WO2021114603A1 - 一种基于mem的光纤光栅传感器封装方法及装置 - Google Patents

一种基于mem的光纤光栅传感器封装方法及装置 Download PDF

Info

Publication number
WO2021114603A1
WO2021114603A1 PCT/CN2020/097451 CN2020097451W WO2021114603A1 WO 2021114603 A1 WO2021114603 A1 WO 2021114603A1 CN 2020097451 W CN2020097451 W CN 2020097451W WO 2021114603 A1 WO2021114603 A1 WO 2021114603A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber grating
printing
mem
layer
model
Prior art date
Application number
PCT/CN2020/097451
Other languages
English (en)
French (fr)
Inventor
孙丽
张春巍
梁天琦
李闯
赵子豪
Original Assignee
青岛理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛理工大学 filed Critical 青岛理工大学
Publication of WO2021114603A1 publication Critical patent/WO2021114603A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/40Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing

Definitions

  • the invention relates to an optical fiber grating sensor packaging method and device, in particular to an optical fiber grating sensor packaging method based on MEM melt extrusion rapid prototyping technology.
  • the bonding and packaging process of fiber grating has important effects on strain transfer, temperature characteristics, and spectral shape. These parameters are directly related to the accuracy of measurement. Therefore, the bonding and packaging process of fiber grating has an important impact on the performance of the sensor.
  • the fiber grating sensor As a measuring instrument, the fiber grating sensor’s bonding performance in the sensor element is affected by many factors, and its previous packaging method mainly relied on manual glue injection. Different glue injection techniques by workers may also cause the internal glue layer of the sensor element. There are defects such as bubbles, which affect the sensitivity coefficient and other parameters of the sensor.
  • MEM technology Compared with other manufacturing methods, MEM technology has several obvious advantages. One advantage is that it can produce complex shapes that traditional manufacturing methods cannot handle. Another advantage is that for fiber grating sensor manufacturers, MEM technology can create embedded fiber channels. Such products as packaged components are thus used in the field of fiber grating sensor packaging.
  • the present invention is a fiber grating sensor packaging method that can make up for the lack of current packaging methods.
  • the invention better reduces the influence of the adhesive layer shear modulus on the strain transmission rate of the fiber grating sensor, reduces the difference between the strain of the matrix and the surface strain of the optical fiber, makes the sensor measurement data more real and reliable, and the packaging method is simple to operate without special clamps.
  • a fiber grating sensor packaging method that can manufacture complex and precise parts such as molds.
  • a MEM-based packaging method for fiber grating sensors includes the following steps:
  • Step 1 Determine the sensor type according to the purpose of the sensor, and determine the detailed size of the sensor element
  • Step 2Select printing materials select ABS, PLA or ceramic printing materials according to the specific functions and requirements of the required sensor;
  • Step 3 Model establishment: use drawing software (Autodesk Revit Family, AutoCAD software) to draw a three-dimensional model, the accuracy of the model is 0.1mm; export it as a stl format file;
  • drawing software Autodesk Revit Family, AutoCAD software
  • Step 4Slicing processing first import the 3D model into the slicing software for slicing processing, and divide the built 3D model into layer-by-layer sections to guide the layer-by-layer printing; adjust the model to the appropriate slice orientation to ensure that the stacked components are balanced in all directions ;
  • Step 5Printing process start the 3D printer, and send the Gcode file obtained by slicing the model in stl format to the 3D printer through the data cable.
  • load the filling material initialize the printing platform, set the layer thickness, filling rate, support interval, and pause High printing parameters; the hot-melt nozzle melts and extrudes powdered, liquid or filamentary metals, ceramics, and plastics, the filling material is quickly solidified, and the layer-by-layer bonding is carried out from the bottom to the top.
  • the previous The layer plays a role in positioning and supporting the current layer.
  • an object's angle is greater than 45 degrees from the vertical and is suspended in the air, it may fall.
  • an auxiliary supporting structure needs to be generated. After the model is completed, the support can be removed; after the suspension height is set in advance, the fiber grating is embedded in the predetermined position, the position is fixed with PTFE high temperature tape and a certain prestress is applied, and the printing is continued to complete the printing;
  • Step 6 Apply sealant on both ends of the optical fiber and put on the loose tube, fusion splice the FC connector;
  • Step 7 Post-processing of the MEM specimen, removing the support material, and polishing the surface.
  • a MEM-based optical fiber grating sensor packaging device including a base, a printing platform, a nozzle, a nozzle, a wire tube, a material hanging scroll, a wire, a horizontal aligner, an automatic height alignment block, and a double-headed line;
  • a vertical platform is installed above the base, and a printing platform is connected to the lower part of the vertical platform through an automatic alignment block, and the printing platform abuts against the base;
  • the upper part of the vertical platform is equipped with a spray head through a slide rail, and the lower part of the spray head is equipped with a nozzle.
  • the nozzle is connected to the counter block through a double-head line, and the nozzle is arranged vertically with the printing platform through a horizontal aligner;
  • the nozzle is connected with the wire on the material hanging shaft through the wire tube, and the material hanging shaft is arranged on the side wall of the vertical platform.
  • the integration of 4D printing technology can realize the functions of self-assembly and self-repair of components, and can realize the change of the specific properties of materials.
  • the elastic modulus of MEM technology consumables (such as ABS) is closer to that of silica fiber, which eliminates the influence of traditional packaging methods on the strain transmission rate of the sensor due to the lower elastic modulus of the glue layer.
  • FIG. 1 is a schematic diagram of the structure of an additive manufacturing device used in an embodiment of the present invention.
  • FIG. 2 is a flowchart of an embodiment of the present invention.
  • a MEM-based packaging method for fiber grating sensors includes the following steps:
  • Step 1 Determine the sensor type according to the purpose of the sensor, and determine the detailed size of the sensor element
  • Step 2Select printing materials select ABS, PLA or ceramic printing materials according to the specific functions and requirements of the required sensor;
  • Step 3 Model establishment: use drawing software (Autodesk Revit Family, AutoCAD software) to draw a three-dimensional model, the accuracy of the model is 0.1mm; export it as a stl format file;
  • drawing software Autodesk Revit Family, AutoCAD software
  • Step 4Slicing processing first import the 3D model into the slicing software for slicing processing, and divide the built 3D model into layer-by-layer sections to guide the layer-by-layer printing; adjust the model to the appropriate slice orientation to ensure that the stacked components are balanced in all directions ;
  • Step 5Printing process start the 3D printer, and send the Gcode file obtained by slicing the model in stl format to the 3D printer through the data cable.
  • load the filling material initialize the printing platform, set the layer thickness, filling rate, support interval, and pause High printing parameters; the hot-melt nozzle melts and extrudes powdered, liquid or filamentary metals, ceramics, and plastics, the filling material is quickly solidified, and the layer-by-layer bonding is carried out from the bottom to the top.
  • the previous The layer plays a role in positioning and supporting the current layer.
  • an object's angle is greater than 45 degrees from the vertical and is suspended in the air, it may fall.
  • an auxiliary supporting structure needs to be generated. After the model is completed, the support can be removed; after the suspension height is set in advance, the fiber grating is embedded in the predetermined position, the position is fixed with PTFE high temperature tape and a certain prestress is applied, and the printing is continued to complete the printing;
  • Step 6 Apply sealant on both ends of the optical fiber and put on the loose tube, fusion splice the FC connector;
  • Step 7 Post-processing of the MEM specimen, removing the support material, and polishing the surface.
  • the detailed dimensions of the sensor element in step 1 include the reserved hollow part of the fiber grating grating area, the clamping part at both ends and the reserved hole of the loose tube.
  • the filling material is PLA, wax, ABS, nylon thermoplastic material, or shape memory polymer material.
  • the suspension height in step 5 is the height of the center of the radial section of the fiber grating strain sensor, and the predetermined position of the embedded optical fiber is the axial radial symmetry center position of the fiber grating strain sensor.
  • step 6 the sealant is 704 sealant.
  • a MEM-based fiber grating sensor packaging device including a base 1, a printing platform 2, a nozzle 3, a nozzle 4, a wire tube 5, a material hanging shaft 6, a wire 7, a level aligner 10, an automatic height alignment block 11, Double-headed line 12; a vertical platform 13 is installed above the base 1, and the lower part of the vertical platform 13 is connected with a printing platform 2 through an automatic height block 11, and the printing platform 2 abuts the base 1; the upper part of the vertical platform 13 is installed with a nozzle through a slide rail 4.
  • the lower part of the nozzle 4 is provided with a nozzle 3, which is connected to the aligning block 11 through a double-headed line 12, and the nozzle 3 is vertically arranged with the printing platform 2 through a horizontal aligner 10; the nozzle 4 is on the material hanging shaft 6 through a wire tube 5 The wire 7 is connected, and the material hanging shaft 6 is arranged on the side wall of the vertical platform.
  • the front panel of the base 1 is provided with a signal lamp 8 and an initialization button 9.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)

Abstract

本发明公开了一种基于MEM的光纤光栅传感器封装方法及装置,包括步骤:确定封装试件的三维模型;三维模型切片处理;调整合适打印朝向;初始化3D打印设备,开始初步进行3D打印,设置在埋入光纤的位置暂停打印;在相应位置固定光纤光栅于相应位置并沿光纤轴向施加一定预拉力;继续打印至打印完成;拆除支撑材料完成封装。本发明创新性的将MEM技术应用于光纤光栅传感器封装领域,相对于传统的手工封装方式效率更高,成本更低,方便快捷,且可参数定制光纤光栅传感器。

Description

一种基于MEM的光纤光栅传感器封装方法及装置 技术领域
本发明涉及一种光纤光栅传感器封装方法及装置,特别涉及一种基于MEM熔融挤压快速成形技术的光纤光栅传感器封装方法。
背景技术
光纤光栅的粘贴封装工艺对应变传递、温度特性、光谱谱形等有重要的影响,而这些参数直接关系到测量的精度,因此光纤光栅的粘贴封装工艺对传感器的性能有重要影响。光纤光栅传感器作为一种测量器具,光纤在传感元件内的粘结性能受到的影响因素很多,且其以往封装方式主要依靠手工注胶,工人注胶手法不同也可能使传感元件内部胶层有气泡等瑕疵,致使传感器的灵敏度系数等参数受到影响。
此外,传感器封装元件精加工难度大,以上因素使实现光纤光栅传感器工业普及成为困难。快速成型(RAPID PROTOTYPING)技术问世以来,可以在没有任何模具、刀具和卡具的情况下,直接接受产品设计(例如CAD图纸等)数据,快速制造出试件、模具或模型。因此,可以大大缩短新产品开发周期、降低开发成本、提高开发质量。
MEM技术与其他制造方法相比具有几个明显的优点,一个优点是能够产生传统制造方法无法处理的复杂形状,另一个优点是对于光纤光栅传感器厂商而言,MEM技术可以创建包括嵌入式光纤通道的封装元件这样的产品,从而应用于光纤光栅传感器封装领域。
发明内容
针对现有传感器封装技术存在的缺陷,本发明是一种可以弥补目前封装方式不足的光纤光栅传感器封装方法。本发明较好的降低了胶层剪切模量对光纤光栅传感器应变传递率的影响,缩小了基体应变与光纤表面应变差,使传感器测量数据更加真实可靠,并且封装方式操作简单,无需专用夹具或模具等便可制造复杂精密零件的一种光纤光栅传感器封装方法。
为达到上述目的,本发明的技术方案是:
一种基于MEM的光纤光栅传感器封装方法,包括下面步骤:
步骤①根据传感器用途确定传感器类型,确定传感器元件细节尺寸;
步骤②选择打印材料:根据所需传感器特定功能及要求选取ABS、PLA或陶瓷打印材料;
步骤③模型的建立:利用制图软件(Autodesk Revit Family、AutoCAD软件)绘制三维模型,模型精度为0.1mm;导出为stl格式文件;
步骤④切片处理:先将三维模型导入切片软件进行切片处理,将建成的三维模型分成逐层的截面,从而指导逐层打印;将模型调整合适的切片朝向,以确保层叠构件各向受力均衡;
步骤⑤打印过程:启动3D打印机,通过数据线把stl格式的模型切片得到Gcode文件传送给3D打印机,同时,装入填充材料,初始化打印平台,设定层片厚度、填充率、支撑间隔、暂停高度打印参数;热熔喷嘴将粉末状、液状或丝状金属、陶瓷、塑料融化挤出,填充材料迅速固化,自下而上进行逐层堆积黏结,在每个层片堆积过程中,上一层对当前层起到定位和支撑作用,根据重力原理,如果一个物体的某个面与垂直线的角度大于45度且悬空,就 有可能发生坠落,当存在悬空结构时需要生成辅助支撑结构,在完成模型后可拆除支撑;在事先设置好的暂停高度暂停后,在预定位置埋入光纤光栅,利用聚四氟乙烯高温胶带固定位置及施加一定预应力,继续打印,完成打印;
步骤⑥:光纤两端涂抹密封胶并套上松套管,熔接FC接头;
步骤⑦:MEM试件后期处理,拆除支撑材料,抛光表面。
一种基于MEM的光纤光栅传感器封装装置,包括基座、打印平台、喷嘴、喷头、丝管、材料挂轴、丝材、水平校准器、自动对高块、双头线;
基座上方安装竖台,竖台下部通过自动对高块连接有打印平台,打印平台与基座抵接;
竖台上部通过滑轨安装有喷头,喷头下部设有喷嘴,喷嘴通过双头线与对高块连接,喷嘴通过水平校准器与打印平台垂直布置;
喷头通过丝管与材料挂轴上的丝材连接,材料挂轴布置在竖台的侧壁上。
本发明具有以下优点:
1、熔融挤压快速成形技术能够达到的精度为0.02mm,可以制造复杂的各种模型,大大降低了加工难度。制作出来的模型可以用于装配验证。
2、相对于传统的手工封装方式效率更高,成本更低,方便快捷。成型过程无需专用夹具、模具、刀具,既节省了费用,又缩短了制作周期。
3、融入4D打印技术便能够实现构件的自组装、自我修复等功能,可以实现材料特定性质的改变。
4、MEM技术的耗材(例如ABS)的弹性模量更加接近石英光纤,消除了传统封装方式由于胶层弹性模量较低对传感器应变传递率的影响。
附图说明
图1为本发明实施例使用增材制造装置的结构示意图。
图2为本发明实施例流程图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图1、2对本发明的具体实施方式做详细的说明。
一种基于MEM的光纤光栅传感器封装方法,包括下面步骤:
步骤①根据传感器用途确定传感器类型,确定传感器元件细节尺寸;
步骤②选择打印材料:根据所需传感器特定功能及要求选取ABS、PLA或陶瓷打印材料;
步骤③模型的建立:利用制图软件(Autodesk Revit Family、AutoCAD软件)绘制三维模型,模型精度为0.1mm;导出为stl格式文件;
步骤④切片处理:先将三维模型导入切片软件进行切片处理,将建成的三维模型分成逐层的截面,从而指导逐层打印;将模型调整合适的切片朝向,以确保层叠构件各向受力均衡;
步骤⑤打印过程:启动3D打印机,通过数据线把stl格式的模型切片得到Gcode文件传送给3D打印机,同时,装入填充材料,初始化打印平台,设定层片厚度、填充率、支撑间隔、暂停高度打印参数;热熔喷嘴将粉末状、液状 或丝状金属、陶瓷、塑料融化挤出,填充材料迅速固化,自下而上进行逐层堆积黏结,在每个层片堆积过程中,上一层对当前层起到定位和支撑作用,根据重力原理,如果一个物体的某个面与垂直线的角度大于45度且悬空,就有可能发生坠落,当存在悬空结构时需要生成辅助支撑结构,在完成模型后可拆除支撑;在事先设置好的暂停高度暂停后,在预定位置埋入光纤光栅,利用聚四氟乙烯高温胶带固定位置及施加一定预应力,继续打印,完成打印;
步骤⑥:光纤两端涂抹密封胶并套上松套管,熔接FC接头;
步骤⑦:MEM试件后期处理,拆除支撑材料,抛光表面。
步骤①中传感器元件细节尺寸包括光纤光栅栅区部分预留空心部分,两端夹持部分以及松套管预留孔。
步骤⑤中填充材料为PLA、蜡、ABS、尼龙热塑性材料,还可以是形状记忆聚合物材料。
步骤⑤中暂停高度为光纤光栅应变传感器径向截面圆心高度,所述埋入光纤的预定位置为光纤光栅应变传感器轴向径向对称中心位置。
步骤⑥中密封胶为704密封胶。
一种基于MEM的光纤光栅传感器封装装置,包括基座1、打印平台2、喷嘴3、喷头4、丝管5、材料挂轴6、丝材7、水平校准器10、自动对高块11、双头线12;基座1上方安装竖台13,竖台13下部通过自动对高块11连接有打印平台2,打印平台2与基座1抵接;竖台13上部通过滑轨安装有喷头4,喷头4下部设有喷嘴3,喷嘴3通过双头线12与对高块11连接,喷嘴3通过水平校准器10与打印平台2垂直布置;喷头4通过丝管5与材料挂轴6上的丝材7连接,材料挂轴6布置在竖台的侧壁上。
基座1前面板上设有信号灯8和初始化按钮9。

Claims (7)

  1. 一种基于MEM的光纤光栅传感器封装方法,其特征在于,包括下面步骤:
    步骤①根据传感器用途确定传感器类型,确定传感器元件细节尺寸;
    步骤②选择打印材料:根据所需传感器特定功能及要求选取ABS、PLA或陶瓷打印材料;
    步骤③模型的建立:利用制图软件绘制三维模型,模型精度为0.1mm;导出为stl格式文件;
    步骤④切片处理:先将三维模型导入切片软件进行切片处理,将建成的三维模型分成逐层的截面,从而指导逐层打印;将模型调整合适的切片朝向,以确保层叠构件各向受力均衡;
    步骤⑤打印过程:启动3D打印机,通过数据线把stl格式的模型切片得到Gcode文件传送给3D打印机,同时,装入填充材料,初始化打印平台,设定层片厚度、填充率、支撑间隔、暂停高度打印参数;热熔喷嘴将粉末状、液状或丝状金属、陶瓷、塑料融化挤出,填充材料迅速固化,自下而上进行逐层堆积黏结,在每个层片堆积过程中,上一层对当前层起到定位和支撑作用,根据重力原理,如果一个物体的某个面与垂直线的角度大于45度且悬空,就有可能发生坠落,当存在悬空结构时需要生成辅助支撑结构,在完成模型后可拆除支撑;在事先设置好的暂停高度暂停后,在预定位置埋入光纤光栅,利用聚四氟乙烯高温胶带固定位置及施加一定预应力,继续打印,完成打印;
    步骤⑥:光纤两端涂抹密封胶并套上松套管,熔接FC接头;
    步骤⑦:MEM试件后期处理,拆除支撑材料,抛光表面。
  2. 根据权利要求1所述的一种基于MEM的光纤光栅传感器封装方法,其 特征在于,步骤①中传感器元件细节尺寸包括光纤光栅栅区部分预留空心部分,两端夹持部分以及松套管预留孔。
  3. 根据权利要求1所述的一种基于MEM的光纤光栅传感器封装方法,其特征在于,步骤⑤中填充材料为PLA、蜡、ABS、尼龙热塑性材料,还可以是形状记忆聚合物材料。
  4. 根据权利要求1所述的一种基于MEM的光纤光栅传感器封装方法,其特征在于,步骤⑤中暂停高度为光纤光栅应变传感器径向截面圆心高度,所述埋入光纤的预定位置为光纤光栅应变传感器轴向径向对称中心位置。
  5. 根据权利要求1所述的一种基于MEM的光纤光栅传感器封装方法,其特征在于,步骤⑥中密封胶为704密封胶。
  6. 一种基于MEM的光纤光栅传感器封装装置,其特征在于:包括基座、打印平台、喷嘴、喷头、丝管、材料挂轴、丝材、水平校准器、自动对高块、双头线;基座上方安装竖台,竖台下部通过自动对高块连接有打印平台,打印平台与基座抵接;竖台上部通过滑轨安装有喷头,喷头下部设有喷嘴,喷嘴通过双头线与对高块连接,喷嘴通过水平校准器与打印平台垂直布置;
    喷头通过丝管与材料挂轴上的丝材连接,材料挂轴布置在竖台的侧壁上。
  7. 根据权利要求6所述的一种基于MEM的光纤光栅传感器封装装置,其特征在于:基座前面板上设有信号灯和初始化按钮。
PCT/CN2020/097451 2019-12-11 2020-06-22 一种基于mem的光纤光栅传感器封装方法及装置 WO2021114603A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911262656.X 2019-12-11
CN201911262656.XA CN111016159A (zh) 2019-12-11 2019-12-11 一种基于mem的光纤光栅传感器封装方法及装置

Publications (1)

Publication Number Publication Date
WO2021114603A1 true WO2021114603A1 (zh) 2021-06-17

Family

ID=70205394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/097451 WO2021114603A1 (zh) 2019-12-11 2020-06-22 一种基于mem的光纤光栅传感器封装方法及装置

Country Status (2)

Country Link
CN (1) CN111016159A (zh)
WO (1) WO2021114603A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117380974A (zh) * 2023-12-07 2024-01-12 西安赛隆增材技术股份有限公司 一种锆铌合金增材制造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111016159A (zh) * 2019-12-11 2020-04-17 沈阳建筑大学 一种基于mem的光纤光栅传感器封装方法及装置
CN113752541B (zh) * 2021-04-08 2023-07-18 长江水利委员会长江科学院 一种基于3d打印制备光纤光栅模型土工格栅的装置及方法
CN113618870A (zh) * 2021-08-13 2021-11-09 中国科学院武汉岩土力学研究所 三维打印水泥基模型的传感器植入装置及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103496166A (zh) * 2013-10-16 2014-01-08 西安科技大学 一种基于快速成型技术的微纳传感器制造方法及装置
CN103660300A (zh) * 2013-12-04 2014-03-26 北京太尔时代科技有限公司 一种自动调平的3d打印机及其打印方法
CN104260358A (zh) * 2014-10-24 2015-01-07 姚川 一种3d打印方法
CN107187030A (zh) * 2017-06-13 2017-09-22 哈尔滨工业大学 利用3d打印技术制作传感器的方法
US20180312398A1 (en) * 2017-04-28 2018-11-01 Electronics And Telecommunications Research Institute Manufacturing method of sensor using 3d printing and 3d printer thereof
CN109813458A (zh) * 2019-01-05 2019-05-28 西安科技大学 一种基于3d打印技术的光纤光栅温度传感器及其组装方法
CN209495788U (zh) * 2019-01-05 2019-10-15 西安科技大学 一种光纤光栅温度传感器
CN111016159A (zh) * 2019-12-11 2020-04-17 沈阳建筑大学 一种基于mem的光纤光栅传感器封装方法及装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103496166A (zh) * 2013-10-16 2014-01-08 西安科技大学 一种基于快速成型技术的微纳传感器制造方法及装置
CN103660300A (zh) * 2013-12-04 2014-03-26 北京太尔时代科技有限公司 一种自动调平的3d打印机及其打印方法
CN104260358A (zh) * 2014-10-24 2015-01-07 姚川 一种3d打印方法
US20180312398A1 (en) * 2017-04-28 2018-11-01 Electronics And Telecommunications Research Institute Manufacturing method of sensor using 3d printing and 3d printer thereof
CN107187030A (zh) * 2017-06-13 2017-09-22 哈尔滨工业大学 利用3d打印技术制作传感器的方法
CN109813458A (zh) * 2019-01-05 2019-05-28 西安科技大学 一种基于3d打印技术的光纤光栅温度传感器及其组装方法
CN209495788U (zh) * 2019-01-05 2019-10-15 西安科技大学 一种光纤光栅温度传感器
CN111016159A (zh) * 2019-12-11 2020-04-17 沈阳建筑大学 一种基于mem的光纤光栅传感器封装方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIE WEILIAN, ZHONG XIONGQUAN;: "Rapid Prototyping Technique Based on Benchtop MEM", MECHANICAL ENGINEER, vol. 2, 10 February 2014 (2014-02-10), pages 106 - 108, XP055822765 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117380974A (zh) * 2023-12-07 2024-01-12 西安赛隆增材技术股份有限公司 一种锆铌合金增材制造方法
CN117380974B (zh) * 2023-12-07 2024-03-01 西安赛隆增材技术股份有限公司 一种锆铌合金增材制造方法

Also Published As

Publication number Publication date
CN111016159A (zh) 2020-04-17

Similar Documents

Publication Publication Date Title
WO2021114603A1 (zh) 一种基于mem的光纤光栅传感器封装方法及装置
US10500836B2 (en) Adhesion test station in an extrusion apparatus and methods for using the same
Bellini Fused deposition of ceramics: a comprehensive experimental, analytical and computational study of material behavior, fabrication process and equipment design
CN106124362B (zh) 一种超声塑化毛细管流变仪及粘度测试方法
Polak et al. Determination of FDM printer settings with regard to geometrical accuracy
CN109016493B (zh) 一种压力调控的连续纤维复合材料fdm 3d打印方法
US8955389B2 (en) Method and device for monitoring and optimizing injection molding processes
CN103990579B (zh) 三坐标精密点胶机构
JPH05345359A (ja) 三次元対象物組み立てシステム及び組み立て方法
CN105856525A (zh) 汽车大型注塑件生产方法
Marson et al. Flatness optimization of micro-injection moulded parts: the case of a PMMA microfluidic component
CN109249612A (zh) 一种基于三维打印的飞机操纵杆夹持工装设计方法
CN212219285U (zh) 一种基于mem的光纤光栅传感器封装装置
Li et al. An affordable injection-molded precision hybrid glass–polymer achromatic lens
US11858213B2 (en) Methods and apparatus for vibration-assisted stereolithography
JP5507419B2 (ja) 中空樹脂成形体の成形方法
CN203949681U (zh) 一种电涡流传感器探头
CN106841005B (zh) 测试液态复合材料渗透率的方法
Richter et al. Print-on strategies to bond injection molded parts with structures produced by fused-deposition-modeling
CN206551479U (zh) 一种基于熔融沉积成型技术的3d打印机
Chatzidai et al. Experimental and numerical study on the influence of critical 3D printing processing parameters
CN113878830B (zh) 超声能场下微注射成型聚合物流变在线检测装置及方法
CN102248635A (zh) 用于成型光纤耦合连接器之模具及成型方法
CN110341186A (zh) 一种复合增材的制造方法
TW201924898A (zh) 自由曲面鏡片之模仁補償方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20899698

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/10/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20899698

Country of ref document: EP

Kind code of ref document: A1