WO2021115265A1 - 显微装置及图像处理装置 - Google Patents
显微装置及图像处理装置 Download PDFInfo
- Publication number
- WO2021115265A1 WO2021115265A1 PCT/CN2020/134569 CN2020134569W WO2021115265A1 WO 2021115265 A1 WO2021115265 A1 WO 2021115265A1 CN 2020134569 W CN2020134569 W CN 2020134569W WO 2021115265 A1 WO2021115265 A1 WO 2021115265A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sample
- microscopic
- image
- pattern
- digital image
- Prior art date
Links
- 238000012545 processing Methods 0.000 title claims abstract description 54
- 238000003860 storage Methods 0.000 claims abstract description 13
- 230000003287 optical effect Effects 0.000 claims description 31
- 238000000034 method Methods 0.000 claims description 25
- 238000012634 optical imaging Methods 0.000 claims description 21
- 238000007431 microscopic evaluation Methods 0.000 claims description 20
- 238000000386 microscopy Methods 0.000 claims description 11
- 238000004458 analytical method Methods 0.000 claims description 6
- 238000010586 diagram Methods 0.000 description 25
- 210000005253 yeast cell Anatomy 0.000 description 16
- 210000004027 cell Anatomy 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 4
- 241000195649 Chlorella <Chlorellales> Species 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 238000013475 authorization Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/60—Type of objects
- G06V20/69—Microscopic objects, e.g. biological cells or cellular parts
- G06V20/693—Acquisition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/80—Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/02—Investigating particle size or size distribution
- G01N15/0205—Investigating particle size or size distribution by optical means
- G01N15/0227—Investigating particle size or size distribution by optical means using imaging; using holography
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1429—Signal processing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1429—Signal processing
- G01N15/1433—Signal processing using image recognition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/60—Type of objects
- G06V20/69—Microscopic objects, e.g. biological cells or cellular parts
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/60—Type of objects
- G06V20/69—Microscopic objects, e.g. biological cells or cellular parts
- G06V20/698—Matching; Classification
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/69—Control of means for changing angle of the field of view, e.g. optical zoom objectives or electronic zooming
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/80—Camera processing pipelines; Components thereof
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/06—Investigating concentration of particle suspensions
- G01N15/075—Investigating concentration of particle suspensions by optical means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N2015/1006—Investigating individual particles for cytology
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N2015/1029—Particle size
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N2015/1493—Particle size
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N2015/1497—Particle shape
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/36—Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
- G02B21/365—Control or image processing arrangements for digital or video microscopes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10056—Microscopic image
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/18—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
- H04N7/183—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source
Definitions
- the present disclosure relates to a microscopic device and an image processing device.
- the existing sample plates used for cell counting or analysis usually include one or more sample slots.
- the sample slots are used to hold the cell samples to be tested, and then the number of cells can be obtained through the microscopic imaging system and the image analysis system. Concentration, size and other parameters.
- the detection of these parameters depends on the observation ability of the microscope or microscopic imaging system. The most important and important characteristic parameter is the magnification, and the actual magnification of many microscopic instruments on the market is inconsistent with its nominal nominal value.
- the calibration and calibration of microscope magnification mainly adopts micrometer or similar micrometer technology, and the actual magnification of the microscope is calibrated through the cooperation of the eyepiece micrometer and the objective micrometer.
- the actual magnification of the microscope can be calculated by comparing the size obtained in the microscopic imaging system with the known interval size in the ruler.
- these technologies have certain defects.
- the eyepiece or objective lens is changed, it needs to be re-calibrated.
- the sample to be tested needs to be removed, which leads to duplication and troubles of the operation, and it is necessary to search for the original field of view At the same time, it will also cause the sample to move in the sample tank, which will affect the observation results.
- the existing cytometer does not have the ability to accurately calibrate the magnification of the microscope, which leads to inconsistencies between the detected parameters and the actual The accuracy of the final result
- a microscopic device including: an optical imaging device configured to form an optical image of a sample, wherein the optical image includes a ruler for determining the magnification of the microscopic device A pattern; an image sensor configured to generate a digital image based on the optical image; and a sending device configured to send the digital image.
- the microscopic device further includes: an input device configured to input pattern information about the scale pattern.
- the sending device is further configured to send the pattern information.
- the pattern information includes at least one of: the size of the scale pattern; the identifier of the scale pattern; and the direction of the scale pattern.
- the input device is further configured to input first sample information about the sample.
- the first sample information includes a sample type.
- an image processing device including: a receiving device configured to receive a digital image formed by a microscopic device, the digital image containing a ruler pattern; a storage device configured to store The digital image; and a processor configured to determine the magnification of the microscopic device based on the scale pattern.
- the receiving device also receives pattern information about the scale pattern.
- the processor is further configured to determine the magnification of the microscopic device according to the pattern information.
- the processor is further configured to determine the direction of the sample plate where the sample is located according to the pattern information.
- the processor is further configured to classify the digital image according to the pattern information.
- the processor is further configured to generate a first image according to the pattern information, and add the first image to the digital image.
- the receiving device also receives first sample information about the sample.
- the processor is further configured to classify the digital image according to the first sample information.
- the processor is further configured to generate a second image according to the first sample information, and add the second image to the digital image.
- the processor is further configured to search for other images of the same category as the digital image in the storage device according to the category of the digital image
- the image processing device further It includes: a sending device configured to send the other image.
- the processor is further configured to analyze the digital image according to the scale pattern to obtain second sample information about the sample in the digital image.
- the processor is further configured to classify the digital image according to the second sample information.
- the processor is further configured to search for other images of the same category as the digital image in the storage device according to the category of the digital image
- the image processing device further It includes: a sending device configured to send the other image.
- the second sample information includes at least one of the following: the diameter value of the sample; the long axis value and the short axis value of the sample; the size of the photographing field of view; and the concentration value of the sample.
- a method for determining the magnification of a microscopic device including: acquiring an image taken by the microscopic device, the image containing a ruler pattern on a sample plate; and determining the The size of the image formed by the ruler pattern on the image sensor; and determining the size of the image formed by the ruler pattern on the sample plate and the size of the image formed by the ruler pattern on the image sensor The magnification of the device.
- the size of the image formed by the scale pattern on the image sensor is determined according to the distance between adjacent pixels of the image sensor of the microscopic device.
- the scale pattern includes a plurality of line segments
- the method includes: calculating a plurality of values of the magnification of the microscopic device according to the length of each line segment in the plurality of line segments; And calculating the average of the multiple values as the magnification of the microscopic device.
- the scale pattern includes a plurality of line segments
- the method includes: calculating the magnification of the microscopic device according to the sum of the lengths of the plurality of line segments.
- a microscopic analysis system including: the above-mentioned microscopic device according to the present disclosure and the above-mentioned image processing device according to the present disclosure.
- the microscopic analysis system further includes a mobile device configured to receive and display the digital image from the microscopic device or the image processing device.
- the mobile device is further configured to receive the second sample information.
- the mobile device is further configured to send shooting parameters to the microscopic device; and the microscopic device performs shooting according to the shooting parameters.
- a microscopic analysis system including:
- the microscopic device includes:
- An optical imaging device configured to photograph a sample in a sample plate to form an optical image of the sample, wherein the optical image contains a ruler pattern for determining the magnification of the microscopic device;
- An image sensor configured to generate a digital image based on the optical image
- a sending device configured to send the digital image
- a receiving device configured to receive information from the cloud server and the mobile device
- the mobile device is configured to
- the cloud server is configured to
- the digital image is analyzed, and the analysis result is sent to the mobile device.
- the cloud server is further configured to send application updates to the microscopic device and the mobile device.
- the sample plate includes: a sample groove for accommodating a sample; and a ruler pattern for determining a magnification.
- Figure 1 shows a schematic diagram of a microscopic device according to some embodiments of the present disclosure.
- Figure 2 shows a schematic diagram of a sample plate according to some embodiments of the present disclosure.
- Figure 3 shows a schematic diagram of a sample plate according to some embodiments of the present disclosure.
- Figure 4 shows a schematic diagram of a sample plate according to some embodiments of the present disclosure.
- Figure 5 shows a schematic diagram of a sample plate according to some embodiments of the present disclosure.
- Figure 6A shows a scale pattern on a sample plate according to some embodiments of the present disclosure.
- FIG. 6B shows an image of a ruler pattern on a sample plate according to some embodiments of the present disclosure.
- Figure 7 shows a schematic diagram of a sample plate according to some embodiments of the present disclosure.
- Figure 8 shows a schematic diagram of a sample plate according to some embodiments of the present disclosure.
- Figure 9 shows a schematic diagram of a sample plate according to some embodiments of the present disclosure.
- Figure 10 shows a schematic diagram of a sample plate according to some embodiments of the present disclosure.
- FIG. 11 shows a set of scale lines in a ruler pattern on a sample plate according to some embodiments of the present disclosure.
- Figure 12 shows a flow chart of the operation of the microscopic device according to some embodiments of the present disclosure.
- FIG. 13 shows a schematic diagram of the pixel arrangement direction of an image sensor according to some embodiments of the present disclosure.
- Figure 14 shows a schematic diagram of a microscopic device according to some embodiments of the present disclosure.
- FIG. 15 shows a schematic diagram of an image processing apparatus according to some embodiments of the present disclosure.
- Figure 16 shows a microscopic image according to some embodiments of the present disclosure.
- Figure 17 shows a microscopic image according to some embodiments of the present disclosure.
- Figure 18 shows a microscopic image according to some embodiments of the present disclosure.
- Figure 19 shows a schematic diagram of a microscopic device according to some embodiments of the present disclosure.
- Figure 20 shows a microscopic image according to some embodiments of the present disclosure.
- Figure 21 shows a microscopic analysis system according to some embodiments of the present disclosure.
- Fig. 1 shows a schematic diagram of a microscopic device according to an embodiment of the present disclosure.
- the microscopic apparatus 100 includes an image sensor 101, a memory 102, a processor 103, an optical imaging device 104, a sample stage 105 and a light source 106.
- the sample plate to be observed is arranged on the sample stage 105.
- the light emitted by the light source 106 irradiates the sample plate.
- the optical imaging device 104 may include, for example, an objective lens and an eyepiece (not shown), and each of the objective lens and the eyepiece may be composed of one or more sets of lenses.
- the optical image formed by the optical device 104 is received by the image sensor 101 and converted into a digital image by the image sensor 101.
- the image sensor may be, for example, a charge coupled device (CCD), a complementary metal oxide semiconductor (CMOS), or the like.
- CCD charge coupled device
- CMOS complementary metal oxide semiconductor
- image capturing devices such as mobile phones and cameras may also be arranged in the light path. These image capturing devices also include image sensors and can capture images of samples in the sample plate through the optical device 104 .
- the digital image obtained by the image sensor 101 is stored in the memory 102, and the processor 103 can read the digital image in the memory 102 and process the digital image.
- Figure 2 shows a schematic diagram of a sample plate according to some embodiments of the present disclosure.
- the sample plate 200 includes a plurality of sample grooves 201 in which samples to be observed and photographed can be accommodated.
- the sample plate 200 also has a scale pattern 202.
- the scale pattern 202 is located at the bottom of the sample tank (that is, on the surface of the sample tank in contact with the sample therein).
- the optical imaging device 104 usually focuses on the bottom of the sample tank, and setting the scale pattern 202 at the bottom of the sample tank can obtain a clear image of the scale pattern while obtaining the sample image.
- the scale pattern 202 is a line segment along the horizontal direction, and the length is L.
- L may be 1 ⁇ m-100 ⁇ m.
- D is the distance between adjacent pixels in the image sensor 101, that is, the distance from the center of one pixel in the X direction or the Y direction to the center of adjacent pixels.
- the function sqrt means to calculate the square root.
- magnification M of the optical imaging device 104 of the microscopic apparatus 100 can be calculated according to the following formula (2):
- the actual magnification of the microscopic device 100 can be accurately obtained.
- the pixel array of the image sensor 101 is a rectangular array, and the pitch of adjacent pixels is the same in the X direction and the Y direction. In other embodiments according to the present disclosure, the pitch of adjacent pixels of the image sensor 101 is different in the X direction and the Y direction. For example, if the distance between adjacent pixels in the X direction is D1, and the distance between adjacent pixels in the Y direction is D2, the line segment image formed on the image sensor 101 by the line segment on the sample board can be calculated according to the following formula (3) Size K:
- the actual magnification M of the microscopic device 100 can be calculated according to the above formula (2).
- the processor 103 of the microscopic device 100 can be performed by the processor 103 of the microscopic device 100, for example.
- the pitch of adjacent pixels of the image sensor 101 may be stored in the memory 102 in advance. After the image sensor 101 generates a digital image of the sample plate 200, the digital image is stored in the memory 102.
- the processor 103 reads the digital image from the memory 102 and recognizes the scale pattern in the digital image. Next, the processor 103 can read the distance between adjacent pixels of the image sensor 101 from the memory, and calculate the actual magnification M of the microscopic device 101 according to the above formulas (1)-(3).
- magnification M can also be calculated in the following manner.
- the corresponding magnifications M1, M2, and M3 can be calculated based on the ruler pattern 202 on each sample slot 201, and then the microscopy can be calculated by formula (4) The actual magnification of the device M.
- the average value of the magnifications M1, M2, and M3 is taken as the actual magnification M of the microscopic device. In this way, the calculation error can be reduced, and the accuracy of the magnification can be further improved.
- the sum K'of the line segments of each scale pattern 202 can be calculated by the following formula (5).
- (x1, y1) and (x2, y2) are the coordinates of the two ends of the ruler pattern of the first sample slot 202 in the upper part of FIG. 2 in the digital image
- (x3, y3) and (x4, y4) are the graphs 2
- (x5, y5) and (x6, y6) are the two ends of the ruler pattern of the third sample slot 202 in the lower part of Fig. 2 The coordinates in the digital image.
- the actual magnification M of the microscopic device can be calculated by formula (6).
- Figure 3 shows a schematic diagram of a sample plate according to some embodiments of the present disclosure.
- the sample plate 300 includes a plurality of sample grooves 301, and samples to be observed and photographed can be accommodated in the sample grooves 301.
- the sample plate 300 also has a scale pattern 302.
- the scale pattern 302 is located at the bottom of the sample tank.
- the scale pattern 302 is equal-spaced scale lines, each scale line extends along the horizontal direction (first direction), and the distance between each scale line in the vertical direction (second direction) is D.
- the pitch D may be, for example, 1 ⁇ m-10 ⁇ m.
- the processor 103 may obtain the coordinates (x1', y1') of a point on a scale line in the scale pattern 302 according to the digital image generated by the image sensor 101, and obtain the passing point (x1', y1') along The coordinates (x2', y2') of the intersection point between the direction perpendicular to the scale line and the adjacent scale line.
- the actual magnification of the microscopic device 100 can be calculated.
- FIG. 4 shows a schematic diagram of a sample plate 400 according to some embodiments of the present disclosure.
- the scale pattern 402 is provided on the outside of the sample tank 401. In this way, the interference of the ruler pattern 402 on the sample in the sample tank 401 can be avoided, and the sample can be observed and analyzed more clearly.
- the scale pattern 402 may be located on the same plane as the bottom of the sample tank.
- FIG. 5 shows a schematic diagram of a sample plate 500 according to some embodiments of the present disclosure.
- the sample plate 500 includes a plurality of sample slots 501.
- a cross-shaped ruler pattern 502 is provided at the bottom of each sample slot 501.
- the scale pattern 502 includes two line segments perpendicular to each other, and the length of the two line segments can be the same or different.
- the magnification of the microscopic device can also be calculated from the digital image taken by the image sensor 101.
- the magnification of the microscopic device can be calculated according to the above formulas (1)-(2) and the length of any one of the two line segments in the scale pattern 502.
- the magnification can be calculated separately based on each of the two line segments, and then the average of the two magnifications can be taken as the magnification of the microscopy device.
- the scale pattern 502 on the sample plate 500 of FIG. 5 can also be used to identify and correct the distortion of the microscopic device 100.
- the image of the scale pattern 502 should also be two line segments perpendicular to each other, as shown in FIG. 6A.
- the processor 103 can recognize that the optical imaging device of the microscopic apparatus 100 is distorted.
- the processor 103 may also correct the digital image generated by the image sensor 101 based on known parameters such as the size of the scale pattern 502, so as to improve the image quality.
- FIG. 7 shows a schematic diagram of a sample plate 700 according to some embodiments of the present disclosure.
- the sample plate 700 includes a plurality of sample grooves 701 extending in a horizontal direction, and the bottom of each sample groove 701 is provided with a scale pattern 702.
- the scale pattern 702 includes a plurality of scale lines, each scale line extends in the horizontal direction (first direction), and the plurality of scale lines are arranged in the direction of the broken line 703 (second direction).
- the direction of the dotted line 703 is not a vertical direction perpendicular to the horizontal direction. In this way, the scale pattern 702 can cover most of the sample groove 701 area.
- this form of the ruler pattern 702 can ensure that at least one complete graduation line appears in the field of view. In this way, no matter which position of the sample tank 701 is observed, the magnification of the microscopic device can be accurately calculated.
- the orientation of the sample plate and the sample slot can also be determined according to the scale pattern on the sample plate.
- the sample plate 300 shown in FIG. 3 includes a plurality of sample grooves 301 arranged in a vertical direction, and each sample groove 301 extends in a horizontal direction.
- each scale line in the scale pattern 302 extends in the horizontal direction, that is, the extension direction of the scale line is the same as the extension direction of the sample tank, and the arrangement direction of the multiple scale lines is consistent with the arrangement direction of the multiple sample tanks. . Therefore, although only a part of the sample tank is displayed in the field of view of the microscopic equipment or the photographed picture, the processor 103 or the operator can determine the extension direction and the arrangement direction of the sample tank according to the extension direction and the arrangement direction of the scale line, and according to the determined The extension direction and arrangement direction of the sample slots move the sample plate 300 on the sample stage 105 to realize the observation and shooting of different sample slots 301 or different areas of the same sample slot 301.
- FIG. 8 shows a schematic diagram of a sample plate 800 according to other embodiments of the present disclosure.
- the sample plate 800 includes a plurality of sample grooves 801 extending in a horizontal direction, and the plurality of sample grooves 801 are arranged in a vertical direction.
- a scale pattern 802 is provided at the bottom of each sample tank 801.
- the scale pattern 802 includes a first identifier for determining the arrangement direction and the extension direction of the sample grooves 801.
- the first logo is composed of two arrows 803 and 804 perpendicular to each other, wherein the arrow 803 extends in the vertical direction, and the arrow 804 extends in the horizontal direction.
- the longer arrow indicates the arrangement direction of the sample tanks
- the shorter arrow indicates the extension direction of the sample tanks.
- the length of the arrow 803 is greater than the length of the arrow 804. Therefore, according to the extending direction of the arrow 803, it can be determined that the plurality of sample grooves 801 are arranged in the vertical direction, and according to the extending direction of the arrow 804, the sample grooves 802 can be determined to be in the horizontal direction. extend.
- FIG. 9 shows a schematic diagram of a sample plate 900 according to some embodiments of the present disclosure.
- the sample plate 900 includes a plurality of sample slots 901 arranged in a horizontal direction, and each sample slot 901 also extends in the horizontal direction.
- a scale pattern 902 is provided at the bottom of each sample tank 901.
- the scale pattern 902 includes a first mark for determining the arrangement direction and extension direction of the sample grooves 901.
- the first mark is composed of arrows 903 and 904, wherein the longer arrow 903 indicates the arrangement direction of the sample tank 901, and the shorter arrow 904 indicates the extension direction of the sample tank 901. In this way, through the extending directions of the arrows 903 and 904, it can be determined that the plurality of sample grooves 901 are arranged in the horizontal direction, and each sample groove 901 also extends in the horizontal direction.
- FIG. 10 shows a schematic diagram of a sample plate 1000 according to some embodiments of the present disclosure.
- the sample plate 1000 includes a plurality of sample slots 1001 arranged in a vertical direction, and each sample slot 1001 extends in a horizontal direction.
- a scale pattern 1002 is provided at the bottom of the sample tank 1001.
- the ruler pattern 1002 includes a second mark 1004 for identifying the sample plate and a third mark 1003 for identifying the sample slot.
- the second mark 1004 and the third mark 1003 are composed of a plurality of scale lines, which are arranged in a horizontal direction, and each scale line extends in a vertical direction.
- the leftmost scale line 1005 and the rightmost scale line 1006 indicate the beginning and end of the second mark 1004 and the third mark 1003.
- the second mark 1004 and the third mark 1003 are between the scale line 1005 and the scale line 1006. According to the second identification 1004 and the third identification 1003, the number of the sample plate and the number of the sample slot can be determined respectively.
- the third mark 1003 contains two scale lines, and the number of the sample slot in which the third mark 1003 is located can be determined as 11.
- the third mark 1003 contains one scale line, and it can be obtained according to the distance between the scale lines. A scale line is missing in front of the scale line. Therefore, the sample where the third mark 1003 is located The slot number can be determined as 01. In the same way, for the third identification 1003 in the sample slot 1001 in the middle, it can be determined that the number of the sample slot is 10.
- the missing scale lines represent 0, and the number of the sample plate 1000 can be determined to be 1101.
- FIG. 12 shows a flowchart of the operation of the microscopic device 100 according to some embodiments of the present disclosure.
- the sample plate is placed on the sample stage 105 (step 1201). There are samples to be observed and photographed in the sample slot of the sample plate.
- a digital image of the sample is generated by the image sensor 101 (step 1202).
- the optical image formed by the optical imaging device 104 of the microscopic apparatus 100 is received by the image sensor 101, and a digital image is generated.
- the digital image can be stored in the memory 102.
- the processor 103 can read the digital image from the memory 102 and perform various processing (step 1203).
- the magnification of the microscopy device 100 can be calculated based on the scale pattern in the digital image, the extension direction and arrangement direction of the sample slot can be determined, the sample plate (number) can be identified, or the sample slot can be identified (of Number), etc.
- Figure 14 shows a microscopic device according to some embodiments of the present disclosure.
- the microscopic device 1400 is an optical microscopic device, and includes an image sensor 1401, a memory 1402, a sending device 1411, an input device 1410, an optical imaging device 1404, a sample stage 1405 and a light source 1406.
- the image sensor 1401, the optical imaging device 1404, the sample stage 1405, and the light source 1406 are similar to the corresponding devices in the microscopic device 100 shown in FIG. 1, and the description will not be repeated herein.
- the above-mentioned sample plate with a scale pattern can be arranged on the sample stage 1405, and the optical imaging device 1404 can form an optical image of the sample.
- the scale pattern in the sample plate is also included in the optical image.
- the ruler pattern can be used to determine the magnification of the microscopy device, and can also be used to identify the direction of the sample plate, mark the sample plate or the sample slot, and so on.
- the image sensor 1401 can convert an optical image into a digital image.
- the user of the microscopic device 1400 can input information about the scale pattern (ie, pattern information) through the input device 1410.
- the pattern information may include size information of the scale pattern.
- the pattern information may include information on the length L of the line segment.
- the pattern information may include information on the pitch D of the scale lines.
- the pattern information may include an identifier of the scale pattern.
- the user can input the unique code of the scale pattern through the input device 1410.
- the code of the scale pattern can be stored in association with the related information of the scale pattern in the database. Through this code, the scale pattern corresponding to the code and its related information, such as size, spacing, etc., can be searched in the database.
- the type of the sample plate can also be identified by the unique code of the scale pattern.
- the code of the ruler pattern is also stored in association with the relevant parameters of the sample plate.
- the relevant parameters of the sample plate may include: the type of the sample plate, the number of sample slots, the depth of the sample slots, and so on.
- the user can also input information about the sample (first sample information) through the input device 1410.
- the information can include the type of sample.
- the type of the sample is red blood cells, yeast, algae, etc.
- the sending device 1411 can send the digital image to other devices.
- the sending device 1411 can send the digital image to a remote server, such as a cloud server.
- the server may include an image processing device to further process the received image.
- Figure 19 shows a schematic diagram of a microscopic device according to some embodiments of the present disclosure.
- the microscopic device 1900 includes an image sensor 1901, a memory 1902, a sending device 1911, an input device 1910, an optical imaging device 1904, a sample stage 1905, and a light source 1906. These components are similar to the corresponding components of the microscopy device 1400 shown in FIG. 14, and will not be repeated here.
- the microscopic device 1900 further includes a controller 1912 and a receiving device 1913.
- the receiving device 1913 can receive information sent by an external device, and the controller 1912 can control the operation of the microscopic device 1900 according to the information.
- the user can interact with the microscopic device 1900 through a mobile device (for example, a mobile phone, a tablet, a notebook computer, etc.).
- the microscopic device 1900 can send the photographed microscopic image to the mobile device and display it on the mobile device.
- the user can adjust the shooting parameters (for example, magnification, observation area, etc.) of the microscopic device 1900 according to the photographed microscopic image, and send the shooting parameters to the microscopic device 1900 through a mobile device.
- the microscopic device 1900 adjusts according to the shooting parameters included in the information sent by the mobile device and re-shoots the microscopic image, and sends the new microscopic image to the mobile device.
- the interaction between the above-mentioned microscopic device 1900 and the mobile device can be performed directly or indirectly via, for example, a cloud server, which is not limited in the present disclosure.
- FIG. 15 shows a schematic diagram of an image processing apparatus according to some embodiments of the present disclosure.
- the image processing device 1500 includes a receiving device 1501, a storage device 1502, a processor 1503, and a sending device 1504.
- the receiving device 1501 may receive the digital image taken by the above-mentioned microscopic device according to the present disclosure. Include a ruler pattern in the digital image.
- the receiving device 1501 may also receive pattern information and/or first sample information associated with the digital image.
- the storage device 1502 may store digital images and various information received by the receiving device 1501.
- the processor 1503 may obtain digital images and various information from the storage device 1502, and process the digital images. For example, the processor 1503 may determine the magnification of the microscopic device according to the ruler pattern in the digital image.
- the sending device 1504 can send the digital image and information related to the digital image (for example, magnification, etc.) to, for example, a mobile device or the like.
- the processor 1503 since the specifications of the sample plates may be different, the length and/or spacing and other parameters of the scale lines of the scale pattern on the sample plates of different specifications may be different. In this case, the processor 1503 also needs to further combine the pattern information associated with the digital image to determine the magnification of the microscopic device.
- the processor 1503 may also determine the direction of the sample plate where the sample is located according to the pattern information.
- the pattern information may indicate that the direction of the arrow is the same as the longitudinal direction of the sample plate 900. In this way, when the processor 1503 recognizes the arrow direction of the scale pattern from the digital image, and uses this direction as the longitudinal direction of the sample plate.
- the processor 1503 may classify the digital image according to pattern information. For example, digital images can be classified according to the size of the ruler pattern, and digital images with the same size of the ruler pattern can be grouped together. When viewing the group of digital images later, the digital images can be zoomed so that the scale patterns have the same size, so that the user can intuitively observe and compare the relative sizes of the samples in each digital image.
- the processor 1503 may generate a first image according to the pattern information, and add the first image to the digital image. For example, as shown in FIG. 16, for the sample board shown in FIG. 2, the processor 1503 can obtain the length L of the scale line to be 5 ⁇ m according to the pattern information. The processor 1503 may generate an image (ie, the first image) 1601 with the text "5 ⁇ m", and add the first image to the digital image. In the synthesized digital image, the value of the length L of the scale line is marked near the scale line, so that the user can more intuitively understand the size of the sample when viewing the digital image.
- the processor 1503 may classify the digital image according to the first sample information. For example, when the first sample information includes the type of the sample, the processor 1503 may group digital images of samples of the same type into a group.
- the first sample information may also include the production date, shooting date, source, copyright information and other information of the sample.
- the processor 1503 can also group digital images with the same date into one group.
- the processor 1503 may generate a second image according to the first sample information, and add the second image to the digital image. As shown in FIG. 17, when the first sample information indicates that the type of the sample is human breast cancer cells (MCF-7 cells), the processor 1503 may generate a second image 1701 containing the text "MCF-7 cells", and set the Image 1701 is added to the digital image. In this way, when the digital image is displayed on, for example, a display, people can directly know the type of the sample.
- MCF-7 cells human breast cancer cells
- the client can find and download digital images from the server.
- the client can input a keyword, such as yeast cells, and send the keyword to a remote server.
- the server can search the database for digital images containing yeast cells in all sample information according to the keyword, and provide the client with a list or thumbnails of these digital images.
- the client can select and download the selected digital image and its related information according to the information provided by the server.
- the client may pay a fee to the server to obtain a license to use the selected digital image.
- the server determines that the client has obtained the license, it sends the digital image to the client.
- the processor 1503 may analyze the digital image according to the scale pattern, thereby obtaining second sample information about the sample.
- the second sample information may include, for example, information such as the diameter value of the sample, the long axis value and the short axis value of the sample, the size of the photographing field of view, and the concentration of the sample.
- FIG. 18 shows a schematic diagram of a digital image according to some embodiments of the present disclosure.
- the processor 1503 may determine that the length unit of the scale pattern in the digital image is 5 ⁇ m. Based on this, the magnification of the digital image in Figure 18 can be obtained at 9.8.
- the processor 1503 may further determine that the type of the sample in the digital image is a yeast cell. Based on this information, the processor 1503 can perform image recognition to identify yeast cells. For example, the processor 1503 may determine a yeast cell 1802 through image recognition, determine that the diameter of the yeast cell 1802 is 6 ⁇ m according to the ruler pattern, and store the diameter value in the second sample information.
- the processor 1503 may determine a plurality of yeast cells through image recognition, and determine the diameter value of each yeast cell according to a ruler pattern. Then, the processor 1503 stores the average value of the diameter values of all yeast cells as the diameter value of the yeast cells in the second sample information.
- the processor 1503 may recognize yeast cells 1801, 1802, and 1803 from the digital image. According to the scale pattern, the diameters of these yeast cells can be determined to be 9 ⁇ m, 6 ⁇ m and 9 ⁇ m, respectively, with an average diameter of 8 ⁇ m. The processor 1503 stores the average diameter value as the diameter value of the sample in the second sample information.
- the processor 1503 can recognize that all yeast cells are 393 from the digital image, and determine the diameter of each yeast cell, so that the average value of the yeast cell diameter can also be obtained. Stored in the second sample information.
- the processor 1503 can also determine the size of the shooting field of view and the concentration value of the sample from the digital image. As shown in FIG. 18, the processor 1503 can determine that the area of the sample plate in the digital image is 0.46 ⁇ 0.35 mm 2 according to the scale pattern. In addition, as described above, the type of the sample plate can also be determined according to the scale pattern, so that the depth of the sample groove can be 0.5 ⁇ m. In this way, the processor 1503 can calculate that the concentration of yeast cells is approximately 5 ⁇ 10 6 /ml.
- the processor 1503 can determine the long axis value and the short axis value of the sample from the digital image.
- FIG. 20 shows a microscopic image of Chlorella according to an embodiment of the present disclosure.
- the processor 1503 can determine the short-axis value and the long-axis value of each chlorella according to the scale pattern in FIG. 20, and further calculate that the short-axis average value of chlorella is about 17.66 ⁇ m, and the long-axis value is about 19.11 ⁇ m. .
- a microscopic analysis system including the above-mentioned microscopic device, image processing device, mobile equipment, and the like.
- the image processing apparatus of the present disclosure may be a single server or multiple servers, and may also be a cloud server.
- the mobile device can control the microscopic device through the cloud server (for example, adjust shooting parameters, etc.), and can also receive the microscopic image taken by the microscopic device through the cloud server.
- the cloud server can push firmware or application updates to the microscopic device and/or mobile device.
- multiple microscopic devices 1 to N can be connected to the cloud server at the same time.
- the mobile device can choose to view the images taken by the designated microscopic device or control the operation of the microscopic device as needed.
- the cloud server can store and analyze the microscopic images taken by multiple microscopic devices, and can send the microscopic images and analysis results to the mobile device.
- the microscopic device may include: an optical imaging device configured to photograph the sample in the sample plate, thereby forming an optical image of the sample, wherein the optical image includes The scale pattern of the magnification of the microscopic device; an image sensor configured to generate a digital image based on the optical image; a transmitting device configured to transmit the digital image; and a receiving device configured to receive data from the Cloud server and mobile device information.
- the mobile device may be configured to: receive digital images from the cloud server and the microscopy device; send shooting parameters to the cloud server and the microscopy device; and send the digital images from the microscopy device Sent to the cloud server.
- the cloud server may be configured to: receive digital images from the microscopic device and the mobile device; receive shooting parameters from the mobile device and forward the shooting parameters to the microscopic device; The digital image of the microscopic device is sent to the mobile device; and the digital image is analyzed, and the analysis result is sent to the mobile device.
- a microscopic device comprising:
- An optical imaging device configured to form an optical image of a sample, wherein the optical image includes a scale pattern for determining the magnification of the microscopic device
- An image sensor configured to generate a digital image based on the optical image
- the sending device is configured to send the digital image.
- the optical imaging device is configured to photograph a sample on a sample plate to form the optical image, and the sample plate includes the scale pattern.
- the input device is configured to input pattern information about the scale pattern.
- pattern information includes at least one of the following:
- An image processing device comprising:
- a receiving device configured to receive a digital image formed by a microscopic device, the digital image including a ruler pattern
- a storage device configured to store the digital image
- the processor is configured to determine the magnification of the microscopic device according to the scale pattern.
- the microscopic device photographs a sample on a sample plate to form the digital image, and the sample plate includes the ruler pattern.
- the receiving device also receives pattern information about the scale pattern.
- the processor is further configured to determine the magnification of the microscopic device according to the pattern information.
- the processor is further configured to determine the direction of the sample plate where the sample is located according to the pattern information.
- the processor is further configured to classify the digital image according to the pattern information.
- the processor is further configured to generate a first image according to the pattern information, and add the first image to the digital image.
- the receiving device also receives first sample information about the sample.
- the processor is further configured to classify the digital image according to the first sample information.
- the processor is further configured to generate a second image according to the first sample information, and add the second image to the digital image.
- processor is further configured to search for other images of the same category as the digital image in the storage device according to the category of the digital image
- the image processing device further includes:
- the sending device is configured to send the other image.
- the processor is further configured to analyze the digital image according to the scale pattern to obtain second sample information about the sample in the digital image.
- the processor is further configured to classify the digital image according to the second sample information.
- processor is further configured to search for other images of the same category as the digital image in the storage device according to the category of the digital image
- the image processing device further includes:
- the sending device is configured to send the other image.
- the second sample information includes at least one of the following:
- the concentration value of the sample is the concentration value of the sample.
- a method of determining the magnification of a microscopic device comprising:
- the magnification of the microscopic device is determined according to the size of the scale pattern on the sample plate and the size of the image formed by the scale pattern on the image sensor.
- the average value of the multiple values is calculated as the magnification of the microscopic device.
- the magnification of the microscopic device is calculated according to the sum of the lengths of the multiple line segments.
- a microscopic analysis system including:
- the image processing device according to any one of 8-22.
- a mobile device configured to receive and display the digital image from the microscopic device or the image processing device.
- the mobile device is also configured to send shooting parameters to the microscopic device.
- the microscopic device performs shooting according to the shooting parameters.
- a microscopic analysis system including:
- the microscopic device includes:
- An optical imaging device configured to photograph a sample in a sample plate to form an optical image of the sample, wherein the optical image contains a ruler pattern for determining the magnification of the microscopic device;
- An image sensor configured to generate a digital image based on the optical image
- a sending device configured to send the digital image
- a receiving device configured to receive information from the cloud server and the mobile device
- the mobile device is configured to
- the cloud server is configured to
- the digital image is analyzed, and the analysis result is sent to the mobile device.
- the word "exemplary” means “serving as an example, instance, or illustration” and not as a “model” to be copied exactly. Any implementation described exemplarily herein is not necessarily construed as being preferred or advantageous over other implementations. Moreover, the present disclosure is not limited by any expressed or implied theory given in the above technical field, background art, summary of the invention, or specific embodiments.
- the word “substantially” means to include any minor changes caused by design or manufacturing defects, device or component tolerances, environmental influences, and/or other factors.
- the word “substantially” also allows for differences between the perfect or ideal situation due to parasitic effects, noise, and other practical considerations that may be present in the actual implementation.
- connection means that one element/node/feature is electrically, mechanically, logically, or otherwise directly connected (or Direct communication).
- coupled means that one element/node/feature can be directly or indirectly connected to another element/node/feature mechanically, electrically, logically, or in other ways. Interaction is allowed, even if the two features may not be directly connected. In other words, “coupled” is intended to include direct connection and indirect connection of elements or other features, including the connection of one or more intermediate elements.
- the term “provide” is used in a broad sense to cover all the ways to obtain an object, so “provide an object” includes but is not limited to “purchase”, “preparation/manufacturing”, “arrangement/setting”, “installation/ “Assemble”, and/or “Order” objects, etc.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Multimedia (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Theoretical Computer Science (AREA)
- Pathology (AREA)
- Immunology (AREA)
- Signal Processing (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Dispersion Chemistry (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Optics & Photonics (AREA)
- Microscoopes, Condenser (AREA)
Abstract
一种显微装置(100, 1400, 1900)和一种图像处理装置(1500),其中图像处理装置(1500)包括:接收装置(1501),被配置成接收由显微装置(100, 1400, 1900)形成的数字图像,数字图像包含标尺图案(202, 302, 402, 502, 702, 802, 902, 1002);存储装置(1502),被配置成存储数字图像;以及处理器(1503),被配置成根据标尺图案(202, 302, 402, 502, 702, 802, 902, 1002)确定显微装置(100, 1400, 1900)的放大倍率。
Description
相关申请的交叉引用
本申请要求申请日为2019年12月11日、申请号为CN201911270215.4的中国发明专利申请的优先权的权益,其全部内容通过引用包含于此。
本公开涉及显微装置及图像处理装置。
目前,现有用于细胞计数或分析的样品板通常包括1个或多个样品槽,样品槽内用来容纳待检测的细胞样品,再通过显微成像系统,图像分析系统,获得细胞的数目,浓度,大小等参数。但这些参数的检测,取决于显微镜或显微成像系统的观测能力,其中最主要和最重要的特征参数就是放大倍率,而市场上很多显微仪器的实际放大倍率与其标称的名义值不一致。
目前对显微镜放大倍数的标定和校准主要采取测微尺或者类似测微尺的技术,通过目镜测微尺和物镜测微尺的配合,来标定显微镜的实际放大倍数。例如,通过标尺中已知的间隔尺寸,来对比在显微成像系统中得到的尺寸,来计算出显微镜的实际放大倍率。但这些技术都存在一定的缺陷,当更换目镜或物镜的时候,就需要重新标定,而这时候待检测的样品就需要取下,导致了操作的重复和麻烦,还需要重新寻找原先观察的视野,同时还会导致样品在样品槽内的移动,影响观察结果。
因此,对显微镜或显微成像系统的放大倍率进行测量具有十分重要的意义,而现有的细胞计数板不具备对显微镜放大倍数进行准确标定的能力,导致检测出来的参数与实际不一致,影响了最终结果的准确性
发明内容
根据本公开的一个方面,提供了一种显微装置,包括:光学成像设备,被配置成形成样品的光学图像,其中所述光学图像中包含用于确定所述显微装置的放大倍率的标尺图案;图像传感器,被配置成根据所述光学图像生成数字图像;以及发送装置,被配置成发送所述数字图像。
在根据本公开的一些实施例中,所述显微装置还包括:输入装置,被配置成输入关于所述标尺图案的图案信息。
在根据本公开的一些实施例中,所述发送装置还被配置成发送所述图案信息。
在根据本公开的一些实施例中,所述图案信息包括以下至少一种:所述标尺图案的尺寸;所述标尺图案的识别符;以及所述标尺图案的方向。
在根据本公开的一些实施例中,所述输入装置还被配置成输入关于所述样品的第一样品信息。
在根据本公开的一些实施例中,所述第一样品信息包括样品类型。
根据本公开了另一个方面,提供了一种图像处理装置,包括:接收装置,被配置成接收由显微装置形成的数字图像,所述数字图像包含标尺图案;存储装置,被配置成存储所述数字图像;以及处理器,被配置成根据所述标尺图案确定所述显微装置的放大倍率。
在根据本公开的一些实施例中,所述接收装置还接收关于所述标尺图案的图案信息。
在根据本公开的一些实施例中,所述处理器还被配置成根据所述图案信息确定所述显微装置的放大倍率。
在根据本公开的一些实施例中,所述处理器还被配置成根据所述图案信息确定样品所在的样品板的方向。
在根据本公开的一些实施例中,所述处理器还被配置成根据所述图案信息对所述数字图像分类。
在根据本公开的一些实施例中,所述处理器还被配置成根据所述图案信息生成第一图像,以及将所述第一图像添加到所述数字图像中。
在根据本公开的一些实施例中,所述接收装置还接收关于所述样品的第一样品信息。
在根据本公开的一些实施例中,所述处理器还被配置成根据所述第一样品信息对所述数字图像分类。
在根据本公开的一些实施例中,所述处理器还被配置成根据所述第一样品信息生成第二图像,以及将所述第二图像添加到所述数字图像中。
在根据本公开的一些实施例中,所述处理器还被配置成根据所述数字图像的类别在所述存储装置中查找与所述数字图像的类别相同的其它图像,所述图像处理装置还 包括:发送装置,被配置成发送所述其它图像。
在根据本公开的一些实施例中,所述处理器还被配置成根据所述标尺图案分析所述数字图像,以获得关于所述数字图像中样品的第二样品信息。
在根据本公开的一些实施例中,所述处理器还被配置成根据所述第二样品信息对所述数字图像分类。
在根据本公开的一些实施例中,所述处理器还被配置成根据所述数字图像的类别在所述存储装置中查找与所述数字图像的类别相同的其它图像,所述图像处理装置还包括:发送装置,被配置成发送所述其它图像。
在根据本公开的一些实施例中,所述第二样品信息包括以下至少一种:样品的直径值;样品的长轴值和短轴值;拍摄视野的尺寸;以及样品的浓度值。
根据本公开的又一个方面,提供了一种确定显微装置的放大倍率的方法,包括:获取由所述显微装置拍摄的图像,所述图像中包含样品板上的标尺图案;确定所述标尺图案在所述图像传感器上形成的图像的尺寸;以及根据所述标尺图案在所述样品板上的尺寸以及所述标尺图案在所述图像传感器上形成的图像的尺寸,确定所述显微装置的放大倍率。
在根据本公开的一些实施例中,根据所述显微装置的图像传感器的相邻像素的间距确定所述标尺图案在所述图像传感器上形成的图像的尺寸。
在根据本公开的一些实施例中,所述标尺图案包含多个线段,所述方法包括:根据所述多个线段中每个线段的长度计算所述显微装置的放大倍率的多个值;以及计算所述多个值的平均值作为所述显微装置的放大倍率。
在根据本公开的一些实施例中,所述标尺图案包含多个线段,所述方法包括:根据所述多个线段的长度的和计算所述显微装置的放大倍率。
根据本公开的又一个方面,提供了一种显微分析系统,包括:上述根据本公开的显微装置以及上述根据本公开的图像处理装置。
在根据本公开的一些实施例中,所述显微分析系统还包括:移动设备,被配置成接收和显示来自所述显微装置或所述图像处理装置的所述数字图像。
在根据本公开的一些实施例中,所述移动设备还被配置成接收所述第二样品信息。
在根据本公开的一些实施例中,所述移动设备还被配置成将拍摄参数发送给所述显微装置;以及所述显微装置根据所述拍摄参数进行拍摄。
根据本公开的又一个方面,提供了一种显微分析系统,包括:
云服务器,显微装置以及移动设备,
其中所述显微装置包括:
光学成像设备,被配置成拍摄样品板中的样品,从而形成样品的光学图像,其中所述光学图像中包含用于确定所述显微装置的放大倍率的标尺图案;
图像传感器,被配置成根据所述光学图像生成数字图像;
发送装置,被配置成发送所述数字图像;以及
接收装置,被配置成接收来自所述云服务器和移动设备的信息,
所述移动设备被配置成
接收来自所述云服务器和所述显微装置的数字图像;
将拍摄参数发送给所述云服务器和所述显微装置;以及
将来自所述显微装置的数字图像发送给所述云服务器,
所述云服务器被配置成
接收来自所述显微装置和所述移动设备的数字图像;
接收来自所述移动设备的拍摄参数并将所述拍摄参数转发给所述显微装置;
将来自所述显微装置的数字图像发送给所述移动设备;
分析所述数字图像,并且将分析结果发送给所述移动设备。
在根据本公开的一些实施例中,所述云服务器还被配置成向所述显微装置和所述移动设备发送应用的更新。
在根据本公开的一些实施例中,所述样品板包括:用于容纳样品的样品槽;以及用于确定放大倍率的标尺图案。
通过以下参照附图对本公开的示例性实施例的详细描述,本公开的其它特征及其优点将会变得清楚。
构成说明书的一部分的附图描述了本公开的实施例,并且连同说明书一起用于解释本公开的原理。
参照附图,根据下面的详细描述,可以更加清楚地理解本公开,其中:
图1示出了根据本公开的一些实施例的显微装置的示意图。
图2示出了根据本公开的一些实施例的样品板的示意图。
图3示出了根据本公开的一些实施例的样品板的示意图。
图4示出了根据本公开的一些实施例的样品板的示意图。
图5示出了根据本公开的一些实施例的样品板的示意图。
图6A示出了根据本公开的一些实施例的样品板上的标尺图案。
图6B示出了根据本公开的一些实施例的样品板上的标尺图案的图像。
图7示出了根据本公开的一些实施例的样品板的示意图。
图8示出了根据本公开的一些实施例的样品板的示意图。
图9示出了根据本公开的一些实施例的样品板的示意图。
图10示出了根据本公开的一些实施例的样品板的示意图。
图11示出了根据本公开的一些实施例的样品板上的标尺图案中的一组刻度线。
图12示出了根据本公开的一些实施例的显微装置的操作的流程图。
图13示出了根据本公开的一些实施例的图像传感器的的像素排列方向的示意图。
图14示出了根据本公开的一些实施例的显微装置的示意图。
图15示出了根据本公开的一些实施例的图像处理装置的示意图。
图16示出了根据本公开的一些实施例的显微图像。
图17示出了根据本公开的一些实施例的显微图像。
图18示出了根据本公开的一些实施例的显微图像。
图19示出了根据本公开的一些实施例的显微装置的示意图。
图20示出了根据本公开的一些实施例的显微图像。
图21示出了根据本公开的一些实施例的显微分析系统。
注意,在以下说明的实施方式中,有时在不同的附图之间共同使用同一附图标记来表示相同部分或具有相同功能的部分,而省略其重复说明。在本说明书中,使用相似的标号和字母表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
为了便于理解,在附图等中所示的各结构的位置、尺寸及范围等有时不表示实际的位置、尺寸及范围等。因此,所公开的发明并不限于附图等所公开的位置、尺寸及范围等。
现在将参照附图来详细描述本公开的各种示例性实施例。应注意到:除非另外具 体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本公开的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。
在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。
图1示出了根据本公开的实施例的显微装置的示意图。
如图1所示,该显微装置100包括图像传感器101、存储器102、处理器103、光学成像设备104、样品台105和光源106。在工作时,待观察的样品板被布置在样品台105上。光源106发出的光照射到样品板上。光学成像设备104可以包括例如物镜和目镜等(未示出),物镜和目镜各自可以由一组或多组透镜构成。通过光学设备104形成的光学图像被图像传感器101接收,并且被图像传感器101转换成数字图像。图像传感器可以为例如电荷耦合器件(CCD)、互补金属氧化物半导体(CMOS)等。在根据本公开的一些实施例中,也可以把例如手机、照相机等图像拍摄装置布置在光路中,这些图像拍摄装置中也包含图像传感器,并且能够通过光学设备104拍摄样品板中的样品的图像。
通过图像传感器101获得的数字图像被存储在存储器102中,处理器103可以读取存储器102中的数字图像并对数字图像进行处理。
图2示出了根据本公开的一些实施例的样品板的示意图。如图2所示,样品板200包括多个样品槽201,在样品槽201中可以容纳需要观察和拍摄的样品。此外,样品板200还具有标尺图案202。
在图2所示的示例性实施例中,标尺图案202位于样品槽底部(即样品槽与其中的样品接触的表面上)。在通过显微装置100获取样品的图像时,光学成像设备104通常聚焦于样品槽底部,将标尺图案202设置在样品槽底部可以在获得样品图像的同时得到清晰的标尺图案的图像。标尺图案202为沿水平方向的线段,长度为L。例如,在一些示例性实施例中,L可以为1μm-100μm。利用该标尺图案202,可以准确地计算显微装置100的放大倍率。
例如,如图13所示,对于像素沿互相垂直的两个方向(X方向和Y方向)均匀排列的图像传感器101,假设在通过图像传感器101生成的数字图像中,标尺图案202的线段两端的坐标分别为(x1,y1)和(x2,y2)。这里,坐标(x1,y1)和(x2,y2)表示与线段的两端对应的像素在图像传感器101上的位置。那么可以根据公式(1)计算样品板上的线段在图像传感器101上形成的线段图像的尺寸K:
K=D·sqrt[(x2-x1)
2+(y2-y1)
2] (1)
其中,D为图像传感器101中相邻像素的间距,即从一个像素的中心沿X方向或Y方向到相邻的像素的中心的距离。函数sqrt表示计算平方根。
那么,可以根据下面公式(2)计算显微装置100的光学成像设备104的放大倍率M:
M=K/L (2)
通过上面的方式,可以准确地得到显微装置100的实际放大倍率。
上面的示例性实施例中,图像传感器101的像素阵列为矩形阵列,并且相邻像素的间距在X方向和Y方向相同。在根据本公开的另一些实施例中,图像传感器101的相邻像素的间距在X方向和Y方向不同。例如,沿X方向的相邻像素的间距为D1,沿Y方向的相邻像素的间距为D2,则可以根据下面公式(3)计算样品板上的线段在图像传感器101上形成的线段图像的尺寸K:
K=sqrt[(D1)
2·(x2-x1)
2+(D2)
2·(y2-y1)
2] (3)
然后,根据上面的公式(2)可以计算得到显微装置100的实际放大倍率M。
上述对于实际放大倍率的计算可以由例如显微装置100的处理器103进行。例如,图像传感器101的相邻像素的间距可以预先存储在存储器102中。当图像传感器101生成样品板200的数字图像后,该数字图像被存储在存储器102中。
然后,处理器103从存储器102读取该数字图像,识别数字图像中的标尺图案。接下来,处理器103可以从存储器读取图像传感器101的相邻像素的间距,并根据上 面的公式(1)-(3)计算得到显微装置101的实际放大倍率M。
此外,在根据本公开的一些实施例中,对于具有多个样品槽201的样品板200,还可以采用以下方式来计算放大倍率M。
对于图2所示的样品板200具有三个样品槽201,则可以基于每个样品槽201上的标尺图案202分别计算对应的放大倍率M1,M2和M3,然后通过公式(4)计算显微装置的实际放大倍率M。
M=(M1+M2+M3)/3 (4)
即,将放大倍率M1,M2和M3的平均值作为显微装置的实际放大倍率M。采用这种方式,可以减小计算误差,进一步提高放大倍率的准确性。
此外,在根据本公开的另一些实施例中,可以通过下面公式(5)计算各个标尺图案202的线段之和K’。
K’=D·sqrt[(x2-x1)
2+(y2-y1)
2]+D·sqrt[(x3-x4)
2+(y3-y4)
2]+D·sqrt[(x5-x6)
2+(y5-y6)
2] (5)
其中,(x1,y1)和(x2,y2)为图2上部第一个样品槽202的标尺图案的线段两端在数字图像中的坐标,(x3,y3)和(x4,y4)为图2中部第二个样品槽202的标尺图案的线段两端在数字图像中的坐标,(x5,y5)和(x6,y6)为图2下部第三个样品槽202的标尺图案的线段两端在数字图像中的坐标。
然后,可以通过公式(6)计算显微装置的实际放大倍率M。
M=K’/(3L) (6)
采用这种方式,可以减小计算误差,进一步提高放大倍率的准确性。
上面简要介绍了如何根据样品板上的标尺图案计算显微装置100的实际放大倍率。应当理解,本公开不限于上述方式。在本公开的教导和启示下,本领域技术人员还可以采用其它方式来根据标尺图案计算显微装置100的实际放大倍率。
图3示出了根据本公开的一些实施例的样品板的示意图。如图3所示,样品板300包括多个样品槽301,在样品槽301中可以容纳需要观察和拍摄的样品。此外,样品板300还具有标尺图案302。
在图3所示的示例性实施例中,标尺图案302位于样品槽底部。标尺图案302为等间距的刻度线,各个刻度线沿着水平方向(第一方向)延伸,各个刻度线在垂直方向(第二方向)的间距为D。在根据本公开的一些示例性实施例中,间距D可以为例如1μm-10μm。利用标尺图案302,可以准确地计算显微装置的放大倍率。
例如,处理器103可以根据图像传感器101生成的数字图像,获得标尺图案302中一条刻度线上的一个点的坐标(x1’,y1’),以及获得通过点(x1’,y1’)沿着与该刻度线垂直的方向与相邻刻度线的交点的坐标(x2’,y2’)。
利用与上面描述的方法类似的方法,可以计算得到显微装置100的实际放大倍数。
在图3所示的示例中,在每个样品槽上具有多个刻度线302。在显微装置100的放大倍数较大的情况下,即使视野中仅包含单个样品槽的一部分,也能够准确地得到实际放大倍数。
图4示出了根据本公开的一些实施例的样品板400的示意图。如图4所示,在样品板400中,标尺图案402设置在样品槽401的外部。采用这种方式,可以避免标尺图案402对样品槽401中的样品的干扰,可以更清楚的观察和分析样品。为了得到标尺图案402的清晰的图像,标尺图案402可以与样品槽底部位于同一平面上。
图5示出了根据本公开的一些实施例的样品板500的示意图。如图5所示,样品板500包括多个样品槽501。在每个样品槽501的底部设置有十字形的标尺图案502。该标尺图案502包含两条彼此垂直的线段,两条线段的长度可以相同或者不同。
利用图5的样品板500上的标尺图案502,也可以从图像传感器101拍摄的数字图像中计算显微装置的放大倍率。例如,可以根据上述公式(1)-(2)以及标尺图案502中的两个线段中任一个线段的长度计算显微装置的放大倍率。或者,可以根据两个线段中每一个线段分别计算放大倍率,然后取两个放大倍率的平均值作为显微装置的放大倍率。
此外,图5的样品板500上的标尺图案502还可以用来识别和校正显微装置100的畸变。例如,在显微装置100的光学成像设备104不存在畸变的情况下,标尺图案502的图像也应当是两条彼此垂直的线段,如图6A所示。但是,如果显微装置100的光学成像设备104存在畸变,则标尺图案502的图像中,两条线段将不再垂直,如图 6B所示。基于两条线段的图像,处理器103可以识别出显微装置100的光学成像设备存在畸变。进一步地,处理器103还可以基于标尺图案502的尺寸等已知参数对图像传感器101生成的数字图像进行校正,从而改善图像质量。
上面描述了根据本公开的样品板以及如何根据样品板上的标尺图案得到显微装置的放大倍率。应当理解,本申请不限于上述实施例。
例如,图7示出了根据本公开的一些实施例的样品板700的示意图。如图7所示,样品板700包括多个沿水平方向延伸的样品槽701,每个样品槽701的底部设置有标尺图案702。标尺图案702包含多个刻度线,每个刻度线沿水平方向(第一方向)延伸,并且多个刻度线沿虚线703的方向(第二方向)排列。虚线703的方向不是与水平方向垂直的垂直方向。采用这种方式,可以使标尺图案702覆盖样品槽701的大部分区域。当显微装置100的放大倍率较大,视野只能覆盖样品槽701的一部分时,这种形式的标尺图案702可以确保在视野中出现至少一个完整的刻度线。这样,无论观察样品槽701的哪个位置处的样品,都能够准确地计算显微装置的放大倍率。
此外,在根据本公开的一些实施例中,还可以根据样品板上的标尺图案确定样品板和样品槽的朝向。例如,图3所示的样品板300包含沿垂直方向排列的多个样品槽301,并且每个样品槽301沿水平方向延伸。
当通过显微装置100观察和拍摄样品槽301中的样品时,由于视野等原因,往往没有办法同时观察和拍摄到全部样品槽301中的样品。因此,需要使样品台105平移,使得样品板在视野中平移,从而观察和拍摄样品板300上不同的样品槽301或者同一个样品槽301的不同部分。
如图3所示,标尺图案302中每个刻度线沿水平方向延伸,即刻度线的延伸方向与样品槽的延伸方向相同,并且多个刻度线的排列方向与多个样品槽的排列方向一致。因此,虽然显微设备的视野或拍摄的图片中仅显示样品槽的一部分,处理器103或者操作人员可以根据刻度线的延伸方向和排列方向确定样品槽的延伸方向和排列方向,并且根据确定的样品槽的延伸方向和排列方向移动样品台105上的样品板300,实现对不同样品槽301或同一样品槽301的不同区域的观察和拍摄。
图8示出了根据本公开的另一些实施例的样品板800的示意图。如图8所示,样品板800包括多个沿水平方向延伸的样品槽801,并且多个样品槽801沿垂直方向排列。在每个样品槽801的底部设置有标尺图案802。标尺图案802包含用于确定样品槽801的排列方向和延伸方向的第一标识。该第一标识由两个彼此垂直的箭头803和 804的构成,其中箭头803沿垂直方向延伸,箭头804沿水平方向延伸。此外,在该示例中,通过较长的箭头表示样品槽的排列方向,较短的箭头表示样品槽的延伸方向。如图8所示,箭头803的长度大于箭头804的长度,因此,根据箭头803的延伸方向可以确定多个样品槽801沿垂直方向排列,根据箭头804的延伸方向可以确定样品槽802沿水平方向延伸。
图9示出了根据本公开的一些实施例的样品板900的示意图。如图9所示,样品板900包括多个沿水平方向排列的样品槽901,并且每个样品槽901也是沿水平方向延伸。每个样品槽901的底部设置有标尺图案902。标尺图案902包含用于确定样品槽901的排列方向和延伸方向的第一标识。该第一标识由箭头903和904构成,其中,较长的箭头903表示样品槽901的排列方向,较短的箭头904表示样品槽901的延伸方向。这样,通过箭头903和904的延伸方向,可以确定多个样品槽901沿水平方向排列,并且每个样品槽901也是沿水平方向延伸。
图10示出了根据本公开的一些实施例的样品板1000的示意图。如图10所示,样品板1000包含多个沿垂直方向排列的样品槽1001,并且每个样品槽1001沿水平方向延伸。在样品槽1001的底部设置有标尺图案1002。标尺图案1002包含用于识别样品板的第二标识1004以及用于识别样品槽的第三标识1003。第二标识1004和第三标识1003由多条刻度线构成,这些刻度线沿水平方向排列,并且每条刻度线沿垂直方向延伸。最左侧的刻度线1005和最右侧的刻度线1006表示第二标识1004和第三标识1003的起始和结尾。第二标识1004和第三标识1003在刻度线1005和刻度线1006之间。根据第二标识1004和第三标识1003可以分别确定样品板的编号和样品槽的编号。
如图10所示,在下部的样品槽1001中,第三标识1003包含两条刻度线,则该第三标识1003所在的样品槽的编号可以被确定为11。在上部的样品槽1001中,第三标识1003包含1条刻度线,并且根据刻度线之间的间距可以得到,在该刻度线前面缺少了一条刻度线,因此,该第三标识1003所在的样品槽的编号可以被确定为01。同理,对于中间的样品槽1001中的第三标识1003,可以确定该样品槽的编号为10。
类似的,第二标识1004中,根据刻度线之间的间距,确定缺少的刻度线表示0,则可以确定样品板1000的编号为1101。
此外,在根据本公开的一些实施例中,还可以采用其它方式来表示编号中的0和1。例如,如图11所示的一组刻度线中,可以通过不同长度的刻度线来分别表示0和 1。其中,较长的刻度线表示1,较短的刻度线表示0。图11中的一组刻度线可以比识别成1011011。
应当理解,在本公开的教导和启示下,本领域技术人员还可以采用其它方式将第一标识、第二标识、第三标识和刻度线结合起来,作为标尺图案。
图12示出了根据本公开的一些实施例的显微装置100的操作的流程图。
如图12所示,首先,将样品板放置到样品台105上(步骤1201)。在样品板的样品槽中具有待观察和拍摄的样品。
然后,通过图像传感器101生成样品的数字图像(步骤1202)。通过显微装置100的光学成像设备104形成的光学图像被图像传感器101接收,并且生成数字图像。数字图像可以被存储在存储器102中。
接下来,处理器103可以从存储器102读取数字图像并进行各种处理(步骤1203)。例如,如上所述,可以根据数字图像中的标尺图案计算显微装置100的放大倍率,可以确定样品槽的延伸方向和排列方向,可以识别样品板(的编号),或者可以识别样品槽(的编号),等等。
图14示出了根据本公开的一些实施例的显微装置。如图14所示,显微装置1400为光学显微装置,包括图像传感器1401、存储器1402、发送装置1411、输入装置1410、光学成像设备1404、样品台1405和光源1406。其中,图像传感器1401、光学成像设备1404、样品台1405和光源1406与图1所示的显微装置100中的对应装置相似,本文就不再重复描述。
例如,可以将上述具有标尺图案的样品板布置在样品台1405上,光学成像设备1404可以形成样品的光学图像。此外,样品板中的标尺图案也被包含在光学图像中。如上所述,标尺图案可以用来确定显微装置的放大倍率,也可以用来识别样品板的方向、标识样品板或样品槽等。图像传感器1401可以将光学图像转换成数字图像。
此外,显微装置1400的用户可以通过输入装置1410输入关于标尺图案的信息(即图案信息)。图案信息可以包含标尺图案的尺寸信息。例如,当标尺图案为图2所示的标尺图案202时,图案信息可以包含线段的长度L的信息。当标尺图案为图3所示的标尺图案302时,图案信息可以包含刻度线的间距D的信息。
此外,图案信息可以包含标尺图案的识别符。例如,用户可以通过输入装置1410输入标尺图案的唯一编码。在数据库中可以将标尺图案的编码与标尺图案的相关信息相关联地存储。通过该编码,可以在数据库中查找与该编码对应的标尺图案及其相关 信息,例如尺寸、间距等。
在一些示意性实施例中,还可以通过标尺图案的唯一编码来识别样品板的类型。例如,在数据库中,标尺图案的编码还与样品板的相关参数相关联地存储。例如,样品板的相关参数可以包括:样品板的类型、样品槽的数量、样品槽的深度等。
此外,用户还可以通过输入装置1410输入关于样品的信息(第一样品信息)。例如,该信息中可以包含样品的类型。这样,通过关于样品的信息,人们可以确定样品的类型为血红细胞、酵母、藻类等。
发送装置1411可以将数字图像发送给其它设备。例如,发送装置1411可以将数字图像发送给远程的服务器,例如云服务器等。服务器可以包含图像处理装置,从而对接收到的图像进行进一步处理。
图19示出了根据本公开的一些实施例的显微装置的示意图。如图19所示,显微装置1900包括图像传感器1901、存储器1902、发送装置1911、输入装置1910、光学成像设备1904、样品台1905和光源1906。这些部件与图14所示的显微装置1400的对应部件类似,本文就不再重复。此外,如图19所示,显微装置1900还包括控制器1912和接收装置1913。其中,接收装置1913可以接收外部设备发送的信息,控制器1912可以根据该信息控制显微装置1900的操作。在根据本公开的一些实施例中,用户可以通过移动设备(例如手机、平板、笔记本电脑等)与显微装置1900交互。例如,显微装置1900可以把拍摄的显微图像发送给移动设备并在移动设备上显示。用户可以根据拍摄的显微图像,调节显微装置1900的拍摄参数(例如放大倍数、观察区域等),并且通过移动设备将拍摄参数发送给显微装置1900。然后,显微装置1900根据移动设备发送的信息中包含的拍摄参数进行调节并重新拍摄显微图像,把新的显微图像发送给移动设备。
此外,上述显微装置1900和移动设备之间的交互可以直接进行,也可以间接地经由例如云服务器等执行,本公开对此不做限制。
图15示出了根据本公开的一些实施例的图像处理装置的示意图。如图15所示,图像处理装置1500包含接收装置1501、存储装置1502、处理器1503以及发送装置1504。
接收装置1501可以接收由上述根据本公开的显微装置拍摄的数字图像。在数字图像中包含标尺图案。
此外,在根据本公开的一些实施例中,接收装置1501还可以接收与数字图像关 联的图案信息和/或第一样品信息。
存储装置1502可以存储接收装置1501接收的数字图像和各种信息。
处理器1503可以从存储装置1502获取数字图像和各种信息,并且对数字图像进行处理。例如,处理器1503可以根据数字图像中的标尺图案确定显微装置的放大倍率。
发送装置1504可以发送数字图像以及与数字图像相关的信息(例如放大倍率等)给例如移动设备等。
在根据本公开的一些实施例中,由于样品板的规格可能不同,不同规格的样品板上的标尺图案的刻度线的长度和/或间距等参数有可能不同。在这种情况下,处理器1503还需要进一步接合与该数字图像关联的图案信息来确定显微装置的放大倍率。
此外,在根据本公开的一些示例性实施例中,处理器1503还可以根据图案信息确定样品所在的样品板的方向。例如,当样品板为图9所示的样品板900时,图案信息可以表明箭头的方向与样品板900的纵向相同。这样,当处理器1503从数字图像中识别出标尺图案的箭头方向,并且将该方向作为样品板的纵向。
此外,在根据本公开的一些示例性实施例中,处理器1503可以根据图案信息对数字图像分类。例如,可以根据标尺图案的尺寸对数字图像分类,将具有相同尺寸的标尺图案的数字图像分到一组。当后续查看该组数字图像时,可以对数字图像进行缩放,使得标尺图案的大小相同,这样用户可以直观的观察和比较各个数字图像中的样品的相对大小。
此外,在根据本公开的一些实施例中,处理器1503可以根据图案信息生成第一图像,并且将第一图像添加到数字图像中。例如,如图16所示,对于图2所示的样品板,处理器1503根据图案信息可以得到刻度线的长度L为5μm。处理器1503可以生成带有文字“5μm”的图像(即第一图像)1601,并且将该第一图像添加到数字图像中。在合成的数字图像中,在刻度线附近标注了该刻度线的长度L的值,从而使得用户能够在观看该数字图像时更直观地了解样本的尺寸。
此外,处理器1503可以根据第一样品信息对数字图像进行分类。例如,当第一样品信息包含样品的类型的情况下,处理器1503可以把相同类型的样品的数字图像分成一组。
此外,在根据本公开的一些实施例中,第一样品信息还可以包含样本的制作日期、拍摄日期、来源、版权信息等其它信息。处理器1503也可以把日期相同的数字图像 分成一组。
在根据本公开的一些实施例中,处理器1503可以根据第一样品信息生成第二图像,并且把第二图像添加到数字图像中。如图17所示,当第一样品信息表示样品的类型为人乳腺癌细胞(MCF-7细胞)时,处理器1503可以生成包含文字“MCF-7细胞”的第二图像1701,并且将该图像1701添加到数字图像中。这样,当在例如显示器上显示该数字图像时,人们可以直接获知该样品的类型。
在根据本公开的一些实施例中,客户端可以从服务器查找和下载数字图像。例如,客户端可以输入关键字,例如酵母细胞,并且将该关键字发送给远程的服务器。服务器可以根据该关键字在数据库查找所有样品信息中包含酵母细胞的数字图像,并向客户端提供这些数字图像的列表或缩略图。客户端可以根据服务器提供的信息选择并下载选定的数字图像及其相关信息。此外,在根据本公开的一些实施例中,客户端可以向服务器支付费用,以获得选定的数字图像的使用许可。当服务器确定客户端获得了使用许可后,再将数字图像发送给客户端。
此外,在根据本公开的一些实施例中,处理器1503可以根据标尺图案分析数字图像,从而获得关于样品的第二样品信息。第二样品信息可以包括例如:样品的直径值、样品的长轴值和短轴值、拍摄视野的尺寸以及样品的浓度等信息。
例如图18示出了根据本公开的一些实施例的数字图像的示意图。如图18所示,根据图案信息,处理器1503可以确定该数字图像中标尺图案的长度单位为5μm。基于此,可以得到图18中的数字图像的放大倍率为9.8。根据第一样本信息,处理器1503进一步地可以确定该数字图像中的样品的类型为酵母细胞。基于这些信息,处理器1503可以进行图像识别,从而识别酵母细胞。例如,处理器1503可以通过图像识别确定一个酵母细胞1802,并根据标尺图案来确定该酵母细胞1802的直径为6μm,并且将该直径值存储到第二样品信息中。
此外,在根据本公开的一些实施例中,处理器1503可以通过图像识别确定多个酵母细胞,并且根据标尺图案确定每个酵母细胞的直径值。然后,处理器1503将全部酵母细胞的直径值的平均值作为酵母细胞的直径值存储在第二样品信息中。
例如,如图18所示,处理器1503可以从数字图像中识别到酵母细胞1801、1802和1803。根据标尺图案,可以确定这些酵母细胞的直径分别为9μm、6μm和9μm,平均直径为8μm。处理器1503将该平均直径值作为样品的直径值存储到第二样品信息中。
此外,在根据本公开的一些实施例中,处理器1503可以从数字图像中识别全部酵母细胞为393个,并确定每个酵母细胞的直径,由此可以也可以得到酵母细胞直径的平均值并存储到第二样品信息中。
此外,处理器1503还可以从数字图像中确定拍摄视野的尺寸以及样品的浓度值。如图18所示,处理器1503可以根据标尺图案确定该数字图像中的样品板的面积为0.46×0.35mm
2。此外,如上所述,根据标尺图案还可以确定样品板的类型,从而可以获得样品槽的深度为0.5μm。这样,处理器1503可以计算酵母细胞的浓度大约为5×10
6/ml。
此外,处理器1503可以从数字图像中确定样品的长轴值和短轴值。例如,图20示出了根据本公开的实施例的小球藻的显微图像。处理器1503可以根据图20中的标尺图案确定每个小球藻的短轴值和长轴值,并且进一步计算得到小球藻的短轴平均值为大约17.66μm,长轴值为大约19.11μm。
根据本公开的实施例,还提供了一种显微分析系统,包括上述显微装置、图像处理装置和移动设备等。应当理解,本公开的图像处理装置可以为单个服务器或多个服务器,也可以为云服务器。如图21所示,移动设备可以通过云服务器控制显微装置(例如调节拍摄参数等),也可以经由云服务器接收显微装置拍摄的显微图像。云服务器可以向显微装置和/或移动设备推送固件或应用的更新等。此外,可以有多个显微装置1~N同时连接到云服务器。移动设备可以根据需要选择查看指定显微装置拍摄的图像或控制该显微装置的操作。云服务器可以对多个显微装置拍摄的显微图像进行存储和分析,并且可以将显微图像和分析结果发送给移动设备。
因此,本公开的显微分析系统中,所述显微装置可以包括:光学成像设备,被配置成拍摄样品板中的样品,从而形成样品的光学图像,其中所述光学图像中包含用于确定所述显微装置的放大倍率的标尺图案;图像传感器,被配置成根据所述光学图像生成数字图像;发送装置,被配置成发送所述数字图像;以及接收装置,被配置成接收来自所述云服务器和移动设备的信息。
移动设备可以被配置成:接收来自所述云服务器和所述显微装置的数字图像;将拍摄参数发送给所述云服务器和所述显微装置;以及将来自所述显微装置的数字图像发送给所述云服务器,。
云服务器可以被配置成:接收来自所述显微装置和所述移动设备的数字图像;接收来自所述移动设备的拍摄参数并将所述拍摄参数转发给所述显微装置;将来自所述 显微装置的数字图像发送给所述移动设备;以及分析所述数字图像,并且将分析结果发送给所述移动设备。
此外,在根据本公开的一些实施例中,还可以采用以下技术方案:
1.一种显微装置,包括:
光学成像设备,被配置成形成样品的光学图像,其中所述光学图像中包含用于确定所述显微装置的放大倍率的标尺图案;
图像传感器,被配置成根据所述光学图像生成数字图像;
发送装置,被配置成发送所述数字图像。
2.根据1所述的显微装置,其中
所述光学成像设备被配置成对样品板上的样品进行拍摄,以形成所述光学图像,所述样品板包含所述标尺图案。
3.根据1所述的显微装置,还包括:
输入装置,被配置成输入关于所述标尺图案的图案信息。
4.根据4所述的显微装置,其中,所述发送装置还被配置成发送所述图案信息。
5.根据4所述的显微装置,其中,所述图案信息包括以下至少一种:
所述标尺图案的尺寸;
所述标尺图案的识别符;以及
所述标尺图案的方向。
6.根据4所述的显微装置,其中,所述输入装置还被配置成输入关于所述样品的第一样品信息。
7.根据6所述的显微装置,其中,所述第一样品信息包括样品类型。
8.一种图像处理装置,包括:
接收装置,被配置成接收由显微装置形成的数字图像,所述数字图像包含标尺图案;
存储装置,被配置成存储所述数字图像;以及
处理器,被配置成根据所述标尺图案确定所述显微装置的放大倍率。
9.根据8所述的图像处理装置,其中,
所述显微装置对样品板上的样品进行拍摄,以形成所述数字图像,所述样品板包含所述标尺图案。
10.根据8所述的图像处理装置,
其中所述接收装置还接收关于所述标尺图案的图案信息。
11.根据10所述的图像处理装置,
其中所述处理器还被配置成根据所述图案信息确定所述显微装置的放大倍率。
12.根据10所述的图像处理装置,
其中所述处理器还被配置成根据所述图案信息确定样品所在的样品板的方向。
13.根据10所述的图像处理装置,
其中所述处理器还被配置成根据所述图案信息对所述数字图像分类。
14.根据10所述的图像处理装置,
其中所述处理器还被配置成根据所述图案信息生成第一图像,以及将所述第一图像添加到所述数字图像中。
15.根据10所述的图像处理装置,
其中所述接收装置还接收关于所述样品的第一样品信息。
16.根据15所述的图像处理装置,
其中所述处理器还被配置成根据所述第一样品信息对所述数字图像分类。
17.根据15所述的图像处理装置,
其中所述处理器还被配置成根据所述第一样品信息生成第二图像,以及将所述第二图像添加到所述数字图像中。
18.根据13或16所述的图像处理装置,
其中所述处理器还被配置成根据所述数字图像的类别在所述存储装置中查找与所述数字图像的类别相同的其它图像,
所述图像处理装置还包括:
发送装置,被配置成发送所述其它图像。
19.根据8所述的图像处理装置,
其中所述处理器还被配置成根据所述标尺图案分析所述数字图像,以获得关于所述数字图像中样品的第二样品信息。
20.根据19所述的图像处理装置,
其中所述处理器还被配置成根据所述第二样品信息对所述数字图像分类。
21.根据20所述的图像处理装置,
其中所述处理器还被配置成根据所述数字图像的类别在所述存储装置中查找与所述数字图像的类别相同的其它图像,
所述图像处理装置还包括:
发送装置,被配置成发送所述其它图像。
22.根据19所述的图像处理装置,
其中所述第二样品信息包括以下至少一种:
样品的直径值;
样品的长轴值和短轴值;
拍摄视野的尺寸;以及
样品的浓度值。
23.一种确定显微装置的放大倍率的方法,包括:
获取由所述显微装置拍摄的图像,所述图像中包含样品板上的标尺图案;
确定所述标尺图案在所述图像传感器上形成的图像的尺寸;以及
根据所述标尺图案在所述样品板上的尺寸以及所述标尺图案在所述图像传感器上形成的图像的尺寸,确定所述显微装置的放大倍率。
24.根据23所述的方法,其中,根据所述显微装置的图像传感器的相邻像素的间距确定所述标尺图案在所述图像传感器上形成的图像的尺寸。
25.根据23所述的方法,其中,所述标尺图案包含多个线段,所述方法包括:
根据所述多个线段中每个线段的长度计算所述显微装置的放大倍率的多个值;以及
计算所述多个值的平均值作为所述显微装置的放大倍率。
26.根据23所述的方法,其中,所述标尺图案包含多个线段,所述方法包括:
根据所述多个线段的长度的和计算所述显微装置的放大倍率。
27.一种显微分析系统,包括:
1-7中任一项所述的显微装置;以及
8-22中任一项所述的图像处理装置。
28.根据27所述的显微分析系统,还包括:
移动设备,被配置成接收和显示来自所述显微装置或所述图像处理装置的所述数字图像。
29.根据28所述的显微分析系统,其中,所述移动设备还被配置成接收所述第二样品信息。
30.根据28所述的显微分析系统,其中,
所述移动设备还被配置成将拍摄参数发送给所述显微装置;以及
所述显微装置根据所述拍摄参数进行拍摄。
31.一种显微分析系统,包括:
云服务器,显微装置以及移动设备,
其中所述显微装置包括:
光学成像设备,被配置成拍摄样品板中的样品,从而形成样品的光学图像,其中所述光学图像中包含用于确定所述显微装置的放大倍率的标尺图案;
图像传感器,被配置成根据所述光学图像生成数字图像;
发送装置,被配置成发送所述数字图像;以及
接收装置,被配置成接收来自所述云服务器和移动设备的信息,
所述移动设备被配置成
接收来自所述云服务器和所述显微装置的数字图像;
将拍摄参数发送给所述云服务器和所述显微装置;以及
将来自所述显微装置的数字图像发送给所述云服务器,
所述云服务器被配置成
接收来自所述显微装置和所述移动设备的数字图像;
接收来自所述移动设备的拍摄参数并将所述拍摄参数转发给所述显微装置;
将来自所述显微装置的数字图像发送给所述移动设备;
分析所述数字图像,并且将分析结果发送给所述移动设备。
32.根据31所述的显微分析系统,其中,所述云服务器还被配置成向所述显微装置和所述移动设备发送应用的更新。
33.根据31所述的显微分析系统,其中,所述样品板包括:用于确定放大倍率的标尺图案。
在说明书及权利要求中的词语“前”、“后”、“顶”、“底”、“之上”、“之下”等,如果存在的话,用于描述性的目的而并不一定用于描述不变的相对位置。应当理解,这样使用的词语在适当的情况下是可互换的,使得在此所描述的本公开的实施例,例如,能够在与在此所示出的或另外描述的那些取向不同的其他取向上操作。
如在此所使用的,词语“示例性的”意指“用作示例、实例或说明”,而不是作 为将被精确复制的“模型”。在此示例性描述的任意实现方式并不一定要被解释为比其它实现方式优选的或有利的。而且,本公开不受在上述技术领域、背景技术、发明内容或具体实施方式中所给出的任何所表述的或所暗示的理论所限定。
如在此所使用的,词语“基本上”意指包含由设计或制造的缺陷、器件或元件的容差、环境影响和/或其它因素所致的任意微小的变化。词语“基本上”还允许由寄生效应、噪音以及可能存在于实际的实现方式中的其它实际考虑因素所致的与完美的或理想的情形之间的差异。
上述描述可以指示被“连接”或“耦合”在一起的元件或节点或特征。如在此所使用的,除非另外明确说明,“连接”意指一个元件/节点/特征与另一种元件/节点/特征在电学上、机械上、逻辑上或以其它方式直接地连接(或者直接通信)。类似地,除非另外明确说明,“耦合”意指一个元件/节点/特征可以与另一元件/节点/特征以直接的或间接的方式在机械上、电学上、逻辑上或以其它方式连结以允许相互作用,即使这两个特征可能并没有直接连接也是如此。也就是说,“耦合”意图包含元件或其它特征的直接连结和间接连结,包括利用一个或多个中间元件的连接。
另外,仅仅为了参考的目的,还可以在下面描述中使用某种术语,并且因而并非意图限定。例如,除非上下文明确指出,否则涉及结构或元件的词语“第一”、“第二”和其它此类数字词语并没有暗示顺序或次序。
还应理解,“包括/包含”一词在本文中使用时,说明存在所指出的特征、整体、步骤、操作、单元和/或组件,但是并不排除存在或增加一个或多个其它特征、整体、步骤、操作、单元和/或组件以及/或者它们的组合。
在本公开中,术语“提供”从广义上用于涵盖获得对象的所有方式,因此“提供某对象”包括但不限于“购买”、“制备/制造”、“布置/设置”、“安装/装配”、和/或“订购”对象等。
本领域技术人员应当意识到,在上述操作之间的边界仅仅是说明性的。多个操作可以结合成单个操作,单个操作可以分布于附加的操作中,并且操作可以在时间上至少部分重叠地执行。而且,另选的实施例可以包括特定操作的多个实例,并且在其他各种实施例中可以改变操作顺序。但是,其它的修改、变化和替换同样是可能的。因此,本说明书和附图应当被看作是说明性的,而非限制性的。
虽然已经通过示例对本公开的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本公开的范围。在此 公开的各实施例可以任意组合,而不脱离本公开的精神和范围。本领域的技术人员还应理解,可以对实施例进行多种修改而不脱离本公开的范围和精神。本公开的范围由所附权利要求来限定。
Claims (33)
- 一种显微装置,包括:光学成像设备,被配置成形成样品的光学图像,其中所述光学图像中包含用于确定所述显微装置的放大倍率的标尺图案;图像传感器,被配置成根据所述光学图像生成数字图像;发送装置,被配置成发送所述数字图像。
- 根据权利要求1所述的显微装置,其中所述光学成像设备被配置成对样品板上的样品进行拍摄,以形成所述光学图像,所述样品板包含所述标尺图案。
- 根据权利要求1所述的显微装置,还包括:输入装置,被配置成输入关于所述标尺图案的图案信息。
- 根据权利要求4所述的显微装置,其中,所述发送装置还被配置成发送所述图案信息。
- 根据权利要求4所述的显微装置,其中,所述图案信息包括以下至少一种:所述标尺图案的尺寸;所述标尺图案的识别符;以及所述标尺图案的方向。
- 根据权利要求4所述的显微装置,其中,所述输入装置还被配置成输入关于所述样品的第一样品信息。
- 根据权利要求6所述的显微装置,其中,所述第一样品信息包括样品类型。
- 一种图像处理装置,包括:接收装置,被配置成接收由显微装置形成的数字图像,所述数字图像包含标尺图 案;存储装置,被配置成存储所述数字图像;以及处理器,被配置成根据所述标尺图案确定所述显微装置的放大倍率。
- 根据权利要求8所述的图像处理装置,其中,所述显微装置对样品板上的样品进行拍摄,以形成所述数字图像,所述样品板包含所述标尺图案。
- 根据权利要求8所述的图像处理装置,其中所述接收装置还接收关于所述标尺图案的图案信息。
- 根据权利要求10所述的图像处理装置,其中所述处理器还被配置成根据所述图案信息确定所述显微装置的放大倍率。
- 根据权利要求10所述的图像处理装置,其中所述处理器还被配置成根据所述图案信息确定样品所在的样品板的方向。
- 根据权利要求10所述的图像处理装置,其中所述处理器还被配置成根据所述图案信息对所述数字图像分类。
- 根据权利要求10所述的图像处理装置,其中所述处理器还被配置成根据所述图案信息生成第一图像,以及将所述第一图像添加到所述数字图像中。
- 根据权利要求10所述的图像处理装置,其中所述接收装置还接收关于所述样品的第一样品信息。
- 根据权利要求15所述的图像处理装置,其中所述处理器还被配置成根据所述第一样品信息对所述数字图像分类。
- 根据权利要求15所述的图像处理装置,其中所述处理器还被配置成根据所述第一样品信息生成第二图像,以及将所述第二图像添加到所述数字图像中。
- 根据权利要求13或16所述的图像处理装置,其中所述处理器还被配置成根据所述数字图像的类别在所述存储装置中查找与所述数字图像的类别相同的其它图像,所述图像处理装置还包括:发送装置,被配置成发送所述其它图像。
- 根据权利要求8所述的图像处理装置,其中所述处理器还被配置成根据所述标尺图案分析所述数字图像,以获得关于所述数字图像中样品的第二样品信息。
- 根据权利要求19所述的图像处理装置,其中所述处理器还被配置成根据所述第二样品信息对所述数字图像分类。
- 根据权利要求20所述的图像处理装置,其中所述处理器还被配置成根据所述数字图像的类别在所述存储装置中查找与所述数字图像的类别相同的其它图像,所述图像处理装置还包括:发送装置,被配置成发送所述其它图像。
- 根据权利要求19所述的图像处理装置,其中所述第二样品信息包括以下至少一种:样品的直径值;样品的长轴值和短轴值;拍摄视野的尺寸;以及样品的浓度值。
- 一种确定显微装置的放大倍率的方法,包括:获取由所述显微装置拍摄的图像,所述图像中包含样品板上的标尺图案;确定所述标尺图案在所述图像传感器上形成的图像的尺寸;以及根据所述标尺图案在所述样品板上的尺寸以及所述标尺图案在所述图像传感器上形成的图像的尺寸,确定所述显微装置的放大倍率。
- 根据权利要求23所述的方法,其中,根据所述显微装置的图像传感器的相邻像素的间距确定所述标尺图案在所述图像传感器上形成的图像的尺寸。
- 根据权利要求23所述的方法,其中,所述标尺图案包含多个线段,所述方法包括:根据所述多个线段中每个线段的长度计算所述显微装置的放大倍率的多个值;以及计算所述多个值的平均值作为所述显微装置的放大倍率。
- 根据权利要求23所述的方法,其中,所述标尺图案包含多个线段,所述方法包括:根据所述多个线段的长度的和计算所述显微装置的放大倍率。
- 一种显微分析系统,包括:权利要求1-7中任一项所述的显微装置;以及权利要求8-22中任一项所述的图像处理装置。
- 根据权利要求27所述的显微分析系统,还包括:移动设备,被配置成接收和显示来自所述显微装置或所述图像处理装置的所述数字图像。
- 根据权利要求28所述的显微分析系统,其中,所述移动设备还被配置成接收所述第二样品信息。
- 根据权利要求28所述的显微分析系统,其中,所述移动设备还被配置成将拍摄参数发送给所述显微装置;以及所述显微装置根据所述拍摄参数进行拍摄。
- 一种显微分析系统,包括:云服务器,显微装置以及移动设备,其中所述显微装置包括:光学成像设备,被配置成拍摄样品板中的样品,从而形成样品的光学图像,其中所述光学图像中包含用于确定所述显微装置的放大倍率的标尺图案;图像传感器,被配置成根据所述光学图像生成数字图像;发送装置,被配置成发送所述数字图像;以及接收装置,被配置成接收来自所述云服务器和移动设备的信息,所述移动设备被配置成接收来自所述云服务器和所述显微装置的数字图像;将拍摄参数发送给所述云服务器和所述显微装置;以及将来自所述显微装置的数字图像发送给所述云服务器,所述云服务器被配置成接收来自所述显微装置和所述移动设备的数字图像;接收来自所述移动设备的拍摄参数并将所述拍摄参数转发给所述显微装置;将来自所述显微装置的数字图像发送给所述移动设备;分析所述数字图像,并且将分析结果发送给所述移动设备。
- 根据权利要求31所述的显微分析系统,其中,所述云服务器还被配置成向所述显微装置和所述移动设备发送应用的更新。
- 根据权利要求31所述的显微分析系统,其中,所述样品板包括:用于确定放大倍率的标尺图案。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20899104.2A EP4063932A4 (en) | 2019-12-11 | 2020-12-08 | MICROSCOPIC DEVICE AND IMAGE PROCESSING DEVICE |
US17/806,481 US20220309711A1 (en) | 2019-12-11 | 2022-06-11 | Microscopic device and image processing device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911270215.4 | 2019-12-11 | ||
CN201911270215.4A CN110836893B (zh) | 2019-12-11 | 2019-12-11 | 显微装置及图像处理装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/806,481 Continuation US20220309711A1 (en) | 2019-12-11 | 2022-06-11 | Microscopic device and image processing device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021115265A1 true WO2021115265A1 (zh) | 2021-06-17 |
Family
ID=69578275
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/134569 WO2021115265A1 (zh) | 2019-12-11 | 2020-12-08 | 显微装置及图像处理装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20220309711A1 (zh) |
EP (1) | EP4063932A4 (zh) |
CN (1) | CN110836893B (zh) |
WO (1) | WO2021115265A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110836893B (zh) * | 2019-12-11 | 2024-05-14 | 上海睿钰生物科技有限公司 | 显微装置及图像处理装置 |
CN110991379B (zh) * | 2019-12-11 | 2022-02-22 | 上海睿钰生物科技有限公司 | 藻类计数方法 |
CN111024696B (zh) * | 2019-12-11 | 2022-01-11 | 上海睿钰生物科技有限公司 | 藻类分析方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000075216A (ja) * | 1998-08-31 | 2000-03-14 | Nikon Corp | 手動変倍機構を備えた光学的観察装置 |
CN103119496A (zh) * | 2010-09-29 | 2013-05-22 | 应用精密公司 | 显微镜成像的校准靶 |
CN207882555U (zh) * | 2018-01-16 | 2018-09-18 | 佛山科学技术学院 | 一种用于虾物种器官与卵径测量的载玻片 |
CN110823897A (zh) * | 2019-12-11 | 2020-02-21 | 上海睿钰生物科技有限公司 | 样品板 |
CN110836893A (zh) * | 2019-12-11 | 2020-02-25 | 上海睿钰生物科技有限公司 | 显微装置及图像处理装置 |
CN211955230U (zh) * | 2019-12-11 | 2020-11-17 | 上海睿钰生物科技有限公司 | 显微装置、图像处理装置以及显微分析系统 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100371762C (zh) * | 2005-02-25 | 2008-02-27 | 宝钢集团上海梅山有限公司 | 一种数码金相显微图像放大倍率的标定方法 |
CN101807263A (zh) * | 2010-02-10 | 2010-08-18 | 福州图森图像技术有限公司 | 微生物的数码检测方法 |
CN104406519A (zh) * | 2014-11-25 | 2015-03-11 | 深圳市计量质量检测研究院 | 一种放大倍率数字化测量方法和装置 |
JP6562626B2 (ja) * | 2014-12-10 | 2019-08-21 | キヤノン株式会社 | 顕微鏡システム |
US10489633B2 (en) * | 2016-09-27 | 2019-11-26 | Sectra Ab | Viewers and related methods, systems and circuits with patch gallery user interfaces |
US10846882B2 (en) * | 2016-11-08 | 2020-11-24 | Thermo Electron Scientific Instruments Llc | System and method of dimensional calibration for an analytical microscope |
-
2019
- 2019-12-11 CN CN201911270215.4A patent/CN110836893B/zh active Active
-
2020
- 2020-12-08 EP EP20899104.2A patent/EP4063932A4/en active Pending
- 2020-12-08 WO PCT/CN2020/134569 patent/WO2021115265A1/zh unknown
-
2022
- 2022-06-11 US US17/806,481 patent/US20220309711A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000075216A (ja) * | 1998-08-31 | 2000-03-14 | Nikon Corp | 手動変倍機構を備えた光学的観察装置 |
CN103119496A (zh) * | 2010-09-29 | 2013-05-22 | 应用精密公司 | 显微镜成像的校准靶 |
CN207882555U (zh) * | 2018-01-16 | 2018-09-18 | 佛山科学技术学院 | 一种用于虾物种器官与卵径测量的载玻片 |
CN110823897A (zh) * | 2019-12-11 | 2020-02-21 | 上海睿钰生物科技有限公司 | 样品板 |
CN110836893A (zh) * | 2019-12-11 | 2020-02-25 | 上海睿钰生物科技有限公司 | 显微装置及图像处理装置 |
CN211955230U (zh) * | 2019-12-11 | 2020-11-17 | 上海睿钰生物科技有限公司 | 显微装置、图像处理装置以及显微分析系统 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4063932A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP4063932A1 (en) | 2022-09-28 |
CN110836893B (zh) | 2024-05-14 |
EP4063932A4 (en) | 2023-01-11 |
CN110836893A (zh) | 2020-02-25 |
US20220309711A1 (en) | 2022-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021115265A1 (zh) | 显微装置及图像处理装置 | |
WO2021115259A1 (zh) | 藻类计数方法 | |
WO2021115241A1 (zh) | 酵母计数方法 | |
WO2021115239A1 (zh) | 藻类分析方法 | |
WO2021115248A1 (zh) | 酵母分析方法 | |
CN211955230U (zh) | 显微装置、图像处理装置以及显微分析系统 | |
WO2021115247A1 (zh) | 样品板 | |
WO2022257794A1 (zh) | 可见光图像和红外图像的处理方法及装置 | |
JP5599849B2 (ja) | レンズ検査装置及びその方法 | |
CN211602945U (zh) | 样品板 | |
JP2012037257A (ja) | 測定設定データ作成装置、測定設定データ作成方法及び測定設定データ作成装置用のプログラム | |
CN105093479A (zh) | 用于显微镜的自动对焦方法和装置 | |
JPH04172213A (ja) | 三次元形状測定装置の校正方法 | |
US20220398778A1 (en) | Lens calibration method for digital imaging apparatus | |
US12123838B2 (en) | Method for analysis of algae | |
JP2009258187A (ja) | 光学顕微鏡装置及び光学顕微鏡用データ処理装置 | |
US5838425A (en) | Exposure control for the photographic recording of a microscope image | |
Sun et al. | Automatic segmentation of fiducial marks using attribute-based mathematical morphology | |
JP2023084389A (ja) | 更新盤設計支援システム | |
Bai et al. | Using blob to analyze image processing method to achieve precision detection of IFU optical fiber microplate | |
CN117336608A (zh) | 相机参数确定方法、尺寸检测方法、装置、设备及介质 | |
JP2015197429A (ja) | 画像処理装置、撮像装置、画像処理方法及びプログラム | |
JP2024043583A (ja) | ステージインサート、顕微鏡システム、装置、方法およびコンピュータプログラム | |
JPH1137720A (ja) | 被写体の位置測定方法及び装置 | |
CN118565330A (zh) | 一种参数测量方法、装置、电子设备及存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20899104 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020899104 Country of ref document: EP Effective date: 20220620 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |