WO2021114798A1 - 显示装置 - Google Patents

显示装置 Download PDF

Info

Publication number
WO2021114798A1
WO2021114798A1 PCT/CN2020/116178 CN2020116178W WO2021114798A1 WO 2021114798 A1 WO2021114798 A1 WO 2021114798A1 CN 2020116178 W CN2020116178 W CN 2020116178W WO 2021114798 A1 WO2021114798 A1 WO 2021114798A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical waveguide
waveguide body
optical
display screen
Prior art date
Application number
PCT/CN2020/116178
Other languages
English (en)
French (fr)
Inventor
王晨如
刘亚丽
董瑞君
栗可
张�浩
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/287,446 priority Critical patent/US11886051B2/en
Publication of WO2021114798A1 publication Critical patent/WO2021114798A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/011Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  in optical waveguides, not otherwise provided for in this subclass
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0132Head-up displays characterised by optical features comprising binocular systems
    • G02B2027/0134Head-up displays characterised by optical features comprising binocular systems of stereoscopic type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/10Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images using integral imaging methods

Definitions

  • the present disclosure relates to the field of display technology, and more particularly to a display device.
  • a three-dimensional display image can be formed in the brain.
  • the principle is that the left and right eyes respectively see pictures of the same scene in different perspectives, and these two pictures cause parallax between the left and right eyes.
  • the brain can integrate images from two perspectives into a stereoscopic image.
  • the two eyes adjust the refractive power through the lens respectively, so that the image of the object is focused on the virtual image plane of the retina.
  • the brain integrates images, due to the depth difference between the three-dimensional object and the virtual image plane, the eyes need to perform Vergence rotation to adapt to this depth difference.
  • Vergence rotation Based on the muscle memory of the human eye, there is a certain correlation between refractive adjustment and convergent rotation.
  • the present disclosure provides a display device, including: an optical waveguide, including an optical waveguide body and a light output part located on the optical waveguide body; M lens components located near one end of the optical waveguide body, the M lenses The focal lengths of at least two lens assemblies in the assembly are different, and M is a natural number greater than 1; and M display screens correspond to the M lens assemblies one-to-one, and each of the M lens assembly display screens is configured to The light with image information is transmitted to the optical waveguide body through the corresponding lens, wherein the light output part is configured to output the light from the M display screens from the optical waveguide body for imaging , The light from the M display screens respectively form M images, and at least two of the M images have different image distances.
  • the optical waveguide further includes M coupling portions, the M coupling portions are located at the ends of the optical waveguide body; the M lens components and the M coupling portions are one-to-one
  • each of the M lens assemblies is configured to transmit light from a corresponding display screen to a corresponding coupling part
  • each of the M coupling parts is configured to transmit light from a corresponding display screen The light is coupled into the optical waveguide body at a corresponding incident angle for transmission.
  • each of the M coupling portions includes an incident surface, and at least one lens assembly is located between the incident surface of its corresponding coupling portion and its corresponding display screen.
  • the orthographic projection of at least one of the display screens on the incident surface of the corresponding coupling portion falls within the orthographic projection of the corresponding lens on the incident surface of the corresponding coupling portion.
  • At least one display screen is arranged parallel to the incident surface of its corresponding coupling part.
  • the at least one coupling portion includes a reflective surface and an exit surface, and the reflective surface is configured to reflect light from its corresponding display screen through the entrance surface to the exit surface, from its corresponding The light of the display screen enters the optical waveguide body after exiting from the exit surface.
  • the light output portion includes N optical film layers, the N optical film layers are parallel to each other, and N is a positive integer; the N optical film layers are partially reflective and partially transmissive film layers; The N optical film layers are arranged obliquely with respect to the extension direction of the optical waveguide body; each of the N optical film layers is configured to reflect a part of light from each of the M display screens The part of the light is emitted from the optical output part away from the optical waveguide body.
  • the light intensity of the reflected light of the N optical film layers from the same display screen is substantially the same.
  • the light output portion includes L optical film layers and a first reflective film layer, the L optical film layers and the first reflective film layer are parallel to each other, L is a positive integer, and the first A reflective film layer is located on the side of the L optical film layers away from the end; the L optical film layers are partially reflective and partially transmissive film layers; the optical film layer is opposite to the first reflective film layer Are arranged obliquely in the extending direction of the optical waveguide body, each of the L optical film layers is configured to reflect a part of the light from each of the M display screens so that the part of the light from the The optical output part exits away from the optical waveguide body, and the first reflective film layer is configured to reflect light from the M display screens and transmitted through the L optical film layers so that the light from the M The light of a display screen and transmitted through the L optical film layers exits away from the optical waveguide body from the optical output part.
  • the light intensity of the reflected light of the L optical film layers and the first reflective layer pair coming from the same display screen is substantially the same.
  • the light output part includes a second reflective film layer
  • the second reflective film layer is arranged obliquely with respect to the extending direction of the optical waveguide body; the second reflective film layer is configured to reflect the light from each of the M display screens so as to be The light reflected by the two reflective layers exits away from the optical waveguide body from the light output portion.
  • the optical waveguide body is in the shape of a flat plate.
  • the light with image information is transmitted through total reflection from the end portion toward the light output portion in the optical waveguide body.
  • Fig. 1 is a schematic structural diagram of a display device according to an embodiment of the present disclosure
  • Fig. 2 is a schematic diagram showing a light path according to an embodiment of the present disclosure
  • Fig. 3 is a schematic structural diagram of a display device according to an embodiment of the present disclosure.
  • Fig. 4 is a schematic structural diagram of a display device according to an embodiment of the present disclosure.
  • the present disclosure includes a display device including: an optical waveguide, M lens components, and M display screens, where M is a natural number greater than 1.
  • the optical waveguide includes an optical waveguide body and a light output part located on the optical waveguide body; M lens components are located near one end of the optical waveguide body, and at least two of the M lens components have different focal lengths; M
  • Each of the display screens corresponds to the M lens components one-to-one, and each of the M lens component display screens is configured to emit light with image information through a corresponding lens to the optical waveguide body for transmission.
  • the light output unit is configured to output the light from the M display screens from the optical waveguide body for imaging, and the light from the M display screens respectively form M images, and at least two of the M images
  • the image distance of each image is different.
  • the viewer can watch images with different depths of field, avoiding convergent conflicts caused by only viewing images at the same image distance, and can relieve eye fatigue and dizziness.
  • the image distance mentioned in the present disclosure refers to the distance between the image formed by the light from the display screen outputted from the optical waveguide body through the light output part and the viewer's glasses.
  • Fig. 1 is a display device according to an embodiment of the present disclosure.
  • the display device includes: M display screens 11, 12, M lens assemblies 13, 14 and an optical waveguide 15.
  • M is a natural number greater than 1.
  • M is 2, 3 or other natural numbers.
  • M is equal to 2 for description.
  • the optical waveguide 15 includes an optical waveguide body 151 and a light output portion 152 located on the optical waveguide body 151.
  • the M display screens 11 and 12 correspond to the M lens assemblies 13 and 14 in one-to-one correspondence.
  • the lens assemblies 13 and 14 are configured to transmit the light from the corresponding display screens 11 and 12 to the optical waveguide body 151 for transmission.
  • the lights from the M display screens 11 and 12 are incident to the optical waveguide body 151 substantially parallel to each other.
  • the light from the M display screens 11, 12 is totally reflected and transmitted in the optical waveguide body 151, that is, the light from the M display screens 11, 12 is totally reflected on the inner wall of the optical waveguide body 151, and the light One end of the waveguide body 151 close to the M lens components 13 and 14 transmits toward the light output part 152.
  • the light output unit 152 is configured to output the light from the M display screens 11 and 12 from the optical waveguide body 151 to form an image.
  • the light from the same display screen forms the same image, and the light from the M display screens form M Like, at least two of the image distances of the M images are different.
  • the focal lengths of at least two of the M lens assemblies are different, so that the light from the M display screens can be formed At least two of the image distances of the M images are different.
  • the viewer can watch images with different image distances, avoid convergent conflicts caused by only viewing images with the same image distance, and relieve eye fatigue and dizziness.
  • multiple depth of field display can be realized, thereby alleviating eye fatigue and dizziness.
  • the light from multiple display screens can also be transmitted in the optical waveguide to realize multi-channel multiplexing, which can reduce the cost, reduce the volume of the display device, and make the display device lighter, thinner, and more portable.
  • M is 2.
  • the display device includes a display screen 11, a display screen 12, a lens assembly 13, a lens assembly 14 and an optical waveguide 15.
  • the display screen 11 corresponds to the lens assembly 13
  • the display screen 12 corresponds to the lens assembly 14.
  • the lens assembly 13 is configured to transmit the light 17 from the display screen 11 to the optical waveguide body 151 for transmission.
  • the lens assembly 14 is configured to transmit the light 18 from the display screen 12 to the optical waveguide body 151 for transmission.
  • each of the lens components 13 and 14 fully emits and transmits toward the light output part 152.
  • the incident angle at which the light 17 from the display screen 11 enters the optical waveguide body 151 and the incident angle at which the light 18 from the display screen 12 enters the optical waveguide body 151 may be the same or different.
  • the light output part 152 is configured to output the light 17 from the display screen 11 from the optical waveguide body 151 for imaging, and the light output part 152 is also configured to output the light 18 from the display screen 12 from the optical waveguide body 151 for imaging.
  • the light 17 from the display screen 11 forms one image
  • the light 18 from the display screen 12 forms another image.
  • the light from the display screens 11 and 12 forms two images, and the image distances of the two images are different, that is, the distances between the two images and the glasses of the observer are different.
  • the light 17 from the display screen 11 enters the viewer's eye 21, the viewer can see the image displayed on the display screen 11, and the light 18 from the display screen 12 enters the viewer's eye 21 21.
  • the viewer can see the image displayed on the display screen 12.
  • the viewer can watch two images with different image distances, avoiding convergent conflicts caused by only viewing images with the same image distance, and can relieve eye fatigue and dizziness.
  • the refractive index of the lens assembly 13 and the refractive index of the lens assembly 14 may be different.
  • the surface shape of the lens assembly 13 and the surface shape of the lens assembly 14 may be different.
  • the lens assembly 13 may be a biconvex lens
  • the lens assembly 14 may be a plano-convex lens.
  • the lens assembly 13 can magnify the image displayed on the display screen 11 by ⁇ 1 times, and the lens assembly 14 can magnify the image displayed on the display screen 12 by ⁇ 2 times.
  • ⁇ 1 and ⁇ 2 can be the same or different.
  • the lens assembly 13 may be a lens group or a single lens.
  • the lens assembly 14 may be a lens group or a single lens.
  • the lens assembly 13 may be a liquid crystal lens or a liquid lens.
  • the lens assembly 14 may be a liquid crystal lens or a liquid lens.
  • the display screen 11 may be a Liquid Crystal Display (LCD), or the display screen 11 may also be an Organic Light-Emitting Diode (OLED) display screen, or the display screen 11 may also be an organic light-emitting diode (OLED) display screen. It can be a micro OELD display screen, or the display screen 11 can also be a mini LED display screen, or the display screen 11 can also be a DLP (Digital Light Processing, digital light processing) display screen, or the display screen 11 can also be an LCOS (Liquid Crystal on Silicon, LCD with silicon) display screen.
  • LCD Liquid Crystal Display
  • OLED Organic Light-Emitting Diode
  • OLED organic light-emitting diode
  • the display screen 12 may be a liquid crystal display, an OLED display screen, a micro OELD display screen, a mini LED display screen, a DLP display screen, or an LCOS display screen.
  • the display screen 11 may be a non-flexible display screen or a flexible display screen.
  • the display screen 12 may be a non-flexible display screen or a flexible display screen.
  • the light from the display screens 11-12 can be transmitted through the optical waveguide 15 through total reflection and losslessness, thereby reducing light energy loss.
  • the optical waveguide 15 further includes a coupling portion 153 and a coupling portion 154.
  • the coupling portion 153 and the coupling portion 154 are located near one end of the optical waveguide body 151, and the light output portion 152 is located on the optical waveguide body 151 and is separated from the end of the optical waveguide body 151 by a predetermined distance.
  • the end of the optical waveguide body 151 is close to the lens assembly 13 and the lens assembly 14.
  • the lens assembly 13 corresponds to the coupling part 153
  • the lens assembly 14 corresponds to the coupling part 154.
  • the lens assembly 13 is configured to transmit the light 17 from the display screen 11 to the coupling part 153
  • the lens assembly 14 is configured to transmit the light 18 from the display screen 12 to the coupling part 154.
  • the coupling part 153 is configured to couple the light 17 from the display screen 11 into the optical waveguide body 151 at a corresponding angle of incidence for transmission, and the coupling part 154 is configured to couple the light 18 from the display screen 12 into the light at a corresponding angle of incidence.
  • the waveguide body 151 performs transmission.
  • the coupling portion 153 is, for example, a prism, including a light-incident surface 1531, and the lens assembly 13 is located between the light-incident surface 1531 and the display screen 11.
  • the orthographic projection of the display screen 11 on the light-incident surface 1531 of the coupling portion 153 It falls within the orthographic projection of the lens assembly 13 on the light incident surface 1531 of the coupling part 153.
  • the coupling portion 154 is, for example, a prism and includes a light-incident surface 1541.
  • the lens assembly 14 is located between the light-incident surface 1541 and the display screen 12.
  • the orthographic projection of the display screen 12 on the light-incident surface 1541 of the coupling portion 154 falls on the lens assembly 14 In the orthographic projection on the light incident surface 1541 of the coupling portion 154. In this way, it can be ensured that the light 17 from the display screen 11 can pass through the lens assembly 13 as much as possible, and the light 18 from the display screen 12 can pass through the lens assembly 14 as much as possible.
  • the coupling portion 153 further includes a light-emitting surface 1532 and a light-transmitting surface 1533. As shown in FIGS. 1 and 2, the light 17 from the display screen 11 enters the coupling portion 153 through the light-incident surface 1531 of the coupling portion 153, and The light exit surface 1532 of the coupling portion 153 is coupled into the optical waveguide body 151 for transmission.
  • the coupling part 154 also includes a reflective surface and an exit surface. The reflective surface is configured to directly or indirectly reflect the light from the corresponding display screen through the incident surface to the exit surface, and the light from the corresponding display screen enters the optical waveguide body 151 after exiting from the exit surface.
  • the coupling portion 154 includes an incident surface 1541, a reflective surface 1542, and an exit surface 1543.
  • the reflective surface 1542 is configured to reflect the light 18 from the display screen 12 through the incident surface 1541 to the exit surface 1543, and the light 18 from the display screen 12 It exits from the exit surface 1543.
  • the light-transmitting surface 1533 of the coupling portion 153 is attached to the light-emitting surface 1543 of the coupling portion 154.
  • the light 18 from the display screen 12 exits from the exit surface 1543 and passes through the transmission surface of the coupling portion 153.
  • the light surface 1533 enters the coupling portion 153 and enters the optical waveguide body 151 through the light exit surface 1532 of the coupling portion 153.
  • the material of the optical waveguide 15 can be glass or plastic, and the reflective surface 1542 can be obtained by coating a reflective film layer.
  • the display device is based on the above embodiments, and the light output portion 152 includes N optical film layers 1521-1526, and the N optical film layers 1521-1526 are parallel to each other. Is a positive integer.
  • N is 1, 2, 3 or other positive integers. In this embodiment, N is 6.
  • the optical film layers 1521-1526 are partially reflective and partially transmissive film layers, and the optical waveguide body 151 is flat.
  • the optical film layers 1521-1526 are arranged obliquely with respect to the long side of the optical waveguide body 151, and the optical film layers 1521-1526 may be distributed at equal intervals.
  • the long side of the optical waveguide body 151 extends along the direction X in which the optical waveguide body 151 extends.
  • the optical film layers 1521-1526 are respectively configured to reflect a part of the light from each display screen and transmit another part of the light from each display screen.
  • the light reflected by the optical film layers 1521-1526 is transmitted from the optical waveguide body 151.
  • the emission direction of the light emitted from the optical waveguide body 151 may be perpendicular to the optical waveguide body 151. as shown in picture 2.
  • the optical film layers 1521-1526 each have substantially the same light intensity of the reflected light from the same display screen. Specifically, for the light from the same display screen, the optical film layers 1521 to 1526 each have substantially the same light intensity of the reflected light of the light from the display screen.
  • the light intensity of the optical film layer 1521 against the light 17 from the display screen 11, the light intensity of the optical film layer 1522 against the light 17 from the display screen 11, and the optical The light intensity of the film layer 1523 on the reflected light of the light 17 from the display screen 11, the light intensity of the optical film layer 1524 on the reflected light of the light 17 from the display screen 11, and the optical film layer 1525 on the light 17 from the display screen 11 are basically the same.
  • the light intensity of the reflected light corresponding to each of the optical film layers 1521 to 1526 is the same. In this way, for the images displayed on the same display screen, the display effect of the images viewed by the viewer in each position is the same.
  • the reflectance of the optical film layer 1521 is R1
  • the reflectance of the optical film layer 1522 is R2
  • the reflectance of the optical film layer 1523 is R3
  • the reflectance of the optical film layer 1524 is R4
  • the reflectance of the optical film layer 1525 is R5
  • the reflectance of the optical film layer 1526 is R6,
  • the light intensity of the light 17 from the display screen 11 incident on the optical film layer 1521 is, for example, 1, and the optical film layers 1521-1526 each correspond to The intensity of the reflected light is shown in Table 1 below.
  • Optical film 1521 R1 Optical film 1522 R2*(1-R1) Optical film 1523 R3*(1-R2)*(1-R1) Optical film 1524 R4*(1-R3)*(1-R2)*(1-R1) Optical film 1525 R5*(1-R4)*(1-R3)*(1-R2)*(1-R1) Optical film 1526 R6*(1-R5)*(1-R4)*(1-R3)*(1-R2)*(1-R1)
  • the embodiment of the present disclosure also provides another display device.
  • M is 2.
  • the light output unit 152 includes L optical film layers 1521-1525 and a first reflective film layer 31, and the L optical film layers 1521-1525 and the first reflective film layer 31 are mutually connected.
  • L is a positive integer.
  • L is 1, 2, 3 or other natural numbers.
  • L is 5.
  • the optical film layers 1521-1525 are close to the lens assembly 13 and the lens assembly 14, and the first reflective film layer 31 is located on the side of the optical film layers 1521-1525 away from the lens assembly 13 and the lens assembly 14.
  • the optical film layers 1521-1525 are partially reflective and partially transmissive film layers, and the optical waveguide body 151 is in the shape of a flat plate.
  • the optical film layers 1521-1525 and the first reflective film layer 31 are arranged obliquely with respect to the long side of the optical waveguide body 151, and the optical film layers 1521-1525 and the first reflective film layer 31 can be arranged at equal intervals.
  • the long side of the optical waveguide body 151 extends along the direction X in which the optical waveguide body 151 extends.
  • the optical film layers 1521-1525 are respectively configured to reflect a part of the light from each display screen and transmit another part of the light from each display screen, and the first reflective film layer 31 is configured to reflect a part of the light from each display screen.
  • the light transmitted through the optical film layers 1521 to 1525 is reflected, and the light reflected by the optical film layers 1521 to 1525 and the light reflected by the first reflective film layer 31 exit the optical waveguide body 151.
  • the emission direction of the light emitted from the optical waveguide body 151 may be perpendicular to the optical waveguide body 151.
  • each of the optical film layers 1521-1525 and the reflective film layer 31 have substantially the same light intensity of the reflected light from the same display screen.
  • the optical film layers 1521-1525 each have a light intensity of the reflected light from the same display screen and the first reflective film layer 31 has a light intensity of the reflected light from the same display screen. Strongly the same.
  • the light intensity of the optical film layer 1521 against the light 17 from the display screen 11, the light intensity of the optical film layer 1522 against the light 17 from the display screen 11, and the optical The light intensity of the film layer 1523 on the reflected light of the light 17 from the display screen 11, the light intensity of the optical film layer 1524 on the reflected light of the light 17 from the display screen 11, and the optical film layer 1525 on the light 17 from the display screen 11 The light intensity of the reflected light and the light intensity of the reflected light of the first reflective film layer 31 to the light 17 from the display screen 11 are the same.
  • the light intensity of the reflected light corresponding to the optical film layers 1521 to 1525 and the first reflective film layer 31 is the same.
  • the display effects of the images viewed by the viewer at various positions are the same.
  • the embodiment of the present disclosure also provides another display device.
  • M is 2.
  • the light output portion 152 includes a second reflective film layer 41, and the optical waveguide body 151 is flat.
  • the second reflective film layer 41 is arranged obliquely with respect to the long side of the optical waveguide body 151, and the long side of the optical waveguide body 151 extends along the direction X in which the optical waveguide body 151 extends.
  • the second reflective film layer 41 is configured to reflect light from the display screen, and the light reflected by the second reflective film layer 41 exits the optical waveguide body 151.
  • the exit direction of the light emitted from the optical waveguide body 151 may be perpendicular to the optical waveguide body 151.
  • the second reflective film layer 41 is configured to reflect the light 17 from the display screen 11, and the light reflected by the second reflective film layer 41 exits the optical waveguide body 151. After the light emitted from the optical waveguide body 151 enters the eyes of the viewer, the viewer can see the image displayed on the display screen 11.
  • the display device described in the present disclosure may be a virtual reality display device or an augmented reality display device.
  • the M lens components are arranged in a one-to-one correspondence with the M display screens, wherein the focal lengths of at least two of the M lens components are different, so that the light from the M display screens can be made At least two of the image distances of the formed M images are different.
  • the viewer can watch images with different image distances, avoid convergent conflicts caused by only viewing images with the same image distance, and relieve eye fatigue and dizziness.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance.
  • plurality refers to two or more, unless specifically defined otherwise.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示装置,包括:光波导(15),包括光波导本体(151)及位于光波导本体(151)上的光线输出部(152);M个透镜组件(13、14),位于光波导本体(151)一端部附近,M个透镜组件(13、14)中至少两个透镜组件(13、14)的焦距不同,M为大于1的自然数;以及M个显示屏幕(11、12),与M个透镜组件(13、14)一一对应,M个显示屏幕(11、12)中的每一个被配置为发射带有图像信息的光经对应的透镜组件(13、14)至光波导本体(151)进行传输,其中,光线输出部(152)被配置为将来自M个显示屏幕(11、12)的光从光波导本体(151)中输出以成像,来自M个显示屏幕(11、12)的光形成M个像,M个像中至少两个像的像距不同。

Description

显示装置 技术领域
本公开涉及显示技术领域,尤其涉及一种显示装置。
背景技术
当我们观看三维物体的时候,在大脑中能够形成立体的显示影像。其原理在于,左右两只眼睛分别看到了同一场景在不同视角的画面,这两个画面引起了左右眼的视差。大脑能够把两个视角的图像整合成立体图像。
在观看过程中,两只眼睛分别通过晶状体调节屈光度,使物体的像聚焦到视网膜的虚像平面。大脑对图像进行整合时,由于立体物体和虚像平面之间存在纵深差,眼睛需要进行辐辏(Vergence)转动来适应这种纵深差。基于人类眼睛的肌肉记忆,屈光调节和辐辏转动两者之间存在一定的相关关系。
公开内容
本公开提供一种显示装置,包括:光波导,包括光波导本体及位于所述光波导本体上的光线输出部;M个透镜组件,位于所述光波导本体一端部附近,所述M个透镜组件中至少两个透镜组件的焦距不同,M为大于1的自然数;以及M个显示屏幕,与所述M个透镜组件一一对应,所述M个透镜组件显示屏幕中的每一个被配置为发射带有图像信息的光经对应的透镜至所述光波导本体进行传输,其中,所述光线输出部被配置为将来自所述M个显示屏幕的光从所述光波导本体中输出以成像,来自所述M个显示屏幕的光分别形成M个像,M个像中至少两个像的像距不同。
在一些实施例中,所述光波导还包括M个耦合部,所述M个耦合部位于所述光波导本体所述端部处;所述M个透镜组件与所述M个耦合部一一对应,所述M个透镜组件中的每一个被配置为将来自对应的显示屏幕的光透射至对应的耦合部,所述M个耦合部中的每一个被配置为将来自对应的显示屏幕的光以对应的入射角耦合进入所述光波导本体进行传输。
在一些实施例中,所述M个耦合部中每一个包括入射面,至少一个透镜组件 位于其对应的耦合部的入射面和其对应的显示屏幕之间。
在一些实施例中,至少一个所述显示屏幕在与其对应的耦合部的入射面的正投影落在与其对应的透镜在与其对应的耦合部的入射面的正投影内。
在一些实施例中,至少一个显示屏幕与其对应的耦合部的入射面平行设置。
在一些实施例中,至少一个耦合部包括反射面与出射面,所述反射面被配置为将经所述入射面的来自其对应的显示屏幕的光反射至所述出射面,来自其对应的显示屏幕的光从所述出射面出射后进入所述光波导本体。
在一些实施例中,所述光线输出部包括N个光学膜层,所述N个光学膜层相互平行,N为正整数;所述N个光学膜层为部分反射部分透射的膜层;所述N个光学膜层相对于所述光波导本体的延伸方向倾斜设置;所述N个光学膜层中的每一个被配置为对来自所述M个显示屏幕中的每一个的一部分光进行反射使得所述一部分光自所述光学输出部远离所述光波导本体出射。
在一些实施例中,所述N个光学膜层对来同一显示屏幕的光的反射光的光强基本相同。
在一些实施例中,所述光线输出部包括L个光学膜层与第一反射膜层,所述L个光学膜层与所述第一反射膜层相互平行,L为正整数,所述第一反射膜层位于所述L个光学膜层远离所述端部一侧;所述L个光学膜层为部分反射部分透射的膜层;所述光学膜层与所述第一反射膜层相对于所述光波导本体的延伸方向倾斜设置,所述L个光学膜层中每一个被配置为对来自所述M个显示屏幕中的每一个的一部分光进行反射使得所述一部分光自所述光学输出部远离所述光波导本体出射,所述第一反射膜层被配置为对来自所述M个显示屏幕且透射穿过所述L个光学膜层的光且进行反射使得来自所述M个显示屏幕且透射穿过所述L个光学膜层的光自所述光学输出部远离所述光波导本体出射。
在一些实施例中,所述L个光学膜层以及所述第一反射层对来同一显示屏幕的光的反射光的光强基本相同。
在一些实施例中,所述光线输出部包括第二反射膜层;
所述第二反射膜层相对于所述光波导本体的延伸方向倾斜设置;所述第二反射膜层被配置为对来自所述M个显示屏幕中每一个的光进行反射使得被所述第二反射层反射的光自所述光线输出部远离所述光波导本体出射。
在一些实施例中,所述光波导本体呈平板状。
在一些实施例中,所述带有图像信息的光在所述光波导本体内自所述端部朝向所述光线输出部全反射传输。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据本公开实施例示出的一种显示装置的结构示意图;
图2是根据本公开实施例示出的一种光路示意图;
图3是根据本公开实施例示出的一种显示装置的结构示意图;
图4是根据本公开实施例示出的一种显示装置的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在VR(Virtual Reality,虚拟现实)或AR(Augmented Reality,增强现实)的相关显示技术中,通常采用单一焦点的光学设计方案。发明人经研究发现,在相关技术中,单一焦点的光学设计方案所呈现的图像对于人眼的像距是不变的,使得观看者在观看图像时无需进行屈光调节。而由于人眼的辐辏转动与不变的屈光调节产生了冲突(辐辏冲突),观看者在持续观看动态3D图像过程时容易出现眼疲劳和眩晕。
为了克服相关技术中的缺陷,本公开一种显示装置,包括:光波导,M个透镜组件以及M个显示屏幕,其中M为大于1的自然数。光波导包括光波导本体及位于所述光波导本体上的光线输出部;M个透镜组件位于所述光波导本体一端部附近,所述M个透镜组件中至少两个透镜组件的焦距不同;M个显示屏幕与所述M个透镜组件一一对应,所述M个透镜组件显示屏幕中的每一个被配置为发射带有图像信息的光经对应的透镜至所述光波导本体进行传输。所述光线输出部被配置为将来自所述M个显示屏幕的光从所述光波导本体中输出以成像,来自所述M个显示屏幕的光分别形成M个像,M个像中至少两个像的像距不同。由此,观看 者观看到不同景深的图像,避免仅观看同一像距的图像导致的辐辏冲突,可以缓解眼疲劳和眩晕。本公开所述的像距指的是来自显示屏幕的光经光线输出部从所述光波导本体中输出形成的像与观察者眼镜的距离。
图1是根据本公开实施例示出的一种显示装置。该显示装置包括:M个显示屏幕11、12、M个透镜组件13、14与光波导15。M个透镜组件13、14中至少两个透镜组件的焦距不同。M为大于1的自然数。例如,M为2、3或其他自然数。本实施例中,以M等于2来进行说明,光波导15包括光波导本体151以及位于所述光波导本体151上的光线输出部152。
M个显示屏幕11、12与M个个透镜组件13、14一一对应,透镜组件13、14被配置为将来自对应的显示屏幕11、12的光透射至光波导本体151进行传输。在一些实施例中,来自M个显示屏幕11、12的光彼此大致平行地入射至光波导本体151。在一些实施例中,来自M个显示屏幕11、12的光在光波导本体151中全反射传输,即来自M个显示屏幕11、12的光在光波导本体151内壁发生全反射,并且自光波导本体151的靠近M个透镜组件13、14的一端部朝向光线输出部152传输。
光线输出部152被配置为将来自M个显示屏幕11、12的光从光波导本体151中输出以成像,来自同一个显示屏幕的光形成同一个像,来自M个显示屏幕的光形成M个像,M个像的像距中至少两个像距不同。
本实施例中,通过将M个透镜组件一一对应地与M个显示屏幕设置,其中,M个透镜组件中至少两个透镜组件的焦距不同,这样,可以使来自M个显示屏幕的光形成的M个像的像距中至少两个像距不同。在M个显示屏幕显示图像时,使得观看者可以观看不同像距的图像,避免仅观看同一像距的图像导致的辐辏冲突,可以缓解眼疲劳和眩晕。
本实施例中,可以实现多景深显示,进而可以缓解眼疲劳和眩晕。本实施例中,还可以在光波导中传输来自多个显示屏幕的光,实现多通道复用,可以降低成本,减小显示装置的体积,使显示装置更加轻薄便携。
在本实施例中,M为2。当M为2时,显示装置包括显示屏幕11、显示屏幕12、透镜组件13、透镜组件14与光波导15。显示屏幕11与透镜组件13对应,显示屏幕12与透镜组件14对应。如图2所示,透镜组件13被配置为将来自显示屏幕11的光17透射至光波导本体151进行传输,例如在光波导本体151中自 光波导本体151的靠近M个透镜组件13、14的一端部朝向光线输出部152全发射传输,透镜组件14被配置为将来自显示屏幕12的光18透射至光波导本体151进行传输,例如在光波导本体151中自光波导本体151的靠近M个透镜组件13、14的一端部朝向光线输出部152全发射传输。来自显示屏幕11的光17入射进入光波导本体151的入射角与来自显示屏幕12的光18入射进入光波导本体151的入射角可以相同也可以不同。
光线输出部152被配置为将来自显示屏幕11的光17从光波导本体151中输出以成像,光线输出部152还被配置为将来自显示屏幕12的光18从光波导本体151中输出以成像。来自显示屏幕11的光17形成一个像,来自显示屏幕12的光18形成另一个像。来自显示屏幕11、12的光形成2个像,这2个像的像距不同,即这2个像到观察者眼镜的距离不同。在显示屏幕11、12显示图像时,来自显示屏幕11的光17进入观看者的人眼21,观看者可以看到显示屏幕11显示的图像,来自显示屏幕12的光18进入观看者的人眼21,观看者可以看到显示屏幕12显示的图像。在显示屏幕11、12显示图像时,使得观看者可以观看2个不同像距的图像,避免仅观看同一像距的图像导致的辐辏冲突,可以缓解眼疲劳和眩晕。
在一些实施例中,透镜组件13的折射率与透镜组件14的折射率可不同。
在一些实施例中,透镜组件13的面型与透镜组件14的面型可不同。例如,透镜组件13可以为双凸透镜,透镜组件14可以为平凸透镜。
在一些实施例中,透镜组件13可以对显示屏幕11显示的图像放大β1倍,透镜组件14可以对显示屏幕12显示的图像放大β2倍。β1与β2可相同,可不同。
在一些实施例中,透镜组件13可以是透镜组,也可以是单透镜。透镜组件14可以是透镜组,也可以是单透镜。
在一些实施例中,透镜组件13可以是液晶透镜或者液体透镜。透镜组件14可以是液晶透镜或者液体透镜。
在一些实施例中,显示屏幕11可以是液晶显示器(Liquid Crystal Display,LCD),或者,显示屏幕11也可以是有机发光二极管(Organic Light-Emitting Diode,OLED)显示屏幕,或者,显示屏幕11也可以是micro OELD显示屏幕,或者,显示屏幕11也可以是mini LED显示屏幕,或者,显示屏幕11也可以是 DLP(Digital Light Processing,数字光处理)显示屏幕,或者,显示屏幕11也可以是LCOS(Liquid Crystal on Silicon,液晶附硅)显示屏幕。
在一些实施例中,显示屏幕12可以是液晶显示器、OLED显示屏幕、micro OELD显示屏幕、mini LED显示屏幕、DLP显示屏幕或者LCOS显示屏幕。
在一些实施例中,显示屏幕11可以是非柔性显示屏或者柔性显示屏。
在一些实施例中,显示屏幕12可以是非柔性显示屏或者柔性显示屏。
在一些实施例中,来自显示屏幕11~12的光可以在光波导15中进行全反射无损传输,减少光能量损失。
在本实施例中,M为2。如图1所示,该显示装置在上述实施例的基础上,光波导15还包括耦合部153与耦合部154,耦合部153、耦合部154位于光波导本体151的一端部附近,光线输出部152位于光波导本体151上,与光波导本体151的该端部间隔预定距离。光波导本体151的该端部靠近透镜组件13、透镜组件14。
透镜组件13与耦合部153对应,透镜组件14与耦合部154对应。透镜组件13被配置为将来自显示屏幕11的光17透射至耦合部153,透镜组件14被配置为将来自显示屏幕12的光18透射至耦合部154。
耦合部153被配置为将来自显示屏幕11的光17以对应的入射角耦合进入光波导本体151进行传输,耦合部154被配置为将来自显示屏幕12的光18以对应的入射角耦合进入光波导本体151进行传输。
在本实施例中,耦合部153例如为棱镜,包括入光面1531,透镜组件13位于入光面1531和显示屏幕11之间,显示屏幕11在耦合部153的入光面1531上的正投影落在透镜组件13在耦合部153的入光面1531上的正投影内。耦合部154例如为棱镜,包括入光面1541,透镜组件14位于入光面1541和显示屏幕12之间,显示屏幕12在耦合部154的入光面1541上的正投影落在透镜组件14在耦合部154的入光面1541上的正投影内。这样,可以保证来自显示屏幕11的光17可以尽量多地通过透镜组件13,来自显示屏幕12的光18可以尽量多地通过透镜组件14。
在本实施例中,耦合部153还包括出光面1532和透光面1533,如图1和2所示,来自显示屏幕11的光17经耦合部153的入光面1531进入耦合部153,并经耦合部153的出光面1532耦合进入光波导本体151进行传输。耦合部154还 包括反射面与出射面。反射面被配置为将经入射面的来自相应显示屏幕的光直接地或者间接地反射至出射面,来自相应显示屏幕的光从出射面出射后进入光波导本体151。例如,耦合部154包括入射面1541、反射面1542与出射面1543,反射面1542被配置为将经入射面1541的来自显示屏幕12的光18反射至出射面1543,来自显示屏幕12的光18从出射面1543出射,在一些实施例中,耦合部153的透光面1533与耦合部154的出光面1543贴合,来自显示屏幕12的光18从出射面1543出射后经耦合部153的透光面1533进入耦合部153,并经耦合部153的出光面1532进入光波导本体151。
在本实施例中,光波导15的材质可以是玻璃或者塑料,反射面1542可通过涂覆反射膜层得到。
在一些实施例中,如图1和2所示,显示装置在上述实施例的基础上,光线输出部152包括N个光学膜层1521~1526,N个光学膜层1521~1526相互平行,N为正整数。例如,N为1、2、3或其他正整数。在本实施例中,N为6。
在本实施例中,光学膜层1521~1526为部分反射部分透射的膜层,光波导本体151为平板状。光学膜层1521~1526相对于光波导本体151的长边倾斜设置,且光学膜层1521~1526可以等间隔分布。光波导本体151的长边沿光波导本体151延伸的方向X延伸。光学膜层1521~1526分别被配置为对来自每个显示屏幕的一部分光进行反射,对来自每个显示屏幕的另一部分光进行透射,被光学膜层1521~1526反射的光从光波导本体151出射。从光波导本体151出射的光的出射方向可垂直于光波导本体151。如图2所示。
在本实施例中,光学膜层1521~1526各自对来自同一显示屏幕的光的反射光的光强基本相同。具体地,对于来自同一显示屏幕的光,光学膜层1521~1526各自对来自显示屏幕的光的反射光的光强基本相同。例如,对于来自显示屏幕11的光17,光学膜层1521对来自显示屏幕11的光17的反射光的光强、光学膜层1522对来自显示屏幕11的光17的反射光的光强、光学膜层1523对来自显示屏幕11的光17的反射光的光强、光学膜层1524对来自显示屏幕11的光17的反射光的光强、光学膜层1525对来自显示屏幕11的光17的反射光的光强、光学膜层1526对来自显示屏幕11的光17的反射光的光强均基本相同。换句话说,对于来自显示屏幕11的光17,光学膜层1521~1526各自对应的反射光的光强相同。这样,对于同一显示屏幕显示的图像,观看者在各个位置观看到的图像的显 示效果是相同的。
对于来自显示屏幕11的光17,假设光学膜层1521的反射率为R1,光学膜层1522的反射率为R2、光学膜层1523的反射率为R3、光学膜层1524的反射率为R4、光学膜层1525的反射率为R5、光学膜层1526的反射率为R6,入射至光学膜层1521的来自显示屏幕11的光17的光强例如为1,则光学膜层1521~1526各自对应的反射光的光强如下表1所示。其中,R1=R2*(1-R1)=R3*(1-R2)*(1-R1)=R4*(1-R3)*(1-R2)*(1-R1)=R5*(1-R4)*(1-R3)*(1-R2)*(1-R1)=R6*(1-R5)*(1-R4)*(1-R3)*(1-R2)*(1-R1)。
表1
光学膜层 反射光的光强
光学膜层1521 R1
光学膜层1522 R2*(1-R1)
光学膜层1523 R3*(1-R2)*(1-R1)
光学膜层1524 R4*(1-R3)*(1-R2)*(1-R1)
光学膜层1525 R5*(1-R4)*(1-R3)*(1-R2)*(1-R1)
光学膜层1526 R6*(1-R5)*(1-R4)*(1-R3)*(1-R2)*(1-R1)
本公开实施例还提供另一种显示装置。在本实施例中,M为2。如图3所示,在本实施例中,光线输出部152包括L个光学膜层1521~1525与一个第一反射膜层31,L个光学膜层1521~1525与第一反射膜层31相互平行,L为正整数。例如,L为1、2、3或其他自然数。在本实施例中,L为5。
光学膜层1521~1525相较于第一反射膜层31靠近透镜组件13、透镜组件14,第一反射膜层31位于光学膜层1521~1525远离透镜组件13、透镜组件14的一侧。光学膜层1521~1525为部分反射部分透射的膜层,光波导本体151为平板状。光学膜层1521~1525与第一反射膜层31相对于光波导本体151的长边倾斜设置,光学膜层1521~1525与第一反射膜层31可等间隔设置。光波导本体151的长边沿光波导本体151延伸的方向X延伸。
光学膜层1521~1525分别被配置为对来自每个显示屏幕的一部分光进行反射,对来自每个显示屏幕的另一部分光进行透射,第一反射膜层31被配置为对来自每个显示屏幕且透射经过光学膜层1521~1525的光进行反射,被光学膜层1521~1525反射的光与被第一反射膜层31反射的光从光波导本体151出射。从光波导本体151出射的光的出射方向可垂直于光波导本体151。
在本实施例中,光学膜层1521~1525中的每一个以及反射膜层31对来自同一显示屏幕的光的反射光的光强基本相同。
具体地,对于来自同一显示屏幕的光,光学膜层1521~1525各自对来自同一显示屏幕的光的反射光的光强以及第一反射膜层31对来自同一显示屏幕的光的反射光的光强相同。例如,对于来自显示屏幕11的光17,光学膜层1521对来自显示屏幕11的光17的反射光的光强、光学膜层1522对来自显示屏幕11的光17的反射光的光强、光学膜层1523对来自显示屏幕11的光17的反射光的光强、光学膜层1524对来自显示屏幕11的光17的反射光的光强、光学膜层1525对来自显示屏幕11的光17的反射光的光强、第一反射膜层31对来自显示屏幕11的光17的反射光的光强相同。换句话说,对于来自显示屏幕11的光17,光学膜层1521~1525、第一反射膜层31各自对应的反射光的光强相同。这样,对于同一显示屏幕显示的图像,观看者在各个位置观看到的图像的显示效果是相同的。
本公开实施例还提供另一种显示装置。在本实施例中,M为2。如图4所示,在本实施例中,光线输出部152包括一个第二反射膜层41,光波导本体151为平板状。第二反射膜层41相对于光波导本体151的长边倾斜设置,光波导本体151的长边沿光波导本体151延伸的方向X延伸。第二反射膜层41被配置为对来自显示屏幕的光进行反射,被第二反射膜层41反射的光从光波导本体151出射。从光波导本体151出射的光的出射方向可垂直于光波导本体151。
例如,对于来自显示屏幕11的光17,第二反射膜层41被配置为对来自显示屏幕11的光17进行反射,被第二反射膜层41反射的光从光波导本体151出射。从光波导本体151出射的光进入观看者的眼睛后,观看者可看到显示屏幕11显示的图像。
本公开所述的显示装置可以是虚拟现实显示装置也可以是增强现实显示装置。
本公开实施例中,通过将M个透镜组件一一对应地与M个显示屏幕设置,其 中,M个透镜组件中至少两个透镜组件的焦距不同,这样,可以使来自M个显示屏幕的光形成的M个像的像距中至少两个像距不同。在M个显示屏幕显示图像时,使得观看者可以观看不同像距的图像,避免仅观看同一像距的图像导致的辐辏冲突,可以缓解眼疲劳和眩晕。
需要指出的是,在附图中,为了图示的清晰可能夸大了层和区域的尺寸。而且可以理解,当元件或层被称为在另一元件或层“上”时,它可以直接在其他元件上,或者可以存在中间的层。另外,可以理解,当元件或层被称为在另一元件或层“下”时,它可以直接在其他元件下,或者可以存在一个以上的中间的层或元件。另外,还可以理解,当层或元件被称为在两层或两个元件“之间”时,它可以为两层或两个元件之间唯一的层,或还可以存在一个以上的中间层或元件。通篇相似的参考标记指示相似的元件。
在本公开中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。术语“多个”指两个或两个以上,除非另有明确的限定。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (13)

  1. 一种显示装置,包括:
    光波导,包括光波导本体及位于所述光波导本体上的光线输出部;
    M个透镜组件,位于所述光波导本体一端部附近,所述M个透镜组件中至少两个透镜组件的焦距不同,M为大于1的自然数;以及
    M个显示屏幕,与所述M个透镜组件一一对应,所述M个透镜组件显示屏幕中的每一个被配置为发射带有图像信息的光经对应的透镜至所述光波导本体进行传输,
    其中,所述光线输出部被配置为将来自所述M个显示屏幕的光从所述光波导本体中输出以成像,来自所述M个显示屏幕的光分别形成M个像,M个像中至少两个像的像距不同。
  2. 根据权利要求1所述的显示装置,其中,所述光波导还包括M个耦合部,所述M个耦合部位于所述光波导本体所述端部处;
    所述M个透镜组件与所述M个耦合部一一对应,所述M个透镜组件中的每一个被配置为将来自对应的显示屏幕的光透射至对应的耦合部,所述M个耦合部中的每一个被配置为将来自对应的显示屏幕的光以对应的入射角耦合进入所述光波导本体进行传输。
  3. 根据权利要求2所述的显示装置,其中所述M个耦合部中每一个包括入射面,至少一个透镜组件位于其对应的耦合部的入射面和其对应的显示屏幕之间。
  4. 根据权利要求3所述的显示装置,其中,至少一个所述显示屏幕在与其对应的耦合部的入射面的正投影落在与其对应的透镜在与其对应的耦合部的入射面的正投影内。
  5. 根据权利要求3所述的显示装置,其中,至少一个显示屏幕与其对应的耦合部的入射面平行设置。
  6. 根据权利要求3所述的显示装置,其中,至少一个耦合部包括反射面与出射面,所述反射面被配置为将经所述入射面的来自其对应的显示屏幕的光反射至所述出射面,来自其对应的显示屏幕的光从所述出射面出射后进入所述光波导本体。
  7. 根据权利要求1所述的显示装置,其中,所述光线输出部包括N个光学膜层,所述N个光学膜层相互平行,N为正整数;所述N个光学膜层为部分反射部分透射的膜层;
    所述N个光学膜层相对于所述光波导本体的延伸方向倾斜设置;所述N个光学膜层中的每一个被配置为对来自所述M个显示屏幕中的每一个的一部分光进行反射使得所述一部分光自所述光学输出部远离所述光波导本体出射。
  8. 根据权利要求7所述的显示装置,其中,所述N个光学膜层对来同一显示屏幕的光的反射光的光强基本相同。
  9. 根据权利要求1所述的显示装置,其中,所述光线输出部包括L个光学膜层与第一反射膜层,所述L个光学膜层与所述第一反射膜层相互平行,L为正整数,所述第一反射膜层位于所述L个光学膜层远离所述端部一侧;所述L个光学膜层为部分反射部分透射的膜层;
    所述光学膜层与所述第一反射膜层相对于所述光波导本体的延伸方向倾斜设置,所述L个光学膜层中每一个被配置为对来自所述M个显示屏幕中的每一个的一部分光进行反射使得所述一部分光自所述光学输出部远离所述光波导本体出射,所述第一反射膜层被配置为对来自所述M个显示屏幕且透射穿过所述L个光学膜层的光且进行反射使得来自所述M个显示屏幕且透射穿过所述L个光学膜层的光自所述光学输出部远离所述光波导本体出射。
  10. 根据权利要求9所述的显示装置,其中,所述L个光学膜层以及所述第一反射层对来同一显示屏幕的光的反射光的光强基本相同。
  11. 根据权利要求1所述的显示装置,其中,所述光线输出部包括第二反射膜层;
    所述第二反射膜层相对于所述光波导本体的延伸方向倾斜设置;所述第二反射膜层被配置为对来自所述M个显示屏幕中每一个的光进行反射使得被所述第二反射层反射的光自所述光线输出部远离所述光波导本体出射。
  12. 根据权利要求1至11中任一项所述的显示装置,其中所述光波导本体呈平板状。
  13. 根据权利要求1至11中任一项所述的显示装置,其中,所述带有图像信息的光在所述光波导本体内自所述端部朝向所述光线输出部全反射传输。
PCT/CN2020/116178 2019-12-09 2020-09-18 显示装置 WO2021114798A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/287,446 US11886051B2 (en) 2019-12-09 2020-09-18 Display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911249880.5 2019-12-09
CN201911249880.5A CN110927969A (zh) 2019-12-09 2019-12-09 光学显示系统和显示装置

Publications (1)

Publication Number Publication Date
WO2021114798A1 true WO2021114798A1 (zh) 2021-06-17

Family

ID=69858490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116178 WO2021114798A1 (zh) 2019-12-09 2020-09-18 显示装置

Country Status (3)

Country Link
US (1) US11886051B2 (zh)
CN (1) CN110927969A (zh)
WO (1) WO2021114798A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110927969A (zh) * 2019-12-09 2020-03-27 京东方科技集团股份有限公司 光学显示系统和显示装置
CN111610635B (zh) * 2020-06-24 2022-05-27 京东方科技集团股份有限公司 一种ar光学系统及ar显示设备
CN111999893B (zh) * 2020-09-01 2023-03-21 深圳创维数字技术有限公司 Vr显示模组、vr显示系统及vr眼镜
CN111983811B (zh) * 2020-09-09 2022-08-19 京东方科技集团股份有限公司 一种近眼显示装置
CN112130330A (zh) * 2020-10-28 2020-12-25 南京爱奇艺智能科技有限公司 双焦、多焦平面显示系统及应用其的vr或ar设备
CN112346252A (zh) * 2020-11-09 2021-02-09 京东方科技集团股份有限公司 近眼显示装置
CN115291412B (zh) * 2022-09-30 2023-01-24 南方科技大学 基于ar几何光波导的三维显示装置和三维显示方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02186319A (ja) * 1989-01-13 1990-07-20 Fujitsu Ltd 表示システム
CN101846799A (zh) * 2009-03-25 2010-09-29 奥林巴斯株式会社 头部安装型图像显示装置
CN203465469U (zh) * 2013-09-22 2014-03-05 江苏慧光电子科技有限公司 可佩带的平视光学系统
CN107329256A (zh) * 2016-04-28 2017-11-07 江苏慧光电子科技有限公司 显示装置及其控制方法
CN107728319A (zh) * 2017-10-18 2018-02-23 广东虚拟现实科技有限公司 视觉显示系统及方法,以及头戴显示装置
CN110927969A (zh) * 2019-12-09 2020-03-27 京东方科技集团股份有限公司 光学显示系统和显示装置
CN111983811A (zh) * 2020-09-09 2020-11-24 京东方科技集团股份有限公司 一种近眼显示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1662284B1 (en) * 2003-05-23 2015-03-25 Panasonic Corporation Optical device, optical device manufacturing method, and optical integrated device
JP6391952B2 (ja) * 2014-03-17 2018-09-19 ソニー株式会社 表示装置及び光学装置
CN105652448A (zh) * 2016-01-28 2016-06-08 上海理湃光晶技术有限公司 平面波导成像装置和方法
US10095045B2 (en) * 2016-09-12 2018-10-09 Microsoft Technology Licensing, Llc Waveguide comprising a bragg polarization grating
WO2018067828A1 (en) * 2016-10-06 2018-04-12 Saikou Optics Incorporated Variable magnification beam expander with ultra-fast zoom and focusing capability using adaptive optics
CN110297331A (zh) * 2018-03-23 2019-10-01 京东方科技集团股份有限公司 显示装置及显示方法
CN109188700B (zh) * 2018-10-30 2021-05-11 京东方科技集团股份有限公司 光学显示系统及ar/vr显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02186319A (ja) * 1989-01-13 1990-07-20 Fujitsu Ltd 表示システム
CN101846799A (zh) * 2009-03-25 2010-09-29 奥林巴斯株式会社 头部安装型图像显示装置
CN203465469U (zh) * 2013-09-22 2014-03-05 江苏慧光电子科技有限公司 可佩带的平视光学系统
CN107329256A (zh) * 2016-04-28 2017-11-07 江苏慧光电子科技有限公司 显示装置及其控制方法
CN107728319A (zh) * 2017-10-18 2018-02-23 广东虚拟现实科技有限公司 视觉显示系统及方法,以及头戴显示装置
CN110927969A (zh) * 2019-12-09 2020-03-27 京东方科技集团股份有限公司 光学显示系统和显示装置
CN111983811A (zh) * 2020-09-09 2020-11-24 京东方科技集团股份有限公司 一种近眼显示装置

Also Published As

Publication number Publication date
US11886051B2 (en) 2024-01-30
CN110927969A (zh) 2020-03-27
US20220308368A1 (en) 2022-09-29

Similar Documents

Publication Publication Date Title
WO2021114798A1 (zh) 显示装置
TWI617838B (zh) 光學系統
CN109188700B (zh) 光学显示系统及ar/vr显示装置
WO2019179136A1 (zh) 显示装置及显示方法
JP6714514B2 (ja) ホログラフィック光学素子を使用する裸眼立体視3d表示装置
WO2018233293A1 (zh) 一种成像显示系统
JP6852896B2 (ja) 3d表示パネル、それを含む3d表示機器、及びその製造方法
WO2016060119A1 (ja) ヘッドアップディスプレイ装置
JP2018504637A (ja) 全反射を有するディスプレイ装置
CN107991838B (zh) 自适应三维立体成像系统
JP2015179245A (ja) 投影装置
JP2002277824A (ja) 同一中心の自動立体光学装置
US20160246165A1 (en) Three-dimension light field construction apparatus
US10989956B2 (en) Display device
US10948765B2 (en) Display device
WO2015007201A1 (zh) 可佩带的平视光学系统
US11543648B2 (en) Virtual image projection device
CN107643559A (zh) 基于反射式波导耦合器的光线传导和分离方法及装置
US20190250418A1 (en) Display apparatus
JP5631235B2 (ja) 透過光選択装置、立体画像表示装置及び立体画像表示方法
KR102172408B1 (ko) 공간 영상 투영 장치
US10368060B2 (en) Head mounted display
WO2020087195A1 (zh) 一种全像显示系统及形成全像的方法
KR100420924B1 (ko) 3차원 입체영상표시장치
WO2022133968A1 (zh) 光学系统及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20900460

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20900460

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20900460

Country of ref document: EP

Kind code of ref document: A1