当理解,荧光材料是指构成光学器件中荧光层和/或荧光单元的荧光材料。
在一些实施例中,第一光源发出的光和/或光学器件中荧光材料被第一光源激发出的荧光可以包括黄色波长范围的光。相较于其它颜色的光,黄色光在雨、雾霾的穿透性更好,从而在雾、霾天气时,该实施例提供的光学器件能够保持较好的荧光效果。
优选地,在一些实施例中,第一光源发出的光和/或光学器件中荧光材料被第一光源激发出的光可以是580nm预设波长范围(例如580nm±10nm)内的黄光,那么,即使在霾、雾等太阳光照度弱的天气下,穿透性较强的黄光也能够保证视觉增强效果,进而克服了荧光结构难以在任何光照下具备视觉增强效果的缺陷。
需要指出的是,针对上述实施例提及的功能层,如果第一光源发出的激发光包括黄光,如580nm左右预设波长范围内的黄光,比如580nm±10nm。那么,即使在霾、雾等太阳光照度弱的天气下,穿透性较强的黄光也能够保证视觉警示增强效果,进而克服了现有交通功能层难以在任何光照下均具备视觉增强效果的缺陷。此外通过光源的闪烁式激发,信号类型的激发如短、短、长,其对观测者起到更强的效果及信号内容指示作用,其让今天荧光警示设备缺陷,标准缺陷被彻底改变。
此外,还需要指出的是,光源波长与荧光物质激发波长结合,即特定波长的输入,激发特定色彩的荧光,如激发光采用橘红色波长的输入,而荧光材质采用橘红色波长激发红色波长的荧光,则入射光与荧光都是橘红与红色这种警示性比较强的光,从而叠加输出警示效果(如在阴天,这种应用可以保证荧光警示效果强于晴天日照最好时的效果)。此外,如利用不同波长的激发光,而荧光材质是一个或多个波段,则可以根据控制要求,出射不同色彩的激发光,特别如夜间,通过色彩信号,警示行人,车辆。当然也可以仅改变入射光波长,而进行面光源的警示与色彩变换。
而更此外,当设备无电时,系统因为采用了本公开的结构,所以达到,满足、超过现有荧光方面国标的要求,而有电时,整个弥补欧标,国标技术设计缺陷。
在一些实施例中,光学器件中的荧光材料可以包括多种荧光材料,不同的荧光材料可以被不同波长范围的光激发,不同的荧光材料被激发出的荧光的波长范围也可以不同。
例如,荧光材料可以包括第一荧光材料和第二荧光材料。第一荧光材料被配置为当接收到a1波长范围的光时,被激发出a2波长范围的光。第二荧光材料被配置为当接收到b1波长范围的光时,被激发出b2波长范围的光。
这样,光学器件便能够在不同波长范围的光的激发下发出不同颜色的荧光,从而使得光学器件能够发出多种颜色的荧光,进而使得警示装置的示警更加灵活,进一步提高了光学器件的示警效果。
考虑到环境中具有各种波长范围的光,当光学器件中设置有多种具有不同激发波长的荧光材料时,光学器件会被激发出多种颜色的光,从而造成颜色混乱。
图12为根据本公开再一实施例提供的光学器件的结构示意图。
如图12所示,在该实施例中,光学器件100还可以包括设置于第一导光层20的远离所述功能层30的一侧的光过滤层60。光过滤层60用于阻止预设波长范围的光入射到第一导光层20。
光过滤层60例如可以将环境中能够激发光学器件100中不同荧光物质的光全部过滤掉,仅通过控制第一光源60的输出不同波长范围的光来控制光学器件100的荧光颜色。
光过滤层60例如也可以被设置为允许能够激发某一种荧光材料的光进入,从而当不开启第一光源60时,光学器件可以发出某种颜色的荧光。当需要改变荧光颜色时,再通过第一光源60激发其它荧光材料。
通过设置光过滤层60,可以阻止预设波长范围的光进入光学器件,从而避免了因多种荧光物质被同时激发而产生的颜色混乱。
光过滤层60的实现方式很多,本公开实施例不作具体限定。在某些实施例中,光过滤层60可以是能够过滤某一波长范围的光的过滤膜,例如过滤紫外线的膜。在某些实施例中,光过滤层60也可以是电致变色玻璃或电致变色膜,从而可以根据实际需求,控制入射光的波长范围。
图13为根据本公开再一实施例提供的光学器件的结构示意图。应当理解,在图13中,第一光源并未示出。
如图13所示,光学器件100还可以包括光阻挡层70。光阻挡层70设置于第一导光层20的非折叠方向侧,用于基于从第一导光层20入射到光阻挡层70的光,向所述第一导光层20发送光。
可选地,光阻挡层70例如可以是反射层,以便于通过反射的方式,将来自第一导光层20的光反射回第一导光层20。
可选地,光阻挡层70例如可以也是荧光层,以便于基于来自第一导光层20的光,激发出荧光,并将荧光射向第一导光层20。
优选地,光阻挡层70例如可以与功能层30具有相同的结构。
通过设置光阻挡层,可以有效地防止光从第一导光层的非层叠方向侧射出,从而将第一导光层中各个方向的光全部归集至从远离功能层的一侧射出,进一步增加光学器件的荧光效果。
为了提高光学器件的自洁性,在雨天雾天的水珠影响光效,在一些实施例中,光学器件远离功能层方向上的最外侧还可以进行疏水或超疏水处理。
应当理解,疏水处理需要根据光学器件的结构进行设置,以便在保证疏水效果的同时,不会破坏光学器件原本的光学特性。
需要指出的是,在本公开的上述实施例中,所有的微结构,如微棱镜等,均可以采用微米或纳米制作技术如压印制备。
光学器件100的发光模式可以涉及光学器件100的开启或关闭,发出光的颜色或闪烁模式等。应当理解,本公开实施例对于发光模式不作具体限定。
可选地,在一些实施例中,控制模块200可以用于控制光学器件100的开启或关闭。例如,在环境光线的强度足够时,警示装置可以利用环境光激发的荧光效果实现示警效果,而当环境光线较弱时,可以控制光学器件100开启,以使得警示装置可以在光线较弱的时仍具有较佳的示警效果。
可选地,在一些实施例中,控制模块200可以用于控制光学器件100的颜色。例如,在正常天气时,可以控制光学器件100颜色为醒目的红色,而当在雾天、霾天或沙尘天气时,可以控制光学器件100发出黄色光,从而提升光的穿透能力,避免在能见度较低的环境中警示装置失去示警效果。
可选地,在一些实施例中,控制模块200可以用于控制光学器件100的闪烁模式。例如,可以通过提高光学器件100的闪烁频率来提高其醒目程度。例如,也可以通过配合闪烁和/或颜色变化来组成某种信号编码,从而实现信息传递。
可选地,在一些实施例中,光学器件可以用于在需救护场景向路过人员和/或车辆发出救护信号。也就是说,本公开一实施例还提供一种具备救护能力的警示装置,该警示装置包括上述任一实施例提及的光学器件,并且,光学器件用于向在需救护场景向路过人员和/或车辆发出救护信号。
具体来说,在事故中出现伤员,需要救护的应用场景中,警示装置可以通过控制光学器件的闪烁频率和/或颜色和/或多个光学器件的闪烁顺序等向过往的车辆及人员发送救护信号。
对于救护信号,本申请实施例不作具体限定。示例性地,在某些实施例中,救援信号可以采用国际通用急救信号,即三长三短的闪烁方式。
这样,在救护车到达前,如果过往的车辆或人员中有人具有紧急救护能力,则会在观察到救护信息后,及时参与到伤员抢救中,从而可以使得事故中的受伤人员得到及时的救治,降低事故中受伤人员的死亡率。
需要说明的是,需求信息的形式和获取方式可以有多种,对此,本公开实施例不作具体限定。
可选地,在一些实施例中,参考图14,警示装置还可以包括与控制模块200通信连接的信息输入模块210。信息输入模块210可以用于供用户输入需求信息。
信息输入模块210例如可以是设置在警示装置上的输入面板,用户可以通过输入面板控制光学器件的发光模式。
举例来说,当环境光线较弱时,用户可以通过输入面板开启光学器件100。当雾天时,用户可以通过输 入面板调整光学器件100的发光颜色,使之接近黄光。用户也可以通过输入面板调整光学器件100的闪烁频率,以调整光学器件100醒目程度。用户还可以通过输入面板调整光学器件100的闪烁频率及颜色的变化,实现信息的编码和传递。
由于信息输入模块的存在,为用户的使用带来了方便。用户可以根据实际需求,通过信息输入模块输入需求信息,从而控制模块可以根据用户输入的需求信息控制光学器件的发光模式,以更好地满足实际使用需求。
可选地,在一些实施例中,再参考图14,警示装置还可以包括第一传感器模块220。第一传感器模块220可以用于确定警示装置所处环境的环境信息。
需求信息可以包括警示装置所处环境的环境信息,以使得控制模块200可以根据第一传感器模块220确定的警示装置所处环境的环境信息来控制光学器件100的发光模式,从而可以进一步方便用户的使用。
环境信息和第一传感器模块220的类型可以有多种,对此,本公开实施例不作具体限定。
例如,在某些实施例中,环境信息可以包括能见度信息,即警示装置所处环境的能见度。对应地,第一传感器模块220可以包括能见度传感器。
这样,当在雾天、霾天或沙尘天气时,警示装置可以通过第一传感器模块检测到警示装置所处环境的能见度。当环境的能见度低于预设值时,可以利用控制模块200控制光学器件100发出黄色光,从而提升光的穿透能力,避免在能见度较低的环境中警示装置失去示警效果。
例如,在某些实施例中,环境信息可以包括亮度信息,即警示装置所处环境的亮度。对应地,第一传感器模块220可以包括光线传感器(或称亮度传感器)。
这样,在阴雨天气等环境光线较弱的应用场景,警示装置可以通过第一传感器模块220检测到警示装置所处环境的亮度。当检测到的环境的亮度低于预设值时,可以利用控制模块200控制光学器件100开启,从而避免当环境亮度不足时警示装置失去示警效果。
可选地,在一些实施例中,警示装置还可以包括第一通信模块230。第一通信模块230与控制模块200通信连接。警示装置可以通过第一通信模块230获取需求信息。
示例性地,在某些实施例中,第一通信模块230可以用于从服务器端获取需求信息。例如,第一通信模块230可以从服务器端获取警示装置所处位置的天气信息(例如可以是天气预报信息),从而控制模块200可以根据天气信息控制光学器件100的发光模式,以应对不同的天气,使得警示装置在不同的天气下,均能具有较佳的示警效果。
示例性地,在某些实施例中,第一通信模块230可以用于从手机等用户终端获取需求信息。用户终端上可以设置有APP(或称应用程序),用户可以在APP上输入需求信息。这样,用户可以直接利用手机等用户终端来调整光学器件100的发光模式,从而为用户的使用带来方便。
考虑到光学器件的示警效果通常随着距离的增加而逐渐衰减,距离较远则会失去示警效果。当警示装置应用在交通场景时,如果行驶车辆的速度较快,则可能在发现警示装置时,就已经来不及做出应对了。
为了解决这一问题,在一些实施例中,本公开实施例的警示装置还可以包括与控制模块通信连接的第二传感器模块(未示出)和第二通信模块(未示出)。第二传感器模块可以用于获取所述警示装置的位置和朝向。第二通信模块用于向服务器端发送上报信息。上报信息可以包括警示装置的位置和朝向。
第二传感器模块例如可以包括位置传感器和方向传感器。
位置传感器例如可以是北斗或GPS等卫星定位传感器,当然也可以是其它类型的位置传感器,对此,本公开实施例不作具体限定。
方向传感器例如可以是电子罗盘,当然也可以是其它类型的方向传感器,对此,本公开实施例不作具体限定。
以三角警告牌为例,事故时三角警告牌通常被摆放为光学器件朝向来车方向,因此方向传感器可以检测到三角警告牌的摆设方向。这样,在上报事故时,根据所处位置的GIS上的道路方向,根据方向传感器返回的数值,就可以计算出事故方向,所以不仅可以上报是事故的位置,还可以上报事故所在道路的行驶方向。值得注意的是,位置、方向信息需要结合后台服务器端的GIS数据计算,才能获得事故方向,仅反馈事故方向,没有位置与GIS,计算不出交警、应急等单位所需要的道路、方向、事故距离这种报警格式信息。
上报事故朝向这一点尤为重要。现有道路的不同行驶方向通常被间隔开,如果仅上报位置,后台服务器端将无法获知事故发生在道路的哪一个行驶方向上,从而无法准确地引导经过事故地点的车辆进行避让。
将位置和朝向上报给服务器端后,服务器端可以通过含车辆导航系统、交警平台、车辆物联网等信息平台对途径事故位置的车辆,在距离事故地点较远时,就可以进行提醒和引导。
通过设置第二传感器或来获取三角警告牌的位置和朝向,并通过第二通信模块向服务器端上报,实现了在视距之外提醒和引导途径的车辆,从而实现超视距示警,进一步提高了警示装置的示警效果。
考虑到同一行驶方向上,可以有多条车道,因此,仅上报位置和朝向,仍无法准确地获知事故具体占用了那条车道。
因此,在一些实施例中,上报信息还可以包括事故的占道信息。占道信息用于表示事故所占用的车道。
用户可以通过信息输入模块输入占道信息。用户也可以通过手机等移动终端的APP输入占道信息。对此,本公开实施例不作具体限定。
在上报事故时,同时上报位置、朝向和占道信息,可以更加准确地确定事故的位置,从而对途径车辆进行更精准的提醒和引导。
对于以上警示装置的类型,本公开实施例不作具体限定。例如,警示装置可以是三角警告牌。例如,警示装置也可以是交通路锥。例如,警示装置还可以是警示柱。
优选地,在本公开的一些实施例中,前述实施例中的警示装置可以为三角警告牌。
在路上遇到突发故障停车检修或者是发生意外事故的时候,可以利用三角警告牌,将其放置在来车方向一定距离外(例如在城市道路中,可以被放置在来车方向50米外),从而可以提醒其它车辆注意避让,以免发生二次事故。
如果示警效果欠佳,会造成严重的二次交通事故。因此,相较于其它警示装置,三角警告牌对示警效果的要求更高。
然而,现有三角警告牌在非晴朗天气时难以达到预期的警示效果,存在严重的安全隐患。此外,现有三角警告牌仅能通过回复反射器或荧光器起到被动示警的作用,无法通过闪烁或颜色变化等方式,实现主动示警或传递信息。
本公开实施例提供的三角警告牌,相较于现有三角警告牌,具有全天候的示警效果,且能实现主动示警或传递信息,从而显著提升了三角警告牌的示警效果,大幅度地降低二次交通事故的可能性。
三角警告牌通常具有折叠功能,在不使用时,需要将三角警告牌进行折叠,以便减小占用空间,需要使用时,再进行展开。
然而,现有三角警告牌在展开时,需要双手拼接,这为用户的使用带来了不便。尤其是当用户因车祸受伤时,这种不便将会变的更为明显。
为了解决这一问题,本公开实施例提供了一种能够单手进行拼接的三角警告牌。
下面结合附图,对该实施例进行示例性的描述。
参考图15至图20,三角警告牌400包括:包括支撑结构的第一部件410、第二部件420和第三部件440。
第二部件420包括相对的第一端421和第二端422。第二部件420的第一端421可转动地连接于第一部件410。
第三部件430包括相对的第三端431和第四端432。第三端431可转动地连接于第二部件420的第二端422。第四端432可拆卸地连接于第一部件410。
这与现有的三角警告牌的结构是不同的,现有三角警告牌第二部件420和第三部件430的连接是可拆卸的,即第二端422和第三端431的连接是可拆卸的。因而,用户在展开三角警告牌时,需要两个手分别支撑第二部件420和第三部件430,以完成第二部件420和第三部件430的拼接。
而该实施例提供的三角警告牌400第三部件430和第一部件410的连接是可拆卸的,即第四端432可拆卸地连接于第一部件410。这样,用户在拼接三角警告牌400时,不需要两个手来分别支撑第二部件420和第三部件430,只需要用一个手就能将第四端432连接到第一部件410上,就能完成三角警告牌400的拼接,从而方便了用户的使用,特别是对于车祸后受伤或者女性司机,事故后一手还拿着手机的情景下,尤为方便。
支撑结构例如可以是用于支撑警示装置的部件。支撑结构例如可以包括设置在第一部件410底部的支脚411和412。例如也可以包括可转动地设置在第一部件410底部的支撑腿413。应当理解,支撑结构的实现方式可以有多种,本实用新型实施例不作具体限定。
在一些实施例中,再次参考图15至图20,第一部件410还可以包括容纳空间414。容纳空间414用于容纳第二部件420和第三部件430。如此设置,可以减小三角警告牌收纳状态时所占用的空间,使得收纳后的三角警告牌更加规整,对比于现有三角牌,更像是一个工业产品。
实现第三部件的第四端可拆卸连接于第一部件的方式很多,本实用新型实施例不作具体限定。
示例性地,在一些实施例中,再次参考图15至图20,第三部件430的第四端432上可以设置有挂卡433,对应地,第一部件410上可以设置有挡块415。
拼接时,仅需要通过转动将挂卡433搭接在挡块415上,便能完成拼接。拆卸时,仅需要转动第三部件430,使得挂卡433与挡块415脱离,便能完成拆卸。
通过设置挂卡和挡块,使得用户可以方便地完成三角警告牌的拼接和拆卸。
示例性地,在一些实施例中,也可以分别在第三部件430的第四端432上和第一部件410的相应位置上分别设置磁铁,以便于通过磁吸实现拼接和拆卸。但是,需注意该磁铁磁场强度,以防止该磁铁干扰方向传感器。
前述实施例中的光学器件例如可以设置在第一部件、第二部件或第三部件中的一个或多个上。
可选地,在一些实施例中,光学器件可以包括第一光学器件、第二光学器件和第三光学器件。第一光学器件、第二光学器件和第三光学器件可以分别设置在第一部件、第二部件和第三部件上。
优选地,在一些实施例中,第一光学器件、第二光学器件和第三光学器件可以构成三角警告牌的回复反 射器和/或荧光器。
可选地,在一些实施例中,用户还可以通过输入面板416输入事故的类型或属性。例如,用户可以通过输入面板416输入事故的等级。事故的等级例如可以是交通法规定的事故等级,可以分为一般事故、轻微事故、重大事故和特大事故等。这样,后台服务器端在接收到用户上报的事故等级后,相关方(例如交警)可以根据事故等级做出相应应对。例如,用户也可以通过输入面板416输入事故是否起火或者是否需要医疗救护,这样,消防部门或医疗部门便可以及时地执行消防任务或医疗救护。
为了进一步方便用户的使用,在一些实施例中,本实用新型实施例提供的三角警告牌还可以包括与控制模块通信连接的唤醒模块。唤醒模块用于当三角警告牌被调整至展开状态时,唤醒警示装置。
唤醒模块例如可以包括分别设置在可拆分的两个部件的连接处的检测装置和检测点。当两个部件拼接在一起时,检测装置和检测点接近,从而检测到三角警告牌被调整至展开状态,唤醒三角警告牌。
示例性地,在一些实施例中,再次参考图16,第三部件430的第四端432上可以设置有磁铁。第一部件410的与第四端432连接的位置可以设置有磁簧开关。这样,当第四端432连接到第一部件410上时,磁簧开关与磁铁接近,从而检测到三角警告牌400被调整至展开状态。
示例性地,在一些实施例中,在第二部件420或第三部件430的的电路板内,可以部署角度传感器,从而当第二部件420或第三部件430的夹角大于预设角度(如大于45度)时,可理解为展开状态。
可选地,在某些实施例中,在第一部件410中的电路板上也可以采用传感器探测是否水平放置,这样与第二部件420或第三部件430中的角度传感器结合就能确定三角警告牌是被部署展开,而不是展开平放。
应当理解,唤醒模块的实现方式有多种,上述实现方式仅仅是示例性的。本实用新型实施例对于唤醒模块的实现方式不作具体限定。
通过设置唤醒模块,使得用户只需展开三角警告牌,就能将三角警告牌唤醒,从而进一步方便了用户的使用,提升了用户体验。
当然,也可以是与收纳盒体结合,当警示器离开收纳盒时,即唤醒。
当然上述唤醒部分在简化功能时,都可以用开关电路替代,如磁电唤醒变成磁电开关方式或者直接改为电路开关。
在一些实施例中,本实用新型提供的三角警告牌还可以包括与控制模块通信连接的增强传感器模块和第三通信模块(未示出)。
应当理解,前述实施例中的第一通信模块、第二通信模块和第三通信模块可以是同一个具有接收和发送信息功能的通信模块,也可以是多个不同的通信模块,对此,本申请实施例不作具体限定。
增强传感器模块用于检测突发事故,以便通过控制模块控制第三通信模块向服务器端上报突发事故信息。
可选地,增强传感器模块例如可以包括加速度传感器,以便于加速度传感器在检测到异常加速度信息时,通过控制模块控制第三通信模块向服务器端上报突发事故信息。
异常加速度信息例如可以与车辆剧烈撞击、旋转、坠崖等加速度传感器的特征波形模式对比,从而监测识别出可能的事故情形。
可选地,增强传感器模块例如也可以包括声音传感器,用于检测异常声音或异常语音,以便于在检测到异常声音或异常语音时向服务器上报突发事故信息。
异常声音例如可以包括分贝大于预设值的声音,碰撞的特定声音特征。异常语音例如可以包括求救等语音信息。
可选地,增强传感器模块例如也可以包括烟雾或温度传感器,以便于当检测到烟雾或大于预设值的温度时,向服务器上报突发事故信息。可以理解,当检测到烟雾或大于预设值的温度时,可以认为车辆起火。
优选地,在本实用新型的某些实施例中,增强传感器模块可以包括多种传感器,以便于结合多种传感器来提高检测的准确性。
在某些较为严重的事故中,驾驶者可能会因为受伤,无法联系救援。通过设置增强传感器模块,使得在突发事故发生时,三角警告牌可以自动上报事故信息,从而可以使得事故的救援更加及时。
考虑到相当一部分驾驶者没有事故经验,并且在事故发生后较为紧张,可能会盲目失措,不知如何布置三角警告牌。
因此,在一些实施例中,本实用新型提供的三角警告牌还可以包括与控制模块通信连接的播放模块。播放模块用于播放语音指导。
播放模块可以是能够播放语音的设备。例如,再次参考图17,可是设置在三角警告牌400上的扬声器417。
应当理解,本实用新型实施例对于语音指导的内容不作具体限定。语音指导的内容例如可以包括车祸后,如何在按照法律,教科书式的处置事故,也可含事故后让事故者镇定的信息,也可含如何布置三角警告牌,例如也可以包括如何展开三角警告牌。
示例性地,语音指导内容可以包括“距离本车150米外,光学面向来车…”。
由于播放模块的存在,在遇到事故时,使用者可以在根据语音镇定、指导使用和布置三角警告牌,从而让事故者冷静下来,教科书式的处置事故,而不是因为慌乱或者其它情绪行为,导致更严重的事故,目前,严重的二次事故多因为事故者现场情绪不稳定加之处置不当引起。
语音提示功能,在三角警示牌被拿出收纳盒后即开始播报,这种设计目的是,设备唤醒、开启的同时,就第一时间向事故者提供事故后指导及告诫其镇定。
因此,在一些实施例中,本实用新型提供的三角警告牌还可以包括与控制模块通信连接的检测模块。检测模块用于检测三角警告牌在收纳三角警告牌的收纳装置中的位置,以使得当三角警告牌脱离在收纳装置中的预设位置时,控制模块控制播放模块播放语音指导。
下面结合附图,给出一种示例性的实现方式。
参考图18-图20,三角警告牌400的第一部件410的一侧例如可以设置有检测检测模块418。收纳盒500的对应位置设置有检测点510。检测模块418例如可以是磁簧开关,检测点510例如可以是磁铁。当三角警告牌400收纳在收纳盒500中时,检测模块418和检测点510接近。当从收纳盒500中取出三角警告牌400时,检测模块418和检测点510分离,从而控制模块418控制播放模块播放语音指导。
显然,检测模块418并不限定于磁簧开关。在某些实施例中,检测模块418也可以是光电开关,对应地检测点510例如可以是反射板。对于检测模块418的具体形式,本实用新型实施例不作限定。
显然,检测模块418的位置并不限定于第一部件410的一侧。检测模块418也可以被设置在其它位置,本实用新型实施例不作限定。
如此设置,使得仅需要将三角警告牌从收纳盒中取出,播放模块就能自动播放语音指导,从而进一步方便了使用者的使用。
可选地,在一些实施例中,位置传感器还可以被配置为检测三角警告牌从收纳盒中取出时的位置和三角警告牌被展开时的位置,进而可以基于GIS系统运算确定三角警告牌的摆放位置是否满足如50米,150米等摆放距离的要求。若用户的摆放不符合要求,则可以向用户发送提醒,从而避免三角警告牌的摆放距离不满足要求。
可选地,在某些实施例中,还可以将天气和/或时间为参数,从而根据不同的天气和/或时间,来判断用户的摆放距离是否满足要求。例如高速夜间的摆放距离需要200米,雨天也需要200米。
示例性警示装置的控制方法
第一实施例为装置实施例,第二实施例为方法实施例。装置侧的描述和方法侧的描述相互对应,为了简洁,适当省略重复的描述。
图21为本公开一实施例提供的警示装置的控制方法的示意性流程图。
图21的控制方法S100可以由前文提及的警示装置执行。方法S100包括步骤S110和步骤S120。
在步骤S110,获取需求信息;
在步骤S120,根据需求信息控制光学器件的发光模式。
通过根据获取的需求信息控制光学器件的发光模式,使得警示装置的示警效果可以根据需求信息进行调整,从而更好地满足了实际使用需求。
可选地,在一些实施例中,步骤S110包括:利用信息输入模块获取用户输入的需求信息。
可选地,在一些实施例中,需求信息包括警示装置所处环境的环境信息,步骤S110包括:利用第一传感器模块确定警示装置所处环境的环境信息。
可选地,在一些实施例中,环境信息包括能见度信息和/或亮度信息。
可选地,在一些实施例中,步骤S110包括:利用第一通信模块用于从服务器端和/或用户终端获取需求信息。
可选地,在一些实施例中,步骤S120包括:根据需求信息控制所述光学器件的开启或关闭,和/或根据需求信息控制所述光学器件发出的光的波长范围,和/或根据需求信息控制所述光学器件的闪烁模式。
可选地,在一些实施例中,方法S100还包括:利用第二传感器模块获取警示装置的位置和朝向;利用第二通信模块用于向服务器端发送上报信息,上报信息包括警示装置的位置和朝向。
可选地,在一些实施例中,方法S100还包括:利用播放模块播放语音指导。
可选地,在一些实施例中,方法S100还包括:利用检测模块检测警示装置在收纳警示装置的收纳装置中的位置,以使得当警示装置脱离在收纳装置中的预设位置时,控制播放模块播放所述语音指导。
示例性交通事故联动系统
本公开的其它实施例,还提供一种交通事故联动系统。该交通事故联动系统可以包括上述实施例中的警示装置,以及与警示装置通信连接的服务器端。
警示装置可以向服务器端上报位置、方向、占道、事故属性等信息。
服务器端可以根据警示装置上报的信息进行事故联动控制。
例如,服务器端可以通过导航系统、车联网系统、交通引导系统和交通诱导系统中的一种或多种方式,向后续车辆发送引导建议,从而实现事故联动控制。
再例如,服务器端可以根据警示装置上报的信息,向交警部门、消防部门或医院等事故处理单位发送通知,从而实现事故联动控制。
在该实施例提供的交通事故联动系统中,服务器端可根据警示装置上报事故信息进行事故联动控制,从而极大地增加了事故的处理效率,降低了后续车辆发生二次事故的概率,能够将事故的损失降至最低。
在某些实施例中,服务器端向后续来车提供的引导建议可以不仅仅是事故提示,而是最优建议。
具体来说,服务器端可以根据事故信息与发生路段,通过大数据学习,向导航、车联网等平台或用户,根据事故属性、位置、方向等,提供决策建议。如某路段在这种严重事故下,在当前时间下,通常要阻塞2个小时才能事故处理完毕。所以可以根据三角架获得的事故信息(位置、方向、占道、事故属性、历史处理数据)综合给出后续车辆引导建议。
因为根据GIS及位置,方向、占道事故属性等信息,服务器端计算后,才能形成报文通知相关交警、高速,从而才能信号应对。
所以服务器端不但是收到警示装置的信息,而且还得基于警示装置的信息与GIS计算,形成对公安、交警等相关单位的报文,而且还基于相关位置处理事故的效率形成历史数据,并对相关后续车辆提供最优建议而不仅仅是事故提示。
可选地,在一些实施例中,服务器端在接收到警示装置上报的位置信息后,可以按照就近原则(路径最短)和/或属地原则,向交通部门、消防部门或医院等事故处理单位发送通知,以便于最大限度地提高事故处理的反应速度,从而将事故的损失降至最低。
除了上述方法和设备以外,本公开的实施例还可以是计算机程序产品,其包括计算机程序指令,所述计算机程序指令在被处理器运行时使得所述处理器执行本说明书上述描述的根据本公开各种实施例的信息系统互联方法中的步骤。
所述计算机程序产品可以以一种或多种程序设计语言的任意组合来编写用于执行本公开实施例操作的程序代码,所述程序设计语言包括面向对象的程序设计语言,诸如Java、C++等,还包括常规的过程式程序设计语言,诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户计算设备上部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。
此外,本公开的实施例还可以是计算机可读存储介质,其上存储有计算机程序指令,所述计算机程序指令在被处理器运行时使得所述处理器执行本说明书上述描述的根据本公开各种实施例的警示装置的控制方法中的步骤。
所述计算机可读存储介质可以采用一个或多个可读介质的任意组合。可读介质可以是可读信号介质或者可读存储介质。可读存储介质例如可以包括但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。
以上结合具体实施例描述了本公开的基本原理,但是,需要指出的是,在本公开中提及的优点、优势、效果等仅是示例而非限制,不能认为这些优点、优势、效果等是本公开的各个实施例必须具备的。另外,上述公开的具体细节仅是为了示例的作用和便于理解的作用,而非限制,上述细节并不限制本公开为必须采用上述具体的细节来实现。
本公开中涉及的器件、装置、设备、系统的方框图仅作为例示性的例子并且不意图要求或暗示必须按照方框图示出的方式进行连接、布置、配置。如本领域技术人员将认识到的,可以按任意方式连接、布置、配置这些器件、装置、设备、系统。诸如“包括”、“包含”、“具有”等等的词语是开放性词汇,指“包括但不限于”,且可与其互换使用。这里所使用的词汇“或”和“和”指词汇“和/或”,且可与其互换使用,除非上下文明确指示不是如此。这里所使用的词汇“诸如”指词组“诸如但不限于”,且可与其互换使用。
还需要指出的是,在本公开的装置、设备和方法中,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。
提供所公开的方面的以上描述以使本领域的任何技术人员能够做出或者使用本公开。对这些方面的各种修改对于本领域技术人员而言是非常显而易见的,并且在此定义的一般原理可以应用于其他方面而不脱离本公开的范围。因此,本公开不意图被限制到在此示出的方面,而是按照与在此公开的原理和新颖的特征一致的最宽范围。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。
Claims (26)
- 一种警示装置,包括:光学器件;以及与所述光学器件通信连接的控制模块,所述控制模块用于根据需求信息控制所述光学器件的发光模式。
- 根据权利要求1所述的警示装置,其中,所述光学器件包括:第一导光层、功能层和光源,其中,所述第一导光层和所述功能层层叠设置,所述光源设置在所述第一导光层的非层叠方向侧;所述第一导光层用于将射入所述第一导光层的光向所述第一导光层的法线方向归集;所述功能层用于基于来自所述第一导光层的光,向所述第一导光层发送光。
- 根据权利要求2所述的警示装置,其中,所述功能层包括荧光层。
- 根据权利要求3所述的警示装置,其中,所述功能层还包括与所述荧光层层叠设置的反射层,其中,所述荧光层上设置有沿所述荧光层的层叠方向贯穿所述荧光层的多个荧光槽,所述反射层用于基于所述多个荧光槽进行光反射操作。
- 根据权利要求4所述的警示装置,其中,所述荧光层的荧光面积大于所述荧光层在所述反射层所在平面的正投影面积。
- 根据权利要求4所述的警示装置,其中,所述荧光层的荧光面积大于所述荧光层对应的平面面积。
- 根据权利要求4-6任一项所述的警示装置,其中,所述反射层包括层叠设置在所述荧光层远离所述第一导光层的一侧的第一子反射层,所述第一子反射层包括多个第一反射单元,所述多个第一反射单元与所述多个荧光槽一一对应设置,所述多个第一反射单元在所述荧光层所在平面的正投影覆盖所述多个荧光槽。
- 根据权利要求4-7任一项所述的警示装置,其中,所述反射层包括层叠设置于所述荧光层和所述第一导光层之间的第二子反射层,所述第二子反射层用于增强光线反射效果。
- 根据权利要求2-8任一项所述的警示装置,其中,所述光学器件还包括层叠设置于所述第一导光层远离所述功能层的一侧的第一光方向改变层,所述第一光方向改变层用于对入射到所述第一光方向改变层的光进行折射处理,以便减小通过所述第一光方向改变层进入所述第一导光层的光的传播方向与所述第一导光层的法线的夹角。
- 根据权利要求2-9任一项所述的警示装置,其中,所述光学器件还包括层叠设置于所述第一导光层远离所述功能层的一侧的第二光方向改变层,所述第二光方向改变层包括多个微棱镜条结构。
- 根据权利要求2-10任一项所述的警示装置,其中,所述光学器件还包括层叠设置于所述第一导光层的远离所述功能层的一侧的光过滤层,所述光过滤层用于阻止预设波长范围的光入射到所述第一导光层。
- 根据权利要求2-11任一项所述警示装置,其中,所述光学器件还包括设置于所述第一导光层的非层叠方向侧的光阻挡层,所述光阻挡层用于基于来自所述第一导光层的光,向所述第一导光层发送光。
- 根据权利要求1-12任一项所述的警示装置,其中,还包括与所述控制模块通信连接的信息输入模块,所述信息输入模块用于供用户输入所述需求信息。
- 根据权利要求1-13任一项所述的警示装置,其中,所述需求信息包括所述警示装置所处环境的环境信息,所述警示装置还包括与所述控制模块通信连接的第一传感器模块,所述第一传感器模块用于确定所述警示装置所处环境的环境信息。
- 根据权利要求14所述的警示装置,其中,所述环境信息包括能见度信息和/或亮度信息。
- 根据权利要求1-15任一项所述的警示装置,其中,还包括与所述控制模块连接的第一通信模块,所述第一通信模块用于接收来自服务器端和/或用户终端的所述需求信息。
- 根据权利要求1-16任一项所述的警示装置,其中,还包括与所述控制模块通信连接的第二传感器模块和第二通信模块,所述第二传感器模块用于获取所述警示装置的位置和朝向,所述第二通信模块用于向服务器端发送上报信息,所述上报信息包括所述警示装置的位置和朝向。
- 根据权利要求1-17任一项所述的警示装置,其中,所述控制所述光学器件的发光模式,包括以下各项中的至少一项:控制所述光学器件的开启或关闭;控制所述光学器件发出的光的波长范围;控制所述光学器件的闪烁模式。
- 根据权利要求1-18任一项所述的警示装置,其中,所述警示装置为三角警告牌。
- 根据权利要求19所述的警示装置,其中,所述警示装置还包括:包括支撑结构的第一部件,所述支撑结构用于支撑所述警示装置;第二部件,包括相对的第一端和第二端,所述第一端可转动地连接于所述第一部件;第三部件,包括相对的第三端和第四端,所述第三端可转动地连接于所述第二部件的所述第二端,所述 第四端可拆卸地连接于所述第一部件。
- 根据权利要求1-20任一项所述的警示装置,其中,还包括与所述控制模块通信连接的唤醒模块,所述唤醒模块用于当所述警示装置被调整至展开状态时,唤醒所述警示装置。
- 根据权利要求1-21任一项所述的警示装置,其中,还包括与所述控制模块通信连接的播放模块,所述播放模块用于播放语音指导。
- 根据权利要求22所述的警示装置,其中,还包括与所述控制模块通信连接的检测模块,所述检测模块用于检测所述警示装置在收纳所述警示装置的收纳装置中的位置,以使得当所述警示装置脱离在所述收纳装置中的预设位置时,所述控制模块控制所述播放模块播放所述语音指导。
- 一种警示装置,包括:光学器件;以及与所述光学器件通信连接的控制模块,所述控制模块用于控制所述光学器件,以使得所述光学器件在需救护场景向路过人员和/或车辆发出救护信号。
- 一种警示装置的控制方法,包括:获取需求信息;根据所述需求信息控制光学器件的发光模式。
- 一种交通事故联动系统,包括:如权利要求1-24任一项所述的警示装置;以及,与所述警示装置通信连接的服务器端,其中所述服务器端用于根据所述警示装置上报的信息进行事故联动控制。
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201922221410.X | 2019-12-12 | ||
CN201922221410 | 2019-12-12 | ||
CN201911273415.5 | 2019-12-12 | ||
CN201911273415 | 2019-12-12 | ||
CN202011376090.6 | 2020-11-30 | ||
CN202022840036.4U CN214152330U (zh) | 2020-11-30 | 2020-11-30 | 警示装置 |
CN202022840036.4 | 2020-11-30 | ||
CN202011376090.6A CN112396985A (zh) | 2019-12-12 | 2020-11-30 | 警示装置、警示装置的控制方法及交通事故联动系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021115434A1 true WO2021115434A1 (zh) | 2021-06-17 |
Family
ID=76329653
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/135747 WO2021115434A1 (zh) | 2019-12-12 | 2020-12-11 | 警示装置、警示装置的控制方法及交通事故联动系统 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2021115434A1 (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2727889Y (zh) * | 2004-09-03 | 2005-09-21 | 许良斌 | 反光蓄光片结构 |
CN102592380A (zh) * | 2012-03-21 | 2012-07-18 | 董飞鸿 | 高光效低功耗led面光源主被动发光警示装置 |
CN103778873A (zh) * | 2014-01-21 | 2014-05-07 | 浙江海联电子股份有限公司 | 一种自发光危险品标志顶灯 |
CN205302872U (zh) * | 2015-09-30 | 2016-06-08 | 严灵 | 一种光源发射光可调节的警示标志牌 |
US20170305337A1 (en) * | 2016-04-26 | 2017-10-26 | Hon Hai Precision Industry Co., Ltd. | Road safety vehicle warning device |
CN108519638A (zh) * | 2018-04-16 | 2018-09-11 | 常州亚玛顿股份有限公司 | 导光模组及背光组件 |
CN208053212U (zh) * | 2018-02-24 | 2018-11-06 | 湖南赤道技术开发有限公司 | 一种改进型三角警示牌 |
-
2020
- 2020-12-11 WO PCT/CN2020/135747 patent/WO2021115434A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2727889Y (zh) * | 2004-09-03 | 2005-09-21 | 许良斌 | 反光蓄光片结构 |
CN102592380A (zh) * | 2012-03-21 | 2012-07-18 | 董飞鸿 | 高光效低功耗led面光源主被动发光警示装置 |
CN103778873A (zh) * | 2014-01-21 | 2014-05-07 | 浙江海联电子股份有限公司 | 一种自发光危险品标志顶灯 |
CN205302872U (zh) * | 2015-09-30 | 2016-06-08 | 严灵 | 一种光源发射光可调节的警示标志牌 |
US20170305337A1 (en) * | 2016-04-26 | 2017-10-26 | Hon Hai Precision Industry Co., Ltd. | Road safety vehicle warning device |
CN208053212U (zh) * | 2018-02-24 | 2018-11-06 | 湖南赤道技术开发有限公司 | 一种改进型三角警示牌 |
CN108519638A (zh) * | 2018-04-16 | 2018-09-11 | 常州亚玛顿股份有限公司 | 导光模组及背光组件 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112396985A (zh) | 警示装置、警示装置的控制方法及交通事故联动系统 | |
US10322675B2 (en) | Safety control system for vehicles | |
US8733001B2 (en) | Day/night safety sign using reflective internal lighting | |
JP2009083631A (ja) | 車両用後写鏡 | |
TWI687864B (zh) | 顯示裝置 | |
CN110195387A (zh) | 一种节能和智能的电子马路系统 | |
CN214152330U (zh) | 警示装置 | |
CN214099050U (zh) | 荧光结构、光学器件以及警示装置 | |
WO2021115434A1 (zh) | 警示装置、警示装置的控制方法及交通事故联动系统 | |
KR20100038812A (ko) | 측면에서도 볼 수 있는 보행자신호등과 제작방법 | |
JP2007114271A (ja) | 封入レンズ型透光性再帰反射シートを設けた表示装置 | |
CN207089122U (zh) | 快速警示装置 | |
KR101157800B1 (ko) | 설치 용이성과 시인성이 향상된 교통안전표지판 | |
JP2016212635A (ja) | 誘導灯及びそれを用いた避難誘導システム | |
JP2009098421A (ja) | 案内表示板、並びに案内表示灯 | |
CN211005226U (zh) | 一种反光材料胶带 | |
CN204215693U (zh) | 一种抛锚车辆道路警示牌 | |
CN205920726U (zh) | 多功能路牌 | |
KR20100039308A (ko) | 반사 또는 투과 프리즘이 설치된 보행자신호등 | |
CN107458305A (zh) | 快速警示装置及其安装使用方法 | |
WO2009123932A2 (en) | Traffic signal systems | |
TWM552511U (zh) | 主動警示交通錐改良結構 | |
JP3019124U (ja) | 交 通 信 号 機 | |
US10607514B1 (en) | Traffic handheld control warning sign | |
CN203068386U (zh) | 一种led车用报警灯 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20899704 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20899704 Country of ref document: EP Kind code of ref document: A1 |